WorldWideScience

Sample records for human foot skin

  1. Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole.

    Science.gov (United States)

    Lowrey, Catherine R; Strzalkowski, Nicholas D J; Bent, Leah R

    2013-02-01

    Skin on the foot sole plays an important role in postural control. Cooling the skin of the foot is often used to induce anesthesia to determine the role of skin in motor and balance control. The effect of cooling on the four classes of mechanoreceptor in the skin is largely unknown, and thus the aim of the present study was to characterize the effects of cooling on individual skin receptors in the foot sole. Such insight will better isolate individual receptor contributions to balance control. Using microneurography, we recorded 39 single nerve afferents innervating mechanoreceptors in the skin of the foot sole in humans. Afferents were identified as fast-adapting (FA) or slowly adapting (SA) type I or II (FA I n = 16, FA II n = 7, SA I n = 6, SA II n = 11). Receptor response to vibration was compared before and after cooling of the receptive field (2-20 min). Overall, firing response was abolished in 30% of all receptors, and this was equally distributed across receptor type (P = 0.69). Longer cooling times were more likely to reduce firing response below 50% of baseline; however, some afferent responses were abolished with shorter cooling times (2-5 min). Skin temperature was not a reliable indicator of the level of receptor activation and often became uncoupled from receptor response levels, suggesting caution in the use of this parameter as an indicator of anesthesia. When cooled, receptors preferentially coded lower frequencies in response to vibration. In response to a sustained indentation, SA receptors responded more like FA receptors, primarily coding "on-off" events.

  2. Skin grafting and tissue replacement for treating foot ulcers in people with diabetes

    NARCIS (Netherlands)

    Santema, Trientje B.; Poyck, Paul P. C.; Ubbink, Dirk T.

    2016-01-01

    Foot ulceration is a major problem in people with diabetes and is the leading cause of hospitalisation and limb amputations. Skin grafts and tissue replacements can be used to reconstruct skin defects for people with diabetic foot ulcers in addition to providing them with standard care. Skin

  3. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; Prijs, Miranda; van Baal, Jeff G.; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A.

    2014-01-01

    Abstract Background: Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot

  4. Foot Skin Ischemic Necrosis following Heel Prick in a Newborn

    Directory of Open Access Journals (Sweden)

    Esad Koklu

    2013-01-01

    Full Text Available There are only a few reports on side effects after heel prick in neonates although heel prick has been performed all over the world for many years. The medicine staff had obtained only a drop of blood by pricking the baby’s heel using a lancet without compressing the heel or foot to measure his blood glucose level 3 hours after birth. However he developed a severe and hemorrhagic skin reaction on his entire left foot, beginning 30 minutes after obtaining the drop of blood by pricking the baby’s heel using a lancet. The lesion, which was treated with topical mupirocin and povidone-iodine solution daily, slowly decreased in size and had almost fully resolved within 3 weeks. He was healthy and 9 months old at the time of writing this paper. We herein report a case of foot skin ischemic necrosis following heel prick in a newborn. To our knowledge this patient is the first case of foot skin ischemic necrosis due to heel prick in newborns.

  5. Diagnostic values for skin temperature assessment to detect diabetes-related foot complications

    NARCIS (Netherlands)

    van Netten, Jaap J.; Prijs, Miranda; van Baal, Jeff G.; Liu, C.; van der Heijden, Ferdinand; Bus, Sicco A.

    2014-01-01

    Skin temperature assessment is a promising modality for early detection of diabetic foot problems, but its diagnostic value has not been studied. Our aims were to investigate the diagnostic value of different cutoff skin temperature values for detecting diabetes-related foot complications such as

  6. [Healing of skin lesions in diabetic foot syndrome during hospitalization].

    Science.gov (United States)

    Jirkovská, A

    2006-05-01

    Wound healing during the diabetic foot disease is indicated to in-patient treatment in case of non-healing wound, in case of serious infection and/or critical ischemia and in case of necessity of surgical treatment. Diabetic foot disease is the main reason for in-patient treatment of people with diabetes, which our experience confirms. Chronic wound is characterised by non-healing for at least 4 weeks. Ischemia and recurrent trauma caused by incomplete off-loading, prolong inflammation and infection are the main reasons for difficult healing of chronic wound. Infection is also leading cause for prolonged hospitalisation of patients with diabetic foot disease. Local decrease of grow factors and increase of tissue protease are characteristics of chronic wound. The process of wound healing is characterized by a cascade of interrelated events involving infection and inflammatory factors. The results of these investigations led to the moist wound healing concept and use of growth factors and bioengineered skin substitutes. We have good experience with the use of xenotransplant skin substitues in the treatment of diabetic foot. Off loading techniques including total contact casting, local therapy by debridement and skin substitutes had the best evidence based efficacy. We are introducing new method of the treatment of diabetic foot--VAC--vacuum assisted closure. The fundamental principle in the therapy during in-patient period, is comprehensive approach; the omitting of any of the principle of the therapy--e.g. the off-loading of the ulcers, the infection and ischemia control, may contribute to its failure.

  7. Degloved foot sole successfully reconstructed with split thickness skin grafts

    NARCIS (Netherlands)

    Janssens, Loes; Holtslag, Herman R.; Schellekens, Pascal P A; Leenen, Luke P H

    2015-01-01

    Introduction The current opinion is that split thickness skin grafts are not suitable to reconstruct a degloved foot sole. The tissue is too fragile to carry full bodyweight; and therefore, stress lesions frequently occur. The treatment of choice is the reuse of the avulsed skin whenever possible,

  8. The thermoregulation of healthy individuals, overweight-obese, and diabetic from the plantar skin thermogram: a clue to predict the diabetic foot.

    Science.gov (United States)

    Renero-C, Francisco-J

    2017-01-01

    Background : Thermoregulation is a complex autonomic process to keep or to dissipate heat in the human body. Methods : In this work, by means of the thermogram of the plantar skin, the thermoregulation of healthy individuals, overweight-obese, and diabetic is discussed. Results : The thermograms of the plantar skin, for the healthy individuals, are: (1) symmetrical, the temperature distribution of the right foot being a mirror image of that of the left foot ; (2) the thermograms of women, on average, are 3°C colder than those of the men; and (3) the temperature distributions decrease distally from the medial longitudinal arch. The plantar skin thermograms of overweight-obese individuals show: (1) increased average temperature of both feet and for both genders; (2) no symmetry between the left and right feet thermograms; and (3) the temperature distribution is still decreasing from the medial longitudinal arch to the periphery of the foot. However, the standard deviation, for each averaged temperature of the angiosomes, shows greater uncertainty. Most thermograms of diabetic individuals show temperature increase on the plantar skin, and are mostly symmetric between left and right feet. Conclusions: An asymmetric thermogram of the plantar skin of diabetic individuals, where one foot is hotter than the other, may mean that the coldest foot is losing the capacity to communicate properly with the central nervous system and/or that vasoconstriction/vasodilatation is having problems in regulating the passing of blood through the vessels. Thus, the asymmetric thermograms of diabetic patients, and particularly those coldest regions of foot are of interest, because of the reduction of the local autonomic sensing and the lack of achieving properly the passing of the blood.

  9. The Hand-Foot Skin Reaction and Quality of Life Questionnaire: An Assessment Tool for Oncology

    OpenAIRE

    Anderson, Roger T.; Keating, Karen N.; Doll, Helen A.; Camacho, Fabian

    2015-01-01

    This study describes the development and validation of a brief, patient self-reported questionnaire (the hand-foot skin reaction and quality of life questionnaire) supporting its suitability for use in clinical research to aid in early recognition of symptoms, to evaluate the effectiveness of agents for hand-foot skin reaction (HFSR) or hand-foot syndrome (HFS) treatment within clinical trials, and to evaluate the impact of these treatments on HFS/R-associated patients’ health-related quality...

  10. The Hand-Foot Skin Reaction and Quality of Life Questionnaire: An Assessment Tool for Oncology

    Science.gov (United States)

    Keating, Karen N.; Doll, Helen A.; Camacho, Fabian

    2015-01-01

    Background. Skin toxicity (hand-foot syndrome/hand-foot skin reaction, HFS/R) related to antineoplastic therapy is a significant issue in oncology practice, with potentially large impacts on health-related quality of life (HRQL). Materials and Methods. A patient-reported questionnaire, the hand-foot skin reaction and quality of life (HF-QoL) questionnaire was developed to measure the HFS/R symptoms associated with cancer therapeutic agents and their effect on daily activities. The validity and reliability of the HF-QoL questionnaire was tested in a randomized trial of capecitabine with sorafenib/placebo in 223 patients with locally advanced/metastatic breast cancer. Other measures completed included patient ratings of condition severity, the Functional Assessment of Cancer Therapy-Breast cancer (FACT-B), and the clinician-rated National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 3.0, hand-foot skin reaction grade. The psychometric properties of the HF-QoL tested included structural validity, internal consistency, construct validity, discriminant validity, and responsiveness. Finally, the minimal clinically important difference (MCID) was estimated. Results. The HF-QoL instrument comprises a 20-item symptom scale and an 18-item daily activity scale. Each scale demonstrated excellent measurement properties and discriminated between NCI-CTCAE grade and patient-rated condition severity with large effect sizes. The daily activity scale had excellent internal consistency and correlated with the FACT-B and HF-QoL symptom scores. Both HF-QoL scale scores increased linearly with increasing patient-rated condition severity. The MCIDs were estimated as 5 units for daily activities and 8 units for symptoms mean scores. Conclusion. The HF-QoL was sensitive to symptoms and HRQL issues associated with HFS/R among participants treated with capecitabine with and without sorafenib. The HF-QoL appears suitable for assessing the HRQL

  11. The Hand-Foot Skin Reaction and Quality of Life Questionnaire: An Assessment Tool for Oncology.

    Science.gov (United States)

    Anderson, Roger T; Keating, Karen N; Doll, Helen A; Camacho, Fabian

    2015-07-01

    Skin toxicity (hand-foot syndrome/hand-foot skin reaction, HFS/R) related to antineoplastic therapy is a significant issue in oncology practice, with potentially large impacts on health-related quality of life (HRQL). A patient-reported questionnaire, the hand-foot skin reaction and quality of life (HF-QoL) questionnaire was developed to measure the HFS/R symptoms associated with cancer therapeutic agents and their effect on daily activities. The validity and reliability of the HF-QoL questionnaire was tested in a randomized trial of capecitabine with sorafenib/placebo in 223 patients with locally advanced/metastatic breast cancer. Other measures completed included patient ratings of condition severity, the Functional Assessment of Cancer Therapy-Breast cancer (FACT-B), and the clinician-rated National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 3.0, hand-foot skin reaction grade. The psychometric properties of the HF-QoL tested included structural validity, internal consistency, construct validity, discriminant validity, and responsiveness. Finally, the minimal clinically important difference (MCID) was estimated. The HF-QoL instrument comprises a 20-item symptom scale and an 18-item daily activity scale. Each scale demonstrated excellent measurement properties and discriminated between NCI-CTCAE grade and patient-rated condition severity with large effect sizes. The daily activity scale had excellent internal consistency and correlated with the FACT-B and HF-QoL symptom scores. Both HF-QoL scale scores increased linearly with increasing patient-rated condition severity. The MCIDs were estimated as 5 units for daily activities and 8 units for symptoms mean scores. The HF-QoL was sensitive to symptoms and HRQL issues associated with HFS/R among participants treated with capecitabine with and without sorafenib. The HF-QoL appears suitable for assessing the HRQL impairment associated with HFS/R to cancer therapies. Skin

  12. The effect of anaesthesia on the radiosensitivity of rat intestine, foot skin and R-1 tumours

    International Nuclear Information System (INIS)

    Kal, H.B.; Gaiser, J.F.

    1980-01-01

    A comparison has been made of the effects of Nembutal (sodium pentobarbital) and Ethrane (2-chloro-1,1,2-trifluoroethyldifluoromethyl ether) anaesthesia on the radiation responses of rat intestine, foot skin and R-1 rhabdomyosarcoma. Single-dose experiments under Nembutal or short-lasting Ethrane anaesthesia resulted in equivalent radiosensitivities for the R-1 sarcoma and foot skin, whereas Ethrane induced radiosensitization in the intestine. In the Ethrane anaesthesia lasting 3 hours, and in the split-dose experiments, Ethrane inhibited repair of radiation-induced damage in the R-1 sarcoma and in the foot skin. It is therefore recommended that the use of Ethrane as an anaesthetic should be avoided in experiments designed to investigate repair of damage in fractionated studies or during protracted irradiation treatments. (UK)

  13. Treatment of Diabetic Foot Ulcer Using Matriderm In Comparison with a Skin Graft

    Directory of Open Access Journals (Sweden)

    Hyojin Jeon

    2013-07-01

    Full Text Available BackgroundFor patients with neuropathy, vasculopathy, and impairment of wound healing, treatment of a diabetic foot ulcer poses many challenges. A large number of dermal analogues have been invented in an effort to overcome these challenges. Matriderm, a dermal analogue, is made from bovine collagen and elastin. This study was conducted in order to evaluate the effectiveness of Matriderm for treatment of diabetic foot ulcers, in comparison with skin grafting.MethodsSixty patients with diabetic foot ulcer were included in this prospective study. The average age of the patients, who had type II diabetes mellitus, was 58 years old. The patients were allocated to an experimental or control group with their consents. The patients were selected with their consent for inclusion in an experimental group and a control group. Patients in the experimental group received a Matriderm appliance and a split-thickness skin graft, while those in the control group received only a split-thickness skin graft.ResultsA shorter hospitalization period (7.52 weeks was observed in the experimental group than in the control group (9.22 weeks, and a shorter period of time (8.61 weeks was required for complete healing, compared with the control group (12.94 weeks, with statistical significance (P<0.05. A higher elasticity ratio of the affected side to the non-affected side was observed in the experimental group, compared with the control group (P<0.01.ConclusionsMatriderm enables effective healing and improves elasticity in treatment of patients with diabetic foot ulcer.

  14. Skin grafting and tissue replacement for treating foot ulcers in people with diabetes.

    Science.gov (United States)

    Santema, Trientje B; Poyck, Paul P C; Ubbink, Dirk T

    2016-02-11

    Foot ulceration is a major problem in people with diabetes and is the leading cause of hospitalisation and limb amputations. Skin grafts and tissue replacements can be used to reconstruct skin defects for people with diabetic foot ulcers in addition to providing them with standard care. Skin substitutes can consist of bioengineered or artificial skin, autografts (taken from the patient), allografts (taken from another person) or xenografts (taken from animals). To determine the benefits and harms of skin grafting and tissue replacement for treating foot ulcers in people with diabetes. In April 2015 we searched: The Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE and EBSCO CINAHL. We also searched clinical trial registries to identify ongoing studies. We did not apply restrictions to language, date of publication or study setting. Randomised clinical trials (RCTs) of skin grafts or tissue replacements for treating foot ulcers in people with diabetes. Two review authors independently extracted data and assessed the quality of the included studies. We included seventeen studies with a total of 1655 randomised participants in this review. Risk of bias was variable among studies. Blinding of participants, personnel and outcome assessment was not possible in most trials because of obvious differences between the treatments. The lack of a blinded outcome assessor may have caused detection bias when ulcer healing was assessed. However, possible detection bias is hard to prevent due to the nature of the skin replacement products we assessed, and the fact that they are easily recognisable. Strikingly, nearly all studies (15/17) reported industry involvement; at least one of the authors was connected to a commercial organisation or the study was funded by a commercial organisation. In addition, the funnel plot for

  15. Stepwise surgical approach to diabetic partial foot amputations with autogenous split thickness skin grafting

    Directory of Open Access Journals (Sweden)

    Crystal L. Ramanujam

    2016-06-01

    Full Text Available In the surgical treatment of severe diabetic foot infections, substantial soft tissue loss often accompanies partial foot amputations. These sizeable soft tissue defects require extensive care with the goal of expedited closure to inhibit further infection and to provide resilient surfaces capable of withstanding long-term ambulation. Definitive wound closure management in the diabetic population is dependent on multiple factors and can have a major impact on the risk of future diabetic foot complications. In this article, the authors provide an overview of autogenous skin grafting, including anatomical considerations, clinical conditions, surgical approach, and adjunctive treatments, for diabetic partial foot amputations.

  16. [Preparation and antimicrobial effect of aromatic, natural and bacteriostatic foot wash with skin care].

    Science.gov (United States)

    Gao, Su-Hua; Zhao, Guo-Xiang; Yang, Xiao-Dong; Xu, Ling-Ling

    2013-06-01

    To prepare the aromatic, natural and bacteriostatic foot wash with skin care and research the inhibition effect on the different bacteria and pathogenic fungus which cause dermatophytosis. It was prepared by using Sophoraflavescens and Dictamnus dasycarpus as materials with the addition of Aloe extract, essential oil, surfactant, etc. The antifungal and antibacterial activity was researched by the levitation liquid quantitative method. The foot wash smelled faintly scent. The use of this product can produce a rich foam. The inhibitory rate were all more than 90%. The preparation process of the foot wash was simple. It has obviously bacteriostatic and fungistatic effect.

  17. [Effects of self-foot reflexology on stress, fatigue, skin temperature and immune response in female undergraduate students].

    Science.gov (United States)

    Lee, Young-Mee

    2011-02-01

    The purpose of this study was to evaluate the effects of self-foot reflexology on stress (perceived stress, urine cortisol level, and serum cortisol level), fatigue, skin temperature and immune response in female undergraduate students. The research design was a nonequivalent control group pretest-post test design. Participants were 60 university students: 30 in the experiment group and 30 in the control group. The period of this study was from April to June 2010. The program was performed for 1 hr a session, three times a week for 6 weeks. The data were analyzed using the SPSS/WIN 17.0 program. The results showed that self-foot reflexology was effective in reducing perceived stress and fatigue, and raised skin temperature in female undergraduate students. But cortisol levels and immune response were not statistically significant different. The results of this study indicate that self-foot reflexology is an effective nursing intervention in reducing perceived stress and fatigue and, in improving skin temperature. Therefore, it is recommended that this be used in clinical practice as an effective nursing intervention for in female undergraduate students.

  18. [Reconstruction of ankle and foot with combination of free perforator flaps and skin graft].

    Science.gov (United States)

    Yin, Lu; Gong, Ketong; Yin, Zhonggang; Zhang, Bo; Xu, Jianhua

    2017-03-01

    To evaluate the clinical outcomes of free perforator flaps combined with skin graft for reconstruction of ankle and foot soft tissue defects. Between June 2014 and October 2015, 20 cases of ankle and foot soft tissue defects were treated. There were 16 males and 4 females, aged from 19 to 61 years (mean, 43.3 years). Injury was caused by traffic accident in 7 cases, by crashing in 9 cases, and machine twist in 4 cases. The locations were the ankle in 6 cases, the heel in 3 cases, the dorsum pedis in 4 cases, and the plantar forefoot in 7 cases of avulsion injury after toes amputation. The size of wound ranged from 15 cm×10 cm to 27 cm×18 cm. The time from injury to treatment was from 11 to 52 days (mean, 27 days). The anterolateral thigh perforator flap was used in 11 cases, thoracodorsal antery perforator flap in 3 cases, medial sural artery perforator flap in 4 cases, deep inferior epigastric perforator flap in 1 case, and anteromedial thigh perforator flap in 1 case, including 5 chimeric perforator flaps, 5 polyfoliate perforator flaps, 3 flow-through perforator flaps, and 3 conjoined perforator flaps. The size of the perforator flap ranged from 10.0 cm×6.5 cm to 36.0 cm×8.0 cm, the size of skin graft from 5 cm×3 cm to 18 cm×12 cm. Venous crisis occurred in 2 flaps which survived after symptomatic treatment; 18 flaps survived successfully and skin grafting healed well. The follow-up time ranged 4-18 months (mean, 8.3 months). The flaps had good appearance, texture and color, without infection. The patients could walk normally and do daily activities. Only linear scars were observed at the donor sites. Free perforator flap can be used to reconstruct defects in the ankle and foot, especially in the weight-bearing area of the plantar forefoot. A combination of free perforator flap and skin graft is ideal in reconstruction of great soft tissue defects in the ankle and foot.

  19. Kinesiology-Based Robot Foot Design for Human-Like Walking

    Directory of Open Access Journals (Sweden)

    SangJoo Kwon

    2012-12-01

    Full Text Available Compared with the conventional flat foot, the flexible foot is advantageous in implementing human-like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human-like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step.

  20. Perception of foot temperature in young women with cold constitution: analysis of skin temperature and warm and cold sensation thresholds.

    Science.gov (United States)

    Sadakata, Mieko; Yamada, Yoshiaki

    2007-06-01

    To examine the disease state of cold constitution, physiological measurements of the foot were conducted by investigating thermal sensations under an environmental condition of 25 degrees C-26 degrees C (neutral temperature) in 29 young women with and without cold constitution. The subjects were classified into 3 groups according to their experiences with cold constitution: cold constitution, intermediate, and normal groups. Foot skin temperature was measured by thermography. Thermal sensations were measured on the dorsum of the left foot using a thermal stimulator. Cold and warm spots on the dorsum of the right foot were ascertained. Thermal stimulation was delivered by a copper probe. No significant differences in foot skin temperature among these 3 groups were identified as measured in a laboratory under neutral temperature conditions. However, the mean warm sensation threshold was +6.3+/-1.09 degrees C (mean+/-SEM) for the cold constitution group (n=14), +3.4+/-2.10 degrees C (mean+/-SEM) for the intermediate group (n=7), and -0.25+/-1.96 degrees C (mean+/-SEM) for the normal group (n=6). The difference was significant between the cold constitution and normal groups. No significant differences among the 3 groups were found in the cold sensation threshold. This may be attributable to the distribution of thermal receptors and to chronically reduced blood flow in subcutaneous tissues, where the skin temperature receptors responsible for temperature sensation are located.

  1. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.

    Science.gov (United States)

    Schmedes, Sarah E; Woerner, August E; Novroski, Nicole M M; Wendt, Frank R; King, Jonathan L; Stephens, Kathryn M; Budowle, Bruce

    2018-01-01

    The human skin microbiome is comprised of diverse communities of bacterial, eukaryotic, and viral taxa and contributes millions of additional genes to the repertoire of human genes, affecting human metabolism and immune response. Numerous genetic and environmental factors influence the microbiome composition and as such contribute to individual-specific microbial signatures which may be exploited for forensic applications. Previous studies have demonstrated the potential to associate skin microbial profiles collected from touched items to their individual owner, mainly using unsupervised methods from samples collected over short time intervals. Those studies utilize either targeted 16S rRNA or shotgun metagenomic sequencing to characterize skin microbiomes; however, these approaches have limited species and strain resolution and susceptibility to stochastic effects, respectively. Clade-specific markers from the skin microbiome, using supervised learning, can predict individual identity using skin microbiomes from their respective donors with high accuracy. In this study the hidSkinPlex is presented, a novel targeted sequencing method using skin microbiome markers developed for human identification. The hidSkinPlex (comprised of 286 bacterial (and phage) family-, genus-, species-, and subspecies-level markers), initially was evaluated on three bacterial control samples represented in the panel (i.e., Propionibacterium acnes, Propionibacterium granulosum, and Rothia dentocariosa) to assess the performance of the multiplex. The hidSkinPlex was further evaluated for prediction purposes. The hidSkinPlex markers were used to attribute skin microbiomes collected from eight individuals from three body sites (i.e., foot (Fb), hand (Hp) and manubrium (Mb)) to their host donor. Supervised learning, specifically regularized multinomial logistic regression and 1-nearest-neighbor classification were used to classify skin microbiomes to their hosts with up to 92% (Fb), 96% (Mb

  2. Buried chip skin grafting in neuropathic diabetic foot ulcers following vacuum-assisted wound bed preparation: enhancing a classic surgical tool with novel technologies.

    Science.gov (United States)

    Kopp, Jürgen; Kneser, Ulrich; Bach, Alexander D; Horch, Raymund E

    2004-09-01

    In patients with diabetes mellitus, complications such as polyneuropathy and peripheral angiopathy inevitably lead to diabetic foot complications including foot ulcers, gangrene, and osteoarthropathy. These conditions necessitate minor or major amputation as part of treatment. In patients with Charcot's arthropathy and predominant neuropathy, recurrent foot ulcers are common in areas of high pressure. Such high pressure is caused by the degrading of the architecture of the foot and inadequate footwear. These patients are a clinical challenge. A select group of such patients may benefit from free surgical tissue transfer, though free or local flap surgery is often difficult or even impossible owing to an impaired arterial circulation. In such wounds, surgical debridement followed by skin grafts often fail due to bacterial burden in the wounds. To circumvent these problems, the authors developed a therapeutic approach using buried chip skin grafting to close granulation wound beds in diabetic feet. Locally applied vacuum therapy (VAC) for wound bed preparation of chronic, nonresponsive foot ulcers and subsequent grafting using the burying technique with a minute fraction of skin was used. Firm closure was achieved. The closed wound was resistant to mechanical irritation.

  3. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  4. Skin Diseases: Cross-section of human skin

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  5. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Langer Astrid

    2009-07-01

    Full Text Available Abstract Background Tissue engineering is an emerging field. Novel bioengineered skin substitutes and genetically derived growth factors offer innovative approaches to reduce the burden of diabetic foot and venous leg ulcers for both patients and health care systems. However, they frequently are very costly. Based on a systematic review of the literature, this study assesses the cost-effectiveness of these growth factors and tissue-engineered artificial skin for treating chronic wounds. Methods On the basis of an extensive explorative search, an appropriate algorithm for a systematic database search was developed. The following databases were searched: BIOSIS Previews, CRD databases, Cochrane Library, EconLit, Embase, Medline, and Web of Science. Only completed and published trial- or model-based studies which contained a full economic evaluation of growth factors and bioengineered skin substitutes for the treatment of chronic wounds were included. Two reviewers independently undertook the assessment of study quality. The relevant studies were assessed by a modified version of the Consensus on Health Economic Criteria (CHEC list and a published checklist for evaluating model-based economic evaluations. Results Eleven health economic evaluations were included. Three biotechnology products were identified for which topical growth factors or bioengineered skin substitutes for the treatment of chronic leg ulceration were economically assessed: (1 Apligraf®, a bilayered living human skin equivalent indicated for the treatment of diabetic foot and venous leg ulcers (five studies; (2 Dermagraft®, a human fibroblast-derived dermal substitute, which is indicated only for use in the treatment of full-thickness diabetic foot ulcers (one study; (3 REGRANEX® Gel, a human platelet-derived growth factor for the treatment of deep neuropathic diabetic foot ulcers (five studies. The studies considered in this review were of varying and partly low

  6. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  7. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  8. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  9. Systematic review and meta-analysis of skin substitutes in the treatment of diabetic foot ulcers: Highlights of a Cochrane systematic review

    NARCIS (Netherlands)

    Santema, T. B. Katrien; Poyck, Paul P. C.; Ubbink, Dirk T.

    2016-01-01

    Skin substitutes are increasingly used in the treatment of various types of acute and chronic wounds. The aim of this study was to perform a systematic review and meta-analysis to evaluate the effectiveness of skin substitutes on ulcer healing and limb salvage in the treatment of diabetic foot

  10. Topically applied connective tissue growth factor/CCN2 improves diabetic preclinical cutaneous wound healing: potential role for CTGF in human diabetic foot ulcer healing.

    Science.gov (United States)

    Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M

    2015-01-01

    Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P diabetic foot ulcers.

  11. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  12. Characterization of a Cryopreserved Split-Thickness Human Skin Allograft-TheraSkin.

    Science.gov (United States)

    Landsman, Adam; Rosines, Eran; Houck, Amanda; Murchison, Angela; Jones, Alyce; Qin, Xiaofei; Chen, Silvia; Landsman, Arnold R

    2016-09-01

    The purpose of this study was to examine the characteristics of a cryopreserved split-thickness skin allograft produced from donated human skin and compare it with fresh, unprocessed human split-thickness skin. Cutaneous wound healing is a complex and organized process, where the body re-establishes the integrity of the injured tissue. However, chronic wounds, such as diabetic or venous stasis ulcers, are difficult to manage and often require advanced biologics to facilitate healing. An ideal wound care product is able to directly influence wound healing by introducing biocompatible extracellular matrices, growth factors, and viable cells to the wound bed. TheraSkin (processed by LifeNet Health, Virginia Beach, Virginia, and distributed by Soluble Systems, Newport News, Virginia) is a minimally manipulated, cryopreserved split-thickness human skin allograft, which contains natural extracellular matrices, native growth factors, and viable cells. The authors characterized TheraSkin in terms of the collagen and growth factor composition using ELISA, percentage of apoptotic cells using TUNEL analysis, and cellular viability using alamarBlue assay (Thermo Fisher Scientific, Waltham, Massachusetts), and compared these characteristics with fresh, unprocessed human split-thickness skin. It was found that the amount of the type I and type III collagen, as well as the ratio of type I to type III collagen in TheraSkin, is equivalent to fresh unprocessed human split-thickness skin. Similar quantities of vascular endothelial growth factor, insulinlike growth factor 1, fibroblast growth factor 2, and transforming growth factor β1 were detected in TheraSkin and fresh human skin. The average percent of apoptotic cells was 34.3% and 3.1% for TheraSkin and fresh skin, respectively. Cellular viability was demonstrated in both TheraSkin and fresh skin.

  13. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Advanced glycation end products assessed by skin autofluorescence: a new marker of diabetic foot ulceration.

    Science.gov (United States)

    Vouillarmet, Julien; Maucort-Boulch, Delphine; Michon, Paul; Thivolet, Charles

    2013-07-01

    Accumulation of advanced glycation end products (AGEs) may contribute to diabetic foot ulceration (DFU). Our goal was to determine whether AGEs measurement by skin autofluorescence (SAF) would be an additional marker for DFU management. We performed SAF analysis in 66 patients with a history of DFU prospectively included and compared the results with those of 84 control patients with diabetic peripheral neuropathy without DFU. We then assessed the prognostic value of SAF levels on the healing rate in the DFU group. Mean SAF value was significantly higher in the DFU group in comparison with the control group, even after adjustment for other diabetes complications (3.2±0.6 arbitrary units vs. 2.9±0.6 arbitrary units; P=0.001). In the DFU group, 58 (88%) patients had an active wound at inclusion. The mean DFU duration was 14±13 weeks. The healing rate was 47% after 2 months of appropriate foot care. A trend for a correlation between SAF levels and healing time in DFU subjects was observed but was not statistically significant (P=0.06). Increased SAF levels are associated with neuropathic foot complications in diabetes. Use of SAF measurement to assess foot vulnerability and to predict DFU events in high-risk patients appears to be promising.

  15. Skin friction: a novel approach to measuring in vivo human skin

    OpenAIRE

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into three parts. The first part is an introduction to skin friction and to current knowledge on skin friction. The second part presents the RevoltST, the tribometer that was specially developed for skin...

  16. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    Science.gov (United States)

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  17. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats.

    Science.gov (United States)

    Kato, Jiro; Kamiya, Hideki; Himeno, Tatsuhito; Shibata, Taiga; Kondo, Masaki; Okawa, Tetsuji; Fujiya, Atsushi; Fukami, Ayako; Uenishi, Eita; Seino, Yusuke; Tsunekawa, Shin; Hamada, Yoji; Naruse, Keiko; Oiso, Yutaka; Nakamura, Jiro

    2014-01-01

    Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model. The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs. Expression levels of phosphorylated focal adhesion kinase (pFAK), matrix metaroprotease (MMP)-2, EGF, and IGF-1, were evaluated in human keratinocytes, which were cultured in conditioned media of BM-MSCs (MSC-CM) with high glucose levels. Re-epithelialization initiated the healing process on the plantar, but not on the thigh, skin. The therapy utilizing BM-MSCs ameliorated the delayed healing in diabetic rats. In the keratinocytes cultured with MSC-CM, the decreased pFAK levels in the high glucose condition were restored, and the MMP2, EGF, and IGF-1 levels increased. Our study established a novel rat DFU model. The impaired healing process in diabetic rats was ameliorated by transplantation of BM-MSCs. This amelioration might be accounted for by the modification of keratinocyte functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  19. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    OpenAIRE

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; T?rholm, S?ren; Al-Munajjed, Amir A.; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Background Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Methods ...

  20. Human age and skin physiology shape diversity and abundance of Archaea on skin.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Probst, Alexander J; Birarda, Giovanni; Auerbach, Anna; Koskinen, Kaisa; Wolf, Peter; Holman, Hoi-Ying N

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.

  1. The foot in forensic human identification - a review.

    Science.gov (United States)

    Davies, C M; Hackman, L; Black, S M

    2014-03-01

    The identification of human remains is a process which can be attempted irrespective of the stage of decomposition in which the remains are found or the anatomical regions recovered. In recent years, the discovery of fragmented human remains has garnered significant attention from the national and international media, particularly the recovery of multiple lower limbs and feet from coastlines in North America. While cases such as these stimulate public curiosity, they present unique challenges to forensic practitioners in relation to the identification of the individual from whom the body part originated. There is a paucity of literature pertaining to the foot in forensic human identification and in particular, in relation to the assessment of the parameters represented by the biological profile. This article presents a review of the literature relating to the role of the foot in forensic human identification and highlights the areas in which greater research is required. Copyright © 2013. Published by Elsevier Ltd.

  2. Skin friction: a novel approach to measuring in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into

  3. Trench Foot or Non-Freezing Cold Injury As a Painful Vaso-Neuropathy: Clinical and Skin Biopsy Assessments

    Directory of Open Access Journals (Sweden)

    Praveen Anand

    2017-09-01

    Full Text Available BackgroundTrench foot, or non-freezing cold injury (NFCI, results from cold exposure of sufficient severity and duration above freezing point, with consequent sensory and vascular abnormalities which may persist for years. Based on observations of Trench foot in World War II, the condition was described as a vaso-neuropathy. While some reports have documented nerve damage after extreme cold exposure, sensory nerve fibres and vasculature have not been assessed with recent techniques in NFCI.ObjectiveTo assess patients with chronic sensory symptoms following cold exposure, in order to diagnose any underlying small fibre neuropathy, and provide insight into mechanisms of the persistent pain and cold hypersensitivity.MethodsThirty soldiers with cold exposure and persistent sensory symptoms (>4 months were assessed with quantitative sensory testing, nerve conduction studies, and skin biopsies. Immunohistochemistry was used to assess intraepidermal (IENF and subepidermal (SENF nerve fibres with a range of markers, including the pan-neuronal marker protein gene product 9.5 (PGP 9.5, regenerating fibres with growth-associated protein 43 (GAP43, and nociceptor fibres with transient receptor potential cation channel subfamily V member 1 (TRPV1, sensory neuron-specific receptor (SNSR, and calcitonin gene-related peptide (CGRP. von Willebrand factor (vWF, endothelial nitric oxide synthase (eNOS, and vascular endothelial growth factor (VEGF were used for assessing blood vessels, and transient receptor potential cation channel, subfamily A member 1 (TRPA1 and P2X purinoceptor 7 (P2X7 for keratinocytes, which regulate nociceptors via release of nerve growth factor.ResultsClinical examination showed pinprick sensation was abnormal in the feet of 20 patients (67%, and between 67 and 83% had abnormalities of thermal thresholds to the different modalities. 7 patients (23% showed reduced sensory action potential amplitude of plantar nerves. 27 patients (90% had

  4. Imaging of Charcot foot

    International Nuclear Information System (INIS)

    Erlemann, Rainer; Schmitz, Annette

    2014-01-01

    The onset of a Charcot foot ist a feared complication of a long lasting diabetes mellitus. A peripheral neuropathy and continuous weight bearing of the foot subsequent to repeated traumas depict the conditions. There exist three types of a Charcot foot, an atrophic, a hypertophic and a mixed type. In early stages a differentiation from osteoarthritis is difficult. Subluxation or luxation within the Lisfranc's joint is typical. The joints of the foot could rapidly and extensively be destroyed or may present the morphology of a 'superosteoarthritis'. Often, soft tissue infections or osteomyelitis evolve from ulcers of the skin as entry points. Diagnosis of osteomyelitis necessitate MR imaging as plain radiography offers only low sensitivity for detection of an osteomyelitis. The existence of periosteal reactions is not a proof for osteomyelitis. Bone marrow edema and soft tissue edema also appear in a non infected Charcot foot. The range of soft tissue infections goes from cellulitis over phlegmon to abscesses. The ghost sign is the most suitable diagnostic criterion for osteomyelitis. In addition, the penumbra sign or the existence of a sinus tract between a skin ulcer and the affected bone may be helpful. (orig.)

  5. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  6. In-vitro percutaneous absorption of losartan potassium in human skin and prediction of human skin permeability

    Directory of Open Access Journals (Sweden)

    Petkar K.C.

    2007-05-01

    Full Text Available This study describes the feasibility of transdermal controlled administration of Losartan potassium (LP across human cadaver skin. Study also defines the influence of capsaicin, sex and site of application on permeation characteristics and determined an appropriate animal model for human skin permeability. The permeation of LP of various formulations was studied using Keshary-Chein diffusion cell. Optimized controlled formulation (without capsaicin released 42.17% (±1.85 of LP in 12 hr whereas treatment formulation (with capsaicin 0.028 % w/v released 48.94% (±1.71 of LP with significant difference on null hypothesis. Influence of sex showed statistically significant difference for permeation of LP through male and female rats, as well as male and female mice across both the abdominal and dorsal sides of the skin (p<0.05. Similarly statistically significant differences were noted for permeation of LP across male and female mice abdomen-dorsal, but not for male rat abdomen-dorsal and female rat abdomen-dorsal. Furthermore, in-vitro permeation of LP across human skin was compared with the permeation across rat and mice skins. Male rat and male mice dorsal skin was found to have closer permeability characteristics to human than other skin membranes, but the Factor of Difference values were < 3 for all membranes which were used suggesting the membranes are good models for human skin permeability. In conclusion simple transdermal adhesive patches formulations incorporating high molecular weight of LP can deliver a dose in-vivo and proposed model skin membranes can be utilized for future pharmacokineic and toxicokinetic studies as well as metabolism studies of LP

  7. Regorafenib-associated hand–foot skin reaction: practical advice on diagnosis, prevention, and management

    Science.gov (United States)

    McLellan, B.; Ciardiello, F.; Lacouture, M. E.; Segaert, S.; Van Cutsem, E.

    2015-01-01

    Background Regorafenib is an orally available, small-molecule multikinase inhibitor with international marketing authorizations for use in colorectal cancer and gastrointestinal stromal tumors. In clinical trials, regorafenib showed a consistent and predictable adverse-event profile, with hand–foot skin reaction (HFSR) among the most clinically significant toxicities. This review summarizes the clinical characteristics of regorafenib-related HFSR and provides practical advice on HFSR management to enable health care professionals to recognize, pre-empt, and effectively manage the symptoms, thereby allowing patients to remain on active therapy for as long as possible. Design This review is based on a systematic literature search of the PubMed database (using synonyms of HFSR, regorafenib, and skin toxicities associated with targeted therapies or cytotoxic chemotherapy). However, as this search identified very few articles, the authors also use their clinical experience as oncologists and dermatologists managing patients with treatment-related HFSR to provide recommendations on recognition and management of HFSR in regorafenib-treated patients. Results Regorafenib-related HFSR is similar to that seen with other multikinase inhibitors (e.g. sorafenib, sunitinib, cabozantinib, axitinib, and pazopanib) but differs from the hand–foot syndrome seen with cytotoxic chemotherapies (e.g. fluoropyrimidines, anthracyclines, and taxanes). There have been no controlled trials of symptomatic management of regorafenib-related HFSR, and limited good-quality evidence from randomized clinical trials of effective interventions for HFSR associated with other targeted therapies. Recommendations on prevention and management of regorafenib-related HFSR in this review are therefore based on the expert opinion of the authors (dermatologists and oncologists with expertise in the management of treatment-related skin toxicities and oncologists involved in clinical trials of regorafenib) and

  8. Regorafenib-associated hand-foot skin reaction: practical advice on diagnosis, prevention, and management.

    Science.gov (United States)

    McLellan, B; Ciardiello, F; Lacouture, M E; Segaert, S; Van Cutsem, E

    2015-10-01

    Regorafenib is an orally available, small-molecule multikinase inhibitor with international marketing authorizations for use in colorectal cancer and gastrointestinal stromal tumors. In clinical trials, regorafenib showed a consistent and predictable adverse-event profile, with hand-foot skin reaction (HFSR) among the most clinically significant toxicities. This review summarizes the clinical characteristics of regorafenib-related HFSR and provides practical advice on HFSR management to enable health care professionals to recognize, pre-empt, and effectively manage the symptoms, thereby allowing patients to remain on active therapy for as long as possible. This review is based on a systematic literature search of the PubMed database (using synonyms of HFSR, regorafenib, and skin toxicities associated with targeted therapies or cytotoxic chemotherapy). However, as this search identified very few articles, the authors also use their clinical experience as oncologists and dermatologists managing patients with treatment-related HFSR to provide recommendations on recognition and management of HFSR in regorafenib-treated patients. Regorafenib-related HFSR is similar to that seen with other multikinase inhibitors (e.g. sorafenib, sunitinib, cabozantinib, axitinib, and pazopanib) but differs from the hand-foot syndrome seen with cytotoxic chemotherapies (e.g. fluoropyrimidines, anthracyclines, and taxanes). There have been no controlled trials of symptomatic management of regorafenib-related HFSR, and limited good-quality evidence from randomized clinical trials of effective interventions for HFSR associated with other targeted therapies. Recommendations on prevention and management of regorafenib-related HFSR in this review are therefore based on the expert opinion of the authors (dermatologists and oncologists with expertise in the management of treatment-related skin toxicities and oncologists involved in clinical trials of regorafenib) and tried-and-tested empirical

  9. An ex vivo human skin model for studying skin barrier repair.

    Science.gov (United States)

    Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A

    2015-01-01

    In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    Science.gov (United States)

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  11. Diabetes: foot ulcers and amputations.

    Science.gov (United States)

    Hunt, Dereck L

    2011-08-26

    Diabetic foot ulceration is full-thickness penetration of the dermis of the foot in a person with diabetes. Severity is classified using the Wagner system, which grades it from 1 to 5. The annual incidence of ulcers among people with diabetes is 2.5% to 10.7% in resource-rich countries, and the annual incidence of amputation for any reason is 0.25% to 1.8%. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent foot ulcers and amputations in people with diabetes? What are the effects of treatments in people with diabetes with foot ulceration? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 50 systematic reviews and RCTs that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review, we present information relating to the effectiveness and safety of the following interventions: debridement, human cultured dermis, human skin equivalent, patient education, pressure off-loading with felted foam or pressure-relief half-shoe, pressure off-loading with total-contact or non-removable casts, screening and referral to foot-care clinics, systemic hyperbaric oxygen for non-infected ulcers, systemic hyperbaric oxygen in infected ulcers, therapeutic footwear, topical growth factors, and wound dressings.

  12. Efficacy of a protocol including heparin ointment for treatment of multikinase inhibitor-induced hand-foot skin reactions.

    Science.gov (United States)

    Li, Jian-ri; Yang, Chi-rei; Cheng, Chen-li; Ho, Hao-chung; Chiu, Kun-yuan; Su, Chung-Kuang; Chen, Wen-Ming; Wang, Shian-Shiang; Chen, Chuan-Shu; Yang, Cheng-Kuang; Ou, Yen-chuan

    2013-03-01

    The purpose of this study is to evaluate the efficacy of a protocol including topical heparin therapy for hand-foot skin reactions (HFSR) during multikinase (MKI) treatment. We prospectively collected 26 patients who had HFSRs during treatment with the MKIs, sunitinib, sorafenib, or axitinib. The age distribution ranged from 46 to 87 years, with a mean of 66 years. The distribution of HFSR severity was 12 patients with grade 1, 12 with grade 2, and 2 with grade 3. A heparin-containing topical ointment treatment, combined with hand-foot shock absorbers and skin moisturizers, was used at the lesion sites. Changes in the grade of HFSR, MKI dosage, and interruptions of MKI therapy were recorded. The results showed that 66.7% of grade 1 patients were cured of disease, 83.3% of grade 2 patients had improved symptoms, and both grade 3 patients (100%) had improved symptoms and were downgraded to grade 2. Four (15.4%) patients required reduction of MKI dosage, but there were no treatment interruptions or dropouts. Our protocol is beneficial in promoting resolution of HFSRs induced by MKIs. Further validation in large control studies should be investigated.

  13. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  14. Oral treatments for fungal infections of the skin of the foot

    Directory of Open Access Journals (Sweden)

    Sally E. M. Bell-Syer

    Full Text Available BACKGROUND: About 15% of the world population have fungal infections of the feet (tinea pedis or athlete's foot. There are many clinical presentations of tinea pedis, and most commonly, tinea pedis is seen between the toes (interdigital and on the soles, heels, and sides of the foot (plantar. Plantar tinea pedis is known as moccasin foot. Once acquired, the infection can spread to other sites including the nails, which can be a source of re-infection. Oral therapy is usually used for chronic conditions or when topical treatment has failed. OBJECTIVE: To assess the effects of oral treatments for fungal infections of the skin of the foot (tinea pedis. METHODS: Search methods: For this update we searched the following databases to July 2012: the Cochrane Skin Group Specialized Register, CENTRAL in The Cochrane Library, MEDLINE (from 1946, EMBASE (from 1974, and CINAHL (from 1981. We checked the bibliographies of retrieved trials for further references to relevant trials, and we searched online trials registers. Selection criteria: Randomized controlled trials of oral treatments in participants who have a clinically diagnosed tinea pedis, confirmed by microscopy and growth of dermatophytes (fungi in culture. Data collection and analysis: Two review authors independently undertook study selection, "Risk of bias" assessment, and data extraction. MAIN RESULTS: We included 15 trials, involving 1,438 participants. The 2 trials (71 participants comparing terbinafine and griseofulvin produced a pooled risk ratio (RR of 2.26 (95% confidence interval (CI 1.49 to 3.44 in favors of terbinafine's ability to cure infection. No significant difference was detected between terbinafine and itraconazole, fluconazole and itraconazole, fluconazole and ketoconazole, or between griseofulvin and ketoconazole, although the trials were generally small. Two trials showed that terbinafine and itraconazole were effective compared with placebo: terbinafine (31 participants, RR

  15. Nonlinear dynamics of skin blood flow response to mechanical and thermal stresses in the plantar foot of diabetics with peripheral neuropathy.

    Science.gov (United States)

    Liao, Fuyuan; Jan, Yih-Kuen

    2017-01-01

    Diabetic foot ulcers (DFU) are a major complication in diabetics. Impaired microvascular reactivity is a major contributor to the development of DFU and has been traditionally quantified by time-domain or frequency-domain measures of skin blood flow (SBF). These measures, however, are unable to characterize the changes of nonlinear dynamics of SBF associated with diabetes and peripheral neuropathy. The objective of this study was to investigate altered nonlinear dynamics of skin blood flow in the plantar foot of diabetics with peripheral neuropathy. 18 type 2 diabetics with peripheral neuropathy and 8 healthy controls were recruited. SBF at the first metatarsal head in response to a loading pressure of 300 mmHg and a local heating was measured using laser Doppler flowmetry. A sample entropy approach was used to quantify the degree of regularity of SBF. Our results showed that the regularity degree of SBF in the diabetic foot underwent only small changes during post-occlusive reactive hyperemia and thermally induced biphasic response compared to non-diabetics. SBF of the diabetic foot has higher degree of irregularity during reactive hyperemia because of attenuated myogenic activity, and demonstrated higher regularity during the biphasic response largely due to significantly enhanced cardiac activities. This study suggests that the regularity degree of SBF at the first metatarsal head could be used to assess impaired microvascular reactivity and thus may be used to assess the risk for DFU in diabetics with peripheralneuropathy.

  16. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    Science.gov (United States)

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  17. Research on the Influence of Orthopaedic Inserts on Pressure Distribution in the Foot

    Directory of Open Access Journals (Sweden)

    Ignas Rutulys

    2011-02-01

    Full Text Available The article examines the influence of individual orthopaedic inserts on pressure distribution in the foot. Feet deformations, types of orthopaedic inserts, materials and pressure in the foot testing methods are discussed. Experimental computer measurements of pressure in the foot before and after the use of inserts have been done. During research, the inserts made of different kinds of materials selected according to human weight, pathology, skin sensitivity and many other reasons has been used. It has been determinated that orthopaedic inserts have a more noticeable impact on children whose feet is adjusted easier if compared with those of adults.Article in Lithuanian

  18. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries

    Directory of Open Access Journals (Sweden)

    Ana Gomes

    2017-10-01

    Full Text Available As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  19. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries.

    Science.gov (United States)

    Gomes, Ana; Teixeira, Cátia; Ferraz, Ricardo; Prudêncio, Cristina; Gomes, Paula

    2017-10-18

    As the incidence of diabetes continues to increase in the western world, the prevalence of chronic wounds related to this condition continues to be a major focus of wound care research. Additionally, over 50% of chronic wounds exhibit signs and symptoms that are consistent with localized bacterial biofilms underlying severe infections that contribute to tissue destruction, delayed wound-healing and other serious complications. Most current biomedical approaches for advanced wound care aim at providing antimicrobial protection to the open wound together with a matrix scaffold (often collagen-based) to boost reestablishment of the skin tissue. Therefore, the present review is focused on the efforts that have been made over the past years to find peptides possessing wound-healing properties, towards the development of new and effective wound care treatments for diabetic foot ulcers and other skin and soft tissue infections.

  20. Electrochemical skin conductance to detect sudomotor dysfunction, peripheral neuropathy and the risk of foot ulceration among Saudi patients with diabetes mellitus.

    Science.gov (United States)

    Sheshah, Eman; Madanat, Amal; Al-Greesheh, Fahad; Al-Qaisi, Dalal; Al-Harbi, Mohammad; Aman, Reem; Al-Ghamdi, Abdul Aziz; Al-Madani, Khaled

    2015-01-01

    Sudomotor dysfunction is manifested clinically as abnormal sweating leading to dryness of feet skin and increased risk of foot ulceration. The aim of this study was to test the performance of foot electrochemical skin conductance (ESC) to detect diabetic peripheral neuropathy and the risk of foot ulceration against traditional methods in Saudi patients with diabetes mellitus. This cross-sectional study was conducted on 296 Saudi patients with diabetes mellitus. Painful neuropathic symptoms were evaluated using the neuropathy symptom score (NSS). The risk of foot ulceration and diabetic peripheral neuropathy were determined using the neuropathy disability score (NDS). Vibration perception threshold (VPT) was assessed using neurothesiometer. Neurophysiological assessment of the right and left sural, peroneal and tibial nerves was performed in 222 participants. Diabetic peripheral neuropathy was defined according to the definition of the American Academy of Neurology. ESC was measured with Sudoscan. Feet-ESC decreased as the scores of sensory and motor function tests increased. Feet-ESC decreased as the NSS, NDS and severity of diabetic peripheral neuropathy increased. Sensitivity of feet-ESC peripheral neuropathy assessed by VPT ≥ 25 V, NDS ≥ 3, NDS ≥ 6 was 90.1, 61 and 63.8 % respectively and specificity 77, 85 and 81.9 % respectively. Sensitivity of feet-ESC peripheral neuropathy assessed by VPT ≥ 25 V, NDS ≥ 3, NDS ≥ 6 was 100, 80.6 and 80.9 % respectively. Sensitivity and specificity of feet-ESC peripheral neuropathy were 67.5 and 58.9 % respectively. Sudoscan a simple and objective tool can be used to detect diabetic peripheral neuropathy and the risk of foot ulceration among patients with diabetes mellitus. Prospective studies to confirm our results are warranted.

  1. Isolation of Human Skin Dendritic Cell Subsets.

    Science.gov (United States)

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (skin covering an average total surface area of 1.8 m(2) has approximately tenfold more DCs than the average 5 L of total blood volume (Wang et al., J Invest Dermatol 134:965-974, 2014). DCs migrate spontaneously from skin explants cultured ex vivo, which provide an easy method of cell isolation (Larsen et al., J Exp Med 172:1483-1493, 1990; Lenz et al., J Clin Invest 92:2587-2596, 1993; Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages.

  2. Increased Number of Langerhans Cells in the Epidermis of Diabetic Foot Ulcers Correlates with Healing Outcome

    Science.gov (United States)

    Stojadinovic, Olivera; Yin, Natalie; Lehmann, Janin; Pastar, Irena; Kirsner, Robert S.; Tomic-Canic, Marjana

    2015-01-01

    Langerhans cells (LCs) are a specialized subset of epidermal dendritic cells. They represent one of the first cells of immunological barrier and play an important role during the inflammatory phase of acute wound healing. Despite considerable progress in our understanding of the immunopathology of diabetes mellitus and its associated co-morbidities such as diabetic foot ulcers (DFUs), considerable gaps in our knowledge exist. In this study, we utilized the human ex vivo wound model and confirmed the increased epidermal LCs at wound edges during early phases of wound healing. Next, we aimed to determine differences in quantity of LCs between normal human and diabetic foot skin and to learn if the presence of LCs correlates with the healing outcome in DFUs. We utilized immunofluorescence to detect CD207+ LCs in specimens from normal and diabetic foot skin and DFU wound edges. Specimens from DFUs were collected at the initial visit and 4 weeks at the time when the healing outcome was determined. DFUs that decreased in size by >50% were considered to be healing, while DFUs with a size reduction of healing. Quantitative assessment of LCs showed a higher number of LCs in healing when compared to non–healing DFU’s. Our findings provide evidence that LCs are present in higher number in diabetic feet than normal foot skin. Healing DFUs show a higher number of LCs compared to non-healing DFUs. These findings indicate that the epidermal immune barrier plays an important role in the DFU healing outcome and may offer new therapeutic avenues targeting LC in non-healing DFUs. PMID:24277309

  3. Black and white human skin differences

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Maibach, H I

    1979-01-01

    This review of black and white human skin differences emphasizes the alleged importance of factors other than the obvious, i.e., skin color. Physicochemical differences and differences in susceptibility to irritants and allergens suggest a more resistant black than white skin. Differences appear...

  4. [Minor foot amputations in diabetic foot syndrome].

    Science.gov (United States)

    Biehl, C; Eckhard, M; Szalay, G; Heiss, C

    2016-10-01

    The treatment strategy for diabetic foot syndrome must take into account protective sensibility of the foot, open wounds, infection status, and the rules of septic bone surgery. Interventions are classified as elective, prophylactic, curative, or emergency. Amputations in the forefoot and midfoot region are performed as ray amputations (including metatarsal), which can often be carried out as "inner" amputations. Gentle tissue treatment mandatory because of greater risk of revision with re-amputation compared to classical amputation. Good demarcation of infection, acute osteomyelitis, osteolytic lesions, neurotropic ulcer, arterial and venous blood flow to the other toes, gangrene of other toes with metatarsal affection. Arterial occlusive disease, infection of neighboring areas, avoidable amputations, poorly healing ulcers on the lower leg. Primary dorsal approach; minimal incisional distance (5 cm) to minimize skin necrosis risk. Atraumatic preparation, minimize hemostasis to not compromise the borderline perfusion situation. In amputations, plantar skin preparation and longer seams placed as dorsal as possible, either disarticulated and maintain cartilage, or round the cortical metatarsal bone after resection. Diabetes control. Braun splint, mobilization in a shoe with forefoot decompression and hindfoot support, physiotherapy. Antibiotics based on resistance testing. If no complications, dressing change on postoperative day 1. Optimal wound drainage by lowering foot several times a day; drainage removal after 12-24 h. Insoles and footwear optimization. Amputations require continued attention and if necessary treatment to avoid sequelae. Insufficient treatment associated with recurrent ulceration and altered anatomy.

  5. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    Science.gov (United States)

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  6. Development of human skin equivalents to unravel the impaired skin barrier in atopic dermatitis skin

    NARCIS (Netherlands)

    Eweje, M.O.

    2016-01-01

    The studies in this thesis describes the barrier defects in Atopic Dermatitis (AD) skin and various techniques to develop AD Human Skin Equivalents (HSEs) which can be used to better understand the role of several factors in the pathogenesis of AD skin. The results described show that Inflammation

  7. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  8. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  9. Nociception at the diabetic foot, an uncharted territory

    Science.gov (United States)

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  10. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  11. Characterization of SLC transporters in human skin

    Directory of Open Access Journals (Sweden)

    Marion Alriquet

    2015-03-01

    Full Text Available Most identified drug transporters belong to the ATP-binding Cassette (ABC and Solute Carrier (SLC families. Recent research indicates that some of these transporters play an important role in the absorption, distribution and excretion of drugs, and are involved in clinically relevant drug-drug interactions for systemic drugs. However, very little is known about the role of drug transporters in human skin in the disposition of topically applied drugs and their involvement in drug-drug interactions. The aim of this work was to compare the expression in human skin (vs human hepatocytes and kidney of SLC transporters included in the EMA guidance as the most likely clinical sources of drug interactions. The expression of SLC transporters in human tissues was analyzed by quantitative RT-PCR. Modulation of SLC47A1 and SLC47A2 (MATE1 and MATE2 expression was analyzed after treatment of human skin in organ-culture with rifampicin and UV irradiation. The expression of SLCO2B1 (OATPB, SLCO3A1 (OATPD, SLCO4A1 (OATPE, SLC47A1 and SLC47A2 (MATE1 and MATE2 was detected in human skin, OATPE and MATE1 being the most expressed. OATPE is about 70 times more expressed in human skin than in human hepatocytes. Moreover, the expression of SLC47A1 and SLC47A2 was down-regulated after treatment with rifampicin or after exposure to UV light. The present findings demonstrate that SLCO4A1 (OATPE and SLC47A1 (MATE1 are highly expressed in human skin and suggest the involvement of SLC transporters in the disposition of topically applied drugs.

  12. Anaplerosis in Complex Treatment of Patients with Diabetic Foot Syndrome

    Directory of Open Access Journals (Sweden)

    B.G. Bezrodny

    2015-05-01

    Full Text Available The article describes the improvement of anaplerosis in patients with diabetic foot syndrome using skin flaps on vascular pedicle of the perforating vessels. The study involved patients with type 2 diabetes mellitus complicated with diabetic foot syndrome of neuroischemic form and chronic wounds of the lower extremities that do not heal for more than 21 days from the date of occurrence. The wounds were cleaned with ultrasonic cavitation. There was applied bandage with sorption antibacterial remedy base on nanodispersed silicon dioxide. There was applied a drainage vacuum bandage on a wound on the third day (VAC therapy. The flap is forming fitting to the size and configuration of a wound on a foot. Fourteen patients (93 % in the basic group were found to have survived flaps. Long-term follow up in 6 months demonstrated full maintenance of supporting function and good survived skin graft, absence of foot ulcers. In a control group 7 patients had recurrent foot ulcer. Improved techniques of autodermoplasty in patients with diabetic foot syndrome include glycemia control, preparation of a wound using vacuum apparatus bandage. Usage of split-skin graft combined with vacuum apparatus bandage allows close acute and chronic wounds effectively, maintain supporting function of an extremity, decrease in-hospital staying, and improve quality of patient’s life. Adequate foot wound closure prevents high-level amputation of low extremities in diabetic patients.

  13. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  14. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Zonneveld, I.; Das, P. K.; Krieg, S. R.; van der Loos, C. M.; Kapsenberg, M. L.

    1987-01-01

    The complexity of immune response-associated cells present in normal human skin was recently redefined as the skin immune system (SIS). In the present study, the exact immunophenotypes of lymphocyte subpopulations with their localizations in normal human skin were determined quantitatively. B cells

  16. Two-layer optical model of skin for early, non-invasive detection of wound development on the diabetic foot

    Science.gov (United States)

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2010-02-01

    Foot ulceration is a debilitating comorbidity of diabetes that may result in loss of mobility and amputation. Optical detection of cutaneous tissue changes due to inflammation and necrosis at the preulcer site could constitute a preventative strategy. A commercial hyperspectral oximetry system was used to measure tissue oxygenation on the feet of diabetic patients. A previously developed predictive index was used to differentiate preulcer tissue from surrounding healthy tissue with a sensitivity of 92% and specificity of 80%. To improve prediction accuracy, an optical skin model was developed treating skin as a two-layer medium and explicitly accounting for (i) melanin content and thickness of the epidermis, (ii) blood content and hemoglobin saturation of the dermis, and (iii) tissue scattering in both layers. Using this forward model, an iterative inverse method was used to determine the skin properties from hyperspectral images of preulcerative areas. The use of this information in lowering the false positive rate was discussed.

  17. Advanced haptic sensor for measuring human skin conditions

    Science.gov (United States)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  18. Shoes alter the spring-like function of the human foot during running

    Science.gov (United States)

    Kelly, Luke A.; Lichtwark, Glen A.; Farris, Dominic J.; Cresswell, Andrew

    2016-01-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (−25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot–shoe interaction to explain these novel findings. PMID:27307512

  19. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    Science.gov (United States)

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human

  1. A review of a bi-layered living cell treatment (Apligraf® in the treatment of venous leg ulcers and diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Larissa Zaulyanov

    2007-04-01

    Full Text Available Larissa Zaulyanov, Robert S Kirsner Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine, Miami, Florida, USAAbstract: Apligraf® (Organogenesis, Canton, MA is a bi-layered bioengineered skin substitute and was the first engineered skin US Food and Drug Administration (FDA-approved to promote the healing of ulcers that have failed standard wound care. Constructed by culturing human foreskin-derived neonatal fibroblasts in a bovine type I collagen matrix over which human foreskin-derived neonatal epidermal keratinocytes are then cultured and allowed to stratify, Apligraf provides both cells and matrix for the nonhealing wound. Its exact mechanism of action is not known, but it is known to produce cytokines and growth factors similar to healthy human skin. Initially approved by the FDA in 1998 for the treatment of venous ulcers greater than one-month duration that have not adequately responded to conventional therapy, Apligraf later received approval in 2000 for treatment of diabetic foot ulcers of greater than three weeks duration. Herein, we review the use of Apligraf in the treatment of chronic venous leg ulcers and diabetic foot ulcers. Our goal is to provide a working understanding of appropriate patient selection and proper use of the product for any physician treating this segment of the aging population.Keywords: wound healing, Apligraf®, venous leg ulcer, diabetic foot ulcer

  2. Human skin penetration of silver nanoparticles through intact and damaged skin

    International Nuclear Information System (INIS)

    Larese, Francesca Filon; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Renzi, Nadia; Bovenzi, Massimo; Maina, Giovanni

    2009-01-01

    There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 μg/cm 2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24 h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm -2 (range -2 (range 0.43-11.6) were found in the receiving solutions of cells where the nanoparticles solution was applied on intact skin (eight cells) and on damaged skin (eight cells), respectively. Twenty-four hours silver flux permeation in damaged skin was 0.62 ± 0.2 ng cm -2 with a lag time <1 h. Our experimental data showed that silver nanoparticles absorption through intact and damaged skin was very low but detectable, and that in case of damaged skin it was possible an increasing permeation of silver applied as nanoparticles. Moreover, silver nanoparticles could be detected in the stratum corneum and the outermost surface of the epidermis by electron microscopy. We demonstrated for the first time that silver applied as nanoparticles coated with polyvinylpirrolidone is able to permeate the damaged skin in an in vitro diffusion cell system

  3. Human skin wetness perception: psychophysical and neurophysiological bases

    Science.gov (United States)

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  4. Early detection of foot ulcers through asymmetry analysis

    Science.gov (United States)

    Kaabouch, Naima; Chen, Yi; Hu, Wen-Chen; Anderson, Julie; Ames, Forrest; Paulson, Rolf

    2009-02-01

    Foot ulcers affect millions of Americans annually. Areas that are likely to ulcerate have been associated with increased local skin temperatures due to inflammation and enzymatic autolysis of tissue. Conventional methods to assess skin, including inspection and palpation, may be valuable approaches, but usually they do not detect changes in skin integrity until an ulcer has already developed. Conversely, infrared imaging is a technology able to assess the integrity of the skin and its many layers, thus having the potential to index the cascade of physiological events in the prevention, assessment, and management of foot ulcers. In this paper, we propose a technique, asymmetry analysis, to automatically analyze the infrared images in order to detect inflammation. Preliminary results show that the proposed technique can be reliable and efficient to detect inflammation and, hence, predict potential ulceration.

  5. Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers.

    Science.gov (United States)

    Emanuelli, T; Burgeiro, A; Carvalho, E

    2016-12-01

    Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.

  6. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    Science.gov (United States)

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive

  7. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Science.gov (United States)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  8. Skin Cancers of the Feet

    Science.gov (United States)

    ... Foot Health Awareness Month Diabetes Awareness What Are Skin Cancers of the Feet? Skin cancer can develop anywhere on the body, including ... cell carcinoma is the most common form of cancer on the skin of the feet. Most types of early squamous ...

  9. Aescin-based topical formulation to prevent foot wounds and ulcerations in diabetic microangiopathy.

    Science.gov (United States)

    Hu, S; Belcaro, G; Dugall, M; Hosoi, M; Togni, S; Maramaldi, G; Giacomelli, L

    2016-10-01

    Impairment of the peripheral microcirculation in diabetic patients often leads to severe complications in the lower extremities, such as foot infections and ulcerations. In this study, a novel aescin-based formulation has been evaluated as a potential approach to prevent skin breaks and ulcerations by improving the peripheral microcirculation and skin hydration. In this registry study, 63 patients with moderate diabetic microangiopathy were recruited. Informed participants freely decided to follow either a standard management (SM) to prevent diabetic foot diseases (n = 31) or SM associated with topical application of the aescin-based cream (n = 32). Peripheral microcirculatory parameters such as resting skin flux, venoarteriolar response and transcutaneous gas tension were evaluated at inclusion and after 8 weeks. In addition, several skin parameters of the foot area, such as integrity (as number of skin breaks/patients), hydration and content of dead cells were assessed at the defined observational study periods. Improvements in cutaneous peripheral microcirculation parameters were observed at 8 weeks in both groups; however, a remarkable and significant beneficial effect resulted to be exerted by the aescin-based cream treatment. In fact, the microcirculatory parameters evaluated significantly improved in the standard management + aescin-based cream group, compared with baseline and with the standard management group. Similar findings were reported for skin parameters of the foot area. The topical formulation containing aescin could represent a valid approach to manage skin wounds and prevent skin ulcerations in patients affected by moderate diabetic microangiopathy.

  10. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  11. Modelling glucose and water dynamics in human skin

    NARCIS (Netherlands)

    Groenendaal, W.; Schmidt, K.H.; Basum, von G.; Riel, van N.A.W.; Hilbers, P.A.J.

    2008-01-01

    Background: Glucose is heterogeneously distributed in the different physiological compartments in the human skin. Therefore, for the development of a noninvasive measurement method, both a good quantification of the different compartments of human skin and an understanding of glucose transport

  12. Imaging of Charcot foot; Bildgebung des Charcot-Fusses

    Energy Technology Data Exchange (ETDEWEB)

    Erlemann, Rainer; Schmitz, Annette [Helios Klinikum Duisburg, Helios St. Johannes Klinik, Duisburg (Germany). Inst. fuer Radiologie

    2014-03-15

    The onset of a Charcot foot ist a feared complication of a long lasting diabetes mellitus. A peripheral neuropathy and continuous weight bearing of the foot subsequent to repeated traumas depict the conditions. There exist three types of a Charcot foot, an atrophic, a hypertophic and a mixed type. In early stages a differentiation from osteoarthritis is difficult. Subluxation or luxation within the Lisfranc's joint is typical. The joints of the foot could rapidly and extensively be destroyed or may present the morphology of a 'superosteoarthritis'. Often, soft tissue infections or osteomyelitis evolve from ulcers of the skin as entry points. Diagnosis of osteomyelitis necessitate MR imaging as plain radiography offers only low sensitivity for detection of an osteomyelitis. The existence of periosteal reactions is not a proof for osteomyelitis. Bone marrow edema and soft tissue edema also appear in a non infected Charcot foot. The range of soft tissue infections goes from cellulitis over phlegmon to abscesses. The ghost sign is the most suitable diagnostic criterion for osteomyelitis. In addition, the penumbra sign or the existence of a sinus tract between a skin ulcer and the affected bone may be helpful. (orig.)

  13. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    Science.gov (United States)

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  14. Quality system and audit of human skin allografts

    International Nuclear Information System (INIS)

    Van Baare, J.

    1999-01-01

    Allograft skin has long been recognised as an important resource in the management of bum wounds. The important issue in skin banking is fust to guarantee safety of human cadaveric donor skin. Second, the quality of the allografts should be assured. The Euro Skin Bank, established in 1976, is located in The Netherlands. Not only in The Netherlands, but in many other (European) countries no specific regulation exists for tissue banking. With respect to skin banking in The Netherlands the Euro Skin Bank requested the government what regulations should be applied on their activities. It was stated in 1994 that human allografl skin should be regarded as a phan-naceutical drug, a magistral preparation. The Euro Skin Bank should therefore be subjected to the guidelines given for the Good Laboraton, Practices and Good Manufacturing Practices to process allogmft skin. Nevertheless, it was in the opinion of the Euro Skin Bank that regulating human tissue as a pharmaceutical drug was not sufficient e.g. no specific regulations for serologic testing of the tissue donor is given, which should be one of the most important issues in tissue banking. Recently the government has published new legislation for tissue banks in The Netherlands: on July I st, 1998, a new legislation was enforced concerning organ and tissue donation and on November I st, 1998, quality requirements for organ and tissue banks are published. The European Community discussed the possibility to bring all animal and human tissues under the Medical Device Directive (MDD). Soon it was proposed not to incorporate viable hw-nan tissue into the MDD. Last year all human tissue was excluded from the MDD. Lack of European regulations has been resulted in national laws, e.g. in The Netherlands, Germany and France. Possibly there might be a more significant role for the European Association of Tissue Banks in the near future for European legislation on tissue banking. In order to have a standard quality system wmch is

  15. Utilization of reconstructed cultured human skin models as an alternative skin for permeation studies of chemical compounds

    OpenAIRE

    Kano, Satoshi; 藤堂, 浩明; 杉江, 謙一; 藤本, 英哲; 中田, 圭一; 徳留, 嘉寛; 橋本, フミ惠; 杉林, 堅次

    2010-01-01

    Two reconstructed human skin models, EpiskinSM and EpiDermTM, have been approved as alternative membranes for skin corrosive/irritation experiments due to their close correlation with animal skin. Such reconstructed human skin models were evaluated as alternative membranes for skin permeation experiments. Seven drugs with different lipophilicities and almost the same molecular weight were used as test penetrants. Relationships were investigated between permeability coefficients (P values) of ...

  16. [The clinical use of cryopreserved human skin allografts for transplantation].

    Science.gov (United States)

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  17. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    Science.gov (United States)

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.

  18. [Foot growth and foot types in children and adolescents: a narrative review].

    Science.gov (United States)

    Xu, Miaomiao; Wang, Lin

    2017-08-01

    Foot shape and size are important for footwear design and production. Information about important foot characteristics helps not only to improve shoe comfort but to maintain the proper physiological development of the feet. What's more, plenty of studies have suggested that the shape of the shoe must closely resemble the shape of the foot to create a properly fitted shoe. This means that the differences between various populations should be considered and that footwear should be designed according to the measurements of users. Childhood and adolescent are important periods of human growth. During these periods, foot shape changes with human growth and can be influenced by extrinsic factors. Therefore, the foot shape characteristics of children and adolescents should be investigated. The results from these investigations can contribute to developing appropriate shoe for children and adolescents, improving perceived comfort of children shoes and preventing pedopathy among children and adolescents. This review aims to discuss measuring methods of foot shape, types of foot shape, and factors influencing foot shape. The results of the review can provide recommendations for investigating growth development of foot shape and useful information for consumers and shoe manufacturers.

  19. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  20. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  1. Estimation of foot pressure from human footprint depths using 3D scanner

    Science.gov (United States)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  2. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    Science.gov (United States)

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  3. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method

    International Nuclear Information System (INIS)

    Jeong, Sang Hoon; Kim, Jae Hwan; Yi, Sang Min; Lee, Jung Pyo; Kim, Jin Ho; Sohn, Kyung Hee; Park, Kui Lea; Kim, Meyoung-Kon; Son, Sang Wook

    2010-01-01

    Quantum dots (QDs) are rapidly emerging as an important class of nanoparticles (NPs) with potential applications in medicine. However, little is known about penetration of QDs through human skin. This study investigated skin penetration of QDs in both in vivo and in vitro human skin. Using the tape stripping method, this study demonstrates for the first time that QDs can actually penetrate through the stratum corneum (SC) of human skin. Transmission electron microscope (TEM) and energy diverse X-ray (EDX) analysis showed accumulation of QDs in the SC of a human skin equivalent model (HSEM) after dermal exposure to QDs. These findings suggest possible transdermal absorption of QDs after dermal exposure over a relatively long period of time.

  4. Skin and the non-human human

    DEFF Research Database (Denmark)

    Rösing, Lilian Munk

    2013-01-01

    The article puts forward an aesthetic and psychoanalytic analysis of Titian's painting, The Flaying of Marsyas, arguing that the painting is a reflection on the human subject as a being constituted by skin and by a core of non-humanity. The analysis is partly an answer to Melanie Hart's (2007) ar...... of the 'Muselmann', and Anton Ehrenzweig's psychoanalytic theory of artistic creation. Whereas Hart is focusing on form and colour, I also turn my attention towards the texture of the painting....

  5. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  6. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    International Nuclear Information System (INIS)

    Hughes, Michael F.; Edwards, Brenda C.

    2010-01-01

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using

  7. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  8. Distally based sural neuro-fasciocutaneous perforator flap for foot and ankle reconstruction: Surgical modifications for flap pedicle and donor site closure without skin graft.

    Science.gov (United States)

    Chi, Zhenglin; Chen, Yiheng; Chu, Tinggang; Gao, Weiyang; Li, Zhijie; Yan, Hede; Song, Yonghuan

    2018-02-01

    The conventional procedure of the sural neuro-fasciocutaneous flap enables the supply of blood and venous drainage by increasing the width of the adipofascial tissue and preserving tiny venous return routes. Moreover, skin graft is a common method for donor site closure, which may lead to some complications and influence the aesthetic appearance. We report modifications for a distally based sural neuro-fasciocutaneous perforator flap and a relaying flap for donor site closure without skin graft. Twelve patients undergoing the modified flap for foot and ankle reconstruction were included in this study between 2014 and 2016. A peroneal-based perforator, a superficial vein, and the vascular axis of the sural nerve were included in the pedicle. A Z-shape skin incision was performed to explore the perforator vessels and a relaying island perforator flap was used to close the donor site. All flaps survived completely without necrosis. The area of the flaps ranged from 16 × 8 cm to 30 × 15 cm. The diameter width of the pedicle ranged from 1.0 to 2.0 cm. A relaying perforator island flap was used in 10 cases for donor site closure and no skin graft was performed. There were no serious donor site complications. All patients were satisfied with the aesthetic outcome postoperatively at the final follow-up. The distally based sural neuro-fasciocutaneous perforator flap is considered a reliable method for foot and ankle reconstruction. The modification for flap pedicle and donor site closure method without skin graft should be recommended. Copyright © 2017. Published by Elsevier Ltd.

  9. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  10. [A case of skin autograft for skin ulcers in ichthyosis].

    Science.gov (United States)

    Li, Shiwei; Yang, Xiaodong; Liu, Lijun; Tang, Xueyang

    2017-10-28

    Ichthyosis refers to a group of skin diseases characterized by abnormal keratinization of the epidermis, resulting in dryness, roughness and scale of the skin. A girl with ichthyosis, who presented with skin ulcers and infection of the right dorsal foot, was admitted to our department. An autologous razor-thin skin grafting procedure was performed to repair the skin ulcers after debridement and vacuum sealing drain. After 8 months of follow-up, both the donor and recipient site healed well and there were no newly formed ulcers or infections. Although the skin quality of ichthyosis is poor, the lesion area can still be used as donor or recipient cite.

  11. First genomic survey of human skin fungal diversity

    Science.gov (United States)

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  12. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  13. Relating friction on the human skin to the hydration and temperature of the skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    The human skin is constantly in interaction with materials and products. Therefore, skin friction is relevant to all people. In the literature, the frictional properties of the skin have been linked to a large variety of variables, like age, gender and hydration. The present study compares the data

  14. Elevation of telomerase activity in chronic radiation ulcer of human skin

    International Nuclear Information System (INIS)

    Li Xiaoying; Zhao Po; Wang Dewen; Yang Zhixiang

    1997-01-01

    Objective: To investigate the levels of telomerase activity in chronic radiation ulcers of human skin and the possible relationship between the enzyme and cancer transformation. Method: Using nonisotopic telomere repeat amplification protocol (TRAP), detections were performed in 20 cases of chronic radiation ulcers of human skin, 5 cases of normal skin tissues and 5 cases of carcinoma. Results: The positive rates for telomerase activity were 30.0%(6/20), 0(0/5) and 100%(5/5) in chronic radiation ulcers of human skin, normal skin and carcinoma, respectively. The telomerase activity in radiation ulcer was weaker than in carcinoma. Conclusion: The telomerase activity assay might be used as a marker for predicting the prognosis and the effect of treatment in chronic radiation ulcer of human skin

  15. Characterizing multisegment foot kinematics during gait in diabetic foot patients

    Directory of Open Access Journals (Sweden)

    Denti Paolo

    2009-10-01

    Full Text Available Abstract Background The prevalence of diabetes mellitus has reached epidemic proportions, this condition may result in multiple and chronic invalidating long term complications. Among these, the diabetic foot, is determined by the simultaneous presence of both peripheral neuropathy and vasculopathy that alter the biomechanics of the foot with the formation of callosity and ulcerations. To diagnose and treat the diabetic foot is crucial to understand the foot complex kinematics. Most of gait analysis protocols represent the entire foot as a rigid body connected to the shank. Nevertheless the existing multisegment models cannot completely decipher the impairments associated with the diabetic foot. Methods A four segment foot and ankle model for assessing the kinematics of the diabetic foot was developed. Ten normal subjects and 10 diabetics gait patterns were collected and major sources of variability were tested. Repeatability analysis was performed both on a normal and on a diabetic subject. Direct skin marker placement was chosen in correspondence of 13 anatomical landmarks and an optoelectronic system was used to collect the data. Results Joint rotation normative bands (mean plus/minus one standard deviation were generated using the data of the control group. Three representative strides per subject were selected. The repeatability analysis on normal and pathological subjects results have been compared with literature and found comparable. Normal and pathological gait have been compared and showed major statistically significant differences in the forefoot and midfoot dorsi-plantarflexion. Conclusion Even though various biomechanical models have been developed so far to study the properties and behaviour of the foot, the present study focuses on developing a methodology for the functional assessment of the foot-ankle complex and for the definition of a functional model of the diabetic neuropathic foot. It is, of course, important to evaluate

  16. Malignant melanoma misdiagnosed as diabetic foot ulcer: A case report.

    Science.gov (United States)

    Gao, Wei; Chen, Dawei; Ran, Xingwu

    2017-07-01

    Acral lentiginous melanoma (AML) does not exhibit the classic signs of malignant melanoma. ALM is frequently misdiagnosed because of its unusual sites and atypical clinical morphologies, which lead to poor prognosis. A female patient aged 78 years was presented to our center with two ulcers on her right foot. Diabetic foot ulcer was considered as the primary diagnosis. The ulcers failed to improve after 2 weeks' therapy. An incisional biopsy of the lesion revealed malignant melanoma. The patient received wide excision, skin grafting as well as biotherapy. The lesion was healed and no other metastasis has been founded until now. Clinicians must maintain a high level of suspicion in distinguishing malignant melanoma from other more benign skin lesions of the foot. The need for early biopsy of ulcer, even when clinical suspicion is low, can not be overemphasized. Only in this way can we reduce misdiagnosis rate and improve survival rate in patients with foot ulcer.

  17. Dermatological and musculoskeletal assessment of diabetic foot: A narrative review.

    Science.gov (United States)

    Arsanjani Shirazi, Azam; Nasiri, Morteza; Yazdanpanah, Leila

    2016-01-01

    Diabetic Foot Syndrome (DFS) is the most costly and devastating complication of diabetes mellitus (DM), which early effective assessment can reduce the severity of complications including ulceration and amputations. This study aimed to review dermatological and musculoskeletal assessment of diabetic foot. In this review article, we searched for articles published between March 1, 1980 and July 28, 2015 in PubMed, Science Direct, Embase, Web of Science, and Scopus, for both English and non-English language articles with the following keywords: "Diabetic foot syndrome", "Ulceration", "Amputation", "Foot assessment", "Skin disorders" and "Musculoskeletal deformities". In dermatological dimension, most studies focused on elucidated changes in skin temperature, color, hardiness and turgor as well as common skin disorders such as Diabetic Dermopathy (DD), Necrobiosis Lipoidica Diabeticorum (NLD) and Diabetic Bullae (DB), which are common in diabetic patients and have high potential for leading to limb-threatening problems such as ulceration and infection. In musculoskeletal dimension, most studies focused on range of motion and muscle strength, gait patterns and as well as foot deformities especially Charcot osteoarthropathy (COA), which is the most destructive musculoskeletal complication of diabetes. DFS as a common condition in DM patients lead to ulceration and lower limb amputation frequently unless a prompt and comprehensive assessment was taken. So that dermatological and musculoskeletal assessments are usually neglected in primary health care, these assessments should be done frequently to reduce the high risk of serious complications. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  18. An in vitro human skin test for assessing sensitization potential.

    Science.gov (United States)

    Ahmed, S S; Wang, X N; Fielding, M; Kerry, A; Dickinson, I; Munuswamy, R; Kimber, I; Dickinson, A M

    2016-05-01

    Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin.

    Science.gov (United States)

    Kim, Yoon-Jin; Yoo, Sae Mi; Park, Hwan Hee; Lim, Hye Jin; Kim, Yu-Lee; Lee, Seunghee; Seo, Kwang-Won; Kang, Kyung-Sun

    2017-11-18

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen I and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes Collagen I and Elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  1. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  2. Reduction of radiation-induced early skin damage (mouse foot) by 0-(β-hydroxyaethyl)-rutoside

    International Nuclear Information System (INIS)

    Fritz-Niggli, H.; Froehlich, E.

    1980-01-01

    The effect of a bioflavonoid, 0-(β-hydroxyethyl)-rutoside (HR) on early radiation-induced skin damage was examined, using the mouse foot system; the response to radiation is not species specific and comparison with the clinical situation is therefore possible. The aim was to see whether HR, which is highly effective in protecting against late damage, is also able to reduce early effects. Early reactions were considered to be erythema, swelling and ulceration and occurring up to 30 days after irradiation. It was found that HR significantly reduces early damage, both after a single dose and after fractionated irradiation with low doses. A single pre-treatment dose of HR and pre-treatment together with 30 days post-treatment administration were both found to be effective. The protective effect became more marked with increasing radiation dose (single irradiation). Reduction of late effects is produced iptimally by an interval of 0.25 hours between application of HR and irradiation, and this is also true for early skin damage. The early effects are partly reversible, but there is possibly an interesting correlation between these and irreversible late effects (such as loss of toes); a similar mechanism, presumably affecting the vascular system, may therefore be postulated. The protective action of this well tolesated, highly effective substance, which apparently protects normal tissues from early and late injury, is discussed. (orig.) [de

  3. Next generation human skin constructs as advanced tools for drug development.

    Science.gov (United States)

    Abaci, H E; Guo, Zongyou; Doucet, Yanne; Jacków, Joanna; Christiano, Angela

    2017-11-01

    Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various

  4. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    OpenAIRE

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin ...

  5. Natural gaits of the non-pathological flat foot and high-arched foot

    OpenAIRE

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Lv, Changsheng; Luo, Donglin

    2010-01-01

    There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indic...

  6. EPR detection of free radicals in UV-irradiated skin: mouse versus human

    International Nuclear Information System (INIS)

    Jurkiewicz, B.A.; Buettner, G.R.

    1996-01-01

    Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (λ > 300 nm, 14 μW/cm 2 UVB; 3.5 mW/cm 2 UVA) increases the ascorbate free radical (Asc) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (λ > 400 nm; 0.23 mW/cm 2 UVA) also increased the Ascsignal in human skin samples (45%) but did not increase baseline mouse Asc, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; a N = 15.56 G and a H 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline -1-oxide/alkoxyl radical adduct; a N = 14.54 G and a H = 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (∼50%), indicating a role for iron in lipid peroxidation. (Author)

  7. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  8. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  9. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  10. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential. PMID:28630595

  11. Spectral Detection of Human Skin in VIS-SWIR Hyperspectral Imagery without Radiometric Calibration

    Science.gov (United States)

    2012-03-01

    6 Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less melanin appears brighter because it has higher reflectance...6 illustrates the spectral reflectance of human skin with different melanin levels. One paper proposes a Normalized Difference Skin Index (NDSI), a...1.4% Melanin 12.6% Melanin 23.2% Melanin 34.3% Melanin 45% Melanin Figure 6. Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less

  12. [Physiological features of skin ageing in human].

    Science.gov (United States)

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  13. Chronic effects of UV on human skin

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    1996-01-01

    Chronic exposures and acute accidents of the skin to UV has been recognized as an important risk for skin cancers in human. Attempts have been made with mathematical models to correlate the ambient UV dose and occupational irradiations with the risk of skin cancers. Development of accurate global measurements of solar irradiance and personal dosimetry is expected in the future in order to reduce the exposure of the general population, to precise the measures to be taken for indoor and outdoor workers. (author)

  14. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  15. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    Science.gov (United States)

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. In Vivo Assessment of Printed Microvasculature in a Bilayer Skin Graft to Treat Full-Thickness Wounds

    Science.gov (United States)

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft. PMID:25051339

  17. Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.

    Science.gov (United States)

    Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul

    2017-12-01

    Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.

  18. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  19. Radio-sterilization and processing of frozen human skin

    International Nuclear Information System (INIS)

    Zarate S, Herman; Aguirre H, Paulina; Silva R, Samy; Hitschfeld G, Mario

    2006-01-01

    The Laboratory of Radio-sterilized Biological Tissues Processing (LPTR) belonging to the Chilean Commission of Nuclear Energy and the International Atomic Energy Agency have played a paramount role in our country, concerning the biological tissue processing, which can be radio-sterilized as human skin, pig skin, amniotic membrane, human bone and bovine bone. The frozen radio.-sterilized human skin processing began in 2001, by means of putting into practice the knowledge acquired in training courses through the IAEA and the experience transferred by experts who visited our laboratory. The human skin processing of dead donor can be divided into 6 stages: a) Profuse washing with physiological sterilized serum in to remove the microorganisms, chemical and pharmacological compounds; b) immersion in glycerol solution at 10% to better keep the stored tissues; c) packing, to avoid post manipulation of the sterilized tissue; d) microbiological controls which allow and guarantee a sterility assurance level of 10 6 ; e) radio-sterilization, technique that consists of exposing the grafts to electromagnetic gamma waves which eliminate the microorganisms of the tissue, f) and finally, dispatching and liberation of the frozen sterilized human skin for its clinical use in different centers that take care of burned people. The LPTR receives feedback from surgeons who have used these tissues in order to improve the processing stages based in an integral quality system ISO 9001.2000. The State Health System in our country counts on limited and scarce resources to implement synthetic substitutes that is why It is considered necessary to spread the use of these noble tissues which have sterility assurance and they are processed at low price

  20. Mycetoma foot

    Directory of Open Access Journals (Sweden)

    Somnath Gooptu

    2013-01-01

    Full Text Available Mycetoma is an uncommon chronic granulomatous infective disease of the skin, dermis and subcutaneous tissues predominantly seen in tropical countries. A patient presented to our hospital with the swelling of the left foot with a healed sinus and a painful nodule. He gave a history of sinuses in the left foot from which there was discharge of yellow granules. Culture of the ultrasound guided fine needle aspiration cytology of the nodule revealed growths of Nocardia species. The patient was treated with a multi-drug therapy along with debridement of the painful nodule. He experienced symptomatic relief and a regression of the swelling within the three months of follow-up so far. Due to the relatively slow progression of the disease, patients are diagnosed at a late stage. Hence, emphasis should be placed on health education and the importance of wearing footwear.

  1. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    Science.gov (United States)

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  2. 3D bioprinting of functional human skin: production and in vivo analysis.

    Science.gov (United States)

    Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L

    2016-12-05

    Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.

  3. Analysis of human skin tissue by millimeter-wave reflectometry

    NARCIS (Netherlands)

    Smulders, P.F.M.

    2013-01-01

    Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the

  4. Method of protecting human skin from actinic radiation

    International Nuclear Information System (INIS)

    Fusaro, R.M.

    1975-01-01

    Enhanced protection from sunlight is achieved by applying to human skin beforehand separate, time-spaced applications of (1) a carbonyl compound which is reactive with amino groups in human skin, for example dihydroxyacetone, and (2) a benzo- or naptho-quinone such as lawsone. Preferably several sequential applications of each active component in a separate carrier are made the evening before the first exposure, and protection is thereafter maintained by applying each component separately each evening

  5. Tribology of skin : review and analysis of experimental results for the friction coefficient of human skin

    NARCIS (Netherlands)

    Derler, S.; Gerhardt, L.C.

    2012-01-01

    In this review, we discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin-friction coefficients. Starting with an overview on the factors influencing the friction behaviour of skin, we discuss the up-to-date existing

  6. Foot reflexology in feet impairment of people with type 2 diabetes mellitus: randomized trial

    Directory of Open Access Journals (Sweden)

    Natália Chantal Magalhães da Silva

    2015-08-01

    Full Text Available AbstractObjective: to evaluate the effect of foot reflexology on feet impairment of people with type 2 diabetes mellitus.Method: this is a randomized, controlled and blind clinical trial. The sample was comprised by people with type 2 diabetes mellitus who, after being randomized into Treated group (n = 21 and Control group (n = 24, received guidelines on foot self-care. To the Treated Group it was also provided 12 sessions of foot reflexology. The scores of impairment indicators related to skin and hair, blood circulation, tissue sensitivity and temperature were measured by means of the instrument for assessing tissue integrity of the feet of people with diabetes mellitus. Chi-square test, Fisher exact test, Mann-Whitney test and regression analyzes were applied to the data, considering a significance level of 5% (P value <0.05.Results: participants who received the therapy showed better scores in some impairment indicators related to skin and hair (hair growth, elasticity/turgor, hydration, perspiration, texture and integrity of the skin/ skin peeling.Conclusion: the foot reflexology had a beneficial effect on feet impairment of people with type 2 diabetes mellitus, which makes it a viable therapy, deserving investment. This study was registered in the Brazilian Registry of Clinical Trials - RBR-8zk8sz.

  7. Characterisation of mechanical behaviour of human skin in vivo

    NARCIS (Netherlands)

    Douven, L.F.A.; Meijer, R.; Oomens, C.W.J.

    2000-01-01

    Characterization of the biomechanical properties of human skin in vivo is studied both experimentally and by numerical modeling. These properties can be important in the evaluation of skin condition (e.g. aging) as well as skin disorders. In this study the authors focus on the static behavior of the

  8. Formulation and Evaluation of Exotic Fat Based Cosmeceuticals for Skin Repair

    OpenAIRE

    Mandawgade, S. D.; Patravale, Vandana B.

    2008-01-01

    Mango butter was explored as a functional, natural supplement and active skin ingredient in skin care formulations. A foot care cream was developed with mango butter to evaluate its medicinal value and protective function in skin repair. Qualitative comparison and clinical case studies of the product were carried out. Wound healing potential of foot care cream was investigated on the rat excision and incision wound models. Results of the clinical studies demonstrated complete repair of worn a...

  9. Pressure pain perception in the diabetic Charcot foot: facts and hypotheses

    Directory of Open Access Journals (Sweden)

    Ernst A. Chantelau

    2013-05-01

    Full Text Available Background:Reduced traumatic and posttraumatic (nociceptive pain is a key feature of diabetic neuropathy. Underlying condition is a gradual degeneration of endings of pain nerves (A-delta fibers and C-fibers, which operate as receivers of noxious stimuli (nociceptors. Hence, the absence of A-delta fiber mediated sharp pain (“first” pain, and of C-fiber mediated dull pain (“second” pain. However, patients with diabetic neuropathy and acute Charcot foot often experience deep dull aching in the Charcot foot while walking on it. Aim: To create a unifying hypothesis on the kind of pain in an acute Charcot foot. Result: Absence of punctuate (pinprick pain perception at the sole of a Charcot foot, as was shown recently, likely corresponds to vanished intraepidermal A-delta fiber endings. C-fiber nociceptors are reduced, according to histopathology studies. Both types of fibers contribute to posttraumatic hyperalgesia at the skin level, as studies show. Their deficiencies likely impact on posttraumatic hyperalgesia at the skin level and, probably, also at the skeletal level. Conclusion: It is hypothesised that deep dull aching in an acute diabetic Charcot foot may represent faulty posttraumatic hyperalgesia involving cutaneous and skeletal tissues.

  10. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  11. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  12. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  13. First donation of human skin obtained from corpse

    International Nuclear Information System (INIS)

    Reyes F, M.L.; Luna Z, D.

    2007-01-01

    The first donation of human skin coming from a cadaverous donor was obtained in the State of Mexico. The skin was obtained of a 34 year-old multi organic donor, the extraction of the same was carried out in an operating theatre by medical personnel, supported by personal of the Radio sterilized Tissue Bank (BTR) of the ININ. The skin was transported to the BTR for it processing. (Author)

  14. Relationship between sagittal plane kinematics, foot morphology and vertical forces applied to three regions of the foot

    OpenAIRE

    Hannah, I.; Sawacha, Z.; Guiotto, A.; Mazza, C.

    2016-01-01

    Kinetic analysis of human motion with a multi-segment musculoskeletal foot model requires the distribution of loading applied to the modeled foot segments to be determined. This work thus examines the existence of any correlation between intersegmental foot kinematics, foot morphology, and the distribution of vertical loading in a multi-segment foot model. Gait analysis trials were performed by 20 healthy subjects at a self-selected speed with intersegmental foot joint angles and the distribu...

  15. Design and fabrication of human skin by three-dimensional bioprinting.

    Science.gov (United States)

    Lee, Vivian; Singh, Gurtej; Trasatti, John P; Bjornsson, Chris; Xu, Xiawei; Tran, Thanh Nga; Yoo, Seung-Schik; Dai, Guohao; Karande, Pankaj

    2014-06-01

    Three-dimensional (3D) bioprinting, a flexible automated on-demand platform for the free-form fabrication of complex living architectures, is a novel approach for the design and engineering of human organs and tissues. Here, we demonstrate the potential of 3D bioprinting for tissue engineering using human skin as a prototypical example. Keratinocytes and fibroblasts were used as constituent cells to represent the epidermis and dermis, and collagen was used to represent the dermal matrix of the skin. Preliminary studies were conducted to optimize printing parameters for maximum cell viability as well as for the optimization of cell densities in the epidermis and dermis to mimic physiologically relevant attributes of human skin. Printed 3D constructs were cultured in submerged media conditions followed by exposure of the epidermal layer to the air-liquid interface to promote maturation and stratification. Histology and immunofluorescence characterization demonstrated that 3D printed skin tissue was morphologically and biologically representative of in vivo human skin tissue. In comparison with traditional methods for skin engineering, 3D bioprinting offers several advantages in terms of shape- and form retention, flexibility, reproducibility, and high culture throughput. It has a broad range of applications in transdermal and topical formulation discovery, dermal toxicity studies, and in designing autologous grafts for wound healing. The proof-of-concept studies presented here can be further extended for enhancing the complexity of the skin model via the incorporation of secondary and adnexal structures or the inclusion of diseased cells to serve as a model for studying the pathophysiology of skin diseases.

  16. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  17. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    Science.gov (United States)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  18. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    Science.gov (United States)

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new way to visualize in-depth skin structure.

    Science.gov (United States)

    Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J

    2018-05-01

    Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. In vivo transformation of human skin with human papillomavirus type 11 from condylomatot acuminata

    International Nuclear Information System (INIS)

    Kreider, J.W.; Howett, M.K.; Lill, N.L.; Bartlett, G.L.; Zaino, R.J.; Sedlacek, T.V.; Mortel, R.

    1986-01-01

    Human papillomaviruses (HPVs) have been implicated in the development of a number of human malignancies, but direct tests of their involvement have not been possible. The authors describe a system in which human skin from various skin from various sites was infected with HPV type 11 (HPV-11) extracted from vulvar condylomata and was grafted beneath the renal capsule of athymic mice. Most of the skin grafts so treated underwent morphological transformation, resulting in the development of condylomata identical to those which occur spontaneously in patients. Foreskins responded with the most vigorous proliferative response to HPV-11. The lesions produced the characteristic intranuclear group-specific antigen of papillomaviruses. Both dot blot and Southern blot analysis of DNA from the lesions revealed the presence of HPV-11 DNA in the transformed grafts. These results demonstrate the first laboratory system for the study of the interaction of human skin with an HPV. The method may be useful in understanding the mechanisms of HPV transformation and replication and is free of the ethical restraints which have impeded study. This system will allow the direct study of factors which permit neoplastic progression of HPV-induced cutaneous lesions in human tissues

  1. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  2. Glucose metabolism in chronic diabetic foot ulcers measured in vivo using microdialysis

    DEFF Research Database (Denmark)

    Simonsen, L; Holstein, P; Larsen, K

    1998-01-01

    Ten subjects with diabetes mellitus and unilateral chronic foot ulcer were investigated. Local tissue concentrations of glucose and lactate were measured using the microdialysis method at a distance of 0.5-1 cm from the edge of the ulcer and in normal skin in the contralateral foot. Subcutaneous...

  3. Molecular cartography of the human skin surface in 3D

    Science.gov (United States)

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  4. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  5. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies.

    Science.gov (United States)

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Micol, Vicente

    2018-03-24

    The skin is the body's largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.

  6. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    2018-03-01

    Full Text Available The skin is the body’s largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.

  7. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies

    Science.gov (United States)

    Pérez-Sánchez, Almudena; Micol, Vicente

    2018-01-01

    The skin is the body’s largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin. PMID:29587342

  8. STUDIES ON BACTERIAL INFECTIONS OF DIABETIC FOOT ULCER

    African Journals Online (AJOL)

    Dr Oboro VO

    Microbial study for aerobic organisms from 100 cases of diabetic foot ulcers was carried out to determine the ... affect 239 million people world wide. ... cause the breakdown of the skin. ... complications, such as peripheral vascular disease,.

  9. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin

    Directory of Open Access Journals (Sweden)

    Nisma Mujahid

    2017-06-01

    Full Text Available The presence of dark melanin (eumelanin within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in “redhaired” Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.

  10. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin.

    Science.gov (United States)

    Mujahid, Nisma; Liang, Yanke; Murakami, Ryo; Choi, Hwan Geun; Dobry, Allison S; Wang, Jinhua; Suita, Yusuke; Weng, Qing Yu; Allouche, Jennifer; Kemeny, Lajos V; Hermann, Andrea L; Roider, Elisabeth M; Gray, Nathanael S; Fisher, David E

    2017-06-13

    The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. An in vitro model for detecting skin irritants: methyl green-pyronine staining of human skin explant cultures

    NARCIS (Netherlands)

    Jacobs, J. J. L.; Lehé, C.; Cammans, K. D. A.; Das, P. K.; Elliott, G. R.

    2002-01-01

    We evaluated the potential of human organotypic skin explant cultures (hOSECs) for screening skin irritants. Test chemicals were applied to the epidermis of the skin explants which were incubated for 4, 24 or 48 h in tissue culture medium. A decrease in epidermal RNA staining, visualised in frozen

  12. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.

    Science.gov (United States)

    Mithraratne, K; Ho, H; Hunter, P J; Fernandez, J W

    2012-10-01

    A coupled computational model of the foot consisting of a three-dimensional soft tissue continuum and a one-dimensional (1D) transient blood flow network is presented in this article. The primary aim of the model is to investigate the blood flow in major arteries of the pathologic foot where the soft tissue stiffening occurs. It has been reported in the literature that there could be up to about five-fold increase in the mechanical stiffness of the plantar soft tissues in pathologic (e.g. diabetic) feet compared with healthy ones. The increased stiffness results in higher tissue hydrostatic pressure within the plantar area of the foot when loaded. The hydrostatic pressure acts on the external surface of blood vessels and tend to reduce the flow cross-section area and hence the blood supply. The soft tissue continuum model of the foot was modelled as a tricubic Hermite finite element mesh representing all the muscles, skin and fat of the foot and treated as incompressible with transversely isotropic properties. The details of the mechanical model of soft tissue are presented in the companion paper, Part 1. The deformed state of the soft tissue continuum because of the applied ground reaction force at three foot positions (heel-strike, midstance and toe-off) was obtained by solving the Cauchy equations based on the theory of finite elasticity using the Galerkin finite element method. The geometry of the main arterial network in the foot was represented using a 1D Hermite cubic finite element mesh. The flow model consists of 1D Navier-Stokes equations and a nonlinear constitutive equation to describe vessel radius-transmural pressure relation. The latter was defined as the difference between the fluid and soft tissue hydrostatic pressure. Transient flow governing equations were numerically solved using the two-step Lax-Wendroff finite difference method. The geometry of both the soft tissue continuum and arterial network is anatomically-based and was developed using

  13. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review.

    Science.gov (United States)

    Barbero, Ana M; Frasch, H Frederick

    2009-02-01

    Both human and animal skin in vitro models are used to predict percutaneous penetration in humans. The objective of this review is a quantitative comparison of permeability and lag time measurements between human and animal skin, including an evaluation of the intra and inter species variability. We limit our focus to domestic pig and rodent guinea pig skin as surrogates for human skin, and consider only studies in which both animal and human penetration of a given chemical were measured jointly in the same lab. When the in vitro permeability of pig and human skin were compared, the Pearson product moment correlation coefficient (r) was 0.88 (Ppig and 35% for human, and an inter species average coefficient of variation of 37% for the set of studied compounds (n=41). The lag times of pig skin and human skin did not correlate (r=0.35, P=0.26). When the in vitro permeability of guinea pig and human skin were compared, r=0.96 (Pguinea pig and 24% for human, and an inter species coefficient of variation of permeability of 41% for the set of studied compounds (n=15). Lag times of guinea pig and human skin correlated (r=0.90, Ppig skin (n=50) and guinea pig skin (n=25). For pig skin, 80% of measurements fell within the range 0.3guinea pig skin, 65% fell within that range. Both pig and guinea pig are good models for human skin permeability and have less variability than the human skin model. The skin model of choice will depend on the final purpose of the study and the compound under investigation.

  14. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    Science.gov (United States)

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  15. Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile

    2016-01-01

    This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to

  16. The use of ex vivo human skin tissue for genotoxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Reus, Astrid A.; Usta, Mustafa [TNO Triskelion BV, Utrechtseweg 48, 3704 HE, Zeist (Netherlands); Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl [TNO, Utrechtseweg 48, 3704 HE Zeist (Netherlands)

    2012-06-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  17. The use of ex vivo human skin tissue for genotoxicity testing

    International Nuclear Information System (INIS)

    Reus, Astrid A.; Usta, Mustafa; Krul, Cyrille A.M.

    2012-01-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  18. Appreciating the image of God in all humanity: Towards a pastoral response to skin lightening as image enhancement to exit dark skin

    Directory of Open Access Journals (Sweden)

    Noah K. Tenai

    2016-05-01

    Full Text Available The practice of skin lightening is prevalent amongst dark-skinned people globally. Various current studies that map this practice and that seek motivations behind the practice are examined. It is observed that through shrewd marketing, dark-skinned people are offered a promise of a better quality of life, obtained by a lighter skin, through the use of skin lighteners. In spite of the severe health risks involved, the promise is ostensibly irresistible to some dark-skinned persons. A pastoral response is offered that affirms the full personhood and complete humanity of dark-skinned people as fully human and whole in their dark skins. Keywords: Skin lightening, Dark skin, Image of God

  19. Essential role of RAB27A in determining constitutive human skin color.

    Directory of Open Access Journals (Sweden)

    Yasuko Yoshida-Amano

    Full Text Available Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (

  20. A novel approach to mechanical foot stimulation during human locomotion under body weight support.

    Science.gov (United States)

    Gravano, S; Ivanenko, Y P; Maccioni, G; Macellari, V; Poppele, R E; Lacquaniti, F

    2011-04-01

    Input from the foot plays an essential part in perceiving support surfaces and determining kinematic events in human walking. To simulate adequate tactile pressure inputs under body weight support (BWS) conditions that represent an effective form of locomotion training, we here developed a new method of phasic mechanical foot stimulation using light-weight pneumatic insoles placed inside the shoes (under the heel and metatarsus). To test the system, we asked healthy participants to walk on a treadmill with different levels of BWS. The pressure under the stimulated areas of the feet and subjective sensations were higher at high levels of BWS and when applied to the ball and toes rather than heels. Foot stimulation did not disturb significantly the normal motor pattern, and in all participants we evoked a reliable step-synchronized triggering of stimuli for each leg separately. This approach has been performed in a general framework looking for "afferent templates" of human locomotion that could be used for functional sensory stimulation. The proposed technique can be used to imitate or partially restore surrogate contact forces under body weight support conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    Science.gov (United States)

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  2. RNA isolation for transcriptomics of human and mouse small skin biopsies

    Directory of Open Access Journals (Sweden)

    Breit Timo M

    2011-10-01

    Full Text Available Abstract Background Isolation of RNA from skin biopsies presents a challenge, due to the tough nature of skin tissue and a high presence of RNases. As we lacked the dedicated equipment, i.e. homogenizer or bead-beater, needed for the available RNA from skin isolation methods, we adapted and tested our zebrafish single-embryo RNA-isolation protocol for RNA isolation from skin punch biopsies. Findings We tested our new RNA-isolation protocol in two experiments: a large-scale study with 97 human skin samples, and a small study with 16 mouse skin samples. Human skin was sampled with 4.0 mm biopsy punches and for the mouse skin different punch diameter sizes were tested; 1.0, 1.5, 2.0, and 2.5 mm. The average RNA yield in human samples was 1.5 μg with an average RNA quality RIN value of 8.1. For the mouse biopsies, the average RNA yield was 2.4 μg with an average RIN value of 7.5. For 96% of the human biopsies and 100% of the mouse biopsies we obtained enough high-quality RNA. The RNA samples were successfully tested in a transcriptomics analysis using the Affymetrix and Roche NimbleGen platforms. Conclusions Using our new RNA-isolation protocol, we were able to consistently isolate high-quality RNA, which is apt for further transcriptomics analysis. Furthermore, this method is already useable on biopsy material obtained with a punch diameter as small as 1.5 mm.

  3. MR Imaging of the Diabetic Foot.

    Science.gov (United States)

    McCarthy, Eoghan; Morrison, William B; Zoga, Adam C

    2017-02-01

    Abnormalities of the peripheral nervous, vascular, and immune systems contribute to the development of numerous foot and ankle pathologies in the diabetic population. Although radiographs remain the most practical first-line imaging tool, magnetic resonance (MR) is the tertiary imaging modality of choice, allowing for optimal assessment of bone and soft tissue abnormalities. MR allows for the accurate distinction between osteomyelitis/septic arthritis and neuropathic osteoarthropathy. Furthermore, it provides an excellent presurgical anatomic road map of involved tissues and devitalized skin to ensure successful limited amputations when required. Signal abnormality in the postoperative foot aids in the diagnosis of recurrent infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Diabetic foot ulcers: Part II. Management.

    Science.gov (United States)

    Alavi, Afsaneh; Sibbald, R Gary; Mayer, Dieter; Goodman, Laurie; Botros, Mariam; Armstrong, David G; Woo, Kevin; Boeni, Thomas; Ayello, Elizabeth A; Kirsner, Robert S

    2014-01-01

    The management of diabetic foot ulcers can be optimized by using an interdisciplinary team approach addressing the correctable risk factors (ie, poor vascular supply, infection control and treatment, and plantar pressure redistribution) along with optimizing local wound care. Dermatologists can initiate diabetic foot care. The first step is recognizing that a loss of skin integrity (ie, a callus, blister, or ulcer) considerably increases the risk of preventable amputations. A holistic approach to wound assessment is required. Early detection and effective management of these ulcers can reduce complications, including preventable amputations and possible mortality. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  5. Comparison of rat epidermal keratinocyte organotypic culture (ROC) with intact human skin

    DEFF Research Database (Denmark)

    Pappinen, Sari; Hermansson, Martin; Kuntsche, Judith

    2008-01-01

    study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning...... calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while alpha-hydroxyacid-phytosphingosine ceramide (AP) and non...... compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 degrees C) than human skin (74 degrees C). These differences in stratum corneum lipid composition and the thermal phase transitions may...

  6. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  7. Low power cw-laser signatures on human skin

    International Nuclear Information System (INIS)

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-01

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of ∼12 mm 2 , and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of ∼4 cm 2 . The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  8. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    Science.gov (United States)

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  9. Going skin deep: A direct comparison of penetration potential of lipid-based nanovesicles on the isolated perfused human skin flap model.

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Holsæter, Ann Mari; Flaten, Gøril Eide; Škalko-Basnet, Nataša

    2017-12-01

    Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Science.gov (United States)

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  11. Deposition of contaminant aerosol on human skin

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roed, Jørn; Byrne, M.A.

    2006-01-01

    Over recent years, it has been established that deposition of various types of pollutant aerosols (e.g., radioactive) on human skin can have serious deleterious effects on health. However. only few investigations in the past have been devoted to measurement of deposition velocities on skin...... of particles of the potentially problematic sizes. An experimental programme has shown the deposition velocities on skin of particles in the ca. 0.5-5 mu m AMAD range to be high and generally associated with great variations. A series of investigations have been made to identify some of the factors that lead...... to this variation. Part of the variation was found to be caused by differences between individuals, whereas another part was found to be related to environmental factors, The identification of major influences on skin contaminant deposition is important in estimating health effects as well as in identifying means...

  12. Noninvasive assessment of diabetic foot ulcers with diffuse photon density wave methodology: pilot human study

    Science.gov (United States)

    Papazoglou, Elisabeth S.; Neidrauer, Michael; Zubkov, Leonid; Weingarten, Michael S.; Pourrezaei, Kambiz

    2009-11-01

    A pilot human study is conducted to evaluate the potential of using diffuse photon density wave (DPDW) methodology at near-infrared (NIR) wavelengths (685 to 830 nm) to monitor changes in tissue hemoglobin concentration in diabetic foot ulcers. Hemoglobin concentration is measured by DPDW in 12 human wounds for a period ranging from 10 to 61 weeks. In all wounds that healed completely, gradual decreases in optical absorption coefficient, oxygenated hemoglobin concentration, and total hemoglobin concentration are observed between the first and last measurements. In nonhealing wounds, the rates of change of these properties are nearly zero or slightly positive, and a statistically significant difference (pdiabetic foot ulcers, and indicate that it may have clinical utility in the evaluation of wound healing potential.

  13. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Science.gov (United States)

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  14. Characterization of ionizing radiation effects on human skin allografts

    International Nuclear Information System (INIS)

    Bourroul, Selma Cecilia

    2004-01-01

    The skin has a fundamental role in the viability of the human body. In the cases of extensive wounds, allograft skin provides an alternative to cover temporarily the damaged areas. After donor screening and preservation in glycerol (above 85%), the skin can be stored in the Skin Banks. The glycerol at this concentration has a bacteriostatic effect after certain time of preservation. On the other hand, skin sterilization by ionizing radiation may reduces the quarantine period for transplantation in patients and its safety is considered excellent. The objectives of this work were to establish procedures using two sources of ionizing radiation for sterilization of human skin allograft, and to evaluate the skin after gamma and electron beam irradiation. The analysis of stress-strain intended to verify possible effects of the radiation on the structure of preserved grafts. Skin samples were submitted to doses of 25 kGy and 50 kGy in an irradiator of 60 Co and in an electron beam accelerator. Morphology and ultra-structure studies were also accomplished. The samples irradiated with a dose of 25 kGy seemed to maintain the bio mechanic characteristics. The gamma irradiated samples with a dose of 50 kGy and submitted to an electron beam at doses of 25 kGy and 50 kGy presented significant differences in the values of the elasticity modulus, in relation to the control. The analysis of the ultramicrographies revealed modifications in the structure and alterations in the pattern of collagen fibrils periodicity of the irradiated samples. (author)

  15. Diabetic foot--what can we learn from leprosy? Legacy of Dr Paul W. Brand.

    Science.gov (United States)

    Boulton, Andrew J M

    2012-02-01

    Leprosy and diabetes, though two very different conditions, may both result in severe loss of sensation in the feet, which are then a great risk of painless injury and ulceration. Seminal observations made by the late Dr Paul W. Brand, a surgeon working with leprosy patients in South India in the mid-20th century, resulted in the subsequent development of treatments to manage insensitive foot ulcers that are today entirely applicable to patients with diabetes. As a consequence of his research, the recognition of the relationship between insensitivity, repetitive pressures and skin breakdown has helped our understanding of the aetiopathogenesis of neuropathic foot lesions in diabetes: the development of the total contact cast and other casting devices to treat such lesions forms the basis of management of diabetic foot lesions with off-loading devices that are widely used in the 21st century in diabetic foot clinics around the world. Moreover, observations by Brand that the foot 'heats up before it breaks down' resulted in more recent research showing that self-skin temperature monitoring might help reduce the incidence of recurrent neuropathic foot ulcers in diabetes. In summary, Brand's understanding of 'the gift of pain' that, when lost, results in the late complications of diabetic neuropathy has guided the prevention, diagnosis and management of diabetic foot problems in the 21st century. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Muya Shu

    Full Text Available Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes, a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA. We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health.

  17. Cutaneous in vivo metabolism of topical lidocaine formulation in human skin

    DEFF Research Database (Denmark)

    Rolsted, K; Benfeldt, E; Kissmeyer, A-M

    2009-01-01

    Little is known about the metabolising capacity of the human skin in relation to topically applied drugs and formulations. We chose lidocaine as a model compound since the metabolic pathways are well known from studies concerning hepatic metabolism following systemic drug administration. However......, the enzymes involved are also expressed in the skin. Hence, the aim of the current study was to investigate the extent of the cutaneous in vivo metabolism of topically applied lidocaine in human volunteers. A dose of 5 mg/cm(2) of Xylocaine(R) (5% lidocaine) ointment was applied onto the buttock skin...... of the volunteers. After 2 h, residual formulation was removed, and two 4-mm punch biopsies were taken from each volunteer. The quantity of lidocaine extracted from the skin samples (epidermis + dermis) was 109 +/- 43 ng/mm(2) skin. One metabolite (monoethylglycine xylidide, MEGX) was detected in skin from 7...

  18. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  19. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...

  20. Direct 3D cell-printing of human skin with functional transwell system.

    Science.gov (United States)

    Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo

    2017-06-06

    Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was

  1. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study.

    Science.gov (United States)

    Akselrod, Michel; Martuzzi, Roberto; Serino, Andrea; van der Zwaag, Wietske; Gassert, Roger; Blanke, Olaf

    2017-10-01

    Primary somatosensory cortex (S1) processes somatosensory information and is composed of multiple subregions. In particular, tactile information from the skin is encoded in three subregions, namely Brodmann areas (BAs) 3b, 1 and 2, with each area representing a complete map of the contralateral body. Although, much is known about the somatotopic organization of the hand in human S1, less research has been carried out regarding the somatotopic maps of the foot and leg in S1. Moreover, a latero-medial S1 organization along the superior part of the postcentral gyrus has been reported when moving from hip to toes, yet to date there is no study investigating leg/foot maps within the different subregions of S1. Using ultra-high field MRI (7T), we mapped six cortical representations of the lower limb (hip to toes) at the single subject level and performed this analysis separately for BAs 3b, 1 and 2. Analyzing the BOLD responses associated with tactile stimulations of the mapped foot and leg regions on each side, we quantified the extent and the strength of activation to determine somatotopic organization. In addition, we investigated whether each mapped representation also responded to the stimulation of other body parts (i.e. response selectivity) and conducted dissimilarity analysis relating these anatomical and functional properties of S1 to the physical structure of the lower limbs. Our data reveal somatotopy for the leg, but not for the foot in all investigated BAs, with large inter-subject variability. We found only minor differences between the properties of the three investigated BAs, suggesting that S1 maps for the lower limbs differ from those described for the hand. We also describe greater extent/strength of S1 activation for the big toe representation (compared to the other mapped representations) within all BAs, suggesting a possible homology between the first digit of upper and lower extremity in humans, and report different patterns of selectivity in the

  2. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  3. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    Science.gov (United States)

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products.

  4. Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin.

    Science.gov (United States)

    Gerstel, D; Jacques-Jamin, C; Schepky, A; Cubberley, R; Eilstein, J; Grégoire, S; Hewitt, N; Klaric, M; Rothe, H; Duplan, H

    2016-08-01

    The Cosmetics Europe Skin Bioavailability and Metabolism Task Force aims to improve the measurement and prediction of the bioavailability of topically-exposed compounds for risk assessment. Key parameters of the experimental design of the skin penetration studies were compared. Penetration studies with frozen human and pig skin were conducted in two laboratories, according to the SCCS and OECD 428 guidelines. The disposition in skin was measured 24h after finite topical doses of caffeine, resorcinol and 7-ethoxycoumarin. The bioavailability distribution in skin layers of cold and radiolabelled chemicals were comparable. Furthermore, the distribution of each chemical was comparable in human and pig skin. The protocol was reproducible across the two laboratories. There were small differences in the amount of chemical detected in the skin layers, which were attributed to differences in washing procedures and anatomical sites of the skin used. In conclusion, these studies support the use of pig skin as an alternative source of skin should the availability of human skin become a limiting factor. If radiolabelled chemicals are not available, cold chemicals can be used, provided that the influence of chemical stability, reactivity or metabolism on the experimental design and the relevance of the data obtained is considered. Copyright © 2016. Published by Elsevier Ltd.

  5. Skin graft influence in human tissue radiated in nude mice regeneration

    International Nuclear Information System (INIS)

    Miranda, Jurandir Tomaz de

    2016-01-01

    Over the last few years it has increased the interest in the human skin grafts radio sterilized for application mainly in extensive and deep burns. Because these grafts quickly grip and present antigenic lower potential, compared with other treatments used. The purpose of this study was to evaluate the histoarchitecture of human skin grafts irradiated with doses 25 kGy, 50 kGy and non-irradiated during the repair tissue process in nude mice submitted by skin grafting in the dorsal region. Three groups of animals received irradiated human skin grafts (25 kGy and 50 kGy) and non-irradiated and were euthanized on the 3 rd , 7 th and 21 th day after the surgery. Indeed, routine histologic procedures, tissue samples were stained with hematoxylin and eosin (HE) for quantification of keratinocytes, fibroblasts, immune cells and blood vessels and immunofluorescence (IF) was performed to determine the expression human collagen type I and collagen type I and III mouse. Therefore, quantification of both the cells and the collagen types was performed by image analysis using Image-Pro Plus 6.0 software. Histologic results demonstrated at a dose of 25 kGy that human skin irradiation when grafted influences the increase in the number of cells in wound site over time and it provides better dispersion of these cells. In addition, on the 21 st day, three groups of animals with human skin graft were embedded part of the graft in the healing process. On the other hand, the group not irradiated showed greater incorporation of the graft (43 %), but less production of collagen type III mouse (22 %). Since the groups irradiated skin graft showed lower graft incorporation (6 and 15%), but with greater production of collagen type III mice (35 % and 28 % to 25 kGy and 50 kGy, respectively). In conclusion, this study presented that the group irradiated to 25 kGy and it has a higher cell proliferation and vessel formation, and better remodeling of the healing area. (author)

  6. Experimental metagenomics and ribosomal profiling of the human skin microbiome.

    Science.gov (United States)

    Ferretti, Pamela; Farina, Stefania; Cristofolini, Mario; Girolomoni, Giampiero; Tett, Adrian; Segata, Nicola

    2017-03-01

    The skin is the largest organ in the human body, and it is populated by a large diversity of microbes, most of which are co-evolved with the host and live in symbiotic harmony. There is increasing evidence that the skin microbiome plays a crucial role in the defense against pathogens, immune system training and homoeostasis, and microbiome perturbations have been associated with pathological skin conditions. Studying the skin resident microbial community is thus essential to better understand the microbiome-host crosstalk and to associate its specific configurations with cutaneous diseases. Several community profiling approaches have proved successful in unravelling the composition of the skin microbiome and overcome the limitations of cultivation-based assays, but these tools remain largely inaccessible to the clinical and medical dermatology communities. The study of the skin microbiome is also characterized by specific technical challenges, such as the low amount of microbial biomass and the extensive human DNA contamination. Here, we review the available community profiling approaches to study the skin microbiome, specifically focusing on the practical experimental and analytical tools necessary to generate and analyse skin microbiome data. We describe all the steps from the initial samples collection to the final data interpretation, with the goal of enabling clinicians and researchers who are not familiar with the microbiome field to perform skin profiling experiments. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  7. Friction of Human Skin against Different Fabrics for Medical Use

    Directory of Open Access Journals (Sweden)

    Luís Vilhena

    2016-03-01

    Full Text Available Knowledge of the tribology of human skin is essential to improve and optimize surfaces and materials in contact with the skin. Besides that, friction between the human skin and textiles is a critical factor in the formation of skin injuries, which are caused if the loads and shear forces are high enough and/or over long periods of time. This factor is of particular importance in bedridden patients, since they are not moving about or are confined to wheelchairs. Decubitus ulcers are one of the most frequently-reported iatrogenic injuries in developed countries. The risk of developing decubitus ulcers can be predicted by using the “Braden Scale for Predicting Pressure Ulcer Risk” that was developed in 1987 and contains six areas of risk (cognitive-perceptual, immobility, inactivity, moisture, nutrition, friction/shear, although there are limitations to the use of such tools. The coefficient of friction of textiles against skin is mainly influenced by: the nature of the textile, skin moisture content and ambient humidity. This study will investigate how skin friction (different anatomical regions varies, rubbing against different types of contacting materials (i.e., fabrics for medical use under different contact conditions and their relationship in the formation and prevention of decubitus ulcers.

  8. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  9. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  10. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  11. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  12. Micro-patterned graphene-based sensing skins for human physiological monitoring

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  13. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2015-01-01

    Full Text Available GHK (glycyl-L-histidyl-L-lysine is present in human plasma, saliva, and urine but declines with age. It is proposed that GHK functions as a complex with copper 2+ which accelerates wound healing and skin repair. GHK stimulates both synthesis and breakdown of collagen and glycosaminoglycans and modulates the activity of both metalloproteinases and their inhibitors. It stimulates collagen, dermatan sulfate, chondroitin sulfate, and the small proteoglycan, decorin. It also restores replicative vitality to fibroblasts after radiation therapy. The molecule attracts immune and endothelial cells to the site of an injury. It accelerates wound-healing of the skin, hair follicles, gastrointestinal tract, boney tissue, and foot pads of dogs. It also induces systemic wound healing in rats, mice, and pigs. In cosmetic products, it has been found to tighten loose skin and improve elasticity, skin density, and firmness, reduce fine lines and wrinkles, reduce photodamage, and hyperpigmentation, and increase keratinocyte proliferation. GHK has been proposed as a therapeutic agent for skin inflammation, chronic obstructive pulmonary disease, and metastatic colon cancer. It is capable of up- and downregulating at least 4,000 human genes, essentially resetting DNA to a healthier state. The present review revisits GHK’s role in skin regeneration in the light of recent discoveries.

  14. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Directory of Open Access Journals (Sweden)

    Zou Y

    2017-10-01

    Full Text Available Ying Zou,1,2,* Anna Celli,2,3,* Hanjiang Zhu,2,* Akram Elmahdy,2 Yachao Cao,2 Xiaoying Hui,2 Howard Maibach2 1Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China; 2Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA; 3San Francisco Veterans Medical Center, San Francisco, CA, USA *These authors contributed equally to this work Objective: With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration.Methods: Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy.Results: NPs were localized in the stratum corneum (SC and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not.Conclusion: Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. Keywords: nanoparticles, skin penetration, stratum corneum, confocal laser scanning microscopy, tape stripping

  15. Skin disorders affecting the feet | Motswaledi | South African Family ...

    African Journals Online (AJOL)

    Skin disorders of the feet can affect the glabrous skin on the dorsal aspects, or the thick skin on the plantar aspects, thereof, or both. Some can affect one foot, and others both of them. These diseases can be inflammatory, genetically inherited, infectious and neoplastic in origin. It is important to identify them and to start ...

  16. MEMS technology sensors as a more advantageous technique for measuring foot plantar pressure and balance in humans

    OpenAIRE

    Sanz Morère, C. (Clara); Surażyński, Ł. (Łukasz); Rodrigo Pérez-Tabernero, A. (Ana); Vihriälä, E. (Erkki); Myllylä, T. (Teemu)

    2016-01-01

    Abstract Locomotor activities are part and parcel of daily human life. During walking or running, feet are subjected to high plantar pressure, leading sometimes to limb problems, pain, or foot ulceration. A current objective in foot plantar pressure measurements is developing sensors that are small in size, lightweight, and energy efficient, while enabling high mobility, particularly for wearable applications. Moreover, improvements in spatial resolution, accuracy, and sensitivity are of i...

  17. Skin necrosis following extravasation of water soluble contrast media-report of 2 cases

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyung; Kim, Seung Hyup; Shin, Myung Jin; Minn, Kyung Won; Park, Chul Kyu [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, Jong Chul [Kyung Sang Medical College, Jinju (Korea, Republic of)

    1987-08-15

    Two cases of skin necrosis following extravasation of contrast media for intravenous pyelography and computed tomography were experienced in the Department of Radiology, Seoul National University Hospital. The first case was 4 years old girl who suffered from known nephrotic syndrome. About 15cc of meglumine ioxitalamate (Telebrix 30) was injected through 25G needle at dorsum of left foot to visualize the urinary tract for renal biopsy. The 2nd case was 3 years old girl who suffered from seizure. About 12cc of meglumine ioxitalamate (Telebrix 30) was injected through 25G needle at dorsum of left foot. In both cases the dorsum of foot was swollen immediately after the extravastion of the contrast media. Following discoloration the skin showed vesicles with erythema. Consequently the skin showed white discoloration and ulcerated to form crust. In the former case, skin graft was applied successfully. However, in the latter, the lesion healed with only supportive dressings.

  18. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    International Nuclear Information System (INIS)

    Stevens, Graham; Joiner, Michael; Joiner, Barbara; Johns, Helen; Denekamp, Juliana

    1995-01-01

    Purpose: To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Methods and Materials: The feet of WHT mice were irradiated with single doses of 240 kVp x-rays while mice were exposed to carbogen or gases with oxygen/nitrogen mixtures containing 8-100% O 2 . The anoxic response was obtained by occluding the blood supply to the leg of anesthetized mice with a tourniquet, surrounding the foot with nitrogen, and allowing the mice to breathe 10% O 2 . Further experiments were performed to assess the efficacy of this method to obtain an anoxic response. Radiosensitivity of skin was assessed using the acute skin-reaction assay. Glutathione levels were modified using two schedules of dl-buthionine sulphoximine (BSO) and diethylmaleate (DEM), which were considered to produce extensive and intermediate levels of GSH depletion in the skin of the foot during irradiation. Results: Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. When skin radiosensitivity was plotted against the logarithm of the oxygen tension in the ambient gas, a sigmoid curve with a K value of 17-21% O 2 in the ambient gas was obtained. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O 2 in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediate levels of GSH

  19. Measurement of interstitial cetirizine concentrations in human skin

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Church, M K; Rihoux, J P

    1999-01-01

    BACKGROUND: The purpose of the present study was to measure the concentrations of cetirizine in the extracellular water compartment in intact human skin and assess simultaneously inhibition of histamine-induced wheal and flare reactions. METHODS: Skin cetirizine levels were collected...... by the microdialysis technique and analyzed by high-pressure liquid chromatography with mass spectrometry detection. Skin levels in 20 subjects were compared to plasma levels for 4 h after a single oral dose of 10 or 20 mg of cetirizine. Skin prick tests were performed with histamine 100 mg/ml. RESULTS: Plasma...... cetirizine levels increased within 30 min to reach peak values of 315+/-10 and 786+/-45 ng/ml 90-120 min after administration of 10 and 20 mg of cetirizine. This was followed by a slow decline. In the skin, dialysate cetirizine levels (non-protein-bound fraction only) peaked at 1.6+/-0.1 and 2.4+/-0.3 ng...

  20. Portable System for Monitoring the Microclimate in the Footwear-Foot Interface

    Directory of Open Access Journals (Sweden)

    José de Jesús Sandoval-Palomares

    2016-07-01

    Full Text Available A new, continuously-monitoring portable device that monitors the diabetic foot has shown to help in reduction of diabetic foot complications. Persons affected by diabetic foot have shown to be particularly sensitive in the plantar surface; this sensitivity coupled with certain ambient conditions may cause dry skin. This dry skin leads to the formation of fissures that may eventually result in a foot ulceration and subsequent hospitalization. This new device monitors the micro-climate temperature and humidity areas between the insole and sole of the footwear. The monitoring system consists of an array of ten sensors that take readings of relative humidity within the range of 100% ± 2% and temperature within the range of −40 °C to 123.8 ± 0.3 °C. Continuous data is collected using embedded C software and the recorded data is processed in Matlab. This allows for the display of data; the implementation of the iterative Gauss-Newton algorithm method was used to display an exponential response curve. Therefore, the aim of our system is to obtain feedback data and provide the critical information to various footwear manufacturers. The footwear manufactures will utilize this critical information to design and manufacture diabetic footwear that reduce the risk of ulcers in diabetic feet.

  1. Effect of fluocinolone acetonide cream on human skin blood flow

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.

    1975-01-01

    Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia

  2. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  3. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  4. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    Science.gov (United States)

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  5. Effects of a foot placement constraint on use of motor equivalence during human hopping.

    Directory of Open Access Journals (Sweden)

    Arick G Auyang

    Full Text Available Humans can robustly locomote over complex terrains even while simultaneously attending to other tasks such as accurate foot placement on the ground. We investigated whether subjects would exploit motor redundancy across the joints of the leg to stabilize overall limb kinematics when presented with a hopping task that constrained foot placement position. Subjects hopped in place on one leg (2.2 Hz while having to place their foot into one of three target sizes upon landing (0.250, 0.063, 0.010 m(2. As takeoff and landing angles are critical to this task performance, we hypothesized smaller target sizes would increase the need to stabilize (i.e., make more consistent the leg orientation through motor equivalent combinations of segment angles. As it was not critical to the targeting task, we hypothesized no changes for leg length stabilization across target size. With smaller target sizes, we saw total segment angle variance increase due to greater signal-dependent noise associated with an increased activation of leg extensor muscles (medial and lateral gastrocnemius, vastus medialis, vastus lateralis and rectus femoris. At smaller target sizes, more segment angle variance was aligned to kinematic deviations with the goal of maintaining leg orientation trajectory. We also observed a decrease in the variance structure for stabilizing leg length at the smallest target conditions. This trade-off effect is explained by the nearly orthogonal relationship between the two goal-equivalent manifolds for leg length vs. leg orientation stabilization. Our results suggest humans increasingly rely on kinematic redundancy in their legs to achieve robust, consistent locomotion when faced with novel conditions that constrain performance requirements. These principles may generalize to other human locomotor gaits and provide important insights into the control of the legs during human walking and running.

  6. Ultrastructural age-related changes in the sensory corpuscles of the human genital skin.

    Science.gov (United States)

    Tammaro, A; Parisella, F R; Cavallotti, C; Persechino, S; Cavallotti, C

    2013-01-01

    In human genital skin the majority of superficial sensory corpuscles is represented by glomerular corpuscles. These corpuscles show an own morphology. Our aim is to compare the ultra-structure of superficial sensory corpuscles in the penis skin of younger and older subjects. In this report the ultra-structure of the sensitive corpuscle in the penis skin of the younger and older subjects was compared, showing that the genital skin of the older humans contains more simple complexes than the younger ones. Our findings support the view that the age-related changes that can be observed in human glomerular genital corpuscles are consistent with an increase of the simple complexes and a strong decrease of the poly-lamellar one in the older people. These findings demonstrate that human genital corpuscles underwent age-related changes. Moreover our morphological findings can be correlated in relation to the clinical evolution of the sensitivity in the genital skin.

  7. Contemporary Evaluation and Management of the Diabetic Foot

    Science.gov (United States)

    Sumpio, Bauer E.

    2012-01-01

    Foot problems in patients with diabetes remain a major public health issue and are the commonest reason for hospitalization of patients with diabetes with prevalence as high as 25%. Ulcers are breaks in the dermal barrier with subsequent erosion of underlying subcutaneous tissue that may extend to muscle and bone, and superimposed infection is a frequent and costly complication. The pathophysiology of diabetic foot disease is multifactorial and includes neuropathy, infection, ischemia, and abnormal foot structure and biomechanics. Early recognition of the etiology of these foot lesions is essential for good functional outcome. Managing the diabetic foot is a complex clinical problem requiring a multidisciplinary collaboration of health care workers to achieve limb salvage. Adequate off-loading, frequent debridement, moist wound care, treatment of infection, and revascularization of ischemic limbs are the mainstays of therapy. Even when properly managed, some of the foot ulcers do not heal and are arrested in a state of chronic inflammation. These wounds can frequently benefit from various adjuvants, such as aggressive debridement, growth factors, bioactive skin equivalents, and negative pressure wound therapy. While these, increasingly expensive, therapies have shown promising results in clinical trials, the results have yet to be translated into widespread clinical practice leaving a huge scope for further research in this field. PMID:24278695

  8. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  9. Human Skin 3D Bioprinting Using Scaffold-Free Approach.

    Science.gov (United States)

    Pourchet, Léa J; Thepot, Amélie; Albouy, Marion; Courtial, Edwin J; Boher, Aurélie; Blum, Loïc J; Marquette, Christophe A

    2017-02-01

    Organ in vitro synthesis is one of the last bottlenecks between tissue engineering and transplantation of synthetic organs. Bioprinting has proven its capacity to produce 3D objects composed of living cells but highly organized tissues such as full thickness skin (dermis + epidermis) are rarely attained. The focus of the present study is to demonstrate the capability of a newly developed ink formulation and the use of an open source printer, for the production of a really complete skin model. Proofs are given through immunostaining and electronic microscopy that the bioprinted skin presents all characteristics of human skin, both at the molecular and macromolecular level. Finally, the printability of large skin objects is demonstrated with the printing of an adult-size ear. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Diabetic Foot Attack: "'Tis Too Late to Retreat!"

    Science.gov (United States)

    Vas, Prashanth R J; Edmonds, Michael; Kavarthapu, Venu; Rashid, Hisham; Ahluwalia, Raju; Pankhurst, Christian; Papanas, Nikolaos

    2018-03-01

    The "diabetic foot attack" is one of the most devastating presentations of diabetic foot disease, typically presenting as an acutely inflamed foot with rapidly progressive skin and tissue necrosis, at times associated with significant systemic symptoms. Without intervention, it may escalate over hours to limb-threatening proportions and poses a high amputation risk. There are only best practice approaches but no international protocols to guide management. Immediate recognition of a typical infected diabetic foot attack, predominated by severe infection, with prompt surgical intervention to debride all infected tissue alongside broad-spectrum antibiotic therapy is vital to ensure both limb and patient survival. Postoperative access to multidisciplinary and advanced wound care therapies is also necessary. More subtle forms exist: these include the ischemic diabetic foot attack and, possibly, in a contemporary categorization, acute Charcot neuroarthropathy. To emphasize the importance of timely action especially in the infected and ischemic diabetic foot attack, we revisit the concept of "time is tissue" and draw parallels with advances in acute myocardial infarction and stroke care. At the moment, international protocols to guide management of severe diabetic foot presentations do not specifically use the term. However, we believe that it may help increase awareness of the urgent actions required in some situations.

  11. Self-efficacy of foot care behaviour of elderly patients with diabetes

    Directory of Open Access Journals (Sweden)

    Maizatul Nadwa Mohd Razi

    2017-08-01

    Full Text Available Introduction: Elderly patients with diabetes are at a high risk of contracting diabetic foot problems. Self-efficacy is essential to help improve foot care behaviour. Aim: To identify levels of self-efficacy and foot care behaviour and their relationship with demographic characteristics in elderly patients with diabetes Methods: A cross-sectional study was conducted in two general hospitals in Malaysia from May to June 2015. Diabetes patients aged 60 years with specific inclusion criteria were invited to participate in this study. The respondents were interviewed using a set of validated questionnaires. Data were analysed with descriptive and inferential statistics (multiple linear regression using Statistical Package for the Social Sciences version 20.0. Results: Levels of foot self-efficacy (mean+31.39; standard deviation=7.76 and foot care behaviour (mean=25.37; SD=5.88 were high. There was a positive significant relationship between foot selfefficacy (β = 0.41, p < 0.001 and gender (β = 0.30, p < 0.001 with foot care behaviour. Conclusion: Self-efficacy can be incorporated in diabetes education to improve foot care behaviour. High-risk patients should be taught proper foot inspection and protection as well as the merits of skin care to prevent the occurrence of diabetic foot problems.

  12. Quantitative relationship between the local lymph node assay and human skin sensitization assays.

    Science.gov (United States)

    Schneider, K; Akkan, Z

    2004-06-01

    The local lymph node assay (LLNA) is a new test method which allows for the quantitative assessment of sensitizing potency in the mouse. Here, we investigate the quantitative correlation between results from the LLNA and two human sensitization tests--specifically, human repeat insult patch tests (HRIPTs) and human maximization tests (HMTs). Data for 57 substances were evaluated, of which 46 showed skin sensitizing properties in human tests, whereas 11 yielded negative results in humans. For better comparability data from mouse and human tests were transformed to applied doses per skin area, which ranged over four orders of magnitude for the substances considered. Regression analysis for the 46 human sensitizing substances revealed a significant positive correlation between the LLNA and human tests. The correlation was better between LLNA and HRIPT data (n=23; r=0.77) than between LLNA and HMT data (n=38; r=0.65). The observed scattering of data points is related to various uncertainties, in part associated with insufficiencies of data from older HMT studies. Predominantly negative results in the LLNA for another 11 substances which showed no skin sensitizing activity in human maximization tests further corroborate the correspondence between LLNA and human tests. Based on this analysis, the LLNA can be considered a reliable basis for relative potency assessments for skin sensitizers. Proposals are made for the regulatory exploitation of the LLNA: four potency groups can be established, and assignment of substances to these groups according to the outcome of the LLNA can be used to characterize skin sensitizing potency in substance-specific assessments. Moreover, based on these potency groups, a more adequate consideration of sensitizing substances in preparations becomes possible. It is proposed to replace the current single concentration limit for skin sensitizers in preparations, which leads to an all or nothing classification of a preparation as sensitizing to

  13. Colony size distributions according to in vitro aging in human skin fibroblasts

    International Nuclear Information System (INIS)

    Kim, Jun Sang; Kim, Jae Sung; Cho, Moon June; Park, Jeong Kyu; Paik, Tae Hyun

    1999-01-01

    To investigate the percentage of colonies with 16 or more cells distribution of human skin fibroblast according to in vitro aging, and to evaluate the relationship between percentage of colonies with 16 or more cells and in vivo donor age in human skin fibroblast culture. C1, C2, C3a, and C3b human skin fibroblast samples from three breast cancer patients were used as subjects. The C1, C2, and C3a donor were 44, 54, and 55 years old, respectively. C3a and C3b cells were isolated from the same person. Single cell suspension of skin fibroblasts was prepared with primary explant technique. One hundred cells are plated into 100ml tissue culture flask and cultured for two weeks. The colony size was defined as colonies with 16 or more cells. The cultured cell was stained with crystal violet, and number of cells in each colony was determined with stereo microscope at x 10 magnification. Passage number of C1, C2, C3a and C3b skin fibroblast were 12th, 17th, and 14th, respectively. Percentage of colonies with 16 or more cells of skin fibroblast samples decreased with increasing in vitro passage number. In contrast, cumulative population doublings of skin fibroblast sample increased with increasing in vitro passage number. Percentage of colonies with 16 or more cells also decreased with increasing population doublings in human skin fibroblast culture. There was strong correlation with percentage of colonised with 16 or more cells and population doublings in C3a skin fibroblast sample. At the same point of population doublings, the percentage of colonies with 16 or more cells of the young C1 donor was higher level than the old C3a donor. The population doublings increased with increasing in vitro passage number but percentage of colonies with 16 or more cells decreased. The results of this study imply that percentage of colonies with 16 or more cells is useful as a indicator of in vitro human skin fibroblast aging and may estimate the in vivo donor age

  14. In-Vivo Human Skin to Textiles Friction Measurements

    Science.gov (United States)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  15. Percutaneous penetration of 2-phenoxyethanol through rat and human skin.

    Science.gov (United States)

    Roper, C S; Howes, D; Blain, P G; Williams, F M

    1997-01-01

    2-Phenoxyethanol applied in methanol was absorbed (64 +/- 4.4% at 24 hr) through unoccluded rat skin in vitro in the static diffusion cell with ethanol/water as receptor fluid. By comparison (43 +/- 3.7% in 24 hr) was absorbed in the flow-through diffusion system with tissue culture medium as receptor fluid. 2-Phenoxyethanol applied in methanol was absorbed (59.3 +/- 7.0% at 6 hr) through unoccluded human skin in vitro in the flow-through diffusion cell with tissue culture medium. With both unoccluded cells, 2-phenoxyethanol was lost by evaporation but occlusion of the static cell reduced evaporation and increased total absorption to 98.8 +/- 7.0%. Skin, post mitochondrial fraction, metabolized phenoxyethanol to phenoxyacetic acid at 5% of the rate for liver. Metabolism was inhibited by 1 mM pyrazole, suggesting involvement of alcohol dehydrogenase. However, first-pass metabolism of phenoxyethanol to phenoxyacetic acid was not detected during percutaneous penetration through viable rat skin in the flow-through system. First-pass metabolism in the skin does not therefore have an influence on systemic availability of dermally absorbed phenoxyethanol. These measures of phenoxyethanol absorption through rat and human skin in vitro agree well with those obtained previously in vivo.

  16. Regional differences in the skin blood flow at various sites of the body studied by xenon 133

    International Nuclear Information System (INIS)

    Tsuchida, Y.

    1987-01-01

    Normal skin blood flow was measured by the xenon 133 clearance method at different anatomic sites of the body and the following results were obtained. First, the skin blood flow of the face and anterior chest was significantly greater than that of the deltoid region (P less than 0.01). The skin blood flow of the dorsal side of the hand and foot was significantly lower than that of the deltoid region (P less than 0.01). A tendency was observed for the skin blood flow to decrease gradually from the upper part of the body to the lower part of the body. For example, the ratio of the highest value at the face to the lowest value at the dorsal side of the foot was about 2.5:1, indicating a remarkable difference among the various sites of the body. The skin blood flow at the dorsum of the hand was significantly higher by about 25.4 percent than that of the foot (P less than 0.01). Second, the skin blood flow at the left side of the deltoid region was higher by about 5 percent than that of the right side (P less than 0.01). Bilateral comparison of the skin blood flow at the dorsal side of the hand and foot showed that the values were almost the same on the left and right

  17. The Protective Role of Melanin Against UV Damage in Human Skin

    OpenAIRE

    Brenner, Michaela; Hearing, Vincent J.

    2008-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin...

  18. Tribology of human skin and mechanical skin equivalents in contact with textiles

    NARCIS (Netherlands)

    Derler, S.; Schrade, G.U.; Gerhardt, L.C.

    2007-01-01

    The friction of untreated human skin (finger) against a reference textile was investigated with 12 subjects using a force plate. In touch experiments, in which the subjects assessed the surface roughness of the textile at normal loads of 1.5 ± 0.7 N, the average friction coefficients ranged from

  19. TIME Of Diabetic Ulcer Foot Suffering And Depression Symptoms In Ulin General Hospital Banjarmasin

    OpenAIRE

    Puteri, Rizka Dwi; Darwis, Yulizar; Heriyani, Farida

    2017-01-01

    Diabetic foot ulcers are one kind of chronic complication of diabetes mellitus in the form of an open wound on the skin's surface and may be accompanied by local tissue death. Long term suffering of diabetic foot ulcers with physical and psychological changes may cause symptoms of depression. The aim of this study was to determine the correlation between long term suffering of diabetic foot ulcers and symptoms of depression in RSUD Ulin Banjarmasin. This was an analytic observational study w...

  20. Influence of epidermal hydration on the friction of human skin against textiles

    OpenAIRE

    Gerhardt, L.-C; Strässle, V; Lenz, A; Spencer, N.D; Derler, S

    2008-01-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles.

  1. Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2014-01-01

    Full Text Available This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot’s feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

  2. Natural gaits of the non-pathological flat foot and high-arched foot.

    Science.gov (United States)

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Lv, Changsheng; Luo, Donglin

    2011-03-18

    There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF) of plantar and the rate of change of footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1) in stance phase, there is a significant difference (pplantar; (2) in a stride cycle, there is also a significant difference (pfootprint area. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of change of footprint area brings greater stability to the high-arched.

  3. Foot Function, Foot Pain, and Falls in Older Adults: The Framingham Foot Study.

    Science.gov (United States)

    Awale, Arunima; Hagedorn, Thomas J; Dufour, Alyssa B; Menz, Hylton B; Casey, Virginia A; Hannan, Marian T

    2017-01-01

    Although foot pain has been linked to fall risk, contributions of pain severity, foot posture, or foot function are unclear. These factors were examined in a cohort of older adults. The purpose of this study was to examine the associations of foot pain, severity of foot pain, and measures of foot posture and dynamic foot function with reported falls in a large, well-described cohort of older adults from the Framingham Foot Study. Foot pain, posture, and function were collected from Framingham Foot Study participants who were queried about falls over the past year (0, 1, and ≥2 falls). Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the relation of falls with foot pain, pain severity, foot posture, and foot function adjusting for covariates. The mean age of the 1,375 participants was 69 years; 57% were female, and 21% reported foot pain (40% mild pain, 47% moderate pain, and 13% severe pain). One-third reported falls in the past year (1 fall: n = 263, ≥2 falls: n = 152). Foot pain was associated with a 62% increased odds of recurrent falls. Those with moderate and severe foot pain showed increased odds of ≥2 falls (OR 1.78, CI 1.06-2.99, and OR 3.25, CI 1.65-7.48, respectively) compared to those with no foot pain. Foot function was not associated with falls. Compared to normal foot posture, those with planus foot posture had 78% higher odds of ≥2 falls. Higher odds of recurrent falls were observed in individuals with foot pain, especially severe foot pain, as well as in individuals with planus foot posture, indicating that both foot pain and foot posture may play a role in increasing the risk of falls among older adults. © 2017 S. Karger AG, Basel.

  4. A methodology for extracting the electrical properties of human skin

    International Nuclear Information System (INIS)

    Birgersson, Ulrik; Nicander, Ingrid; Ollmar, Stig; Birgersson, Erik

    2013-01-01

    A methodology to determine dielectrical properties of human skin is presented and analyzed. In short, it is based on a mathematical model that considers the local transport of charge in the various layers of the skin, which is coupled with impedance measurements of both stripped and intact skin, an automated code generator, and an optimization algorithm. New resistivity and permittivity values for the stratum corneum soaked with physiological saline solution for 1 min and the viable skin beneath are obtained and expressed as easily accessible functions. The methodology can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation. (paper)

  5. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    International Nuclear Information System (INIS)

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita; Payne, N. Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M.

    2007-01-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases in paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig

  6. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on

  7. Influence of epidermal hydration on the friction of human skin against textile

    NARCIS (Netherlands)

    Gerhardt, L.C.; Strässle, V.; Lenz, A.; Spencer, N.D.; Derler, S.

    2008-01-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles. The friction between

  8. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  9. Degradation and protection of DNAzymes on human skin.

    Science.gov (United States)

    Marquardt, Kay; Eicher, Anna-Carola; Dobler, Dorota; Höfer, Frank; Schmidts, Thomas; Schäfer, Jens; Renz, Harald; Runkel, Frank

    2016-10-01

    DNAzymes are catalytic nucleic acid based molecules that have become a new class of active pharmaceutical ingredients (API). Until now, five DNAzymes have entered clinical trials. Two of them were tested for topical application, whereby dermally applied DNAzymes had been prone to enzymatic degradation. To protect the DNAzymes the enzymatic activity of human skin has to be examined. Therefore, the enzymatic activity of human skin was qualitatively and quantitatively analyzed. Activity similar to that of DNase II could be identified and the specific activity was determined to be 0.59Units/mg. These results were used to develop an in vitro degradation assay to screen different kinds of protective systems on human skin. The chosen protective systems consisted of biodegradable chitosans or polyethylenimine, which forms polyplexes when combined with DNAzymes. The polyplexes were characterized in terms of particle size, zeta potential, stability and degree of complexation. The screening revealed that the protective efficiency of the polyplexes depended on the polycation and the charge ratio (ξ). At a critical ξ ratio between 1.0 and 4.1 and at a maximal zeta potential, sufficient protection of the DNAzyme was achieved. The results of this study will be helpful for the development of a protective dermal drug delivery systems using polyplexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, E. van der

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables.This study has used a large dataset to identify the effect of variables on the

  11. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    Science.gov (United States)

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  12. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  13. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  14. Permeability of commercial solvents through living human skin

    DEFF Research Database (Denmark)

    Ursin, C; Hansen, C M; Van Dyk, J W

    1995-01-01

    A procedure has been developed for measuring the steady state rate of permeation of commercial solvents through living human skin. To get the most consistent results, it was necessary with some solvents to normalize the solvent permeation rate of a given skin sample with its [3H]water permeation...... rate. For other solvents this was not necessary, so the un-normalized data were used. High [3H]water permeation rate also was used as a criterion for "defective" skin samples that gave erroneous permeability rates, especially for solvents having slow permeability. The linearity of the steady state data...... of DMSO and octyl acetate were measured. No octyl acetate was detected and the permeability of DMSO was proportional to its mole fraction in the mixture. The effect of two hours of solvent exposure on the viability of skin (based on DNA synthesis) was measured and found to be very dependent on the solvent....

  15. Wound bed preparation for ischemic diabetic foot ulcer.

    Science.gov (United States)

    Zhang, Zhaoxin; Lv, Lei; Guan, Sheng

    2015-01-01

    This study is to evaluate the effect of allograft skin on wound angiogenesis and wound bed preparation of ischemic diabetic foot ulcer. A total of 60 cases of patients with diabetic foot ulcer were randomly divided into the experimental group (n = 30) and the control group (n = 30). After debridement, in the experimental group, allograft skin was used to cover the wound while in the control group, vaseline and gauze was used to cover the wound. The wound was opened and dressed at 3, 5, 7, 14 days after operation and the growth condition of the granulation tissue was observed and recorded. The wound bed preparation time of the experimental group was 14.37 ± 1.06 days, compared with the control group 25.99 ± 4.03 days, there was statistically significant difference (t = 14.78, P cure time of the experimental group was 32 ± 1.93 days and this time was significantly shortened than the control group 39.73 ± 2.55 days (t = 12.521, P ulcer and shorten the wound bed preparation time and treatment cycle.

  16. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Pathak, Madhu A.; Parrado, Concepcion; Goukassian, David; Rius-Díaz, Francisca; Mihm, Martín C.; Fitzpatrick, Thomas B.; González, Salvador

    2004-01-01

    BACKGROUND: UV radiation induces damage to human skin. Protection of skin by an oral photoprotective agent would have substantial benefits. Objective We investigated the photoprotective effect of oral administration of an extract of the natural antioxidant Polypodium leucotomos (PL). METHODS: A

  17. Validation of radiosterilization dose of human skin dressings for burnt treatment: preliminary study

    International Nuclear Information System (INIS)

    Castro, E.

    2008-01-01

    Full text: Due to the need for better materials to treat burnt patients, the Peruvian Institute of Nuclear Energy (IPEN) and the Rosa Guerzoni Chambergo Tissue Bank are collaborating for developing human skin dressings. Skin was procured from living donors, who surgically were performed a dermolipectomy. Exclusion criteria, stated by the Peruvian Organization for Transplant and Donation were observed. Glycerolized human skin dressings were processed at the tissue bank and sent to IPEN, where the gamma irradiation sterilizing dose was determined. The purpose of this work is to validate the radiation sterilization dose delivered to human skin dressings using the IAEA Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control. A batch of human skin dressings was tested. Average values of bioburden present in ten samples was 30 UFC/item, obtaining a sub-sterilization dose of 4 kGy. Irradiations were performed in the GammacellExcel 220. Sterility tests performed fulfilled the requirements established by the Code, achieving a validated dose value of 19.7 kGy. This preliminary study, that should be repeated in two other batches of processed human skin, allows to diminish 25 kGy the sterilizing dose to the stated above dose value, in a frame of a quality assurance system that also comprises the processes held at tissue banks previous irradiation. It also permit the availability of these materials in Peruvian hospitals. (Author)

  18. Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method

    Science.gov (United States)

    Khairina, Dyna Marisa; Hatta, Heliza Rahmania; Rustam; Maharani, Septya

    2018-02-01

    Skin disease is an infectious disease that is common in people of all ages. Disorders of the skin often occur because there are factors, among others, are climate, environment, shelter, unhealthy living habits, allergies and others. Skin diseases in Indonesia are mostly caused by bacterial, fungal, parasitic, and allergies. The objective of the research is to diagnose skin diseases in humans by using the method of making decision tree then performing the search by forward chaining and calculating the probability value of Dempster-Shafer method. The results of research in the form of an automated system that can resemble an expert in diagnosing skin disease accurately and can help in overcoming the problem of skin diseases.

  19. A novel approach to measuring the frictional behaviour of human skin in vivo

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2012-01-01

    Friction involving human skin plays a key role in human life. The availability of a portable tribometer improves the accessibility to large number of both subjects and anatomical sites. This is the first mobile device suitable to measure skin friction with a controlled and variable normal load

  20. Towards the generation of a parametric foot model using principal component analysis: A pilot study.

    Science.gov (United States)

    Scarton, Alessandra; Sawacha, Zimi; Cobelli, Claudio; Li, Xinshan

    2016-06-01

    There have been many recent developments in patient-specific models with their potential to provide more information on the human pathophysiology and the increase in computational power. However they are not yet successfully applied in a clinical setting. One of the main challenges is the time required for mesh creation, which is difficult to automate. The development of parametric models by means of the Principle Component Analysis (PCA) represents an appealing solution. In this study PCA has been applied to the feet of a small cohort of diabetic and healthy subjects, in order to evaluate the possibility of developing parametric foot models, and to use them to identify variations and similarities between the two populations. Both the skin and the first metatarsal bones have been examined. Besides the reduced sample of subjects considered in the analysis, results demonstrated that the method adopted herein constitutes a first step towards the realization of a parametric foot models for biomechanical analysis. Furthermore the study showed that the methodology can successfully describe features in the foot, and evaluate differences in the shape of healthy and diabetic subjects. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  2. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  3. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  4. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.

    Science.gov (United States)

    Mildren, Robyn L; Bent, Leah R

    2016-04-15

    It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. Copyright © 2016 the American Physiological Society.

  5. Analogs of human genetic skin disease in domesticated animals

    Directory of Open Access Journals (Sweden)

    Justin Finch, MD

    2017-09-01

    The genetic skin diseases we will review are pigmentary mosaicism, piebaldism, albinism, Griscelli syndrome, ectodermal dysplasias, Waardenburg syndrome, and mucinosis in both humans and domesticated animals.

  6. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Science.gov (United States)

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. © 2011 John Wiley & Sons A/S.

  7. Natural gaits of the non-pathological flat foot and high-arched foot.

    Directory of Open Access Journals (Sweden)

    Yifang Fan

    Full Text Available There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF of plantar and the rate of change of footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1 in stance phase, there is a significant difference (p<0.01 in the distributions of VGRF of plantar; (2 in a stride cycle, there is also a significant difference (p<0.01 in the rate of change of footprint area. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of change of footprint area brings greater stability to the high-arched.

  8. Late occurring lesions in the skin of rats after repeated doses of X-rays

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    Late radiation damage, characterized by atrophy and necrosis in the skin and subcutaneous tissues, has been demonstrated in both the tail and feet of rats. The incidence of necrosis increased with total dose. These total doses, in the range 72-144 Gy, were given as 4-8 treatment of 18 Gy, each dose separated from the next by an interval of 28 days. This treatment protocol minimized acute epithelial skin reactions. The same regime applied to the skin on the back of rats resulted in a very severe acute reaction occurring after the second to fifth dose of 18 Gy. This was surprising since back skin, like tail skin, is less sensitive to large single doses of radiation than that of the foot. The late radiation reaction in the foot and tail of rats are compared and contrasted with other attempts to assess late effects in rodent skin and with late changes seen in pig skin. (author)

  9. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling.

    Science.gov (United States)

    Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette

    2014-06-01

    The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    Science.gov (United States)

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin.

    Science.gov (United States)

    Glatz, Martin; Means, Terry; Haas, Josef; Steere, Allen C; Müllegger, Robert R

    2017-03-01

    Little is known about the immunomodulation by tick saliva during a natural tick bite in human skin, the site of the tick-host interaction. We examined the expression of chemokines, cytokines and leucocyte markers on the mRNA levels and histopathologic changes in human skin biopsies of tick bites (n=37) compared to unaffected skin (n=9). Early tick-bite skin lesions (skin. With longer tick attachment (>24 hours), the numbers of innate immune cells and mediators (not significantly) declined, whereas the numbers of lymphocytes (not significantly) increased. Natural tick bites by Ixodes ricinus ticks initially elicit a strong local innate immune response in human skin. Beyond 24 hours of tick attachment, this response usually becomes less, perhaps because of immunomodulation by tick saliva. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    Science.gov (United States)

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  13. The safety of donor skin preserved with glycerol - Evaluating the Euro Skin Bank preservation procedures of human donor skin against the prEN 12442 standard

    NARCIS (Netherlands)

    Geertsma RE; Wassenaar C; LGM

    2000-01-01

    The procedures for preservation of human donor skin with glycerol, as applied by the Euro Skin Bank (ESB), were evaluated against the prEN 12442 standard: animal tissues and their derivatives used in the manufacture of medical devices. The focus chosen for this review is on risks related to the

  14. The Diabetic Foot - A Review | Ekere | Nigerian Journal of ...

    African Journals Online (AJOL)

    High risk patients should be advised to wash and inspect their feet daily, use creams and lotions to prevent dry skin and callus formation, use adequate foot wear, avoid barefoot gait and thermal injury, and seek early medical attention in the event of injury, however trivial. Pedicure must be done by another person

  15. [Vacuum-assisted therapy for various wound types including diabetic foot ulcer].

    Science.gov (United States)

    Farah, Raymond; Gantus, Maher; Kogan, Leonid

    2011-03-01

    Vacuum is a noninvasive system that creates a localized controlled negative pressure environment. In this study, vacuum was provided by the V.A.C. Therapy system, which promotes wound healing by delayed primary or secondary intention through creating a moist wound environment, preparing the wound bed for closure, reducing edema, and promoting formation and perfusion of granulation tissue. Vacuum-assisted closure therapy is indicated for use in all care settings and for a variety of wound types including diabetic foot ulcers. The purpose of this study was to evaluate safety and clinical efficacy of negative pressure wound therapy (NPWT) compared with advanced moist wound therapy and standard treatment to treat foot ulcers in diabetic patients. This trial enrolled 43 patients; most of them were diabetic patients at any age with various skin ulcers and diabetic foot. These patients were divided into two groups, 17 patients were treated with vacuum and the 26 patients in the control group were treated with standard therapy including debridement. A greater proportion of foot and skin ulcers achieved complete ulcer closure with vacuum-assisted therapy p<0.001 compared with the standard therapy. Vacuum therapy significantly decreased the duration and frequency of admission p=0.032 and decreased the rate of amputation p<0.001. Results of our trial support other studies and demonstrate that vacuum is as safe as and more efficacious than standard therapy in the treatment of diabetic foot ulcers. A significantly greater number of patients achieved complete ulcer closure and granulation tissue formation with this therapy. The study group showed a significant reduction in the median time needed to heal ulcers, reduction of the number of admissions and amputation frequency.

  16. Dermal absorption behavior of fluorescent molecules in nanoparticles on human and porcine skin models.

    Science.gov (United States)

    Debotton, Nir; Badihi, Amit; Robinpour, Mano; Enk, Claes D; Benita, Simon

    2017-05-30

    The percutaneous passage of poorly skin absorbed molecules can be improved using nanocarriers, particularly biodegradable polymeric nanospheres (NSs) or nanocapsules (NCs). However, penetration of the encapsulated molecules may be affected by other factors than the nanocarrier properties. To gain insight information on the skin absorption of two fluorescent cargos, DiIC 18 (5) and coumarin-6 were incorporated in NSs or NCs and topically applied on various human and porcine skin samples. 3D imaging techniques suggest that NSs and NCs enhanced deep dermal penetration of both probes similarly, when applied on excised human skin irrespective of the nature of the cargo. However, when ex vivo pig skin was utilized, the cutaneous absorption of DiIC 18 (5) was more pronounced by means of PLGA NCs than NSs. In contrast, PLGA NSs noticeably improved the porcine skin penetration of coumarin-6, as compared to the NCs. Furthermore, the porcine skin results were reproducible when triplicated whereas from various human skin samples, as expected, the results were not sufficiently reproducible and large deviations were observed. The overall findings from this comprehensive comparison emphasize the potential of PLGA NCs or NSs to promote cutaneous bioavailability of encapsulated drugs, exhibiting different physicochemical properties but depending on the nature of the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    Science.gov (United States)

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Genetic deletion of amphiregulin restores the normal skin phenotype in a mouse model of the human skin disease tylosis

    Directory of Open Access Journals (Sweden)

    Vishnu Hosur

    2017-08-01

    Full Text Available In humans, gain-of-function (GOF mutations in RHBDF2 cause the skin disease tylosis. We generated a mouse model of human tylosis and show that GOF mutations in RHBDF2 cause tylosis by enhancing the amount of amphiregulin (AREG secretion. Furthermore, we show that genetic disruption of AREG ameliorates skin pathology in mice carrying the human tylosis disease mutation. Collectively, our data suggest that RHBDF2 plays a critical role in regulating EGFR signaling and its downstream events, including development of tylosis, by facilitating enhanced secretion of AREG. Thus, targeting AREG could have therapeutic benefit in the treatment of tylosis.

  19. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gledhill, Karl; Guo, Zongyou; Umegaki-Arao, Noriko; Higgins, Claire A; Itoh, Munenari; Christiano, Angela M

    2015-01-01

    The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs) present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  1. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Karl Gledhill

    Full Text Available The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  2. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    International Nuclear Information System (INIS)

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population. (topical review)

  3. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  4. Rare Case of Aspergillus ochraceus Osteomyelitis of Calcaneus Bone in a Patient with Diabetic Foot Ulcers

    Directory of Open Access Journals (Sweden)

    Farhang Babamahmoodi

    2015-01-01

    Full Text Available Diabetes is the most common metabolic disease in humans. One of the major complications of the disease is foot ulcer that is prone to infection. The most common causes of infection which have been reported in these patients are bacteria and fungi such as Candida, Aspergillus, and Rhizopus species. We report one such rare case with calcaneal osteomyelitis caused by Aspergillus ochraceus in a patient with diabetic foot osteomyelitis. The case was a 68-year-old male with a history of type II diabetes for 2 years. The patient had two ulcers on the right heel bones for the past 6 months with no significant improvement. One of the most important predisposing factors to infectious diseases, especially opportunistic fungal infection, is diabetes mellitus. Aspergillus species can involve bony tissue through vascular system, direct infection, and trauma. Proper and early diagnosis and treatment of diabetic foot infection can reduce or prevent complications, such as osteomyelitis and amputation. The annual examination of feet for skin and nail lesion, sensation, anatomical changes, and vascular circulation can be useful for prevention and control of infection.

  5. Flexible Nanosomes (SECosomes) Enable Efficient siRNA Delivery in Cultured Primary Skin Cells and in the Viable Epidermis of Ex Vivo Human Skin

    NARCIS (Netherlands)

    Geusens, Barbara; Van Gele, Mireille; Braat, Sien; De Smedt, Stefaan C.; Stuart, Marc C. A.; Prow, Tarl W.; Sanchez, Washington; Roberts, Michael S.; Sanders, Niek N.; Lambert, Jo

    2010-01-01

    The extent to which nanoscale-engineered systems cross intact human skin and can exert pharmacological effects in viable epidermis is controversial. This research seeks to develop a new lipid-based nanosome that enables the effective delivery of siRNA into human skin. The major finding is that an

  6. Reconstruction of soft-tissue lesions of the foot with the use of the medial plantar flap

    Directory of Open Access Journals (Sweden)

    Jefferson Lessa Soares de Macedo

    Full Text Available ABSTRACT OBJECTIVE: To study use of the medial plantar flap for reconstruction of the heel and foot. METHOD: The authors share their clinical experience with the use of the medial plantar artery flap for coverage of tissue defects around the foot and heel after trauma. Twelve cases of medial plantar artery flap performed from January 2001 to December 2013 were included. RESULTS: Of the 12 patients, ten were male and two were female. The indications were traumatic loss of the heel pad in ten cases and the dorsal foot in two cases. All the flaps healed uneventfully without major complications, except one case with partial flap loss. The donor site was covered with a split-thickness skin graft. The flaps had slightly inferior protective sensation compared with the normal side. CONCLUSION: From these results, the authors suggest that the medial plantar artery flap is a good addition to the existing armamentarium for coverage of the foot and heel. It is versatile flap that can cover defects on the heel, over the Achilles tendon and plantar surface, as well as the dorsal foot. It provides tissue to the plantar skin with a similar texture and intact protective sensation.

  7. Acute fractures of the pediatric foot and ankle.

    Science.gov (United States)

    Halai, Mansur; Jamal, Bilal; Rea, Paul; Qureshi, Mobeen; Pillai, Anand

    2015-02-01

    Injuries around the foot and ankle are challenging. There is a paucity of literature, outside that of specialist orthopedic journals, that focuses on this subject in the pediatric population. In this review, we outline pediatric foot and ankle fractures in an anatomically oriented manner from the current literature. Our aim is to aid the emergency department doctor to manage these challenging injuries more effectively in the acute setting. These injuries require a detailed history and examination to aid the diagnosis. Often, plain radiographs are sufficient, but more complex injuries require the use of magnetic resonance imaging. Treatment is dependent on the proximity to skeletal maturity and the degree of displacement of fracture. Children have a marked ability to remodel after fractures and therefore mainstay treatment is immobilization by a cast or splint. Operative fixation, although uncommon in this population, may be necessary with adolescents, certain unstable injuries or in cases with displaced articular surface. In the setting of severe foot trauma, skin compromise and compartment syndrome of the foot must be excluded. The integrity of the physis, articular surface and soft tissues are all equally important in treating these injuries.

  8. Application of a system for measuring foot plantar pressure for evaluation of human mobility

    Science.gov (United States)

    Klimiec, Ewa; Jasiewicz, Barbara; Zaraska, Krzysztof; Piekarski, Jacek; Guzdek, Piotr; Kołaszczyński, Grzegorz

    2016-11-01

    The paper presents evaluation of human mobility by gait analysis, carried out in natural conditions (outside laboratory). Foot plantar pressure is measured using a shoe insole with 8 sensors placed in different anatomical zones of the foot, and placed inside a sports footwear. Polarized PVDF foil is used as a sensor material. A wireless transmission system is used to transmit voltage values to the computer. Due to linear relationship between force and transducer voltage, energy released during walking in arbitrary units can be calculated as integral of the square of transducer voltage over time. Gait measurements have been done over the next few days on healthy person during normal walking and slow walking. Performed measurements allow determination of walking speed (number of steps per second), gait rhythm and manner of walking (applying force to inside versus outside part of the sole). It is found that switching from normal to slow walk increases gait energy by 25% while the pressure distribution across the anatomical regions of the foot remains unchanged. The results will be used for developing a programme for evaluation of patients with cardiac failure and future integration of actimetry with pulse and spirometry measurements.

  9. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.

    Science.gov (United States)

    Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan

    2017-09-01

    Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.

  10. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  11. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin

    Directory of Open Access Journals (Sweden)

    Alasdair Anderson

    2014-01-01

    Full Text Available The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC complexes I, II and III towards production of reactive oxygen species (ROS have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549. The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05 suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001. The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase cells than the corresponding wild type cells (P=0.0012 which can be considered (in terms of telomerase activity as models of younger and older cells respectively.

  12. Characterisation of human skin models - stability, metabolic capacity and comparative investigations in percutaneous absorption

    OpenAIRE

    Schreiber, Sylvia

    2010-01-01

    In recent years, the demand for alternative test methods in safety assessment of cosmetics, risk assessment of chemicals, and testing of pharmaceuticals was increasingly included in the EU directives. Thereby, alternative test methods for the determination of percutaneous absorption should achieve a more reliable in vivo prediction of the response of human skin than animal skin. Even though freshly excised human skin is considered as a preferred test matrix its routine use is often difficult ...

  13. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    Science.gov (United States)

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available. Copyright © 2013 Wiley Periodicals, Inc.

  14. Modelling foot height and foot shape-related dimensions.

    Science.gov (United States)

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  15. Clinical efficacy of artificial skin combined with vacuum sealing drainage in treating large-area skin defects

    Institute of Scientific and Technical Information of China (English)

    TANG Jin; GUO Wei-chun; YU Ling; ZHAO Sheng-hao

    2010-01-01

    Objective: To observe the clinical efficacy of artificial skin combined with vacuum sealing drainage (VSD) in treating large-area skin defects.Methods: Totally 18 patients with skin defects, treated with artificial skin combined with VSD from September 2008to May 2009 in our hospital, were retrospectively analyzed in this study. There were 15 males and 3 females, aged 7-66years, 34.3 years on average. Among them, 10 cases had skin laceration caused by traffic accidents (7 with open fractures), 1 mangled injury, 1 blast injury, 1 stump infection combined with skin defects after amputation and 5 heel ulcers.Results: All skin grafts in 16 cases survived after being controlled by VSD for one time. For the rest 2 patients,one with skin avulsion on the left foot was given median thickness skin grafts after three times of VSD, the other with open fractures in the left tibia and fibula caused by a traffic accident was given free flap transplantation. Skin grafts of both patients survived, with normal color and rich blood supply.Conclusion: Skin grafting in conjunction with artificial skin and VSD is much more effective than traditional dressing treatment and worth wide application in clinic.

  16. Percutaneous absorption and skin decontamination of PCBs: In vitro studies with human skin and in vivo studies in the rhesus monkey

    International Nuclear Information System (INIS)

    Wester, R.C.; Maibach, H.I.; Bucks, D.A.; McMaster, J.; Mobayen, M.; Sarason, R.; Moore, A.

    1990-01-01

    Knowledge of the entry of polychlorinated biphenyls through the skin into the body and subsequent disposition aids estimation of potential for human health hazard. [14C]Aroclor 1242 and [14C]Aroclor 1254 were separately administered intravenously and topically to rhesus monkeys. Following iv administration, 30-d excretion was 39.4 +/- 5.9% urine and 16.1 +/- 0.8% feces (total 55.5 +/- 5.1%) for Aroclor 1242, and 7.0 +/- 2.2% urine and 19.7 +/- 5.8% feces (total 26.7 +/- 7.5%) for Aroclor 1254. Mineral oil and trichlorobenzene are common PCB cosolvents in transformers. Skin absorption of Aroclor 1242 was 20.4 +/- 8.5% formulated in mineral oil and 18.0 +/- 3.8% in trichlorobenzene (p greater than .05). Absorption of Aroclor 1254 was 20.8 +/- 8.3% in mineral oil and 14.6 +/- 3.6% in trichlorobenzene (p greater than .05). PCBs are thus absorbed through skin, and excretion from the body is slow. Vehicle (trichlorobenzene or mineral oil) did not affect percutaneous absorption. In vitro skin absorption in human cadaver skin did not correlate with in vivo findings. This was due to lack of PCB partition from skin into the water receptor fluid, even with addition of 6% Oleth 20 (Volpo 20) solubilizer. Skin decontamination of PCBs showed soap and water to be as effective as or better than the solvent ethanol, mineral oil, and trichlorobenzene in removing PCBs from skin. There is a dynamic time lapse for PCBs between initial skin contact and skin absorption (irreversible removal). Thus initially most PCBs could be removed from skin, but this ability decreased with time to the point where at 24 h only about 25% of the initial PCB skin dose could be recovered with skin washing

  17. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging.

    Science.gov (United States)

    Kim, Eun Ju; Jin, Xing-Ji; Kim, Yeon Kyung; Oh, In Kyung; Kim, Ji Eun; Park, Chi-Hyun; Chung, Jin Ho

    2010-01-01

    Although fatty acids are known to be important in various skin functions, their roles on photoaging in human skin are poorly understood. We investigated the alteration of lipid metabolism in the epidermis by photoaging and acute UV irradiation in human skin. UV irradiated young volunteers (21-33 years, n=6) and elderly volunteers (70-75 years, n=7) skin samples were obtained by punch biopsy. Then the epidermis was separated from dermis and lipid metabolism was investigated. We observed that the amounts of free fatty acids (FFA) and triglycerides (TG) in the epidermis of photoaged or acutely UV irradiated human skin were significantly decreased. The expressions of genes related to lipid synthesis, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), sterol regulatory element binding proteins (SREBPs), and peroxisome proliferator-activated receptors (PPARgamma) were also markedly decreased. To elucidate the significance of these changes of epidermal lipids in human skin, we investigated the effects of TG or various inhibitors for the enzymes involved in TG synthesis on the expression of matrix metalloproteinase-1 (MMP-1) in cultured human epidermal keratinocytes. We demonstrated that triolein (TG) reduced basal and UV-induced MMP-1 mRNA expression. In addition, each inhibitor for various lipid synthesis enzymes, such as TOFA (ACC inhibitor), cerulenin (FAS inhibitor) and trans-10, cis-12-CLA (SCD inhibitor), increased the MMP-1 expression significantly in a dose-dependent manner. We also demonstrated that triolein could inhibit cerulenin-induced MMP-1 expression. Furthermore, topical application of triolein (10%) significantly prevented UV-induced MMP-13, COX-2, and IL-1beta expression in hairless mice. Our results suggest that TG and FFA may play important roles in photoaging of human skin. Copyright 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Foot strike patterns and collision forces in habitually barefoot versus shod runners.

    Science.gov (United States)

    Lieberman, Daniel E; Venkadesan, Madhusudhan; Werbel, William A; Daoud, Adam I; D'Andrea, Susan; Davis, Irene S; Mang'eni, Robert Ojiambo; Pitsiladis, Yannis

    2010-01-28

    Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.

  19. Lipidomic analysis of epidermal lipids: a tool to predict progression of inflammatory skin disease in humans.

    Science.gov (United States)

    Li, Shan; Ganguli-Indra, Gitali; Indra, Arup K

    2016-05-01

    Lipidomics is the large-scale profiling and characterization of lipid species in a biological system using mass spectrometry. The skin barrier is mainly comprised of corneocytes and a lipid-enriched extracellular matrix. The major skin lipids are ceramides, cholesterol and free fatty acids (FFA). Lipid compositions are altered in inflammatory skin disorders with disrupted skin barrier such as atopic dermatitis (AD). Here we discuss some of the recent applications of lipidomics in human skin biology and in inflammatory skin diseases such as AD, psoriasis and Netherton syndrome. We also review applications of lipidomics in human skin equivalent and in pre-clinical animal models of skin diseases to gain insight into the pathogenesis of the skin disease. Expert commentary: Skin lipidomics analysis could be a fast, reliable and noninvasive tool to characterize the skin lipid profile and to monitor the progression of inflammatory skin diseases such as AD.

  20. The effect of compressed air massage on skin blood flow and temperature.

    Science.gov (United States)

    Mars, Maurice; Maharaj, Sunil S; Tufts, Mark

    2005-01-01

    Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally mediated and is related to the pressure used. Treatment cools the skin for at least 15 min after a 45-min treatment.

  1. In situ depletion of CD4(+) T cells in human skin by Zanolimumab

    DEFF Research Database (Denmark)

    Villadsen, L.S.; Skov, L.; Dam, T.N.

    2007-01-01

    CD4(+) T cells, in activated or malignant form, are involved in a number of diseases including inflammatory skin diseases such as psoriasis, and T cell lymphomas such as the majority of cutaneous T cell lymphomas (CTCL). Targeting CD4 with an antibody that inhibits and/or eliminates disease......-driving T cells in situ may therefore be a useful approach in the treatment of inflammatory and malignant skin diseases. Depletion of CD4(+) T cells in intact inflamed human skin tissue by Zanolimumab, a fully human therapeutic monoclonal antibody (IgG1, kappa) against CD4, was studied in a human psoriasis......(+), but not CD8(+) CD3(+) T cells. The capacity of Zanolimumab to deplete the CD4(+) T cells in the skin may be of importance in diseases where CD4(+) T cells play a central role. Indeed, in a phase II clinical trial Zanolimumab has shown a dose-dependent clinical response in patients with CTCL and the antibody...

  2. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA.

    Science.gov (United States)

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki

    2016-05-01

    A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.

  3. The advantages of a rolling foot in human walking.

    Science.gov (United States)

    Adamczyk, Peter G; Collins, Steven H; Kuo, Arthur D

    2006-10-01

    The plantigrade human foot rolls over the ground during each walking step, roughly analogous to a wheel. The center of pressure progresses on the ground like a wheel of radius 0.3 L (leg length). We examined the effect of varying foot curvature on the mechanics and energetics of walking. We controlled curvature by attaching rigid arc shapes of various radii to the bottoms of rigid boots restricting ankle motion. We measured mechanical work performed on the center of mass (COM), and net metabolic rate, in human subjects (N=10) walking with seven arc radii from 0.02-0.40 m. Simple models of dynamic walking predict that redirection of COM velocity requires step-to-step transition work, decreasing quadratically with arc radius. Metabolic cost would be expected to change in proportion to mechanical work. We measured the average rate of negative work performed on the COM, and found that it followed the trend well (r2=0.95), with 2.37 times as much work for small radii as for large. Net metabolic rate (subtracting quiet standing) also decreased with increasing arc radius to a minimum at 0.3 L, with a slight increase thereafter. Maximum net metabolic rate was 6.25 W kg(-1) (for small-radius arc feet), about 59% greater than the minimum rate of 3.93 W kg(-1), which in turn was about 45% greater than the rate in normal walking. Metabolic rate was fit reasonably well (r2=0.86) by a quadratic curve, but exceeded that expected from COM work for extreme arc sizes. Other factors appear to increase metabolic cost for walking on very small and very large arc feet. These factors may include effort expended to stabilize the joints (especially the knee) or to maintain balance. Rolling feet with curvature 0.3 L appear energetically advantageous for plantigrade walking, partially due to decreased work for step-to-step transitions.

  4. Human skin in vitro permeation of bentazon and isoproturon formulations with or without protective clothing suit.

    Science.gov (United States)

    Berthet, Aurélie; Hopf, Nancy B; Miles, Alexandra; Spring, Philipp; Charrière, Nicole; Garrigou, Alain; Baldi, Isabelle; Vernez, David

    2014-01-01

    Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.

  5. Approach to quantify human dermal skin aging using multiphoton laser scanning microscopy

    Science.gov (United States)

    Puschmann, Stefan; Rahn, Christian-Dennis; Wenck, Horst; Gallinat, Stefan; Fischer, Frank

    2012-03-01

    Extracellular skin structures in human skin are impaired during intrinsic and extrinsic aging. Assessment of these dermal changes is conducted by subjective clinical evaluation and histological and molecular analysis. We aimed to develop a new parameter for the noninvasive quantitative determination of dermal skin alterations utilizing the high-resolution three-dimensional multiphoton laser scanning microscopy (MPLSM) technique. To quantify structural differences between chronically sun-exposed and sun-protected human skin, the respective collagen-specific second harmonic generation and the elastin-specific autofluorescence signals were recorded in young and elderly volunteers using the MPLSM technique. After image processing, the elastin-to-collagen ratio (ELCOR) was calculated. Results show that the ELCOR parameter of volar forearm skin significantly increases with age. For elderly volunteers, the ELCOR value calculated for the chronically sun-exposed temple area is significantly augmented compared to the sun-protected upper arm area. Based on the MPLSM technology, we introduce the ELCOR parameter as a new means to quantify accurately age-associated alterations in the extracellular matrix.

  6. Permeability of commercial solvents through living human skin

    DEFF Research Database (Denmark)

    Ursin, C; Hansen, C M; Van Dyk, J W

    1995-01-01

    A procedure has been developed for measuring the steady state rate of permeation of commercial solvents through living human skin. To get the most consistent results, it was necessary with some solvents to normalize the solvent permeation rate of a given skin sample with its [3H]water permeation...... rate. For other solvents this was not necessary, so the un-normalized data were used. High [3H]water permeation rate also was used as a criterion for "defective" skin samples that gave erroneous permeability rates, especially for solvents having slow permeability. The linearity of the steady state data...... was characterized by calculation of the "percent error of the slope." The following permeability rates (g/m2h) of single solvents were measured: dimethyl sulfoxide (DMSO), 176; N-methyl-2-pyrrolidone, 171; dimethyl acetamide, 107; methyl ethyl ketone, 53; methylene chloride, 24; [3H]water, 14.8; ethanol, 11...

  7. The effectiveness of non-surgical interventions in the treatment of Charcot foot.

    Science.gov (United States)

    Smith, Caroline; Kumar, Saravana; Causby, Ryan

    2007-12-01

    trials evaluating bisphosphonates reported greater reduction in foot temperature and disease activity for intervention subjects compared with controls. Another outcome of this review indicated additional beneficial effects of bisphosphonates in reducing pain and discomfort. The trial evaluating palliative radiotherapy found no difference between groups on any outcome. A significant reduction in the amount of deformity and reduced healing time to consolidation was found after treatment in the group receiving magnetic therapy treatment. Discussion  There is a lack of clinical trials evaluating the effectiveness of non-operative interventions for the management of Charcot foot (immobilisation, removable cast walkers, advice/dispensing of footwear and prescribing of orthotics). Bisphosphonates may be useful adjuncts to standard management of Charcot foot by improved healing demonstrated by a reduction in disease activity indicated by skin temperature and bone destruction. Magnetic therapy may reduce deformity, joint destruction and improve mobility. Conclusion  There is a lack of evidence supporting the use of pharmacological or non-surgical interventions with reducing lesions, ulceration, rate of surgical intervention, hospital admissions and improving the quality of life of subjects with Charcot foot. Bisphosphonates may improve the healing of Charcot foot by reducing skin temperature and disease activity of Charcot foot, when applied in addition to standard interventions to control the position and shape of the foot.

  8. Expression of telomerase reverse transcriptase in radiation-induced chronic human skin ulcer

    International Nuclear Information System (INIS)

    Zhao Po; Li Zhijun; Lu Yali; Zhong Mei; Gu Qingyang; Wang Dewen

    2001-01-01

    Objective: To investigate the expression of the catalytic subunit of telomerase, telomerase reverse transcriptase (TRT) and the possible relationship between the TRT and cancer transformation or poor healing in radiation-induced chronic ulcer of human skin. Methods: Rabbit antibody against human TRT and SP immunohistochemical method were used to detect TRT expression in 24 cases of formalin-fixed, paraffin-embed human skin chronic ulcer tissues induced by radiation, 5 cases of normal skin, 2 of burned skin, and 8 of carcinoma. Results: The positive rate for TRT was 58.3%(14/24) in chronic radiation ulcers, of which the strongly positive rate was 41.7%(10/24) and the weakly positive 16.7%(4/24), 0% in normal (0/5) and burned skin (0/2), and 100% in carcinoma (8/8). The strongly positive expression of TRT was observed almost always in the cytoplasm and nucleus of squamous epithelial cells of proliferative epidermis but the negative and partly weakly positive expression in the smooth muscles, endothelia of small blood vessels and capillaries, and fibroblasts. Chronic inflammtory cells, plasmacytes and lymphocytes also showed weakly positive for TRT. Conclusion: TRT expression could be involved in the malignant transformation of chronic radiation ulcer into squamous carcinoma, and in the poor healing caused by sclerosis of small blood vessels and lack of granulation tissue consisting of capillaries and fibroblasts

  9. Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.

    Science.gov (United States)

    Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A

    2017-01-01

    The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.

  10. Signatures of human skin in the millimetre wave band (80-100) GHz

    Science.gov (United States)

    Owda, Amani Y.; Rezgui, Nacer-Ddine; Salmon, Neil A.

    2017-10-01

    With the performance of millimeter wave security screening imagers improving (reduced speckle, greater sensitivity, and better spatial resolution) attention is turning to identification of anomalies which appear on the human body. Key to this identification is the understanding of how the emissive and reflective properties vary over the human body and between different categories of people, defined by age and gender for example. As the interaction of millimetre waves with the human body is only a fraction of a millimetre into the skin, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. On an automated basis at security screening portals, this will increase detection probabilities and reduce false alarm rates, ensuring high throughputs at entrances to future airport departure lounges and transport networks. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is described. The emissivities of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90 GHz calibrated radiometer was found to range from 0.17+/-0.002 to 0.68+/-0.002. The radiometric measurements were made at four locations on the arm, namely: palm of hand, back of hand, dorsal surface of the forearm, and volar side of the forearm, where the water content and the skin thickness are known to be different. These measurements show significant variation in emissivity from person to person and, more importantly, significant variation at different locations on the arms of individuals. Males were found to have an emissivity 0.03 higher than those of females. The emissivity of the back of the hand, where the skin is thinner and the blood vessels are closer to the skin surface, was found to be lower by 0.0681 than the emissivity of the palm of the hand, where the skin is thicker. The measurements also show that the emissivity of the

  11. A library based fitting method for visual reflectance spectroscopy of human skin

    International Nuclear Information System (INIS)

    Verkruysse, Wim; Zhang Rong; Choi, Bernard; Lucassen, Gerald; Svaasand, Lars O; Nelson, J Stuart

    2005-01-01

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast

  12. A library based fitting method for visual reflectance spectroscopy of human skin

    Energy Technology Data Exchange (ETDEWEB)

    Verkruysse, Wim [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Zhang Rong [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Choi, Bernard [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States); Lucassen, Gerald [Personal Care Institute, Philips Research, Prof Holstlaan 4, Eindhoven (Netherlands); Svaasand, Lars O [Department of Physical Electronics Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nelson, J Stuart [Beckman Laser Institute, University of California, Irvine, CA 92612 (United States)

    2005-01-07

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast.

  13. A library based fitting method for visual reflectance spectroscopy of human skin

    Science.gov (United States)

    Verkruysse, Wim; Zhang, Rong; Choi, Bernard; Lucassen, Gerald; Svaasand, Lars O.; Nelson, J. Stuart

    2005-01-01

    The diffuse reflectance spectrum of human skin in the visible region (400-800 nm) contains information on the concentrations of chromophores such as melanin and haemoglobin. This information may be extracted by fitting the reflectance spectrum with an optical diffusion based analytical expression applied to a layered skin model. With the use of the analytical expression, it is assumed that light transport is dominated by scattering. For port wine stain (PWS) and highly pigmented human skin, however, this assumption may not be valid resulting in a potentially large error in visual reflectance spectroscopy (VRS). Monte Carlo based techniques can overcome this problem but are currently too computationally intensive to be combined with previously used fitting procedures. The fitting procedure presented herein is based on a library search which enables the use of accurate reflectance spectra based on forward Monte Carlo simulations or diffusion theory. This allows for accurate VRS to characterize chromophore concentrations in PWS and highly pigmented human skin. The method is demonstrated using both simulated and measured reflectance spectra. An additional advantage of the method is that the fitting procedure is very fast.

  14. Illuminant color estimation based on pigmentation separation from human skin color

    Science.gov (United States)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  15. Nanotribological characterization of human hair and skin using atomic force microscopy

    International Nuclear Information System (INIS)

    LaTorre, Carmen; Bhushan, Bharat

    2005-01-01

    Healthy hair and skin is highly desired. Characterization of their morphological, frictional, and adhesive properties (tribological properties) is essential to enhance understanding of hair and skin and to advance the science. Literature on the tribological characterization of hair and skin is scarce to date. The paper presents nanotribological data and analysis on hair (Caucasian, Asian, and African hair at virgin, chemo-mechanically damaged, and treated conditions) and synthetic hair and skin, as well as roughness data of human skin replica. Roughness statistics are presented to characterize the vertical and spatial surface parameters. Average coefficient of friction values were determined for each ethnicity and hair type, and are discussed. The directionality dependence of friction is also discussed. Magnitude and spatial distribution of adhesive force are used to estimate thickness and distribution of the conditioner film

  16. Age-related changes in expression and function of Toll-like receptors in human skin

    Science.gov (United States)

    Iram, Nousheen; Mildner, Michael; Prior, Marion; Petzelbauer, Peter; Fiala, Christian; Hacker, Stefan; Schöppl, Alice; Tschachler, Erwin; Elbe-Bürger, Adelheid

    2012-01-01

    Toll-like receptors (TLRs) initiate innate immune responses and direct subsequent adaptive immunity. They play a major role in cutaneous host defense against micro-organisms and in the pathophysiology of several inflammatory skin diseases. To understand the role of TLRs in the acquisition of immunological competence, we conducted a comprehensive study to evaluate TLR expression and function in the developing human skin before and after birth and compared it with adults. We found that prenatal skin already expresses the same spectrum of TLRs as adult skin. Strikingly, many TLRs were significantly higher expressed in prenatal (TLRs 1-5) and infant and child (TLRs 1 and 3) skin than in adult skin. Surprisingly, neither dendritic cell precursors in prenatal skin nor epidermal Langerhans cells and dermal dendritic cells in adult skin expressed TLRs 3 and 6, whereas the staining pattern and intensity of both TLRs in fetal basal keratinocytes was almost comparable to those of adults. Stimulation of primary human keratinocytes from fetal, neonatal and adult donors with selected TLR agonists revealed that the synthetic TLR3 ligand poly (I:C) specifically, mimicking viral double-stranded RNA, induced a significantly enhanced secretion of CXCL8/IL8, CXCL10/IP-10 and TNFα in fetal and neonatal keratinocytes compared with adult keratinocytes. This study demonstrates quantitative age-specific modifications in TLR expression and innate skin immune reactivity in response to TLR activation. Thus, antiviral innate immunity already in prenatal skin may contribute to protect the developing human body from viral infections in utero in a scenario where the adaptive immune system is not yet fully functional. PMID:23034637

  17. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  18. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.

    Science.gov (United States)

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-11-01

    Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Association of common genetic variants with human skin color variation in Indian populations.

    Science.gov (United States)

    Sarkar, Anujit; Nandineni, Madhusudan R

    2018-01-01

    Human skin color is one of the most conspicuously variable physical traits that has attracted the attention of physical anthropologists, social scientists and human geneticists. Although several studies have established the underlying genes and their variants affecting human skin color, they were mostly confined to Europeans and Africans and similar studies in Indian populations have been scanty. Studying the association between candidate genetic variants and skin color will help to validate previous findings and to better understand the molecular mechanism of skin color variation. In this study, 22 candidate SNPs from 12 genes were tested for association with skin color in 299 unrelated samples sourced from nine geographical locations in India. Our study establishes the association of 9 SNPs with the phenotype in Indian populations and could explain ∼31% of the variance in skin color. Haplotype analysis of chromosome 15 revealed a significant association of alleles G, A and C of SNPs rs1426654, rs11070627, and rs12913316, respectively, to the phenotype, and accounted for 17% of the variance. Latitude of the sampling location was also a significant factor, contributing to ∼19% of the variation observed in the samples. These observations support the findings that rs1426654 and rs4775730 located in SLC24A5, and rs11070627 and rs12913316 located in MYEF2 and CTXN2 genes respectively, are major contributors toward skin pigmentation and would aid in further unraveling the genotype-phenotype association in Indian populations. These findings can be utilized in forensic DNA applications for criminal investigations. © 2017 Wiley Periodicals, Inc.

  20. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  1. Formation of a protection film on the human skin by microparticles

    International Nuclear Information System (INIS)

    Lademann, J; Schanzer, S; Richter, H; Knorr, F; Sterry, W; Patzelt, A; Antoniou, C

    2008-01-01

    Laser scanning microscopy and tape stripping, in combination with optical methods, were used to analyze the distribution and penetration of a barrier cream into the horny layer (stratum corneum) of the human skin under in vivo conditions. The barrier cream contained microparticles of 10 – 100 μm loaded with antioxidant substances. The cream was designed for protection of the skin surface against the destructive action of free radicals, produced by systemically applied chemotherapeutic agents reaching the skin surface via the sweat. Both methods were able to demonstrate that the barrier cream was distributed homogeneously on the skin surface forming a protection film. A penetration into deeper parts of the stratum corneum (SC) was not observed

  2. Migration of human antigen-presenting cells in a human skin graft onto nude mice model after contact sensitization

    NARCIS (Netherlands)

    Hoefakker, S.; Balk, H.P.; Boersma, W.J.A.; Joost, T. van; Notten, W.R.F.; Claassen, E.

    1995-01-01

    Fluorescent contact chemical allergens provoke sensitization after application on both syngeneic and allogeneic skin grafts in mice. We attempted to determine whether the functional activity in a contact sensitization response of human skin graft was affected at the level of antigen uptake and

  3. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk.

    Science.gov (United States)

    Shu, M; Kuo, S; Wang, Y; Jiang, Y; Liu, Y-T; Gallo, R L; Huang, C-M

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood's lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk.

  4. Transcutaneous oxygen pressure measurement in diabetic foot ulcers: mean values and cut-point for wound healing.

    Science.gov (United States)

    Yang, Chuan; Weng, Huan; Chen, Lihong; Yang, Haiyun; Luo, Guangming; Mai, Lifang; Jin, Guoshu; Yan, Li

    2013-01-01

    The purpose of this study was to investigate mean values and cut-point of transcutaneous oxygen pressure (TcPO2) measurement in patients with diabetic foot ulcers. Prospective, descriptive study. Sixty-one patients with diabetes mellitus and foot ulcers comprised the sample. The research setting was Sun Yat-sen Memorial Hospital of SunYat-sen University, Guangzhou, China. Participants underwent transcutaneous oxygen (TcPO2) measurement at the dorsum of foot. Patients were classified into 3 groups according to clinical outcomes: (1) ulcers healed with intact skin group, (2) ulcer improved, and (3) ulcer failed to improve. TcPO2 was assessed and cut-points for predicting diabetic foot ulcer healing were calculated. Thirty-six patients healed with intact skin, 8 experienced improvement, and 17 showed no improvement. Mean TcPO2 levels were significantly higher (Pfoot ulcers. In contrast, all patients with TcPO2≥ 40 mmHg achieved wound closure. Measurement of TcPO2 in the supine position revealed a cut-point value of 25 mmHg as the best threshold for predicting diabetic foot ulcer healing; the area under the curve using this cut-point was 0.838 (95% confidence interval = 0.700-0.976). The sensitivity, specificity, positive predictive value, and negative predictive value for TxPO2 were 88.6%, 82.4%, 90.7%, and 72.2%, respectively. TcPO2≥ 40 mmHg was associated with diabetic foot ulcer healing, but a TcPO2≤ 10 mmHg was associated with failure of wound healing. We found that a cut-point of 25 mmHg was most predictive of diabetic foot ulcer healing.

  5. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  6. In vivo study of human skin using pulsed terahertz radiation

    International Nuclear Information System (INIS)

    Pickwell, E; Cole, B E; Fitzgerald, A J; Pepper, M; Wallace, V P

    2004-01-01

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation

  7. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  8. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; McKey, Doyle; Cohuet, Anna

    2013-08-01

    Odours emitted by human skin are of great interest to biologists in many fields, with practical applications in forensics, health diagnostic tools and the ecology of blood-sucking insect vectors of human disease. Convenient methods are required for sampling human skin volatiles under field conditions. We experimentally compared four modern methods for sampling skin odours: solvent extraction, headspace solid-phase micro-extraction (SPME), and two new techniques not previously used for the study of mammal volatiles, contact SPME and dynamic headspace with a chromatoprobe design. These methods were tested and compared both on European subjects under laboratory conditions and on young African subjects under field conditions. All four methods permitted effective trapping of skin odours, including the major known human skin volatile compounds. In both laboratory and field experiments, contact SPME, in which the time of collection was restricted to 3 min, provided results very similar to those obtained with classical headspace SPME, a method that requires 45 min of collection. Chromatoprobe sampling also proved to be very sensitive, rapid and convenient for the collection of human-produced volatiles in natural settings. Both contact SPME and chromatoprobe design may considerably facilitate the study of human skin volatiles under field conditions, opening new possibilities for examining the olfactory cues mediating the host-seeking behaviour of mosquito vectors implicated in the transmission of major diseases.

  9. UV irradiation-induced methionine oxidation in human skin keratins: Mass spectrometry-based non-invasive proteomic analysis.

    Science.gov (United States)

    Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki

    2016-02-05

    Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation

  10. Foot orgasm syndrome: a case report in a woman.

    Science.gov (United States)

    Waldinger, Marcel D; de Lint, Govert J; van Gils, Ad P G; Masir, Farhad; Lakke, Egbert; van Coevorden, Ruben S; Schweitzer, Dave H

    2013-08-01

    Spontaneous orgasm triggered from inside the foot has so far not been reported in medical literature. The study aims to report orgasmic feelings in the left foot of a woman. A woman presented with complaints of undesired orgasmic sensations originating in her left foot. In-depth interview, physical examination, sensory testing, magnetic resonance imaging (MRI-scan), electromyography (EMG), transcutaneous electrical nerve stimulation (TENS), and blockade of the left S1 dorsal root ganglion were performed. The main outcomes are description of this clinical syndrome, results of TENS application, and S1 dorsal root ganglion blockade. Subtle attenuation of sensory amplitudes of the left suralis, and the left medial and lateral plantar nerve tracts was found at EMG. MRI-scan disclosed no foot abnormalities. TENS at the left metatarso-phalangeal joint-III of the left foot elicited an instant orgasmic sensation that radiated from plantar toward the vagina. TENS applied to the left side of the vagina elicited an orgasm that radiated to the left foot. Diagnostic blockade of the left S1 dorsal root ganglion with 0.8 mL bupivacaine 0.25 mg attenuated the frequency and intensity of orgasmic sensation in the left foot with 50% and 80%, respectively. Additional therapeutic blockade of the same ganglion with 0.8 mL bupivacaine 0.50 mg combined with pulsed radiofrequency treatment resulted in a complete disappearance of the foot-induced orgasmic sensations. Foot orgasm syndrome (FOS) is descibed in a woman. Blockade of the left S1 dorsal root ganglion alleviated FOS. It is hypothesized that FOS, occurring 1.5 years after an intensive care emergency, was caused by partial nerve regeneration (axonotmesis), after which afferent (C-fiber) information from a small reinnervated skin area of the left foot and afferent somatic and autonomous (visceral) information from the vagina on at least S1 spinal level is misinterpreted by the brain as being solely information originating from

  11. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  12. Effects of a synthetic retinoid on skin structure, matrix metalloproteinases, and procollagen in healthy and high-risk subjects with diabetes.

    Science.gov (United States)

    Zeng, Wei; Tahrani, Abd; Shakher, Jayadave; Varani, James; Hughes, Sharon; Dubb, Kiran; Stevens, Martin J

    2011-01-01

    In diabetes, foot ulceration may result from increased skin fragility. Retinoids can reverse some diabetes-induced deficits of skin structure and function, but their clinical utility is limited by skin irritation. The effects of diabetes and MDI 301, a nonirritating synthetic retinoid, and retinoic acid have been evaluated on matrix metalloproteinases (MMPs), procollagen expression, and skin structure in skin biopsies from nondiabetic volunteers and diabetic subjects at risk of foot ulceration using organ culture techniques. Zymography and enzyme-linked immunosorbent assay were utilized for analysis of MMP-1, -2, and -9 and tissue inhibitor of metalloproteinase-1 (TIMP-1) and immunohistochemistry for type I procollagen protein abundance. Collagen structure parameters were assessed in formalin-fixed, paraffin-embedded tissue sections. The % of active MMP-1 and -9 was higher and TIMP-1 abundance was lower in subjects with diabetes. Type 1 procollagen abundance was reduced and skin structural deficits were increased in diabetes. Three μM MDI 301 reduced active MMP-1 and -9 abundance by 29% (P structural deficit scores. Two μM retinoic acid reduced MMP-1 but did not significantly affect skin structure. These data indicate that diabetic patients at risk of foot ulceration have deficits of skin structure and function. MDI 301 offers potential for repairing this skin damage complicating diabetes. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  14. Inhibition of ultraviolet irradiation response of human skin by topical phlogostatic compounds

    International Nuclear Information System (INIS)

    Weirich, E.G.; Lutz, U.C.

    1977-01-01

    By adaption of the model of UV dermatitis in human skin a test procedure has been developed which facilitates realistic assessment of topical contra-inflammatory activity of steroidal as well as non-steroidal compounds. Sixt typical skin drug agents were tested according to their reaction inhibition effect. (orig./MG) [de

  15. Optimization of PIXE-sensitivity for detection of Ti in thin human skin sections

    International Nuclear Information System (INIS)

    Pallon, Jan; Garmer, Mats; Auzelyte, Vaida; Elfman, Mikael; Kristiansson, Per; Malmqvist, Klas; Nilsson, Christer; Shariff, Asad; Wegden, Marie

    2005-01-01

    Modern sunscreens contain particles like TiO 2 having sizes of 25-70 nm and acting as a reflecting substance. For cosmetic reasons the particle size is minimized. Questions have been raised to what degree these nano particles penetrate the skin barrier, and how they do affect the human. The EU funded project 'Quality of skin as a barrier to ultra-fine particles' - NANODERM has started with the purpose to evaluate the possible risks of TiO 2 penetration into vital skin layers. The purpose of the work presented here was to find the optimal conditions for micro-PIXE analysis of Ti in thin skin sections. In the skin region where Ti is expected to be found, the naturally occurring major elements phosphorus, chlorine, sulphur and potassium have steep gradients and thus influence the X-ray background in a non-predictable manner. Based on experimental studies of Ti-exposed human skin sections using proton energies ranging from 1.8-2.55 MeV, the corresponding PIXE detection limits for Ti were calculated. The energy that was found to be the most favourable, 1.9 MeV, was then selected for future studies

  16. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    Science.gov (United States)

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These

  17. The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection

    OpenAIRE

    van Rensburg, Julia J.; Lin, Huaiying; Gao, Xiang; Toh, Evelyn; Fortney, Kate R.; Ellinger, Sheila; Zwickl, Beth; Janowicz, Diane M.; Katz, Barry P.; Nelson, David E.; Dong, Qunfeng; Spinola, Stanley M.

    2015-01-01

    ABSTRACT The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ...

  18. Response of Human Skin Equivalents to Sarcoptes scabiei

    Science.gov (United States)

    MORGAN, MARJORIE S.; ARLIAN, LARRY G.

    2010-01-01

    Studies have shown that molecules in an extract made from bodies of the ectoparasitic mite, Sarcoptes scabiei De Geer, modulate cytokine secretion from cultured human keratinocytes and fibroblasts. In vivo, in the parasitized skin, these cells interact with each other by contact and cytokine mediators and with the matrix in which they reside. Therefore, these cell types may function differently together than they do separately. In this study, we used a human skin equivalent (HSE) model to investigate the influence of cellular interactions between keratinocytes and fibroblasts when the cells were exposed to active/burrowing scabies mites, mite products, and mite extracts. The HSE consisted of an epidermis of stratified stratum corneum, living keratinocytes, and basal cells above a dermis of fibroblasts in a collagen matrix. HSEs were inoculated on the surface or in the culture medium, and their cytokine secretions on the skin surface and into the culture medium were determined by enzyme-linked immunosorbent assay. Active mites on the surface of the HSE induced secretion of cutaneous T cell-attracting chemokine, thymic stromal lymphopoietin, interleukin (IL)-1α, IL-1β, IL-1 receptor antagonist (IL-1ra), IL-6, IL-8, monocyte chemoattractant protein-1, granulocyte/macrophage colony-stimulating factor, and macrophage colony-stimulating factor. The main difference between HSEs and monocultured cells was that the HSEs produced the proinflammatory cytokines IL-1α and IL-1β and their competitive inhibitor IL-1ra, whereas very little of these mediators was previously found for cultured keratinocytes and fibroblasts. It is not clear how the balance between these cytokines influences the overall host response. However, IL-1ra may contribute to the depression of an early cutaneous inflammatory response to scabies in humans. These contrasting results illustrate that cell interactions are important in the host’s response to burrowing scabies mites. PMID:20939384

  19. Secondary changes in the skeleton of the foot in Lupus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Triebel, H J; Oesterreich, F U

    1986-04-01

    The case of a seventy-year old lady is presented who, fortyfive years ago, had dermal tuberculosis of the left lower limb and foot. After removal of the infected skin areas with an electric cauter the patient developed massive skin indurations, besides the typical scarification. Actual X-rays showed a decrease in seize of metatarsal bones and digits without lytic or porotic signs. Furthermore, dorsal luxation of the digits was visible. These alterations were interpreted as secondary bone remodelling resulting from long-term traction due to the extensive scarring.

  20. Secondary changes in the skeleton of the foot in Lupus vulgaris

    International Nuclear Information System (INIS)

    Triebel, H.J.; Oesterreich, F.U.

    1986-01-01

    The case of a seventy-year old lady is presented who, fortyfive years ago, had dermal tuberculosis of the left lower limb and foot. After removal of the infected skin areas with an electric cauter the patient developed massive skin indurations, besides the typical scarification. Actual X-rays showed a decrease in seize of metatarsal bones and digits without lytic or porotic signs. Furthermore, dorsal luxation of the digits was visible. These alterations were interpreted as secondary bone remodelling resulting from long-term traction due to the extensive scarring. (orig.) [de

  1. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    Science.gov (United States)

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Thermal analysis of epidermal electronic devices integrated with human skin considering the effects of interfacial thermal resistance

    Science.gov (United States)

    Li, Yuhang; Zhang, Jianpeng; Xing, Yufeng; Song, Jizhou

    2018-05-01

    Epidermal electronic devices (EEDs) have similar mechanical properties as those of human skin such that they can be integrated with human skin for potential applications in monitoring of human vital signs for diagnostic, therapeutic or surgical functions. Thermal management is critical for EEDs in these applications since excessive heating may cause discomfort. Comprehensive analytical studies, finite element analysis and experiments are carried out to study the effects of interfacial thermal resistance between EEDs and human skin on thermal properties of the EED/skin system in this paper. The coupling between the Fourier heat transfer in EEDs and the bio-heat transfer in human skin is accounted in the analytical model based on the transfer matrix method to give accurate predictions on temperatures, which agree well with finite element analysis and experimental measurements. It is shown that the maximum temperature increase of the EED for the case of imperfect bonding between EED and skin is much higher than that of perfect bonding. These results may help the design of EEDs in bi-integrated applications and suggest a valuable route to evaluate the bonding condition between EEDs and biological tissues.

  3. Direct molecular versus culture-based assessment of Gram-positive cocci in biopsies of patients with major abscesses and diabetic foot infections

    NARCIS (Netherlands)

    M.H.T. Stappers (Mark H. T.); F. Hagen (Ferry); P. Reimnitz (Peter); J.W. Mouton (Johan); J.F. Meis (Jacques F.); I.C. Gyssens (Inge)

    2015-01-01

    textabstractMajor abscesses and diabetic foot infections (DFIs) are predominant subtypes of complicated skin and skin structure infections (cSSSIs), and are mainly caused by Staphylococcus aureus and β-hemolytic streptococci. This study evaluates the potential benefit of direct pathogen-specific

  4. Evaluation of the suitability of chromatographic systems to predict human skin permeation of neutral compounds.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2013-12-18

    Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Photoreactivation and other ultraviolet/visible light effects on DNA in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Blackett, A.D.; Feng, N.I.; Freeman, S.E.; Ogut, E.S.; Gange, R.W.; Sutherland, J.C.

    1985-01-01

    Wavelengths of light present in sunlight, sunlamps, and fluorescent and incandescent lamps induce changes in human skin DNA in a multiplicity of reactions. UVB and UVA exposures can induce damage in DNA as well as can the inducement of tanning to protect against such damage. Longer wavelength ultraviolet radiation can mediate enzymatic (or perhaps nonenzymatic) reversal of dimers. None of the action spectra, kinetics, or other characteristics of such reactions are known. Elucidation of their properties will provide essential information to allow evaluation of the interaction of light with human skin DNA

  6. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo

    Science.gov (United States)

    Popov, Alexey P.; Bykov, Alexander V.; Meglinski, Igor V.

    2017-11-01

    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters.

  7. MEMS Technology Sensors as a More Advantageous Technique for Measuring Foot Plantar Pressure and Balance in Humans

    Directory of Open Access Journals (Sweden)

    Clara Sanz Morère

    2016-01-01

    Full Text Available Locomotor activities are part and parcel of daily human life. During walking or running, feet are subjected to high plantar pressure, leading sometimes to limb problems, pain, or foot ulceration. A current objective in foot plantar pressure measurements is developing sensors that are small in size, lightweight, and energy efficient, while enabling high mobility, particularly for wearable applications. Moreover, improvements in spatial resolution, accuracy, and sensitivity are of interest. Sensors with improved sensing techniques can be applied to a variety of research problems: diagnosing limb problems, footwear design, or injury prevention. This paper reviews commercially available sensors used in foot plantar pressure measurements and proposes the utilization of pressure sensors based on the MEMS (microelectromechanical systems technique. Pressure sensors based on this technique have the capacity to measure pressure with high accuracy and linearity up to high pressure levels. Moreover, being small in size, they are highly suitable for this type of measurement. We present two MEMS sensor models and study their suitability for the intended purpose by performing several experiments. Preliminary results indicate that the sensors are indeed suitable for measuring foot plantar pressure. Importantly, by measuring pressure continuously, they can also be utilized for body balance measurements.

  8. Impact of chemical peeling combined with negative pressure on human skin.

    Science.gov (United States)

    Kim, S J; Kang, I J; Shin, M K; Jeong, K H; Baek, J H; Koh, J S; Lee, S J

    2016-10-01

    In vivo changes in skin barrier function after chemical peeling with alpha hydroxyacids (AHAs) have been previously reported. However, the additional effects of physical treatment with chemical agents on skin barrier function have not been adequately studied. This study measured the degree of acute skin damage and the time required for skin barrier repair using non-invasive bioengineering methods in vivo with human skin to investigate the additional effect of a 4% AHA chemical jet accelerated at supersonic velocities. Thirteen female subjects (average age: 29.54 ± 4.86 years) participated in this study. The faces of the subjects were divided into half according to the block randomization design and were then assigned to receive AHA peeling alone or AHA peeling combined with pneumatic pressure on each side of the face. Transepidermal water loss (TEWL), skin colour and skin blood flow were evaluated at baseline and at 30 min, 2, 5 and 7 days after treatment. The TEWL and skin blood flow were significantly increased after 30 min in chemodermabrasion compared with chemical peeling alone (P peeling alone (P < 0.05). Chemodermabrasion can temporarily impair skin barriers, but it is estimated that it can enhance the skin barrier function after 7 days compared to the use of a chemical agent alone. In addition, chemodermabrasion has a more effective impact in the dermis and relatively preserves the skin barrier. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids

    Directory of Open Access Journals (Sweden)

    Contri RV

    2014-02-01

    Full Text Available Renata V Contri,1 Luiza A Frank,2 Moacir Kaiser,1 Adriana R Pohlmann,1,3 Silvia S Guterres1,2 1Programa de Pós-Graduação em Ciências Farmacêuticas, 2Faculdade de Farmácia, 3Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil Abstract: Capsaicin, a topical analgesic used in the treatment of chronic pain, has irritant properties that frequently interrupt its use. In this work, the effect of nanoencapsulation of the main capsaicinoids (capsaicin and dihydrocapsaicin on skin irritation was tested in humans. Skin tolerance of a novel vehicle composed of chitosan hydrogel containing nonloaded nanocapsules (CH-NC was also evaluated. The chitosan hydrogel containing nanoencapsulated capsaicinoids (CH-NC-CP did not cause skin irritation, as measured by an erythema probe and on a visual scale, while a formulation containing free capsaicinoids (chitosan gel with hydroalcoholic solution [CH-ET-CP] and a commercially available capsaicinoids formulation caused skin irritation. Thirty-one percent of volunteers reported slight irritation one hour after application of CH-NC-CP, while moderate (46% [CH-ET-CP] and 23% [commercial product] and severe (8% [CH-ET-CP] and 69% [commercial product] irritation were described for the formulations containing free capsaicinoids. When CH-NC was applied to the skin, erythema was not observed and only 8% of volunteers felt slight irritation, which demonstrates the utility of the novel vehicle. A complementary in vitro skin permeation study showed that permeation of capsaicinoids through an epidermal human membrane was reduced but not prevented by nanoencapsulation. Keywords: chitosan, nanocapsules, capsaicinoids, skin irritation, skin permeation

  10. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    Science.gov (United States)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  11. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    Science.gov (United States)

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  12. Human skin condition and its associations with nutrient concentrations in serum and diet

    NARCIS (Netherlands)

    Boelsma, E.; Vijver, L.P.L. van de; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.A.; Hendriks, H.F.J.; Roza, L.

    2003-01-01

    Background: Nutritional factors exert promising actions on the skin, but only scant information is available on the modulating effects of physiologic concentrations of nutrients on the skin condition of humans. Objective: The objective was to evaluate whether nutrient concentrations in serum and

  13. Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin

    Science.gov (United States)

    Kłeczek, Paweł; Dyduch, Grzegorz; Jaworek-Korjakowska, Joanna; Tadeusiewicz, Ryszard

    2017-03-01

    Background: Epidermis area is an important observation area for the diagnosis of inflammatory skin diseases and skin cancers. Therefore, in order to develop a computer-aided diagnosis system, segmentation of the epidermis area is usually an essential, initial step. This study presents an automated and robust method for epidermis segmentation in whole slide histopathological images of human skin, stained with hematoxylin and eosin. Methods: The proposed method performs epidermis segmentation based on the information about shape and distribution of transparent regions in a slide image and information about distribution and concentration of hematoxylin and eosin stains. It utilizes domain-specific knowledge of morphometric and biochemical properties of skin tissue elements to segment the relevant histopathological structures in human skin. Results: Experimental results on 88 skin histopathological images from three different sources show that the proposed method segments the epidermis with a mean sensitivity of 87 %, a mean specificity of 95% and a mean precision of 57%. It is robust to inter- and intra-image variations in both staining and illumination, and makes no assumptions about the type of skin disorder. The proposed method provides a superior performance compared to the existing techniques.

  14. Water-displacement plethysmography: a technique for the simultaneous thermal manipulation and measurement of whole-hand and whole-foot blood flows

    International Nuclear Information System (INIS)

    Caldwell, Joanne N; Taylor, Nigel A S

    2014-01-01

    The purpose of this project was to design, construct and validate water-displacement plethysmographs for the forearm, hand and foot that could clamp segmental skin temperature whilst simultaneously measuring cutaneous blood flow. Two experiments were performed. In the first, the forearm plethysmograph was validated against a mercury-in-silastic plethysmograph under thermoneutral conditions, with and without forearm heating. Cutaneous vascular conductance was elevated almost three-fold by this treatment, however, there were no significant differences between the two forms of plethysmography in either state (P > 0.05). In study two, hand and foot blood flows were measured under clamped thermoneutral conditions, but with three local skin temperature treatments (5, 25, 40 °C). The hand had significantly higher blood flows than the foot at both 25 °C (4.07 versus 2.20 mL.100 mL  − 1 .min  − 1 ; P < 0.05) and 40 °C (8.20 versus 4.47 mL.100 mL  − 1 .min  − 1 ; P < 0.05). The foot was maximally constricted during the two lower temperatures, yet the cutaneous thermal sensitivity of the hand was almost two-fold greater (P < 0.05). This evidence supports the significant role played by these appendages in heat loss and conservation, and these plethysmographs will now be used to map cutaneous vascular responses (forearm, hand, calf, foot) across combinations of core and local skin temperatures. (paper)

  15. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measuring of foot plantar pressure—possible applications in quantitative analysis of human body mobility

    International Nuclear Information System (INIS)

    Klimiec, E; Piekarski, J; Zaraska, K; Guzdek, P; Kołaszczyński, G; Jasiewicz, B

    2017-01-01

    The paper presents an evaluation of human mobility by gait analysis, carried out in natural conditions (outside of the laboratory). Foot plantar pressure is measured using a shoe insole with 8 sensors placed in different anatomical zones of the foot, and placed inside a sports shoe. Polarized polyvinylidene fluoride (PVDF) foil is used as a sensor material. A wireless transmission system is used to transmit voltage values to the computer. Miniaturization was the priority during the design of the system. Due to the linear relationship between force and transducer voltage, energy and power released during walking in arbitrary units can be calculated as an integral of the square of the transducer voltage over time. Gait measurements were carried out over several days on healthy persons during normal walking and slow walking. The performed measurements allowed for the determination of walking speed (number of steps per second), gait rhythm and manner of walking (applying force to inside versus outside part of the sole). It was found that switching from normal to slow walk increases gait energy by 25% while the pressure distribution across the anatomical regions of the foot remains unchanged. The results will be used to develop a programme for the evaluation of patients with orthopedic diseases or even with cardiac failures, for an estimation of the results of health recovery and training efficiency in many sports activities. (paper)

  17. Use of Clotted Human Plasma and Aprotinin in Skin Tissue Engineering: A Novel Approach to Engineering Composite Skin on a Porous Scaffold.

    Science.gov (United States)

    Paul, Michelle; Kaur, Pritinder; Herson, Marisa; Cheshire, Perdita; Cleland, Heather; Akbarzadeh, Shiva

    2015-10-01

    Tissue-engineered composite skin is a promising therapy for the treatment of chronic and acute wounds, including burns. Providing the wound bed with a dermal scaffold populated by autologous dermal and epidermal cellular components can further entice host cell infiltration and vascularization to achieve permanent wound closure in a single stage. However, the high porosity and the lack of a supportive basement membrane in most commercially available dermal scaffolds hinders organized keratinocyte proliferation and stratification in vitro and may delay re-epithelization in vivo. The objective of this study was to develop a method to enable the in vitro production of a human skin equivalent (HSE) that included a porous scaffold and dermal and epidermal cells expanded ex vivo, with the potential to be used for definitive treatment of skin defects in a single procedure. A collagen-glycosaminoglycan dermal scaffold (Integra(®)) was populated with adult fibroblasts. A near-normal skin architecture was achieved by the addition of coagulated human plasma to the fibroblast-populated scaffold before seeding cultured keratinocytes. This resulted in reducing scaffold pore size and improving contact surfaces. Skin architecture and basement membrane formation was further improved by the addition of aprotinin (a serine protease inhibitor) to the culture media to inhibit premature clot digestion. Histological assessment of the novel HSE revealed expression of keratin 14 and keratin 10 similar to native skin, with a multilayered neoepidermis morphologically comparable to human skin. Furthermore, deposition of collagen IV and laminin-511 were detected by immunofluorescence, indicating the formation of a continuous basement membrane at the dermal-epidermal junction. The proposed method was efficient in producing an in vitro near native HSE using the chosen off-the-shelf porous scaffold (Integra). The same principles and promising outcomes should be applicable to other biodegradable

  18. Effects of radiation on the skin blood volume pulse in humans

    Energy Technology Data Exchange (ETDEWEB)

    Zanelli, G D [Mount Vernon Hospital, Northwood (UK)

    1977-01-01

    Measurements have been made of the changes in skin blood volume pulse (BVP) in the irradiated skin of three patients (two female, one male) during and up to 250 days after radiotherapy for malignant disease. The instrumentation comprised a modified commercial finger photo-plethysmograph probe with associated electronics, and a survey of the literature revealed that the consensus of opinion seems to be that the recorded pulsations arise from small 'muscular' arteries and arterioles in the 40 to 300 ..mu..m size range. The results show that, as expected, normal, untreated skin shows sizeable variations in BVP. The BVP of irradiated skin became significantly greater than that of normal skin when a dose of 1000 to 1500 rad has been accumulated. The maximum amplitude of the BVP of the irradiated skin seemed to correlate well with the overall severity of the erythema, but increases in BVP preceded erythema flare-ups. In two patients, elevated BVP were recorded for irradiated areas even when most visual signs of erythema had disappeared. Mild cooling of irradiated and non-irradiated skin had differing effects in the BVP. The measurement of the BVP of irradiated skin is a simple, reliable and completely atraumatic method for investigating vascular damage to superficial tissues in humans.

  19. Collagen cross-linking in sun-exposed and unexposed sites of aged human skin

    Science.gov (United States)

    Yamauchi, M.; Prisayanh, P.; Haque, Z.; Woodley, D. T.

    1991-01-01

    A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and unexposed (buttock) sites. Punch biopsies were obtained from these sites from nine people of age 60 or older. HHL contents (moles/mole of collagen) at these sites were for wrist 0.13 +/- 0.07 and for buttock 0.69 +/- 0.17 (mean +/- SD, p less than 0.001). In addition, it was found that acute irradiation of the cross-linked peptides with UVA (up to 250 J/cm2) and UVB (up to 1 J/cm2) had no effect on HHL structure. The same treatment significantly degraded another nonreducible, stable collagen cross-link, pyridinoline. The results suggest that chronic sunlight exposure may be associated with an impediment to normal maturation of human dermal collagen resulting in tenuous amount of HHL. Thus, the process of photoaging in dermal collagen is different from that of chronologic aging in human skin.

  20. Novel Inhibitory Effect of N-(2-Hydroxycyclohexylvaliolamine on Melanin Production in a Human Skin Model

    Directory of Open Access Journals (Sweden)

    Bum-Ho Bin

    2014-07-01

    Full Text Available Hyper-pigmentation causes skin darkness and medical disorders, such as post-inflammatory melanoderma and melasma. Therefore, the development of anti-melanogenic agents is important for treating these conditions and for cosmetic production. In our previous paper, we demonstrated that the anti-diabetic drug voglibose, a valiolamine derivative, is a potent anti-melanogenic agent. In addition, we proposed an alternative screening strategy to identify valiolamine derivatives with high skin permeability that act as anti-melanogenic agents when applied topically. In this study, we synthesized several valiolamine derivatives with enhanced lipophilicity and examined their inhibitory effects in a human skin model. N-(2-hydroxycyclohexylvaliolamine (HV possesses a stronger inhibitory effect on melanin production than voglibose in a human skin model, suggesting that HV is a more potent anti-melanogenic agent for the skin.

  1. Anatomical aspects of the nerves of the leg and foot of the giant anteater (Myrmecophaga tridactyla, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    V.S. Cruz

    2014-10-01

    Full Text Available Although distal stifle joint nerve distribution has been well established in domestic animals, this approach is scarcely reported in wild animals. Therefore, the aim of this study was to describe the nerves of the leg and foot of Myrmecophaga tridactyla with emphasis on their ramification, distribution, topography and territory of innervation. For this purpose, six adult cadavers fixed and preserved in 10% formalin solution were used. The nerves of the leg and foot of the M. tridactyla were the saphenous nerve (femoral nerve branch, fibular and tibial nerves and lateral sural cutaneous nerve (branches of the sciatic nerve and caudal sural cutaneous nerve (tibial nerve branch. The saphenous nerve branches to the skin, the craniomedial surface of the leg, the medial surface of the tarsal and metatarsal regions and the dorsomedial surface of the digits I and II (100% of cases, III (50% of cases and IV (25% of cases. The lateral sural cutaneous nerve innervates the skin of the craniolateral region of the knee and leg. The fibular nerve innervates the flexor and extensor muscles of the tarsal region of the digits and skin of the craniolateral surface of the leg and dorsolateral surface of the foot. The tibial nerve innervates the extensor muscles of the tarsal joint and flexor, adductor and abductor muscles of the digits and the skin of the plantar surface. The caudal sural cutaneous nerve innervates the skin of the caudal surface of the leg. The nerves responsible for the leg and foot innervation were the same as reported in domestic and wild animals, but with some differences, such as the more distal division of the common fibular nerve, the absence of dorsal metatarsal branches of the deep fibular nerve and a greater involvement of the saphenous nerve in the digital innervation with branches to the digits III and IV, in addition to digits I and II.

  2. Under Persistent Assault: Understanding the Factors that Deteriorate Human Skin and Clinical Efficacy of Topical Antioxidants in Treating Aging Skin

    Directory of Open Access Journals (Sweden)

    Patricia K. Farris

    2015-11-01

    Full Text Available Recent studies contend that the skin is subject to far more damage than just ultraviolet (UV light, with infrared radiation and pollution now clearly demonstrated to degrade cutaneous tissue. While consumers continue to strive for new ways to augment the aesthetic appeal and improve the health of their skin, awareness regarding environmental insults and effective ways to protect the skin remains low. New advances in dermatologic science have exponentially increased the available information on the underlying mechanism of cutaneous damage and potential of topical antioxidants to treat aging skin. Combining antioxidants that can work through multiple pathways holds great potential for a cumulative and synergistic way to treat aging skin. Our goal is to provide a comprehensive review on environmental factors that damage human skin, discuss scientifically proven benefits of topical antioxidants, understand challenges of formulating and administering topical antioxidants, evaluate novel mechanisms of antioxidant activity, and suggest practical ways of integrating topical antioxidants with aesthetic procedures to complement clinical outcomes.

  3. Direct molecular versus culture-based assessment of Gram-positive cocci in biopsies of patients with major abscesses and diabetic foot infections

    NARCIS (Netherlands)

    Stappers, M.H.T.; Hagen, F.; Reimnitz, P.; Mouton, J.W.; Meis, J.F.; Gyssens, I.C.J.

    2015-01-01

    Major abscesses and diabetic foot infections (DFIs) are predominant subtypes of complicated skin and skin structure infections (cSSSIs), and are mainly caused by Staphylococcus aureus and beta-hemolytic streptococci. This study evaluates the potential benefit of direct pathogen-specific real-time

  4. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    Science.gov (United States)

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin

  5. [Pathophysiological aspects of wound healing in normal and diabetic foot].

    Science.gov (United States)

    Maksimova, N V; Lyundup, A V; Lubimov, R O; Melnichenko, G A; Nikolenko, V N

    2014-01-01

    The main cause of long-term healing of ulcers in patients with diabetic foot is considered to be direct mechanical damage when walking due to reduced sensitivity to due to neuropathy, hyperglycemia, infection and peripheral artery disease. These factors determine the standard approaches to the treatment of diabeticfoot, which include: offloading, glycemic control, debridement of ulcers, antibiotic therapy and revascularization. Recently, however, disturbances in the healing process of the skin in diabetes recognized an additional factor affecting the timing of healing patients with diabetic foot. Improved understanding and correction of cellular, molecular and biochemical abnormalities in chronic wound in combination with standard of care for affords new ground for solving the problem of ulcer healing in diabetes.

  6. Dynamics of glycerine and water transport across human skin from binary mixtures.

    Science.gov (United States)

    Ventura, S A; Kasting, G B

    2017-04-01

    Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water

  7. Modeling and simulation of heat distribution in human skin caused by laser irradiation

    NARCIS (Netherlands)

    Luan, Y.; Dams, S.D.

    2009-01-01

    Study of light-based skin rejuvenation needs prospective insights of mechanism of laser tissue interaction. A well-built model plays a key role in predicting temperature distribution in human skin exposed to laser irradiation. Therefore, it not only provides guidance for in vitro experiment, but

  8. Response of Human Skin to Aesthetic Scarification

    Science.gov (United States)

    Gabriel, Vincent A.; McClellan, Elizabeth A.; Scheuermann, Richard H.

    2014-01-01

    This study was undertaken to investigate changes in RNA expression in previously healthy adult human skin following thermal injury induced by contact with hot metal that was undertaken as part of aesthetic scarification, a body modification practice. Subjects were recruited to have pre-injury skin and serial wound biopsies performed. 4 mm punch biopsies were taken prior to branding and 1 hour, 1 week, and 1, 2 and 3 months post injury. RNA was extracted and quality assured prior to the use of a whole-genome based bead array platform to describe expression changes in the samples using the pre-injury skin as a comparator. Analysis of the array data was performed using k-means clustering and a hypergeometric probability distribution without replacement and corrections for multiple comparisons were done. Confirmatory q-PCR was performed. Using a k of 10, several clusters of genes were shown to co-cluster together based on Gene Ontology classification with probabilities unlikely to occur by chance alone. OF particular interest were clusters relating to cell cycle, proteinaceous extracellular matrix and keratinization. Given the consistent expression changes at one week following injury in the cell cycle cluster, there is an opportunity to intervene early following burn injury to influence scar development. PMID:24582755

  9. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...... as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...

  10. Reconstruction of soft tissue defects around the ankle and foot

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan Dogra

    2014-01-01

    Full Text Available Introduction: Soft tissue defects over ankle and foot region are encountered quite frequently following road traffic trauma and surgery. Management of such cases is a challenging task for any reconstructive surgeon because of paucity of skin and relative poor vascular status of skin in this region. Hence, invariably such cases require microsurgical free flap coverage, expertise for which may not be available at all the centers, such procedures require long operating hours and suitable recipient vessel may not be available in crush injuries. Materials and Methods: Thirty consecutive patients having soft tissue defects around ankle and foot region who underwent various reconstructive procedures in a medical college hospital during last 2 years form the basis of this study. This study was carried out to enlist various etiological factors and reconstructive surgical procedures employed to manage such cases without microsurgery. Results: The age of these patients ranged from 9 to 72 years. Twenty-five patients were males while 05 were females, with a mean age of 25 years. Road traffic accidents happened to be the primary cause of such defects in as many as 15 patients, cycle spoke trauma in 02 patients, implant exposure following orthopedic surgery in 6 patients, diabetic angiopathy in 4 patients and chronic osteomyelitis in 3 patients. The site of the defect was lower fourth of tibia in 16 patients, dorsum of foot in 2 patients, sole in 5 patients, medial aspect of ankle in 02 cases, lateral aspect in 02 cases and retro calcaneal region in 03 cases. In 10 cases distally based superficial sural artery flap was used to reconstruct the defect. In step rotation flap was used to provide sensory flap cover in the weight bearing heel in 04 cases. Inferiorly based fasciocutanenous flaps in 09 cases and muscle flaps were used in 07 cases. Conclusion: Distally based sural artery based flaps are very handy to provide skin cover around ankle and malleolar

  11. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    Science.gov (United States)

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our

  12. Chronological age affects the permeation of fentanyl through human skin in vitro

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Sorensen, J A

    2013-01-01

    AIM: To study the influence of chronological age on fentanyl permeation through human skin in vitro using static diffusion cells. Elderly individuals are known to be more sensitive to opioids and obtain higher plasma concentrations following dermal application of fentanyl compared to younger...... individuals. The influence of age - as an isolated pharmacokinetic term - on the absorption of fentanyl has not been previously studied. METHOD: Human skin from 30 female donors was mounted in static diffusion cells, and samples were collected during 48 h. Donors were divided into three age groups: ... and old age groups: 5,922 and 4,050 ng, respectively). Furthermore, the lag time and absorption rate were different between the three groups, with a significantly higher rate in the young participants versus the oldest participants. CONCLUSION: We demonstrate that fentanyl permeates the skin of young...

  13. Relationship between static foot posture and foot mobility

    Directory of Open Access Journals (Sweden)

    McPoil Thomas G

    2011-01-01

    Full Text Available Abstract Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems.

  14. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier

    DEFF Research Database (Denmark)

    Dreier, Jes; Sørensen, Jens A; Brewer, Jonathan R

    2016-01-01

    In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS) to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human...... skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED) images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm...... liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers...

  15. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  16. Analyzing reflectance spectra of human skin in legal medicine

    Science.gov (United States)

    Belenki, Liudmila; Sterzik, Vera; Schulz, Katharina; Bohnert, Michael

    2013-01-01

    Our current research in the framework of an interdisciplinary project focuses on modelling the dynamics of the hemoglobin reoxygenation process in post-mortem human skin by reflectance spectrometry. The observations of reoxygenation of hemoglobin in livores after postmortem exposure to a cold environment relate the reoxygenation to the commonly known phenomenon that the color impression of livores changes from livid to pink under low ambient temperatures. We analyze the spectra with respect to a physical model describing the optical properties of human skin, discuss the dynamics of the reoxygenation, and propose a phenomenological model for reoxygenation. For additional characterization of the reflectance spectra, the curvature of the local minimum and maximum in the investigated spectral range is considered. There is a strong correlation between the curvature of specra at a wavelength of 560 nm and the concentration of O2-Hb. The analysis is carried out via C programs, as well as MySQL database queries in Java EE, JDBC, Matlab, and Python.

  17. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.M.; Young, A.R

    2000-07-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  18. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    International Nuclear Information System (INIS)

    Sheehan, J.M.; Young, A.R.

    2000-01-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  19. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    Science.gov (United States)

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Human Skin Barrier Structure and Function Analyzed by Cryo-EM and Molecular Dynamics Simulation.

    Science.gov (United States)

    Lundborg, Magnus; Narangifard, Ali; Wennberg, Christian L; Lindahl, Erik; Daneholt, Bertil; Norlén, Lars

    2018-04-24

    In the present study we have analyzed the molecular structure and function of the human skin's permeability barrier using molecular dynamics simulation validated against cryo-electron microscopy data from near native skin. The skin's barrier capacity is located to an intercellular lipid structure embedding the cells of the superficial most layer of skin - the stratum corneum. According to the splayed bilayer model (Iwai et al., 2012) the lipid structure is organized as stacked bilayers of ceramides in a splayed chain conformation with cholesterol associated with the ceramide sphingoid moiety and free fatty acids associated with the ceramide fatty acid moiety. However, knowledge about the lipid structure's detailed molecular organization, and the roles of its different lipid constituents, remains circumstantial. Starting from a molecular dynamics model based on the splayed bilayer model, we have, by stepwise structural and compositional modifications, arrived at a thermodynamically stable molecular dynamics model expressing simulated electron microscopy patterns matching original cryo-electron microscopy patterns from skin extremely closely. Strikingly, the closer the individual molecular dynamics models' lipid composition was to that reported in human stratum corneum, the better was the match between the models' simulated electron microscopy patterns and the original cryo-electron microscopy patterns. Moreover, the closest-matching model's calculated water permeability and thermotropic behaviour were found compatible with that of human skin. The new model may facilitate more advanced physics-based skin permeability predictions of drugs and toxicants. The proposed procedure for molecular dynamics based analysis of cellular cryo-electron microscopy data might be applied to other biomolecular systems. Copyright © 2018. Published by Elsevier Inc.

  1. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  2. Assessment of organ culture for the conservation of human skin allografts.

    Science.gov (United States)

    Hautier, A; Sabatier, F; Stellmann, P; Andrac, L; Nouaille De Gorce, Y; Dignat-George, F; Magalon, G

    2008-03-01

    Human skin allografts are used in the treatment of severe burns and their preservation is therefore critical for optimal clinical benefit. Current preservation methods, such as 4 degrees C storage or cryopreservation, cannot prevent the decrease of tissue viability. The aim of this study was to assess viability and function of skin allografts in a new skin organ culture model, allowing conservation parameters as close as possible to physiological conditions: 32 degrees C, air-liquid interface and physiological skin tension. Twelve skin samples, harvested from 6 living surgical donors, were conserved 35 days in two conditions: conservation at 4 degrees C and organ culture. Viability and function of skin samples were investigated at Day 0, 7, 14, 21, 28 and 35 using cell culture methods (trypan blue exclusion, Colony Forming Efficiency and Growth Rate), histopathological and histoenzymological studies (Ki67 immunostaining). In the two conditions, fibroblast and keratinocyte viability was progressively affected by storage, with a significant decrease observed after 35 days. No statistical difference could be observed between the two conditions. The two methods were also comparable regarding alterations of fibroblast and keratinocyte culture parameters, which were respectively significantly reduced at Day 7 and 21, compared to fresh skin. By contrast, histopathological and histoenzymological studies revealed a better preservation of skin architecture and proliferative potential at 4 degrees C, as compared to organ culture. These results indicate that skin organ culture does not provide significant advantages for skin allograft preservation. However, its potential use as an experimental model to study skin physiology and wound healing should be further evaluated.

  3. In vivo THz imaging of human skin: Accounting for occlusion effects.

    Science.gov (United States)

    Sun, Qiushuo; Parrott, Edward P J; He, Yuezhi; Pickwell-MacPherson, Emma

    2018-02-01

    In vivo terahertz (THz) imaging of human skin needs to be done in reflection geometry due to the high attenuation of THz light by water in the skin. To aid the measurement procedure, there is typically an imaging window onto which the patient places the area of interest. The window enables better pulse alignment and helps keep the patient correctly positioned during the measurement. In this paper, we demonstrate how the occlusion caused by the skin contact with the imaging window during the measurement affects the THz response. By studying both rapid point measurements and imaging over an area of a human volar forearm, we find that even 5 seconds of occlusion affects the THz response. As the occlusion time increases, the skin surface water content increases, resulting in the reduction of the amplitude of the reflected THz pulse, especially in the first 3 minutes. Furthermore, it was found that the refractive index of the volar forearm increased by 10% to 15% after 20 minutes of occlusion. In this work, we examine and propose a model for the occlusion effects due to the quartz window with a view to compensating for its influence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aerobic training increases skin perfusion by a nitric oxide mechanism in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sheri R Colberg

    2010-08-01

    Full Text Available Sheri R Colberg1, Laura C Hill2, Henri K Parson3, Kathleen S Thomas1, Aaron I Vinik31Old Dominion University, Norfolk; 2State University of New York at Cortland, New York; 3Eastern Virginia Medical School, Norfolk, VirginiaAbstract: It is well known that a number of locally released vasodilatory and ­vasoconstrictive ­compounds can affect skin perfusion. This study investigated the effects of aerobic training on the contribution of nitric oxide (NO, prostaglandins (PG, and endothelial-derived ­hyperpolarizing factor (EDHF in stimulated dorsal foot skin perfusion in individuals with type 2 diabetes (T2DM. Ten previously sedentary, older individuals with T2DM (57.0 ± 3.1 years and nine sedentary controls (53.5 ± 3.2 years were tested before and after undertaking six months of moderate a­erobic training three times weekly in a supervised setting. All subjects underwent measurement of ­baseline (32°C and heat-stimulated (40°C and 44°C dorsal foot skin perfusion starting one hour after ­ingestion of a single, oral 325 mg dose of aspirin, a known inhibitor of PG synthesis. Before aspirin ­ingestion, a subcutaneous microdialysis probe was inserted into each foot dorsum to administer either saline (PG pathway only blocked by aspirin in the left foot or L-NAME (N(G-nitro-l-arginine methyl ester; thereby inhibiting both PG and NO pathways in the right foot. Normative data collected previously on subjects undergoing saline administration via ­microdialysis without aspirin ingestion served as a control group. Significantly lower responsiveness of maximal perfusion was found with the EDHF pathway alone unblocked compared with NO and EDHF unblocked after training. Maximal suppression attributable directly to NO, PG, and EDHF was not significantly different when examined by subject group and training status. However, ­contributions of NO, PG, and EDHF to maximal perfusion were significantly increased, decreased, and unchanged by aerobic training

  5. Non-occlusive topical exposure of human skin in vitro as model for cytotoxicity testing of irritant compounds.

    Science.gov (United States)

    Lönnqvist, Susanna; Briheim, Kristina; Kratz, Gunnar

    2016-02-01

    Testing of irritant compounds has traditionally been performed on animals and human volunteers. Animal testing should always be restricted and for skin irritancy mice and rabbits hold poor predictive value for irritant potential in humans. Irritant testing on human volunteers is restricted by the duration subjects can be exposed, and by the subjectivity of interpreting the visual signs of skin irritation. We propose an irritant testing system using viable human full thickness skin with the loss of cell viability in the exposed skin area as end point measurement. Skin was exposed to sodium dodecyl sulfate (SDS) at 20% concentration by non-occluded topical exposure to establish a positive control response and subsequent test compounds were statistically compared with the 20% SDS response. Cell viability and metabolism were measured with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The model presents correlation between increased concentration of SDS and decreased viability of cells in the exposed skin area (R(2) = 0.76). We propose the model to be used for cytotoxicity testing of irritant compounds. With fully intact barrier function, the model comprises all cells present in the skin with quantifiable end point measurement.

  6. Vascular effects of leukotriene D4 in human skin

    DEFF Research Database (Denmark)

    Bisgaard, H

    1987-01-01

    Leukotriene D4 (LTD4) increased the blood flow rate in human skin, equipotent to histamine in the dose range of 3.1-200 pmol. The vasodilatation lasted for up to 60 min, and no late reactions occurred. Indomethacin did not affect the LTD4-induced blood flow rate. H1 and H2 antagonists reduced...... as a mediator of the axon reflex, and show that LTD4 causes a direct vasodilatory effect that is not mediated via histamine or cyclooxygenase products. The laser-Doppler flowmeter was applied for dynamic studies of the vasopressor response in the skin during a Valsalva maneuver, and the relative changes...

  7. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  8. Near infrared laser penetration and absorption in human skin

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  9. Human skin kinetics of cyclic depsipeptide mycotoxins

    OpenAIRE

    Taevernier, Lien; Veryser, Lieselotte; ROCHE, NATHALIE; De Spiegeleer, Bart

    2014-01-01

    Cyclic depsipeptides (CDPs) are an emerging group of naturally occurring bioactive peptides, some of which are already developed as pharmaceutical drugs, e.g. valinomycin. They are produced by bacteria, marine organisms and fungi [1]. Some CDPs are secondary fungal metabolites, which can be very toxic to humans and animals, and are therefore called mycotoxins. Currently, dermal exposure data of CDP mycotoxins is scarce and fragmentary with a lack of understanding about the local skin and syst...

  10. Comparison of the incidence and time patterns of radiation-induced skin cancer in humans and rats

    International Nuclear Information System (INIS)

    Albert, R.E.; Burns, F.J.; Shore, R.

    1978-01-01

    Cancer induction in rat skin and human skin are compared following exposure to X-rays. The human data were obtained by follow-up of 2213 children irradiated between 1940 and 1959 for tinea capitis (ringworm) of the scalp. The scalp was irradiated at one session using five fields of 100 kVp X-rays. The scalp dose ranged from 500-800 rads. The rats were irradiated on their dorsal skin with a 1100-rad dose of 30 kVp X-rays. The tumours were predominantly basal cell carcinomas in both species. The proportion of people with tumours as a function of elapsed time since exposure was consistent with a power function with an exponent of 5.4, and had reached 3% or 0.08 tumours per person in most recent survey (35 years after exposure). Of the 64 tumours observed in human skin, a substantial proportion was on the directly irradiated skin just outside the hair-covered regions of the scalp. So far there are no tumours among the 530 irradiated nonwhites in the study when about eight cases would be expected in a comparable group of irradiated whites. Only four skin tumours have been observed in 1396 control patients. The temporal curve of radiation-induced tumours for human skin could be approximately superimposed on that for rats by contracting the time scale by a factor of 37.1. The temporal response of the two species is approximately proportional to their median life spans. (author)

  11. Reirradiation of healing murine skin

    International Nuclear Information System (INIS)

    Terry, N.H.A.; Aldana, M.W.; Travis, E.L.

    1987-01-01

    The most common way of assessing residual radiation damage in a tissue has been to retreat at a fixed time interval after a first treatment. Previous studies in skin have shown that the greatest proportion of remembered dose (20-40%) was seen if the retreatment interval was one month, shortly after the acute reaction caused by the first treatment has subsided. Moreover, the observed state of the foot at retreatment depended on the size of the first dose. After a priming dose of 22.5 Gy, the peak skin reaction of 0.8 returned to zero by Day 27. On retreatment at Day 30, the foot was indistinguishable from controls. After higher first doses, the feet still had significant reaction scores ranging from 0.5 to more than 1.0. Thus, in this present study, feet were retreated at a common level of healing rather than after a fixed time interval. Mice feet were irradiated with a range of X-ray doses (22.5-37.5 Gy) covering the threshold to full response. The feet were reirradiated when their skin reactions had fallen to a common value of 0.5. The time of this retreatment was therefore earlier (13 days) after the lowest priming dose (22.5 Gy) than after higher doses. In these latter instances retreatment times ranged from 18-40 days. These data are compared with those from schedules where the second irradiations were performed a fixed time after the first treatment

  12. Determination of the optical properties of melanin-pigmented human skin equivalents using terahertz time-domain spectroscopy

    Science.gov (United States)

    Lipscomb, Dawn; Echchgadda, Ibtissam; Peralta, Xomalin G.; Wilmink, Gerald J.

    2013-02-01

    Terahertz time-domain spectroscopy (THz-TDS) methods have been utilized in previous studies in order to characterize the optical properties of skin and its primary constituents (i.e., water, collagen, and keratin). However, similar experiments have not yet been performed to investigate whether melanocytes and the melanin pigment that they synthesize contribute to skin's optical properties. In this study, we used THz-TDS methods operating in transmission geometry to measure the optical properties of in vitro human skin equivalents with or without normal human melanocytes. Skin equivalents were cultured for three weeks to promote gradual melanogenesis, and THz time domain data were collected at various time intervals. Frequency-domain analysis techniques were performed to determine the index of refraction (n) and absorption coefficient (μa) for each skin sample over the frequency range of 0.1-2.0 THz. We found that for all samples as frequency increased, n decreased exponentially and the μa increased linearly. Additionally, we observed that skin samples with higher levels of melanin exhibited greater n and μa values than the non-pigmented samples. Our results indicate that melanocytes and the degree of melanin pigmentation contribute in an appreciable manner to the skin's optical properties. Future studies will be performed to examine whether these contributions are observed in human skin in vivo.

  13. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age

    Science.gov (United States)

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  14. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.

    Science.gov (United States)

    Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N

    2017-05-16

    Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.

  15. Melanin-concentrating hormone and its receptor are expressed and functional in human skin.

    Science.gov (United States)

    Hoogduijn, Martin J; Ancans, Janis; Suzuki, Itaru; Estdale, Siân; Thody, Anthony J

    2002-08-23

    In this study, we have demonstrated the presence of melanin-concentrating hormone (MCH) and melanin-concentrating hormone receptor (MCHR1) transcripts in human skin. Sequence analysis confirmed that the transcripts of both genes were identical to those previously found in human brain. In culture, endothelial cells showed pro-MCH expression whereas no signal was found in keratinocytes, melanocytes, and fibroblasts. MCHR1 expression was restricted to melanocytes and melanoma cells. Stimulation of cultured human melanocytes with MCH reduced the alpha-MSH-induced increase in cAMP production. Furthermore, the melanogenic actions of alpha-MSH were inhibited by MCH. We propose that the MCH/MCHR1 signalling system is present in human skin and may have a role with the melanocortins in regulating the melanocyte.

  16. In Vitro Desensitization of Human Skin Mast Cells

    Science.gov (United States)

    Zhao, Wei; Gomez, Gregorio; Macey, Matthew; Kepley, Christopher L.

    2013-01-01

    Desensitization is a clinical procedure whereby incremental doses of a drug are administered over several hours to a sensitive patient until a therapeutic dose and clinical tolerance are achieved. Clinical tolerance may occur in part by attenuating the mast cell response. In the present study, primary human skin mast cells were used to establish and characterize an in vitro model of desensitization. Mast cells in culture were armed with allergen-specific (4-hydroxy-3-nitro-phenylacety and Der p2) and non-specific IgE antibodies, and then desensitized by incremental exposures to 4-hydroxy-3-nitrophenylacety-BSA. This desensitization procedure abrogated the subsequent degranulation response to the desensitizing allergen, to an unrelated allergen, and to IgG anti-FcεRI, but not to C5a, substance P, compound 48/80, and calcium ionophore. Desensitized cells regained their FcεRI-dependent degranulation capability by 24–48 h after free allergen had been removed. Therefore, sensitized human skin mast cells are reversibly desensitized in vitro by exposure to incremental doses of that allergen, which also cross-desensitizes them to an unrelated allergen. PMID:22009002

  17. Hand-foot skin reaction with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: A systematic review and meta-analysis.

    Science.gov (United States)

    Li, Jing; Gu, Jian

    2017-11-01

    A meta-analysis was conducted to systematically review the risk of hand-foot skin reaction (HFSR) with vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) in patients with cancer. The relevant studies of the randomized controlled trials (RCTs) in cancer patients treated with VEGFR-TKIs were retrieved and the systematic evaluation was conducted. EMBASE, MEDLINE, and PubMed were searched for articles published till May 2017. Twenty-one RCTs and 9552 patients were included. The current analysis suggested that the use of VEGFR-TKIs increased the risk of all-grade HFSR (7.04;95%CI, 5.33-9.30;pcancer type, whereas the RR of high-grade HFSR did not. The risk of all-grade and high-grade HFSR did not affect by drug types, treatment line, median age and treatment duration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Science.gov (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Reflectance spectrometry of normal and bruised human skins: experiments and modeling

    International Nuclear Information System (INIS)

    Kim, Oleg; Alber, Mark; McMurdy, John; Lines, Collin; Crawford, Gregory; Duffy, Susan

    2012-01-01

    A stochastic photon transport model in multilayer skin tissue combined with reflectance spectroscopy measurements is used to study normal and bruised skins. The model is shown to provide a very good approximation to both normal and bruised real skin tissues by comparing experimental and simulated reflectance spectra. The sensitivity analysis of the skin reflectance spectrum to variations of skin layer thicknesses, blood oxygenation parameter and concentrations of main chromophores is performed to optimize model parameters. The reflectance spectrum of a developed bruise in a healthy adult is simulated, and the concentrations of bilirubin, blood volume fraction and blood oxygenation parameter are determined for different times as the bruise progresses. It is shown that bilirubin and blood volume fraction reach their peak values at 80 and 55 h after contusion, respectively, and the oxygenation parameter is lower than its normal value during 80 h after contusion occurred. The obtained time correlations of chromophore concentrations in developing contusions are shown to be consistent with previous studies. The developed model uses a detailed seven-layer skin approximation for contusion and allows one to obtain more biologically relevant results than those obtained with previous models using one- to three-layer skin approximations. A combination of modeling with spectroscopy measurements provides a new tool for detailed biomedical studies of human skin tissue and for age determination of contusions. (paper)

  20. Basal Cell Carcinoma of the Dorsal Foot: An Update and Comprehensive Review of the Literature.

    Science.gov (United States)

    Loh, Tiffany Y; Rubin, Ashley G; Jiang, Shang I Brian

    2017-01-01

    Ultraviolet radiation is a well-known risk factor for basal cell carcinoma (BCC). Therefore, the high incidence of BCCs in sun-exposed areas such as the head and neck is unsurprising. However, unexpectedly, BCCs on the sun-protected dorsal foot have also been reported, and tumor occurrence here suggests that other factors besides ultraviolet radiation may play a role in BCC pathogenesis. Because only few dorsal foot BCCs have been reported, data on their clinical features and management are limited. To perform an updated review of the literature on clinical characteristics and treatment of dorsal foot BCCs. We conducted a comprehensive literature review by searching the PubMed database with the key phrases "basal cell carcinoma dorsal foot," "basal cell carcinoma foot," and "basal cell carcinoma toe." We identified 20 cases of dorsal foot BCCs in the literature, 17 of which had sufficient data for analysis. Only 1 case was treated with Mohs micrographic surgery. We present 8 additional cases of dorsal foot BCCs treated with Mohs micrographic surgery. Basal cell carcinomas on the dorsal foot are rare, and potential risk factors include Caucasian descent and personal history of skin cancer. Mohs micrographic surgery seems to be an effective treatment option.

  1. Dynamic in vivo mapping of model moisturiser ingress into human skin by GARfield MRI.

    Science.gov (United States)

    Ciampi, Elisabetta; van Ginkel, Michael; McDonald, Peter J; Pitts, Simon; Bonnist, Eleanor Y M; Singleton, Scott; Williamson, Ann-Marie

    2011-02-01

    We describe the development of in vivo one-dimensional MRI (profiling) using a GARField (Gradient At Right angles to Field) magnet for the characterisation of side-of-hand human skin. For the first time and in vivo, we report measurements of the NMR longitudinal and transverse relaxation parameters and self-diffusivity of the upper layers of human skin with a nominal spatial resolution better than 10 µm. The results are correlated with in vivo confocal Raman spectroscopy measurements of water concentration and natural moisturiser factors, and discussed in terms of known skin biology and microstructure of the stratum corneum and viable epidermis. The application of model moisturiser solutions to the skin is followed and their dynamics of ingress are characterised using the MRI methodology developed. Selected hydrophilic and lipophilic formulations are studied. The results are corroborated by standard in vivo measurements of transepidermal water loss and hydration status. A further insight into moisturisation mechanisms is gained. The effect of two different penetration enhancers on a commonly used skin care oil is also discussed, and different timescales of oil penetration into the skin are reported depending on the type of enhancer. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Comparing negative pressure wound treatment with honey dressing in healing of foot ulcers in diabetics

    International Nuclear Information System (INIS)

    Bashir, U.; Maqsood, R.; Shabbir, H.

    2018-01-01

    To evaluate and compare the effectiveness of vacuum assisted treatment with that of honey dressing in duration of healing of foot ulcers in diabetics. Study Design: Randomized control study. Place and Duration of Study: Combined Military Hospital Multan and Nishtar Hospital Multan, from Aug 2016 till Feb 2017. Patients and Methods: A total of 95 patients with ages between 30-60 years of both sexes, who presented with diabetic ulcers of foot involving subcutaneous tissue and skin. Patients were divided randomly into two groups; Group V and H. Group V was subjected to Vacuum Pack closure (negative pressure wound treatment) and group H was treated with honey dressing, follow up was done till the appearance of healthy tissue after initial debridement, suitable for STSG (Split Thickness Skin Graft) or primary closure. Results: Healthy tissue appeared much faster in Vacuum assisted treatment, then with honey dressing with mean of 18.2 days for V.A.C and 28.8 days for honey dressing. Conclusion: Vacuum assisted closure was more effective in the treatment of foot ulcers in diabetics. It promotes healthy granulation tissue in the wound bed at a faster rate in comparison to honey dressing. (author)

  3. Skin absorption through atopic dermatitis skin

    DEFF Research Database (Denmark)

    Halling-Overgaard, A-S; Kezic, S; Jakasa, I

    2017-01-01

    Patients with atopic dermatitis have skin barrier impairment in both lesional and non-lesional skin. They are typically exposed to emollients daily and topical anti-inflammatory medicaments intermittently, hereby increasing the risk of developing contact allergy and systemic exposed to chemicals...... ingredients found in these topical preparations. We systematically searched for studies that investigated skin absorption of various penetrants, including medicaments, in atopic dermatitis patients, but also animals with experimentally induced dermatitis. We identified 40 articles, i.e. 11 human studies...... examining model penetrants, 26 human studies examining atopic dermatitis drugs and 3 animal studies. We conclude that atopic dermatitis patients have nearly two-fold increased skin absorption when compared to healthy controls. There is a need for well-designed epidemiological and dermato...

  4. Contrasting effects of ultraviolet-A and ultraviolet B exposure on induction of contact sensitivity in human skin

    DEFF Research Database (Denmark)

    Skov, Lone; Hansen, Henrik; Barker, J. N.

    1997-01-01

    Ultraviolet-B (UVB), in addition to direct effects on DNA, induces immunological changes in the skin that predispose to the development of skin cancer. Whether ultraviolet-A (UVA) induces similar changes is unknown. This effect can be investigated in humans in vivo using epicutaneous antigens...... as a model of tumour antigens. Volunteers (n = 46) were randomly assigned to received no sensitization, sensitization with the allergen diphenylcyclopropenone (DPCP) on non-UV-exposed normal skin, or sensitization with DPCP on skin exposed to three minimal erythema doses (MED) of either UVA or UVB radiation...... the immunization rate compared with sensitization on non-irradiated skin (P UVA radiation did not result in a decreased immunization rate compared with non-irradiated skin. These results indicate that in humans erythemagenic...

  5. Bee venom processes human skin lipids for presentation by CD1a.

    Science.gov (United States)

    Bourgeois, Elvire A; Subramaniam, Sumithra; Cheng, Tan-Yun; De Jong, Annemieke; Layre, Emilie; Ly, Dalam; Salimi, Maryam; Legaspi, Annaliza; Modlin, Robert L; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2015-02-09

    Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of venoms unexpectedly showed that stimulatory factors partition into protein-containing fractions. This finding was explained by demonstrating that bee venom-derived phospholipase A2 (PLA2) activates T cells through generation of small neoantigens, such as free fatty acids and lysophospholipids, from common phosphodiacylglycerides. Patient studies showed that injected PLA2 generates lysophospholipids within human skin in vivo, and polyclonal T cell responses are dependent on CD1a protein and PLA2. These findings support a previously unknown skin immune response based on T cell recognition of CD1a proteins and lipid neoantigen generated in vivo by phospholipases. The findings have implications for skin barrier sensing by T cells and mechanisms underlying phospholipase-dependent inflammatory skin disease. © 2015 Bourgeois et al.

  6. Cloud-based Monte Carlo modelling of BSSRDF for the rendering of human skin appearance (Conference Presentation)

    Science.gov (United States)

    Doronin, Alexander; Rushmeier, Holly E.; Meglinski, Igor; Bykov, Alexander V.

    2016-03-01

    We present a new Monte Carlo based approach for the modelling of Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF) for accurate rendering of human skin appearance. The variations of both skin tissues structure and the major chromophores are taken into account correspondingly to the different ethnic and age groups. The computational solution utilizes HTML5, accelerated by the graphics processing units (GPUs), and therefore is convenient for the practical use at the most of modern computer-based devices and operating systems. The results of imitation of human skin reflectance spectra, corresponding skin colours and examples of 3D faces rendering are presented and compared with the results of phantom studies.

  7. Behaviour of solitary adult Scandinavian brown bears (Ursus arctos when approached by humans on foot.

    Directory of Open Access Journals (Sweden)

    Gro Kvelprud Moen

    Full Text Available Successful management has brought the Scandinavian brown bear (Ursus arctos L. back from the brink of extinction, but as the population grows and expands the probability of bear-human encounters increases. More people express concerns about spending time in the forest, because of the possibility of encountering bears, and acceptance for the bear is decreasing. In this context, reliable information about the bear's normal behaviour during bear-human encounters is important. Here we describe the behaviour of brown bears when encountering humans on foot. During 2006-2009, we approached 30 adult (21 females, 9 males GPS-collared bears 169 times during midday, using 1-minute positioning before, during and after the approach. Observer movements were registered with a handheld GPS. The approaches started 869±348 m from the bears, with the wind towards the bear when passing it at approximately 50 m. The bears were detected in 15% of the approaches, and none of the bears displayed any aggressive behaviour. Most bears (80% left the initial site during the approach, going away from the observers, whereas some remained at the initial site after being approached (20%. Young bears left more often than older bears, possibly due to differences in experience, but the difference between ages decreased during the berry season compared to the pre-berry season. The flight initiation distance was longer for active bears (115±94 m than passive bears (69±47 m, and was further affected by horizontal vegetation cover and the bear's age. Our findings show that bears try to avoid confrontations with humans on foot, and support the conclusions of earlier studies that the Scandinavian brown bear is normally not aggressive during encounters with humans.

  8. Histamine is not released in acute thermal injury in human skin in vivo: a microdialysis study

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Pedersen, Juri Lindy; Skov, Per Stahl

    2009-01-01

    BACKGROUND: Animal models have shown histamine to be released from the skin during the acute phase of a burn injury. The role of histamine during the early phase of thermal injuries in humans remains unclear. PURPOSE: The objectives of this trial were to study histamine release in human skin during...

  9. A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use.

    Science.gov (United States)

    Kinikoglu, Beste

    2017-12-01

    Tissue engineered full-thickness human skin substitutes have various applications in the clinic and in the laboratory, such as in the treatment of burns or deep skin defects, and as reconstructed human skin models in the safety testing of drugs and cosmetics and in the fundamental study of skin biology and pathology. So far, different approaches have been proposed for the generation of reconstructed skin, each with its own advantages and disadvantages. Here, the classic tissue engineering approach, based on cell-seeded polymeric scaffolds, is compared with the less-studied cell self-assembly approach, where the cells are coaxed to synthesise their own extracellular matrix (ECM). The resulting full-thickness human skin substitutes were analysed by means of histological and immunohistochemical analyses. It was found that both the scaffold-free and the scaffold-based skin equivalents successfully mimicked the functionality and morphology of native skin, with complete epidermal differentiation (as determined by the expression of filaggrin), the presence of a continuous basement membrane expressing collagen VII, and new ECM deposition by dermal fibroblasts. On the other hand, the scaffold-free model had a thicker epidermis and a significantly higher number of Ki67-positive proliferative cells, indicating a higher capacity for self-renewal, as compared to the scaffold-based model. 2017 FRAME.

  10. Parameterization using Fourier series expansion of the diffuse reflectance of human skin to vary the concentration of the melanocytes

    Science.gov (United States)

    Narea, J. Freddy; Muñoz, Aarón A.; Castro, Jorge; Muñoz, Rafael A.; Villalba, Caroleny E.; Martinez, María. F.; Bravo, Kelly D.

    2013-11-01

    Human skin has been studied in numerous investigations, given the interest in knowing information about physiology, morphology and chemical composition. These parameters can be determined using non invasively optical techniques in vivo, such as the diffuse reflectance spectroscopy. The human skin color is determined by many factors, but primarily by the amount and distribution of the pigment melanin. The melanin is produced by the melanocytes in the basal layer of the epidermis. This research characterize the spectral response of the human skin using the coefficients of Fourier series expansion. Simulating the radiative transfer equation for the Monte Carlo method to vary the concentration of the melanocytes (fme) in a simplified model of human skin. It fits relating the Fourier series coefficient a0 with fme. Therefore it is possible to recover the skin biophysical parameter.

  11. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    Science.gov (United States)

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  12. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    Science.gov (United States)

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  13. Optical coherence tomography applied to tests of skin care products in humans--a case study.

    Science.gov (United States)

    Vasquez-Pinto, L M C; Maldonado, E P; Raele, M P; Amaral, M M; de Freitas, A Z

    2015-02-01

    When evaluating skin care products for human skin, quantitative test methods need to be simple, precise and reliable. Optical coherence tomography (OCT), provides high-resolution sectional images of translucent materials to a depth of a few millimeters, a technique usually applied to medical measurements in ophthalmology and dermatology. This study aimed to demonstrate the application of OCT as the main technique for monitoring changes in skin topography during tests of a wrinkle-reduction product in humans. We used a commercial OCT apparatus to perform clinical examinations of skin roughness in treated and non-treated sites in the periorbital region of thirty human voluntaries who were using an anti-aging product commercially available: Natura Chronos® Flavonóides de Passiflora 45+ FPS15, from Natura Cosméticos, Brazil. Measurements were performed days 0, 7, 14 and 28 of treatment. Equipment and software allowed real-time recording of skin roughness parameters and wrinkle depths. The OCT measurements have allowed the monitoring of changes in skin roughness, which have shown reduction in treated sites around 10%. The obtained depth distributions also indicate reduction in the occurrence of wrinkles deeper than 170 μm. The verified results are consistent with those typically obtained after successful treatment with modern anti-aging products. By using the OCT technique, it was possible to quantify changes in skin roughness and in the distribution of depths of skin wrinkles, with adequate sensitivity. OCT imaging allows the direct visualization of the skin topography with resolution of micrometers, a reliable and interactive tool for clinical use. Therefore, for the first time, we demonstrated the use of OCT technique to verify the efficacy of cosmetic products in real time. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Diffuse Reflectance Spectroscopy of Human Skin Using a Commercial Fiber Optic Spectrometer

    International Nuclear Information System (INIS)

    Atencio, J. A. Delgado; Rodriguez, M. Cunill; Montiel, S. Vazquez y; Castro, Jorge; Rodriguez, A. Cornejo; Gutierrez, J. L.; Martinez, F.; Gutierrez, B.; Orozco, E.

    2008-01-01

    Diffuse reflectance spectroscopy is a reliable and easy to implement technique in human tissue characterization. In this work we evaluate the performance of the commercial USB4000 miniature fiber optic spectrometer in the in-vivo measurement of the diffuse reflectance spectra of different healthy skin sites and lesions in a population of 54 volunteers. Results show, that this spectrometer reproduces well the typical signatures of skin spectra over the 400-1000 nm region. Remarkable spectral differences exist between lesions and normal surrounding skin. A diffusion-based model was used to simulate reflectance spectra collected by the optical probe of the system

  15. Foot length is a functional parameter for assessment of height.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj

    2013-03-01

    Stature estimation is considered as an important parameter in the examination of unknown human remains and during the analysis of evidence in crime scene investigations. During mass disasters isolated foot can be found enclosed in the shoes while footprints may be recovered at the crime scenes. Foot length and footprint length can provide valuable estimates of stature. The present communication makes a few pertinent observations on a recently published article in 'The Foot' entitled 'Foot length-a functional parameter for assessment of height, The Foot 2012, 22(1):31-34' and presents an insight into the literature available on the subject which is likely to be of value to future researchers in the field of Forensic Podiatry. The foot length and the footprint length of individuals differ from each other and hence, the research observations made in a study on foot prints cannot be applied to foot dimensions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    Science.gov (United States)

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Surface topography and contact mechanics of dry and wet human skin

    Directory of Open Access Journals (Sweden)

    Alexander E. Kovalev

    2014-08-01

    Full Text Available The surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.

  18. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    Science.gov (United States)

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H 2 O 2 ). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H 2 O 2 . We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H 2 O 2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H 2 O 2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  19. Ultrathin conformal devices for precise and continuous thermal characterization of human skin

    Science.gov (United States)

    Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.

    2013-10-01

    Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.

  20. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light

    International Nuclear Information System (INIS)

    Freeman, S.E.; Hacham, H.; Gange, R.W.; Maytum, D.J.; Sutherland, J.C.; Sutherland, B.M.

    1989-01-01

    The UV components of sunlight are believed to be a major cause of human skin caner, and DNA is though to be the principal molecular target. Alterations of the intensity and wavelength distribution of solar UV radiation reaching the surface of the earth, for example by depletion of stratospheric ozone, will change the effectiveness of solar radiation in damaging DNA in human skin. Evaluation of the magnitude of such effects requires knowledge of the altered sunlight spectrum and of the action spectrum for damaging DNA in human skin. The authors have determined an action spectrum for the frequency of pyrimidine dimer formation induced in the DNA of human skin per unit dose of UV incident on the skin surface. The peak of this action spectrum is near 300 nm and decreases rapidly at both longer and shorter wavelengths. The decrease in the action spectrum for wavelengths <300 nm is attributed to the absorption of the upper layers of the skin. Convolution of the dimer action spectrum with the solar spectra corresponding to a solar angle of 40 degree under current levels of stratospheric ozone and those for 50% ozone depletion, indicate about a 2.5-fold increase in dimer formation. If the action spectrum for DNA damage that results in skin cancer resembles that for dimer induction in skin, these results suggest that a 50% decrease in stratospheric ozone would increase the incidence of nonmelanoma skin cancers among white males in Seattle, Washington, by 7.5- to 8-fold, to a higher incidence than is presently seen in the corresponding population of Albuquerque, New Mexico

  1. Full-thickness human skin explants for testing the toxicity of topically applied chemicals

    International Nuclear Information System (INIS)

    Nakamura, M.; Rikimaru, T.; Yano, T.; Moore, K.G.; Pula, P.J.; Schofield, B.H.; Dannenberg, A.M. Jr.

    1990-01-01

    This report describes a model organ-culture system for testing the toxicity of chemical substances that are topically applied to human skin. In this system, the viable keratinocytes in the full-thickness skin explants are protected by the same keratinized layer as skin remaining on the donor, and toxicity can be assessed microscopically and/or biochemically. The human skin specimens were discards from a variety of surgical procedures. They were cut into full-thickness 1.0-cm2 explants, and briefly exposed to the military vesicant sulfur mustard (SM), which was used as a model toxicant. The explants were then organ cultured in small Petri dishes for 24 h at 36 degrees C. In the 0.03-1.0% dosage range, a straight-line dose-response relationship occurred between the concentration of SM applied and the number of paranuclear vacuoles seen histologically in the epidermis. Within the same SM dosage range, there was also a proportional decrease in 14C-leucine incorporation by the explants. Thus, the number of paranuclear vacuoles reflected decreases in protein synthesis by the injured epidermal cells. The epidermis of full-thickness untreated (control) human skin explants usually remained viable for 7 d when stored at 4 degrees C in culture medium. During storage, a relatively small number of paranuclear vacuoles developed within the epidermis, but the explants were still quite satisfactory for testing SM toxicity. Incubation (for 4 or 24 h at 36 degrees C) of such control skin explants reduced (often by 50%) the small number of paranuclear vacuoles produced during 4-7 d of storage. This reduction was probably caused by autolysis of many of the vacuolated cells. Two types of paranuclear vacuoles could be identified by both light and electron microscopy: a storage type and a toxicant type. The storage type seemed to be caused by autolysis of cell components

  2. Full-thickness human skin explants for testing the toxicity of topically applied chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Rikimaru, T.; Yano, T.; Moore, K.G.; Pula, P.J.; Schofield, B.H.; Dannenberg, A.M. Jr. (Johns Hopkins Univ., Baltimore, MD (USA))

    1990-09-01

    This report describes a model organ-culture system for testing the toxicity of chemical substances that are topically applied to human skin. In this system, the viable keratinocytes in the full-thickness skin explants are protected by the same keratinized layer as skin remaining on the donor, and toxicity can be assessed microscopically and/or biochemically. The human skin specimens were discards from a variety of surgical procedures. They were cut into full-thickness 1.0-cm2 explants, and briefly exposed to the military vesicant sulfur mustard (SM), which was used as a model toxicant. The explants were then organ cultured in small Petri dishes for 24 h at 36 degrees C. In the 0.03-1.0% dosage range, a straight-line dose-response relationship occurred between the concentration of SM applied and the number of paranuclear vacuoles seen histologically in the epidermis. Within the same SM dosage range, there was also a proportional decrease in 14C-leucine incorporation by the explants. Thus, the number of paranuclear vacuoles reflected decreases in protein synthesis by the injured epidermal cells. The epidermis of full-thickness untreated (control) human skin explants usually remained viable for 7 d when stored at 4 degrees C in culture medium. During storage, a relatively small number of paranuclear vacuoles developed within the epidermis, but the explants were still quite satisfactory for testing SM toxicity. Incubation (for 4 or 24 h at 36{degrees}C) of such control skin explants reduced (often by 50%) the small number of paranuclear vacuoles produced during 4-7 d of storage. This reduction was probably caused by autolysis of many of the vacuolated cells. Two types of paranuclear vacuoles could be identified by both light and electron microscopy: a storage type and a toxicant type. The storage type seemed to be caused by autolysis of cell components.

  3. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    Science.gov (United States)

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  4. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles.

    Science.gov (United States)

    Leite-Silva, Vânia R; Liu, David C; Sanchez, Washington Y; Studier, Hauke; Mohammed, Yousuf H; Holmes, Amy; Becker, Wolfgang; Grice, Jeffrey E; Benson, Heather Ae; Roberts, Michael S

    2016-05-01

    We assessed the effects of flexing and massage on human skin penetration and toxicity of topically applied coated and uncoated zinc oxide nanoparticles (˜75 nm) in vivo. Noninvasive multiphoton tomography with fluorescence lifetime imaging was used to evaluate the penetration of nanoparticles through the skin barrier and cellular apoptosis in the viable epidermis. All nanoparticles applied to skin with flexing and massage were retained in the stratum corneum or skin furrows. No significant penetration into the viable epidermis was seen and no cellular toxicity was detected. Exposure of normal in vivo human skin to these nanoparticles under common in-use conditions of flexing or massage is not associated with significant adverse events.

  5. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo.

    Science.gov (United States)

    Li, Wen-Hwa; Wong, Heng-Kuan; Serrano, José; Randhawa, Manpreet; Kaur, Simarna; Southall, Michael D; Parsa, Ramine

    2017-05-01

    Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.

  6. The induction and repair of cyclobutane thymidine dimers in human skin

    International Nuclear Information System (INIS)

    Roza, L.; Erasmus Univ., Rotterdam; Vermeulen, W.; Schans, G.P. van der; Lohman, P.H.M.

    1987-01-01

    The most important detrimental effect of ultraviolet radiation (UV) on the living cell, so far known, is the induction of damage in the DNA. The major photoproducts induced in DNA by UV-C (200-280 nm) and UV-B (280-315 nm) are the cyclobutane-type pyrimidine dimers, which have been implicated in UV-induced mutagenesis and carcinogenesis. Dimer lesions in DNA of cells may be repaired in the dark by a multi-enzyme process (excision repair), or via a light dependent enzymatic reaction known as photoreactivation (phr) which is specific for pyrimidine dimers. Although phr has been found to occur in a wide range of organisms, studies on the presence of phr in mammalian cells have yielded conflicting results. To investigate repair of pyrimidine dimers in human skin cells irradiated in vivo, a specific and sensitive detection method was developed based on a monoclonal antibody directed against thymidine dimers. Application together with a fluorescent immunostaining permits the direct detection of thymidine dimers in human skin cells. The method is used in studies aimed at a better understanding of the role of these lesions in the process of carcinogenesis. A report is given on the isolation and characterization of the antibodies, and their application in a study on the induction of pyrimidine dimers in human skin and on photorepair in cultured cells. 10 refs.; 2 figs

  7. [Relationships between foot problems, fall experience and fear of falling among Japanese community-dwelling elderly].

    Science.gov (United States)

    Harada, Kazuhiro; Oka, Koichiro; Shibata, Ai; Kaburagi, Hironobu; Nakamura, Yoshio

    2010-08-01

    Although a foot care program for long-term care prevention has been launched in Japan, few studies have examined its effectiveness. The purpose of the present investigation was to examine the association of foot problems with fall experience and fear of falling among Japanese community-dwelling elderly people. The participants were 10,581 community-dwelling elderly people (75.2 +/- 5.6 years) and the study design was cross-sectional using a questionnaire. Self-reported tinea pedis, skin problems (inflammation, swelling, or discoloration), nail problems (thickening or deformities), impairment (in function or blood flow), regular foot care, and wearing of appropriate shoes were selected as parameters of foot problems and their care. Logistic regression analysis was conducted to examine whether these were related to fall experience (in the past 1 year) and fear of falling adjusted for age, the Tokyo Metropolitan institute of gerontology index of competence, medical conditions, and lower limb functions. Forty-six percents of males and 39.0% of females reported at least one foot problem. After adjusting for covariates, tinea pedis (male: adjusted odds ratio = 1.37[95% confidence interval= 1.15-1.63], female: 1.29[1.08-1.53]), skin problems (male: 1.66[1.32-2.101, female: 1.37[1.13-1.66]), nail problems (male: 1.72[1.45-2.051, female: 1.48[1.26-1.74]), and functional impairment (male: 2.42[1.91-3.05], female: 1.66[1.36-2.04]) were significantly associated with fall experience. Also, each problem was negatively associated with fear of falling (tinea pedis[male: 1.37 [1.15-1.62], female: 1.25[1.07-1.47

  8. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral

  9. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  10. Foot morphology of Turkish football players according to foot ...

    African Journals Online (AJOL)

    Football is the most popular sport in the world. Foot morphology and foot preference are important factors in football player's performance. The aim of this cross-sectional study was to evaluate the foot morphology of elite football players with different foot preferences. 407 male football players participated in this study. 328 of ...

  11. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  12. Qualitative and semi quantitative analysis in the healing area of athymic nude mice skin engrafted with human skin sterilized with gamma radiation

    International Nuclear Information System (INIS)

    Miranda, Jurandir Tomaz de; Bringel, Fabiana; Alves, Nelson Mendes; Antebi, Uri; Funari, Ana Paula; Mathor, Monica B.

    2015-01-01

    In recent decades there has been a great interest in the radio-sterilized grafts for human skin grafts. This tissue is taken from a cadaver or multi-organ donor and samples are processed and stored in glycerol at concentrations above 85%. Although this procedure is carried out under aseptic conditions, after the final packaging one can sterilize the tissues with ionizing radiation in order to increase the safety level of sterility. The purpose of this study was to evaluate the behavior of the healing repair process that occurs between the graft and the skin of athymic NUDE mice. The samples of human skin treated with glycerol were divided into three groups: the control group 1 (non-irradiated), irradiated group 2 at 25 kGy and irradiated group 3, at 50 kGy. These tissues were grafted onto athymic NUDE mice which were sacrificed after 3, 7 and 21 days. After the sacrifice, part of the back fur of the animals containing human skin graft was removed with hematoxylin and eosin (H/E). The histological sections were analyzed for the integrity of tissue, presence and location of keratinocytes, fibroblasts, defense cells and blood vessels. Thus it was examined whether over time the graft was incorporated into the body or if there was a process of healing by secondary intention. (author)

  13. Qualitative and semi quantitative analysis in the healing area of athymic nude mice skin engrafted with human skin sterilized with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Jurandir Tomaz de; Bringel, Fabiana; Alves, Nelson Mendes; Antebi, Uri; Funari, Ana Paula; Mathor, Monica B., E-mail: tomaz_ju@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In recent decades there has been a great interest in the radio-sterilized grafts for human skin grafts. This tissue is taken from a cadaver or multi-organ donor and samples are processed and stored in glycerol at concentrations above 85%. Although this procedure is carried out under aseptic conditions, after the final packaging one can sterilize the tissues with ionizing radiation in order to increase the safety level of sterility. The purpose of this study was to evaluate the behavior of the healing repair process that occurs between the graft and the skin of athymic NUDE mice. The samples of human skin treated with glycerol were divided into three groups: the control group 1 (non-irradiated), irradiated group 2 at 25 kGy and irradiated group 3, at 50 kGy. These tissues were grafted onto athymic NUDE mice which were sacrificed after 3, 7 and 21 days. After the sacrifice, part of the back fur of the animals containing human skin graft was removed with hematoxylin and eosin (H/E). The histological sections were analyzed for the integrity of tissue, presence and location of keratinocytes, fibroblasts, defense cells and blood vessels. Thus it was examined whether over time the graft was incorporated into the body or if there was a process of healing by secondary intention. (author)

  14. Effects of Thermal Resistance on One-Dimensional Thermal Analysis of the Epidermal Flexible Electronic Devices Integrated with Human Skin

    Science.gov (United States)

    Li, He; Cui, Yun

    2017-12-01

    Nowadays, flexible electronic devices are increasingly used in direct contact with human skin to monitor the real-time health of human body. Based on the Fourier heat conduction equation and Pennes bio-heat transfer equation, this paper deduces the analytical solutions of one - dimensional heat transfer for flexible electronic devices integrated with human skin under the condition of a constant power. The influence of contact thermal resistance between devices and skin is considered as well. The corresponding finite element model is established to verify the correctness of analytical solutions. The results show that the finite element analysis agrees well with the analytical solution. With bigger thermal resistance, temperature increase of skin surface will decrease. This result can provide guidance for the design of flexible electronic devices to reduce the negative impact that exceeding temperature leave on human skin.

  15. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    Science.gov (United States)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  16. Proteome Analysis of Human Sebaceous Follicle Infundibula Extracted from Healthy and Acne-Affected Skin

    Science.gov (United States)

    Bek-Thomsen, Malene; Lomholt, Hans B.; Scavenius, Carsten; Enghild, Jan J.; Brüggemann, Holger

    2014-01-01

    Acne vulgaris is a very common disease of the pilosebaceous unit of the human skin. The pathological processes of acne are not fully understood. To gain further insight sebaceous follicular casts were extracted from 18 healthy and 20 acne-affected individuals by cyanoacrylate-gel biopsies and further processed for mass spectrometry analysis, aiming at a proteomic analysis of the sebaceous follicular casts. Human as well as bacterial proteins were identified. Human proteins enriched in acne and normal samples were detected, respectively. Normal follicular casts are enriched in proteins such as prohibitins and peroxiredoxins which are involved in the protection from various stresses, including reactive oxygen species. By contrast, follicular casts extracted from acne-affected skin contained proteins involved in inflammation, wound healing and tissue remodeling. Among the most distinguishing proteins were myeloperoxidase, lactotransferrin, neutrophil elastase inhibitor and surprisingly, vimentin. The most significant biological process among all acne-enriched proteins was ‘response to a bacterium’. Identified bacterial proteins were exclusively from Propionibacterium acnes. The most abundant P. acnes proteins were surface-exposed dermatan sulphate adhesins, CAMP factors, and a so far uncharacterized lipase in follicular casts extracted from normal as well as acne-affected skin. This is a first proteomic study that identified human proteins together with proteins of the skin microbiota in sebaceous follicular casts. PMID:25238151

  17. Amnion s and radio-sterilized porcine skin use as potential matrices for the development of human skin substitutes

    International Nuclear Information System (INIS)

    Martinez P, M. E.; Reyes F, M. L.; Reboyo B, D.; Velasquillo M, M. C.; Sanchez S, R.; Brena M, A. M.; Ibarra P, J. C.

    2014-10-01

    The injuries by burns constitute a primordial problem of public health; they cause a high mortality index, severe physical and psychological disability, etc. The autologous skin transplant is the replacement therapy recommended for its treatment, but in patients that present a high percentage of burnt skin; this is not possible to carry out. Another strategy is the transplant of donated skin; however, due to the little donation that exists in our country is not very feasible to apply this treatment. A challenge of the tissues engineering is to develop biological skin substitutes, based on cells and amnion s, favoring the cutaneous regeneration and quick repair of injuries, diminishing this way the hospitalization expenses. At present skin substitutes that can equal to the same skin do not exist. On the other hand, the mesenchymal stromal cells (Msc) represent an alternative to achieve this objective; since has been demonstrated that the Msc participate in the tissue repair by means of inhibition of pro-inflammatory cytokines and differentiation to dermal fibroblasts and keratinocytes. To apply the Msc in cutaneous injuries a support material is required that to allow transplanting these cells to a lesion or burn. The radio-sterilized human amnion and the radio-sterilized porcine skin, processed by the Radio-Sterilized Tissues Bank of the Instituto Nacional de Investigaciones Nucleares (ININ), are biomaterials that are used as temporary cutaneous coverings. We suppose that these two matrices will be appropriate for the growth and maintenance in cultivation of the Msc, to generate two biological skin substitutes, in collaboration with the Biotechnology Laboratory of the Instituto Nacional de Rehabilitacion. (Author)

  18. Effectiveness of vacuum-assisted closure (VAC) therapy in the healing of chronic diabetic foot ulcers.

    Science.gov (United States)

    Nather, Aziz; Chionh, Siok Bee; Han, Audrey Y Y; Chan, Pauline P L; Nambiar, Ajay

    2010-05-01

    This is the fi rst prospective study done locally to determine the effectiveness of vacuum-assisted closure (VAC) therapy in the healing of chronic diabetic foot ulcers. An electronic vacuum pump was used to apply controlled negative pressure evenly across the wound surface. Changes in wound dimension, presence of wound granulation and infection status of diabetic foot ulcers in 11 consecutive patients with diabetes were followed over the course of VAC therapy. Healing was achieved in all wounds. Nine wounds were closed by split-skin grafting and 2 by secondary closure. The average length of treatment with VAC therapy was 23.3 days. Ten wounds showed reduction in wound size. All wounds were satisfactorily granulated and cleared of bacterial infection at the end of VAC therapy. VAC therapy was useful in the treatment of diabetic foot infection and ulcers, which after debridement, may present with exposed tendon, fascia and/or bone. These included ray amputation wounds, wounds post-debridement for necrotising fasciitis, wounds post-drainage for abscess, a heel ulcer and a sole ulcer. It was able to prepare ulcers well for closure via split-skin grafting or secondary closure in good time. This reduced cost of VAC therapy, as therapy was not prolonged to attain greater reduction in wound area. VAC therapy also provides a sterile, more controlled resting environment to large, exudating wound surfaces. Large diabetic foot ulcers were thus made more manageable.

  19. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    Science.gov (United States)

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in

  20. Detection of human papillomavirus in nonmelanoma skin cancer lesions and healthy perilesional skin in kidney transplant recipients and immunocompetent patients.

    Science.gov (United States)

    Bernat-García, J; Morales Suárez-Varela, M; Vilata-Corell, J J; Marquina-Vila, A

    2014-04-01

    The influence of human papillomavirus (HPV) on the development of nonmelanoma skin cancer (NMSC) is a topic of debate. HPV types from the beta genus (HPV-β) have been most frequently associated with the development of skin cancer. To analyze the prevalence and range of HPV types in NMSC lesions and healthy perilesional skin in immunodepressed and immunocompetent patients and to evaluate the influence of various clinical factors on the prevalence of HPV in skin cancer. Nested polymerase chain reaction and sequencing were used to detect HPV in 120 NMSC samples obtained by biopsy from 30 kidney transplant recipients and 30 immunocompetent patients. In all cases, a sample was taken from the tumor site and the surrounding healthy skin. Potential confounders were assessed and the data analyzed by multivariate logistic regression. HPV DNA was detected in 44 (73.3%) of the 60 samples from immunodepressed patients and in 32 (53.3%) of the 60 samples from immunocompetent patients (adjusted odds ratio, 3.4; 95% CI, 1.2-9.6). In both groups of patients, HPV was more common in healthy perilesional skin than in lesional skin. HPV-β was the most common type isolated. We found a wide range of HPV types (mostly HPV-β) in the skin of kidney transplant recipients and immunocompetent patients with skin cancer. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  1. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    Directory of Open Access Journals (Sweden)

    Wan Tai Seet

    Full Text Available Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6% and had short population doubling time (58.4±8.7 to 76.9±19 hours. The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.

  2. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    Science.gov (United States)

    Seet, Wan Tai; Manira, Maarof; Maarof, Manira; Khairul Anuar, Khairoji; Chua, Kien-Hui; Ahmad Irfan, Abdul Wahab; Ng, Min Hwei; Aminuddin, Bin Saim; Ruszymah, Bt Hj Idrus

    2012-01-01

    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.

  3. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    Full Text Available The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  4. Artificial skin and patient simulator comprising the artificial skin

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to an artificial skin (10, 12, 14), and relates to a patient simulator (100) comprising the artificial skin. The artificial skin is a layered structure comprising a translucent cover layer (20) configured for imitating human or animal skin, and comprising a light emitting layer

  5. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    Science.gov (United States)

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Campbell, Laura; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains approximately 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All non-recirculating resident memory T cells (TRM) expressed CD69, but the majority were CD4+, CD103− and located in the dermis, in contrast to studies in mice. Both CD4+ and CD8+ CD103+ TRM were enriched in the epidermis, had potent effector functions and had a limited proliferative capacity compared to CD103− TRM. TRM of both types had more potent effector functions than recirculating T cells. Induction of CD103 on human T cells was enhanced by keratinocyte contact, depended on TGFβ and was independent of T cell keratinocyte adhesive interactions. We observed two distinct populations of recirculating T cells, CCR7+/L-selectin+ central memory T cells (TCM) and CCR7+/L-selectin− T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions and TMM were depleted more slowly from skin after alemtuzumab, suggesting TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. PMID:25787765

  6. Protoporphyrin IX formation and photobleaching in different layers of normal human skin

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Idorn, Luise W; Philipsen, Peter A

    2012-01-01

    human skin was tape-stripped and incubated with 20% methylaminolevulinate (MAL) or 20% hexylaminolevulinate (HAL) for 3 h. Fluorescence microscopy quantified PpIX accumulation in epidermis, superficial, mid and deep dermis, down to 2 mm. PpIX photobleaching by light-emitting diode (LED, 632 nm, 18......Topical photodynamic therapy (PDT) is used for various skin disorders, and selective targeting of specific skin structures is desirable. The objective was to assess accumulation of PpIX fluorescence and photobleaching within skin layers using different photosensitizers and light sources. Normal...... and 37 J/cm(2)), intense pulsed light (IPL, 500-650 nm, 36 and 72 J/cm(2)) and long-pulsed dye laser (LPDL, 595 nm, 7.5 and 15 J/cm(2)) was measured using fluorescence photography and microscopy. We found higher PpIX fluorescence intensities in epidermis and superficial dermis in HAL-incubated skin than...

  7. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  8. Effects of radiation on the skin

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    The effects of X-irradiation on pig skin are described, comparing and contrasting the effects seen in human and rodent skin. It is concluded that, anatomically, pig skin is the best animal model for human skin. The applications of the 'pig skin model' to investigations of the problems of radiation therapy and radiological protection of human skin are discussed. (U.K.)

  9. The response of previously irradiated mouse skin to heat alone or combined with irradiation: influence of thermotolerance

    NARCIS (Netherlands)

    Wondergem, J.; Haveman, J.

    1983-01-01

    The skin of the mouse foot was used to study the effects of previous irradiation on the response to hyperthermia (44 degrees C), to irradiation, or to irradiation combined with hyperthermia (43 degrees C or 44 degrees C). Hyperthermia was applied by immersing the mouse foot into a hot waterbath and

  10. [Studies on the novel association of human herpesvirus-7 with skin diseases].

    Science.gov (United States)

    Vág, Tibor; Sonkoly, Enikó; Kemény, Béla; Kárpáti, Sarolta; Horváth, Attila; Ongrádi, József

    2003-08-17

    Human herpesvirus 7 in pityriasis rosea, this and other viruses in papular-purpuric gloves-and-socks syndrome have been implicated, but their primary or recurrent infections are still in question. In one available blood sample, therefore, IgM, IgG and its high avidity fraction characteristic for recurrent infections were quantitated by indirect immunofluorescence. Peripheral lymphocytes were subjected to nested polymerase chain reaction to detect viral DNA, or cocultivated with several cell cultures. One third of 33 pityriasis rosea patients had elevated IgM, another third had elevated IgG without high avidity molecules to human herpesvirus 7 suggesting primary infection. Thirty percent of controls, more than half of the patients had virtual DNA in their lymphocytes, but only one in 5 skin biopsy specimens were PCR positive. All three co-cultivation attempts yielded viruses extremely rapidly, verified by electron microscopy, polymerase chain reaction and monoclonal antibodies as human herpesvirus 7. These are the first isolates in the geographical regions of Hungary. These data suggest that pityriasis rosea is the consequence of a primary human herpesvirus 7 infection in seronegative adults, and only occasionally is due to virus reactivation. One patient with gloves-and-socks syndrome had an acute, another patient had a persistent coinfection with human herpesvirus 7 and parvovirus B19, two others had a primary herpesvirus 7 infection. Interestingly, this disease might be elicited by both viruses individually or in synergism. Neither human herpesvirus 7 nor parvovirus B19 infect skin cells, but both can be detected in the infiltrating lymphocytes of skin eruptions, in which they induce an altered mediator production, that might be responsible for the general and local symptoms.

  11. The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection.

    Science.gov (United States)

    van Rensburg, Julia J; Lin, Huaiying; Gao, Xiang; Toh, Evelyn; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Janowicz, Diane M; Katz, Barry P; Nelson, David E; Dong, Qunfeng; Spinola, Stanley M

    2015-09-15

    The influence of the skin microbiota on host susceptibility to infectious agents is largely unexplored. The skin harbors diverse bacterial species that may promote or antagonize the growth of an invading pathogen. We developed a human infection model for Haemophilus ducreyi in which human volunteers are inoculated on the upper arm. After inoculation, papules form and either spontaneously resolve or progress to pustules. To examine the role of the skin microbiota in the outcome of H. ducreyi infection, we analyzed the microbiomes of four dose-matched pairs of "resolvers" and "pustule formers" whose inoculation sites were swabbed at multiple time points. Bacteria present on the skin were identified by amplification and pyrosequencing of 16S rRNA genes. Nonmetric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity between the preinfection microbiomes of infected sites showed that sites from the same volunteer clustered together and that pustule formers segregated from resolvers (P = 0.001, permutational multivariate analysis of variance [PERMANOVA]), suggesting that the preinfection microbiomes were associated with outcome. NMDS using Bray-Curtis dissimilarity of the endpoint samples showed that the pustule sites clustered together and were significantly different than the resolved sites (P = 0.001, PERMANOVA), suggesting that the microbiomes at the endpoint differed between the two groups. In addition to H. ducreyi, pustule-forming sites had a greater abundance of Proteobacteria, Bacteroidetes, Micrococcus, Corynebacterium, Paracoccus, and Staphylococcus species, whereas resolved sites had higher levels of Actinobacteria and Propionibacterium species. These results suggest that at baseline, resolvers and pustule formers have distinct skin bacterial communities which change in response to infection and the resultant immune response. Human skin is home to a diverse community of microorganisms, collectively known as the skin microbiome. Some resident

  12. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hydrodynamic gene delivery in human skin using a hollow microneedle device.

    Science.gov (United States)

    Dul, M; Stefanidou, M; Porta, P; Serve, J; O'Mahony, C; Malissen, B; Henri, S; Levin, Y; Kochba, E; Wong, F S; Dayan, C; Coulman, S A; Birchall, J C

    2017-11-10

    Microneedle devices have been proposed as a minimally invasive delivery system for the intradermal administration of nucleic acids, both plasmid DNA (pDNA) and siRNA, to treat localised disease or provide vaccination. Different microneedle types and application methods have been investigated in the laboratory, but limited and irreproducible levels of gene expression have proven to be significant challenges to pre-clinical to clinical progression. This study is the first to explore the potential of a hollow microneedle device for the delivery and subsequent expression of pDNA in human skin. The regulatory approved MicronJet600® (MicronJet hereafter) device was used to deliver reporter plasmids (pCMVβ and pEGFP-N1) into viable excised human skin. Exogenous gene expression was subsequently detected at multiple locations that were distant from the injection site but within the confines of the bleb created by the intradermal bolus. The observed levels of gene expression in the tissue are at least comparable to that achieved by the most invasive microneedle application methods e.g. lateral application of a microneedle. Gene expression was predominantly located in the epidermis, although also evident in the papillary dermis. Optical coherence tomography permitted real time visualisation of the sub-surface skin architecture and, unlike a conventional intradermal injection, MicronJet administration of a 50μL bolus appears to create multiple superficial microdisruptions in the papillary dermis and epidermis. These were co-localised with expression of the pCMVβ reporter plasmid. We have therefore shown, for the first time, that a hollow microneedle device can facilitate efficient and reproducible gene expression of exogenous naked pDNA in human skin using volumes that are considered to be standard for intradermal administration, and postulate a hydrodynamic effect as the mechanism of gene delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Millimeter-wave emissivity as a metric for the non-contact diagnosis of human skin conditions.

    Science.gov (United States)

    Owda, Amani Yousef; Salmon, Neil; Harmer, Stuart William; Shylo, Sergiy; Bowring, Nicholas John; Rezgui, Nacer Ddine; Shah, Mamta

    2017-10-01

    A half-space electromagnetic model of human skin over the band 30-300 GHz was constructed and used to model radiometric emissivity. The model showed that the radiometric emissivity rose from 0.4 to 0.8 over this band, with emission being localized to a layer approximately one millimeter deep in the skin. Simulations of skin with differing water contents associated with psoriasis, eczema, malignancy, and thermal burn wounds indicated radiometry could be used as a non-contact technique to detect and monitor these conditions. The skin emissivity of a sample of 30 healthy volunteers, measured using a 95 GHz radiometer, was found to range from 0.2 to 0.7, and the experimental measurement uncertainty was ±0.002. Men on average were found to have an emissivity 0.046 higher than those of women, a measurement consistent with men having thicker skin than women. The regions of outer wrist and dorsal forearm, where skin is thicker, had emissivities 0.06-0.08 higher than the inner wrist and volar forearms where skin is generally thinner. Recommendations are made to develop a more sophisticated model of the skin and to collect larger data sets to obtain a deeper understanding of the signatures of human skin in the millimeter wave band. Bioelectromagnetics. 38:559-569, 2017. © 2017 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc. © 2017 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.

  15. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy.

    Science.gov (United States)

    Shultz, R; Kedgley, A E; Jenkyn, T R

    2011-05-01

    The trajectories of skin-mounted markers tracked with optical motion capture are assumed to be an adequate representation of the underlying bone motions. However, it is well known that soft tissue artifact (STA) exists between marker and bone. This study quantifies the STA associated with the hindfoot and midfoot marker clusters of a multi-segment foot model. To quantify STA of the hindfoot and midfoot marker clusters with respect to the calcaneus and navicular respectively, fluoroscopic images were collected on 27 subjects during four quasi-static positions, (1) quiet standing (non-weight bearing), (2) at heel strike (weight-bearing), (3) at midstance (weight-bearing) and (4) at toe-off (weight-bearing). The translation and rotation components of STA were calculated in the sagittal plane. Translational STA at the calcaneus varied from 5.9±7.3mm at heel-strike to 12.1±0.3mm at toe-off. For the navicular the translational STA ranged from 7.6±7.6mm at heel strike to 16.4±16.7mm at toe-off. Rotational STA was relatively smaller for both bones at all foot positions. For the calcaneus they varied between 0.1±2.2° at heel-strike to 0.2±0.6° at toe-off. For the navicular, the rotational STA ranged from 0.6±0.9° at heel-strike to 0.7±0.7° at toe-off. The largest translational STA found in this study (16mm for the navicular) was smaller than those reported in the literature for the thigh and the lower leg, but was larger than the STA of individual spherical markers affixed to the foot. The largest errors occurred at toe-off position for all subjects for both the hindfoot and midfoot clusters. Future studies are recommended to quantify true three-dimensional STA of the entire foot during gait. Copyright © 2011. Published by Elsevier B.V.

  16. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  17. Obese older adults suffer foot pain and foot-related functional limitation.

    Science.gov (United States)

    Mickle, Karen J; Steele, Julie R

    2015-10-01

    There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Immunohistochemical study of sensory nerve formations in human glabrous skin.

    Science.gov (United States)

    Haro, J J; Vega, J A; del Valle, M E; Calzada, B; Zaccheo, D; Malinovsky, L

    1991-01-01

    The sensory nerve formations (or corpuscles) of normal human glabrous skin from hand and fingers, obtained by punch biopsies, were studied by the streptavidin-biotin method using monoclonal antibodies directed against neurofilament protein (NFP), S-100 protein, glial fibrillary acidic protein (GFAP), cytokeratins, and vimentin. NFP immunoreactivity (IR) was observed in the central axons of most sensory formations, while S-100 protein IR was restricted to non-neuronal cells forming the so-called inner cells core or lamellar cells. Furthermore, vimentin IR was found in the same cells of Meissner's and glomerular corpuscles. None of the sensory nerve formations were stained for GFAP or keratin. The present results suggest that the main nature of the intermediate filaments of the non-neuronal cells of sensory nerve formations from human glabrous skin is represented by vimentin and not by GFAP. Thus, our findings suggest that lamellar and inner core cells of SNF are modified and specialized Schwann cells and not epithelial or perineurial derived cells.

  19. Antimelanogenic Efficacy of Melasolv (3,4,5-Trimethoxycinnamate Thymol Ester) in Melanocytes and Three-Dimensional Human Skin Equivalent.

    Science.gov (United States)

    Lee, John Hwan; Lee, Eun-Soo; Bae, Il-Hong; Hwang, Jeong-Ah; Kim, Se-Hwa; Kim, Dae-Yong; Park, Nok-Hyun; Rho, Ho Sik; Kim, Yong Jin; Oh, Seong-Geun; Lee, Chang Seok

    2017-01-01

    Excessive melanogenesis often causes unaesthetic hyperpigmentation. In a previous report, our group introduced a newly synthesized depigmentary agent, Melasolv™ (3,4,5-trimethoxycinnamate thymol ester). In this study, we demonstrated the significant whitening efficacy of Melasolv using various melanocytes and human skin equivalents as in vitro experimental systems. The depigmentary effect of Melasolv was tested in melan-a cells (immortalized normal murine melanocytes), α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 murine melanoma cells, primary normal human melanocytes (NHMs), and human skin equivalent (MelanoDerm). The whitening efficacy of Melasolv was further demonstrated by photography, time-lapse microscopy, Fontana-Masson (F&M) staining, and 2-photon microscopy. Melasolv significantly inhibited melanogenesis in the melan-a and α-MSH-stimulated B16 cells. In human systems, Melasolv also clearly showed a whitening effect in NHMs and human skin equivalent, reflecting a decrease in melanin content. F&M staining and 2-photon microscopy revealed that Melasolv suppressed melanin transfer into multiple epidermal layers from melanocytes as well as melanin synthesis in human skin equivalent. Our study showed that Melasolv clearly exerts a whitening effect on various melanocytes and human skin equivalent. These results suggest the possibility that Melasolv can be used as a depigmentary agent to treat pigmentary disorders as well as an active ingredient in cosmetics to increase whitening efficacy. © 2017 S. Karger AG, Basel.

  20. Effects of methylglyoxal bis(guanylhydrazone) on tumour and skin responses to hyperthermia in mice

    International Nuclear Information System (INIS)

    Miyakoshi, J.; Oda, W.; Inagaki, C.; Hiraoka, M.; Takahashi, M.; Abe, M.

    1984-01-01

    Effects of methylglyoxal bis(guanylhydrazone) (MGBG) on tumour and skin responses to hyperthermia (42degC) were examined in C3H mice. MGBG (50 mg/kg) was administered intraperitoneally to mice 4 hours before hyperthermic treatment. The tumour (FM3A) growth time was elongated by an amount dependent on the exposure time of treatment at 42degC (60, 90 and 120 min). Pre-treatment of mice with MGBG (50 mg/kg, i.p.) apparently further lengthened the tumour growth time after treatment at 42degC. No significant damage of foot skin was caused by 42degC hyperthermia. Pre-treatment with MGBG did not make the foot skin susceptible to the heating. From these findings, it can be considered that MGBG or related less-toxic compounds may have a clinical advantage for the mild (42degC) hyperthermic treatment in cancer therapy. (author)

  1. Effects of methylglyoxal bis(guanylhydrazone) on tumour and skin responses to hyperthermia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, J.; Oda, W.; Inagaki, C. (Kyoto Coll. of Pharmacy (Japan)); Hiraoka, M.; Takahashi, M.; Abe, M. (Kyoto Univ. (Japan). Faculty of Medicine)

    1984-09-01

    Effects of methylglyoxal bis(guanylhydrazone) (MGBG) on tumour and skin responses to hyperthermia (42degC) were examined in C3H mice. MGBG (50 mg/kg) was administered intraperitoneally to mice 4 hours before hyperthermic treatment. The tumour (FM3A) growth time was elongated by an amount dependent on the exposure time of treatment at 42degC (60, 90 and 120 min). Pre-treatment of mice with MGBG (50 mg/kg, i.p.) apparently further lengthened the tumour growth time after treatment at 42degC. No significant damage of foot skin was caused by 42degC hyperthermia. Pre-treatment with MGBG did not make the foot skin susceptible to the heating. From these findings, it can be considered that MGBG or related less-toxic compounds may have a clinical advantage for the mild (42degC) hyperthermic treatment in cancer therapy.

  2. How Does Chronic Cigarette Smoke Exposure Affect Human Skin? A Global Proteomics Study in Primary Human Keratinocytes.

    Science.gov (United States)

    Rajagopalan, Pavithra; Nanjappa, Vishalakshi; Raja, Remya; Jain, Ankit P; Mangalaparthi, Kiran K; Sathe, Gajanan J; Babu, Niraj; Patel, Krishna; Cavusoglu, Nükhet; Soeur, Jeremie; Pandey, Akhilesh; Roy, Nita; Breton, Lionel; Chatterjee, Aditi; Misra, Namita; Gowda, Harsha

    2016-11-01

    Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10 -7 ), cystatin A (3.6-fold, p value 3.2 × 10 -3 ), and periplakin (2.4-fold, p value 1.2 × 10 -8 ). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10 -2 ) and filaggrin (3.6-fold, p value 5.4 × 10 -7 ), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10 -3 ) and histone H1.0 (2.5-fold, p value 6.3 × 10 -3 ) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.

  3. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease.

    Directory of Open Access Journals (Sweden)

    Øyvind Heiberg Sundby

    Full Text Available Intermittent negative pressure (INP applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD.In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range: 75 (63-84yrs] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure, we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler, skin blood flow on the pulp of the first toes (laser Doppler, heart rate (ECG, and systemic blood pressure (Finometer. After a 5-min baseline sequence (no pressure, a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure. To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute.Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36-57, P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48-130, P<0.001 above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12-30cm/s/min to 41 (95% CI 32-51cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2-8.3cm/s to 7.5 (95% CI 5.9-9.1cm/s, P = 0.03].INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity.

  4. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin

  5. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R 2 = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q 2 ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and

  6. Expression of natural antimicrobial peptide β-defensin-2 and Langerhans cell accumulation in epidermis from human non-healing leg ulcers

    Directory of Open Access Journals (Sweden)

    Urszula Wojewodzka

    2011-08-01

    Full Text Available Chronic wounds like venous calf and diabetic foot ulcers are frequently contaminated and colonized by bacteria and it remains unclear whether there is sufficient expression of defensins and recruitment of epidermal Langerhans cells in the margin of ulcer compared to normal skin. The aim of this study was to examine immunohistochemically the expression of β-defensin-2 (hBD2, GM-CSF, VEGF growth factors and accumulation of CD1a+ Langerhans cells (LC in epidermis from chronic skin ulcers and to compare it to normal skin from the corresponding areas. Studies were carried out in 10 patients with diabetic foot, 10 patients with varicous ulcers of the calf and 10 patients undergoing orthopedic surgery (normal skin for control. Biopsy specimens were immunostained using specific primary antibodies, LSAB+ kit based on biotin-avidinperoxidase complex technique and DAB chromogen. Results were expressed as a mean staining intensity. Statistical analysis of staining showed significantly higher staining of hBD2 in both normal and ulcerated epidermis from foot sole skin compared to calf skin (normal and ulcerated, p<0.05. Chronic ulcers showed the same expression of hBD2 as normal skin. There was significantly lower accumulation of CD1a+ LC in normal epidermis from foot sole skin compared to normal calf skin (p<0.05. Accumulation of CD1a+ LC and GM-CSF upregulation at the border area of diabetic foot ulcer and reduction of LC concentration at the margin of venous calf ulcer compared to normal skin were observed. It seems that normal calf and sole epidermis is, unlike in the mechanisms of innate immunity, influenced by the different keratinocyte turnover and bacterial flora colonizing these regions. Insufficient upregulation of hBD2 in both diabetic foot and venous calf ulcers may suggest the pathological role of this protein in the chronicity of ulcers.

  7. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  8. Steroid synthesis by primary human keratinocytes; implications for skin disease

    International Nuclear Information System (INIS)

    Hannen, Rosalind F.; Michael, Anthony E.; Jaulim, Adil; Bhogal, Ranjit; Burrin, Jacky M.; Philpott, Michael P.

    2011-01-01

    Research highlights: → Primary keratinocytes express the steroid enzymes required for cortisol synthesis. → Normal primary human keratinocytes can synthesise cortisol. → Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. → StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3βHSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7- 3 H]-pregnenolone through each steroid intermediate to [7- 3 H]-cortisol in cultured PHK. Trilostane (a 3βHSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra

  9. Human cell transformation in the study of sunlight-induced cancers in the skin of man

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Bennett, P.V.

    1988-01-01

    Human cell transformation provides a powerful approach to understanding - at the cellular and molecular levels - induction of cancers in the skin of man. A principal approach to this problem is the direct transformation of human skin cells by exposure to ultraviolet and/or near-UV radiation. The frequency of human cells transformed to anchorage independence increases with radiation exposure; the relative transforming efficiencies of different wavelengths implies that direct absorption by nucleic acids is a primary initial event. Partial reversal of potential transforming lesions by photoreactivation suggests that pyrimidine dimers, as well as other lesions, are important in UV transformation of human cells. Human cells can also be transformed by transfection with cloned oncogenes, or with DNAs from tumors or tumor cell lines. Cells treated by the transfection procedure (but without DNA) or cells transfected with DNAs from normal mammalian cells or tissues show only background levels of transformation. Human cells can be transformed to anchorage-independent growth by DNAs ineffective in transformation of NIH 3T3 cells (including most human skin cancers), permitting the analysis of oncogenic molecular changes even in tumor DNAs difficult or impossible to analyze in rodent cell systems. 29 refs.; 4 figs.; 1 table

  10. The Effect of Foot Structure on Locomotion of a Small Biped Robot

    Directory of Open Access Journals (Sweden)

    Nguyen Tinh

    2017-01-01

    Full Text Available This paper is a presentation of a work that consists of considering a novel foot structure for biped robot inspired by human foot. The specific objective is to develop a foot mechanism with human-like toes for a small biped robot. The chosen architecture to present the biped includes ten degrees of freedom (DoF on ten articulations between eleven links. Our study considers the effect of varying foot structure on a walking process of the robot in simulation by ADAMS (MSC software, USA through gait generation method. In toe mechanism, aiming to reduce the energy consumption, the passive joint was selected as the toe joint. The center of gravity (CoG point trajectories of the robot with varying toe is compared with each other in normal motion on flat terrain to determine the most consistent toe mechanism. The result shows that the selected foot structure enables the robot to walk stably and naturally.

  11. Q-switched ruby laser irradiation of normal human skin. Histologic and ultrastructural findings.

    Science.gov (United States)

    Hruza, G J; Dover, J S; Flotte, T J; Goetschkes, M; Watanabe, S; Anderson, R R

    1991-12-01

    The Q-switched ruby laser is used for treatment of tatoos. The effects of Q-switched ruby laser pulses on sun-exposed and sun-protected human skin, as well as senile lentigines, were investigated with clinical observation, light microscopy, and transmission electron microscopy. A pinpricklike sensation occurred at radiant exposures as low as 0.2 J/cm2. Immediate erythema, delayed edema, and immediate whitening occurred with increasing radiant exposure. The threshold for immediate whitening varied inversely with skin pigmentation, ranging from a mean of 1.4 J/cm2 in lentigines to 3.1 J/cm2 in sun-protected skin. Transmission electron microscopy showed immediate alteration of mature melanosomes and nuclei within keratinocytes and melanocytes, but stage I and II melanosomes were unaffected. Histologically, immediate injury was confined to the epidermis. There was minimal inflammatory response 1 day after exposure. After 1 week, subthreshold exposures induced hyperpigmentation, with epidermal hyperplasia and increased melanin staining noted histologically. At higher radiant exposures, hypopigmentation occurred with desquamation of a pigmented scale/crust. All sites returned to normal skin color and texture without scarring within 3 to 6 months. These observations suggest that the human skin response to selective photothermolysis of pigmented cells is similar to that reported in animal models, including low radiant exposure stimulation of melanogenesis and high radiant exposure lethal injury to pigmented epidermal cells.

  12. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier.

    Directory of Open Access Journals (Sweden)

    Jes Dreier

    Full Text Available In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers that transport their cargo directly through the skin barrier, but mainly burst and fuse with the outer lipid layers of the stratum corneum. It was also found that the flexible liposomes showed a greater delivery of the fluorophore into the stratum corneum, indicating that they functioned as chemical permeability enhancers.

  13. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects.

    Science.gov (United States)

    Boon, Mariëtte R; Bakker, Leontine E H; van der Linden, Rianne A D; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J; van Marken Lichtenbelt, Wouter D; Jazet, Ingrid M; Rensen, Patrick C N

    2014-01-01

    Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current 'gold standard' for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. NTR 2473.

  14. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin

    International Nuclear Information System (INIS)

    Mauro, Marcella; Crosera, Matteo; Bianco, Carlotta; Adami, Gianpiero; Montini, Tiziano; Fornasiero, Paolo; Jaganjac, Morana; Bovenzi, Massimo; Filon, Francesca Larese

    2015-01-01

    The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na 2 PtC l6 and RhCl 3 ·3H 2 O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm −2  h −1 and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration

  15. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Marcella [University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical Sciences (Italy); Crosera, Matteo; Bianco, Carlotta; Adami, Gianpiero; Montini, Tiziano; Fornasiero, Paolo [University of Trieste, Department of Chemical and Pharmaceutical Sciences (Italy); Jaganjac, Morana [Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Department of Molecular Medicine (Croatia); Bovenzi, Massimo; Filon, Francesca Larese, E-mail: larese@units.it [University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical Sciences (Italy)

    2015-06-15

    The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na{sub 2}PtC{sub l6} and RhCl{sub 3}·3H{sub 2}O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm{sup −2} h{sup −1} and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration.

  16. Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin

    Science.gov (United States)

    Echchgadda, Ibtissam; Grundt, Jessica A.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.

    2013-12-01

    Terahertz (THz) time-domain spectroscopy systems permit the measurement of a tissue's hydration level. This feature makes THz spectrometers excellent tools for the noninvasive assessment of skin; however, current systems are large, heavy and not ideal for clinical settings. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to measure the absorption coefficient (μa) and index of refraction (n) of human subjects in vivo. Spectra were collected from 0.1 to 2 THz, and measurements were made from skin at three sites: the palm, ventral and dorsal forearm. Additionally, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal water loss, and melanin concentration. Our results suggest that the measured optical properties varied considerably for skin tissues that exhibited dissimilar hydration levels. These data provide a framework for using compact THz spectrometers for clinical applications.

  17. Foot Health

    Science.gov (United States)

    ... straight across and not too short Your foot health can be a clue to your overall health. For example, joint stiffness could mean arthritis. Tingling ... foot checks are an important part of your health care. If you have foot problems, be sure ...

  18. Direct visualization of lipid domains in human skin stratum corneum's lipid membranes

    DEFF Research Database (Denmark)

    Plasencia, I; Norlen, Lars; Bagatolli, Luis

    2007-01-01

    scanning calorimetry, fluorescence spectroscopy, and two-photon excitation and laser scanning confocal fluorescence microscopy. Here we show that hydrated bilayers of human skin stratum corneum lipids express a giant sponge-like morphology with dimensions corresponding to the global three......-dimensional morphology of the stratum corneum extracellular space. These structures can be directly visualized using the aforementioned fluorescence microscopy techniques. At skin physiological temperatures (28 degrees C-32 degrees C), the phase state of these hydrated bilayers correspond microscopically (radial...

  19. Non-enzymatic NO production in human skin: effect of UVA on cutaneous NO stores

    NARCIS (Netherlands)

    Suschek, C.; Opländer, C.; van Faassen, E.E.H.

    2009-01-01

    Nitric oxide (NO) in human skin has been under investigation since first reports of NOS expression in skin tissue in 1992 [1]. NO plays a key role in the dermal response to external stimuli such as heat, ultraviolet (UV) light, or infection, and in healing of abrasions, lesions or burns. Recently, a

  20. Enhancement of Human Cheek Skin Texture by Acacia Nilotica Bark ...

    African Journals Online (AJOL)

    HP

    Purpose: To evaluate the effect of a topical application of a cream formulation containing extract of. Acacia nilotica bark extract on human cheek skin texture. Methods: A cream containing 3 % concentrated extract of Acacia nilotica bark was developed by entrapping the extract in the internal aqueous phase of the cream ...

  1. Biological stimulation of the Human skin applying health promoting light and plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Awakowicz, P.; Bibinov, N. [Center for Plasma Science and Technology, Ruhr-University, Bochum (Germany); Born, M.; Niemann, U. [Philips Research, Aachen (Germany); Busse, B. [Zell-Kontakt GmbH, Noerten-Hardenberg (Germany); Gesche, R.; Kuehn, S.; Porteanu, H.E. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Helmke, A. [University of Applied Sciences and Arts, Goettingen (Germany); Kaemling, A.; Wandke, D. [CINOGY GmbH, Duderstadt (Germany); Kolb-Bachofen, V.; Liebmann, J. [Institute for Immunobiology, Heinrich-Heine University, Duesseldorf (Germany); Kovacs, R.; Mertens, N.; Scherer, J. [Aurion Anlagentechnik GmbH, Seligenstadt (Germany); Oplaender, C.; Suschek, C. [Clinic for Plastic Surgery, University Clinic, Aachen (Germany); Vioel, W. [Laser-Laboratorium, Goettingen (Germany); University of Applied Sciences and Arts, Goettingen (Germany)

    2009-10-15

    In the frame of BMBF project ''BioLiP'', new physical treatment techniques aiming at medical treatment of the human skin have been developed. The acronym BioLiP stands for ''Desinfektion, Entkeimung und biologische Stimulation der Haut durch gesundheitsfoerdernde Licht- und Plasmaquellen'' (Disinfection, germ reduction and biological stimulation of the human skin by health promoting light and plasma sources). A source applying a low-temperature dielectric barrier discharge plasma (DBD) has been investigated on its effectiveness for skin disinfection and stimulation of biological material. Alternatively an atmospheric plasma source consisting of a microwave resonator combined with a solid state power oscillator has been examined. This concept which allows for a compact and efficient design avoiding external microwave power supply and matching units has been optimized with respect to nitrogen monoxide (NO) production in high yields. In both cases various application possibilities in the medical and biological domain are opened up. Light sources in the visible spectral range have been investigated with respect to the proliferation of human cell types. Intensive highly selective blue light sources based on LED technology can slow down proliferation rates without inducing toxic effects which offers new opportunities for treatments of so-called hyperproliferative skin conditions (e.g. with psoriasis or in wound healing) using UV-free light. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    Science.gov (United States)

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  3. Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant

    DEFF Research Database (Denmark)

    Sørensen, Isabella S; Janfelt, Christian; Nielsen, Mette Marie B

    2017-01-01

    Study of skin penetration and distribution of the drug compounds in the skin is a major challenge in the development of topical drug products for treatment of skin diseases. It is crucial to have fast and efficacious screening methods which can provide information concerning the skin penetration ...... that combination of MALDI-MSI and cassette dosing can be used as a medium throughput screening tool at an early stage in the drug discovery/development process. Graphical abstract Investigation of drug distribution in human skin explant by MALDI-MSI after cassette dosing....

  4. In vitro dermal absorption of decabromodiphenyl ethane in rat and human skin

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro dermal absorption of decabromodiphenyl ethane in rat and human skin. This dataset is associated with the following publication: Knudsen, G., J.M. Sanders,...

  5. New Regions of the Human Genome Linked to Skin Color Variation in Some African Populations

    Science.gov (United States)

    In the first study of its kind, an international team of genomics researchers has identified new regions of the human genome that are associated with skin color variation in some African populations, opening new avenues for research on skin diseases and cancer in all populations.

  6. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    Science.gov (United States)

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.

  7. Development and validation of a simple method for the extraction of human skin melanocytes.

    Science.gov (United States)

    Wang, Yinjuan; Tissot, Marion; Rolin, Gwenaël; Muret, Patrice; Robin, Sophie; Berthon, Jean-Yves; He, Li; Humbert, Philippe; Viennet, Céline

    2018-03-21

    Primary melanocytes in culture are useful models for studying epidermal pigmentation and efficacy of melanogenic compounds, or developing advanced therapy medicinal products. Cell extraction is an inevitable and critical step in the establishment of cell cultures. Many enzymatic methods for extracting and growing cells derived from human skin, such as melanocytes, are described in literature. They are usually based on two enzymatic steps, Trypsin in combination with Dispase, in order to separate dermis from epidermis and subsequently to provide a suspension of epidermal cells. The objective of this work was to develop and validate an extraction method of human skin melanocytes being simple, effective and applicable to smaller skin samples, and avoiding animal reagents. TrypLE™ product was tested on very limited size of human skin, equivalent of multiple 3-mm punch biopsies, and was compared to Trypsin/Dispase enzymes. Functionality of extracted cells was evaluated by analysis of viability, morphology and melanin production. In comparison with Trypsin/Dispase incubation method, the main advantages of TrypLE™ incubation method were the easier of separation between dermis and epidermis and the higher population of melanocytes after extraction. Both protocols preserved morphological and biological characteristics of melanocytes. The minimum size of skin sample that allowed the extraction of functional cells was 6 × 3-mm punch biopsies (e.g., 42 mm 2 ) whatever the method used. In conclusion, this new procedure based on TrypLE™ incubation would be suitable for establishment of optimal primary melanocytes cultures for clinical applications and research.

  8. Functional electrospun fibers for the treatment of human skin wounds.

    Science.gov (United States)

    Wang, Jing; Windbergs, Maike

    2017-10-01

    Wounds are trauma induced defects of the human skin involving a multitude of endogenous biochemical events and cellular reactions of the immune system. The healing process is extremely complex and affected by the patient's physiological conditions, potential implications like infectious pathogens and inflammation as well as external factors. Due to increasing incidence of chronic wounds and proceeding resistance of infection pathogens, there is a strong need for effective therapeutic wound care. In this context, electrospun fibers with diameters in the nano- to micrometer range gain increasing interest. While resembling the structure of the native human extracellular matrix, such fiber mats provide physical and mechanical protection (including protection against bacterial invasion). At the same time, the fibers allow for gas exchange and prevent occlusion of the wound bed, thus facilitating wound healing. In addition, drugs can be incorporated within such fiber mats and their release can be adjusted by the material and dimensions of the individual fibers. The review gives a comprehensive overview about the current state of electrospun fibers for therapeutic application on skin wounds. Different materials as well as fabrication techniques are introduced including approaches for incorporation of drugs into or drug attachment onto the fiber surface. Against the background of wound pathophysiology and established therapy approaches, the therapeutic potential of electrospun fiber systems is discussed. A specific focus is set on interactions of fibers with skin cells/tissues as well as wound pathogens and strategies to modify and control them as key aspects for developing effective wound therapeutics. Further, advantages and limitations of controlled drug delivery from fiber mats to skin wounds are discussed and a future perspective is provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Underprediction of human skin erythema at low doses per fraction by the linear quadratic model

    International Nuclear Information System (INIS)

    Hamilton, Christopher S.; Denham, James W.; O'Brien, Maree; Ostwald, Patricia; Kron, Tomas; Wright, Suzanne; Doerr, Wolfgang

    1996-01-01

    Background and purpose. The erythematous response of human skin to radiotherapy has proven useful for testing the predictions of the linear quadratic (LQ) model in terms of fractionation sensitivity and repair half time. No formal investigation of the response of human skin to doses less than 2 Gy per fraction has occurred. This study aims to test the validity of the LQ model for human skin at doses ranging from 0.4 to 5.2 Gy per fraction. Materials and methods. Complete erythema reaction profiles were obtained using reflectance spectrophotometry in two patient populations: 65 patients treated palliatively with 5, 10, 12 and 20 daily treatment fractions (varying thicknesses of bolus, various body sites) and 52 patients undergoing prostatic irradiation for localised carcinoma of the prostate (no bolus, 30-32 fractions). Results and conclusions. Gender, age, site and prior sun exposure influence pre- and post-treatment erythema values independently of dose administered. Out-of-field effects were also noted. The linear quadratic model significantly underpredicted peak erythema values at doses less than 1.5 Gy per fraction. This suggests that either the conventional linear quadratic model does not apply for low doses per fraction in human skin or that erythema is not exclusively initiated by radiation damage to the basal layer. The data are potentially explained by an induced repair model

  10. The deceptive nature of UVA-tanning versus the modest protective effects of UVB-tanning on human skin

    OpenAIRE

    Miyamura, Yoshinori; Coelho, Sergio G.; Schlenz, Kathrin; Batzer, Jan; Smuda, Christoph; Choi, Wonseon; Brenner, Michaela; Passeron, Thierry; Zhang, Guofeng; Kolbe, Ludger; Wolber, Rainer; Hearing, Vincent J.

    2010-01-01

    The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin due to the constitutively higher pigmentation but an as yet unresolved and important question is what photop...

  11. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics.

    Science.gov (United States)

    Ivanenko, Yuri P; Grasso, Renato; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2003-11-01

    What are the building blocks with which the human spinal cord constructs the motor patterns of locomotion? In principle, they could correspond to each individual activity pattern in dozens of different muscles. Alternatively, there could exist a small set of constituent temporal components that are common to all activation patterns and reflect global kinematic goals. To address this issue, we studied patients with spinal injury trained to step on a treadmill with body weight support. Patients learned to produce foot kinematics similar to that of healthy subjects but with activity patterns of individual muscles generally different from the control group. Hidden in the muscle patterns, we found a basic set of five temporal components, whose flexible combination accounted for the wide range of muscle patterns recorded in both controls and patients. Furthermore, two of the components were systematically related to foot kinematics across different stepping speeds and loading conditions. We suggest that the components are related to control signals output by spinal pattern generators, normally under the influence of descending and afferent inputs.

  12. Orthotic Design through 3D Reconstruction: A Passive-Assistance Ankle–Foot Orthotic

    Directory of Open Access Journals (Sweden)

    A. L. Darling

    2006-01-01

    Full Text Available Current methods of designing and manufacturing custom orthotics include manual techniques such as casting a limb in plaster, making a plaster duplicate of the limb to be treated and forming a polymer orthotic directly onto the plaster model. Such techniques are usually accompanied with numerous postmanufacture alterations to adapt the orthotic for patient comfort. External modeling techniques rely heavily on the skill of the clinician, as the axes of rotation of any joint are partially specified by the skeletal structure and are not completely inferable from the skin, especially in cases where edema is present. Clinicians could benefit from a simultaneous view of external and skeletal patient-specific geometry. In addition to providing more information to clinicians, quantification of patient-specific data would allow rapid production of advanced orthotics, requiring machining rather than casting. This paper presents a supplemental method of orthotic design and fitting, through 3D reconstruction of medical imaging data to parameterise an orthotic design based on a major axis of rotation, shape of rigid components and placement of skin contact surfaces. An example of this design approach is shown in the design of an ankle–foot orthotic designed around the computed tomography data from the Visible Human Project.

  13. Efficient in vivo gene transfer to xenotransplanted human skin by lentivirus-mediated, but not by AAV-directed, gene delivery

    DEFF Research Database (Denmark)

    Jakobsen, Maria Vad; Askou, Anne Louise; Dokkedahl, Karin Stenderup

    skin graft, and firefly luciferase expression was observed primarily in neighboring tissue beneath or surrounding the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin...... graft only. The study demonstrates limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo....

  14. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    Science.gov (United States)

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd

  15. Human Achilles tendon glycation and function in diabetes

    DEFF Research Database (Denmark)

    Couppe, Christian; Svensson, Rene Brüggebusch; Kongsgaard, Mads

    2016-01-01

    Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between...... tissue cross-linking were greater in diabetic patients compared to controls. The higher foot pressure indicates that material stiffness of tendon and other tissue (e.g skin and joint capsule) may influence on foot gait. The difference in foot pressure distribution may contribute to the development...... of foot ulcers in diabetic patients....

  16. In vitro permeation of palladium powders through intact and damaged human skin.

    Science.gov (United States)

    Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca

    2018-05-01

    The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2  h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2  h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Black tattoos entail substantial uptake of genotoxicpolycyclic aromatic hydrocarbons (PAH) in human skin and regional lymph nodes.

    Science.gov (United States)

    Lehner, Karin; Santarelli, Francesco; Vasold, Rudolf; Penning, Randolph; Sidoroff, Alexis; König, Burkhard; Landthaler, Michael; Bäumler, Wolfgang

    2014-01-01

    Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC-DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1-0.6 μg/cm2 in the tattooed skin and 0.1-11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body.

  18. Black tattoos entail substantial uptake of genotoxicpolycyclic aromatic hydrocarbons (PAH in human skin and regional lymph nodes.

    Directory of Open Access Journals (Sweden)

    Karin Lehner

    Full Text Available Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH. We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC-DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1-0.6 μg/cm2 in the tattooed skin and 0.1-11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body.

  19. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    Science.gov (United States)

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  20. Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: a systematic review

    Directory of Open Access Journals (Sweden)

    Holmes C

    2013-01-01

    Full Text Available Crystal Holmes,1 James S Wrobel,1 Mark P MacEachern,2 Blaise R Boles31Department of Internal Medicine, University of Michigan Medical School, 2A Alfred Taubman Health Sciences Library, University of Michigan, 3Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USABackground: Diabetic foot ulcers are a major source of morbidity, limb loss, and mortality. A prolonged inflammatory response, extracellular matrix degradation irregularities, and increased bacteria presence have all been hypothesized as major contributing factors in the delayed healing of diabetic wounds. Collagen components such as fibroblast and keratinocytes are fundamental to the process of wound healing and skin formation. Wound dressings that contain collagen products create a biological scaffold matrix that supports the regulation of extracellular components and promotes wound healing.Methods: A systematic review of studies reporting collagen wound dressings used in the treatment of Diabetic foot ulcers was conducted. Comprehensive searches were run in Ovid MEDLINE, PubMed, EMBASE, and ISI Web of Science to capture citations pertaining to the use of collagen wound dressings in the treatment of diabetic foot ulcers. The searches were limited to human studies reported in English.Results: Using our search strategy, 26 papers were discussed, and included 13 randomized designs, twelve prospective cohorts, and one retrospective cohort, representing 2386 patients with diabetic foot ulcers. Our design was not a formal meta-analysis. In those studies where complete epithelialization, 58% of collagen-treated wounds completely healed (weighted mean 67%. Only 23% of studies reported control group healing with 29% healing (weighted mean 11% described for controls.Conclusion: Collagen- based wound dressings can be an effective tool in the healing of diabetic foot wounds. The current studies show an overall increase in healing rates despite