WorldWideScience

Sample records for human fibrosarcoma cell

  1. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080

    National Research Council Canada - National Science Library

    Nakanishi, T; Tamai, I; Sai, Y; Sasaki, T; Tsuji, A

    1997-01-01

    To explore the feasibility of targeting human tumor cells via their transport systems, dipeptide uptake was studied in the human fibrosarcoma cell line HT1080 and the human fibroblast cell line IMR-90...

  2. Targeting Androgen Receptor/Src Complex Impairs the Aggressive Phenotype of Human Fibrosarcoma Cells

    OpenAIRE

    Gabriella Castoria; Pia Giovannelli; Marzia Di Donato; Ryo Hayashi; Claudio Arra; Ettore Appella; Ferdinando Auricchio; Antimo Migliaccio

    2013-01-01

    BACKGROUND: Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR). EXPERIMENTAL: FINDINGS: We report that the pure anti-androgen Casodex inhibits the...

  3. Targeting androgen receptor/Src complex impairs the aggressive phenotype of human fibrosarcoma cells.

    Science.gov (United States)

    Castoria, Gabriella; Giovannelli, Pia; Di Donato, Marzia; Hayashi, Ryo; Arra, Claudio; Appella, Ettore; Auricchio, Ferdinando; Migliaccio, Antimo

    2013-01-01

    Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR). We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9) secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas) that express AR. This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness) cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines highlights the conservation of this process across divergent cancer

  4. Sphere-forming tumor cells possess stem-like properties in human fibrosarcoma primary tumors and cell lines

    Science.gov (United States)

    LIU, WEI-DONG; ZHANG, TAO; WANG, CHUN-LEI; MENG, HONG-MEI; SONG, YU-WEN; ZHAO, ZHE; LI, ZHENG-MIN; LIU, JIANG-KUN; PAN, SHANG-HA; WANG, WEN-BO

    2012-01-01

    Fibrosarcoma is a malignant soft tissue tumor of mesenchymal origin. Despite advances in medical and surgical treatment, patient survival rates have remained poor. According to the cancer stem cell hypothesis, tumors are comprised of heterogeneous cell populations that have different roles in tumor formation and growth. Cancer stem cells are a small cell subpopulation that exhibits stem-like properties to gain aggressiveness and recurrence. These cells have been identified in a variety of cancerous tumors, but not in human fibrosarcoma. In this study, we observed that HT1080 cells and primary fibrosarcoma cells formed spheres and showed higher self-renewal capacity, invasiveness and drug resistance compared with their adherent counterparts. Moreover, we demonstrated that the cells showed higher expression of the embryonic stem cell-related genes Nanog, Oct3/4, Sox2, Sox10 and their encoding proteins, as well as greater tumorigenic capacity in nude mice. In conclusion, our data suggest the presence of a stem-like cell population in human fibrosarcoma tumors, which provides more evidence for the cancer stem cell hypothesis and assistance in designing new therapeutic strategies against human fibrosarcoma. PMID:23205129

  5. Pro‑apoptotic effects of pycnogenol on HT1080 human fibrosarcoma cells.

    Science.gov (United States)

    Harati, Kamran; Slodnik, Pawel; Chromik, Ansgar Michael; Behr, Björn; Goertz, Ole; Hirsch, Tobias; Kapalschinski, Nicolai; Klein-Hitpass, Ludger; Kolbenschlag, Jonas; Uhl, Waldemar; Lehnhardt, Marcus; Daigeler, Adrien

    2015-04-01

    Complete surgical resection with clear margins remains the mainstay of therapy for localised fibrosarcomas. Nevertheless, metastatic fibrosarcomas still represent a therapeutic dilemma. Commonly used chemotherapeutic agents like doxorubicin have proven to be effective in pycnogenol and its constituents on human fibrosarcoma cells (HT1080). Ten healthy subjects (six females, four males, mean age 24.8 ± 6 years) received a single dose of 300 mg pycnogenol orally. Blood plasma samples were obtained before and 6 h after intake of pycnogenol. HT1080 cells were treated with these plasma samples. Additionally, HT1080 were incubated separately with catechin, epicatechin and taxifolin that are known as the main constituents of pycnogenol. Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Gene expression was analyzed by RNA microarray. The results showed that single application of taxifolin, catechin and epicatechin reduced cell viability of HT1080 cells only moderately. A single dose of 300 mg pycnogenol given to 10 healthy adults produced plasma samples that led to significant apoptotic cell death ex vivo whereas pycnogenol-negative serum displayed no apoptotic activity. Microarray analysis revealed remarkable expression changes induced by pycnogenol in a variety of genes, which are involved in different apoptotic pathways of cancer cells [Janus kinase 1 (JAK1), DUSP1, RHOA, laminin γ1 (LAMC1), fibronectin 1 (FN1), catenin α1 (CTNNA1), ITGB1]. In conclusion, metabolised pycnogenol induces apoptosis in human fibrosarcoma cells. Pycnogenol exhibits its pro-apoptotic activity as a mixture and is more effective than its main constituents catechin, epicatechin and taxifolin indicating that the metabolised components interact synergistically. These results provide experimental support for in vivo trials assessing the effect of the pine bark extract pycnogenol.

  6. Role of Phosphoinositide 3-Kinase in the Aggressive Tumor Growth of HT1080 Human Fibrosarcoma Cells

    OpenAIRE

    Gupta, Swati; Stuffrein, Selma; Plattner, Rina; Tencati, Michael; Gray, Christa; Young E. Whang; Stanbridge, Eric J.

    2001-01-01

    We have developed a model system of human fibrosarcoma cell lines that do or do not possess and express an oncogenic mutant allele of N-ras. HT1080 cells contain an endogenous mutant allele of N-ras, whereas the derivative MCH603 cell line contains only wild-type N-ras. In an earlier study (S. Gupta et al., Mol. Cell. Biol. 20:9294–9306, 2000), we had shown that HT1080 cells produce rapidly growing, aggressive tumors in athymic nude mice, whereas MCH603 cells produced more slowly growing tumo...

  7. Targeting androgen receptor/Src complex impairs the aggressive phenotype of human fibrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Gabriella Castoria

    Full Text Available BACKGROUND: Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR. EXPERIMENTAL: FINDINGS: We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9 secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas that express AR. CONCLUSION: This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines

  8. Zoledronic acid inhibits proliferation of human fibrosarcoma cells with induction of apoptosis, and shows combined effects with other anticancer agents.

    Science.gov (United States)

    Koto, Kazutaka; Murata, Hiroaki; Kimura, Shinya; Horie, Naoyuki; Matsui, Takaaki; Nishigaki, Yasunori; Ryu, Kazuteru; Sakabe, Tomoya; Itoi, Megumi; Ashihara, Eishi; Maekawa, Taira; Fushiki, Shinji; Kubo, Toshikazu

    2010-07-01

    Third-generation bisphosphonates are known to inhibit bone resorption and also appear to exhibit direct anti-tumour activity. We previously reported that third-generation bisphosphonates such as zoledronic acid (ZOL) have a direct antitumour effect, and synergistically augment the effects of antitumor agents in osteosarcoma cells. There has been no report on the antitumor effect of ZOL against soft tissue sarcoma. The aim of this study was to evaluate the antitumor effect of this drug on a human fibrosarcoma cell line, in terms of proliferation and apoptosis, and, moreover, to evaluate the combined effects of ZOL with other antitumor drugs against the human fibrosarcoma cell line. HT1080 cells were treated with ZOL at various concentrations up to 10 microM, and then cell proliferation, cell cycle, nuclear morphology, and Western blot analyses were performed to study the antitumor effects of ZOL alone, and, moreover, HT1080 cells were treated with ZOL and other anticancer drugs such as paclitaxel, docetaxel, doxorubicin, etoposide, 5-fluorouracil, gemcitabine, cisplatin, or methotrexate to investigate the combined effects using proliferation and cell cycle analyses. We found that ZOL strongly inhibited in vitro proliferation, arrested the cell cycle between S and G2/M phases, and induced the apoptosis of human fibrosarcoma cells. Moreover, ZOL augmented the effect of antitumor agents when administered concurrently with paclitaxel, docetaxel, doxorubicin, etoposide, 5-fluorouracil, gemcitabine, and cisplatin in human fibrosarcoma cells. The treatment of fibrosarcoma with ordinary antitumor drugs is not fully effective. These findings suggest that ZOL directly affects the proliferation and survival of fibrosarcoma cells, and that the combined administration of ZOL with other antitumor agents may improve the efficacy of fibrosarcoma treatment. These results support the possibility that their combined use could be beneficial in the treatment of patients not only with

  9. Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080.

    Science.gov (United States)

    Karuppaiya, Palaniyandi; Satheeshkumar, Elumalai; Chao, Wei-Ting; Kao, Lin-Yi; Chen, Emily Chin-Fun; Tsay, Hsin-Sheng

    2013-10-01

    Plants are exploited as a potential source for the large-scale production of noble gold nanoparticles in the recent years owing to their various potential applications in nanobiotechnology and nanomedicine. The present work describes green biosynthetic procedures for the production of gold nanoparticles for the first time by using an aqueous extract of the Dysosma pleiantha rhizome. The biosynthesized gold nanoparticles were confirmed and characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy equipped with energy dispersive spectroscopy. The results revealed that aqueous extract of D. pleiantha rhizome has potential to reduce chloroauric ions into gold nanoparticles and the synthesized gold nanoparticles were showed spherical in shape with an average of 127nm. Further, we investigated the anti-metastatic activity of biosynthesized gold nanoparticles against human fibrosarcoma cancer cell line HT-1080. The results showed that the biosynthesized gold nanoparticles were non-toxic to cell proliferation and, also it can inhibit the chemo-attractant cell migration of human fibrosarcoma cancer cell line HT-1080 by interfering the actin polymerization pathway. Thus, the usage of gold nanoparticles biosynthesized from D. pleiantha rhizome can be used as a potential candidate in the drug and gene delivery to metastatic cancer.

  10. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Lu, Yan, E-mail: luyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Shen, Pingping, E-mail: ppshen@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Model Animal Research Center (MARC), Nanjing University, Nanjing (China)

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  11. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells.

    Science.gov (United States)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21(Waf1/Cip1) and p27(Kip1) descended in PPARγ1(S84D) stable HT1080 cell, whereas the expression of p18(INK4C) was not changed. Moreover, compared to the PPARγ1(S84A), PPARγ1(S84D) up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells.

    Science.gov (United States)

    Sun, Chao; Wang, Zhenhua; Zheng, Qiusheng; Zhang, Hong

    2012-02-15

    Oxidative stress plays an important role in tumorigenesis and metastasis. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Here we investigated the inhibitory effects of salidroside on tumor metastasis in human fibrosarcoma HT1080 cells in vitro. The results indicated that salidroside significantly reduced wound closure areas of HT1080 cells, inhibited HT1080 cells invasion into Matrigel-coated membranes, suppressed matrix metalloproteinases (MMP-2 and MMP-9) activity, and increased tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in a dose-dependent manner in HT1080 cells. Salidroside treatment upregulated the E-cadherin expression, while downregulated the expression of β1-integrin. As an antioxidant, salidroside inhibited the intracellular reactive oxygen species (ROS) formation in a dose-dependent manner. The results also showed that salidroside could inhibit the activation of protein kinase C (PKC) and the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in a dose-dependent manner. In conclusion, these results suggest that salidroside inhibits tumor cells metastasis, which may due to its interfere in the intracellular excess ROS thereby down-regulated the ROS-PKC-ERK1/2 signaling pathway. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Mechanism of activation of an N-ras gene in the human fibrosarcoma cell line HT1080.

    OpenAIRE

    Brown, R.; Marshall, C.J; Pennie, S G; Hall, A

    1984-01-01

    A full length N-ras gene has been cloned from both the human fibrosarcoma cell line HT1080 and from normal human DNA. N-ras isolated from HT1080 will efficiently induce morphological transformation of NIH/3T3 cells in a transfection assay, whereas N-ras isolated from normal human DNA has no effect on NIH/3T3 cells. The coding regions of the normal N-ras gene have been sequenced and the predicted amino acid sequence of the N-ras product is very similar to that of the c-Ha-ras1 and c-Ki-ras2 pr...

  14. CD133+ subpopulation of the HT1080 human fibrosarcoma cell line exhibits cancer stem-like characteristics.

    Science.gov (United States)

    Feng, Bao-Hua; Liu, Ai-Guo; Gu, Wen-Guang; Deng, Liang; Cheng, Xian-Gyang; Tong, Tie-Jun; Zhang, Hong-Zhi

    2013-08-01

    The cancer stem cell (CSC) theory holds that a minority population within tumors possesses stem cell properties of self-renewal and multilineage differentiation capacity and provides the initiating cells from which tumors are derived and sustained. However, verifying the existence of these CSCs has been a significant challenge. The CD133 antigen is a pentaspan membrane glycoprotein proposed to be a CSC marker for cancer-initiating subpopulations in the brain, colon and various other tissues. Here, CD133+ cells were obtained and characterized from the HT1080 cell line to determine the utility of this marker for isolating CSCs from human fibrosarcoma cells. In this study, CD133+ cells were separated from HT1080 cells using magnetic beads and characterized for their proliferation rate and resistance to chemotherapeutic drugs, cisplatin and doxorubicin, by MTS assay. Relative expression of tumor-associated genes Sox2, Oct3/4, Nanog, c-Myc, Bmi-1 and ABCG2 was measured by real-time polymerase chain reaction (PCR). Clonal sphere formation and the ability of CD133+ cells to initiate tumors in BALB/c nude mice was also evaluated. We found that CD133+ cells showed a high proliferation rate, increased resistance to chemotherapy drugs and overexpression of tumor-associated genes compared with these features in CD133- cells. Additionally, CD133+ cells were able to form spherical clusters in serum-free medium with high clonogenic efficiency, indicating a significantly greater tumor-initiating potential when compared with CD133- cells. These findings indicate that CD133+ cells identified within the HT1080 human fibrosarcoma cell line possess many CSC properties and may facilitate the development of improved therapies for fibrosarcoma.

  15. Epigenetic regulation of proMMP-1 expression in the HT1080 human fibrosarcoma cell line.

    Science.gov (United States)

    Poplineau, Mathilde; Dufer, Jean; Antonicelli, Frank; Trussardi-Regnier, Aurelie

    2011-06-01

    The matrix metalloproteinase (MMP) family members play an important role in various physiological and pathological processes. Although MMP-1 (collagenase-1) has been shown to be involved in tumor invasiveness, the regulation of its expression is still not fully elucidated and could implicate epigenetic mechanisms. The aim of this study was to analyze the effects of the Histone Deacetylase Inhibitor (HDI) trichostatin A (TSA) and the inhibitor of DNA methylation 5-aza-2'-deoxycytidine (5-azadC) on the proMMP-1 expression in the human HT1080 fibrosarcoma cell line. Real-time RT-PCR revealed that 5-azadC or 5-azadC + TSA but not TSA alone, despite global histone H4 hyperacetylation, increased proMMP-1 mRNA levels. This transcription activation was correlated with chromatin decondensation determined by nuclear texture image analysis technique. Western blot analysis of cell culture conditioned media revealed a significant increase in proMMP-1 secretion after 5-azadC or 5-azadC + TSA treatment compared to untreated cells. These results suggested that epigenetic mechanisms could be involved in proMMP-1 gene expression including chromatin supra-organization changes. Indeed, although the proMMP-1 gene promoter does not appear to contain CpG islands, its expression can be induced by the demethylating agent 5-azadC. Further experiments revealed that inhibition of protein neosynthesis by cycloheximide decreased 5-azadC-induced proMMP-1 mRNA, suggesting that epigenetically regulated intermediate molecules could be involved in proMMP-1 expression regulation in these cells.

  16. Role of phosphoinositide 3-kinase in the aggressive tumor growth of HT1080 human fibrosarcoma cells.

    Science.gov (United States)

    Gupta, S; Stuffrein, S; Plattner, R; Tencati, M; Gray, C; Whang, Y E; Stanbridge, E J

    2001-09-01

    We have developed a model system of human fibrosarcoma cell lines that do or do not possess and express an oncogenic mutant allele of N-ras. HT1080 cells contain an endogenous mutant allele of N-ras, whereas the derivative MCH603 cell line contains only wild-type N-ras. In an earlier study (S. Gupta et al., Mol. Cell. Biol. 20:9294-9306, 2000), we had shown that HT1080 cells produce rapidly growing, aggressive tumors in athymic nude mice, whereas MCH603 cells produced more slowly growing tumors and was termed weakly tumorigenic. An extensive analysis of the Ras signaling pathways (Raf, Rac1, and RhoA) provided evidence for a potential novel pathway that was critical for the aggressive tumorigenic phenotype and could be activated by elevated levels of constitutively active MEK. In this study we examined the role of phosphoinositide 3-kinase (PI 3-kinase) in the regulation of the transformed and aggressive tumorigenic phenotypes expressed in HT1080 cells. Both HT1080 (mutant N-ras) and MCH603 (wild-type N-ras) have similar levels of constitutively active Akt, a downstream target of activated PI 3-kinase. We find that both cell lines constitutively express platelet-derived growth factor (PDGF) and PDGF receptors. Transfection with tumor suppressor PTEN cDNA into HT1080 and constitutively active PI 3-kinase-CAAX cDNA into MCH603 cells, respectively, resulted in several interesting and novel observations. Activation of the PI 3-kinase/Akt pathway, including NF-kappaB, is not required for the aggressive tumorigenic phenotype in HT1080 cells. Activation of NF-kappaB is complex: in MCH603 cells it is mediated by Akt, whereas in HT1080 cells activation also involves other pathway(s) that are activated by mutant Ras. A threshold level of activation of PI 3-kinase is required in MCH603 cells before stimulatory cross talk to the RhoA, Rac1, and Raf pathways occurs, without a corresponding activation of Ras. The increased levels of activation seen were similar to those observed

  17. Anti-metastatic effects of fuzhengfangaitang on human fibrosarcoma cells HT1080.

    Science.gov (United States)

    Shim, Bum-Sang; Park, Kun-Koo; Choi, Seung-Hoon

    2003-01-01

    Fuzhengfangaitang (FZFAT) is used to inhibit recurrence and metastasis of cancer in the clinic. By applying an in vitro invasion assay model, we examined the antimetastatic effect of FZFAT. In the 3H-thymidine incorporation assay, FZFAT-treated groups showed a decreased DNA synthesis rate compared with the control group (F-value 87.42981, P-value 2.02E-08, F0.05(3,12) 3.4903). Gelatin zymogram assay showed that FZFAT decreased the gelatinolytic activity of matrix metalloproteinases-9 (MMP-9) from human fibrosarcoma cell line (HT-1080), at concentrations of 200 and 400 microg/ml. In the MMPs dot blotting assay, FZFAT inhibited the expression of MMP-1 at concentration of 100 microg/ml, and MMP-9 at concentrations of 200 and 400 microg/ml. Western blots for AP-1 and its signal mediators Erk and JNK showed that expression of Fos and JNK were decreased by the addition of FZFAT at 300 microg/ml, whereas Erk was not. Therefore it was evident that FZFAT regulated the expression of MMP-9 through its transcription factor AP-1 and the signal mediator JNK. We examined whether FZFAT inhibited the invasion of HT-1080 cells through matrigel precoated transwell chambers. The results showed that FZFAT effectively inhibited the invasion of HT-1080 cells as compared with the control phorbol 12-myristate-13-acetate (+PMA) groups (t-value 5.871584, P-value 0.013901, t0.05(2) 2.919987). From our research, part of the mechanism underlying the antimetastatic effect of FZFAT has been elucidated in vitro.

  18. Huaier aqueous extract induces apoptosis of human fibrosarcoma HT1080 cells through the mitochondrial pathway.

    Science.gov (United States)

    Cui, Yang; Meng, Hongmei; Liu, Weidong; Wang, Huan; Liu, Qingpeng

    2015-04-01

    In recent years, aqueous extract of Trametes robiniophila Murr. (Huaier), a traditional Chinese medicine, has been frequently used in China for complementary cancer therapy. However, the mechanisms underlying its anticancer effects have yet to be elucidated. The present study aimed to evaluate the ability of Huaier extract to inhibit proliferation, promote apoptosis and suppress mobility in the fibrosarcoma HT1080 cell line in vitro. The cells were treated with gradient doses of Huaier extract at concentrations of 0, 4, 8 or 16 mg/ml for 24, 48 or 72 h. The cell viability and motility were measured in vitro using MTT, invasive, migration and scratch assays. The distribution of the cell cycle and the extent of cellular apoptosis were analyzed by flow cytometry. The apoptotic pathways were detected using a mitochondrial membrane potential transition assay and western blotting. The results revealed that the cellular viability decreased significantly with increasing concentrations of Huaier extract. In addition, cell invasiveness and migration were also suppressed significantly. It was demonstrated that Huaier extract induced G2 cell-cycle arrest and cellular apoptosis in a time- and dose-dependent manner. The decreased mitochondrial membrane potential, the downregulation of B-cell lymphoma 2 and pro-caspase-3, and upregulation of Bcl-2-associated X protein, cleaved caspase-9 and caspase-3 suggested that Huaier extract induced the apoptosis of HT1080 cells through the mitochondrial pathway. The results of the present study indicate that Huaier extract is a potential complementary agent for the treatment of fibrosarcoma.

  19. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells.

    Science.gov (United States)

    Chen, Jyh-Yih; Lin, Wei-Ju; Lin, Tai-Lang

    2009-09-01

    As part of a continuing search for potential anticancer drug candidates from antimicrobial peptides of marine organisms, tilapia (Oreochromis mossambicus) hepcidin TH2-3 was evaluated in several tumor cell lines. The results indicated that TH2-3, a synthetic 20-mer antimicrobial peptide, specifically inhibited human fibrosarcoma cell (HT1080 cell line) proliferation and migration. The way in which TH2-3 inhibited HT1080 cell growth was then studied. TH2-3 inhibited HT1080 cell growth in a concentration-dependent manner according to an MTT analysis, which was confirmed by a soft-agar assay and AO/EtBr staining. Scanning electron microscopy revealed that TH2-3 caused lethal membrane disruption in HT1080 cancer cells, and a wound healing assay supported that TH2-3 decreased the migration of HT1080 cells. In addition, c-Jun mRNA expression was downregulated after treatment with TH2-3 for 48-96 h compared to the untreated group. These findings suggest a mechanism of cytotoxic action of TH2-3 and indicate that TH2-3 may be a promising chemotherapeutic agent against human fibrosarcoma cells.

  20. Matrix metalloproteinase-9 silencing by RNA interference promotes the adhesive-invasive switch in HT1080 human fibrosarcoma cells.

    Science.gov (United States)

    Zhu, Xishan; Tai, Weiping; Shi, Wei; Song, Yuguang; Zhang, Hongmei; An, Guangyu

    2012-01-01

    A high level of matrix metalloproteinase-9 (MMP-9) is associated with human tumor invasion and/or metastasis. The HT1080 human fibrosarcoma cell line is highly invasive and metastatic which constitutively express MMP-9. HT1080 cells transfected with a double stranded RNA that targeted the MMP-9 mRNA and the cellular characteristics were examined before and after interference. The inhibition effects of MMP-9 interference on the tumor growth of HT1080 cells in nude mice was also tested by xenograft assay. MMP-9 extinction in HT1080 resulted in the following: (1) inhibited cell mobility; (2) increased cell adhesion, and (3) attenuated tumor cell migration. In addition, MMP-9 knockdown concomitantly resulted in decreased levels of soluble ICAM-1, leading to an adhesion defect and tumor metastasis. Moreover, in vivo assay further demonstrated MMP-9 interference affecting the tumorigenesis of HT1080 cells in mice as follows (1) inhibition of tumor growth; (2) reduced tumor volume, and (3) prolonged survival time. Our observations defined a novel critical role for MMP-9 in the progression of HT1080 fibrosarcoma by changing the inter-cellular adhesion molecular-1 from membrane-anchored state to a soluble one which provides a target for promising tumor therapy in clinics.

  1. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Baier Kurt

    2007-11-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 (HIF-1 overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Methods Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9 and vascular endothelial growth factor (VEGF by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O2, 12 h conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h. Results Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER' compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. Conclusion HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro.

  2. 1,2,3,4-Diepoxybutane-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells

    OpenAIRE

    2013-01-01

    1,2,3,4-diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins ...

  3. Radioresistant cell strain of human fibrosarcoma cells obtained after long-term exposure to X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Wei, K.; Kodym, R. [Univ. of Vienna (Austria). Department of Radiotherapy and Radiobiology; Jin Cuizheng [Institute of Radiation Medicine, Beijing (China)

    1998-07-01

    A radioresistant cell strain from human fibrosarcoma HT1080 has been obtained after prolonged exposure to x-rays for 7 months (2 Gy per day, 5 days per week). This new strain, HT1080R, differs from HT1080 in a significantly increased ability of clonogenical survival, with coefficient {alpha} decreasing from 0.161 to 0.123 Gy{sup -1} and coefficient {beta} decreasing from 0.0950 to 0.0565 Gy{sup -2}. Furthermore, the radioresistance of HT1080R proved to be stable in long-term passaged cultures as well as in frozen samples. Differences between the two cell lines are also observed in the G-banded karyotype; the new cell line shows monosomy of chromosome 17 and loss of 5p{sup +} and 11q{sup +} present in the parental cells. These data suggest that the radioresistance may have been caused by radiation-induced cell mutation and that the resistant cells may have been selected by repeated irradiations. In order to characterize this new strain, the ability of the cells to rejoin DNA double-strand breaks, the cell cycle distribution and the amount of apoptosis after irradiation have been estimated; however, no differences are observed between these two cell strains. Although the mechanism of the elevated radioresistance remains unknown, this pair of cell strains can provide a new model system for further investigations with regard to the mechanisms of cellular radioresistance. The results also show that any type of irradiation similar to the schedules used in radiotherapy can lead to the formation and selection of more radioresistant cell clones in vitro, a phenomenon with possible implications for radiotherapy. (orig.) With 3 figs., 1 tab., 13 refs.

  4. Tetraspanin CD9 promotes the invasive phenotype of human fibrosarcoma cells via upregulation of matrix metalloproteinase-9.

    Directory of Open Access Journals (Sweden)

    Michael J Herr

    Full Text Available Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080 to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.

  5. Tetraspanin CD9 promotes the invasive phenotype of human fibrosarcoma cells via upregulation of matrix metalloproteinase-9.

    Science.gov (United States)

    Herr, Michael J; Kotha, Jayaprakash; Hagedorn, Nikolaus; Smith, Blake; Jennings, Lisa K

    2013-01-01

    Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.

  6. In vitro decreases of the fibrinolytic potential of cultured human fibrosarcoma cell line, HT1080, by Nigella sativa oil.

    Science.gov (United States)

    Awad, E M

    2005-01-01

    It is generally accepted that the fibrinolytic potential of tumor cells is related to their malignant phenotype. In the present study, Nigella sativa oil (NSO) was studied to evaluate its effect on the fibrinolytic potential of the fibosarcoma cell line HT1080 to elucidate whether this oil might have an antitumor activity through its modulation of the fibrinolytic potential of such cells. NSO produced a concentration-dependent inhibition of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor type 1 (PAI-1). When subconfluent HT1080 cells were conditioned with oil, a concentration (0.0-200 microg oil/ml)-dependent decrease in t-PA, u-PA and PAI-1 antigen was observed. There was also a concentration-dependent decrease (from 0.0 to 112.5 microg oil/ml) in the confluent cultures. The results showed that blackseed oil decreases the fibrinolytic potential of the human fibrosarcoma cell line (HT1080) in vitro, implying that inhibition of local tumor invasion and metastasis may be one such mechanism.

  7. Rottlerin induces autophagy and apoptotic cell death through a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells: the protective role of autophagy in apoptosis.

    Science.gov (United States)

    Song, Kyoung-Sub; Kim, Jong-Seok; Yun, Eun-Jin; Kim, Young-Rae; Seo, Kang-Sik; Park, Ji-Hoon; Jung, Yeon-Joo; Park, Jong-Il; Kweon, Gi-Ryang; Yoon, Wan-Hee; Lim, Kyu; Hwang, Byung-Doo

    2008-07-01

    Rottlerin is widely used as a protein kinase C-delta inhibitor. Recently, several reports have shown the possible apoptosis-inducing effect of rottlerin in some cancer cell lines. Here we report that rottlerin induces not only apoptosis but also autophagy via a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells. Rottlerin treatment induced a dose- and time-dependent inhibition of cell growth, and cytoplasmic vacuolations were markedly shown. These vacuoles were identified as acidic autolysosomes by electron microscopy, acidic vesicular organelle (AVO) staining and transfection of green fluorescent protein-LC3. The LC3-II protein level also increased after treatment with rottlerin. Prolonged exposure to rottlerin eventually caused apoptosis via loss of mitochondrial membrane potential and translocation of AIF from mitochondria to the nucleus. However, the activities of caspase-3, -8 and -9 were not changed, and PARP did not show signs of cleavage. Interestingly, the pretreatment of cells with a specific inhibitor of autophagy (3-methyladenine) accelerated rottlerin-induced apoptosis as revealed by an analysis of the subdiploid fraction and TUNEL assay. Nevertheless, the knockdown of PKC-delta by RNA interference neither affected cell growth nor acidic vacuole formation. Similarly, rottlerin-induced cell death was not prevented by PKC-delta overexpression. Taken together, these findings suggest that rottlerin induces early autophagy and late apoptosis in a PKC-delta-independent manner, and the rottlerin-induced early autophagy may act as a survival mechanism against late apoptosis in HT1080 human fibrosarcoma cells.

  8. 1,2,3,4-Diepoxybutane-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells.

    Science.gov (United States)

    Gherezghiher, Teshome B; Ming, Xun; Villalta, Peter W; Campbell, Colin; Tretyakova, Natalia Y

    2013-05-03

    1,2,3,4-Diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds.

  9. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion.

    Science.gov (United States)

    Barletta, Emanuela; Ramazzotti, Matteo; Fratianni, Florinda; Pessani, Daniela; Degl'Innocenti, Donatella

    2015-01-01

    Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression.

  10. Inhibitory effects of caffeic acid phenethyl ester on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells.

    Science.gov (United States)

    Hwang, Hye Jin; Park, Hyen Joo; Chung, Hwa-Jin; Min, Hye-Young; Park, Eun-Jung; Hong, Ji-Young; Lee, Sang Kook

    2006-05-01

    Caffeic acid phenethyl ester (CAPE) derived from honeybee propolis has been used as a folk medicine. Recent study also revealed that CAPE has several biological activities including antioxidation, anti-inflammation and inhibition of tumor growth. The present study investigated the effect of CAPE on tumor invasion and metastasis by determining the regulation of matrix metalloproteinases (MMPs). Matrix metalloproteinases, which are zinc-dependent proteolytic enzymes, play a pivotal role in tumor metastasis by cleavage of extracellular matrix (ECM) as well as nonmatrix substrates. On this line, we examined the influence of CAPE on the gene expression of MMPs (MMP-2, MMP-9, MT1-MMP), tissue inhibitor of metalloproteinase-2 (TIMP-2) and in vitro invasiveness of human fibrosarcoma cells. Dose-dependent decreases in MMP and TIMP-2 mRNA levels were observed in CAPE-treated HT1080 human fibrosarcoma cells as detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Gelatin zymography analysis also exhibited a significant down-regulation of MMP-2 and MMP-9 expression in HT1080 cells treated with CAPE compared to controls. In addition, CAPE inhibited the activated MMP-2 activity as well as invasion, motility, cell migration and colony formation of tumor cells. These data therefore provide direct evidence for the role of CAPE as a potent antimetastatic agent, which can markedly inhibit the metastatic and invasive capacity of malignant cells.

  11. Human U6 promoter drives stronger shRNA activity than its schistosome orthologue in Schistosoma mansoni and human fibrosarcoma cells.

    Science.gov (United States)

    Duvoisin, Raphaël; Ayuk, Mary A; Rinaldi, Gabriel; Suttiprapa, Sutas; Mann, Victoria H; Lee, Clarence M; Harris, Nicola; Brindley, Paul J

    2012-06-01

    Blood flukes or schistosomes are the causative agents of human schistosomiasis, one of the major neglected tropical diseases. Draft genome sequences have been reported for schistosomes, but functional genomics tools are needed to investigate the role and essentiality of the newly reported genes. Vector based RNA interference can contribute to functional genomics analysis for schistosomes. Using mRNA encoding reporter firefly luciferase as a model target, we compared the performance of a schistosome and a human promoter from the U6 gene in driving shRNA in human fibrosarcoma cells and in cultured schistosomes. Further, both a retroviral [Murine leukemia virus (MLV)] and plasmid (piggyBac, pXL-Bac II) vector were utilized. The schistosome U6 gene promoter was 270 bp in length, the human U6 gene promoter was 264 bp; they shared 41% identity. Following transduction of both HT1080 fibrosarcoma cells and schistosomules of Schistosoma mansoni with pseudotyped MLV virions, stronger knockdown of luciferase activity was seen with the virions encoding the human U6 promoter driven shRNA than the schistosome U6 promoter. A similar trend was seen after transfection of HT1080 cells and schistosomules with the pXL-Bac-II constructs-stronger knockdown of luciferase activity was seen with constructs encoding the human compared to schistosome U6 promoter. The findings indicate that a human U6 gene promoter drives stronger shRNA activity than its schistosome orthologue, not only in a human cancer cell line but also in larval schistosomes. This RNA polymerase III promoter represents a potentially valuable component for vector based RNA interference studies in schistosomes and related platyhelminth parasites.

  12. EFFECTS OF GENISTEIN ON INVASION AND MATRIX METALLOPROTEINASE ACTIVITIES OF HT1080 HUMAN FIBROSARCOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ Effects of genistein on invasion and matrix metalloproteinase activities were investigated in HT1080 human sarcoma cells.Invasion of HT1080 cells through reconstituted basement membrane was inhibited when the cells were treated with 100 μ mol/L and 200 μ mol/L genistein.At the same concentrations,genistein not only suppressed latent forms of matrix metalloprotinese-2 and-9(MMP-2 and MMP-9) to convert into active forms,but also increase dramatically the tissue inhibitor of metalloproteinase(TIMP-1) mRNA contents and reverse the imbalance of MMPs and TIMPs.However,expressions of MMP-2 and MMP-9 were not significantly affected.Suppression of MMP activation and increase of TIMP-1 expression will decrease matrix degradation by MMPs,and consequently inhibit invasions of the cells.These results emphasized the existence of the imbalance between MMPs and TIMPs in tumor invasion and metastasis formation.The value of genistein as a drug for antiinvasion and anti-metastasis chemotherapy was suggested.

  13. EFFECTS OF GENISTEIN ON INVASION AND MATRIX METALLOPROTEINASE ACTIVITIES OF HT1080 HUMAN FIBROSARCOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    颜春洪; 韩锐

    1999-01-01

    Effects of genistein on invasion and matrix metalloproteinase activities were investigated in HT1080 human sarcoma cells, lnvasion of HTI080 cells through reconstituted basement membnme was inhibited when the cells were treated with 100μmol/L and 200μmol/L genistein; At the same concentrations,genistein not only suppressed latent forms of matrix metalloprotinese-2 and-9 (MMP-2 mad MMP-9) to convert into active forms, but also increase dramatically the tissue inhibitor of metalloproteinase (TIMP-1 ) mRNA contents and reverse the imbalance of MMPs and TIMPs. However, expressions of MMP-2 and MMP-9 were not sigrdficantly affected. Suppression of MMP activation and increase of TMP-1 expression will decrease matrix degradation by MMPs, and consequently inhibit invasions of the cells. These results emphasized the existence of the imbalance between MMPs and TIMPs in tumor invasion mad metastasis formation, The value of genistein as a drug for antiinvasion and anti-metastasis chemotherapy was suggested.

  14. Inhibitory effects of p-dodecylaminophenol on the invasiveness of human fibrosarcoma cell line HT1080.

    Science.gov (United States)

    Takahashi, Noriko; Takeda, Kotaro; Imai, Masahiko

    2013-10-01

    Cancer is a major cause of death, and the development of new anticancer drugs is urgently needed. Invasion and metastasis are the primary causes of death due to cancer rather than growth of the primary tumor. In the current study, we examined the anti-invasive effects of p-dodecylaminophenol (1), which was developed based on N-(4-hydroxyphenyl)retinamide (2), a synthetic amide of all-trans-retinoic acid (3). In HT1080 cells 1 inhibited growth, induced apoptosis and arrested the cell cycle in S phase in a dose-dependent manner. In addition, 1 significantly suppressed cell invasion, and the activity and mRNA expression of matrix metalloproteinase-9 (MMP-9). Furthermore, the expression of the reversion-inducing cysteine-rich protein with Kazal motifs (RECK), which is a negative regulator of MMP-9, was increased by treatment with 1. These results suggest that 1 could be an effective anti-cancer agent that suppresses cell growth through apoptosis induction and cell cycle arrest, which also inhibits cell invasion by decreasing MMP-9 expression due to an increase in RECK. Compound 1 might be useful clinically as a new and potent anticancer agent that could overcome adverse side effects of the retinoids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells.

    Science.gov (United States)

    Nam, Hyang; Kim, Moon-Moo

    2013-05-01

    The oxidative damage of lipid, protein and DNA is known to be involved in chronic inflammation as well as metastasis. It has been highlighted for searching natural compounds without toxicity to prevent development of these diseases. Thus, it was investigated whether eugenol can inhibit matrix metalloproteinase (MMP) expression and activity as well as antioxidant effect. Eugenol was contained as a major ingredient in herbs such as clove and Magnoliae Flos. The direct scavenging effects of eugenol on DPPH radical, hydrogen peroxide, reducing power, lipid peroxidation and genomic DNA damage related to oxidative stress were evaluated in cell free system. It was observed that eugenol specifically exhibited higher inhibitory effect on hydrogen peroxide than other reactive oxygen species, and also blocked DNA oxidation and lipid peroxidation induced by hydroxyl radical. In addition, the inhibitory effects of eugenol on the activity and expression of MMP-9 activity related to metastasis were determined using gelatin zymography and western-blot. The data showed that it inhibited MMP-9 activities in PMA-stimulated HT1080 cells. Furthermore, it was found that eugenol exerts inhibitory effects on MMP-9 via inactivation of ERK. Therefore, these results suggest that eugenol could be available as an excellent agent for prevention of metastasis related to oxidative stress.

  16. Low molecular weight heparin suppresses receptor for advanced glycation end products-mediated expression of malignant phenotype in human fibrosarcoma cells.

    Science.gov (United States)

    Takeuchi, Akihiko; Yamamoto, Yasuhiko; Munesue, Seiichi; Harashima, Ai; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi; Tsuchiya, Hiroyuki

    2013-06-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor and its engagement by ligands such as high mobility group box 1 (HMGB1) is implicated in tumor growth and metastasis. Low molecular weight heparin (LMWH) has an antagonistic effect on the RAGE axis and is also reported to exert an antitumor effect beyond the known activity of anticoagulation. However, the link between the anti-RAGE and antitumor activities of LMWH has not yet to be fully elucidated. In this study, we investigated whether LMWH could inhibit tumor cell proliferation, invasion, and metastasis by blocking the RAGE axis using in vitro and in vivo assay systems. Stably transformed HT1080 human fibrosarcoma cell lines were obtained, including human full-length RAGE-overexpressing (HT1080(RAGE)), RAGE dominant-negative, intracellular tail-deleted RAGE-overexpressing (HT1080(dnRAGE)), and mock-transfected control (HT1080(mock)) cells. Confocal microscopy showed the expression of HMGB1 and RAGE in HT1080 cells. The LMWH significantly inhibited HMGB1-induced NFκB activation through RAGE using an NFκB-dependent luciferase reporter assay and the HT1080 cell lines. Overexpression of RAGE significantly accelerated, but dnRAGE expression attenuated HT1080 cell proliferation and invasion in vitro, along with similar effects on local tumor mass growth and lung metastasis in vivo. Treatment with LMWH significantly inhibited the migration, invasion, tumor formation, and lung metastasis of HT1080(RAGE) cells, but not of HT1080(mock) or HT1080(dnRAGE) cells. In conclusion, this study revealed that RAGE exacerbated the malignant phenotype of human fibrosarcoma cells, and that this exacerbation could be ameliorated by LMWH. It is suggested that LMWH has therapeutic potential in patients with certain types of malignant tumors. © 2013 Japanese Cancer Association.

  17. Dieckol from Ecklonia cava Regulates Invasion of Human Fibrosarcoma Cells and Modulates MMP-2 and MMP-9 Expression via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2011-01-01

    Full Text Available The matrix metalloproteinase (MMP family is involved in the breakdown of extracellular matrix in normal physiological processes, as well as in the disease processes such as arthritis and cancer metastasis. In the present study, dieckol was obtained with high yield from marine brown alga Ecklonia cava (EC, and its effect was assessed on the expression of MMP-2 and -9 and morphological changes in human fibrosarcoma cell line (HT1080. Dieckol inhibited the expression of MMP-2 and -9 in a dose-dependent manner and also suppressed the cell invasion and the cytomorphology in 3D culture system on HT1080 cells. Moreover, dieckol may influence nuclear factor kappa B (NF-κB pathway without obvious influence on activator protein-1 (AP-1 pathway and tissue inhibitor of metalloproteinases (TIMPs. In conclusion, dieckol could significantly suppress MMP-2 and -9 expression and alter cytomorphology of HT1080 cell line via NF-κB pathway.

  18. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song Ja

    2016-06-01

    Salinomycin (SAL) is a polyether ionophore antibiotic that has recently been shown to regulate a variety of cellular responses in various human cancer cells. However, the effects of SAL on metastatic capacity of HT1080 human fibrosarcoma cells have not been elucidated. We investigated the effect of SAL on migration and invasion, with emphasis on the expression and activation of matrix metalloproteinase (MMP)-2 in HT1080 human fibrosarcoma cells. Treatment of SAL promoted the expression and activation of MMP-2 in a dose- and time-dependent manner, as detected by western blot analysis, gelatin zymography, and real-time polymerase chain reaction. SAL also increased metastatic capacities, as determined by an increase in the migration and invasion of cells using the wound healing assay and the invasion assay, respectively. To confirm the detailed molecular mechanisms of these effects, we measured the activation of phosphoinositide 3 kinase (PI3-kinase) and mitogen-activated protein kinase (MAPK)s (ERK-1/2 and p38 kinase), as detected by the phosphorylated proteins through western blot analysis. SAL treatment increased the phosphorylation of Akt and MAPKs. Inhibition of PI3-kinase, ERK-1/2, and p38 kinase with LY294002, PD98059, and SB203580, respectively, in the presence of SAL suppressed the metastatic capacity by reducing MMP-2 expression, as determined by gelatin zymography. Our results indicate that the PI3-kinase and MAPK signaling pathways are involved in migration and invasion of HT1080 through induction of MMP-2 expression and activation. In conclusion, SAL significantly increases the metastatic capacity of HT1080 cells by inducing MMP-2 expression via PI3-kinase and MAPK pathways. Our results suggest that SAL may be a potential agent for the study of cancer metastatic capacities.

  19. Dietary gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action.

    Science.gov (United States)

    Filipiak, Kamila; Hidalgo, Maria; Silvan, Jose Manuel; Fabre, Benjamin; Carbajo, Rodrigo J; Pineda-Lucena, Antonio; Ramos, Ana; de Pascual-Teresa, Beatriz; de Pascual-Teresa, Sonia

    2014-02-01

    Gallic acid and anthocyanins are abundant plant food bioactives present in many fruits and vegetables, being especially important in the composition of berries. Gallic acid has been shown to possess cytotoxic properties in several cancer cell lines and to inhibit carcinogenesis in animal models. However, its mechanism of action is not yet fully understood. The aim of this study was to elucidate whether the observed inhibitory activity of gallic acid against gelatinases corresponds to its cytotoxic activity in HT1080 cells and to determine if anthocyanins could exhibit a similar behavior. Gallic acid and delphinidin-3-glucoside have shown selective cytotoxicity towards HT1080 cells. Further analysis by a migration and invasion assay showed anti-invasive activities of gallic acid, delphinidin and pelargonidin-3-glucosides. Zymographic analysis demonstrated the inhibitory activity of gallic acid at the level of secreted and activated gelatinases. Moreover, gallic acid inhibited MMP-2 and MMP-9 proteolytic activity with very similar potency. NMR and molecular modelling experiments confirmed the interaction of gallic acid with MMP-2, and suggested that it takes place within the catalytic center. In this work we give some new experimental data supporting the role of these compounds in the inhibition of metalloproteases as the mechanism for their cytotoxic activity against fibrosarcoma.

  20. Inhibitory effect of the carnosine-gallic acid synthetic peptide on MMP-2 and MMP-9 in human fibrosarcoma HT1080 cells.

    Science.gov (United States)

    Kim, Sung-Rae; Eom, Tae-Kil; Byun, Hee-Guk

    2014-09-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade extracellular matrix components and play important roles in a variety of biological and pathological processes such as malignant tumor metastasis and invasion. In this study, we constructed carnosine-gallic acid peptide (CGP) to identify a better MMP inhibitor than carnosine. The inhibitory effects of CGP on MMP-2 and MMP-9 were investigated in the human fibrosarcoma (HT1080) cell line. As a result, CGP significantly decreased MMP-2 and MMP-9 expression levels without a cytotoxic effect. Moreover, CGP may inhibit migration and invasion in HT1080 cells through the urokinase plasminogen activator (uPA)-uPA receptor signaling pathways to inhibit MMP-2 and MMP-9. Based on these results, it appears that CGP may play an important role in preventing and treating several MMP-2 and MMP-9-mediated health problems such as metastasis.

  1. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  2. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype.

    Directory of Open Access Journals (Sweden)

    Michael P Schwartz

    Full Text Available Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s and primary human dermal fibroblasts (hDFs with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM arrays and proteolytic 3-dimensional (3D migration was investigated using matrix metalloproteinase (MMP-degradable poly(ethylene glycol (PEG hydrogels ("synthetic extracellular matrix" or "synthetic ECM". In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18. Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  3. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells.

    Science.gov (United States)

    Lin, Wei-Ju; Chien, Yi-Lun; Pan, Chia-Yu; Lin, Tai-Lang; Chen, Jyh-Yih; Chiu, Shu-Jun; Hui, Cho-Fat

    2009-02-01

    Epinecidin-1, a synthetic 21-mer antimicrobial peptide originally identified from grouper (Epinephelus coioides), specifically exhibited high antimicrobial activities against both Gram-negative and Gram-positive bacteria. In the current study we report on the in vitro cytotoxicity of the peptide, an important factor before it can be considered for further applications in cancer therapy. The cytotoxicity of epinecidin-1 was investigated against several cancer cells (A549, HA59T/VGH, HeLa, HepG2, HT1080, RAW264.7, and U937) and normal cells (AML-12, NIH3T3, and WS-1) with the MTT assay, and the inhibition of cancer cell growth was confirmed by a soft agar assay and scanning electron microscopy. However, cell variations were detected with AO/EtBr staining, while apoptosis and necrosis gene expressions in HT1080 cells after treatment with the epinecidin-1 peptide and Nec-1 showed that epinecidin-1 had an anti-necrosis function in HT1080 cells. The data presented here indicate that epinecidin-1 has in vitro antitumor activity against the HT1080 cell line, and functions like lytic peptides. In addition, our results suggest that epinecidin-1 may prove to be an effective chemotherapeutic agent for human fibrosarcoma cells in the future.

  4. Inhibition of the expression on MMP-2, 9 and morphological changes via human fibrosarcoma cell line by 6,6'-bieckol from marine alga Ecklonia cava.

    Science.gov (United States)

    Zhang, Chen; Li, Yong; Shi, Xiujuan; Kim, Se-kwon

    2010-01-01

    Matrix Metalloproteinases (MMPs) are a family of zinc-endopeptidases which can degrade extracellular matrix (ECM) components and play important roles in a variety of biological and pathological processes. 6,6'-bieckol isolated and characterized from an edible marine brown alga Ecklonia cava (EC), according to the comprehensive spectral analysis of MS and NMR data. Here the influence of 6,6'-bieckol on expressions of MMPs was examined by zymography and western blot analysis via human fibrosarcoma cell line (HT1080). It is shown that 6,6'-bieckol significantly down regulated the expressions of MMP-2 and -9 in dose-dependent manner. The influence of 6,6'-bieckol on the cell viability and cell behavior of HT1080 cells were also investigated, our dates shown that it suppressed the migration and 3D culture in HT1080 cells. Meanwhile, we explored several signal pathways which may contribute to this process, and found the suppressing of MMPs expressions in HT1080 cells might be due to the suppression of NF-kappaB signal pathway. [BMB reports 2010; 43(1): 62-68].

  5. Dissection of Ras-Dependent Signaling Pathways Controlling Aggressive Tumor Growth of Human Fibrosarcoma Cells: Evidence for a Potential Novel Pathway

    Science.gov (United States)

    Gupta, Swati; Plattner, Rina; Der, Channing J.; Stanbridge, Eric J.

    2000-01-01

    Activation of multiple signaling pathways is required to trigger the full spectrum of in vitro and in vivo phenotypic traits associated with neoplastic transformation by oncogenic Ras. To determine which of these pathways are important for N-ras tumorigenesis in human cancer cells and also to investigate the possibility of cross talk among the pathways, we have utilized a human fibrosarcoma cell line (HT1080), which contains an endogenous mutated allele of the N-ras gene, and its derivative (MCH603c8), which lacks the mutant N-ras allele. We have stably transfected MCH603c8 and HT1080 cells with activating or dominant-negative mutant cDNAs, respectively, of various components of the Raf, Rac, and RhoA pathways. In previous studies with these cell lines we showed that loss of mutant Ras function results in dramatic changes in the in vitro phenotypic traits and conversion to a weakly tumorigenic phenotype in vivo. We report here that only overexpression of activated MEK contributed significantly to the conversion of MCH603c8 cells to an aggressive tumorigenic phenotype. Furthermore, we have demonstrated that blocking the constitutive activation of the Raf-MEK, Rac, or RhoA pathway alone is not sufficient to block the aggressive tumorigenic phenotype of HT1080, despite affecting a number of in vitro-transformed phenotypic traits. We have also demonstrated the possibility of bidirectional cross talk between the Raf-MEK-ERK pathway and the Rac-JNK or RhoA pathway. Finally, overexpression of activated MEK in MCH603c8 cells appears to result in the activation of an as-yet-unidentified target(s) that is critical for the aggressive tumorigenic phenotype. PMID:11094080

  6. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Science.gov (United States)

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  7. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Aeyung Kim

    Full Text Available Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90% compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  8. Inhibitory effects of a benz[f]indole-4,9-dione analog on cancer cell metastasis mediated by the down-regulation of matrix metalloproteinase expression in human HT1080 fibrosarcoma cells.

    Science.gov (United States)

    Park, Hyen Joo; Lee, Hyun-Jung; Min, Hye-Young; Chung, Hwa-Jin; Suh, Myung Eun; Park-Choo, Hye-Young; Kim, Choonmi; Kim, Hwa Jung; Seo, Eun-Kyung; Lee, Sang Kook

    2005-12-19

    In our previous study, a synthetic benz[f]indole-4,9-dione analog, 2-amino-3-ethoxycarbonyl-N-methylbenz[f]indole-4,9-dione (SME-6), exhibited a potential anti-tumor activity. We, in this study, further explored the anti-metastatic and anti-invasive effect of SME-6 by determining the regulation of matrix metalloproteinases (MMPs). MMPs, zinc-dependent proteolytic enzymes, play a pivotal role in tumor metastasis by cleavage of extracellular matrix as well as non-matrix substrates. On this line, we examined the influence of SME-6 on the expressions of MMP-2, -9, membrane type 1-MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-1, -2), and in vitro invasiveness of human fibrosarcoma cells. Dose-dependent suppressions of MMPs and TIMP-2 mRNA levels were observed in SME-6-treated HT1080 human fibrosarcoma cells detected by reverse transcriptase-polymerase chain reaction. TIMP-1 mRNA level, however, was induced in a dose-dependent manner. Gelatin zymographic analysis also exhibited a significant down-regulation of MMP-2 and -9 expression in HT1080 cells treated with SME-6 compared to controls. Furthermore, SME-6 inhibited the invasion, motility, and migration of tumor cells. Taken together, these data provide a possible role of SME-6 as a potential antitumor agent with the markedly inhibition of the metastatic and invasive capacity of malignant cells.

  9. Difference between Toxicities of Iron Oxide Magnetic Nanoparticles with Various Surface-Functional Groups against Human Normal Fibroblasts and Fibrosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2013-10-01

    Full Text Available Recently, many nanomedical studies have been focused on magnetic nanoparticles (MNPs because MNPs possess attractive properties for potential uses in imaging, drug delivery, and theranostics. MNPs must have optimized size as well as functionalized surface for such applications. However, careful cytotoxicity and genotoxicity assessments to ensure the biocompatibility and biosafety of MNPs are essential. In this study, Fe3O4 MNPs of different sizes (approximately 10 and 100–150 nm were prepared with different functional groups, hydroxyl (–OH and amine (–NH2 groups, by coating their surfaces with tetraethyl orthosilicate (TEOS, 3-aminopropyltrimethoxysilane (APTMS or TEOS/APTMS. Differential cellular responses to those surface-functionalized MNPs were investigated in normal fibroblasts vs. fibrosarcoma cells. Following the characterization of MNP properties according to size, surface charge and functional groups, cellular responses to MNPs in normal fibroblasts and fibrosarcoma cells were determined by quantifying metabolic activity, membrane integrity, and DNA stability. While all MNPs induced just about 5% or less cytotoxicity and genotoxicity in fibrosarcoma cells at lower than 500 μg/mL, APTMS-coated MNPs resulted in greater than 10% toxicity against normal cells. Particularly, the genotoxicity of MNPs was dependent on their dose, size and surface charge, showing that positively charged (APTMS- or TEOS/APTMS-coated MNPs induced appreciable DNA aberrations irrespective of cell type. Resultantly, smaller and positively charged (APTMS-coated MNPs led to more severe toxicity in normal cells than their cancer counterparts. Although it was difficult to fully differentiate cellular responses to various MNPs between normal fibroblasts and their cancer counterparts, normal cells were shown to be more vulnerable to internalized MNPs than cancer cells. Our results suggest that functional groups and sizes of MNPs are critical determinants of degrees

  10. A novel role of Rho-kinase in the regulation of ligand-induced phosphorylated EGFR endocytosis via the early/late endocytic pathway in human fibrosarcoma cells.

    Science.gov (United States)

    Nishimura, Yukio; Bereczky, Biborka; Yoshioka, Kiyoko; Taniguchi, Shun'ichiro; Itoh, Kazuyuki

    2011-10-01

    The small GTPase RhoA and its downstream effectors, the Rho-associated kinase (Rho-kinase) family, are known to regulate cell morphology, motility, and tumor progression via the regulation of actin cytoskeleton rearrangement. In the present study, we evaluated the role of Rho-kinase in the intracellular endocytic trafficking of ligand-induced phosphorylated epidermal growth factor receptor (pEGFR). We investigated the time course of the internalization fate of EGF-induced pEGFR via the early/late endocytic pathway in human fibrosarcoma cell line HT1080 cells using Y-27632, a selective Rho-kinase inhibitor. We found, using confocal immunofluorescence microscopy and Western blot analysis, a large accumulation of pEGFR in the nuclei of HT1080 cells. In contrast, we observed decreased amounts of the pEGFR-positive staining in the nuclei along with an accumulation of cytosolic pEGFR staining when the cells were incubated for 15-30 min in the presence of Y-27632, implying that an aberrant endocytic trafficking mechanism of pEGFR occurs in HT1080 cells whereby pEGFR might be selectively translocated into the nucleus. Moreover, we demonstrated that after 15-min of stimulation with Texas Red-EGF, increasing numbers of pEGFR-positive staining that had colocalized with Texas Red-EGF-positive punctate staining were seen in the cytoplasm of HT1080 cells but after 30-min of stimulation, most of this staining had disappeared from the cytoplasm and a large accumulation of pEGFR-positive staining appeared in the nucleus. Thus, nuclear accumulation of pEGFR appears to occur in an EGF-dependent manner. In contrast, such nuclear pEGFR-positive staining was not seen in the Y-27632-treated cells. Furthermore, silencing of RhoA or Rho-kinases I/II by sequence specific siRNAs considerably inhibited the EGF-dependent nuclear accumulation of pEGFR. Collectively, these results provide the first evidence that Rho-kinase signaling pathway plays a suppressive role in the intracellular vesicle

  11. In situ hybridization of the feline major satellite DNA FA-SAT in feline fibrosarcoma cell lines and feline fibrosarcoma tissue sections

    OpenAIRE

    Alfaro Alarcón, Alejandro

    2009-01-01

    Feline fibrosarcomas are the most common skin tumors of cats. Despite this high frequency and the publication of different hypotheses for their pathogenesis by several authors, the alterations accompanying the development of this tumor are still not completely understood. We studied the feline major satellite DNA (FA-SAT) hybridization pattern by FISH in four fibrosarcoma cell lines and one normal embryonic fibroblastic cell line as well as in 30 fibrosarcomas from 28 cats. Of the latter, ...

  12. Evaluation of the anticancer potentials of Origanum marjorana on fibrosarcoma (HT-1080 cell line

    Directory of Open Access Journals (Sweden)

    Shirisha Rao

    2014-02-01

    Full Text Available Objective: To evaluate the potential anticancer activity of Origanum majorana (marjoram (O. marjorana on the fibrosarcoma cancer cell line HT-1080 through various in-vitro assays. Methods: Crude extracts were prepared from O. marjorana using ethanol, methanol and water as the solvents following standard protocols. Cytotoxicity was assessed using MTT assay, trypan blue dye exclusion, AO/EB staining and fluorescence microscopical analysis and DNA fragmentation analysis. Results: Ethanol extract has shown significant cytotoxicity (P<0.001 to fibrosarcoma and least toxicity to normal human lymphocytes when compared to the controls. Conclusions: This study shows that O. marjorana ethanol extract has anticancer potentials and can be explored further for active component isolation, identification and characterization.

  13. Fibrosarcoma of maxilla: A rare case report

    Directory of Open Access Journals (Sweden)

    Sandhya Shrivastava

    2016-01-01

    Full Text Available Fibrosarcoma is a malignant tumor of fibroblasts. At one time, it was considered one of the most common soft tissue sarcomas. However, the diagnosis of fibrosarcoma is made much less frequently today because of the recognition and separate classification of other spindle cell lesions that have similar microscopic features. Of all the fibrosarcomas occurring in humans, only 0.05% occur in the head and neck region. Here, we present a case of 22-year-old female patient with the swelling on the left anterior aspect of the face. Histopathologically, the lesion was diagnosed as fibrosarcoma and immunohistochemically, the lesional cells showed positivity for vimentin.

  14. Impacts of tomato extract on the mice fibrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Shirzad Hedayatollah

    2013-01-01

    Full Text Available Introduction: The anticancer effect of tomato lycopene has been approved in some cancers. This study was aimed to determine the prohibitive and therapeutic effects of tomato extract on the growth of fibrosarcoma in mice. Materials and Methods: In this experimental study 3 groups of 10 male Balb/c mice were injected subcutaneously with 5×105 WEHI-164 tumor cells in the chest area. Prevention group was fed tomato extract (5 mg for a 4 week period (from 2 weeks before tumor cell injection up to 2 weeks after injection and the treatment group was fed simultaneously with tumor cell injection up to two weeks after injection daily by an oral gastric tube. The tumors areas were measured and recorded on days 10, 12, 14, 16, 18, 20 and 22. The data were analyzed using Kruskal-Wallis and Mann-Whitney tests. Results: The results showed that the tumor areas in control group were significantly more after the intervention than two groups of treatment and prevention (p<0.05. The difference was not statistically significant between the two groups of prevention and treatment. Conclusion: With emphasize on antioxidant of tomato, it seems that tomato extract has an important role in prevention and control fibrosarcoma growth.

  15. Functional and biochemical studies of CD9 in fibrosarcoma cell line.

    Science.gov (United States)

    Chen, Shuli; Sun, Yingxia; Jin, Zhigao; Jing, Xianghong

    2011-04-01

    CD9, a member of the tetraspanin family, plays important roles in a variety of cell activities. Fibrosarcoma is a malignant tumor that arises from fibroblasts. Low CD9 expression is found in fibrosarcoma tumor, but function of CD9 in fibrosarcoma has been rarely studied. In this study, stable cell lines for CD9 overexpression and vector were generated in HT1080, a human fibroscarcoma cell line, and cellular functions were widely investigated. In CD9-HT1080 cells, CD9 mainly localized in the membrane and co-localized with F-actin in the filopodia of cell surface. In functional assays, we demonstrated that CD9 could up-regulate total and active caspase-3 expression and induce cell apoptosis, but cell proliferation remained unchanged. CD9 overexpression inhibited HT1080 cell adhesion to FN but promoted cell spreading on FN. We also observed CD9 reduced cell migration using FN a chemoattractant and inhibited cell colony formation in soft agar medium. To explore the biochemical mechanism for functional changes, we investigated the effects of CD9 overexpression on cellular pathways and protein association. CD9 overexpression induced Akt phosphorylation on FN but did not change total Akt expression. Phosphorylation of p38 but not ERK was increased by CD9 overexpression, total p38 and ERK were not affected. CD9 overexpression did not affect the expression of TGFα, EGFR, β1, and EWI-2, but EWI-F expression was up-regulated. Moreover, CD9 could associate with TGFα, EGFR, β1, EWI-2, and EWI-F in HT1080 cell line. Take together, CD9 overexpression had promoting effects on cell apoptosis and cell spreading, but had inhibitory effects on cell adhesion, migration, and cell colony formation. These effects might be ascribed to CD9 associations with EWI-2/EWI-F/β1 complex and EGFR pathway, and the activation of Akt and p38 signalings as well.

  16. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells.

  17. Cell Lines Derived From Feline Fibrosarcoma Display Unstable Chromosomal Aneuploidy and Additionally Centrosome Number Aberrations

    National Research Council Canada - National Science Library

    Erichsen, J. von; Hecht, W; Löhberg-Gruene, C; Reinacher, M

    2012-01-01

    The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast...

  18. Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer.

    Directory of Open Access Journals (Sweden)

    Rounak Nande

    Full Text Available Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced of feline fibrosarcomas.

  19. Indocyanine Green Derivative Covalently Conjugated with Gold Nanorods for Multimodal Phototherapy of Fibrosarcoma Cells.

    Science.gov (United States)

    Luo, Teng; Qian, Xiaoqing; Lu, Zhiyong; Shi, Yiwen; Yao, Zhirong; Chai, Xinyu; Ren, Qiushi

    2015-04-01

    A hydrophilic indocyanine green derivative (ICG-Der-02) was covalently doped into mesoporous silica-coated gold nanorods (AuNRs/mSiO2). The self-synthesized derivative offers one carboxyl functional group on a side chain, which enables ICG-Der-02 to be covalently linked to nanomaterials and reduces the probability of leakage/desorption of the dye. The detection of infrared luminescence around 1270 nm confirmed that 102 is efficiently generated by the nanocomposite (AuNRs/mSiO2-ICG-Der-02). Furthermore, a second layer of silica was coated onto the nanocomposite, which then was conjugated with the α(v) integrin-targeting cyclic peptide (RGD-4C). The cell tests showed that the resulting nanoconjugate (AuNRs/mSiO2-ICG-Der-02/RGD-4C) was able to bind preferentially to HT-1080 human fibrosarcoma cells. Due to the synergistic effect of the produced nanoconjugates, a dual-modality photothermal and photochemical therapy was successfully achieved by 808 nm irradiation. Compared to using photothermal or photochemical therapy alone, the dual-modality photothermal/photochemical therapeutic strategy proved to be more damaging to HT-1080 cells and enhanced the effectiveness of photodestruction. Our work presents a novel approach to the multimodal treatment of fibrosarcoma and shows promise for future use in cancer theranostics.

  20. TNP-470 Suppresses the Tumorigenicity of HT1080 Fibrosarcoma Tumor Through the Inhibition of VEGF Secretion From the Tumor Cells

    OpenAIRE

    Mitsunori Kaya; Takuro Wada; Satoshi Nagoya; Satoshi Kawaguchi; Toshihiko Yamashita; Nobuyuki Yamamoto; Mitsunori Yoshimoto; Futoshi Okada; Seiichi Ishii

    2001-01-01

    Angiogenesis inhibitors are a novel class of promising therapeutic agents for treating cancer. TNP-470, a systemic analogue of fumagillin, is an angiogenesis inhibitor capable of suppressing the tumorigenicity in several animal models even though the mechanisms of action have not been completely clarified. In the current study, we investigated the effects of TNP-470 on human fibrosarcoma cells in vivo and in vitro. The administration of TNP-470 could suppress the tumorigenicity of HT1080 fibr...

  1. TRAIL and Taurolidine induce apoptosis and decrease proliferation in human fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Klein-Hitpass Ludger

    2008-12-01

    Full Text Available Abstract Background Disseminated soft tissue sarcoma still represents a therapeutic dilemma because effective cytostatics are missing. Therefore we tested TRAIL and Tarolidine (TRD, two substances with apoptogenic properties on human fibrosarcoma (HT1080. Methods Viability, apoptosis and necrosis were visualized by TUNEL-Assay and quantitated by FACS analysis (Propidiumiodide/AnnexinV staining. Gene expression was analysed by RNA-Microarray and the results validated for selected genes by rtPCR. Protein level changes were documented by Western Blot analysis. NFKB activity was analysed by ELISA and proliferation assays (BrdU were performed. Results and discussion The single substances TRAIL and TRD induced apoptotic cell death and decreased proliferation in HT1080 cells significantly. Gene expression of several genes related to apoptotic pathways (TRAIL: ARHGDIA, NFKBIA, TNFAIP3; TRD: HSPA1A/B, NFKBIA, GADD45A, SGK, JUN, MAP3K14 was changed. The combination of TRD and TRAIL significantly increased apoptotic cell death compared to the single substances and lead to expression changes in a variety of genes (HSPA1A/B, NFKBIA, PPP1R15A, GADD45A, AXL, SGK, DUSP1, JUN, IRF1, MYC, BAG5, BIRC3. NFKB activity assay revealed an antipodal regulation of the several subunits of NFKB by TRD and TRD+TRAIL compared to TRAIL alone. Conclusion TRD and TRAIL are effective to induce apoptosis and decrease proliferation in human fibrosarcoma. A variety of genes seems to be involved, pointing to the NFKB pathway as key regulator in TRD/TRAIL-mediated apoptosis.

  2. Slit2 Inhibits Growth and Metastasis of Fibrosarcoma and Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Hee Kyung Kim

    2008-12-01

    Full Text Available Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  3. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma.

    Science.gov (United States)

    Kim, Hee Kyung; Zhang, Hong; Li, Hui; Wu, Tsung-Teh; Swisher, Stephen; He, Donggou; Wu, Lizhi; Xu, Jianmin; Elmets, Craig A; Athar, Mohammad; Xu, Xìao-chun; Xu, Hui

    2008-12-01

    Slits are a group of secreted glycoproteins that play a role in the regulation of cell migration. Previous studies suggested that Slit2 might be a tumor-suppressor gene. However, it remained to be determined whether Slit2 suppressed tumor growth and metastasis in animal models. We showed that Slit2 expression was decreased or abolished in human esophageal squamous cell carcinomas (SCCs) compared to normal tissues by in situ hybridization. Stable transfection of human SCC A431 and fibrosarcoma HT1080 cells with Slit2 gene suppressed tumor growth in athymic nude mice. Apoptosis in Slit2-transfected tumors was increased, whereas proliferating cells were decreased, suggesting a mechanism for Slit2-mediated tumor suppression. This was supported by further analysis indicating that antiapoptotic molecules Bcl-2 and Bcl-xl and cell cycle molecules Cdk6 and Cyclin D1 were down-regulated in Slit2-transfected tumors. Furthermore, wound healing and Matrigel invasion assays showed that the transfection with Slit2 inhibited tumor cell migration and invasion. Slit2-transfected tumors showed a high level of keratin 8/18 and a low level of N-cadherin expression compared to empty vector-transfected tumors. More importantly, Slit2 transfection suppressed the metastasis of HT1080 tumor cells in lungs after intravenous inoculation. Collectively, our study has demonstrated that Slit2 inhibits tumor growth and metastasis of fibrosarcoma and SCC and that its effect on cell cycle and apoptosis signal pathways is an important mechanism for Slit2-mediated tumor suppression.

  4. A novel herbal medicine, KIOM-C, induces autophagic and apoptotic cell death mediated by activation of JNK and reactive oxygen species in HT1080 human fibrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Aeyung Kim

    Full Text Available KIOM-C was recently demonstrated to have anti-metastatic activity in highly malignant cancer cells via suppression of NF-κB-mediated MMP-9 activity. In addition, it was reported to be effective for clearance of the influenza virus by increasing production of anti-viral cytokines, such as TNF-α and IFN-γ, and efficacious in the treatment of pigs suffering from porcine circovirus-associated disease (PCVAD. In this study, we investigated whether KIOM-C induces cancer cell death and elucidated the underlying anti-cancer mechanisms. In addition, we examined whether KIOM-C oral administration suppresses in vivo tumor growth of HT1080 cells in athymic nude mice. We initially found that KIOM-C at concentrations of 500 and 1000 µg/ml caused dose- and time-dependent cell death in cancer cells, but not normal hepatocytes, to approximately 50% of control levels. At the early stage of KIOM-C treatment (12 h, cells were arrested in G1 phase, which was accompanied by up-regulation of p21 and p27, down-regulation of cyclin D1, and subsequent increases in apoptotic and autophagic cells. Following KIOM-C treatment, the extent of caspase-3 activation, PARP cleavage, Beclin-1 expression, and LC3-II conversion was remarkably up-regulated, but p62 expression was down-regulated. Phosphorylation of AMPK, ULK, JNK, c-jun, and p53 was increased significantly in response to KIOM-C treatment. The levels of intracellular ROS and CHOP expression were also increased. In particular, the JNK-specific inhibitor SP600125 blocked KIOM-C-induced ROS generation and CHOP expression almost completely, which consequently almost completely rescued cell death, indicating that JNK activation plays a critical role in KIOM-C-induced cell death. Furthermore, daily oral administration of 85 and 170 mg/kg KIOM-C efficiently suppressed the tumorigenic growth of HT1080 cells, without systemic toxicity. These results collectively suggest that KIOM-C efficiently induces cancer cell death by

  5. Systems Biology Strategy Reveals PKC-delta is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Kentaro eHayashi

    2015-01-01

    Full Text Available Cancer cells are highly variable and resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL induced treatment is gaining momentum, due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. However, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response approach, and predicted protein kinase C (PKC as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080 in TRAIL stimulation (Piras, V. et al. 2011, Scientific Reports. Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29. Using PKC inhibitor Bisindolylmaleimide I, we first demonstrate, as predicted by our previous model, cell viability is significantly impaired with over 95% death of both cancer types. Next, to identify crucial PKC isoform from 10 known members, we analyzed their mRNA expressions in HT1080 cells and shortlisted 4 isoforms for siRNA knock-down (KD experiments. From these KDs, PKC-delta produced the most cancer cell death in conjunction with TRAIL. Overall, systems biology approach, combining model prediction with experimental validation, holds promise for TRAIL-based cancer therapy.

  6. Quantitative Structure Inter-Activity Relationship (QSInAR. Cytotoxicity Study of Some Hemisynthetic and Isolated Natural Steroids and Precursors on Human Fibrosarcoma Cells HT1080

    Directory of Open Access Journals (Sweden)

    Marius Lazea

    2011-08-01

    Full Text Available Combined experimental and quantitative structure inter-activity relationship (QSIAR computation methods were advanced in order to establish the structural and mechanistic influences that steroids and triterpenes, either as newly synthesized or naturally isolated products, have on human HT1080 mammalian cancer cells. The main Hansch structural indicators such as hydrophobicity (LogP, polarizability (POL and total energy (Etot were considered and both the structure-projected as well as globally computed correlations were reported; while the inter-activity correlation of the global activity with those projected on structural information was revealed as equal to the direct structural-activity one for the trial sets of compounds, the prediction for the testing set of molecules reported even superior performances respecting those characteristic for the calibration set, validating therefore the present QSInAR models; accordingly, it follows that the LogP carries the most part of the cytotoxic signal, while POL has little influence on inhibiting tumor growth—A complementary behavior with their earlier known influence on genotoxic carcinogenesis. Regarding the newly hemisynthetic compounds it was found that stigmasta-4,22-dien-3-one is not adapted for cell membrane diffusion; it is recommended that aminocinnamyl chlorohydrate be further modified in order to acquire better steric influence, while aminocinnamyl-2,3,4,6-O-tétraacétyl-α-D-glucopyranoside was identified as being inhibited in the tumor cell by other molecular mechanisms–here not revealed–although it has a moderate-high anti-cancer structurally predicted activity.

  7. Junctional adhesion molecule-C promotes metastatic potential of HT1080 human fibrosarcoma.

    Science.gov (United States)

    Fuse, Chiaki; Ishida, Yuuki; Hikita, Tomoya; Asai, Tomohiro; Oku, Naoto

    2007-03-16

    The junctional adhesion molecule (JAM) family is a key molecule in a process called transendothelial migration or diapedesis. Here, we report implications of JAM-C in cancer metastasis. We first determined the mRNA expression of JAMs in 19 kinds of cancer cell lines. JAM-C was expressed in most of tumors having potent metastatic properties. Especially in murine K-1735 melanoma cell lines, the highly metastatic sublines (M2 and X21) strongly expressed JAM-C when compared with the poorly metastatic ones (C-10 and C23). Next, we investigated the role of JAM-C in cancer metastasis by using human JAM-C (hJAM-C) gene-transfected HT1080 fibrosarcoma cells. In comparison with mock-transfected HT1080 cells, these cells showed a significant increase in the adhesion to various extracellular substrates and the invasion across a Matrigel-coated membrane. The knockdown of hJAM-C using small interfering RNA resulted in the suppression of both the adhesion and the invasion of HT1080 cells, suggesting that endogenous hJAM-C might be involved in tumor metastasis. Finally, we studied the role of hJAM-C in an in vivo experimental metastatic model. The results showed that the overexpression of hJAM-C in HT1080 cells significantly decreased the life spans of the tumorbearing mice. In contrast, the knockdown of hJAM-C in HT1080 cells suppressed the weight gain of the lungs with metastatic colonies. We conclude that the expression of JAM-C promotes metastasis by enhancing both the adhesion of cancer cells to extracellular matrices and the subsequent invasion.

  8. Systems Biology Strategy Reveals PKCδ is Key for Sensitizing TRAIL-Resistant Human Fibrosarcoma

    Science.gov (United States)

    Hayashi, Kentaro; Tabata, Sho; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar

    2015-01-01

    Cancer cells are highly variable and largely resistant to therapeutic intervention. Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced treatment is gaining momentum due to TRAIL’s ability to specifically target cancers with limited effect on normal cells. Nevertheless, several malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a dynamic computational model, based on perturbation-response differential equations approach, and predicted protein kinase C (PKC) as the most effective target, with over 95% capacity to kill human fibrosarcoma (HT1080) in TRAIL stimulation (1). Here, to validate the model prediction, which has significant implications for cancer treatment, we conducted experiments on two TRAIL-resistant cancer cell lines (HT1080 and HT29). Using PKC inhibitor bisindolylmaleimide I, we demonstrated that cell viability is significantly impaired with over 95% death of both cancer types, in consistency with our previous model. Next, we measured caspase-3, Poly (ADP-ribose) polymerase (PARP), p38, and JNK activations in HT1080, and confirmed cell death occurs through apoptosis with significant increment in caspase-3 and PARP activations. Finally, to identify a crucial PKC isoform, from 10 known members, we analyzed each isoform mRNA expressions in HT1080 cells and shortlisted the highest 4 for further siRNA knock-down (KD) experiments. From these KDs, PKCδ produced the most cancer cell death in conjunction with TRAIL. Overall, our approach combining model predictions with experimental validation holds promise for systems biology based cancer therapy. PMID:25601862

  9. Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion.

    Science.gov (United States)

    Zhang, Li; Hill, Richard P

    2007-08-15

    This study examined possible mechanisms for hypoxia-increased metastasis in a green fluorescent protein-labeled human fibrosarcoma cell line (HT1080). The efficiency of the lung arrest of tumor cells, which can be dependent on the adhesive potential of the tumor cells, was assessed by measuring the level of integrin alpha3beta1 protein and by adhesion assays, whereas the extravasation potential was examined by an invasion assay. These properties were not changed by exposure to hypoxia, indicating that lung arrest and extravasation are unlikely to play a major role in the effect of hypoxia on metastasis in this model. The main effect of hypoxic exposure was found to be increased survival after lung arrest as determined by clonogenic assay of tumor cells recovered from mouse lungs after i.v. injection. Concomitantly, apoptosis was identified as responsible for the death of lung-arrested cells, suggesting the involvement of an altered apoptotic response following hypoxic exposure of these cells. Consistent with this finding, we found that the effect of hypoxia on both increased metastasis and survival of arrested cells was inhibited by treatment with farnesylthiosalicylic acid. However, this effect was not due to down-regulation of hypoxia-inducible factor-1alpha, a mechanism of action of this drug reported by previous studies. Further detailed studies of the mechanisms of action of the drug are needed.

  10. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    OpenAIRE

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study...

  11. Umbelliprenin-coated Fe{sub 3}O{sub 4} magnetite nanoparticles: Antiproliferation evaluation on human Fibrosarcoma cell line (HT-1080)

    Energy Technology Data Exchange (ETDEWEB)

    Khorramizadeh, M.R. [Department of Pathobiology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Esmail-Nazari, Z. [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Zarei-Ghaane, Z. [Department of Pathobiology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shakibaie, M. [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Mollazadeh-Moghaddam, K. [Students Scientific Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Iranshahi, M. [Department of Pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Shahverdi, A.R., E-mail: shahverd@sina.tums.ac.ir [Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2010-08-30

    The potential applications of Fe{sub 3}O{sub 4} magnetite nanoparticles (MNPs) in nanomedicine as drug delivery systems are well known. In this study we prepared umbelliprenin-coated Fe{sub 3}O{sub 4} MNPs and evaluated the antiproliferative effect of combination in vitro. After synthesis of Fe{sub 3}O{sub 4} MNPs, particles were characterized by transmission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction spectroscopy techniques. The natural candidate compound - umbelliprenin- was isolated and identified and umbelliprenin-coated Fe{sub 3}O{sub 4} MNPs were prepared, using precipitation method. The surface chemistry of umbelliprenin-coated Fe{sub 3}O{sub 4} MNPs as well as their thermal decomposition characteristics was examined using Fourier transform infrared spectroscopy and Thermogravimetric Analyzer equipment, respectively. HT-1080 cells were cultured until the logarithmic phase of growth, and MTT assay was successfully carried out to evaluate the possible cytotoxic effects of umbelliprenin-coated Fe{sub 3}O{sub 4} MNPs in viable cells in vitro. The results demonstrated that umbelliprenin has moderate antiproliferative effects with IC{sub 50} value of 50 {mu}g/mL. However, the combination of umbelliprenin and Fe{sub 3}O{sub 4} MNPs showed the IC{sub 50} value of 9 {mu}g/mL. In other words, cell proliferation decreased to the remarkably-low proportion of 45% after treating cells with umbelliprenin-coated Fe{sub 3}O{sub 4} MNPs. This suggests that with the aid of nanoparticles as carriers, natural products may have even broader range of medical applications in future.

  12. Fibrosarcoma of the meninges

    Directory of Open Access Journals (Sweden)

    Ishwar Chand Premsagar

    2010-03-01

    Full Text Available Meningeal fibrosarcomas are rare tumors. Only 41 cases have been reported in the literature to date. Primary central nervous system fibrosarcomas are very aggressive neoplasms and have a poor prognosis. Hence they need to be correctly diagnosed. This is a case of a 13-year old boy with intracranial space occupying lesion. The mass was completely removed and histological examination was characteristic of meningeal fibrosarcoma. The pathological diagnosis is usually made on routine light microscopic examination; however, occasionally these may be difficult to distinguish from other malignant neoplasms such as gliomas, meningiomas and metastases. The diagnosis of fibrosarcoma is based on the identification of a predominant herringbone architectural pattern, the overall uniformity of the spindle cell population, the prominent vimentin positivity, and the presence of pericellular reticulin fibre network. IHC helps to exclude other diagnoses.

  13. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  14. Fluorescence-guided surgery of retroperitoneal-implanted human fibrosarcoma in nude mice delays or eliminates tumor recurrence and increases survival compared to bright-light surgery.

    Directory of Open Access Journals (Sweden)

    Fuminari Uehara

    Full Text Available The aim of this study is to determine if fluorescence-guided surgery (FGS can eradicate human fibrosarcoma growing in the retroperitoneum of nude mice. One week after retroperitoneal implantation of human HT1080 fibrosarcoma cells, expressing green fluorescent protein (GFP (HT-1080-GFP, in nude mice, bright-light surgery (BLS was performed on all tumor-bearing mice (n = 22. After BLS, mice were randomized into 2 treatment groups; BLS-only (n = 11 or the combination of BLS + FGS (n = 11. The residual tumors remaining after BLS were resected with FGS using a hand-held portable imaging system under fluorescence navigation. The average residual tumor area after BLS + FGS was significantly smaller than after BLS-only (0.4 ± 0.4 mm(2 and 10.5 ± 2.4 mm(2, respectively; p = 0.006. Five weeks after surgery, the fluorescent-tumor areas of BLS- and BLS + FGS-treated mice were 379 ± 147 mm(2 and 11.7 ± 6.9 mm(2, respectively, indicating that FGS greatly inhibited tumor recurrence compared to BLS. The combination of BLS + FGS significantly decreased fibrosarcoma recurrence compared to BLS-only treated mice (p < 0.001. Mice treated with BLS+FGS had a significantly higher disease-free survival rate than mice treated with BLS-only at five weeks after surgery. These results suggest that combination of BLS + FGS significantly reduced the residual fibrosarcoma volume after BLS and improved disease-free survival.

  15. Growth-Inhibitory and Apoptosis-Inducing Effects of Punica granatum L. var. spinosa (Apple Punice) on Fibrosarcoma Cell Lines

    OpenAIRE

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Yousefi, Bahman; Abdollahpour Alitappeh, Meghdad; Khori, Vahid

    2014-01-01

    Purpose: Punica granatum L. var. granatum (Pomegranate), an herbaceous plant found in Iran, The aim of this study was to investigate the cytotoxic effects, induction of apoptosis, and the mechanism of cell death of ethanol extract from Punica granatum L. var. spinosa on the mouse fibrosarcoma cell line, WEHI-164.

  16. Tumorigenicity of IL-1α– and IL-1β–Deficient Fibrosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Irina Nazarenko

    2008-06-01

    Full Text Available Analyzing the growth of fibrosarcoma lines derived from IL-1α–, IL-1β–, or IL-1αβ–knockout (−/− mice in the immunocompetent host revealed that tumor-derived IL-1α and IL-1β exert strong and opposing effects on immune response induction, which prohibited the evaluation of a potential impact on tumorigenicity. Therefore, in vivo growth of IL-1–deficient tumor lines was evaluated in nu/nu mice and was compared with in vitro growth characteristics. All IL-1–deficient fibrosarcoma lines grow in immunocompromised mice. However, IL-1α−/−β–competent (comp lines grow more aggressively, efficiently induce angiogenesis, and recruit inflammatory cells. Despite stronger tumorigenicity of IL-1βcomp lines, IL-1α strengthens anchorage-independent growth, but both IL-1α and IL-1β support drug resistance. Corresponding to the aggressive growth, IL-1βcomp cells display increased matrix adhesion, motility, and cable formation on matrigel, likely supported by elevated αv/β3 and matrix metalloproteinase expression. Recruitment of myeloid cells requires IL-1β but is regulated by IL-1α, because inflammatory chemokine and cytokine expression is stronger in IL-1α−/−βcomp than in IL-1wt lines. This regulatory effect of tumorderived IL-1α is restricted to the tumor environment and does not affect systemic inflammatory response induction by tumor-derived IL-1β. Both sarcoma cell–derived IL-1α and IL-1β promote tumor growth. However, IL-1α exerts regulatory activity on the tumor cell–matrix cross-talk, and only IL-1β initiates systemic inflammation.

  17. Derivation of feline vaccine-associated fibrosarcoma cell line and its growth on chick embryo chorioallantoic membrane - a new in vivo model for veterinary oncological studies.

    Science.gov (United States)

    Zabielska, K; Lechowski, R; Król, M; Pawłowski, K M; Motyl, T; Dolka, I; Zbikowski, A

    2012-12-01

    Feline vaccine associated fibrosarcomas are the second most common skin tumor in cats. Methods of treatment are: surgery, chemotherapy and radiotherapy. Nevertheless, the usage of cytostatics in feline vaccine associated sarcoma therapy is limited due to their adverse side effects, high toxicity and low biodistribution after i.v. injection. Therefore, much research on new therapeutic drugs is being conducted. In human medicine, the chick embryo chorioallantoic membrane (CAM) model is used as a cheap and easy to perform assay to assess new drug effectiveness in cancer treatment. Various human cell lines have different tumors growth on CAM. In veterinary medicine such model has not been described yet. In the present article derivation of feline vaccine associated fibrosarcoma cell line and its growth on CAM is described. The cell line and the tumor grown were confirmed by histopathological and immunohistochemical examination. As far as we believe, this is the first attempt to create such model, which may be used for further in vivo studies in veterinary oncology.

  18. Infantile fibrosarcoma successfully treated with chemotherapy, with occurrence of calcifying aponeurotic fibroma and pleomorphic/spindled celled lipoma at the site 12 years later.

    Science.gov (United States)

    DeComas, Amalia M; Heinrich, Stephen D; Craver, Randall

    2009-06-01

    The treatment of infantile fibrosarcoma has traditionally been wide resection. Chemotherapy has been investigated as an adjuvant and primary treatment in cases in which surgery would cause unacceptable morbidity. Recurrences normally occur within a year of completion of the chemotherapy and display the same histology. We present a child with an infantile fibrosarcoma of the elbow, successfully treated with chemotherapy alone, who developed a calcifying aponeurotic fibroma and a spindle cell/pleomorphic lipoma at the tumor site 12 years later.

  19. Inhibition of Growth and Induction of Apoptosis in Fibrosarcoma Cell Lines by Echinophora platyloba DC: In Vitro Analysis

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2013-01-01

    Full Text Available Echinophora platyloba DC plant (Khousharizeh is one of the indigenous medicinal plants which is used as a food seasoning and medicine in Iran. The objective of this study was to examine the in vitro cytotoxic activity and the mechanism of cell death of crude methanolic extracts prepared from Echinophora platyloba DC, on mouse fibrosarcoma cell line (WEHI-164. Cytotoxicity and viability of methanolic extract was assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and dye exclusion assay. Cell death ELISA was employed to quantify the nucleosome production result from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase- (TdT- mediated dUTP nick end labeling (TUNEL assay. Our results demonstrated that the extract decreased cell viability, suppressed cell proliferation, and induced cell death in a time- and dose-dependent manner in WEHI-164 cells (IC50 = 196.673 ± 12.4 μg/mL when compared with a chemotherapeutic anticancer drug, Toxol. Observation proved that apoptosis was the major mechanism of cell death. So the Echinophora platyloba DC extract was found to time- and dose-dependently inhibit the proliferation of fibrosarcoma cell possibly via an apoptosis-dependent pathway.

  20. Hydatid Cyst Protoscolices Induce Cell Death in WEHI-164 Fibrosarcoma Cells and Inhibit the Proliferation of Baby Hamster Kidney Fibroblasts In Vitro

    Directory of Open Access Journals (Sweden)

    Hossein Yousofi Darani

    2012-01-01

    Full Text Available Both in vitro and in vivo models have demonstrated that some parasites can interfere with tumor cell growth. The present study investigates the anticancer activity of hydatid cyst protoscolices on WEHI-164 fibrosarcoma cells and baby hamster kidney (BHK fibroblast cells in vitro. Those above two cell types were treated with live hydatid cyst protoscolices or left untreated for control groups. After 48 h, lactate dehydrogenase (LDH and cell counts were assayed for both treated cells and control groups. Following treatment with hydatid cyst protoscolices, cell proliferation of both cell types was inhibited, and lysis of fibrosarcoma cells increased. Based on these results, it appears that hydatid cyst protoscolices have strong anticancer activity, and additional studies are needed to further clarify the mechanisms of this activity.

  1. Inhibition of cellular proliferation and enhancement of hydrogen peroxide production in fibrosarcoma cell line by weak radio frequency magnetic fields.

    Science.gov (United States)

    Castello, Pablo R; Hill, Iain; Sivo, Frank; Portelli, Lucas; Barnes, Frank; Usselman, Robert; Martino, Carlos F

    2014-12-01

    This study presents experimental data for the effects of weak radio frequency (RF) magnetic fields on hydrogen peroxide (H2O2) production and cellular growth rates of fibrosarcoma HT1080 cells in vitro. Cells were exposed either to 45 µT static magnetic fields (SMFs)-oriented vertical to the plane of growth or to SMFs combined with weak 5 and 10 MHz RF magnetic fields of 10 µTRMS intensity perpendicular to the static field. Cell numbers were reduced up to 30% on Day 2 for the cells exposed to the combination of SMF and a 10 MHz RF magnetic field compared with the SMF control cells. In addition, cells exposed to 10 MHz RF magnetic fields for 8 h increased H2O2 production by 55%. The results demonstrate an overall magnetic field-induced biological effect that shows elevated H2O2 levels with accompanying decrease in cellular growth rates. © 2014 Wiley Periodicals, Inc.

  2. Immunoexpression of Ki67, proliferative cell nuclear antigen, and Bcl-2 proteins in a case of ameloblastic fibrosarcoma.

    Science.gov (United States)

    Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Silva, Brunno Santos de Freitas; Cury, Sérgio Elias Vieira; Fonseca, Felipe Paiva; Salim, Rodrigo Alves; Pinto Júnior, Décio dos Santos

    2010-12-01

    Ameloblastic fibrosarcoma (AFS), regarded as the malignant counterpart of the benign ameloblastic fibroma, is an extremely rare odontogenic neoplasm with only 68 cases reported in the English literature up to 2009. It is composed of a benign odontogenic epithelium, resembling that of ameloblastoma, and a malignant mesenchymal part exhibiting features of fibrosarcoma. Due to the rarity of the lesion, little is known about its molecular pathogenesis; therefore, in the current study, we sought to evaluate the immunoexpression of Ki67, proliferative cell nuclear antigen, and Bcl-2 proteins in AFS, comparing the results obtained with its benign counterpart, as well as to report a new case of this rare entity affecting a 19-year-old female patient. The results obtained revealed that all the proteins evaluated were overexpressed in the malignant mesenchymal portion of AFS if compared with ameloblastic fibroma, suggesting that nuclear proliferative factors such as Ki67 and proliferative cell nuclear antigen, in association to histopathologic features, may be useful markers for identifying the malignancy and that, despite the lack of molecular analysis in the case reported, Bcl-2 alteration may play a role in AFS pathogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  4. Biological study of the effect of water soluble [N-(2-hydroxybenzyl)-L-aspartato] gallium complexes on breast carcinoma and fibrosarcoma cells.

    Science.gov (United States)

    Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid

    2016-10-01

    Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.

  5. Fibrosarcoma of the Gingiva: An Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Kafil Akhtar

    2016-07-01

    Full Text Available Fibrosarcoma is a malignant tumor of the fibroblasts, which is liable to recur and metastasize, most frequently in the lungs. Although fibrosarcomas are rare, they can occur anywhere in the body. The most common sites are in the retroperitoneum, thigh, knee, and distal extremities. It is very uncommon in the head and neck region and comprises only about 1% of all the malignancies in humans. Almost 23% are seen in the oral cavity. The prognosis for fibrosarcomas is poor with a five-year survival rate of 20–35%. The common modality of treatment is radical surgery. We report a rare presentation of gingival fibrosarcoma in a young female, who presented with a painless lump.

  6. Graded hypoxia modulates the invasive potential of HT1080 fibrosarcoma and MDA MB231 carcinoma cells.

    Science.gov (United States)

    Subarsky, Patrick; Hill, Richard P

    2008-01-01

    Spatial and temporal oxygen heterogeneity exists in most solid tumour microenvironments due to an inadequate vascular network supplying a dense population of tumour cells. An imbalance between oxygen supply and demand leads to hypoxia within a significant proportion of a tumour, which has been correlated to the likelihood of metastatic dissemination in both rodent tumour models and human patients. Experimentally, it has been demonstrated that near-anoxic in vitro exposure results in transiently increased metastatic potential in some tumour cell lines. The purpose of this study was to examine the effect of graded low oxygen conditions on the invasive phenotype of human tumour cells using an in vitro model of basement membrane invasion, in which we measured oxygen availability directly at the invasion surface of the transwell chamber. Our results show a relationship between culture vessel geometry and time to achieve hypoxia which may affect the interpretation of low oxygen experiments. We exposed the human tumour cell lines, HT1080 and MDA MB231, to graded normobaric oxygen (5% O(2)-0.2% O(2)) either during or prior to in vitro basement membrane invasion to simulate conditions of intravasation and extravasation. A secondary aim was to investigate the potential regulation of matrix metalloproteinase activity by oxygen availability. We identified significant reductions in invasive ability under low oxygen conditions for the HT1080 cell line and an increase in invasion at intermediate oxygen conditions for the MDA MB231 cell line. There were differences in the absolute activity of the individual matrix metalloproteinases, MMP-2, -9, -14, between the two cell lines, however there were no significant changes following exposure to hypoxic conditions. This study demonstrates cell line specific effects of graded oxygen levels on invasive potential and suggests that intermediate levels of low oxygen may increase metastatic dissemination.

  7. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    Science.gov (United States)

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  8. Mechanism of inhibitory actions of minocycline and doxycycline on ascitic fluid production induced by mouse fibrosarcoma cells.

    Science.gov (United States)

    Wakai, K; Ohmura, E; Satoh, T; Murakami, H; Isozaki, O; Emoto, N; Demura, H; Shizume, K; Tsushima, T

    1994-01-01

    Semisynthetic tetracyclines (TCNs) are used for the management of malignant pleural effusions as sclerosing agents. However, their precise mechanism of actions are uncertain. In the present study, the mechanism of inhibitory effects of minocycline (MINO) and doxycycline (DOXY), on the accumulation of ascitic fluid induced by mouse fibrosarcoma (Meth-A) cells were investigated using male mice. Meth-A cells inoculated intraperitoneally elicited 2.5-4 ml of bloody ascites 10 days after implantation. The production of ascitic fluid was suppressed in a dose-related manner by daily intraperitoneal injections of MINO or DOXY, whereas vehicle (normal saline with 0.01N HCl) did not exert a significant effect. The inhibitory activity of these two substances was quite similar; one mg/mouse of MINO or DOXY inhibited the accumulation of fluid by 87% and 84%, respectively. The survival rate of Meth-A-bearing mice treated with MINO or DOXY was higher than that of the controls. Macroscopic examination of the peritoneal cavity did not reveal any obvious effects, such as adhesions, in mice treated with either MINO or DOXY. In vitro studies showed that MINO and DOXY suppressed Meth-A cell growth with IC50s of 5 microM and 8 microM, respectively. Maximal suppression (95%) was achieved at MINO and DOXY concentrations of 25 microM. The above observations suggest that MINO and DOXY inhibit the accumulation of ascites by a direct effect on Meth-A cell growth. Therefore, it appears that TCNs injected into the pleural cavity to manage malignant effusions in man exert their activity, at least in part, by suppressing malignant cell growth.

  9. Ameloblastic fibrosarcoma: a cytologist's perspective.

    Science.gov (United States)

    Gupta, Nalini; Barwad, Adarsh; Kumar, Rajiv; Rijuneeta; Vaiphei, Kim

    2011-08-01

    Fine-needle aspiration cytology of a case of ameloblastic fibrosarcoma (AFS), an unusual odontogenic tumor related to ameloblastoma (AB), was performed in a 25-year-old female with a 1 cm swelling in the left lower orbital region along with involvement of zygomatic region. Aspiration of the tumor yielded a cellular sample composed predominantly of mesenchymal element and few clusters representing epithelial component showing tall columnar cells with peripheral palisading. Detailed cytomorphological features of AFS are discussed along with differential diagnosis from other tumors such as AB, desmoplastic AB, odontogenic fibroma, ameloblastic fibrodentinoma and ameloblastic fibro-odontoma, ameloblastic fibroma. Copyright © 2010 Wiley-Liss, Inc.

  10. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    Science.gov (United States)

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-03-15

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells.

    Science.gov (United States)

    Castoria, G; Giovannelli, P; Di Donato, M; Ciociola, A; Hayashi, R; Bernal, F; Appella, E; Auricchio, F; Migliaccio, A

    2014-12-04

    The functions of androgen receptor (AR) in stromal cells are still debated in spite of the demonstrated importance of these cells in organ development and diseases. Here, we show that physiological androgen concentration (10 nM R1881 or DHT) fails to induce DNA synthesis, while it consistently stimulates cell migration in mesenchymal and transformed mesenchymal cells. Ten nanomolar R1881 triggers p27 Ser10 phosphorylation and its stabilization in NIH3T3 fibroblasts. Activation of Rac and its downstream effector DYRK 1B is responsible for p27 Ser10 phosphorylation and cell quiescence. Ten nanomolar androgen also inhibits transformation induced by oncogenic Ras in NIH3T3 fibroblasts. Overexpression of an AR mutant unable to interact with filamin A, use of a small peptide displacing AR/filamin A interaction, and filamin A knockdown indicate that the androgen-triggered AR/filamin A complex regulates the pathway leading to p27 Ser10 phosphorylation and cell cycle arrest. As the AR/filamin A complex is also responsible for migration stimulated by 10 nM androgen, our report shows that the androgen-triggered AR/filamin A complex controls, through Rac 1, the decision of cells to halt cell cycle and migration. This study reveals a new and unexpected role of androgen/AR signalling in coordinating stromal cell functions.

  12. Enhancing anti-tumor efficacy of Doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Michał Wójcik

    Full Text Available BACKGROUND: Feline injection-site sarcomas are malignant skin tumors of mesenchymal origin, the treatment of which is a challenge for veterinary practitioners. Methods of treatment include radical surgery, radiotherapy and chemotherapy. The most commonly used cytostatic drugs are cyclophosphamide, doxorubicin and vincristine. However, the use of cytostatics as adjunctive treatment is limited due to their adverse side-effects, low biodistribution after intravenous administration and multidrug resistance. Colloid gold nanoparticles are promising drug delivery systems to overcome multidrug resistance, which is a main cause of ineffective chemotherapy treatment. The use of colloid gold nanoparticles as building blocks for drug delivery systems is preferred due to ease of surface functionalization with various molecules, chemical stability and their low toxicity. METHODS: Stability and structure of the glutathione-stabilized gold nanoparticles non-covalently modified with doxorubicin (Au-GSH-Dox was confirmed using XPS, TEM, FT-IR, SAXRD and SAXS analyses. MTT assay, Annexin V and Propidium Iodide Apoptosis assay and Rhodamine 123 and Verapamil assay were performed on 4 feline fibrosarcoma cell lines (FFS1WAW, FFS1, FFS3, FFS5. Statistical analyses were performed using Graph Pad Prism 5.0 (USA. RESULTS: A novel approach, glutathione-stabilized gold nanoparticles (4.3 +/- 1.1 nm in diameter non-covalently modified with doxorubicin (Au-GSH-Dox was designed and synthesized. A higher cytotoxic effect (p<0.01 of Au-GSH-Dox than that of free doxorubicin has been observed in 3 (FFS1, FFS3, FFS1WAW out of 4 feline fibrosarcoma cell lines. The effect has been correlated to the activity of glycoprotein P (main efflux pump responsible for multidrug resistance. CONCLUSIONS: The results indicate that Au-GSH-Dox may be a potent new therapeutic agent to increase the efficacy of the drug by overcoming the resistance to doxorubicin in feline fibrosarcoma cell lines

  13. Postirradiation fibrosarcoma following radical mastectomy

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Nagamitsu, S.; Tsuneyoshi, M.

    1978-03-01

    A case of fibrosarcoma arising in the scar of the radical mastectomy with postoperative irradiation of breast carcinoma is reported. The tumors arose five times in spite of the extirpations including surrounding tissue since 11 years after radical mastectomy and postoperative irradiation. All of arisen tumors were diagnosed fibrosarcoma histologically and with every recurrence the aggravation of malignancy of tumors was shown. In this case, the primary tumor of the breast was infiltrating carcinoma and no sign of fibrosarcoma was noted histologically. The mastectomy scar was indicated the irradiation therapy postoperatively and fibrosarcoma developed 11 years after postoperative irradiation. Namely, this case agreed to the strict criteria of the postirradiation sarcoma proposed by Cahan et al. In this paper, a case of postirradiation fibrosarcoma arising in the scar of radical mastectomy for carcinoma is presented.

  14. Oridonin induces apoptosis and autophagy in murine fibrosarcoma L929 cells partly via NO-ERK-p53 positive-feedback loop signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Yuan-chao YE; Hong-ju WANG; Lei XU; Wei-wei LIU; Bin-bin LIU; Shin-lchi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2012-01-01

    Aim:To investigate the role of nitric oxide (NO) in oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 Cells and the underlying molecular mechanisms.Methods; Cell viability was measured using MTT assay.Intracellular NO level,SubG1 cell ratio and autophagy cell ratios were analyzed with flow cytometry after diaminofluorescein-2 diacetate (DAF-2DA),propidium iodide (PI) and monodansylcadaverine (MDC) staining,respectively.Protein expression was examined using Western blot analysis.Results:Exposure of L929 cells to oridonin (50 μmol/L) for 24 h led to intracellular NO production.Pretreatment with NOS inhibitor 1400w or L-NAME inhibited oridonin-induced apoptosis and autophagy in L929 cells.The pretreatment decreased the apoptosisrelated protein Bax translocation and cytochrome c release,increased Bcl-2 level,reversed the autophay-associated protein Beclin 1 increase and conversion of LC3 Ⅰ to LC3 Ⅱ.Furthermore,pretreatment with NO scavenger DTT completely inhibited oridonin-induced apoptosis and autophagy in L929 cells.In addition,oridonin (50 μmol/L) activated ERK and p53 in L929 cells,and the interruption of ERK and p53 activation by PD 98059,pifithrin-α,or ERK siRNA decreased oridonin-induced apoptosis and autophagy.The inhibition of NO production reduced oridonin-induced ERK and p53 activation,and NO production was down-regulated by blocking ERK and p53activation.Conclusion:NO played a pivotal role in oridonin-induced apoptosis and autophagy in L929 cells.Taken together with our previous finding that ERK contributes to p53 activation,it appears that NO,ERK,and p53 form a positive feedback loop.Consequently,we suggest that oridonin-induced apoptosis and autophagy are modulated by the NO-ERK-p53 molecular signaling mechanism in L929 cells.

  15. Congenital fibrosarcoma of the ileum: case report with molecular confirmation and literature review.

    LENUS (Irish Health Repository)

    Rizkalla, Hala

    2012-02-01

    Congenital fibrosarcoma is a rare, soft tissue malignancy of infancy, most commonly involving the distal extremities. We report a case of congenital fibrosarcoma of the ileum in a 5-day-old boy who presented with an acute abdomen due to ileal perforation. Partial ileal resection was carried out with successful anastomosis. Grossly, the resected small bowel showed focal luminal stenosis with a thickened, indurated wall. Histology showed a transmural primitive spindle cell proliferation with a morphology consistent with congenital fibrosarcoma. The associated hallmark chromosomal translocation t(12;15)(q13;q25) was demonstrated by reverse transcriptase polymerase chain reaction.

  16. Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma

    Indian Academy of Sciences (India)

    Anuradha Rai; Ashim K Chakravarty

    2007-12-01

    Natural killer (NK) cells are spontaneously cytotoxic against tumour target cells. Their number was found to be four times more in the spleen of tumour-bearing Swiss albino mice. After activation with recombinant interleukin-2 (rIL-2), NK cells were tested and found to seek out the tumour site when injected intravenously in tumour-bearing mice. Their potential for fighting tumours in vivo was further seen following adoptive transfer of rIL-2 activated NK (A-NK) cells in tumour-bearing mice. After surgical removal of tumour load, adoptive transfer of A-NK cells inhibited tumour recurrence in 92.3% cases, thereby suggesting the use of this protocol for therapeutic purposes to obtain a better outcome.

  17. A comparison of the signal pathways between the TNF alpha- and oridonin-induced murine L929 fibrosarcoma cell death.

    Directory of Open Access Journals (Sweden)

    Huang,Jian

    2005-12-01

    Full Text Available

    Oridonin, an active component isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, we compared the signal transduction pathways between TNFalpha-and oridonin-induced L929 cell death. Oridonin and TNFalpha initiated apoptotic morphologic changes, but DNA fragmentation was found in TNFalpha-treated L929 cells but not in oridonin-treated ones. The pan-caspase inhibitor (z-VAD-fmk, caspase-8 inhibitor (z-IETD-fmk and caspase-3 inhibitor (z-DEVD-fmk augmented oridonin-and TNFalpha-induced cell death. However, the caspase-9 inhibitor (z-LEHD-fmk only increased oridonin-induced L929 cell death. Moreover, poly (ADPribose polymerase (PARP was cleaved in oridonin-treated L929 cells but not in the TNFalpha-treated groups, and the caspase-3 inhibitor (z-DEVD-fmk failed to inhibit PARP cleavage. These results showed that only oridonin-induced L929 cell death required PARP degradation in a caspase-3 independent manner. In addition, oridonin increased the ratio of Bax/Bcl-2 protein expression, but TNFalpha did not. TNFalpha induced p38 and ERK activation, whereas oridonin triggered only ERK activation. We also investigated the effect of oridonin on intracellular TNFalpha expression, and found that oridonin augmented endogenous pro-TNFalpha expression and its upstream protein IkB phosphorylation. These results indicated that although oridonin promoted endogenous pro-TNFalpha expression, a great difference existed between the signal pathways through which TNFalpha-and oridonin-induced cell death.

  18. Malignant transformation of ameloblastic fibroma to ameloblastic fibrosarcoma: case report and review of the literature.

    Science.gov (United States)

    Kobayashi, Kazuo; Murakami, Ryuichi; Fujii, Tohru; Hirano, Akiyoshi

    2005-10-01

    Ameloblastic fibrosarcoma is a rare malignant odontogenic tumour and is regarded as the malignant counterpart of the ameloblastic fibroma. The epithelial component remains benign, but the mesenchymal component becomes malignant. The diagnosis is made by histopathology. The case of a 26-year-old man who underwent curettage of an ameloblastic fibroma and died of an ameloblastic fibrosarcoma is presented, and the course of malignant transformation is analysed retrospectively. One-third of ameloblastic fibrosarcoma cases seem to have developed from recurrent ameloblastic fibromas. Knowledge of the malignant potential in the mesenchymal spindle cells of ameloblastic fibroma will assist in determining the management of these benign tumours, and may prevent malignant transformation to ameloblastic fibrosarcoma.

  19. Fibrosarcoma ameloblástico encapsulado

    OpenAIRE

    Delgado-Azañero, Wilson A.; Docente del Departamento Académico de Medicina, Cirugía y Patología Oral. Facultad de Estoamtológia. Universidad Peruana Cayetano Heredia. Lima,; Funes Rumiche, Italo; Docente del Departamento Académico de Medicina, Cirugía y Patología Oral. Facultad de Estomatología. Universidad Peruana Cayetano Heredia. Lima,; Torres Vega, Fernando; Departamento de Cabeza y Cuello. Instituto Nacional de Enfermedades Neoplasicas. Lima; Calderón Ubaqui, Víctor; Docente del Departamento Académico de Medicina, Cirugía y Patología Oral. Facultad de Estomatología. Universidad Peruana Cayetano Heredia. Lima

    2014-01-01

    El fibrosarcoma ameloblástico es un tumor odontogénico raro, compuesto por epitelio benigno y tejido mesenquimal maligno que semeja a un fibrosarcoma. Se considera que es la contraparte maligna del fibrosarcoma ameloblástico. Aun cuando los cambios histológicos son claramentemalignos, este tumor rara vez produce metástasis, pero su crecimiento progresivo es infiltrante y destruye los tejidos adyacentes pudiendo llegar hasta la base del cráneo. En este trabajo se presenta un caso de fibrosarco...

  20. Recurrent congenital fibrosarcoma with heart metastases.

    Science.gov (United States)

    Lohi, Olli; Vornanen, Martine; Kähkönen, Marketta; Vettenranta, Kim; Parto, Katriina; Arola, Mikko

    2012-07-01

    Congenital fibrosarcomas are malignant tumors that arise in soft tissues. In infants this unique tumor does not commonly metastasize, even though there may be local recurrences. We report here a boy who had congenital fibrosarcoma in his right foot, which was completely excised at the age of 3 days. Four months later, a solitary encapsulated metastasis emerged in thoracic chest wall, which was operated. During adjuvant chemotherapy he developed histologically confirmed fibrosarcoma metastases in the heart. After extended treatment with cyclophosphamide/topotecan and gemcitabine/docetaxel, the heart tumors disappeared and he has been in complete remission for 3 years.

  1. Fibrosarcoma of the mandible: a diagnostic dilemma.

    Science.gov (United States)

    Nanda, Kanwar Deep Singh; Mehta, Anurag; Nanda, Jasmine

    2013-08-01

    Fibrosarcoma is a malignant mesenchymal neoplasm of fibroblasts that rarely affects oral cavity and can cause local recurrences or metastasis. The aetiologic factors are still unknown, but many authors have reported the radiation therapy history as an important aetiological factor, followed by trauma and underlying conditions like Paget's disease, fibrous dysplasia or chronic osteomyelitis. Fibrosarcoma of mandible is rare, with an incidence which ranges from 0-6.1% of all primary fibrosarcomas of the bone. This paper has described a case of a swelling in the mandible of a 17-years old female who had a radiolucency in association with crown of an impacted tooth and foci of radiopacity, which led to a misdiagnosis of either an odontogenic lesion or a bone tumour, but proved to be a fibrosarcoma on histopathological and immunohistochemistry investigations.

  2. Ameloblastic fibrosarcoma: a rare malignant odontogenic tumor.

    Science.gov (United States)

    Gilani, S M; Raza, A; Al-Khafaji, B M

    2014-02-01

    Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor. It can arise de novo, however one-third of cases may arise from a recurrent ameloblastic fibroma, in which case they appear to present at an older age. A 16-year-old female presented with one month history of right mandibular mass. Computerized tomography (CT) scan showed a large destructive mass. A biopsy of the mass was performed. Histologically, it consisted of a mixed epithelial-mesenchymal odontogenic neoplasm composed of benign islands of well-differentiated ameloblastic epithelium within a malignant fibrous stroma consisting of spindle cells or fibroblasts with a brisk mitotic activity. The malignant spindle cell proliferation showed positive staining with p-53 and a high proliferation index with ki-67. A diagnosis of AFS was rendered. The differential diagnosis includes other odontogenic sarcomas, ameloblastic carcinosarcoma and spindle cell carcinoma. Treatment of choice is wide surgical excision, with long-term follow-up. Postoperative chemotherapy and radiotherapy has been used successfully in a few reported cases. AFS is a locally aggressive malignant tumor, with regional and distant metastases being uncommon. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Sclerosing epithelioid fibrosarcoma as a rare cause of ascites in a young man: a case report

    Directory of Open Access Journals (Sweden)

    Smith Philip J

    2008-07-01

    Full Text Available Abstract Introduction Sclerosing epithelioid fibrosarcoma is a rare but distinct variant of fibrosarcoma that not only presents as a deep-seated mass on the limbs and neck but can also occur adjacent to the fascia or peritoneum, as well as the trunk and spine. We report the case of an intra-abdominal sclerosing epithelioid fibrosarcoma, which to best of the authors' knowledge has not been described previously. The patient discussed here developed lung metastases but is still alive 1-year post-diagnosis. Case presentation A 29-year-old man presented with a 2-week history of progressive abdominal distension and pain and was found to have marked ascites. A full liver screen was unremarkable with abdominal and chest computed tomography scans only confirming ascites. After a diagnostic laparotomy, biopsies were taken from the greater omentum and peritoneal nodules. Histopathology revealed a malignant tumour composed of sheets and cords of small round cells set in collagenized stroma. After further molecular investigation at the Mayo Clinic, USA, the diagnosis of a high-grade sclerosing epithelioid fibrosarcoma was confirmed. Conclusion Sclerosing epithelioid fibrosarcoma is an extremely rare tumour, which is often difficult to diagnose and which few pathologists have encountered. This case is particularly unusual because of the intra-abdominal origin of the tumour. Owing to the rarity of sclerosing epithelioid fibrosarcoma, there is no clear evidence regarding the prognosis of such a tumour, although sclerosing epithelioid fibrosarcoma is able to metastasize many years post-presentation. It is important that physicians and pathologists are aware of this unusual tumour.

  4. Combined sellar fibrosarcoma and prolactinoma with neuronal metaplasia: report of a case unassociated with radiotherapy.

    Science.gov (United States)

    Moro, Mario; Giannini, Caterina; Scheithauer, Bernd W; Lloyd, Ricardo V; Restall, Paul; Eagleton, Carl; Law, Andrew J; Kovacs, Kalman

    2004-01-01

    We report the occurrence of a primary pituitary fibrosarcoma causally unrelated to radiotherapy, admixed in association with a prolactin cell pituitary adenoma showing neuronal metaplasia. These unique findings were associated with multiple endocrine neoplasia type 1 (MEN 1). Primary fibrosarcoma involving the sella is a very rare tumor. The majority of cases have been associated with prior irradiation of either a pituitary adenoma or a craniopharyngioma. Pituitary adenoma with neuronal metaplasia is also rare and usually occurs in the setting of acromegaly. Despite the intimate association of both elements in our lesion, no transition of adenoma to sarcoma was demonstrable by immunohistochemistry or in situ hybridization studies.

  5. Ameloblastic fibrosarcoma: Report of a case

    Directory of Open Access Journals (Sweden)

    Akindayo O Akinyamoju

    2013-01-01

    Full Text Available Ameloblastic fibrosarcoma (AFS is a rare odontogenic malignancy with benign epithelial and malignant ectomesenchymal components. About 66 cases have been reported in the medical literature. We therefore report an additional case as well as a review of literature to add to the existing knowledge on this rare lesion.

  6. Activation of pro-urokinase and plasminogen on human sarcoma cells

    DEFF Research Database (Denmark)

    Stephens, R W; Pöllänen, J; Tapiovaara, H

    1989-01-01

    Human HT-1080 fibrosarcoma cells produce urokinase-type plasminogen activator (u-PA) and type 1 plasminogen activator inhibitor (PAI-1). We found that after incubation of monolayer cultures with purified native human plasminogen in serum-containing medium, bound plasmin activity could be eluted...... from the cells with tranexamic acid, an analogue of lysine. The bound plasmin was the result of plasminogen activation on the cell surface; plasmin activity was not taken up onto cells after deliberate addition of plasmin to the serum-containing medium. The cell surface plasmin formation was inhibited...... to inhibition by endogenous PAI-1 and by added PAI-2, while the cell-bound plasmin was inaccessible to serum inhibitors, but accessible to added aprotinin and an anticatalytic monoclonal antibody. A model for cell surface plasminogen activation is proposed in which plasminogen binding to cells from serum medium...

  7. Activation of pro-urokinase and plasminogen on human sarcoma cells

    DEFF Research Database (Denmark)

    Stephens, R. W.; Pöllänen, J.; Tapiovaara,, Hannele

    1989-01-01

    Human HT-1080 fibrosarcoma cells produce urokinase-type plasminogen activator (u-PA) and type 1 plasminogen activator inhibitor (PAI-1). We found that after incubation of monolayer cultures with purified native human plasminogen in serum-containing medium, bound plasmin activity could be eluted...... from the cells with tranexamic acid, an analogue of lysine. The bound plasmin was the result of plasminogen activation on the cell surface; plasmin activity was not taken up onto cells after deliberate addition of plasmin to the serum-containing medium. The cell surface plasmin formation was inhibited...... by an anticatalytic monoclonal antibody to u-PA, indicating that this enzyme was responsible for the activation. Preincubation of the cells with diisopropyl fluorophosphate-inhibited u-PA led to a decrease in surface-bound plasmin, indicating that a large part, if not all, of the cell surface plasminogen activation...

  8. Differential diagnosis of fibromatosis and fibrosarcoma with histopathologic characteristics and IHC markers

    Directory of Open Access Journals (Sweden)

    Parviz Deyhimi

    2015-01-01

    Methods: In this cross-sectional descriptive analytical study, a total of 40 specimens from pathology department archives in hospitals of Isfahan and Tehran universities from 2003 to 2013, including 20 fibrosarcoma and 20 fibromatosis biopsies, were selected. First, histopathologic characteristics were identified using H&E slides and an optical microscope H&E slides and then they were stained through immunohistochemical staining technique using the EnVision for markers Ki-67 and β-catenin. Afterward the samples were examined by optical microscope and positively stained cells were counted. Results: There was no significant difference between fibromatosis and fibrosarcoma in terms of a mean age (P=0.063, distribution of gender frequency (P=0.197, necrotic rate (P=0.602, clarity of nucleolus (P=0.799 and SID mean of β-catenin marker (0.369. However, it was seen a meaningful difference between fibromatosis and fibrosarcoma in terms of frequency distribution (P=0.017, rate of mitotic figures (P<0.001, rate of herring-bone pattern (P=0.043, rate of cellularity (P<0.001, rate of nucleus overlapping (P<0.001, mean of Ki-67 (P=0.046, mean of Ki-67-limit (P=0.001 and atypia rate (P<0.001. Conclusion: There was a meaningful difference between fibrosarcoma and fibromatosis in terms of mitotic figures, expression of Ki-67 mitotic marker, herring bone pattern, cellularity and atypia. Therefore these features can be used to differentiate the relevant pathological lesions. However, no meaningful difference between two tumors in terms of expression and intensity of β-catenin, clarity of nucleoli and necrosis. This indicates that they are not reliable criteria of differentiation between fibrosarcoma and fibromatosis.

  9. Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells.

    Science.gov (United States)

    Qi, Min; Fan, Simiao; Yao, Guodong; Li, Zhao; Zhou, Haiyan; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-01-01

    Pseudolaric acid B (PAB) is the primary biologically active compound isolated from the root bark of P. kaempferi Gordon. Our previous study demonstrated that PAB induced mitotic catastrophe in L929 cells and indicated that only a small percentage (12%) of the cells undergoing mitotic catastrophe displayed an apoptotic phenotype after PAB treatment for 72 h. In this study, we found that a minority of the cells undergoing mitotic catastrophe ended in apoptosis, and a majority of them entered a period of senescence. Further data confirmed that PAB induced autophagy, reactive oxygen species (ROS) generation, and mitochondrial dysfunction in L929 cells. Subsequently, we found that autophagy inhibitors significantly delayed the senescence process, indicating that autophagy facilitated senescence. Moreover, ROS scavenger significantly decreased the autophagic level and improved mitochondrial function. Additionally, autophagy inhibitors effectively reduced ROS levels and ameliorated mitochondrial function. In conclusion, autophagy promoted senescence via enhancement of ROS generation and mitochondrial dysfunction in PAB-treated L929 cells.

  10. Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells

    DEFF Research Database (Denmark)

    Ingvarsen, S.; Madsen, D.H.; Hillig, T.

    2008-01-01

    with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation Udgivelsesdato: 2008/7...... by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained...

  11. The effects of altered fractionation schedules on the survival of human cell lines differing in their proliferative activity and repair capacity

    Energy Technology Data Exchange (ETDEWEB)

    Konefal, J.B.; Taylor, Y.C. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1989-11-01

    Plateau phase cultures of human cell lines were used as model systems to study the relative influences of proliferation and repair on the effectiveness of altered fractionation schedules. A human normal diploid fibroblast cell line (AG1522) which has a high capacity to repair potentially lethal radiation damage (PLD) and very little proliferative activity when grown to confluence was compared to human tumor cell lines which maintain significant cell-cycle activity in plateau phase. The human fibrosarcoma cell line, HT1080, used in the present study exhibited a much greater rate of turnover than the normal fibroblasts as determined from tritiated thymidine incorporation (5 day labeling index of 66% vs 20%) and no PLD repair, as determined by delayed plating experiments, in plateau phase. Twenty Gy were delivered to both cell lines over 5 days in 3 regimens: one 4 Gy fraction/day, two 2 Gy fractions/day with a 2 hr interval between doses, and two 2 Gy fractions/day with a 6 hr interval between doses. Although the normal fibroblasts demonstrated the greatest sparing between acute single doses and one 4 Gy fraction/day, there was little additional benefit (increased survival) from the increased dose fractionation. In contrast, the twice daily fractionation schedules resulted in significant differential sparing of the fibrosarcoma cells compared to the normal fibroblasts. With the 6 hr interval between doses, the survival advantages of the cell line with the slow turnover rate and high PLD repair capacity were completely lost. Split-dose experiments indicated slightly less sublethal damage repair in the fibrosarcoma cell line, but for both cell lines recovery was complete in 2 hr. DNA distributions were measured by flow cytometry and long term labeling index measurements performed in parallel with the multifraction radiation survival studies.

  12. Immunomodulatory activity of aged garlic extract against implanted fibrosarcoma tumor in mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Fallah-Rostami

    2013-01-01

    Full Text Available Background: Garlic is known as a medicinal herb with broad therapeutic properties ranging from antibacterial to anticancer and even anticoagulant. Aim: Current study was designed to evaluate antitumor effects of aged garlic extract (AGE on fibrosarcoma tumor in BALB/c mice. Materials and Methods: WEHI-164 fibrosarcoma cells were implanted subcutaneously on day zero into right flank of 40 BALB/c mice aged eight weeks. Mice were randomly categorized in two separate groups: 1 st received AGE (100 mg/kg, intraperitoneally, 2 nd group as control received phosphate buffered saline, (PBS. Treatments were done three times per week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flow cytometry. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of gamma-interferon, (IFN-γ and Interleukin-4, (IL-4 cytokines were measured. Results: The mice received AGE had significantly longer survival time compared to control mice. The inhibitory effect on tumor growth was seen in AGE treated mice. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE group. Conclusions: Administration of AGE resulted in improved immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. AGE showed significant effects on inhibition of tumor growth and longevity of survival times.

  13. Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual variability of CDKN2B in dogs

    Directory of Open Access Journals (Sweden)

    Haugland Sean

    2009-07-01

    Full Text Available Abstract Background In dogs in the western world neoplasia constitutes the most frequently diagnosed cause of death. Although there appear to be similarities between canine and human cancers, rather little is known about the cytogenetic and molecular alterations in canine tumours. Different dog breeds are susceptible to different types of cancer, but the genetic basis of the great majority of these predispositions has yet to be discovered. In some retriever breeds there is a high incidence of soft tissue sarcomas and we have previously reported alterations of chromosomes 11 and 30 in two poorly differentiated fibrosarcomas. Here we extend our observations and present a case report on detail rearrangements on chromosome 11 as well as genetic variations in a tumour suppressor gene in normal dogs. Results BAC hybridisations on metaphases of two fibrosarcomas showed complex rearrangements on chromosome 11, and loss of parts of this chromosome. Microsatellite markers on a paired tumour and blood DNA pointed to loss of heterozygosity on chromosome 11 in the CDKN2B-CDKN2A tumour suppressor gene cluster region. PCR and sequencing revealed the homozygous loss of coding sequences for these genes, except for exon 1β of CDKN2A, which codes for the N-terminus of p14ARF. For CDKN2B exon 1, two alleles were observed in DNA from blood; one of them identical to the sequence in the dog reference genome and containing 4 copies of a 12 bp repeat found only in the canine gene amongst all species so far sequenced; the other allele was shorter due to a missing copy of the repeat. Sequencing of this exon in 141 dogs from 18 different breeds revealed a polymorphic region involving a GGC triplet repeat and a GGGGACGGCGGC repeat. Seven alleles were recorded and sixteen of the eighteen breeds showed heterozygosity. Conclusion Complex chromosome rearrangements were observed on chromosome 11 in two Labrador retriever fibrosarcomas. The chromosome alterations were reflected

  14. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells

    Science.gov (United States)

    Mandegar, Mohammad A.; Moralli, Daniela; Khoja, Suhail; Cowley, Sally; Chan, David Y.L.; Yusuf, Mohammed; Mukherjee, Sayandip; Blundell, Michael P.; Volpi, Emanuela V.; Thrasher, Adrian J.; James, William; Monaco, Zoia L.

    2011-01-01

    We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC), which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore, and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines, but never in stem cells, thus limiting their potential therapeutic application. In this work, we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency, which were stably maintained without selection for 3 months. Importantly, no integration of the HAC DNA was observed in the hESc lines, compared with the fibrosarcoma-derived control cells, where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency, differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc, and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications. PMID:21593218

  15. Ameloblastic Fibrosarcoma Arising in the Maxilla.

    Science.gov (United States)

    Pillay, Rachael R; Bilski, Arthur; Batstone, Martin

    2016-01-01

    Ameloblastic fibrosarcoma (AFS) is a rare odontogenic neoplasm of the jaw that usually arises de novo or through a malignant change in the mesenchymal component of a preexisting or recurrent benign fibroma. The majority of AFS cases reported in the literature arise in the mandible. A 35-year-old male presented with an asymptomatic left maxillary mass that on imaging was found to be effacing most of his maxillary sinus. He underwent a left maxillectomy with free-flap reconstruction and adjuvant radiotherapy to the tumor bed. Wide local excision remains the treatment of choice for AFS, given the poor survival rates of patients with recurrent disease. However, long-term studies and follow-up are needed to elucidate the role of adjuvant therapies in the primary treatment of AFS.

  16. Clinicopathologic characteristics and prognostic factors of ovarian fibrosarcoma: the results of a multi-center retrospective study

    Directory of Open Access Journals (Sweden)

    Liao Ling-Min

    2010-10-01

    Full Text Available Abstract Background Ovarian fibrosarcomas are very rare tumors, and therefore, few case studies have evaluated the prognostic factors of this disease. To our knowledge, this study represents the largest study to evaluate the clinical and pathologic factors associated with ovarian fibrosarcoma patients. Methods Thirty-one cases of ovarian fibrosarcoma were retrospectively reviewed, which included medical records for eight patients, and 23 published case reports from 1995 through 2009. Patient treatment regimens included total hysterectomy with bilateral adnexectomy and an omentectomy (BAO (n = 9, oophorectomy (OR (n = 8, chemotherapy (CT (n = 1, BAO followed by chemotherapy (BAO+CT (n = 11, BAO followed by radiotherapy (BAO+RT (n = 1, and oophorectomy followed by radiotherapy (OR + RT (n = 1. Results The patients of this cohort were staged according to the guidelines of the Federation of Gynecology and Obstetrics (FIGO, with 15, 6, 9, and 1 stage I-IV cases identified, respectively. Mitotic count values were also evaluated from 10 high-power fields (HPFs, and 3 cases had an average mitotic count P = 0.007 and treatment (P = 0.008 were predictive of poor prognosis. Furthermore, patients with stage I tumors that received BAO+CT were associated with a better prognosis. Conclusions Mitotic activity, and cells positive for Ki-67 were identified as important factors in the diagnosis of ovarian fibrosarcoma. Furthermore, FIGO stage and treatment modalities have the potential to be prognostic factors of survival, with BAO followed by adjuvant chemotherapy associated with an improved treatment outcome.

  17. Newcastle disease virus selectively kills human tumor cells.

    Science.gov (United States)

    Reichard, K W; Lorence, R M; Cascino, C J; Peeples, M E; Walter, R J; Fernando, M B; Reyes, H M; Greager, J A

    1992-05-01

    Newcastle disease virus (NDV), strain 73-T, has previously been shown to be cytolytic to mouse tumor cells. In this study, we have evaluated the ability of NDV to replicate in and kill human tumor cells in culture and in athymic mice. Plaque assays were used to determine the cytolytic activity of NDV on six human tumor cell lines, fibrosarcoma (HT1080), osteosarcoma (KHOS), cervical carcinoma (KB8-5-11), bladder carcinoma (HCV29T), neuroblastoma (IMR32), and Wilm's tumor (G104), and on nine different normal human fibroblast lines. NDV formed plaques on all tumor cells tested as well as on chick embryo cells (CEC), the native host for NDV. Plaques did not form on any of the normal fibroblast lines. To detect NDV replication, virus yield assays were performed which measured virus particles in infected cell culture supernatants. Virus yield increased 10,000-fold within 24 hr in tumor and CEC supernatants. Titers remained near zero in normal fibroblast supernatants. In vivo tumoricidal activity was evaluated in athymic nude Balb-c mice by subcutaneous injection of 9 x 10(6) tumor cells followed by intralesional injection of either live or heat-killed NDV (1.0 x 10(6) plaque forming units [PFU]), or medium. After live NDV treatment, tumor regression occurred in 10 out of 11 mice bearing KB8-5-11 tumors, 8 out of 8 with HT-1080 tumors, and 6 out of 7 with IMR-32 tumors. After treatment with heat-killed NDV no regression occurred (P less than 0.01, Fisher's exact test). Nontumor-bearing mice injected with 1.0 x 10(8) PFU of NDV remained healthy. These results indicate that NDV efficiently and selectively replicates in and kills tumor cells, but not normal cells, and that intralesional NDV causes complete tumor regression in athymic mice with a high therapeutic index.

  18. Mutagenic effect of cadmium on tetranucleotide repeats in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Slebos, Robbert J.C. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States) and Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)]. E-mail: r.slebos@vanderbilt.edu; Li Ming [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Evjen, Amy N. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Coffa, Jordy [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Shyr, Yu [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2006-12-01

    Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 {mu}M cadmium, 5 nM MNNG or a combination of 0.5 {mu}M cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.

  19. File list: InP.Oth.10.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.10.AllAg.Fibrosarcoma hg19 Input control Others Fibrosarcoma SRX253236,SRX2...53233,SRX253238,SRX253237,SRX253234,SRX253235 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Oth.10.AllAg.Fibrosarcoma.bed ...

  20. File list: Oth.Oth.50.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Fibrosarcoma hg19 TFs and others Others Fibrosarcoma SRX253227,SRX...253229,SRX253232,SRX253231,SRX253230 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Fibrosarcoma.bed ...

  1. File list: InP.Oth.50.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.50.AllAg.Fibrosarcoma hg19 Input control Others Fibrosarcoma SRX253236,SRX2...53238,SRX253237,SRX253233,SRX253235,SRX253234 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Oth.50.AllAg.Fibrosarcoma.bed ...

  2. File list: InP.Oth.05.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Fibrosarcoma hg19 Input control Others Fibrosarcoma SRX253236,SRX2...53233,SRX253234,SRX253235,SRX253237,SRX253238 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Oth.05.AllAg.Fibrosarcoma.bed ...

  3. File list: Oth.Oth.10.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Fibrosarcoma hg19 TFs and others Others Fibrosarcoma SRX253227,SRX...253229,SRX253232,SRX253231,SRX253230 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.10.AllAg.Fibrosarcoma.bed ...

  4. File list: InP.Oth.20.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.20.AllAg.Fibrosarcoma hg19 Input control Others Fibrosarcoma SRX253236,SRX2...53238,SRX253237,SRX253233,SRX253235,SRX253234 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Oth.20.AllAg.Fibrosarcoma.bed ...

  5. File list: Oth.Oth.05.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Fibrosarcoma hg19 TFs and others Others Fibrosarcoma SRX253227,SRX...253229,SRX253232,SRX253231,SRX253230 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.05.AllAg.Fibrosarcoma.bed ...

  6. File list: Oth.Oth.20.AllAg.Fibrosarcoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Fibrosarcoma hg19 TFs and others Others Fibrosarcoma SRX253227,SRX...253229,SRX253232,SRX253231,SRX253230 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.20.AllAg.Fibrosarcoma.bed ...

  7. Gene therapy with IL-12 induced enhanced anti-tumor activity in fibrosarcoma mouse model.

    Science.gov (United States)

    Razi Soofiyani, Saiedeh; Kazemi, Tohid; Lotfipour, Farzaneh; Mohammad Hosseini, Akbar; Shanehbandi, Dariush; Hallaj-Nezhadi, Somayeh; Baradaran, Behzad

    2016-12-01

    Context Immunotherapy is among the most promising modalities for treatment of cancer. Recently, interleukin 12 (IL-12) has been used as an immunotherapeutic agent in cancer gene therapy. IL-12 can activate dendritic cells (DCs) and boost anti-tumor immune responses. Objective In the current study, we have investigated if IL-12 gene therapy can lead to the regression of tumor mass in a mouse model of fibrosarcoma. Material and methods To investigate the therapeutic efficacy of IL-12, WEHI-164 tumor cells were transfected with murine-IL12 plasmids using Lipofectamine. Enzyme linked immunosorbent assay (ELISA) was used to confirm IL-12 expression in transfected cells. The fibrosarcoma mouse model was established by subcutaneous injection of transfected cells to Balb/C mice. Mice were sacrificed and the tumors were extracted. Tumor sizes were measured by caliper. The expression of IL-12 and IFN-γ was studied with real-time PCR and western blotting. The expression of Ki-67(a tumor proliferation marker) in tumor mass was studied by immunohistochemistry staining. Results and discussion The group treated with IL-12 showed a significant decrease in tumor mass volume (P: 0.000). The results of real-time PCR and western blotting showed that IL-12 and IFN-γ expression increased in the group treated with IL-12 (relative expression of IL-12: 1.9 and relative expression of IFN-γ: 1.766). Immunohistochemistry staining showed that Ki-67 expression was reduced in the group treated with IL-12. Conclusion IL-12 gene therapy successfully led to regress of tumor mass in the fibrosarcoma mouse model. This may serve as a candidate therapeutic approach for treatment of cancer.

  8. Transumbilical laparoscopic treatment of Congenital Infantile Fibrosarcoma of the Ileum

    Directory of Open Access Journals (Sweden)

    G. Scirè

    2014-08-01

    Full Text Available Congenital-Infantile Fibrosarcoma (CIF is a malignant mesenchymal tumor representing 10-20% of soft-tissue tumors. Complete surgical resection is generally the treatment of choice. The most recurrent cytogenetic abnormality was identified as the traslocation t(12;15(p13:q25, which bears the fusion of Tel gene EVT6 with TrkC gene. This study describes a case of infantile fibrosarcoma of the ileum in a female newborn examined for intestinal occlusion and its laparoscopic treatment.

  9. Ameloblastic fibrosarcoma of the mandible: report of 2 chemosensitive pediatric cases.

    Science.gov (United States)

    Demoor-Goldschmidt, Charlotte; Minard-Colin, Veronique; Cassagneau, Elizabeth; Supiot, Stephane; Oberlin, Odile; D'hautuille, Cedric; Corradini, Nadege

    2012-03-01

    Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor. We report 2 pediatric cases of AFS from 2 different centers but reviewed by the same pathologist, which were unusual in that they were chemosensitive. Management was wide surgical resection, chemotherapy, and adjuvant radiotherapy. One case was a local AFS recurrence after incomplete surgery and the other was an AFS that was overlooked during earlier diagnosis of an ameloblastic fibroma. Both tumors responded very well to preoperative chemotherapy, with a reduction in tumor size and histologically proven decrease in viable tumor cell number. Both patients are well after 13 and 14 months of follow-up.

  10. [An immunohistochemical study of the proliferating activity of ameloblastic fibroma and ameloblastic fibrosarcoma].

    Science.gov (United States)

    Lu, Y; Takata, T; Wang, L; Zhou, Z; Wu, L; Zhao, M; Nikai, H

    1998-12-01

    Six cases of ameloblastic fibroma (AF) and three cases of ameloblastic fibrosarcoma (AFS) were immunohistochemically investigated with a proliferating cell nuclear antigen (PCNA) monoclone antibody. Data on the PCNA labeling index (LI) of both epithelial and mesenchymal components were analyzed. The results showed that the PCNA LI of mesenchymal component of AFS (40.8%) was significantly higher than that of AF (3.2%) (P < 0.01) and that of the epithelial component of AFS (5.3%) was significantly lower than that of the mesenchymal one of AFS (P < 0.01). The results suggested that PCNA LI be a useful marker for the differentiation diagnosis of AF and AFS.

  11. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  12. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    Directory of Open Access Journals (Sweden)

    González TR

    2004-11-01

    Full Text Available Abstract Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3 and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil

  13. [Malignant fibrous histiocytoma: pleomorphic sarcoma NOS or pleomorphic fibrosarcoma].

    Science.gov (United States)

    Meister, P

    2005-03-01

    The entity and nosology of pleomorphic malignant fibrous histiocytoma (MFH) is still ambiguous. The actual WHO-Classification uses pleomorphic malignant fibrous histiocytoma (MFH) and pleomorphic sarcoma NOS (not otherwise specified) synonymously. On the other hand text and illustrations convey the impression, that these tumors also could be pleomorphic lipo-, leio- or rhabdomyosarcomas etc. It would have been more informative to emphasize, that with the above mentioned specific sarcoma types MFH-like appearance may occur. Furthermore it would have been more up to date to consider pleomorphic sarcomas NOS as pleomorphic fibrosarcomas and include them in the chapter of fibroblastic and myofibroblastic tumors. This concept already has been carried out for the former myxoid variant of MFH, nowadays preferentially called myxofibrosarcoma. There is controversial discussion about the clinical significance of exact typing of pleomorphic sarcomas. Problems may also occur due to the lack of standards, which degree of desmin expression signifies leiomyosarcoma or just indicates myofibroblasts in MFH. The requirement of exclusion of other tumor-types before diagnosing pleomorphic fibrosarcoma still remains obligatory. After verification of the diagnosis pleomorphic sarcoma NOS or pleomorphic fibrosarcoma, grading e.g. according to criteria of the FFCCS can be carried out. Most cases of pleomorphic fibrosarcoma will qualify as high grade malignant.

  14. Congenital osteolytic dural fibrosarcoma presenting as a scalp swelling.

    Science.gov (United States)

    Brohi, Shams Raza; Dilber, Muzamil

    2012-08-01

    An extremely rare case of congenital dural fibrosarcoma is reported in a 2 months old child who presented with scalp swelling since birth. CT scan revealed an osteolytic lesion compressing the underlying atrophic brain. Tumour was completely excised and duroplasty was done with a patch graft. Postoperative CSF leak was managed with aspirations and lumbar puncture.

  15. A Role for the NF-kb/Rel Transcription Factors in Human Breast Cancer

    Science.gov (United States)

    1998-07-01

    cell system. We initiated our studies using the human fibrosar- coma cell line HT1080 , which is relatively resistant to killing by TNF (4... fibrosarcoma cell line . This cell line was chosen since it is highly resistant to killing by TNF. Expression of IKBOC blocks NF-KB nuclear translocation...To potentially block the activation of NF-KB in response to TNF stimulation, we established an HT1080 cell line (HT1080I) expressing a

  16. Fibroblast activation protein increases metastatic potential of fibrosarcoma line HT1080 through upregulation of integrin-mediated signaling pathways.

    Science.gov (United States)

    Baird, Sarah K; Allan, Laura; Renner, Christoph; Scott, Fiona E; Scott, Andrew M

    2015-06-01

    The serine protease fibroblast activation protein (FAP) is selectively expressed on tumour-associated fibroblasts in most human epithelial tumours, as well as on some mesenchymal tumours such as sarcoma. High FAP expression is most often associated with poor outcome and increased metastasis. Here, we compare the in vitro metastatic potential of HT1080 fibrosarcoma cells with and without FAP expression in order to elucidate the mechanism by which FAP may influence metastasis. In the presence of FAP, cells were more adhesive to extracellular matrix proteins and migrated and invaded through Matrigel to a greater degree. The anti-FAP antibody ESC11, which caused internalization of FAP, decreased adhesion and migration, but only when cells expressed FAP. It was also found that blocking activity of integrins β1 and αvβ3 reduced both cell adhesion and migration and this effect was much more marked in FAP-expressing HT1080 cells than mock-transfected HT1080 cells. The expression or activation of intracellular proteins that form part of the downstream signaling of integrins, including integrin-linked kinase, Rac1 and focal adhesion kinase, was also upregulated when FAP was expressed, suggesting that FAP not only upregulates metastatic-like cell behaviours through interaction with integrins, but also influences the intracellular signaling of integrins. This was confirmed using both PI3 kinase and Src kinase inhibitors, which decreased adhesion and migration in FAP-expressing cells, but did not affect mock-transfected HT1080 cells. FAP is therefore a useful target for anti-cancer therapy, as not only is its expression tumour-selective, but its downregulation has the potential to reduce incidence of metastasis.

  17. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide.

    Directory of Open Access Journals (Sweden)

    Vincenzo Cardinale

    Full Text Available Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1 has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells.

  18. Mitotically active cellular fibroma of ovary should be differentiated from fibrosarcoma: a case report and review of literature.

    Science.gov (United States)

    Zong, Lin; Lin, Ming; Fan, Xinmin

    2014-01-01

    The clinicopathologic characteristic of mitotically active cellular fibroma is significantly different from the malignant behavior of ovarian fibrosarcoma. Therefore, it's very important to differentiate mitotically active cellular fibroma from ovarian fibrosarcoma. We report a case in which a 39-year-old woman was found with an ovarian tumor measuring 105 × 71 × 47 mm. The tumor ruptured and adhered to the peritoneum. Microscopic examination showed densely cellular spindle-shaped tumor cells. The cellular atypia was mild. The Ki-67 proliferation index was approximately 10%. The patient remained free of tumor for more than 66 months without any adjuvant chemotherapy after operation. After reviewing the literature, we diagnosed this case as mitotically active cellular fibroma rather than ovarian fibrosarcoma. It is very important to differentiate these two tumors because of the marked differences in treatment modalities and prognosis between them. The ovarian fibrous tumors with mitotic figures ≥ 4 per 10 high-power fields but no severe nuclear atypia should be mostly diagnosed as mitotically active cellular fibroma of ovary. The correct diagnosis is the key to avoid excessive treatments.

  19. Intestinal congenital/infantile fibrosarcoma: a new clinico-pathological entity?

    Science.gov (United States)

    Berrebi, Dominique; Fournet, Jean-Christophe; Boman, Françoise; Fabre, Monique; Philippe-Chomette, Pascale; Branchereau, Sophie; Fréneaux, Paul; Bouron-Dal Soglio, Dorothée; Michon, Jean; Peuchmaur, Michel

    2015-04-01

    Congenital/infantile fibrosarcoma (IFS) is a relatively rare form of fibrosarcoma diagnosed at birth or during early years of life and that differs from its adult counterpart because of a more favorable behavior. IFS is also known as cellular congenital mesoblastic nephroma, when it affects the kidney and is often but not always characterized by the ETV6-NTRK3 fusion transcript. We report herein the first series of an exceptional tumor of the small intestine occurring in newborns. The four patients shared a stereotyped clinico-pathological presentation with early and acute onset, intestinal perforation, and an infiltration by a highly cellular spindle cell tumor within the dilated intestinal wall exhibiting pathologic features typical of IFS. Molecular studies for the ETV6-NTRK3 translocation were negative in the three cases tested. Patients were treated by surgical wide resection alone and are alive and well (follow-up: 36 months-25 years). Thus, this new clinico-pathological entity, even with lack of documented evidence of the ETV6-NTRK3 translocation, should be included in the differential diagnosis of congenital bowel perforation or obstruction and may represent an intestinal counterpart of IFS.

  20. Ameloblastic fibrosarcoma of the jaw: report of five cases.

    Science.gov (United States)

    Dallera, P; Bertoni, F; Marchetti, C; Bacchini, P; Campobassi, A

    1994-12-01

    Five cases of ameloblastic fibrosarcomas (AFS) are reported. The tumour was characterized histologically by a biphasic pattern: the malignant mesenchymal component had the features of an intermediate grade fibrosarcoma in 3 cases, malignant fibrous histiocytoma and osteogenic sarcoma in 2 cases. The epithelial odontogenic component had a benign appearance cytologically. In 1 patient, in the recurrence only the malignant mesenchymal component was present. AFS is a fully malignant tumour, in fact 1 patient died of the tumour after inadequate surgical treatments, and 2 patients had a recurrence after intralesional surgery. The treatment of choice was achieved when surgery with wide surgical margins was performed. As MFH and OGS features are present in the malignant mesenchymal component of this tumour we prefer to use the broad term ameloblastic sarcoma instead of AFS.

  1. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  2. Fibrosarcoma of the nasal cavity: A case report

    Directory of Open Access Journals (Sweden)

    Omar Maliki

    2014-11-01

    Full Text Available Nasal fibrosarcoma is an infrequent malignant neoplasm. It usually presents as other sarcomas in this region, with nasal obstruction and epistaxis. The final diagnosis is based on the histopathology and immunohistochemistry. We report the case of a 37-year-old man with a 3-month history of recurrent epistaxis and nasal obstruction. Nasal endoscopy confirmed a right nasal neoplasia. Computed tomography and magnetic resonance image showed the tumor. TEP scan showed no metastasis. Complete removal was achieved through a combined surgery, by endoscopic endonasal approach and by incision in the right upper oral vestibule. Fibrosarcoma was found on histopathologic and immunohistochemistric examinations. After 12 months, the postoperative course was uneventful and follow-up information showed no recurrence of metastasis. However, in the 13th month, the patient suddenly died at home. Autopsy found no obvious cause for his death. To the best of our knowledge, no case of a fibrosarcoma of the nasal cavity with sudden death has been previously reported in the English-language.

  3. Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1α-Neuropilin-1 Axis

    OpenAIRE

    Misra, Roli M.; Bajaj, Manmohan S.; Kale, Vaijayanti P.

    2012-01-01

    HT1080 - a human fibrosarcoma-derived cell line - forms aggressive angiogenic tumours in immuno-compromised mice. In spite of its extensive use as a model of tumour angiogenesis, the molecular event(s) initiating the angiogenic program in these cells are not known. Since hypoxia stimulates tumour angiogenesis, we examined the hypoxia-induced events evoked in these cells. In contrast to cells grown under normoxic conditions, hypoxia-primed (1% O(2)) HT1080 cells formed robust tubules on growth...

  4. Construction of novel tumor necrosis factor-alpha mutants with reduced toxicity and higher cytotoxicity on human tumor cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Hui; (刘; 惠); LU; Fang; (卢; 芳); CHEN; Jianjun; (陈建军); REN; Hongyu; (任红玉); CHEN; Changqing(陈常庆)

    2003-01-01

    Two tumor necrosis factor-( mutants MT1 (32Trp157Phe) and MT2 (2Lys30Ser- 32Trp157Phe) were constructed by site-directed mutagenesis. These mutants were soluble and over-expressed in E. coli. The purity of purified mutants was above 95% by serial chromatography. The results of Western blot indicated that these mutants could be cross-reactive with monoclonal antibody against native hTNF-α. Compared to parent hTNF-α, the cytotoxicity of these mutants on murine fibrosarcoma L929 cell lines reduced 4-5 orders of magnitude but was equivalent to that of native hTNF-α on human tumor cell lines. The LD50 of mutant MT1 was reduced to 0.34% of wild type and the dose of MT2 that resulted in 30% death of mice reduced to less than 1/700 that of parent hTNF-α.

  5. Both PAX4 and MAFA are expressed in a substantial proportion of normal human pancreatic alpha cells and deregulated in patients with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Rémy Bonnavion

    Full Text Available Pax4 and MafA (v-maf musculoaponeurotic fibrosarcoma oncogene homolog A are two transcription factors crucial for normal functions of islet beta cells in the mouse. Intriguingly, recent studies indicate the existence of notable difference between human and rodent islet in terms of gene expression and functions. To better understand the biological role of human PAX4 and MAFA, we investigated their expression in normal and diseased human islets, using validated antibodies. PAX4 was detected in 43.0±5.0% and 39.1±4.0% of normal human alpha and beta cells respectively. We found that MAFA, detected in 88.3±6.3% insulin(+cells as in the mouse, turned out to be also expressed in 61.2±6.4% of human glucagons(+ cells with less intensity than in insulin(+ cells, whereas MAFB expression was found not only in the majority of glucagon(+ cells (67.2±7.6%, but also in 53.6±10.5% of human insulin(+ cells. Interestingly, MAFA nuclear expression in both alpha and beta cells, and the percentage of alpha cells expressing PAX4 were found altered in a substantial proportion of patients with type 2 diabetes. Both MAFA and PAX4 display, therefore, a distinct expression pattern in human islet cells, suggesting more potential plasticity of human islets as compared with rodent islets.

  6. Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma

    Science.gov (United States)

    Soofiyani, Saiedeh Razi; Hallaj-Nezhadi, Somayeh; Lotfipour, Farzaneh; Hosseini, Akbar Mohammad; Baradaran, Behzad

    2016-01-01

    Objective(s): Interleukin-12 (IL-12) as a cytokine has been proved to have a critical role in stimulating the immune system and has been used as immunotherapeutic agents in cancer gene therapy. Chitosan as a polymer, with high ability of binding to nucleic acids is a good candidate for gene delivery since it is biodegradable, biocompatible and non-allergenic polysaccharide. The objective of the present study was to investigate the effects of cells transfected with IL-12 loaded chitosan nanoparticles on the regression of fibrosarcoma tumor cells (WEHI-164) in vivo. Materials and Methods: WEHI-164 tumor cells were transfected with IL-12 loaded chitosan nanoparticles and then were injected subcutaneously to inoculate tumor in BALB/c mice. Tumor volumes were determined and subsequently extracted after mice sacrifice. The immunohistochemistry staining was performed for analysis of Ki-67 expression (a tumor proliferation marker) in tumor masses. The expression of IL-12 and IFN-γ were studied using real-time polymerase chain reaction and immunoblotting. Results: The group treated with IL-12 loaded chitosan nanoparticles indicated decreasing of tumor mass[r1] volume (P<0.001). The results of western blotting and real-time PCR showed that the IL-12 expression was increased in the group. Immunohistochemistry staining indicated that the Ki-67expression was reduced in the group treated with IL-12 loaded chitosan nanoparticles. Conclusion: IL-12 gene therapy using chitosan nanoparticles has therapeutic effects on the regression of tumor masses in fibrosarcoma mouse model. PMID:27917281

  7. The Effect of Ginkgo Biloba Extract on Hypoxic Fraction of C3H Mouse Fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Yi, Chun Ja; Ha, Sung Whan; Park, Charn Il [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    Purpose : To investigate the effect of Ginkgo biloba extract (GBE) on hypoxic cell fraction and metabolic status in fibrosarcoma (FSa II) of C3H mouse. Materials and Methods : Fibrosarcoma (Fsa II), 6mm in diameter, growing in the right hind leg muscle of C3H mouse was used for estimation of hypoxic cell fraction using comparison of TCD{sub 50}. Radiation was given one hour after administration of GBE (100 mg/Kg, i.p.) with or without priming dose of GBE (100 mg/Kg, i.p.) given 24 hours earlier. Radiation was also given under air breathing condition or clamp hypoxia without GBE as controls. {sup 31}P NMR spectroscopy was performed before and one hour after administration of GBE with or without priming dose of GBE. Results : TCD{sub 50/120's} were 81.7(77.7-86.0) Gy when irradiated under clamped hypoxia, 69.6 (66.8-72.5) Gy under air breathing condition,67.5(64.1-71.1) Gy with a single dose of GBE (100 mg/kg) given one hour before irradiation, and 62.2(59.1-65.5) Gy with two doses of GBE given at 25 hours and one hour before irradiation. The hypoxic cell fractions, estimated from TCD50/120's were 1.6% under air breathing condition, 7.2% after single dose of GBE, and 2.7% after two doses of GBE. Metabolic status of tumor, probably by increasing the blood flow and delivery of oxygen and nutrients, resulting in increased radiosensitivity of tumor.

  8. The Preventive and Curative Effects of Fresh Garlic Extract And its Aerial Parts on Fibrosarcoma in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    M Rafieian-kopaei

    2012-05-01

    Full Text Available Introduction: Garlic has been demonstrated to have anticancer activity in some studies; however its effect on fibrosarcoma is not evident. This study intends to examine the preventive and curative effects of fresh garlic extract and its aerial parts on the growth of WEHI-164 fibrosarcoma cells in Balb/c mice. Methods: In this preclinical study, 48 female inbred Balb/c mice(6 to 7 weeks old were divided in to 6 groups of 8 each. A single aliquot of WEHI-164 cells(5 × 106 cells/100 μl was injected subcutaneously in the chest of animal. Two weeks before or three weeks after cell injection, 0.2 cc of normal saline or 20 mg/kg extract of garlic or its aerial parts were injected intraperitoneally(IP to the Balb/c mice. The tumors sizes were compared with each other, using ANOVA test. The antioxidant potential and total phenolic compounds of the extracts were also assessed. Results: The mean sizes of tumor growth in groups which received fresh garlic extract or its aerial parts were smaller than that of control group. However this difference was significant on the 21st day only in garlic extract group(p<0.05. The antioxidant power of fresh garlic involved 35.6%, whereas for its aerial parts it was 15.3%. Moreover, the general amount of phenol in fresh garlic was 12.61 mg/g and in its aerial parts was 2.44 mg/g. Conclusion: Garlic consumption might have a crucial role in prevention and control of fibrosarcoma growth. Furthermore, the phenolic compounds and antioxidant activity of garlic aerial parts are less in comparison to garlic itself, however, higher doses might have anticancer activity

  9. Ameloblastic fibrosarcoma of the mandible: A case report and mini review.

    Science.gov (United States)

    Hu, Yuan-Yuan; Deng, Mo-Hong; Yuan, Ling-Ling; Niu, Yu-Ming

    2014-11-01

    Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic neoplasm of the jaw. AFS is characteristically composed of a benign odontogenic epithelium and a malignant mesenchymal component. The posterior region of the mandible is the predominantly occupied site. In the present report, a new case of AFS in a 22-year-old male that originated from ameloblastic fibroma was described. Histologically, the tumor showed biphasic components: Benign epithelium and a malignant mesenchymal component. Immunochemical findings revealed that the tumor cells were positive for cluster of differentiation (CD) 34, vimentin, Ki-67 and p53, but negative for smooth muscle actin, S-100, CD68 and desmin. The clinical presentation, radiographic appearances and treatment measures were additionally described and reviewed.

  10. Infantile fibrosarcoma: Magnetic resonance imaging findings in six cases

    Energy Technology Data Exchange (ETDEWEB)

    Canale, Sandra [Department of Radiology, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France)], E-mail: canalesandra@yahoo.com; Vanel, Daniel [Department of Radiology, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Istituti Ortopedici Rizzoli, 1/10 via di Barbiano, 40136 Bologna (Italy); Couanet, Dominique [Department of Radiology, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Patte, Catherine [Department of Pediatrics, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France); Caramella, Caroline; Dromain, Clarisse [Department of Radiology, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805 Villejuif (France)

    2009-10-15

    Purpose: To retrospectively review magnetic resonance (MR) imaging features in a series of six infantile fibrosarcomas to find out if MR can suggest this unusual diagnosis and to highlight the value of MR during and following treatment. Materials and methods: The records of six cases of histologically proven infantile fibrosarcoma were retrieved from the files of our cancer center. All imaging data available were consensually reviewed by two radiologists. Results: There were five females and one male (age range at diagnosis, 0-12 months; mean, 6 months). The most common finding was a well-circumscribed single mass in five patients (83%). All tumors had arisen on limbs; at their proximal or distal extremity or at the root of the limb. The masses were 9 cm large in mean diameter. The initial tumor signal was isointense to muscle on T1-weighted and hyperintense on T2-weighted sequences. All masses were well circumscribed and half of them contained internal fibrous septa. The internal signal was homogeneous in three patients and heterogeneous in the three others. An intense enhancement was seen in all three contrast-enhanced exams available; heterogeneous in two cases and homogeneous in one. Osseous erosion was observed in only one patient who was the only one with distant metastasis. After treatment (chemotherapy and very limited surgery), tumors had totally disappeared, leaving muscle fat infiltration in two patients and subcutaneous fat hypertrophy in one patient. Conclusion: Although imaging findings are not specific of infantile fibrosarcoma, this diagnosis could be suggested when MR imaging depicts a large well-circumscribed mass arising in a limb at birth or during the neonatal period. This mass is sometimes heterogeneous and septate and exhibits an isointense T1- and hyperintense T2-weighted signals and strong enhancement. MR is also the technique of choice for follow-up during treatment which consists nowadays almost exclusively in chemotherapy.

  11. Endocardial fibrosarcoma in a reticulated python (Python reticularis).

    Science.gov (United States)

    Gumber, Sanjeev; Nevarez, Javier G; Cho, Doo-Youn

    2010-11-01

    A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10-12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3-4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.

  12. Ameloblastic Fibrosarcoma of the Mandible With Distant Metastases.

    Science.gov (United States)

    Pourdanesh, Fereydoun; Mohamadi, Mansoureh; Moshref, Mohammad; Soltaninia, Omid

    2015-10-01

    Ameloblastic fibrosarcoma is a mixed odontogenic tumor that can originate de novo or from a transformed ameloblastic fibroma. This report describes the case of a 34-year-old woman with a recurrent, rapidly growing, debilitating lesion. This lesion appeared as a large painful mandibular swelling that filled the oral cavity and extended to the infratemporal fossa. The lesion had been previously misdiagnosed as ameloblastoma. Twenty months after final surgery and postoperative chemotherapy, lung metastases were diagnosed after she reported respiratory signs and symptoms. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Malignant transformation of ameloblastic fibro-odontoma to ameloblastic fibrosarcoma.

    Science.gov (United States)

    Howell, R M; Burkes, E J

    1977-03-01

    Two cases of malignant transformation of ameloblastic fibro-odontomas are presented, along with a review of the literature on ameloblastic fibrosarcomas. The occurrence of this malignant transformation of ameloblastic fibromas, ameloblastic odontomas, and ameloblastic fibro-odontomas appears to be more frequent than previously thought. This potential transformation alone does not justify radical treatment of all these benign lesions. If there is recurrence accompanied by a histologic pattern change toward a more unorganized fibrous stroma with displacement of the epithelial component, however, then more extensive treatment procedures appear to be indicated.

  14. Comparison of human tenascin expression in normal, simian-virus-40-transformed and tumor-derived cell lines.

    Science.gov (United States)

    Carnemolla, B; Borsi, L; Bannikov, G; Troyanovsky, S; Zardi, L

    1992-04-15

    Tenascin is a polymorphic high-molecular-mass extracellular-matrix glycoprotein composed of six similar subunits. Using two-domain-specific anti-tenascin monoclonal antibodies, we have studied the expression and distribution of tenascin in four cultured normal human fibroblasts, two simian-virus-40-(SV40)-transformed and three tumor-derived (melanoma, rhabdomyosarcoma and fibrosarcoma) cell lines. We found that (a) cultured normal human fibroblasts accumulate considerable amounts of tenascin and retain 60-90% in the extracellular matrix, while they release the remainder into the tissue-culture medium; (b) of the two SV40-transformed counterparts we have tested, the AG-280 cell line accumulates no detectable amounts of tenascin and the WI-38-VA cell line accumulates about 10-times less tenascin than its normal counterpart and releases about 90% of it into the culture medium; (c) some tumor-derived cell lines accumulate considerable amounts of tenascin, but in these cases, more than 90% is released into the culture media; (d) in normal human fibroblasts, two major tenascin isoforms, generated by alternative splicing of the mRNA precursor, are detectable (280 kDa and 190 kDa, respectively) and the lower-molecular-mass tenascin isoform is accumulated preferentially in the extracellular matrix; (e) in SV40-transformed or tumor-derived cell lines, only the higher-molecular-mass isoform is detectable and it is more sialylated than the tenascin produced by the normal human fibroblast cell lines.

  15. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  16. Prediction of human cell radiosensitivity: Comparison of clonogenic assay with chromosome aberrations scored using premature chromosome condensation with fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, K.; Evans, J.W.; Kovacs, M.S. [Stanford Univ. School of Medicine, CA (United States)] [and others

    1994-12-01

    The purpose of the present investigation was to determine whether chromosome aberrations scored by premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) can predict the radiosensitivity of human cell lines, thereby providing a possible means of assessing the in situ radiosensitivity of normal tissues and the radiocurability of individual human cancers. We used four cells lines of different radiosensitivity: normal human fibroblasts (AG1522), ataxia-telangiectasia fibroblasts (AT2052), a human fibrosarcoma cell line (HT1080), and a human melanoma cell line (melanoma 903). These were irradiated in plateau phase with a range of doses and assessed both for clonogenic cell survival and for aberrations in a single chromosome (number 4) immediately after, and 24 h after irradiation. The initial number of breaks in chromosome 4 was proportional to irradiation dose and was identical for all the different human cell lines, irrespective of radiosensitivity. On the other hand, the number of chromosome 4 breaks remaining 24 h after irradiation reflected the radiosensitivity of the cells such that the relationship between residual chromosome aberrations and cell survival was the same for the different cell lines. These results suggest that the scoring of chromosome aberrations in interphase using FISH with PCC holds considerable promise for predicting the radiosensitivity of normal and tumor tissues in situ. 28 refs., 4 figs.

  17. A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration

    OpenAIRE

    Singh, Samir P.; Schwartz, Michael P.; Lee, Justin Y.; Fairbanks, Benjamin D.; Kristi S Anseth

    2014-01-01

    To address the challenges associated with defined control over matrix properties in 3D cell culture systems, we employed a peptide functionalized poly(ethylene glycol) (PEG) hydrogel matrix in which mechanical modulus and adhesive properties were tuned. An HT-1080 human fibrosarcoma cell line was chosen as a model for probing matrix influences on tumor cell migration using the PEG hydrogel platform. HT-1080 speed varied with a complex dependence on both matrix modulus and Cys-Arg-Gly-Asp-Ser ...

  18. mTOR inactivation by ROS-JNK-p53 pathway plays an essential role in psedolaric acid B induced autophagy-dependent senescence in murine fibrosarcoma L929 cells.

    Science.gov (United States)

    Qi, Min; Zhou, Haiyan; Fan, Simiao; Li, Zhao; Yao, Guodong; Tashiro, Shin-Ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-09-05

    Pseudolaric acid B (PAB), the primary biologically active compound isolated from the root bark of P. kaempferi Gordon, has been reported to exhibit anti-tumor effect primarily via cell cycle arrest and apoptosis. Our previous study demonstrated that PAB triggered mitotic catastrophe in L929 cells. In addition, a small percentage of the cells undergoing mitotic catastrophe displayed an apoptotic phenotype. Therefore, we continued to investigate the fate of the other cells. The results indicated that PAB induced senescence through p19-p53-p21 and p16-Rb pathways in L929 cells. PAB also triggered autophagy via inhibiting Akt-mammalian target of rapamycin (mTOR) activity in L929 cells. In addition, autophagy was demonstrated to reinforce senescence through regulating the senescence pathways. Thus, we focused on the detailed molecular mechanisms whereby autophagy promoted senescence. Reactive oxygen species (ROS) plays an important in autophagy and senescence. We found that PAB triggered a ROS-JNK-p53 positive feedback loop and this feedback loop played a crucial role in autophagy via repressing the activation of mTOR. Furthermore, ROS-JNK-p53 positive feedback loop was demonstrated to regulate senescence. Tuberous sclerosis proteins1 and 2, also known as TSC1 and TSC2, form a protein-complex. TSC1/TSC2 heterodimer is a downstream target of growth factor-phosphoinositide 3-kinase-Akt signaling which negatively regulates mTOR activity. Activation of mTOR by insulin or inhibition of endogenous TSC2 levels by siRNA obviously delayed PAB-induced senescence. In conclusion, mTOR inactivation by ROS-JNK-p53 pathway played an important role in autophagy-dependent senescence in PAB-treated L929 cells.

  19. Ambiguous effect of signals transmitted by the vagus nerve on fibrosarcoma incidence and survival of tumor-bearing rats.

    Science.gov (United States)

    Mikova, Lucia; Horvathova, Lubica; Ondicova, Katarina; Tillinger, Andrej; Vannucci, Luca E; Bizik, Jozef; Gidron, Yori; Mravec, Boris

    2015-04-23

    While the parasympathetic nervous system appears to be involved in the regulation of tumor progression, its exact role is still unclear. Therefore, using a rat BP6-TU2 fibrosarcoma tumor model, we investigated the effect of (1) reduction of vagal activity produced by subdiaphragmatic vagotomy; and (2) enhancement of vagal activity produced by continuous delivery of electric impulses to the cervical part of the vagus nerve on tumor development and survival of tumor-bearing rats. We also evaluated the expression of cholinergic receptors within in vitro cultivated BP6-TU2 cells. Interestingly, we found that both, vagal stimulation and subdiaphragmatic vagotomy slightly reduced tumor incidence. However, survival of tumor-bearing rats was not affected by any of the experimental approaches. Additionally, we detected mRNA expression of the α1, α2, α5, α7, and α10 subunits of nicotinic receptors and the M1, M3, M4, and M5 subtypes of muscarinic receptors within in vitro cultivated BP6-TU2 cells. Our data indicate that the role of the vagus nerve in modulation of fibrosarcoma development is ambiguous and uncertain and requires further investigation.

  20. A case of interscapular fibrosarcoma in a dwarf rabbit (Oryctolagus cuniculus).

    Science.gov (United States)

    Petterino, Claudio; Modesto, Paola; Strata, Daniela; Vascellari, Marta; Mutinelli, Franco; Ferrari, Angelo; Ratto, Alessandra

    2009-11-01

    A 1-year-old, intact, male dwarf rabbit (Oryctolagus cuniculus) was vaccinated against myxomatosis and rabbit viral hemorrhagic disease in February 1999, and a localized reaction appeared in the same anatomic site within a few days. No regression was observed after subcutaneous antibiotic treatment. The rabbit was kept under observation, and the swelling apparently disappeared in 3 months. The owner then decided to avoid any further subcutaneous drug administration. The referring veterinarian examined the animal on July 2006 for the sudden appearance of a nodular, 4.5 cm x 3.5 cm x 2.0 cm, subcutaneous mass located over the interscapular space. Fine-needle aspiration was performed, and a population of neoplastic spindle cells, rare pleomorphic multinucleated cells, and rare leukocytes were observed. The mass was surgically removed, fixed in 10% neutral buffered formalin, and routinely processed for histologic, histochemical, and immunohistochemical diagnostic investigation. The neoplastic tissue exhibited fascicles composed of malignant spindle-shaped cells with elongated to oval hyperchromatic nuclei and scant cytoplasm. Occasional multinucleated cells were also observed. The neoplastic cells were immunoreactive for vimentin but did not stain for smooth muscle actin, desmin, myoglobin, and cytokeratins (AE1/AE3). Moreover, the histochemical stain for aluminum was positive. The diagnosis was fibrosarcoma based on morphologic and immunohistochemical results. The histologic features of this neoplasm were remarkably similar to feline injection-site sarcoma.

  1. A delayed presentation of ameloblastic fibrosarcoma in an African patient.

    Science.gov (United States)

    Chauke, Nkhensani Yvonne; Sofianos, Chrysis; Liakos, Dimitri; Ndobe, Elias

    2017-08-01

    A 24-year-old womanpresented with ameloblastic fibrosarcoma arising from ameloblastic fibroma. The delayed presentation accounted for the extensive destruction of the mandible and complete occlusion of her oral cavity. This resulted in an inability to eat and maintain oral hygiene. A multidisciplinary team management approach involved nutritional optimisation, segmental mandibulectomy, reconstruction with a reconstructive plate and a free anterolateral thigh flap to line the the floor of mouth. Functional and aesthetic outcome was acceptable, and the patient is planned for secondary free fibular flap bony reconstruction. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Ameloblastic fibroma or fibrosarcoma: A dilemma of oral surgeon.

    Science.gov (United States)

    Verma, Nitin; Neha

    2016-01-01

    Ameloblastic fibroma (AF) is an uncommon true mixed odontogenic tumor, with a relative frequency between 1.5% and 4.5% of all odontogenic tumors. It may behave either as a true neoplasm or as a hamartomatous proliferation of odontogenic epithelium of the enamel organ and odontogenic mesenchyme of the primitive dental pulp. Frequently diagnosed between the first and second decades of life with 75% of cases was diagnosed before the age of 20 and present with a well-defined unilocular or multilocular radiolucencies. A conservative approach, enucleation with curettage, and long-term follow-up are absolutely necessary for any recurrence or change to fibrosarcoma. We report a case of AF in a 10-year-old male patient who presented with a chief complaint of swelling in the right mandibular posterior region. Enucleation and curettage were done under general anesthesia, followed by immunohistochemical markers (Ki-67, Mib-1) to assess the sarcomatous changes and aggressiveness of the tumor.

  3. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...... of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...

  4. Antiproliferative activity of extracts prepared from three species of Reishi on cultured human normal and tumor cell lines.

    Science.gov (United States)

    Katagata, Yohtaro; Sasaki, Fumiyuki

    2010-01-01

    The present study investigated the growth of human fibrosarcoma (HT-1080) and fibroblast (SF-TY) cells in combination with water-soluble (WS) and high molecular component (HMC) fractions prepared from Reishi (R), Rokkaku-Reishi (2R) and Apple Rokkaku-Reishi (A2R). Each WS fraction exhibited dose-and time-dependent inhibition of the growth of the HT-1080 and SF-TY cells. The extracts exhibited marked antiproliferative activity against the HT-1080 cells. The HMC fractions inhibited cell growth dose-and time-dependently in the HT-1080 cells only, and not in the SF-TY cells, suggesting that HMC fractions selectively inhibit HT-1080 cells. Among the HMC fractions, A2R is a strong candidate for anti-tumor targeting since its fraction exhibited better inhibition than the R and 2R fractions. Furthermore, the volume of the A2R fraction was approximately five times greater than that of the others, and included four proteins (molecular mass 9, 13, 22 and 40 kDa) detected by SDS-PAGE. Three of these (13, 22 and 40 kDa) were confirmed to be glycosylated with the Periodic Acid-Schiff Stain kit. These results suggest that A2R may possess anti-tumor activity and, in particular, that the protein components of A2R may act to selectively inhibit the growth of HT-1080 cells.

  5. Bifrontal meningeal fibrosarcoma in a patient with metastases to the liver, kidneys and suprarenal glands.

    Science.gov (United States)

    Aung, T H; Tse, C H

    1993-09-01

    Primary meningeal sarcoma is a rare malignant tumour of the central nervous system and metastases to the liver, kidney and the suprarenal gland have not been reported elsewhere. A 47 year old Chinese woman who presented with a short history of headache and vomiting was found to have metastatic meningeal fibrosarcoma in the liver 4 months after resection of primary bifrontal meningeal fibrosarcoma. The computerized tomography findings and relevant histology are presented.

  6. Shape-dependent regulation of proliferation in normal and malignant human cells and its alteration by interferon

    Energy Technology Data Exchange (ETDEWEB)

    Kulesh, D.A.; Greene, J.J.

    1986-06-01

    The relationship between cell morphology, proliferation, and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes by plating onto plastic surfaces coated with poly(2-hydroxyethyl methacrylate). Poly(2-hydroxyethyl methacrylate) can precisely vary the shape of cells without toxicity. Cell proliferation was quantitated by cell counts and labeling indices were determined by autoradiography. The normal JHU-1 foreskin fibroblasts and IMR-90 lung fibroblasts exhibited contact-inhibited growth with a saturation density of 2.9 X 10(5) and 2.0 X 10(5) cells/cm2, respectively. These cells also exhibited stringent dependency on cell shape with a mitotic index of less than 3% at poly(2-hydroxyethyl methacrylate) concentrations at which the cells were rounded versus a labeling index of 75-90% when the cells were flat. The malignant bladder carcinoma line RT-4 exhibited partial contact-inhibited growth. Its dependency on cell shape was less stringent than that of normal cells with a mitotic index of 37-40% when rounded and 79% when flat. The malignant fibrosarcoma line, HT1080, was not contact inhibited and was entirely shape independent with a mitotic index of 70-90% regardless of cell shape. Treatment of HT1080 cells with low concentration of human fibroblast interferon (less than 40 units/ml) restored shape-dependent proliferation while having little effect on normal cells. Subantiproliferative doses of interferon were also shown to restore contact-inhibited proliferation control to malignant cells previously lacking it.

  7. BUSP: um fibrosarcoma experimental de crescimento lento: nota prévia BUSP: a slowly growing experimental fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Luiz G. Spoladore

    1973-01-01

    Full Text Available Após ter-se verificado que a buclizina era capaz de acelerar o crescimento de tumor maligno até 33%, animais de laboratório foram tratados com essa substância em doses subletais agudas e muito acima das doses terapêuticas, por vias subcutâneas e intraperitoneal, ocorrendo, ocasionalmente, o aparecimento de fibrosarcomas nos ratos Wistar e sarcoma indiferenciado e adenoma papilífero em camundongos Swiss. O primeiro tumor surguiu em 1970, ao qual foi dada a sigla "BUSP" (BUclizina-SPoladore. O tumor vem sendo mantido com facilidade, apresentando como características: crescimento lento, permitindo uma sobrevida do animal em torno de três meses; peso em torno de cento e vinte e cinco gramas na fase final; intensa hiperemia peritumoral; tumor maciço, quase sem necrose na parte central; persistindo bastante livre entre a pele e os tecidos subjacentes, durante toda a evolução.After having verified that buclizine was capable to promote the growth of malignant tumours by up to 33 per cent, rats and mice were treated with this substance in doses which lie below the acute sublethal, but very much above the therapeutical dose. Occasionally, some tumours appeared, namely a fibrosarcoma in Wistar rats and undifferentiated sarcoma and a papillary adenoma in Swiss mice. The first tumour appeard in 1970 and was designated as "BUSP" (BUclizine-SPoladore. It could beeasily maintained until this date. Its characteriscis are: slow growing, permitting the bearer´s survival for about three months; the weight reaches about 125g in the final stage; intense peritumoral hyperemia; a massive tumour almost without necrosis in the central part; occuring freely between the skin and the subjacent tissues during its whole evolution.

  8. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self-renewal and......Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self...... of clinical applications, e.g., non-healing bone fractures and defects and also non-skeletal degenerative diseases like heart failure. Currently, the numbers of clinical trials that employ MSC are increasing. However, several biological and biotechnological challenges need to be overcome to benefit from...

  9. Antiproliferative role of Indigofera aspalathoides on 20 methylcholanthrene induced fibrosarcoma in rats

    Institute of Scientific and Technical Information of China (English)

    Sivagnanam Selva Kumar; Mudiganti Ram Krishna Rao

    2012-01-01

    Objective: To find out the anticancer effect of Indigofera aspalathoides (I. aspalathoides) on 20-methylcholanthrene induced fibrosarcoma in rats. Methods:Fibrosarcoma was induced in Wistar strain male albino rats by 20-methylcholanthrene. Intraperitoneous (i.p.) administration of 250 mg/kg body weight/day of aqueous extract of I. aspalathoides for 30 d effectively suppressed chemically induced tumors. Parameters such as body weight, liver and kidney weight, tumor weight, mean survival time, behavioral changes, blood glucose, blood glycogen and marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), acid phosphatase (ACP) and 5'-nucleiotidase (5'-NT) in serum, liver and kidney and lipid profiles such as total cholesterol, phospholipids, free fatty acids in liver and kidney of control and experimental animals were studied. Results:Fibrosarcoma bearing animals were ferocious and anxious. The mean survival time was found to increase after the treatment. The body weights were significantly decreased (P<0.001) in group II fibrosarcoma animals which steadily increased after the treatment with I. aspalathoides. The liver and kidney weights were significantly increased whereas the tumor weights decreased as compared to the weights in untreated fibrosarcoma bearing rats. The blood glucose and the liver and kidney glycogen levels were found to decrease significantly (P<0.001) in group II animals. Elevated activities of marker enzymes were observed in serum, liver and kidney of fibrosarcoma bearing Group II animals which were normalize after I. aspalathoides treatment. In the liver and kidney of Group II animals the total cholesterol increased whereas the phospholipids and free fatty acid levels decreased (P<0.001) which were normalized after treatment. Conclusions:The treatment by I. aspalathoides on fibrosarcoma bearing rats has improved the levels of various parameters indicating its antiproliferative and

  10. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  11. Ameloblastic fibroma and ameloblastic fibrosarcoma: A systematic review.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Brennan, Peter A; Rahimi, Siavash; Gomez, Ricardo Santiago

    2017-08-04

    To integrate the available data published to date on ameloblastic fibromas (AF) and ameloblastic fibrosarcomas (AFS) into a comprehensive analysis of their clinical/radiological features. An electronic search was undertaken in July 2017. Eligibility criteria included publications having enough clinical, radiological and histological information to confirm a definite diagnosis. A total of 244 publications (279 central AF tumours, 10 peripheral AF, 103 AFS) were included. AF and AFS differed significantly with regard to the occurrence of patients' mean age, bone expansion, cortical bone perforation and lesion size. Recurrence rates were as follows: central AF (19.2%), peripheral AF (12.5%), AFS (all lesions, 35%), primary (de novo) AFS (28.8%) and secondary AFS (occurring after an AF, 50%). Larger lesions and older patients were more often treated by surgical resections for central AF. Segmental resection resulted in the lowest rate of recurrence for most of the lesion types. AFS treated by segmental resection had a 70.5% lower probability to recur (OR 0.295; P = .049) than marginal resection; 21.3% of the AFS patients died due to complications related to the lesion. Very long follow-up is recommended for AF lesions, due to the risk of recurrence and malignant change into AFS. Segmental resection is the most recommended therapy for AFS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  13. Identification of a New Peptide for Fibrosarcoma Tumor Targeting and Imaging In Vivo

    Directory of Open Access Journals (Sweden)

    Chia-Che Wu

    2010-01-01

    Full Text Available A 12-mer amino acid peptide SATTHYRLQAAN, denominated TK4, was isolated from a phage-display library with fibrosarcoma tumor-binding activity. In vivo biodistribution analysis of TK4-displaying phage showed a significant increased phage titer in implanted tumor up to 10-fold in comparison with normal tissues after systemic administration in mouse. Competition assay confirmed that the binding of TK4-phage to tumor cells depends on the TK4 peptide. Intravenous injection of 131I-labeled synthetic TK4 peptide in mice showed a tumor retention of 3.3% and 2.7% ID/g at 1- and 4-hour postinjection, respectively. Tumor-to-muscle ratio was 1.1, 5.7, and 3.2 at 1-, 4-, and 24-hour, respectively, and tumors were imaged on a digital γ-camera at 4-hour postinjection. The present data suggest that TK4 holds promise as a lead structure for tumor targeting, and it could be further applied in the development of diagnostic or therapeutic agent.

  14. Identification of a new peptide for fibrosarcoma tumor targeting and imaging in vivo.

    Science.gov (United States)

    Wu, Chia-Che; Lin, Erh-Hsuan; Lee, Yu-Ching; Tai, Cheng-Jeng; Kuo, Tsu-Hsiang; Wang, Hsin-Ell; Luo, Tsai-Yueh; Fu, Ying-Kai; Chen, Haw-Jan; Sun, Ming-Ding; Wu, Chih-Hsiung; Wu, Cheng-Wen; Leu, Sy-Jye; Deng, Win-Ping

    2010-01-01

    A 12-mer amino acid peptide SATTHYRLQAAN, denominated TK4, was isolated from a phage-display library with fibrosarcoma tumor-binding activity. In vivo biodistribution analysis of TK4-displaying phage showed a significant increased phage titer in implanted tumor up to 10-fold in comparison with normal tissues after systemic administration in mouse. Competition assay confirmed that the binding of TK4-phage to tumor cells depends on the TK4 peptide. Intravenous injection of (131)I-labeled synthetic TK4 peptide in mice showed a tumor retention of 3.3% and 2.7% ID/g at 1- and 4-hour postinjection, respectively. Tumor-to-muscle ratio was 1.1, 5.7, and 3.2 at 1-, 4-, and 24-hour, respectively, and tumors were imaged on a digital γ-camera at 4-hour postinjection. The present data suggest that TK4 holds promise as a lead structure for tumor targeting, and it could be further applied in the development of diagnostic or therapeutic agent.

  15. The apparent positive cooperativity of in vivo [{sup 3}H]PK-11195 binding in mouse fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Momosaki, Sotaro [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)]. E-mail: momosaki@sahs.med.osaka-u.ac.jp; Hosoi, Rie [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan); Takai, Nobuhiko [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Gee, Antony [GlaxoSmithKline, Clinical Research Unit, ACCI, Addenbrookes Hospital, Cambridge CB2 2GC (United Kingdom); Inoue, Osamu [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)

    2006-08-15

    To evaluate the binding properties of peripheral benzodiazepine receptor (PBR) in mouse fibrosarcoma, [{sup 3}H]PK-11195 binding, in vitro and in vivo, was investigated using either tissue dissection or autoradiographic method. The binding characteristics in fibrosarcoma were compared with those in the kidney. The results of an in vitro saturation study revealed that the maximal numbers of PBR binding sites (B {sub max}) in fibrosarcoma and in the kidney were almost the same (kidney: 5.2 pmol/mg protein; fibrosarcoma: 5.0 pmol/mg protein). On the other hand, the binding affinity (K {sub d}) in fibrosarcoma was lower than that in the kidney (kidney: 0.45 nM; fibrosarcoma: 1.34 nM). It is noteworthy that the in vivo binding of [{sup 3}H]PK-11195 in fibrosarcoma increased with increasing doses of [{sup 3}H]PK-11195 (in the dose range of 0.03-1 mg/kg), whereas that in the kidney decreased with competitive inhibition. The apparent positive cooperativity of [{sup 3}H]PK-11195 binding in fibrosarcoma was only observed under in vivo conditions and might be possibly related to the incoordination of PBR subunits.

  16. Ameloblastic fibrosarcoma: report of a case. Immunohistochemical study and review of the literature.

    Science.gov (United States)

    Huguet, P; Castellví, J; Avila, M; Alejo, M; Autonell, F; Basas, C; Bescos, M S

    2001-01-01

    Ameloblastic fibrosarcoma is a rare malignant odontogenic tumour characterized by a benign epithelial component within a malignant fibrous stroma. Its behaviour is relatively benign, with absence of metastatic disease, and the prognosis is reported to be good. It is a paradoxical neoplasm with "sarcomatous" morphological and immunohistochemical patterns but with a favourable clinical course. We report a new case of this tumour in a mandibular ramus of a 31-years-old male patient, that was surgically excised and treated with adjuvant chemotherapy and radiotherapy. Five years later the patient is free of disease. The growth potential of ameloblastic fibrosarcoma is evaluated and compared with a related lesion, the ameloblastic fibroma. The sarcomatous mesenchymal component of ameloblastic fibrosarcoma is positive to Ki67, PCNA and p53, in front of the negativity of ameloblastic fibroma.

  17. Sclerosing Epithelioid Fibrosarcoma of the Bone: A Case Report of High Resistance to Chemotherapy and a Survey of the Literature

    Directory of Open Access Journals (Sweden)

    Thomas G. P. Grunewald

    2010-01-01

    Full Text Available Sclerosing epithelioid fibrosarcoma (SEF is a rare soft tissue sarcoma mostly occurring in extraosseous sites. SEF represents a clinically challenging entity especially because no standardized treatment regimens are available. Intraosseous localization is an additional challenge with respect to the therapeutical approach. We report on a 16-year-old patient with SEF of the right proximal tibia. The patient underwent standardized neoadjuvant chemotherapy analogous to the EURAMOS-1 protocol for the treatment of osteosarcoma followed by tumor resection and endoprosthetic reconstruction. Histopathological analysis of the resected tumor showed >90% vital tumor cells suggesting no response to chemotherapy. Therefore, therapy was reassigned to the CWS 2002 High-Risk protocol for the treatment of soft tissue sarcoma. To date (22 months after diagnosis, there is no evidence of relapse or metastasis. Our data suggest that SEF may be resistant to a chemotherapy regimen containing Cisplatin, Doxorubicin, and Methotrexate, which should be considered in planning treatment for patients with SEF.

  18. Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells.

    Science.gov (United States)

    Wilson, Leah M; Wong, Stephen H K; Yu, Ningpu; Geras-Raaka, Elizabeth; Raaka, Bruce M; Gershengorn, Marvin C

    2009-11-01

    We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene in beta cells, pancreatic and duodenal homeobox factor 1 (Pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and neurogenic differentiation 1 (Neurod1), would activate INS gene expression in long-term hIPC cultures. Coexpression of all three transcription factors had little effect on INS mRNA levels but unexpectedly increased GCG mRNA at least 100,000-fold. In contrast to the endogenous promoter, an exogenous rat INS promoter was activated by expression of Pdx1 and Mafa in hIPCs. Chromatin immunoprecipitation (ChIP) assays using antibodies directed at posttranslationally modified histones show that regions of the INS and GCG genes have similar levels of activation-associated modifications but the INS gene has higher levels of repression-associated modifications. Furthermore, the INS gene was found to be less accessible to micrococcal nuclease digestion than the GCG gene. Lastly, ChIP assays show that exogenously expressed Pdx1 and Mafa bind at very low levels to the INS promoter and at 20- to 25-fold higher levels to the GCG promoter in hIPCs. We conclude that the INS gene in hIPCs is modified epigenetically ("silenced") so that it is resistant to activation by transcription factors.

  19. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  20. Anti-tumor effect of combined betacarotene with X-irradiation in the mouse fibrosarcoma: cytotoxicity and tumor growth delay

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Cheol; Yang, Moon Sik [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2000-06-01

    To investigate whether combined beta-carotene with X-irradiation has more enhanced radiation response than X-irradiation or not, we performed an experiment about in vitro cytotoxicity of beta-carotene and/or X-irradiation in the fibrosarcoma cells, tumor growth delay of combined beta-caroten with/or X-irradiation in the mouse fibrosarcoma. 2% emulsion of beta-carotene was serially diluted and used. X-irradiation was given by 6 MeV linear accelerator. The cytotoxicity between combined beta-carotene with X-irradiation and X-irradiation group, 2 mg/ml of beta-carotene was contacted to fibrosarcoma (FSall) cells for 1 hour before X-irradiation. For the tumor growth delay, single 20 Gy was given to FSall tumor bearing C3H/N mice which was classified as beta-carotene with X-irradiation group (n=6) and X-irradiation alone group (n=5). 0.2 ml of 20 mg/kg of beta-carotene were i.p. injected to mice 30 minute before X-irradiation in the beta-carotene with X-irradiation group. The tumor growth delay defined as the time which reach to 1,000 mm{sup 3} of tumor volume. (1) Cytotoxicity in vitro; 1) survival fraction at beta-carotene concentration of 0.002, 0.02, 0.2 and 2 mg/ml were 0.69{+-}0.07, 0.59{+-}0.08, 0.08{+-}0.008 and 0.02{+-}0.006, respectively. 2) each survival fraction at 2, 4, 6 and 8 Gy in the 2 mg/ml of beta-carotene + X-irradiation group were 0.13{+-}0.05, 0.03{+-}0.005, 0.01{+-}0.002 and 0.009{+-}0.0008, respectively. But each survival fraction at same irradiation dose in the X-irradiation group were 0.66{+-} 0.05, 0.40{+-}0.05, 0.40{+-}0.04, 0.11{+-}0.01 and 0.03{+-}0.006, respectively (p<0.05). (2) The time which reach to 1,000 mm{sup 3} of tumor volume of beta-carotene + X-irradiation group and X-irradiation alone group were 18, 19 days, respectively (o>0.05). The contact of beta-caroten to FSall cells showed mild cytotoxicity which was increased according to concentration. The cytotoxicity of combined beta-carotene with X-irradiation more increased than

  1. Retroperitoneal Malignant Mesenchymoma: A Case of Mesenchymal Mixed Tumor with Osteosarcoma, Leiomyosarcoma, Liposarcoma and Fibrosarcoma

    Science.gov (United States)

    Choi, Jung Eun; Yoo, Won Jong; Chung, Myung Hee; Sung, Mi Sook; Lee, Hae Giu; Park, Il Young; Kim, Jeana

    2002-01-01

    Malignant mesenchymoma is an interesting but very rare tumor in which malignant differentiation has occurred twice or more. We report a case of retroperitoneal malignant mesenchymoma consisting of osteosarcoma, leiomyosarcoma, liposarcoma and fibrosarcoma. Abdominal CT showed a large retroperitoneal mass with two separate and distinct parts, namely an area of prominent calcification and one of clearly enhancing solid components. The mass contained histologically distinct tumorous components with no histologic admixure at the interfaces. The densely calcified nodule corresponded to osteosarcoma, and the non-calcified clearly enhancing nodules to leiomyosarcoma, liposarcoma and fibrosarcoma. PMID:12514345

  2. Collet Sicard syndrome as atypical presentation of neck fibrosarcoma: a case report

    Science.gov (United States)

    Petrović, Slađana; Grozdanović, Danijela; Kovačević, Predrag; Višnjić, Milan; Petrović, Dragan

    2011-01-01

    We report a 57 years old female patient with neck fibrosarcoma. Her main complaints consisted of hoarseness, difficulty swallowing, pain in the left side of her neck and left shoulder region, which all indicated the Collet Sicard syndrome, so the working diagnosis was glomus tumor Diagnostic MSCT was used, and the characteristics of the radiologic finding did not indicate any of the paraganglioma types, although the tumor was localized in the area of the carotid bifurcation, demonstrating the signs of extension into the jugular foramen. The patient has been treated surgically in general anesthesia and pathologic diagnosis was fibrosarcoma. PMID:21619564

  3. Differentiated human stem cells resemble fetal, not adult, β cells.

    Science.gov (United States)

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  4. The potency of human testicular stem cells

    NARCIS (Netherlands)

    Chikhovskaya, J.V.

    2013-01-01

    In this thesis, we evaluate the stem cell state of cells present in primary human testicular cell cultures as well as their origin and relation to germ or somatic lineages within testicular tissue. We conclude that human testis-derived embryonic stem cell-like (htES-like) colonies arising in primary

  5. Ameloblastic fibrosarcoma involving the anterior and middle skull base with intradural extension.

    Science.gov (United States)

    Guthikonda, Bharat; Hanna, Ehab Y; Skoracki, Roman J; Prabhu, Sujit S

    2009-11-01

    Ameloblastic fibrosarcoma is a malignant odontogenic tumor that rarely affects the skull base and surrounding regions. We present a case of a 48-year-old man with histologically confirmed malignant transformation of a benign ameloblastic fibroma 10 years after initial presentation of a localized facial mass. The ameloblastic fibrosarcoma extended from the facial region to the orbit, anterior and middle fossa skull base, the infratemporal fossa, and the cavernous sinus. Progressive proptosis with complete monocular vision loss was the presenting symptom. To our review, our case represents the first report of intradural extension of ameloblastic fibrosarcoma. Using a multidisciplinary skull base approach, resection of all tumors except that in the cavernous sinus was achieved with the resulting defect reconstructed with an anterolateral thigh free flap. The patient had no new neurologic deficits after surgery and underwent adjuvant fractionated radiation therapy. Malignant transformation of ameloblastic fibroma into ameloblastic fibrosarcoma can occur many years after initial presentation. Thus, vigilant long-term follow-up is essential despite the benign nature of the initial pathologic lesion. Use of a multidisciplinary approach is critical in obtaining the optimal outcome in these complex cases.

  6. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  7. Evaluation of radiogallium-labeled, folate-embedded superparamagnetic nanoparticles in fibrosarcoma-bearing mice

    Directory of Open Access Journals (Sweden)

    Seyyedeh Leila Hosseini-Salekdeh

    2012-01-01

    Full Text Available Context: Elevated expression of the folate receptor (FR occurs in many human malignancies. Thus, folate targeting is widely utilized in drug delivery purposes specially using nano-radioactive agents. Aims: In this work, we report production and biological evaluation of gallium-67 labeled superparamagnetic iron oxide nanoparticles, embedded by folic acid ( 67 Ga-SPION-folate complex especially in tumor-bearing mice for tumor imaging studies. Settings and Design: The structure of SPION-folate was confirmed by X-ray diffraction (XRD, transmission electron microscopy (TEM and foureir transform infrared spectroscopy (FT-IR analyses. The radiolabeled SPION-folate formation was confirmed by instant thin layer chromatography (ITLC. Tumor induction was performed by the use of poly-aromatic hydrocarbon injection in rodents as reported previously. Materials and Methods: [ 67 Ga]-SPION-folate was shown to possess a particle size of ≈5-10 nm using instrumental methods followed by ITLC test. Biocompatibility of the compound was investigated using an 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay followed by stability tests and tumor accumulation studies in fibrosarcoma-bearing mice after subcutaneous (s.c. application. Statistical Analysis Used: All values were expressed as mean ± standard deviation (mean ± SD and the data were compared using Student t-test. Statistical significance was defined as P95% radiochemical purity. Biodistribution studies demonstrated tumor:blood, tumor:bone and tumor:muscle ratios of 4.23, 4.98 and 11.54 respectively after 24 h. Conclusions: Due to the nano-scale size and high-penetrative property of the developed folate-containing nano-complex, this system can be an interesting drug delivery modality with therapeutic applications and folate receptor-targeting behavior, while possessing paramagnetic properties for thermotherapy.

  8. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  9. A Role for the NFkB/Rel Transcription Factors in Human Breast Cancer

    Science.gov (United States)

    1996-07-01

    mutated in serines 32 and 36, which results in a protein that can bind to NF-kB but which cannot be degraded) in the HT1080 fibrosarcoma cell line . This...hereditary susceptibility of women to breast cancer and on a role for estrogen in modulating cell growth of human breast cancers. It has been reported...members of the NF-kB family of proteins are related to the product of the c-Rel proto-oncogene which is found overexpressed in certain tumor cell lines

  10. Receptor-dependent antiproliferative effects of corticosteroids in radiation-induced fibrosarcomas and implications for sequential therapy

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweiger, P.G.; Ting, H.L.; Schiffer, L.M.

    1982-05-01

    Competitive binding studies with (/sup 3/H)dexamethasone and Scatchard analysis demonstrated a single class of high-affinity, low-capacity glucocorticoid receptor sites in 105,000 x g cytosols from radiation-induced fibrosarcomas. In vivo, both dexamethasone (DEX) and methylprednisolone treatments resulted in dose-dependent inhibition of tumor growth and cell proliferation. Changes in the sensitivity of the clonogenic cell population to 3 mM hydroxyurea were used to assess changes in the clonogenic cell proliferation during and after treatments with DEX or methylprednisolone. Neither methylprednisolone nor DEX given every 12 hr for three doses resulted in significant cell kill in the clonogenic fraction. However, changes in the hydroxyurea sensitivity of the clonogenic population after cessation of DEX treatments indicated G1 cell cycle progression delay with transient enrichment of S-phase clonogenic cells 24 to 48 hr after cessation of DEX treatments. The duration of the DEX-induced progression delay and the timing of maximal S-phase cellularity after DEX was directly correlated with the level of glucocorticoid receptors in the treated tumors. Using regrowth delay to assess the efficacy of kinetically directed sequential chemotherapy, the effectiveness of vincristine, given after DEX, was highly sequence dependent, with the most effective treatment interval being coincident with maximal S-phase clonogenic fraction. Other studies indicated that the effectiveness of cyclophosphamide could also be increased by time sequencing after DEX.

  11. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  12. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP.

    Science.gov (United States)

    Panov, Alexander; Orynbayeva, Zulfiya

    2013-01-01

    The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca²⁺ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca²⁺-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca²⁺. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.

  13. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP.

    Directory of Open Access Journals (Sweden)

    Alexander Panov

    Full Text Available The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC, metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ. Unprotected with cyclosporine A (CsA the PC-3 mitochondria required 4 times more Ca²⁺ to open the permeability transition pore (mPTP when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca²⁺-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca²⁺. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.

  14. Bioenergetic and Antiapoptotic Properties of Mitochondria from Cultured Human Prostate Cancer Cell Lines PC-3, DU145 and LNCaP

    Science.gov (United States)

    Panov, Alexander; Orynbayeva, Zulfiya

    2013-01-01

    The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca2+ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca2+-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca2+. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia. PMID:23951286

  15. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on TFH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138(+) plasma and IgD(-)CD27(+) memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3(+)CXCR5(+)PD-1(+) follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Comparative analysis of cell death induction by Taurolidine in different malignant human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ritter Peter R

    2010-03-01

    Full Text Available Abstract Background Taurolidine (TRD represents an anti-infective substance with anti-neoplastic activity in many malignant cell lines. So far, the knowledge about the cell death inducing mechanisms and pathways activated by TRD is limited. The aim of this study was therefore, to perform a comparative analysis of cell death induction by TRD simultaneously in different malignant cell lines. Materials and methods Five different malignant cell lines (HT29/Colon, Chang Liver/Liver, HT1080/fibrosarcoma, AsPC-1/pancreas and BxPC-3/pancreas were incubated with increasing concentrations of TRD (100 μM, 250 μM and 1000 μM for 6 h and 24 h. Cell viability, apoptosis and necrosis were analyzed by FACS analysis (Propidiumiodide/AnnexinV staining. Additionally, cells were co-incubated with the caspase Inhibitor z-VAD, the radical scavenger N-Acetylcystein (NAC and the Gluthation depleting agent BSO to examine the contribution of caspase activation and reactive oxygen species in TRD induced cell death. Results All cell lines were susceptible to TRD induced cell death without resistance toward this anti-neoplastic agent. However, the dose response effects were varying largely between different cell lines. The effect of NAC and BSO co-treatment were highly different among cell lines - suggesting a cell line specific involvement of ROS in TRD induced cell death. Furthermore, impact of z-VAD mediated inhibition of caspases was differing strongly among the cell lines. Conclusion This is the first study providing a simultaneous evaluation of the anti-neoplastic action of TRD across several malignant cell lines. The involvement of ROS and caspase activation was highly variable among the five cell lines, although all were susceptible to TRD induced cell death. Our results indicate, that TRD is likely to provide multifaceted cell death mechanisms leading to a cell line specific diversity.

  17. Intracranial fibrosarcoma treated with adjuvant radiation and temozolomide: Report of a case and review of all published cases

    Directory of Open Access Journals (Sweden)

    Prashanth Giridhar

    2016-06-01

    Conclusion: Fibrosarcoma is a rare disease with dismal prognosis. Surgery remains the cornerstone of therapy. Radiation confers long term disease control and survival. Chemotherapy needs to be evaluated for these tumours to improve survival.

  18. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  19. IMMUNORESPONSES OF HUMANIZED SCID MICE TO HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    陈力真; 王树蕙; 张云; 王世真

    1996-01-01

    HuPBL-SCID mice were used to explore how they would response to human ttmoor cells of 801/MLC.Living 801/MLC cells appeared to be fetal to the the mice due to the production of human TNF. The huP-BL-SCID rniee did not generate any noticeable amotmt of specific human immunoglobttlin either by single immunization with living 801/MLC cells or by repeated immunization with irradiated 801/MLC cells. Our preliminary experiments with huPBL-SCID mice showed that such chimeras would he a very useful models for tumor immunological researches.

  20. Search for naive human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Simone Aparecida Siqueira Fonseca; Roberta Montero Costas; Lygia Veiga Pereira

    2015-01-01

    Normal mouse pluripotent stem cells were originallyderived from the inner cell mass (ICM) of blastocystsand shown to be the in vitro equivalent of those preimplantationembryonic cells, and thus were calledembryonic stem cells (ESCs). More than a decade later,pluripotent cells were isolated from the ICM of humanblastocysts. Despite being called human ESCs, thesecells differ significantly from mouse ESCs, includingdifferent morphology and mechanisms of control ofpluripotency, suggesting distinct embryonic originsof ESCs from the two species. Subsequently, mousepluripotent stem cells were established from the ICMderivedepiblast of post-implantation embryos. Thesemouse epiblast stem cells (EpiSCs) are morphologicaland epigenetically more similar to human ESCs. Thisraised the question of whether cells from the humanICM are in a more advanced differentiation stage thantheir murine counterpart, or whether the availableculture conditions were not adequate to maintain thosehuman cells in their in vivo state, leading to a transitioninto EpiSC-like cells in vitro . More recently, novel cultureconditions allowed the conversion of human ESCs intomouse ESC-like cells called naive (or ground state)human ESCs, and the derivation of naive human ESCsfrom blastocysts. Here we will review the characteristicsof each type of pluripotent stem cells, how (andwhether) these relate to different stages of embryonicdevelopment, and discuss the potential implications ofnaive human ESCs in research and therapy.

  1. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  2. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  3. TFG-MET fusion in an infantile spindle cell sarcoma with neural features

    NARCIS (Netherlands)

    Flucke, Uta; van Noesel, Max M.; Wijnen, Marc; Zhang, Lei; Chen, Chun Liang; Sung, Yun Shao; Antonescu, Cristina R.

    2017-01-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell

  4. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  5. [Sclerosing epithelioid fibrosarcoma of the paravertebral column. Case report and literature review].

    Science.gov (United States)

    Puerta Roldán, Patricia; Rodríguez Rodríguez, Rodrigo; Bagué Rossell, Silvia; de Juan Delago, Manel; Molet Teixidó, Joan

    2013-01-01

    Sclerosing epithelioid fibrosarcoma (SEF) is a rare variant of low-grade fibrosarcoma, with specific histological and immunohistochemical features and a poor prognosis. We report a case of SEF of the paravertebral column in a 49-year old male who presented a paraspinal mass with extension into the L4-L5 neural foramen and invasion of the L5 nerve root. Histology of the tumourectomy specimen and its immunohistochemical study led to the diagnosis of SEF. This case was particularly unusual due to its paravertebral column location and, despite its low grade, illustrates the malignant potential of SEF. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  6. Human Neural Cell-Based Biosensor

    Science.gov (United States)

    2013-05-28

    including incubation with factors such as SHH ) and proceed to Human Neural Progenitor Cells Dopaminergic Differentiation β-III Tubulin/TH...exposure in human embryonic stem cells. J Recept Signal Transduct Res. 2011 Jun;31(3):206-13. Gerwe BA, Angel PM, West FD, Hasneen K, Young A

  7. Blood flow dependence of the intratumoral distribution of peripheral benzodiazepine receptor binding in intact mouse fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Amitani, Misato [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan) and Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)]. E-mail: amitani@sahs.med.osaka-u.ac.jp; Zhang, Ming-Rong [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Noguchi, Junko [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service, Shinagawa-ku, Tokyo 141-8686 (Japan); Kumata, Katsushi [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Ito, Takehito [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service, Shinagawa-ku, Tokyo 141-8686 (Japan); Takai, Nobuhiko [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Suzuki, Kazutoshi [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Hosoi, Rie [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan); Inoue, Osamu [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)

    2006-11-15

    The intratumoral distribution of [{sup 11}C]AC-5216 binding, a novel peripheral benzodiazepine receptor (PBR) ligand, was examined by autoradiography both in vitro and in vivo using a murine fibrosarcoma model. The regional distribution of [{sup 11}C]AC-5216 in a tumor in vivo was significantly heterogeneous; the uptake of [{sup 11}C]AC-5216 was comparatively higher in the outer rim of the tumor and was lower in the central area. In contrast, the images obtained following the injection of [{sup 11}C]AC-5216 with a large amount of nonlabeled PK11195 showed a relatively homogeneous distribution, suggesting that [{sup 11}C]AC-5216 uptake represented specific binding to PBRs. In vitro autoradiograms of [{sup 11}C]AC-5216 binding were also obtained using the section of the fibrosarcoma that was the same as that used to examine in vivo binding. In vitro autoradiographic binding images showed homogeneous distribution, and significant discrepancies of the intratumoral distribution of [{sup 11}C]AC-5216 were observed between in vivo and in vitro images. The in vivo images of [{sup 11}C]AC-5216 uptake, compared with those of [{sup 14}C]iodoantipyrine uptake, obtained by dual autoradiography to evaluate the influence of blood flow revealed the similar intratumoral distributions of both tracers. These results indicate that the delivery process from the plasma to the tumor might be the rate-limiting step for the intratumoral distribution of PBR binding in vivo in a fibrosarcoma model.

  8. Ovarian Fibrosarcoma: Clinicopathologic Considerations about the Intraoperative and Post-Surgical Procedures

    Directory of Open Access Journals (Sweden)

    Angel García Jiménez

    2009-01-01

    Full Text Available Primary ovarian fibrosarcomas are very uncommon neoplasms. Since the diagnostic criteria were established in 1981, less than one hundred cases have been reported. This diagnosis can be difficult to establish and other similar appearing mesenchymal processes must be ruled out. In every case this diagnosis is under consideration. Multiple sections of the specimen and immunohistochemical stains will be necessary to support this diagnosis. The difficulty of recognition in frozen section in the majority of the situations implies that the diagnosis should be deferred to the definitive study of the permanent sections with immunohistochemical studies. There exists a histological resemblance between a primary ovarian fibrosarcoma and actively mitotic fibroma. In some cases, it can be impossible to separate exactly these two entities. We report a well-differentiated ovarian fibrosarcoma, with less than 1-2 mitosis HPF and low-grade cytological atypia, similar to active mitotic fibromas, developing liver metastasis one year later. Despite having distant metastasis, some cases with long survival rates have been reported in patients who received chemotherapy after surgery; so that the adjuvant chemotherapy should be considered, especially in young females.

  9. Hepatic fibrosarcoma incarcerated in a peritoneopericardial diaphragmatic hernia in a cat

    Directory of Open Access Journals (Sweden)

    Michael Linton

    2016-03-01

    Full Text Available Case summary A 14-year-old, female neutered domestic shorthair presented for dyspnoea. Thoracic ultrasonography and radiography showed that a heterogeneous mass was present within the pericardial sac, and the mass continued caudally with the mesenteric fat. On CT, the outline of the diaphragm was not continuous and there was an obvious defect with diaphragmatic thickening present at the mid-level of the liver. A pleural effusion and a small-volume pericardial effusion were also present. A ventral midline coeliotomy and median sternotomy revealed a 5 × 6 × 7 cm firm, irregular, tan-coloured soft tissue mass within the pericardial sac attached to both the diaphragmatic defect and liver. The mass was carefully dissected away from the heart and the diaphragmatic defect was repaired with primary closure. Postoperatively, the cat had a persistent pneumothorax that required continuous pleural suction for 41 h. The cat died 44 h postoperatively. Histopathology and immunohistochemistry confirmed the mass to be a hepatic fibrosarcoma incarcerated in a peritoneopericardial diaphragmatic hernia (PPDH. Relevance and novel information This is the first reported case of metaplastic transformation of liver into a sarcoma in a cat with PPDH. In addition, hepatic fibrosarcoma is a rarely reported location for fibrosarcoma in this species.

  10. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  11. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    Science.gov (United States)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  12. Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement

    NARCIS (Netherlands)

    Haeger, A.; Krause, M.; Wolf, K. van der; Friedl, P.

    2014-01-01

    BACKGROUND: Cancer invasion is a multi-step process which coordinates interactions between tumor cells with mechanotransduction towards the surrounding matrix, resulting in distinct cancer invasion strategies. Defined by context, mesenchymal tumors, including melanoma and fibrosarcoma, develop eithe

  13. Multiple Bone Metastasis of Sclerosing Epithelioid Fibrosarcoma 12 Years after Initial Surgery—Increasing Ki-67 Labeling Index

    Directory of Open Access Journals (Sweden)

    Atsuko Kanno

    2009-01-01

    Full Text Available Sclerosing epithelioid fibrosarcoma (SEF is a rare sarcoma of low-grade malignancy. There has been no report to describe the comparison of histological features of SEF between primary and metastatic lesions in spite of high local recurrence rate. We report the histological changes and increasing Ki-67 labeling index of the primary and metastatic lesions of SEF. The patient was a 31-year-old man. At 18, a tumor in the abdominal wall was excised. At 23, the tumor recurred which was removed again. At 30, he was referred to our hospital because of swelling and pain in the chest. Histological examination of the chest wall tumor showed epithelioid cells arranged like alveolar pattern with dense collagen stroma. These findings were consistent with those of SEF. Abdominal and the rib tumors showed the same immunohistochemistrical expression. It is noteworthy that the tumor cells of the rib lesion showed increased cellularity, and its Ki-67 activity was higher as compared with the abdominal tumor, suggestive of progression of malignancy of SEF.

  14. Recurrent BCOR internal tandem duplication and BCOR or BCL6 expression distinguish primitive myxoid mesenchymal tumor of infancy from congenital infantile fibrosarcoma.

    Science.gov (United States)

    Santiago, Teresa; Clay, Michael R; Allen, Sariah J; Orr, Brent A

    2017-03-03

    Primitive myxoid mesenchymal tumor of infancy is a rare sarcoma that preferentially affects infants. It can be locally aggressive and rarely metastasizes, but the long-term outcome of children with this tumor is mostly unknown. Histologically, it is characterized by primitive cells with abundant myxoid stroma. Internal tandem duplication of B-cell CLL/lymphoma 6 (BCL6)-interacting co-repressor (BCOR) exon 15 has recently been described in clear cell sarcoma of kidney, central nervous system high-grade neuroepithelial tumor with BCOR alteration, and primitive myxoid mesenchymal tumor of infancy. Herein, we report five cases of primitive myxoid mesenchymal tumor of infancy: three girls and two boys with mean age of 6.5 months. The tumors were located in the paraspinal region (n=3), back (n=1), or foot (n=1) and ranged in size from 2.5 to 10.2 cm. BCOR internal tandem duplication was confirmed by PCR and sequencing in all five cases. The minimally duplicated region consisted of nine residues, which is shorter than was previously reported in other BCOR-associated tumors. To assess the clinical value and specificity of the BCOR internal tandem duplication, a group of 11 ETV6-rearranged congenital infantile fibrosarcomas were evaluated and no BCOR internal tandem duplication was identified in any case. Though not detected in congenital infantile fibrosarcomas, BCOR and BCL6 immunoreactivity was present in >90% of the nuclei of tumor cells in each of the five primitive myxoid mesenchymal tumor of infancy. The presence of BCOR internal tandem duplication in all five primitive myxoid mesenchymal tumors of infancy provides evidence that it is a recurrent somatic abnormality and substantiates the concept that this tumor is a unique sarcoma of infancy. Our findings indicate that identification of BCOR internal tandem duplication and/or nuclear immunoreactivity for BCOR or BCL6 can aid in the diagnosis of primitive myxoid mesenchymal tumor of infancy and help to differentiate

  15. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  16. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  17. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  18. The therapeutic T-cell response induced by tumor delivery of TNF and melphalan is dependent on early triggering of natural killer and dendritic cells.

    Science.gov (United States)

    Balza, Enrica; Zanellato, Silvia; Poggi, Alessandro; Reverberi, Daniele; Rubartelli, Anna; Mortara, Lorenzo

    2017-04-01

    The fusion protein L19mTNF (mouse TNF and human antibody fragment L19 directed to fibronectin extra domain B) selectively targets the tumor vasculature, and in combination with melphalan induces a long-lasting T-cell therapeutic response and immune memory in murine models. Increasing evidence suggests that natural killer (NK) cells act to promote effective T-cell-based antitumor responses. We have analyzed the role of NK cells and dendritic cells (DCs) on two different murine tumor models: WEHI-164 fibrosarcoma and C51 colon carcinoma, in which the combined treatment induces high and low rejection rates, respectively. In vivo NK-cell depletion strongly reduced the rejection of WEHI-164 fibrosarcoma and correlated with a decrease in mature DCs, CD4(+) , and CD8(+) T cells in the tumor-draining LNs and mature DCs and CD4(+) T cells in the tumor 40 h after initiation of the therapy. NK-cell depletion also resulted in the impairment of the stimulatory capability of DCs derived from tumor-draining LNs of WEHI-164-treated mice. Moreover, a significant reduction of M2-type infiltrating macrophages was detected in both tumors undergoing therapy. These results suggest that the efficacy of L19mTNF/melphalan therapy is strongly related to the early activation of NK cells and DCs, which are necessary for an effective T-cell response. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  20. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  1. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  2. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types.

    Science.gov (United States)

    Hansen, Tyler D; Koepsel, Justin T; Le, Ngoc Nhi; Nguyen, Eric H; Zorn, Stefan; Parlato, Matthew; Loveland, Samuel G; Schwartz, Michael P; Murphy, William L

    2014-05-01

    Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 motility was insensitive to cell adhesion ligand density on RGD-SAMs, as they migrated with similar speed and directionality for a wide range of RGD densities (0.2-5% mol fraction RGD). Similarly, HT-1080 migration speed was weakly dependent on adhesion on 0.34 kPa PEG surfaces. On 13 kPa surfaces, a sharp initial increase in cell speed was observed at low RGD concentration, with no further changes observed as RGD concentration was increased further. An increase in cell speed ~ two-fold for the 13 kPa relative to the 0.34 kPa PEG surface suggested an important role for substrate stiffness in mediating motility, which was confirmed for HT-1080s migrating on variable modulus PEG hydrogels with constant RGD concentration. Notably, despite ~ two-fold changes in cell speed over a wide range of moduli, HT-1080s adopted rounded morphologies on all surfaces investigated, which contrasted with well spread primary human mesenchymal stem cells (hMSCs). Taken together, our results demonstrate that HT-1080s are morphologically distinct from primary mesenchymal cells (hMSCs) and migrate with minimal dependence on cell adhesion for surfaces within a wide range of moduli, whereas motility is strongly influenced by matrix mechanical properties.

  3. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  4. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  5. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  6. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Braam, S.R.; Heck, A.J.R.; Mummery, C.L.; Krijgsveld, J.

    2008-01-01

    Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosom

  7. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  8. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  9. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...

  10. Human hair genealogies and stem cell latency

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2006-02-01

    Full Text Available Abstract Background Stem cells divide to reproduce themselves and produce differentiated progeny. A fundamental problem in human biology has been the inability to measure how often stem cells divide. Although it is impossible to observe every division directly, one method for counting divisions is to count replication errors; the greater the number of divisions, the greater the numbers of errors. Stem cells with more divisions should produce progeny with more replication errors. Methods To test this approach, epigenetic errors (methylation in CpG-rich molecular clocks were measured from human hairs. Hairs exhibit growth and replacement cycles and "new" hairs physically reappear even on "old" heads. Errors may accumulate in long-lived stem cells, or in their differentiated progeny that are eventually shed. Results Average hair errors increased until two years of age, and then were constant despite decades of replacement, consistent with new hairs arising from infrequently dividing bulge stem cells. Errors were significantly more frequent in longer hairs, consistent with long-lived but eventually shed mitotic follicle cells. Conclusion Constant average hair methylation regardless of age contrasts with the age-related methylation observed in human intestine, suggesting that error accumulation and therefore stem cell latency differs among tissues. Epigenetic molecular clocks imply similar mitotic ages for hairs on young and old human heads, consistent with a restart with each new hair, and with genealogies surreptitiously written within somatic cell genomes.

  11. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  12. Variable Ki67 proliferative index in 65 cases of nodular fasciitis, compared with fibrosarcoma and fibromatosis.

    Science.gov (United States)

    Lin, Xu-Yong; Wang, Liang; Zhang, Yong; Dai, Shun-Dong; Wang, En-Hua

    2013-03-26

    Nodular fasciitis is the most common pseudosarcomatous lesion of soft tissue. Ki67 was considered as a useful marker for distinguishing some benign and malignant lesions. To study the usefulness of Ki67 in diagnosis of nodular fasciitis, the expression of Ki67 was examined by using immunostaining in 65 nodular fasciitis specimens, 15 desmoid fibromatosis specimens and 20 fibrosarcoma specimens. The results showed that there was a variable Ki67 index in all 65 cases of nodular fasciitis, and the mean labeling index was 23.71±15.01%. In majority (70.77%) of all cases,the index was ranged from 10% to 50%, in 6.15% (4/65) of cases the higher Ki67 index (over 50%) could be seen. The Ki67 proliferative index was closely related to duration of lesion, but not to age distribution, lesion size, sites of lesions and gender. Moreover, the mean proliferative index in desmoid fibromatosis and fibrosarcoma was 3.20±1.26% and 26.15±3.30% respectively. The mean Ki67 index of nodular fasciitis was not significantly lower than fibrosarcoma, but higher than desmoid fibromatosis. The variable and high Ki67 index in nodular fasciitis may pose a diagnostic challenge. We should not misdiagnose nodular fasciitis as a sarcoma because of its high Ki67 index. The recurrence of nodular fasciitis is rare; and the utility of Ki67 immunostaining may be not suitable for recurrence assessment in nodular fasciitis. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4782335818876666.

  13. INTERACTIONS BETWEEN THE HUMAN GASTRIC CARCINOMA CELL AND THE HUMAN VASCULAR ENDOTHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co-culture or direct contact co-culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.

  14. Fibronectin production by human mammary cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R. (Univ. of California, Berkeley); Vlodavsky, I.; Smith, H.S.; Ford, R.; Becker, F.F.; Riggs, J.

    1981-01-01

    Human mammary cells were examined for the presence of the high-molecular-weight surface glycoprotein fibronectin. Early passage mammary epithelial cell and fibroblast cultures from both carcinomas and normal tissues were tested for the presence of cell-associated fibronectin by immunofluorescence microscopy and for the synthesis and secretion of fibronectin by specific immunoprecipitation of metabolically labeled protein. In vivo frozen sections of primary carcinomas and normal tissues were tested for the localization of fibronectin by immunofluorescence microscopy. In contrast to the extensive fibrillar networks of fibronectin found in the fibroblast cultures, the epithelial cell cultures from both tissue sources displayed a pattern of cell-associated fibronectin characterizd by powdery, punctate staining. However, the cultured epithelial cells, as well as the fibroblasts, secreted large quantities of fibronectin into the medium. Putative myoepithelial cells also displayed extensive fibrillar networks of fibronectin. The difference in cell-associated fibronectin distribution between the epithelial cells and the fibroblasts and putative myoepithelial cells provided a simple means of quantitating stromal and myoepithelial cell contamination of the mammary epithelial cells in culture. In vivo, normal tissues showed fibronectin primarily localized in the basement membrane surrounding the epithelial cells and in the stroma. Most primary carcinomas displayed powdery, punctate staining on the epithelial cells in addition to the fibronectin present in the surrounding stroma.

  15. Laser printing of skin cells and human stem cells.

    Science.gov (United States)

    Koch, Lothar; Kuhn, Stefanie; Sorg, Heiko; Gruene, Martin; Schlie, Sabrina; Gaebel, Ralf; Polchow, Bianca; Reimers, Kerstin; Stoelting, Stephanie; Ma, Nan; Vogt, Peter M; Steinhoff, Gustav; Chichkov, Boris

    2010-10-01

    Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days. The cells survived the transfer procedure with a rate of 98%  +/- 1% standard error of the mean (skin cells) and 90%  +/- 10% (hMSC), respectively. All used cell types maintain their ability to proliferate after LIFT. Further, skin cells and hMSC did not show an increase of apoptosis or DNA fragmentation. In addition, the hMSC keep their phenotype as proven by fluorescence activated cell sorting (FACS) analysis. This study demonstrates LIFT as a suitable technique for unharmed computer-controlled positioning of different cell types and a promising tool for future applications in the ex vivo generation of tissue replacements.

  16. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  17. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  18. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  19. Human embryonic stem cells for neuronal repair.

    Science.gov (United States)

    Ben-Hur, Tamir

    2006-02-01

    Human embryonic stem cells may serve as a potentially endeless source of transplantable cells to treat various neurologic disorders. Accumulating data have shown the therapeutic value of various neural precursor cell types in experimental models of neurologic diseases. Tailoring cell therapy for specific disorders requires the generation of cells that are committed to specific neural lineages. To this end, protocols were recently developed for the derivation of dopaminergic neurons, spinal motor neurons and oligodendrocytes from hESC. These protocols recapitulate normal development in culture conditions. However, a novel concept emerging from these studies is that the beneficial effect of transplanted stem cells is not only via cell replacement in damaged host tissue, but also by trophic and protective effects, as well as by an immunomodulatory effect that down-regulates detrimental brain inflammation.

  20. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI

    2012-01-01

    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  1. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  2. Myristoylation profiling in human cells and zebrafish

    Directory of Open Access Journals (Sweden)

    Malgorzata Broncel

    2015-09-01

    Full Text Available Human cells (HEK 293, HeLa, MCF-7 and zebrafish embryos were metabolically tagged with an alkynyl myristic acid probe, lysed with an SDS buffer and tagged proteomes ligated to multifunctional capture reagents via copper-catalyzed alkyne azide cycloaddition (CuAAC. This allowed for affinity enrichment and high-confidence identification, by delivering direct MS/MS evidence for the modification site, of 87 and 61 co-translationally myristoylated proteins in human cells and zebrafish, respectively. The data have been deposited to ProteomeXchange Consortium (Vizcaíno et al., 2014 Nat. Biotechnol., 32, 223–6 (PXD001863 and PXD001876 and are described in detail in Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic protein lipidation during vertebrate development׳ by Broncel et al., Angew. Chem. Int. Ed.

  3. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  4. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  5. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  6. Fabrication of a radiotherapeutic carrier for a case of fibrosarcoma invaded to the left cranial base

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Ryo [Tokyo Medical and Dental Univ. (Japan). Graduate School; Inoue, Takaaki; Mukohyama, Hitoshi [and others

    2000-06-01

    Radiotherapy has the advantage in treating the malignant tumor developed in head and neck region, especially in preserving the function and shape of the tissue. Since 1981, we have cooperated with radiotherapists in fabricating various kinds of custom-made radiotherapy prostheses such as shields, spacers, carriers and molds. The purpose of a carrier is to place the radioactive source close to the tumor so that a concentrated dose is delivered to the tumor tissue with minimum irradiation of healthy tissue. We fabricated a radiotherapy appliance (a carrier) for a fibrosarcoma that had developed in the left cranial base. Since the maxillary defect was large and connected to oral cavity, the carrier was designed to introduce Gold-198 grains to the tumor while being anchored with a plate section. A satisfactory treatment result was obtained with this design of carrier. This article describes the fabrication procedure of this carrier, which comprised an anchoring plate attached to the remaining palate and teeth, and a carrier section extending from the anchoring plate to the cranial base where the fibrosarcoma had invaded. (author)

  7. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  8. T-cell response in human leishmaniasis

    DEFF Research Database (Denmark)

    Kharazmi, A; Kemp, K; Ismail, A

    1999-01-01

    In the present communication we provide evidence for the existence of a Th1/Th2 dichotomy in the T-cell response to Leishmania antigens in human leishmaniasis. Our data suggest that the pattern of IL-4 and IFN-gamma response is polarised in these patients. Lymphocytes from individuals recovered......+. Furthermore, IL-10 plays an important role in the development of post kala azar dermal leishmaniasis (PKDL) from VL. The balance between the parasitic-specific T-cell response plays an important regulatory role in determining the outcome of Leishmania infections in humans....

  9. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  10. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  11. Human pluripotent stem cells in contemporary medicine

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2015-01-01

    Full Text Available Human pluripotent stem cells (hPSCs are capable of indefinite proliferation and can be differentiated into any cell type of the human body. Therefore, they are a promising source of cells for treatment of numerous degenerative diseases and injuries. Pluripotent stem cells are also associated with a number of ethical, safety and technological issues. In this review, we describe various types of hPSCs, safety issues that concern all or some types of hPSCs and methods of clinical-grade hPSC line development. Also, we discuss current and past clinical trials involving hPSCs, their outcomes and future perspectives of hPSC-based therapy. 

  12. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  13. Merkel cell distribution in the human eyelid

    Directory of Open Access Journals (Sweden)

    C.A. May

    2013-10-01

    Full Text Available Although Merkel cell carcinoma of the eye lid is reported frequently in the literature, only limited information exists about the distribution of Merkel cells in this tissue. Therefore, serial sections of 18 human cadaver eye lids (donors ages ranging between 63 and 97 years were stained for cytokeratin 20 in various planes. The overall appearance of Merkel cells in these samples was low and mainly located in the outer root layer of the cilia hair follicles. Merkel cells were more frequent in the middle, and almost not detectable at the nasal and temporal edges. The localization is in accordance with that of Merkel cell carcinoma, but concerning the scarce appearance within this adulthood group, a specific physiological role of these cells in the eye lid is difficult to establish.

  14. Natural killer cells in human autoimmune disorders

    Science.gov (United States)

    2013-01-01

    Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases. PMID:23856014

  15. Human Colon Cancer Cells Cultivated in Space

    Science.gov (United States)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  16. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  17. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  18. Genetic Manipulation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  19. Synchronous development of breast cancer and chest wall fibrosarcoma after previous mantle radiation for Hodgkin's disease

    Energy Technology Data Exchange (ETDEWEB)

    Patlas, Michael [Hamilton General Hospital, Department of Radiology, Hamilton, ON (Canada); McCready, David [University Health Network and Mount Sinai Hospital, Department of Surgery, Toronto, ON (Canada); Kulkarni, Supriya; Dill-Macky, Marcus J. [University Health Network and Mount Sinai Hospital, Department of Medical Imaging, Toronto, ON (Canada)

    2005-09-01

    Survivors of Hodgkin's disease are at increased risk of developing a second malignant neoplasm, including breast carcinoma and sarcoma. We report the first case of synchronous development of chest wall fibrosarcoma and breast carcinoma after mantle radiotherapy for Hodgkin's disease. Mammographic, sonographic and MR features are demonstrated. (orig.)

  20. Enriched retinal ganglion cells derived from human embryonic stem cells

    Science.gov (United States)

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  1. Human ES cells: starting culture from frozen cells.

    Science.gov (United States)

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-11-09

    Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock. First, a one to two day old ten cm plate of approximately one (to two) million irradiated mouse embryonic fibroblast feeder cells is rinsed with HuES media to remove residual serum and cell debris, and then HuES media added and left to equilibrate in the cell culture incubator. A frozen vial of cells from long term liquid nitrogen storage or a -80 C freezer is sourced and quickly submerged in a 37 C water bath for quick thawing. Cells in freezing media are then removed from the vial and placed in a large volume of HuES media. The large volume of HuES media facilitates removal of excess serum and DMSO, which can cause HuES human embryonic stem cells to differentiate. Cells are gently spun out of suspension, and then re-suspended in a small volume of fresh HuES media that is then used to seed the MEF plate. It is considered important to seed the MEF plate by gently adding the HuES cells in a drop wise fashion to evenly disperse them throughout the plate. The newly established HuES culture plate is returned to the incubator for 48 hrs before media is replaced, then is fed every 24 hours thereafter.

  2. Sodium Valproate Induces Cell Senescence in Human Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hong-Mei An

    2013-12-01

    Full Text Available Hepatocarcinogenesis is associated with epigenetic changes, including histone deacetylases (HDACs. Epigenetic modulation by HDAC inhibition is a potentially valuable approach for hepatocellular carcinoma treatment. In present study, we evaluated the anticancer effects of sodium valproate (SVP, a known HDAC inhibitor, in human hepatocarcinoma cells. The results showed SVP inhibited the proliferation of Bel-7402 cells in a dose-dependent manner. Low dose SVP treatment caused a large and flat morphology change, positive SA-β-gal staining, and G0/G1 phase cell cycle arrest in human hepatocarcinoma cells. Low dose SVP treatment also increased acetylation of histone H3 and H4 on p21 promoter, accompanied by up-regulation of p21 and down-regulation of RB phosphorylation. These observations suggested that a low dose of SVP could induce cell senescence in hepatocarcinoma cells, which might correlate with hyperacetylation of histone H3 and H4, up-regulation of p21, and inhibition of RB phosphorylation. Since the effective concentration inducing cell senescence in hepatocarcinoma cells is clinically available, whether a clinical dose of SVP could induce cell senescence in clinical hepatocarcinoma is worthy of further study.

  3. Human embryonic stem cell lines model experimental human cytomegalovirus latency.

    Science.gov (United States)

    Penkert, Rhiannon R; Kalejta, Robert F

    2013-05-28

    Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34(+) hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34(+) cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34(+) cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

  4. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  5. Centre for human development, stem cells & regeneration.

    Science.gov (United States)

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  6. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  7. Advances in human B cell phenotypic profiling

    Directory of Open Access Journals (Sweden)

    Denise A Kaminski

    2012-10-01

    Full Text Available To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (Big Biology, necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.

  8. Human plasma cells express granzyme B.

    Science.gov (United States)

    Xu, Wei; Narayanan, Priya; Kang, Ning; Clayton, Sandra; Ohne, Yoichiro; Shi, Peiqing; Herve, Marie-Cecile; Balderas, Robert; Picard, Capucine; Casanova, Jean-Laurent; Gorvel, Jean-Pierre; Oh, Sangkon; Pascual, Virginia; Banchereau, Jacques

    2014-01-01

    While studying the plasma cell (PC) compartment in human tonsils, we identified that immunoglobulin kappa or lambda chain-expressing PCs are the main cells expressing granzyme B (GrzB). In vitro studies revealed that activated B cells differentiated into GrzB-expressing PCs when co-cultured with macrophages and follicular helper T cells. This effect could be reproduced on combined stimulation of IL-15 (produced by macrophages) and IL-21 (produced by T follicular helper cells) in a STAT3-dependent manner. Whereas IL-21 triggers the transcription of mRNA of GrzB, IL-15 synergizes the translation of GrzB proteins. The precise role of GrzB in PC biology remains to be understood and studies in mice will not help as their PCs do not express GrzB.

  9. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become...... cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  10. Human embryonic stem cells: preclinical perspectives

    Directory of Open Access Journals (Sweden)

    Sarda Kanchan

    2008-01-01

    Full Text Available Abstract Human embryonic stem cells (hESCs have been extensively discussed in public and scientific communities for their potential in treating diseases and injuries. However, not much has been achieved in turning them into safe therapeutic agents. The hurdles in transforming hESCs to therapies start right with the way these cells are derived and maintained in the laboratory, and goes up-to clinical complications related to need for patient specific cell lines, gender specific aspects, age of the cells, and several post transplantation uncertainties. The different types of cells derived through directed differentiation of hESC and used successfully in animal disease and injury models are described briefly. This review gives a brief outlook on the present and the future of hESC based therapies, and talks about the technological advances required for a safe transition from laboratory to clinic.

  11. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Byskov, Anne Grete; Møllgård, Kjeld

    2005-01-01

    Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry......Prenatal ovary (human), Primordial germ cells, Folliculogenesis, c-Kit, Stem cell factor, immunohistochemistry...

  12. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Daniels, Brian R; Hale, Christopher M; Khatau, Shyam B; Kusuma, Sravanti; Dobrowsky, Terrence M; Gerecht, Sharon; Wirtz, Denis

    2010-12-01

    Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell "softness" is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.

  13. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.

  14. Human colostral cells. I. Separation and characterization.

    Science.gov (United States)

    Crago, S S; Prince, S J; Pretlow, T G; McGhee, J R; Mestecky, J

    1979-12-01

    Analyses of the cells present in human colostrum obtained from fifty-four healthy donors during the first four days of lactation revealed that there were 3.3 x 10(6) (range 1.1 x 10(5)--1.2 x 10(7)) cells per ml of colostrum. Based on histochemical examinations, it was found that this population consisted of 30--47% macrophages, 40--60% polymorphonuclear leucocytes, 5.2--8.9% lymphocytes, and 1.3--2.8% colostral corpuscles; epithelial cells were rarely encountered. The identity of various cell types was confirmed by Wright's stain and by a series of histochemical techniques which disclosed the presence of non-specific esterase, peroxidase, and lipids. For further characterization, the different types of cells were separated by various methods, such as Ficoll-Hypaque density centrifugation, isokinetic centrifugation on a linear Ficoll gradient, adherence to glass or plastic, and phagocytosis of carbonyl iron. Immunohistochemical staining with FITC- and/or TRITC-labelled reagents to IgA, IgM, IgG, K- and lambda-chains, secretory component, lactoferrin, and alpha-lactalbumin were applied to unseparated as well as separated colostral cells. Polymorphonuclear leucocytes (staining for peroxidase) as well as macrophages and colostral corpuscles (staining for non-specific esterase) exhibited numerous intracellular vesicles that contained lipids as well as various combinations of milk proteins. Lymphoid cells did not stain with any of these reagents and plasma cells were not detected among the colostral cells. Individual phagocytic cells contained immunoglobulins of the IgA and IgM classes, both K and lambda light chains, secretory component, lactoferrin, and alpha-lactalbumin. The coincidental appearance of these proteins in single, phagocytic cells but not in lymphoid cells indicate that the cells acquired these proteins by ingestion from the environment. Markers commonly used for the identification of B lymphocytes (surface immunoglobulins) and T lymphocytes (receptors

  15. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  16. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  17. Biomaterial arrays with defined adhesion ligand densities and matrix stiffness identify distinct phenotypes for tumorigenic and nontumorigenic human mesenchymal cell types

    OpenAIRE

    Hansen, Tyler D.; Koepsel, Justin T.; Le, Ngoc Nhi; Nguyen, Eric H.; Zorn, Stefan; Parlato, Matthew; Loveland, Samuel G.; Schwartz, Michael P.; Murphy, William L.

    2014-01-01

    Here, we aimed to investigate migration of a model tumor cell line (HT-1080 fibrosarcoma cells, HT-1080s) using synthetic biomaterials to systematically vary peptide ligand density and substrate stiffness. A range of substrate elastic moduli were investigated by using poly(ethylene glycol) (PEG) hydrogel arrays (0.34 - 17 kPa) and self-assembled monolayer (SAM) arrays (~0.1-1 GPa), while cell adhesion was tuned by varying the presentation of Arg-Gly-Asp (RGD)-containing peptides. HT-1080 moti...

  18. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  19. Biological impact of human embryonic stem cells.

    Science.gov (United States)

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  20. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  1. Cell phoney: human cloning after Quintavalle.

    Science.gov (United States)

    Morgan, Derek; Ford, Mary

    2004-12-01

    Reproductive cloning has thrown up new scientific possibilities, ethical conundrums, and legal challenges. An initial question, considered by the English courts in 2003, was whether the technique presently available, that of cell nucleus replacement, falls outside the provisions of the Human Fertilisation and Embryology Act 1990. If it does, the creation and use, including use in research protocols, of human embryos would be unregulated, disclosing a need to consider remedial legislation. The resolution by the courts of this legal question dramatically engages them in a resolution of fundamental ethical dilemmas, and discloses the possibilities and limitation of negotiating science policy through the processes of litigation.

  2. Unusual case of congenital/infantile fibrosarcoma in a new born

    Directory of Open Access Journals (Sweden)

    Eddiba Tarik

    2013-01-01

    Full Text Available Congenital infantile fibrosarcoma (CIFS is a rare mesenchymal tumor that is primarily developed in the soft tissue of distal extremities and occasionally in unusual locations such as the lung and retroperitoneum. It occurs mainly in children below the age of 5 years. About 200 cases have been reported in the literature so far, very few of them in new-borns. The prognosis of this tumor is relatively good compared to adult forms. We report an unusual case of CIFS occurring in new-born mimicking an hemangioma and causing hemorrhage in the neonatal period. The tumor is located in the left arm and axilla and associated with a hand malformation. A shoulder amputation is performed after chemotherapy failure. The infant is now two-years old with no recurrence.

  3. Emergency surgical treatment of an ulcerative and hemorrhagic congenital/infantile fibrosarcoma of the lower leg: case report and literature review.

    Science.gov (United States)

    Kraneburg, Ursula M; Rinsky, Lawrence A; Chisholm, Karen M; Khosla, Rohit K

    2013-05-01

    Fibrosarcomas are rare malignant soft-tissue tumors occurring mostly in infants younger than 1 year of age. Fibrosarcomas can ulcerate and cause various complications, which could threaten a fetus in utero or a child in the early neonatal period. We report a unique case of congenital infantile fibrosarcoma of the lower leg, its treatment and pathology. The large expansive and destructive lesion was not appreciated on routine prenatal ultrasound exams at 20 and 33 weeks gestation. The newborn required immediate emergency surgical intervention after delivery to prevent death by hemorrhagic shock. Initial debulking of the tumor was performed and hemostasis was attained on the day of birth. The child was resuscitated and definitive treatment of the leg was deferred until a pathologic diagnosis was obtained. Given the extent of the fibrosarcoma, the lower leg was not salvageable and the patient received a through-the-knee amputation in the neonatal period. The patient is free of disease at 2 years of age.

  4. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  5. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  6. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  8. TALEN-Induced Translocations in Human Cells.

    Science.gov (United States)

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  9. The core regulatory network in human cells.

    Science.gov (United States)

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  10. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  11. Preliminary study on human fibroblasts as feeder layer for human embryonic stem cells culture in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To avoid the direct contact with mouse cells and possible heterogeneous pathogen in future application, we need to replace mouse embryonic fibroblastswith human fibroblasts as the feeder layer to maintain human embryonic stem cells growth in the undifferentiated state. We successfully use human fibroblasts derived from aborted fetus and adult prepuce as feeder layer to maintain human embryonic stem cells growth. During the passage and growth on this feeder layer, the human embryonic stem cells can keep their undifferentiated state.

  12. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  13. Ameloblastic fibrosarcoma of the jaws. A clinicopathologic and DNA analysis of five cases and review of the literature with discussion of its relationship to ameloblastic fibroma.

    Science.gov (United States)

    Muller, S; Parker, D C; Kapadia, S B; Budnick, S D; Barnes, E L

    1995-04-01

    Ameloblastic fibrosarcoma, the malignant counterpart of the ameloblastic fibroma, is a rare odontogenic tumor characterized by benign epithelium and a malignant fibrous stroma. We have compared nuclear DNA content of five ameloblastic fibrosarcomas and three ameloblastic fibromas by image analysis. The three ameloblastic fibromas were diploid, whereas 1 of 5 ameloblastic fibrosarcomas was aneuploid. There was no correlation with histologic grade and aneuploidy. These five new cases were also added to a review of the literature, bringing the total cases of reported ameloblastic fibrosarcomas to 51. The ameloblastic fibrosarcoma occurs at a later age (mean, 27.5 years) compared with reported ameloblastic fibromas (mean, 14.6 to 22 years), which supports a step-wise malignant transformation. There was histologic documentation that 44% of ameloblastic fibrosarcomas developed in ameloblastic fibromas. In view of this data and of the reported cumulative recurrence rate of 18.3% for ameloblastic fibroma, it is recommended that ameloblastic fibromas be treated with complete surgical excision and long-term follow up rather than simple curettage or enucleation.

  14. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    OpenAIRE

    2003-01-01

    Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC) directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plas...

  15. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  16. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  17. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  18. Characterizing motility dynamics in human RPE cells

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  19. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  20. Appearance of Human Plasma Cells Following Differentiation of Human B Cells in NOD/SCID Mouse Spleen

    Directory of Open Access Journals (Sweden)

    Kentaro Kikuchi

    2003-01-01

    Full Text Available Relatively little is known for the differentiation and maturation process of human B cells to plasma cells. This is particularly important in reconstitution work involving transfer of autoantibodies. To address this issue, we transplanted human peripheral blood mononuclear cells (PBMC directly into the spleen of irradiated NOD/SCID mice depleted of natural killer cell activity. Within 6 weeks, naïve B cells differentiated into memory B cells and, importantly, the numbers of human CD138+ plasma cells in spleen increased by 100 fold after transplantation. Plasma cell numbers correlated with the detection of human IgM and IgG in serum, indicating that human B cells had differentiated into mature plasma cells in the murine spleen. In addition to CD19+ plasma cells, a distinct CD19- plasma cell population was detected, suggesting that downregulation of CD19 associated with maturation of plasma cells occurred. When purified human B cells were transplanted, those findings were not observed. Our results indicate that differentiation and maturation of human B cells and plasma cells can be investigated by transplantation of human PBMC into the spleen of NOD/SCID mice. The model will be useful for studying the differentiation of human B cells and generation of plasma cells.

  1. The effect of ginkgo biloba extract on the fractionated radiation therapy in C3H mouse fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hoon; Ha, Sung Whan; Park, Charn Il [Seoul National University, College of Medicine, Seoul (Korea, Republic of)

    2002-06-15

    A gingko biloba extract (GBE) has been known as a hypoxic cell radiosensitizer. Its mechanisms of action are increase of the red blood cell deformability, decrease the blood viscosity, and decrease the hypoxic cell fraction in the tumor. The aims of this study were to estimate the effect of GBE on fractionated radiotherapy and to clarify the mechanism of action of the GBE by estimating the blood flow in tumor and normal muscle. Fibrosarcoma (FSall) growing in a C3H mouse leg muscle was used as the tumor model. When the tumor size reached 7 mm in diameter, the GBE was given intraperitoneally at 1 and 25 hours prior to irradiation. The tumor growth delay was measured according to the various doses of radiation (3, 6, 9, 12, Gy and 15 Gy) and to the fractionation (single and fractionated irradiation) with and without the GBE injection. The radiation dose to the tumor the response relationships and the enhancement ratio of the GBE were measured. In addition, the blood flow of a normal muscle and a tumor was compared by laser Doppler flowmetry according to the GBE treatment. When the GBE was used with single fraction irradiation with doses ranging from 3 to 12 Gy, GBE increased the tumor growth delay significantly ({rho} < 0.05) and the enhancement ratio of the GBE was 1.16. In fractionated irradiation with 3 Gy per day, the relationships between the radiation dose (D) and the tumor growth delay (TGD) were TGD (days) = 0.26 x D (Gy)+0.13 in the radiation alone group, and the TGD (days) = 0.30 x D (Gy) + 0.13 in the radiation with GBE group. As a result, the enhancement ratio was 1.19 (95% confidence interval; 1.13 {approx} 1.27). Laser Doppler flowmetry was used to measure the blood flow. The mean blood flow was higher in the muscle (7.78 mL/100 g/min in tumor and the 10.15 mL/100 g/min in muscle, {rho} = 0.0001) and the low blood flow fraction (less than 2 mL/100 g/min) was higher in the tumor (0.5% vs. 5.2%, {rho} = 0.005). The blood flow was not changed with the GBE

  2. Human somatic cell nuclear transfer is alive and well.

    Science.gov (United States)

    Cibelli, Jose B

    2014-06-05

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well.

  3. The association between human papillomavirus and oropharyngeal squamous cell Carcinoma

    DEFF Research Database (Denmark)

    Walvik, Lena; Svensson, Amanda Björk; Friborg, Jeppe

    2016-01-01

    There is emerging evidence of the association between human papillomavirus and a subset of head and neck cancers. However, the role of human papillomavirus as a causal factor is still debated. This review addresses the association between human papillomavirus and oropharyngeal squamous cell...... of well-defined premalignant lesions. However, a causal relationship between human papillomavirus infection and oropharyngeal squamous cell carcinoma seems evident....

  4. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  5. Glycomics of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Furukawa, Jun-Ichi; Okada, Kazue; Shinohara, Yasuro

    2016-10-01

    Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.

  6. Isolation and characterization of human spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Liu Shixue

    2011-10-01

    Full Text Available Abstract Background To isolate and characterization of human spermatogonial stem cells from stem spermatogonium. Methods The disassociation of spermatogonial stem cells (SSCs were performed using enzymatic digestion of type I collagenase and trypsin. The SSCs were isolated by using Percoll density gradient centrifugation, followed by differential surface-attachment method. Octamer-4(OCT4-positive SSC cells were further identified using immunofluorescence staining and flow cytometry technques. The purity of the human SSCs was also determined, and a co-culture system for SSCs and Sertoli cells was established. Results The cell viability was 91.07% for the suspension of human spermatogonial stem cells dissociated using a two-step enzymatic digestion process. The cells isolated from Percoll density gradient coupled with differential surface-attachement purification were OCT4 positive, indicating the cells were human spermatogonial stem cells. The purity of isolated human spermatogonial stem cells was 86.7% as assessed by flow cytometry. The isolated SSCs were shown to form stable human spermatogonial stem cell colonies on the feeder layer of the Sertoli cells. Conclusions The two-step enzyme digestion (by type I collagenase and trypsin process is an economical, simple and reproducible technique for isolating human spermatogonial stem cells. With little contamination and less cell damage, this method facilitates isolated human spermatogonial stem cells to form a stable cell colony on the supporting cell layer.

  7. Epithelial Dysplasia in Ameloblastic Fibrosarcoma Arising from Recurrent Ameloblastic Fibroma in a 26-Year-Old Iranian Man

    Science.gov (United States)

    Mohsenifar, Zhaleh; Behrad, Samira; Abbas, Fatemeh Mashhadi

    2015-01-01

    Patient: Male, 26 Final Diagnosis: Ameloblastic fibrosarcoma Symptoms: Swelling Medication: — Clinical Procedure: Hemimandibulectomy Specialty: Dentistry Objective: Rare disease Background: Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor with a mesenchymal component, showing sarcomatous features and epithelial nests resembling ameloblastic fibroma (AF). Case Report: We report a case of AFS showing epithelial dysplasia arising in a recurrent AF in the left mandible after 3 years in a 26-year-old man, which is regarded as an uncommon histopathologic finding in AFS. We also emphasize the comprehensive clinical, radiographic, and histopathologic evaluation, and immunohistochemical staining of this patient. Conclusions: We conclude that it is important to consider malignancy alternations in the epithelial component of AFS, along with that of the mesenchymal component, to provide a proper diagnosis and treatment of recurrent AF. PMID:26289384

  8. Cell entry by human pathogenic arenaviruses.

    Science.gov (United States)

    Rojek, Jillian M; Kunz, Stefan

    2008-04-01

    The arenaviruses Lassa virus (LASV) in Africa and Machupo (MACV), Guanarito (GTOV) and Junin viruses (JUNV) in South America cause severe haemorrhagic fevers in humans with fatality rates of 15-35%. The present review focuses on the first steps of infection with human pathogenic arenaviruses, the interaction with their cellular receptor molecules and subsequent entry into the host cell. While similarities exist in genomic organization, structure and clinical disease caused by pathogenic Old World and New World arenaviruses these pathogens use different primary receptors. The Old World arenaviruses employ alpha-dystroglycan, a cellular receptor for proteins of the extracellular matrix, and the human pathogenic New World arenaviruses use the cellular cargo receptor transferrin receptor 1. While the New World arenavirus JUNV enters cells via clathrin-dependent endocytosis, evidence occurred for clathrin-independent entry of the prototypic Old World arenavirus lymphocytic choriomeningitis virus. Upon internalization, arenaviruses are delivered to the endosome, where pH-dependent membrane fusion is mediated by the envelope glycoprotein (GP). While arenavirus GPs share characteristics with class I fusion GPs of other enveloped viruses, unusual mechanistic features of GP-mediated membrane fusion have recently been discovered for arenaviruses with important implications for viral entry.

  9. Markers of T Cell Senescence in Humans

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available Many countries are facing the aging of their population, and many more will face a similar obstacle in the near future, which could be a burden to many healthcare systems. Increased susceptibility to infections, cardiovascular and neurodegenerative disease, cancer as well as reduced efficacy of vaccination are important matters for researchers in the field of aging. As older adults show higher prevalence for a variety of diseases, this also implies higher risk of complications, including nosocomial infections, slower recovery and sequels that may reduce the autonomy and overall quality of life of older adults. The age-related effects on the immune system termed as “immunosenescence” can be exemplified by the reported hypo-responsiveness to influenza vaccination of the elderly. T cells, which belong to the adaptive arm of the immune system, have been extensively studied and the knowledge gathered enables a better understanding of how the immune system may be affected after acute/chronic infections and how this matters in the long run. In this review, we will focus on T cells and discuss the surface and molecular markers that are associated with T cell senescence. We will also look at the implications that senescent T cells could have on human health and diseases. Finally, we will discuss the benefits of having these markers for investigators and the future work that is needed to advance the field of T cell senescence markers.

  10. Human embryonic stem cells and microenvironment

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2014-09-01

    Full Text Available Human embryonic stem cells (hESCs possess a great potential in the field of regenerative medicine by their virtue of pluripotent potential with indefinite proliferation capabilities. They can self renew themselves and differentiate into three embryonic germ layers. Although they are conventionally grown on mitotically inactivated mouse feeder cells, there are in vitro culture systems utilizing feeder cells of human origin in order to prevent cross-species contamination. Recently established in vitro culture systems suggested that direct interaction with feeder cells is not necessary but rather attachment to a substrate is required to ensure long-term, efficient hESC culture in vitro. This substrate is usually composed of a mixture of extracellular matrix components representing in vivo natural niche. In hESC biology, the mechanism of interaction of hESCs with extracellular matrix molecules remained insufficiently explored area of research due to their transient nature of interaction with the in vivo niche. However, an in vitro culture system established using extracellular matrix molecules may provide a safer alternative to culture systems with feeder cells while paving the way to Good Manufacturing Practice-GMP production of hESCs for therapeutic purposes. Therefore, it is essential to study the interaction of extracellular matrix molecules with hESCs in order to standardize in vitro culture systems for large-scale production of hESCs in a less labor-intensive way. This would not only provide valuable information regarding the mechanisms that control pluripotency but also serve to dissect the molecular signaling pathways of directed differentiation for prospective therapeutic applications in the future. J Clin Exp Invest 2014; 5 (3: 486-495

  11. Arecoline is cytotoxic for human endothelial cells.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Identification of a candidate stem cell in human gallbladder

    Directory of Open Access Journals (Sweden)

    Rohan Manohar

    2015-05-01

    In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  13. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  14. Human embryonic stem cells and patent protection

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja M.

    2015-01-01

    Full Text Available Given the importance of biotechnological research in modern diagnostics and therapeutics, on the one hand, and stimulative function of a patent, on the other hand, this work deals with the question of the possibility of pa-tent protection of human embryonic stem cells. Taking into account that this is a biotechnological invention, the key question that this paper highlights is the interpretation of the provisions of their patentability. Namely, thanks to the advanced methods of isolation, purification and preparation for implementation, modern patent systems do not exclude a priori living organisms from patent protection. Therefore, the analysis of representative administrative decisions or court rulings sought to define the criteria that would be applied in order to give patent protection to a certain biotechnological invention (stem cells while others do not.

  15. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  16. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    Science.gov (United States)

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  17. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  18. HIF induces human embryonic stem cell markers in cancer cells.

    Science.gov (United States)

    Mathieu, Julie; Zhang, Zhan; Zhou, Wenyu; Wang, Amy J; Heddleston, John M; Pinna, Claudia M A; Hubaud, Alexis; Stadler, Bradford; Choi, Michael; Bar, Merav; Tewari, Muneesh; Liu, Alvin; Vessella, Robert; Rostomily, Robert; Born, Donald; Horwitz, Marshall; Ware, Carol; Blau, C Anthony; Cleary, Michele A; Rich, Jeremy N; Ruohola-Baker, Hannele

    2011-07-01

    Low oxygen levels have been shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have been shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia-inducible factor (HIF), can induce an hESC-like transcriptional program, including the induced pluripotent stem cell (iPSC) inducers, OCT4, NANOG, SOX2, KLF4, cMYC, and microRNA-302 in 11 cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver, and breast tumors). Furthermore, nondegradable forms of HIFα, combined with the traditional iPSC inducers, are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4-, and HIF1α-positive regions. Furthermore, NANOG and OCT4 expressions positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells, hypoxia was able to induce neurospheres and hESC markers. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathologic conditions.

  19. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  20. The Response of RIF-1 Fibrosarcomas to the Vascular-Disrupting Agent ZD6126 Assessed by In Vivo and Ex Vivo1H Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Basetti Madhu

    2006-07-01

    Full Text Available The response of radiation-induced fibrosarcoma1 (RIF-1 tumors treated with the vascular-disrupting agent (VDA ZD6126 was assessed by in vivo and ex vivo1H magnetic resonance spectroscopy (MRS methods. Tumors treated with 200 mg/kg ZD6126 showed a significant reduction in total choline (tCho in vivo 24 hours after treatment, whereas control tumors showed a significant increase in tCho. This response was investigated further within both ex vivo unprocessed tumor tissues and tumor tissue metabolite extracts. Ex vivo high-resolution magic angle spinning (HRMAS and 1H MRS of metabolite extracts revealed a significant reduction in phosphocholine and glycerophosphocholine in biopsies of ZD6126-treated tumors, confirming in vivo tCho response. ZD6126-induced reduction in choline compounds is consistent with a reduction in cell membrane turnover associated with necrosis and cell death following disruption of the tumor vasculature. In vivo tumor tissue water diffusion and lactate measurements showed no significant changes in response to ZD6126. Spin-spin relaxation times (T2 of water and metabolites also remained unchanged. Noninvasive 1H MRS measurement of tCho in vivo provides a potential biomarker of tumor response to VDAs in RIF-1 tumors.

  1. Introduction: characterization and functions of human T regulatory cells.

    Science.gov (United States)

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  2. Human pancreatic cell autotransplantation following total pancreatectomy.

    Science.gov (United States)

    Traverso, L W; Abou-Zamzam, A M; Longmire, W P

    1981-01-01

    During total pancreaticoduodenectomy for chronic pancreatitis, four patients received an intraportal pancreatic mixed-cell autograft prepared by collagenase digestion. The technique of this autotransplantation procedure was successfully developed using a normal canine pancreas, but has proved difficult to apply in the human chronic pancreatitis model. Our four patients became insulin-dependent, with proof of intrahepatic insulin production in only one patient. Three factors have contributed to the lack of graft success: 1) the preoperative endocrine status, 2) systemic hypotension and portal hypertension secondary to graft infusion, and 3) difficulty applying the successful technique in a normal dog pancreas to an extensively scarred human pancreas. The preoperative insulin response during a glucose tolerance test was blunted or delayed in the three patients tested. An immediate decrease in blood pressure and rise in portal pressure occurred in every patient and prevented infusion of the entire graft (30-50%) in three patients. Unfortunately, the patient with the most compromised insulin status was the only patient able to receive the entire graft. Our experience would indicate that further refinements in technique are necessary to prevent the vascular reaction and allow infusion of the entire graft. Furthermore, normal islet cell function is necessary before a successful graft can be expected. PMID:6781424

  3. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    OpenAIRE

    Mehta, Rajvi H.

    2014-01-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF...

  4. Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells.

    Science.gov (United States)

    Irie, Naoko; Surani, M Azim

    2017-01-01

    We recently reported a robust and defined culture system for the specification of human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs), both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in vitro (Irie et al. Cell 160: 253-268, 2015). Similar attempts previously produced hPGCLCs from hPSCs at a very low efficiency, and the resulting cells were not fully characterized. A key step, which facilitated efficient hPGCLC specification from hPSCs, was the induction of a "competent" state for PGC fate via the medium containing a cocktail of four inhibitors. The competency of hPSCs can be maintained indefinitely and interchangeably with the conventional/low-competent hPSCs. Specification of hPGCLC occurs following sequential expression of key germ cell fate regulators, notably SOX17 and BLIMP1, as well as initiation of epigenetic resetting over 5 days. The hPGCLCs can be isolated using specific cell surface markers without the need for generating germ cell-specific reporter hPSC lines. This powerful method for the induction and isolation of hPGCLCs can be applied to both hESCs and iPSCs, which can be used for advances in human germ line biology.

  5. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  6. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  7. Androgen-induced cell migration: role of androgen receptor/filamin A association.

    Directory of Open Access Journals (Sweden)

    Gabriella Castoria

    Full Text Available BACKGROUND: Androgen receptor (AR controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK, paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. CONCLUSIONS/SIGNIFICANCE: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development

  8. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  9. Stereological quantification of mast cells in human synovium

    DEFF Research Database (Denmark)

    Damsgaard, T E; Sørensen, Flemming Brandt; Herlin, T;

    1999-01-01

    Mast cells participate in both the acute allergic reaction as well as in chronic inflammatory diseases. Earlier studies have revealed divergent results regarding the quantification of mast cells in the human synovium. The aim of the present study was therefore to quantify these cells in the human...... synovium, using stereological techniques. Different methods of staining and quantification have previously been used for mast cell quantification in human synovium. Stereological techniques provide precise and unbiased information on the number of cell profiles in two-dimensional tissue sections of......, in this case, human synovium. In 10 patients suffering from osteoarthritis a median of 3.6 mast cells/mm2 synovial membrane was found. The total number of cells (synoviocytes, fibroblasts, lymphocytes, leukocytes) present was 395.9 cells/mm2 (median). The mast cells constituted 0.8% of all the cell profiles...

  10. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  11. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    Science.gov (United States)

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  12. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  13. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    OpenAIRE

    Ham, Hyoungjun; Billadeau, Daniel D.

    2014-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synaps...

  14. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  15. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  16. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  17. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  18. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  19. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  20. Derivation and differentiation of haploid human embryonic stem cells.

    Science.gov (United States)

    Sagi, Ido; Chia, Gloryn; Golan-Lev, Tamar; Peretz, Mordecai; Weissbein, Uri; Sui, Lina; Sauer, Mark V; Yanuka, Ofra; Egli, Dieter; Benvenisty, Nissim

    2016-04-07

    Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.

  1. Human embryonic stem cells and respect for life

    OpenAIRE

    Meyer, J.(CERN, Geneva, Switzerland)

    2000-01-01

    The purpose of this essay is to stimulate academic discussion about the ethical justification of using human primordial stem cells for tissue transplantation, cell replacement, and gene therapy. There are intriguing alternatives to using embryos obtained from elective abortions and in vitro fertilisation to reconstitute damaged or dysfunctional human organs. These include the expansion and transplantation of latent adult progenitor cells.

  2. Ameloblastic Fibrosarcoma of the Mandible: A Case Report and Brief Review of the Literature

    Directory of Open Access Journals (Sweden)

    Abelardo Loya-Solis

    2015-01-01

    Full Text Available Ameloblastic fibrosarcoma is an uncommon odontogenic tumor composed of a benign epithelial component and a malignant ectomesenchymal component most frequently seen in the third and fourth decades of life. It mainly presents as a painful maxillary or mandibular swelling. Radiographs show a radiolucent mass with ill-defined borders. Radical surgical excision and long-term follow-up are the suggested treatment. We report the case of a 22-year-old female with a 2-month history of an asymptomatic swelling in her left mandible. Examination revealed an exophytic growth measuring 3×3 cm extending from the mandibular left first premolar to the second molar. The patient underwent a left hemimandibular resection. Histopathological examination revealed a biphasic tumor composed of inconspicuous islands of benign odontogenic epithelium and an abundant malignant mesenchymal component with marked cellularity, nuclear pleomorphism, hyperchromatism, and moderate mitotic figures with clear margins; one year after the surgical procedure, the patient is clinically and radiologically disease-free.

  3. Abnormalities in human pluripotent cells due to reprogramming mechanisms.

    Science.gov (United States)

    Ma, Hong; Morey, Robert; O'Neil, Ryan C; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D; Hariharan, Manoj; Nery, Joseph R; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P; Ecker, Joseph R; Laurent, Louise C; Mitalipov, Shoukhrat

    2014-07-10

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

  4. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...

  5. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  6. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells.

    Science.gov (United States)

    Lai, Dongmei; Wang, Yongwei; Sun, Jian; Chen, Yifei; Li, Ting; Wu, Yi; Guo, Lihe; Wei, Chunsheng

    2015-05-07

    Culture conditions that support the growth of undifferentiated human embryonic stem cells (hESCs) have already been established using primary human amnion epithelial cells (hAECs) as an alternative to traditional mitotically inactivated mouse embryonic fibroblasts (MEFs). In the present work, inner cell masses (ICM) were isolated from frozen embryos obtained as donations from couples undergoing in vitro fertilization (IVF) treatment and four new hESC lines were derived using hAECs as feeder cells. This feeder system was able to support continuous growth of what were, according to their domed shape and markers, undifferentiated naïve-like hESCs. Their pluripotent potential were also demonstrated by embryoid bodies developing to the expected three germ layers in vitro and the productions of teratoma in vivo. The cell lines retained their karyotypic integrity for over 35 passages. Transmission electron microscopy (TEM) indicated that these newly derived hESCs consisted mostly of undifferentiated cells with large nuclei and scanty cytoplasm. The new hESCs cultured on hAECs showed distinct undifferentiated characteristics in comparison to hESCs of the same passage maintained on MEFs. This type of optimized culture system may provide a useful platform for establishing clinical-grade hESCs and assessing the undifferentiated potential of hESCs.

  7. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    Science.gov (United States)

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  8. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  9. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  10. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  11. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    Human tissue legislation in South Africa: Focus on stem cell research and therapy. ... Related Substances Act, the Consumer Protection Act, the Children's Act and ... human tissue legislation in SA, the legislator has an opportunity to mirror the ...

  12. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Science.gov (United States)

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  13. Human pancreatic β-cell G1/S molecule cell cycle atlas.

    Science.gov (United States)

    Fiaschi-Taesch, Nathalie M; Kleinberger, Jeffrey W; Salim, Fatimah G; Troxell, Ronnie; Wills, Rachel; Tanwir, Mansoor; Casinelli, Gabriella; Cox, Amy E; Takane, Karen K; Scott, Donald K; Stewart, Andrew F

    2013-07-01

    Expansion of pancreatic β-cells is a key goal of diabetes research, yet induction of adult human β-cell replication has proven frustratingly difficult. In part, this reflects a lack of understanding of cell cycle control in the human β-cell. Here, we provide a comprehensive immunocytochemical "atlas" of G1/S control molecules in the human β-cell. This atlas reveals that the majority of these molecules, previously known to be present in islets, are actually present in the β-cell. More importantly, and in contrast to anticipated results, the human β-cell G1/S atlas reveals that almost all of the critical G1/S cell cycle control molecules are located in the cytoplasm of the quiescent human β-cell. Indeed, the only nuclear G1/S molecules are the cell cycle inhibitors, pRb, p57, and variably, p21: none of the cyclins or cdks necessary to drive human β-cell proliferation are present in the nuclear compartment. This observation may provide an explanation for the refractoriness of human β-cells to proliferation. Thus, in addition to known obstacles to human β-cell proliferation, restriction of G1/S molecules to the cytoplasm of the human β-cell represents an unanticipated obstacle to therapeutic human β-cell expansion.

  14. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...

  15. Human embryonic stem cell research: ethical and legal issues.

    Science.gov (United States)

    Robertson, J A

    2001-01-01

    The use of human embryonic stem cells to replace damaged cells and tissues promises future hope for the treatment of many diseases. However, many countries now face complex ethical and legal questions as a result of the research needed to develop these cell-replacement therapies. The challenge that must be met is how to permit research on human embryonic tissue to occur while maintaining respect for human life generally.

  16. Secondary mandibular fibrosarcoma after chemoradiotherapy for undifferentiated nasopharyngeal carcinoma. Report of a case and literature review; Fibrosarcome secondaire de la mandibule apres chimioradiotherapie pour carcinome indifferencie du nasopharynx. A propos d'une observation et revue de la litterature

    Energy Technology Data Exchange (ETDEWEB)

    Kochbati, L.; Besbes, M.; Benna, F.; Maalej, M. [Institut Salah Azaiz, Service de Radiotherapie, Tunis (Tunisia); Boussen, H.; Ben Ayed, F. [Institut Salah Azaiz, Service de Medecine, Tunis (Tunisia); Gritli, S.; Ladgham, A. [Institut Salah Azaiz, Service de Chirurgie ORL, Tunis (Tunisia); Saadi, A. [Institut Salah Azaiz, Service de Radiodiagnostic, Tunis (Tunisia); El May, A. [Institut Salah Azaiz, Service d' Anatomopathologie, Tunis (Tunisia)

    2001-06-01

    Secondary mandibular fibrosarcoma after chemoradiotherapy for undifferentiated nasopharyngeal carcinoma. Report of a case and literature review. Secondary tumours to radio- and/or chemotherapy have rarely been reported after treatment for head and neck cancers. We report a case of mandibular fibrosarcoma observed 7 years after chemoradiotherapy for undifferentiated nasopharyngeal carcinoma in a patient treated when 20 years old. (authors)

  17. Epigenetic Regulation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Qidong eHu

    2012-11-01

    Full Text Available Recently, there has been tremendous progress in characterizing the transcriptional network regulating hESCs (MacArthur et al., 2009; Loh et al., 2011, including those signaling events mediated by Oct4, Nanog and Sox2. There is growing interest in the epigenetic machinery involved in hESC self-renewal and differentiation. In general, epigenetic regulation includeschromatin reorganization, DNA modification and histone modification, which are not directly related to alterations in DNA sequences. Various protein complexes, includingPolycomb, trithorax, NuRD, SWI/SNF andOct4, have been shown to play critical roles in epigenetic control of hESC maintenance and differentiation. Hence, we will formally review recent advances in unraveling the multifaceted role of epigenetic regulation in hESC self-renewal and induced differentiation, particularly with respect to chromatin remodeling and DNA methylation events. Unraveling the molecular mechanisms underlying the maintenance/differentiation of hESCs and reprogramming of somatic cells will greatly strengthen our capacity to generate various types of cells to treat human diseases.

  18. Mast cells and human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Fabio Grizzi; Barbara Franceschini; Maurizio Chiriva-Internati; Young Liu; Paul L. Hermonat; Nicola Dioguardi

    2003-01-01

    AIM: To investigate the density of mast cells (MCs) in human hepatocellular carcinoma (HCC), and to determine whether the MCs density has any correlations with histopathological grading, staging or some baseline patient characteristics.METHODS: Tissue sections of 22 primary HCCs were histochemically stained with toluidine blue, in order to be able to quantify the MCs in and around the neoplasm using a computer-assisted image analysis system. HCC was staged and graded by two independent pathologists. To identify the sinusoidal capillarisation of each specimen 3μm thick sections were histochemically stained with sirius red, and semi-quantitatively evaluated by two independent observers. The data were statistically analysed using Spearman′s correlation and Student′s t-test when appropriate.RESULTS: MCs density did not correlate with the age or sex of the patients, the serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels, or the stage or grade of the HCC. No significant differences were found between the MCs density of the patients with and without hepatitis C virus infection, but they were significantly higher in the specimens showing marked sinusoidal capillarisation.CONCLUSION: The lack of any significant correlation between MCs density and the stage or grade of the neoplastic lesions suggests that there is no causal relationship between MCs recruitment and HCC. However, as capillarisation proceeds concurrently with arterial blood supply during hepatocarcinogenesis, MCs may be considered of primary importance in the transition from sinusoidal to capillary-type endothelial cells and the HCC growth.

  19. Derivation, propagation and differentiation of human embryonic stem cells.

    Science.gov (United States)

    Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard

    2004-04-01

    Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug

  20. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics

    Directory of Open Access Journals (Sweden)

    Nigel G. Kooreman

    2017-08-01

    Full Text Available There is growing interest in using embryonic stem cell (ESC and induced pluripotent stem cell (iPSC derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an “allogenized” mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.

  1. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  2. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Xiaoti Xu

    2015-09-01

    Full Text Available Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  3. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  4. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  5. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  6. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells.

    Science.gov (United States)

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J; Bhatia, Mick

    2015-09-08

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs.

  7. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans....... Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular...

  8. Ultrastructure of interstitial cells in subserosa of human colon

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johannes; Vanderwinden, Jean-Marie; Hansen, Alastair;

    2013-01-01

    We studied the ultrastructure of interstitial cells in the subserosal/adventitial layer in human colon. An interstitial cell type with an ultrastructure intermediate between fibroblast-like cells (FLC) and interstitial cells of Cajal was identified (IC-SS). IC-SS had thin and flattened branching...

  9. Differentiation of neuroepithelia from human embryonic stem cells

    OpenAIRE

    2009-01-01

    We describe the method for in vitro differentiation of neuroepithelial cells from human embryonic stem cells under a chemically defined condition. The protocol is established following the fundamental principle of in vivo neuroectodermal specification. The primitive neuroepithelial cells generated by this protocol can be further induced into neuronal and glia cells with forebrain, mid/hind brain, and spinal cord identities.

  10. Identification of a candidate stem cell in human gallbladder.

    Science.gov (United States)

    Manohar, Rohan; Li, Yaming; Fohrer, Helene; Guzik, Lynda; Stolz, Donna Beer; Chandran, Uma R; LaFramboise, William A; Lagasse, Eric

    2015-05-01

    There are currently no reports of identification of stem cells in human gallbladder. The differences between human gallbladder and intrahepatic bile duct (IHBD) cells have also not been explored. The goals of this study were to evaluate if human fetal gallbladder contains a candidate stem cell population and if fetal gallbladder cells are distinct from fetal IHBD cells. We found that EpCAM+CD44+CD13+ cells represent the cell population most enriched for clonal self-renewal from primary gallbladder. Primary EpCAM+CD44+CD13+ cells gave rise to EpCAM+CD44+CD13+ and EpCAM+CD44+CD13- cells in vitro, and gallbladder cells expanded in vitro exhibited short-term engraftment in vivo. Last, we found that CD13, CD227, CD66, CD26 and CD49b were differentially expressed between gallbladder and IHBD cells cultured in vitro indicating clear phenotypic differences between the two cell populations. Microarray analyses of expanded cultures confirmed that both cell types have unique transcriptional profiles with predicted functional differences in lipid, carbohydrate, nucleic acid and drug metabolism. In conclusion, we have isolated a distinct clonogenic population of epithelial cells from primary human fetal gallbladder with stem cell characteristics and found it to be unique compared to IHBD cells.

  11. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  12. Comparative mutagenesis of human cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.

    1992-05-01

    This report discusses measuring methods of point mutations; high density cell cultures for low dose studies; measurement and sequence determination of mutations in DNA; the mutational spectra of styrene oxide and ethlyene oxide in TK-6 cells; mutational spectrum of Cr in human lymphoblast cells; mutational spectra of radon in TK-6 cells; and the mutational spectra of smokeless tobacco. (CBS)

  13. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  14. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... working with cells derived from one individual or animal species, only to eventually learn that the cells..., morphology, pathologic or disease-state, hybrid or mixed culture, feeder cells, date of origin, etc), the STR... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National...

  15. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Kobayashi, Alisa [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Maeda, Takeshi [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Fu, Qibin [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Oikawa, Masakazu [Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yang, Gen, E-mail: gen.yang@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Konishi, Teruaki, E-mail: tkonishi@nirs.go.jp [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Uchihori, Yukio [Space Radiation Research Unit, International Open Laboratory, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Department of Technical Support and Development, National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); and others

    2015-03-15

    Highlights: • Existence of radiation induced bystander effects (RIBE) between cancer stem-like cells (CSCs) and non stem-like cancer cells (NSCCs) in human fibrosarcoma HT1080 cells. • Existence of significant difference in generation and response of bystander signals between CSCs and NSCCs. • CSCs are significantly less sensitive to NO scavenger than that of NSCCs in terms of DNA double strand breaks induced by RIBE. - Abstract: Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  16. The evolution of human cells in terms of protein innovation.

    Science.gov (United States)

    Sardar, Adam J; Oates, Matt E; Fang, Hai; Forrest, Alistair R R; Kawaji, Hideya; Gough, Julian; Rackham, Owen J L

    2014-06-01

    Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type-specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type-specific domain architectures.

  17. Adult human brain cell culture for neuroscience research.

    Science.gov (United States)

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  19. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  20. Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

    Science.gov (United States)

    Ansarullah; Free, Colette; Christopherson, Jenica; Chen, Quanhai; Gao, Jie; Liu, Chengyang; Naji, Ali; Rabinovitch, Alex; Guo, Zhiguang

    2016-01-01

    Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human islet graft function in the mice was evaluated by nonfasting glucose levels, oral glucose tolerance, and removal of the grafts. Immunostaining for insulin, glucagon, and BrdU or Ki67 was performed in islet grafts to evaluate α- and β-cell replication. Insulin and CK19 immunostaining was performed to evaluate β-cell neogenesis. Four weeks after human islet transplantation, 71% of PSN632408-treated mice achieved normoglycaemia compared with 24% of vehicle-treated mice. Also, oral glucose tolerance was significantly improved in the PSN632408-treated mice. PSN632408 treatment significantly increased both human α- and β-cell areas in islet grafts and stimulated α- and β-cell replication. In addition, β-cell neogenesis was induced from pancreatic duct cells in the islet grafts. Our results demonstrated that activation of GPR119 increases β-cell mass by stimulating human β-cell replication and neogenesis. Therefore, GPR119 activators may qualify as therapeutic agents to increase human β-cell mass in patients with diabetes. PMID:27413754

  1. Analysis of lead toxicity in human cells

    Directory of Open Access Journals (Sweden)

    Gillis Bruce S

    2012-07-01

    Full Text Available Abstract Background Lead is a metal with many recognized adverse health side effects, and yet the molecular processes underlying lead toxicity are still poorly understood. Quantifying the injurious effects of lead is also difficult because of the diagnostic limitations that exist when analyzing human blood and urine specimens for lead toxicity. Results We analyzed the deleterious impact of lead on human cells by measuring its effects on cytokine production and gene expression in peripheral blood mononuclear cells. Lead activates the secretion of the chemokine IL-8 and impacts mitogen-dependent activation by increasing the secretion of the proinflammatory cytokines IL-6 and TNF-α and of the chemokines IL-8 and MIP1-α in the presence of phytohemagglutinin. The recorded changes in gene expression affected major cellular functions, including metallothionein expression, and the expression of cellular metabolic enzymes and protein kinase activity. The expression of 31 genes remained elevated after the removal of lead from the testing medium thereby allowing for the measurement of adverse health effects of lead poisoning. These included thirteen metallothionein transcripts, three endothelial receptor B transcripts and a number of transcripts which encode cellular metabolic enzymes. Cellular responses to lead correlated with blood lead levels and were significantly altered in individuals with higher lead content resultantly affecting the nervous system, the negative regulation of transcription and the induction of apoptosis. In addition, we identified changes in gene expression in individuals with elevated zinc protoporphyrin blood levels and found that genes regulating the transmission of nerve impulses were affected in these individuals. The affected pathways were G-protein mediated signaling, gap junction signaling, synaptic long-term potentiation, neuropathic pain signaling as well as CREB signaling in neurons. Cellular responses to lead were

  2. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  3. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    Science.gov (United States)

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  4. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  5. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  6. Nucleosome Organization in Human Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational

  7. Nucleosome Organization in Human Embryonic Stem Cells.

    Science.gov (United States)

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  8. Immunosurveillance function of human mast cell?

    Institute of Scientific and Technical Information of China (English)

    (O)ner (O)zdemir

    2005-01-01

    Mast cell (MC) is so widely recognized as a critical effector in allergic disorders that it can be difficult to think of MC in any other context. Indeed, MCs are multifunctional and recently shown that MCs can also act as antigen presenters as well as effector elements of human immune system. First observations of their possible role as anti-tumor cells in peri- or intra-tumoral tissue were mentioned five decades ago and a high content of MCs is considered as a favorable prognosis,consistent with this study. Believers of this hypothesis assumed them to be inhibitors of tumor development through their pro-apoptotic and -necrolytic granules e.g.,granzymes and TNF-α. However, some still postulate them to be enhancers of tumor development through their effects on angiogenesis due to mostly tryptase.There are also some data suggesting increased MC density causes tumor development and indicates bad prognosis. Furthermore, since MC-associated mediators have shown to influence various aspects of tumor biology, the net effect of MCs on the development/progression of tumors has been difficult to evaluate. For instance, chymase induces apoptosis in targets; yet,tryptase, another MC protease, is a well-known mitogen.MCs with these various enzyme expression patterns may mediate different functions and the predominant MC type in tissues may be determined by the environmental needs. The coexistence of tryptase-expressing MCs(MCT) and chymase and tryptase-expressing MCs (MCTC)in physiological conditions reflects a naturally occurring balance that contributes to tissue homeostasis. We have recently discussed the role and relevance of MC serine proteases in different bone marrow diseases.

  9. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  10. Cryopreservation of human embryonic stem cells by vitrification

    Institute of Scientific and Technical Information of China (English)

    周灿权; 麦庆云; 李涛; 庄广伦

    2004-01-01

    Background The efficiency of traditional cryopreservation of human embryonic stem (ES) cells is low, and there have been few attempts to prove new cryopreservation methods effective. This study was designed to evaluate the efficiency of cryopreservation of human ES cells using vitrification method.Methods Human ES cells clumped from an identical cell line were randomly allocated to be cryopreserved by vitrification or by slow freezing. The recovery rates, the growth and differentiation potential of thawed human ES cells were compared between these two groups. The pluripotency of human ES cells after thawing was identified.Results Eighty-one point nine percent (59/72) of human ES cell clumps were recovered after vitrification, while only 22.8% (16/70) were recovered after slow freezing (P<0.01). The colonies after vitrification manifested have not only faster growth but also a lower level of differentiation when compared to colonies subjected to the slow freezing protocol. However, the rates of growth and differentiation in undifferentiated colonies from both groups were identical to the rates in those of non-cryopreserved stem cells after a prolonged culture period. Passage 6 of vitrified human ES cells retained the properties of pluripotent cells, a normal karyotype and expressed the transcription factor OCT-4, stage specific expressed antigen-4 (SSEA-4) and SSEA-3. Teratoma growth of these cells demonstrated the ability to develop into all three germ layers.Conclusions Vitrification is effective in cryopreserving human ES cells. During a prolonged culture, human ES cells retain their pluripotency after cryopreservation.

  11. Ameloblastic fibrosarcoma of the upper jaw: Report of a rare case with long-term follow-up

    Directory of Open Access Journals (Sweden)

    Maryam Khalili

    2013-01-01

    Full Text Available Ameloblastic fibrosarcoma (AFS is a rare malignant mixed odontogenic tumor which is usually considered as the malignant counterpart of ameloblastic fibroma. Only mesenchymal component represents sarcomatous alterations and ameloblast-like epithelial nest remains bland in AFS. Here, we report a case of AFS in a 26-year-old man in the maxilla, which was regarded as an uncommon location for this tumor. After 2 years follow up, no evidence of recurrence was noted. We also emphasize on comprehensive clinical, radiographic, and histopathologic evaluation of such patients rather than immunohistochemical staining to make an accurate diagnosis.

  12. Anaplastic ameloblastic fibrosarcoma arising from recurrent ameloblastic fibroma: restricted molecular abnormalities of certain genes to the malignant transformation.

    Science.gov (United States)

    Williams, Michelle D; Hanna, Ehab Y; El-Naggar, Adel K

    2007-07-01

    A rare case of anaplastic ameloblastic fibrosarcoma (AS) arising in an ameloblastic fibroma (AF) of the maxilla of a 48-year-old patient 10 years after the primary excision is presented. The recurrent tumor retained focal areas of AF but manifested heterogeneous malignant features ranging from low-grade spindle to highly pleomorphic sarcomas. Biomarker analysis showed alterations of the p53 and c-KIT genes restricted to the sarcomatous component. The biological implications of these findings in the future management of these tumors are discussed.

  13. Ameloblastic Fibrosarcoma of the mandible evolving from a prior Ameloblastic Fibroma after two years: an unusual finding.

    Science.gov (United States)

    Bertoni, Franco; Del Corso, Giacomo; Bacchini, Patrizia; Marchetti, Claudio; Tarsitano, Achille

    2016-10-01

    Transformation of an ameloblastic fibroma to an ameloblastic fibrosarcoma has been reported rarely in the literature. The present case report describes such evolution in a patient under long-term follow-up. The patient was first treated in 2008, and he developed the malignant counterpart of the disease 2 years later. The patient is currently under careful long-term follow-up and is free of disease. This article describes the clinical and radiographic features, histological characteristics, immunohistochemical findings, and surgical treatment of the tumor. © The Author(s) 2016.

  14. Ameloblastic fibrosarcoma of the upper jaw: Report of a rare case with long-term follow-up.

    Science.gov (United States)

    Khalili, Maryam; Shakib, Pouyan Amini

    2013-01-01

    Ameloblastic fibrosarcoma (AFS) is a rare malignant mixed odontogenic tumor which is usually considered as the malignant counterpart of ameloblastic fibroma. Only mesenchymal component represents sarcomatous alterations and ameloblast-like epithelial nest remains bland in AFS. Here, we report a case of AFS in a 26-year-old man in the maxilla, which was regarded as an uncommon location for this tumor. After 2 years follow up, no evidence of recurrence was noted. We also emphasize on comprehensive clinical, radiographic, and histopathologic evaluation of such patients rather than immunohistochemical staining to make an accurate diagnosis.

  15. Identification of skin immune cells in non-human primates.

    Science.gov (United States)

    Adam, Lucille; Rosenbaum, Pierre; Cosma, Antonio; Le Grand, Roger; Martinon, Frédéric

    2015-11-01

    The skin is a valuable target for vaccine delivery because it contains many immune cell populations, notably antigen presenting cells. Skin immune cells have been extensively described in mice and humans but not in non-human primates, which are pertinent models for immunological research in vaccination. The aim of this work was to describe immune cell populations in the epidermis, dermis and skin draining lymph nodes in cynomolgus macaques by a single 12-parameter flow cytometry protocol. Given that skin cells share several markers, we defined a gating strategy to identify accurately immune cells and to limit contamination of one immune cell population by another. The epidermis contained CD1a(+)CD1c(-) Langerhans cells (LCs), CD3(+) T cells and putative NK cells. The dermis contained CD1a(+)CD1c(-) cells, which were similar to LCs, CD1a(+)CD1c(+) dermal dendritic cells (DDCs), CD163(high)CD11b(+) resident macrophages, CD3(+) T cells and putative NK cells. The skin also contained CD66(+) polymorphonuclear cells in some animals. Thus, immune cell populations in the macaque are similar to those in humans despite some differences in phenotype. In skin draining lymph nodes, we identified migratory LCs, CD1a(+)CD1c(+) DDCs and macrophages. The simultaneous identification of these different immune cells with one panel of markers avoids the use of large amounts of precious sample and may improve the understanding of immune mechanisms in the skin after treatment or vaccination.

  16. [In vitro strategies for human gametes production from stem cells].

    Science.gov (United States)

    Tosca, Lucie; Courtot, Anne-Marie; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2011-10-01

    Embryonic stem cells (ESC) are self-renewal and pluripotent cells that are able to differentiate in vitro into several cell types in favourable conditions. Technical protocols for in vitro gametes production have been developed in mice and human species. The functionality of such differentiated cells is not always analysed and an early meiotic arrest is a current observation. These kinds of experimentations have also been tested from human induced pluripotent stem cells (IPSC). However, differentiation ends shortly at the primordial germ cell stage.

  17. Growth in agarose of human cells infected with cytomegalovirus.

    Science.gov (United States)

    Lang, D J; Montagnier, L; Latarjet, R

    1974-08-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation.

  18. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  19. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Human organomics: a fresh approach to understanding human development using single-cell transcriptomics.

    Science.gov (United States)

    Camp, J Gray; Treutlein, Barbara

    2017-05-01

    Innovative methods designed to recapitulate human organogenesis from pluripotent stem cells provide a means to explore human developmental biology. New technologies to sequence and analyze single-cell transcriptomes can deconstruct these 'organoids' into constituent parts, and reconstruct lineage trajectories during cell differentiation. In this Spotlight article we summarize the different approaches to performing single-cell transcriptomics on organoids, and discuss the opportunities and challenges of applying these techniques to generate organ-level, mechanistic models of human development and disease. Together, these technologies will move past characterization to the prediction of human developmental and disease-related phenomena. © 2017. Published by The Company of Biologists Ltd.

  1. Human dental pulp stem cells: Applications in future regenerative medicine.

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  2. Role of human mast cells and basophils in bronchial asthma.

    Science.gov (United States)

    Marone, Gianni; Triggiani, Massimo; Genovese, Arturo; De Paulis, Amato

    2005-01-01

    Mast cells and basophils are the only cells expressing the tetrameric (alphabetagamma2) structure of the high affinity receptor for IgE (FcepsilonRI) and synthesizing histamine in humans. Human FcepsilonRI+ cells are conventionally considered primary effector cells of bronchial asthma. There is now compelling evidence that these cells differ immunologically, biochemically, and pharmacologically, which suggests that they might play distinct roles in the appearance and fluctuation of the asthma phenotype. Recent data have revealed the complexity of the involvement of human mast cells and basophils in asthma and have shed light on the control of recruitment and activation of these cells in different lung compartments. Preliminary evidence suggests that these cells might not always be detrimental in asthma but, under some circumstances, they might exert a protective effect by modulating certain aspects of innate and acquired immunity and allergic inflammation.

  3. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  4. Genetic engineering of human pluripotent cells using TALE nucleases.

    Science.gov (United States)

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  5. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  6. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  7. On the development of extragonadal and gonadal human germ cells

    Directory of Open Access Journals (Sweden)

    A. Marijne Heeren

    2016-02-01

    Full Text Available Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception. Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where ‘adrenal’ and ‘ovarian’ germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human ‘adrenal’ germ cells until W22. By contrast, ‘ovarian’ germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development.

  8. Generation of human melanocytes from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Shigeki Ohta

    Full Text Available Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC. These iPS cell lines were subsequently used to form embryoid bodies (EBs and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.

  9. Embryonic death and the creation of human embryonic stem cells

    OpenAIRE

    Landry, Donald W.; Zucker, Howard A.

    2004-01-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ ...

  10. Embryonic death and the creation of human embryonic stem cells.

    Science.gov (United States)

    Landry, Donald W; Zucker, Howard A

    2004-11-01

    The creation of human embryonic stem cells through the destruction of a human embryo pits the value of a potential therapeutic tool against that of an early human life. This contest of values has resulted in a polarized debate that neglects areas of common interest and perspective. We suggest that a common ground for pursuing research on human embryonic stem cells can be found by reconsidering the death of the human embryo and by applying to this research the ethical norms of essential organ donation.

  11. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  12. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  13. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  14. Peptide-directed binding of quantum dots to integrins in human fibroblast.

    Science.gov (United States)

    Shi, Peng; Chen, Hongfeng; Cho, Michael R; Stroscio, Michael A

    2006-03-01

    There is currently a major international effort aimed at integrating semiconductor nanostructures with biological structures. This paper reports the use of peptide sequences with certain motifs like artinine-glycine-aspartic acid (RGD) and leucine-aspartic acid-valine (LDV) to functionalize zinc sulfide (ZnS)-capped cadmiun selenide (CdSe) quantum dots, so that the quantum dot-peptide complexes selectively bind to integrins on HT1080 human fibrosarcoma cells membrane. In this way, an interface between semiconductor nanocrystals and subcellular components was achieved, and the distribution pattern of RGD and LDV receptors on HT1080 cell membranes is revealed. These findings point the way to using a wide class of peptide-functionalized semiconductor quantum dots for the study of cellular processes involving integrins.

  15. Generating trunk neural crest from human pluripotent stem cells.

    Science.gov (United States)

    Huang, Miller; Miller, Matthew L; McHenry, Lauren K; Zheng, Tina; Zhen, Qiqi; Ilkhanizadeh, Shirin; Conklin, Bruce R; Bronner, Marianne E; Weiss, William A

    2016-01-27

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior "cranial" NCC form craniofacial bone, whereas solely posterior "trunk" NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typically occur before pregnancy is detectable. As a result, current knowledge of NCC biology derives primarily from non-human organisms. Important differences between human and non-human NCC, such as expression of HNK1 in human but not mouse NCC, suggest a need to study human NCC directly. Here, we demonstrate that current protocols to differentiate human pluripotent stem cells (PSC) to NCC are biased toward cranial NCC. Addition of retinoic acid drove trunk-related markers and HOX genes characteristic of a posterior identity. Subsequent treatment with bone morphogenetic proteins (BMPs) enhanced differentiation to sympathoadrenal cells. Our approach provides methodology for detailed studies of human NCC, and clarifies roles for retinoids and BMPs in the differentiation of human PSC to trunk NCC and to sympathoadrenal lineages.

  16. Generation of human-induced pluripotent stem cells.

    Science.gov (United States)

    Park, In-Hyun; Lerou, Paul H; Zhao, Rui; Huo, Hongguang; Daley, George Q

    2008-01-01

    Pluripotent cells, such as embryonic stem cells, are invaluable tools for research and can potentially serve as a source of cell- and tissue-replacement therapy. Rejection after transplantation of cells and tissue derived from embryonic stem cells is a significant obstacle to their clinical use. Recently, human somatic cells have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Human iPS cells are a potential source of patient-specific pluripotent stem cells that would bypass immune rejection. iPS cells can also be used to study diseases for which there are no adequate human in vitro or animal models. In this protocol, we describe how to establish primary human fibroblasts lines and how to derive iPS cells by retroviral transduction of reprogramming factors. Overall, it takes 2 months to complete reprogramming human primary fibroblasts starting from biopsy.

  17. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  18. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-05-01

    IGF1, SOX15, BMPR1B, TGFBR1, etc), which fall into distinct GO categories including SC, development, stress response, and wound healing (unpublished...prostate cancer through the elucidation of the role of cancer stem cells in the pathogenesis of the disease. During the past year, we have made the...studies, ii) in vitro co-culture of human prostate cancer cells (established cell lines and primary patient samples) with human prostate fibroblasts

  19. Isolation, identification and differentiation of human embryonic cartilage stem cells.

    Science.gov (United States)

    Fu, Changhao; Yan, Zi; Xu, Hao; Zhang, Chen; Zhang, Qi; Wei, Anhui; Yang, Xi; Wang, Yi

    2015-07-01

    We isolated human embryonic cartilage stem cells (hECSCs), a novel stem cell population, from the articular cartilage of eight-week-old human embryos. These stem cells demonstrated a marker expression pattern and differentiation potential intermediate to those of human embryonic stem cells (hESCs) and human adult stem cells (hASCs). hECSCs expressed markers associated with both hESCs (OCT4, NANOG, SOX2, SSEA-3 and SSEA-4) and human adult stem cells (hASCs) (CD29, CD44, CD90, CD73 and CD10). These cells also differentiated into adipocytes, osteoblasts, chondrocytes, neurons and islet-like cells under specific inducing conditions. We identified N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) as an inducer of chondrogenic differentiation in hECSCs. Similar results using N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) were obtained for two other types of human embryonic tissue-derived stem cells, human embryonic hepatic stem cells (hEHSCs) and human embryonic amniotic fluid stem cells (hEASCs), both of which exhibited a marker expression pattern similar to that of hECSCs. The isolation of hECSCs and the discovery that N(6), 2'-O-dibutyryl cyclic adenosine 3':5'-monophosphate (Bt2cAMP) induces chondrogenic differentiation in different stem cell populations might aid the development of strategies in tissue engineering and cartilage repair.

  20. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  1. Vasoprotective effects of human CD34+ cells: towards clinical applications

    Directory of Open Access Journals (Sweden)

    Lerman Amir

    2009-07-01

    Full Text Available Abstract Background The development of cell-based therapeutics for humans requires preclinical testing in animal models. The use of autologous animal products fails to address the efficacy of similar products derived from humans. We used a novel immunodeficient rat carotid injury model in order to determine whether human cells could improve vascular remodelling following acute injury. Methods Human CD34+ cells were separated from peripheral buffy coats using automatic magnetic cell separation. Carotid arterial injury was performed in male Sprague-Dawley nude rats using a 2F Fogarty balloon catheter. Freshly harvested CD34+ cells or saline alone was administered locally for 20 minutes by endoluminal instillation. Structural and functional analysis of the arteries was performed 28 days later. Results Morphometric analysis demonstrated that human CD34+ cell delivery was associated with a significant reduction in intimal formation 4 weeks following balloon injury as compared with saline (I/M ratio 0.79 ± 0.18, and 1.71 ± 0.18 for CD34, and saline-treated vessels, respectively P Conclusion Delivery of human CD34+ cells limits neointima formation and improves arterial reactivity after vascular injury. These studies advance the concept of cell delivery to effect vascular remodeling toward a potential human cellular product.

  2. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    Science.gov (United States)

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  3. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos

    Directory of Open Access Journals (Sweden)

    Daniela Ávila-González

    2015-09-01

    Full Text Available Data from the literature suggest that human embryonic stem cell (hESC lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1 from poor-quality (PQ embryos derived and maintained on human amniotic epithelial cells (hAEC. This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  4. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    Science.gov (United States)

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  5. Growth suppressive efficacy of human lak cells against human lung-cancer implanted into scid mice.

    Science.gov (United States)

    Teraoka, S; Kyoizumi, S; Suzuki, T; Yamakido, M; Akiyama, M

    1995-06-01

    The purpose of our study was to determine the efficacy of immunotherapy using human lymphokine activated killer (LAK) cells against a human-lung squamous-cell carcinoma cell line (RERF-LC-AI) implanted into severe combined immunodeficient (SCID) mice. A statistically significant growth suppressive effect on RERF-LC-AI implanted into SCID mice was observed when human LAK cells were administered into the caudal vein of the mice treated with a continuous supply (initiated prior to LAK cells injection) of rIL-2. The human LAK cells stained with PKH 2, a fluorescent dye, for later detection using flow cytometry were administered into the caudal vein of RERF-LC-AI bearing SCID mice; the cells persisted for 7 days in the implanted lung cancer tissue and in the mouse peripheral blood, but for 5 days in the mouse spleen. The number of infiltrated human LAK cells in each tissue increased dose-dependently with the number of injected cells. The results indicate that the antitumor effect most likely occurred during the early implantation period of the human LAK cells. These results demonstrate the applicability of this model to the in vivo study of human lung cancer therapy.

  6. Use of human pluripotent stem cells to study and treatretinopathies

    Institute of Scientific and Technical Information of China (English)

    Karim Ben M’Barek; Florian Regent; Christelle Monville

    2015-01-01

    Human cell types affected by retinal diseases (such asage-related macular degeneration or retinitis pimentosa)are limited in cell number and of reduced accessibility. As aconsequence, their isolation for in vitro studies of diseasemechanisms or for drug screening efforts is fastidious.Human pluripotent stem cells (hPSCs), either of embryonicorigin or through reprogramming of adult somatic cells,represent a new promising way to generate models ofhuman retinopathies, explore the physiopathologicalmechanisms and develop novel therapeutic strategies.Disease-specific human embryonic stem cells were thefirst source of material to be used to study certain diseasestates. The recent demonstration that human somaticcells, such as fibroblasts or blood cells, can be geneticallyconverted to induce pluripotent stem cells together withthe continuous improvement of methods to differentiatethese cells into disease-affected cellular subtypes opensnew perspectives to model and understand a largenumber of human pathologies, including retinopathies.This review focuses on the added value of hPSCs for thedisease modeling of human retinopathies and the study oftheir molecular pathological mechanisms. We also discussthe recent use of these cells for establishing the validationstudies for therapeutic intervention and for the screeningof large compound libraries to identify candidate drugs.

  7. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen;

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...

  8. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells......The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...... for regenerative medicine, such as in the treatment of diabetes, Parkinson’s disease, blindness, and spinal cord injury. In the context of developing regenerative medicine based on hESCs, it remains a challenge to employ safe, xenofree and defined culture conditions. The blastocoel fluid is per se the in vivo...

  9. Human induced pluripotent stem cells: A disruptive innovation.

    Science.gov (United States)

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.

  10. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  11. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  12. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  13. Exposure to Music Alters Cell Viability and Cell Motility of Human Nonauditory Cells in Culture

    Directory of Open Access Journals (Sweden)

    Nathalia R. Lestard

    2016-01-01

    Full Text Available Although music is part of virtually all cultures in the world, little is known about how it affects us. Since the beginning of this century several studies suggested that the response to music, and to sound in general, is complex and might not be exclusively due to emotion, given that cell types other than auditory hair cells can also directly react to audible sound. The present study was designed to better understand the direct effects of acoustic vibrations, in the form of music, in human cells in culture. Our results suggest that the mechanisms of cell growth arrest and/or cell death induced by acoustic vibrations are similar for auditory and nonauditory cells.

  14. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  15. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  16. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  17. Establishment of human embryonic stem cell line from gamete donors

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHOU Can-quan; MAI Qing-yun; ZHUANG Guang-lun

    2005-01-01

    Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed.Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line (cHES-1) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types.Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widespread impact on biomedical research.

  18. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  19. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  20. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  1. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  2. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  3. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  4. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them t...

  5. Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Zhang, Min; Funakoshi, Ryota; Sheetij, Dutta; Spaccapelo, Roberta; Crisanti, Andrea; Nussenzweig, Victor; Nussenzweig, Ruth S; Tsuji, Moriya

    2016-08-31

    A number of studies have shown that CD8+ T cells mediate protective anti-malaria immunity in a mouse model. However, whether human CD8+ T cells play a role in protection against malaria remains unknown. We recently established human immune system (HIS) mice harboring functional human CD8+ T cells (HIS-CD8 mice) by transduction with HLA-A∗0201 and certain human cytokines using recombinant adeno-associated virus-based gene transfer technologies. These HIS-CD8 mice mount a potent, antigen-specific HLA-A∗0201-restricted human CD8+ T-cell response upon immunization with a recombinant adenovirus expressing a human malaria antigen, the Plasmodium falciparum circumsporozoite protein (PfCSP), termed AdPfCSP. In the present study, we challenged AdPfCSP-immunized HIS-CD8 mice with transgenic Plasmodium berghei sporozoites expressing full-length PfCSP and found that AdPfCSP-immunized (but not naïve) mice were protected against subsequent malaria challenge. The level of the HLA-A∗0201-restricted, PfCSP-specific human CD8+ T-cell response was closely correlated with the level of malaria protection. Furthermore, depletion of human CD8+ T cells from AdPfCSP-immunized HIS-CD8 mice almost completely abolished the anti-malaria immune response. Taken together, our data show that human CD8+ T cells mediate protective anti-malaria immunity in vivo.

  6. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    Science.gov (United States)

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  7. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    Science.gov (United States)

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  8. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  9. Relationship Between Scavenger Receptors and uPA:PAI-1 and uPA Receptors in Breast Cancer

    Science.gov (United States)

    1998-10-01

    Cell Surface Expression of LRP Methods: Confluent cell layers of tumor-derived mammary epithelial cells and a human fibrosarcoma cell line ...could be co-immunoprecipitated together. The human fibrosarcoma cells , HT1080 , were used in this procedure to optimize our co- immunoprecipitation... fibrosarcoma cell line , HT1080 . 100" M MDA-MB-231 E0 184-B5 90 0 NRK 80 70 60t M 50- " 40- LO~ 30- 20- 10-

  10. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    OpenAIRE

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex...

  11. Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell

    Institute of Scientific and Technical Information of China (English)

    ZHU Shaobo; YU Aixi; ZHANG Zhongning; WU Gang

    2007-01-01

    This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000,2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%,50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 μg/mL TRAIL for 6 h,obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma.

  12. Generation and application of human iPS cells

    Institute of Scientific and Technical Information of China (English)

    CUI Ghun; RAO LingJun; CHENG LinZhao; XIAO Lei

    2009-01-01

    Human embryonic stem (ES) cells are capable of unlimited proliferation and maintenance of pluripo-tency in vitro; these properties may lead to potential applications in regenerative medicine.However,immune rejection hampers the allogenic application of human ES cells.Over-expression of several specific transcription factors has been used to reprogram human adult cells into induced pluripotent stem (iPS) cells,which are similar to hESCs in many aspects.The iPS technique makes it possible to produce patient-specific pluripotent stem cells for transplantation therapy without immune rejection.However,some challenges remain,including viral vector integration into the genome,the existence of exogenous oncogenic factors,and low induction efficiency.Here,we review recent advances in human iPS methodology,as well as remaining challenges and its potential applications.

  13. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  14. The Roles of TGF-Beta and TGF-Beta Signaling Receptors in Breast Carcinogenesis.

    Science.gov (United States)

    1995-07-11

    cell surface while HT1080 human fibrosarcoma cells used as a...expression.Monolayer confluent cultures of MCF-7 cells and human fibrosarcoma tions (Fig. 2). Therefore, the lack of cell surface RI and RII HT1080 cells ...examining several more human cell lines which are known to response to TGF-B and thus presumably express the type II receptor. If this antibody

  15. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  16. Mesenchymal Stem Cell Levels of Human Spinal Tissues.

    Science.gov (United States)

    Harris, Liam; Vangsness, C Thomas

    2017-09-06

    .: Systematic Review. .: The aim of this study was to investigate, quantify, compare and compile the various mesenchymal stem cell tissue sources within human spinal tissues to act as a compendium for clinical and research application. .: Recent years have seen a dramatic increase in academic and clinical understanding of human mesenchymal stem cells (MSCs). Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. .: The PubMED, MEDLINE, EMBASE and Cochrane databases were searched for articles relating to the harvest, characterization, isolation and quantification of human mesenchymal stem cells from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. .: Human mesenchymal stem cell levels varied widely between spinal tissues. Yields for Intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500- 61,875 cells/ 0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000- 500,000 cells per gram of tissue. Annulus fibrosus FACS treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584-234,137 MSCs/gram of tissue. .: Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human mesenchymal stem cells. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of mesenchymal stem cells, and may

  17. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  18. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  19. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  20. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  1. Isolation and culture of human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Cheung, Ambrose L

    2007-02-01

    Human-derived endothelial cells can now be routinely harvested from human umbilical veins. Studies with human umbilical vein endothelial cells (HUVEC) have been conducted with cells from passage 2 to 5. It is now also possible to cryopreserve primary and early-passaged HUVEC for future propagation and for forwarding to an end user by express courier. Stored HUVEC have been stably retrieved even after several years. These retrieval techniques have facilitated the deployment of HUVEC for many studies, including those for homeostasis, inflammatory disorders, atherosclerosis, cancer, and microbial adhesion and invasion. In this unit, we will delineate the procedure for harvesting, propagation, and storage of HUVEC.

  2. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  3. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  4. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  5. Human periodontal ligament stem cells repair mental nerve injury*

    Institute of Scientific and Technical Information of China (English)

    Bohan Li; Hun-Jong Jung; Soung-Min Kim; Myung-Jin Kim; Jeong Won Jahng; Jong-Ho Lee

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.

  6. Human B cells produce chemokine CXCL10 in the presence of Mycobacterium tuberculosis specific T cells

    DEFF Research Database (Denmark)

    Hoff, Soren T; Salman, Ahmed M; Ruhwald, Morten

    2015-01-01

    BACKGROUND: The role of B cells in human host response to Mycobacterium tuberculosis (Mtb) infection is still controversial, but recent evidence suggest that B cell follicle like structures within the lung may influence host responses through regulation of the local cytokine environment....... A candidate for such regulation could be the chemokine CXCL10. CXCL10 is mainly produced by human monocytes, but a few reports have also found CXCL10 production by human B cells. The objective of this study was to investigate CXCL10 production by human B cells in response to in vitro stimulation with Mtb...... antigens. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed human blood samples from 30 volunteer donors using multiparameter flow cytometry, and identified a subgroup of B cells producing CXCL10 in response to in vitro stimulation with antigens. T cells did not produce CXCL10, but CXCL10 production by B cells...

  7. Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells.

    Science.gov (United States)

    Ghosh, Zhumur; Huang, Mei; Hu, Shijun; Wilson, Kitchener D; Dey, Devaveena; Wu, Joseph C

    2011-07-15

    Pluripotent stem cells, both human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), can give rise to multiple cell types and hence have tremendous potential for regenerative therapies. However, the tumorigenic potential of these cells remains a great concern, as reflected in the formation of teratomas by transplanted pluripotent cells. In clinical practice, most pluripotent cells will be differentiated into useful therapeutic cell types such as neuronal, cardiac, or endothelial cells prior to human transplantation, drastically reducing their tumorigenic potential. Our work investigated the extent to which these differentiated stem cell derivatives are truly devoid of oncogenic potential. In this study, we analyzed the gene expression patterns from three sets of hiPSC- and hESC-derivatives and the corresponding primary cells, and compared their transcriptomes with those of five different types of cancer. Our analysis revealed a significant gene expression overlap of the hiPSC- and hESC-derivatives with cancer, whereas the corresponding primary cells showed minimum overlap. Real-time quantitative PCR analysis of a set of cancer-related genes (selected on the basis of rigorous functional and pathway analyses) confirmed our results. Overall, our findings suggested that pluripotent stem cell derivatives may still bear oncogenic properties even after differentiation, and additional stringent functional assays to purify these cells should be done before they can be used for regenerative therapy.

  8. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  9. Human embryonic stem cell derivation and directed differentiation.

    Science.gov (United States)

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  10. Generating trunk neural crest from human pluripotent stem cells

    OpenAIRE

    Miller Huang; Matthew L. Miller; McHenry, Lauren K.; Tina Zheng; Qiqi Zhen; Shirin Ilkhanizadeh; Conklin, Bruce R.; Bronner, Marianne E.; Weiss, William A.

    2016-01-01

    Neural crest cells (NCC) are stem cells that generate different lineages, including neuroendocrine, melanocytic, cartilage, and bone. The differentiation potential of NCC varies according to the level from which cells emerge along the neural tube. For example, only anterior “cranial” NCC form craniofacial bone, whereas solely posterior “trunk” NCC contribute to sympathoadrenal cells. Importantly, the isolation of human fetal NCC carries ethical and scientific challenges, as NCC induction typi...

  11. Hematopoietic Development from Human Induced Pluripotent Stem Cells

    OpenAIRE

    2009-01-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells.Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g. circ...

  12. Lymphoreticular cells in human brain tumours and in normal brain.

    OpenAIRE

    1982-01-01

    The present investigation, using various rosetting assays of cell suspensions prepared by mechanical disaggregation or collagenase digestion, demonstrated lymphoreticular cells in human normal brain (cerebral cortex and cerebellum) and in malignant brain tumours. The study revealed T and B lymphocytes and their subsets (bearing receptors for Fc(IgG) and C3) in 5/14 glioma suspensions, comprising less than 15% of the cell population. Between 20-60% of cells in tumour suspensions morphologicall...

  13. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-01-01

    SUMMARY Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses. PMID:24006470

  14. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  15. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decr