WorldWideScience

Sample records for human femur bone

  1. Elastic Comparison Between Human and Bovine Femural Bone

    Directory of Open Access Journals (Sweden)

    Mohamed S. Gaith

    2012-12-01

    Full Text Available In this study, the elastic stiffness and the degree of anisotropy will be compared for the femur human and bovine bones are presented. A scale for measuring the overall elastic stiffness of the bone at different locations is introduced and its correlation with the calculated bulk modulus is analyzed. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for orthotropic system materials is decomposed into two parts; isotropic (two terms and anisotropic parts. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the degree of anisotropy in an anisotropic material is proposed using the Norm Ratio Criteria (NRC. It is found that bovine femure plexiform has the largest overall elastic stiffness and bovine has the most isotropic (least anisotropic symmetry.

  2. Targeted regeneration of bone in the osteoporotic human femur.

    Directory of Open Access Journals (Sweden)

    Kenneth E S Poole

    Full Text Available We have recently developed image processing techniques for measuring the cortical thicknesses of skeletal structures in vivo, with resolution surpassing that of the underlying computed tomography system. The resulting thickness maps can be analysed across cohorts by statistical parametric mapping. Applying these methods to the proximal femurs of osteoporotic women, we discover targeted and apparently synergistic effects of pharmaceutical osteoporosis therapy and habitual mechanical load in enhancing bone thickness.

  3. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  4. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.

    Science.gov (United States)

    Boyle, Christopher; Kim, Il Yong

    2011-03-15

    The law of bone remodeling, commonly referred to as Wolff's Law, asserts that the internal trabecular bone adapts to external loadings, reorienting with the principal stress trajectories to maximize mechanical efficiency creating a naturally optimum structure. The goal of the current study was to utilize an advanced structural optimization algorithm, called design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur and analyse the results to determine the validity of Wolff's hypothesis. DSO optimizes the layout of material by iteratively distributing it into the areas of highest loading, while simultaneously changing the design domain to increase computational efficiency. The result is a "fully stressed" structure with minimized compliance and increased stiffness. The large-scale computational simulation utilized a 175 μm mesh resolution and the routine daily loading activities of walking and stair climbing. The resulting anisotropic trabecular architecture was compared to both Wolff's trajectory hypothesis and natural femur samples from literature using a variety of visualization techniques, including radiography and computed tomography (CT). The results qualitatively revealed several anisotropic trabecular regions, that were comparable to the natural human femurs. Quantitatively, the various regional bone volume fractions from the computational results were consistent with quantitative CT analyses. The global strain energy proceeded to become more uniform during optimization; implying increased mechanical efficiency was achieved. The realistic simulated trabecular geometry suggests that the DSO method can accurately predict bone adaptation due to mechanical loading and that the proximal femur is an optimum structure as the Wolff hypothesized.

  5. EVALUATION OF NECK SHAFT ANGLE OF FEMUR ON DRY BONES

    Directory of Open Access Journals (Sweden)

    Radha

    2015-04-01

    Full Text Available BACKGROUND: Evaluation of the neck shaft angle of femur helps to understand clinical relevance in bio mechanics of the hip joint. It helps for the better treatment of different pathological conditions of hip and femur and also to design prosthesis. Femoral neck shaft angle is important to convey the information regarding the race to which they belong. Hence the present study was under taken to determine the neck shaft angle of femur in humans. OBJECTIVE: 1. To correct the different types of deformity and to have a normal good walking Mechanism. 2. To know the recent methodology and attempt to evaluate the range of normal Angles of femora and their sex differences. METHODS: ANTHROPOMETRIC: 100 Adult dry bones were studied and analyzed . The neck shaft angle of femur was measured by tracing outlines of contours of all femora. RESULTS: The neck shaft angle of the femur have revealed that there is no much difference in between males and females. There was slightly higher 0.2° in females. INTERPRETATION & CONCLUSION: There was no significant gender difference in neck shaft angle. The Knowledge of knowing the neck shaft angle helps to understand the Biomechanics of the hip joint and also for better treatment of pathological condition of hip and femur.

  6. Management of subtrochanteric femur fractures with internal fixation and recombinant human bone morphogenetic protein-7 in a patient with osteopetrosis: a case report

    Directory of Open Access Journals (Sweden)

    Golden Robert D

    2010-05-01

    Full Text Available Abstract Introduction Osteopetrosis is a group of conditions characterized by defects in the osteoclastic function of the bone resulting in defective bone resorption. Clinically, the condition is characterized by a dense, sclerotic, deformed bone which, despite an increased density observable by radiography, often results in an increased propensity to fracture and delayed union. Case Presentation We report the case of a 27-year-old Asian man presenting with bilateral subtrochanteric femur fractures. He had a displaced right subtrochanteric femur fracture after a low-energy fall, which was treated surgically. The second fracture that our patient endured was diagnosed as a stress fracture ten weeks later when he complained of pain in the contralateral left thigh. By that time, the right-sided fracture exhibited no radiographic evidence of healing, and when the left-sided stress fracture was being treated surgically, bone grafting with recombinant human bone morphogenetic protein-7 was also performed on the right side. Conclusion While there are no data supporting the use of bone morphogenic proteins in the management of delayed healing in patients with osteopetrosis, no other reliable osteoinductive grafting options are available to treat this condition. Both fractures in our patient healed, but based on the serial radiographic assessment it is uncertain to what degree the recombinant human bone morphogenetic protein-7 may have contributed to the successful outcome. It may have also contributed to the formation of heterotopic bone around the fracture site. Further investigation of the effectiveness and indications of bone morphogenic protein use for the management of delayed fracture healing in patients with osteopetrosis is warranted.

  7. Osteometric study of human femur

    Directory of Open Access Journals (Sweden)

    Khaleel N.

    2014-02-01

    Full Text Available Skeleton is playing important role in various like Medicine, Forensic sciences, Anthropology etc. Estimation of sex, age, race, stature by skeleton and the presence of disease is discovered by Krogman and Iscan (1986. Sex is determined after death by skeletal remains of that individual by some forensic anthropologists with the help of pelvis, skull and long bones. The study was undertaken in 50 femurs for measuring epicondylar breadth, Neck shaft angle, transverse and vertical diameter of head. The results were the average meanepicondylar breadth was 75.6 ± 6.06mm, mean right epicondylar breadth was 73.96 ± 4.99mm and left it was 76.35 ± 7.0mm. The average mean neck shaft angle was 125.3 ± 6.50mm, mean right neck shaft angle was 124.44 ± 5.7mm and left it was 126.3 ± 7.33mm. The average mean transverse diameter of head was 37.86 ± 3.06mm, mean right transverse diameter of head was 37.74 ± 3.05mm and left it was 38.00 ± 3.13mm. The average mean vertical diameter of head was 42.24 ± 3.53mm, mean right vertical diameter of head was 41.63 ± 3.09mm and left it was 42.96 ± 3.92mm, Neck shaft angle ranges from a minimum of 106° to maximum 135° with a mean value of 125.3°. The knowledge of osteometric values is helpful to anthropological and forensic practice. [Int J Res Med Sci 2014; 2(1.000: 104-107

  8. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...

  9. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2013-09-01

    Full Text Available INTRODUCTION: Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. AIM: The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. METHODS: Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a gray levels produced by the bone x-ray absorption, b the portions of the image occupied by air and c voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. RESULTS: The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.

  10. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Dimitrios. G. Aggelis

    2015-03-01

    Full Text Available The study describes the acoustic emission (AE activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis. The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.

  11. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...

  12. [Pathological proximal femur fracture: consider also primary bone tumour].

    Science.gov (United States)

    van de Sande, Michiel A J; van Rijswijk, Carla S P; Dijkstra, P D Sander; Taminiau, Antonie M H

    2010-01-01

    Two male and one female patient, aged 64, 70 and 51 respectively, were surgically treated for pathological fracture of the proximal femur without preoperative biopsy. In contrast to their benign radiological diagnosis, all three patients were finally diagnosed as having a malignant primary bone tumour. The proximal femur is the primary location of pathological fractures in the appendicular skeleton. Metastases to bone are the most common cause of a destructive lesion of the skeleton in an adult. Although rare, a primary bone tumour must be included in differential diagnosis of a pathological fracture. A systematic diagnostic strategy is critical to avoid complications that make curative treatment impossible. A solitary bone lesion seen on radiography should never be assumed to be a bone metastasis. Without further diagnostic research, surgical treatment for a pathological fracture should never be commenced before a definitive diagnosis is made.

  13. Immune Cell Isolation from Mouse Femur Bone Marrow

    OpenAIRE

    Liu, Xiaoyu; Quan, Ning

    2015-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of sp...

  14. An alternative model of vascularized bone marrow transplant: partial femur transplantation.

    Science.gov (United States)

    Chen, Jian-Wu; Chen, Chen; Su, Ying-Jun; Yan, Lun; Wang, Shi-Ping; Guo, Shu-Zhong

    2014-12-01

    The vascularized whole femur transplantation model is one of the commonly used vascularized bone marrow transplant models. It involves technical complexity and morbidities. To optimize this model, we took 2/3 femur as the carrier of bone marrow cells, and developed a vascularized partial femur model. Four experimental groups were carried out, namely, the syngeneic partial femur transplantation, allogeneic partial femur transplantation with or without cyclosporine A, and allogeneic whole femur transplantation with cyclosporine A. The results showed that the partial femur model was technically simpler and shortened the operative and ischemia time compared to the whole femur model. Gross and histologic appearance confirmed the viability of femur, and its bone marrow inside the bone could also maintain normal morphologically at 60-day posttransplant. Besides, donor multilineage chimerism could be continuously detected in immunosuppressed allogeneic partial femur recipients at 1-, 2-, 3-, 4-, and 8-week posttransplant, and it showed no significant differences when compared with whole femur transplantation. Meanwhile, long-term engraftment of donor-origin cells was also confirmed in recipients' bone marrow, lymph nodes, and spleen, but not in thymus. Therefore, the vascularized partial femur can serve as a continuous resource of bone morrow cells and may provide a useful tool for the study of immune tolerance in vascularized composite allotransplantation.

  15. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength

    DEFF Research Database (Denmark)

    Hansen, Stinus; Jensen, Jens-Erik Beck; Ahrberg, Fabian

    2011-01-01

    The aim of this study was to assess structural indices from high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the human proximal femur along with areal bone mineral density (aBMD) and compare the relationship of these parameters to bone strength in vitro. Thirty......-one human proximal femur specimens (8 men and 23 women, median age 74 years, range 50-89) were examined with HR-pQCT at four regions of interest (femoral head, neck, major and minor trochanter) with 82 μm and in a subgroup (n = 17) with 41 μm resolution. Separate analyses of cortical and trabecular geometry...

  16. The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue

    Directory of Open Access Journals (Sweden)

    C. Greenwood

    2015-12-01

    Full Text Available Osteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA. However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with ‘bone quality’, which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n = 37 who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.

  17. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Order from the National Technical Information Service NCHS Osteoporosis or Low Bone Mass at the Femur Neck ... Survey, 2005–2008. What is the prevalence of osteoporosis or low bone mass at the femur neck ...

  18. A study of diaphyseal nutrient foramina in human femur

    Directory of Open Access Journals (Sweden)

    Roopam Kumar Gupta

    2016-03-01

    Results: The mean number of nutrient foramina per femur bone was 1.64 and mean distance of NF from upper end of femur was 19.48 cms. The foraminal index obtained was 45.01%. The most common location of NF was on the medial lip of linea aspera (40.9%. 44.6% femur had only one NF, while 49.4% had two NF, 3.8% femur had three NFs and 2.24% femur had four NFs. 50.48% of NFs were of big size caliber, 26.6% were of medium size and 22.8% were of small caliber. So 77.1% NFs in femur were dominant foramina. In all the bones studied the direction of the nutrient foramina was always directed upwards. Conclusions: The findings of this study on nutrient foramina adds to the information from studies in the past by other authors but the importance of this study lies in the large sample size and the detailed study of caliber of the nutrient foramen for the first time. [Int J Res Med Sci 2016; 4(3.000: 706-712

  19. The Effect of Bone Loss Pattern on the Structural Capacity of the Proximal Femur

    Institute of Scientific and Technical Information of China (English)

    FAN Li-xia; Eric Wang

    2006-01-01

    The effect of age-related bone loss on the structural capacity of the proximal femur were investigated by Finite Element Analysis(FEA). Four bone loss patterns were considered. These were "uniform cortical bone loss", "neck cortical bone loss", "intertrochanteric cortical bone loss" and "uniform trabecular bone loss". The results show that the two "non-uniform cortical bone loss" patterns are more dangerous than the "uniform cortical bone loss" pattern, and that the cortical bone loss in intertrochanteric region is associated with a greater reduction in cortical failure load than the cortical bone loss in the femoral neck. The trabecular bone loss causes a limited decrease in both cortical failure and trabecular failure loads. This research should be helpful to the clinical assessment of femur fracture risk due to age-related bone loss.

  20. Bone morphology in 46 BXD recombinant inbred strains and femur-tibia correlation.

    Science.gov (United States)

    Zhang, Yueying; Huang, Jinsong; Jiao, Yan; David, Valentin; Kocak, Mehmet; Roan, Esra; Di'Angelo, Denis; Lu, Lu; Hasty, Karen A; Gu, Weikuan

    2015-01-01

    We examined the bone properties of BXD recombinant inbred (RI) mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n = 16) and DBA/2J (n = 15) and two first filial generations (D2B6F1 and B6D2F1). Strain differences were observed in bone quality and structural properties (P tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a) femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b) strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

  1. Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) for the Treatment of Nonunion of the Femur in Children and Adolescents: A Retrospective Analysis

    Science.gov (United States)

    Stiel, Norbert; Babin, Kornelia; Rupprecht, Martin; Rueger, Johannes M.; Stuecker, Ralf

    2017-01-01

    Background. The aim of this study was to examine clinical and radiographic healing after rhBMP-2 application in children and adolescents presenting with nonunion of the femur and to investigate the safety of rhBMP-2 use in these cases. Materials and Methods. We reviewed the medical records of five patients with a mean age of 11 years (5.4 to 16.2) with nonunion of the femur who were treated with rhBMP-2 and internal fixation using a locking plate at a single institution. Particular attention was paid to identify all adverse events that may be due to rhBMP-2 use. Results. Union occurred in four of five patients at a mean of 12.1 months (7.9 to 18.9). The locking plates were removed after a mean of 16 months (11 to 23). One patient had nonunion due to deep infection. After a mean follow-up of 62.5 months (17 to 100), union was still evident in all four patients and they were fully weight-bearing without pain. Discussion. In this retrospective study, rhBMP-2 combined with a locking plate has been used successfully to treat children and adolescents with nonunion of the femur in four of five cases. One major complication was thought to be possibly related to its use.

  2. Bone Morphology in 46 BXD Recombinant Inbred Strains and Femur-Tibia Correlation

    Directory of Open Access Journals (Sweden)

    Yueying Zhang

    2015-01-01

    Full Text Available We examined the bone properties of BXD recombinant inbred (RI mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n=16 and DBA/2J (n=15 and two first filial generations (D2B6F1 and B6D2F1. Strain differences were observed in bone quality and structural properties (P<0.05 in each bone profile (whole bone, cortical bone, or trabecular bone. It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD. While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

  3. EVALUATION OF NECK SHAFT ANGLE OF FEMUR ON DRY BONES

    OpenAIRE

    Radha; Ravi Shankar; Naveen; Roopa

    2015-01-01

    BACKGROUND: Evaluation of the neck shaft angle of femur helps to understand clinical relevance in bio mechanics of the hip joint. It helps for the better treatment of different pathological conditions of hip and femur and also to design prosthesis. Femoral neck shaft angle is important to convey the information regarding the race to ...

  4. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  5. THE THIRD TROCHANTER IN HUMAN FEMUR : A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Rajkumari

    2015-05-01

    Full Text Available During routine osteology demonstration class of 100 numbers of Under Graduate M . B . B . S . S tudents at the Department of Anatomy , Regional Institute of Medical Sciences , Imphal , Manipur , we have come across one unique and unusual finding that one right human femur was found to be p resent with an elongated bony projection along the superior border of the gluteal tuberosity . It was found to be present about 7cm below the tip of the greater trochanter and the bony projection was about 1 . 70cm in length . It was localised laterally to the line connecting the tip of greater trochanter with superior bifurcation to the linear aspera . No any other anatomical abnormality was found in the above mentioned femur . The other remaining portion of the said femur was fo und with their normal anatomical features . The photograph of the right human femur mentioned above was taken for proper documentation and for ready reference . This case report has provided some additional evidence to the researchers and anatomists to enhan ce the understanding of the human femur more particularly the third trochanter and its significance . The present case study revealed an unusual finding as referred to above .

  6. Bone mineral density of lumbar spine and femur in acromegaly. Knochendichte an Lendenwirbelsaeule und Femur bei Akromegalie

    Energy Technology Data Exchange (ETDEWEB)

    Huebsch, P. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria)); Kotzmann, H. (Universitaetsklinik fuer Innere Medizin 3, Vienna (Austria)); Svoboda, T. (Universitaetsklinik fuer Innere Medizin 3, Vienna (Austria)); Kainberger, F.M. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria)); Bankier, A. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria)); Seidl, G. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria))

    1993-08-01

    Acromegaly is regarded as a cause for secondary osteoporosis, whereas recent papers suggest that growth hormone increases bone mineral density (BMD). In 16 patients with active acromegaly we found an increased BMD compared to normal controls in the lumbar spine and the proximal femur by means of dual energy X-ray absoptiometry. This increase in BMD was statistically significant in the femoral neck and in Ward's triangle (P=0.05). Moreover, no signs of osteoporosis were found radiologically. (orig.)

  7. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    mechanical properties in the glucocorticoid-2. In conclusion, 7 months glucocorticoid treatment with malnutrition had significant impact on cortical microarchitecture of sheep femur midshaft. These changes occurred particularly 3 months after the glucocorticoid cessation suggesting a delayed effect......The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory...

  8. Mechanical Properties of a Single Cancellous Bone Trabeculae Taken from Bovine Femur

    Science.gov (United States)

    Enoki, Shinichi; Sato, Mitsuhiro; Tanaka, Kazuto; Katayama, Tsutao

    The increase of patients with osteoporosis is becoming a social problem, thus it is an urgent issue to find its prevention and treatment methods. Since cancellous bone is metabolically more active than cortical bone, cancellous bone is often used for diagnosis of osteoporosis and has received much attention within the study of bone. Bone is a hierarchically structured material and its mechanical properties vary at different structural levels, therefore it is important to break down the mechanical testing of bone according to the various levels within bone material. Mechanical properties of cancellous bone is said to be depended on quantities and orientation of trabecular bone. It is supposed that mechanical properties of trabecular bone are constant without depending on any structural arrangement and parts. However, such assumption has not been established in studies of trabecular bone. Furthermore test results have a large margin of error caused by insufficient shape assessment. In this study, three point bending tests of single cancellous bone trabeculae extracted from bovine femur were conducted to evaluate the effects of directions to the femur major axis direction on the mechanical properties. X-ray μCT was used to obtain shape of trabecular bone specimens. Furthermore compression tests of cancellous bone specimens, which were extracted in 10mm cubic geometry, were conducted for evaluation of directional properties.There were small difference in the elastic modulus of the trabecular bones which were extracted in parallel and in perpendicular to the major axis of femur. Considering from the results that the cancellous bone specimens, which were extracted in 10mm cubic geometry, have different elastic properties depending on the tested directions; the bone structure has larger influence than bone material property on the mechanical properties of cancellous bone.

  9. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory...... treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of sheep were harvested, micro-CT scanned and tested in 3 point bending and in tensile. Bone collagen and mineral...... mechanical properties in the glucocorticoid-2. In conclusion, 7 months glucocorticoid treatment with malnutrition had significant impact on cortical microarchitecture of sheep femur midshaft. These changes occurred particularly 3 months after the glucocorticoid cessation suggesting a delayed effect...

  10. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.

    Science.gov (United States)

    Geraldes, Diogo M; Modenese, Luca; Phillips, Andrew T M

    2016-10-01

    Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simplifications often made to the representation of bone's material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur's volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study.

  11. A novel framework for the temporal analysis of bone mineral density in metastatic lesions using CT images of the femur

    Science.gov (United States)

    Knoop, Tom H.; Derikx, Loes C.; Verdonschot, Nico; Slump, Cornelis H.

    2015-03-01

    In the progressive stages of cancer, metastatic lesions in often develop in the femur. The accompanying pain and risk of fracture dramatically affect the quality of life of the patient. Radiotherapy is often administered as palliative treatment to relieve pain and restore the bone around the lesion. It is thought to affect the bone mineralization of the treated region, but the quantitative relation between radiation dose and femur remineralization remains unclear. A new framework for the longitudinal analysis of CT-scans of patients receiving radiotherapy is presented to investigate this relationship. The implemented framework is capable of automatic calibration of Hounsfield Units to calcium equivalent values and the estimation of a prediction interval per scan. Other features of the framework are temporal registration of femurs using elastix, transformation of arbitrary Regions Of Interests (ROI), and extraction of metrics for analysis. Build in Matlab, the modular approach aids easy adaptation to the pertinent questions in the explorative phase of the research. For validation purposes, an in-vitro model consisting of a human cadaver femur with a milled hole in the intertrochanteric region was used, representing a femur with a metastatic lesion. The hole was incrementally stacked with plates of PMMA bone cement with variable radiopaqueness. Using a Kolmogorov-Smirnov (KS) test, changes in density distribution due to an increase of the calcium concentration could be discriminated. In a 21 cm3 ROI, changes in 8% of the volume from 888 ± 57mg • ml-1 to 1000 ± 80mg • ml-1 could be statistically proven using the proposed framework. In conclusion, the newly developed framework proved to be a useful and flexible tool for the analysis of longitudinal CT data.

  12. Assessment of femur and tibia subchondral parts mineral bone density in gonarthrosis

    Directory of Open Access Journals (Sweden)

    E M Zaitseva

    2005-01-01

    Full Text Available Objective. To assess association between bone mineral density (BMD of parts of femur and tibia gonarthrosis stage. Material and methods. 53 female with bilateral gonarthrosis aged 42 to 84 years with body mass index from 21,2 to 43 kg/m2 were included. Knee joints X-ray examination, densitometry of lumbar spine, femoral neck and condyles of femur and tibia were performed. Subchondral BMD assessment was done in 5 regions of knee. Results. Increase of gonarthrosis stage was accompanied by rise of subchondral tibia BMD values. Increase of medial femur condyles BMD was associated with knee joint space decrease, presence of subchondral osteosclerosis and marginal osteophytes so as knee varus deformity. Subchondral femur BMD values correlated only with the presence of marginal osteophytes.

  13. Interpretation of hip fracture patterns using areal bone mineral density in the proximal femur.

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Sng, Weizhong Jonathan; Lim, Joel Louis Zongwei; Tan, Chuen Seng; Gan, Alfred Tau Liang; Ng, Jun Han Charles; Kagda, Fareed H Y

    2015-12-01

    Bone mineral density scans are currently interpreted based on an average score of the entire proximal femur. Improvements in technology now allow us to measure bone density in specific regions of the proximal femur. The study attempts to explain the pathophysiology of neck of femur (NOF) and intertrochanteric/basi-cervical (IT) fractures by correlating areal BMD (aBMD) scores with fracture patterns, and explore possible predictors for these fracture patterns. This is a single institution retrospective study on all patients who underwent hip surgeries from June 2010 to August 2012. A total of 106 patients (44 IT/basi-cervical, 62 NOF fractures) were studied. The data retrieved include patient characteristics and aBMD scores measured at different regions of the contralateral hip within 1 month of the injury. Demographic and clinical characteristic differences between IT and NOF fractures were analyzed using Fisher's Exact test and two-sample t test. Relationship between aBMD scores and fracture patterns was assessed using multivariable regression modeling. After adjusted multivariable analysis, T-Troc and T-inter scores were significantly lower in intertrochanteric/basi-cervical fractures compared to neck of femur fractures (P = 0.022 and P = 0.026, respectively). Both intertrochanteric/basi-cervical fractures (mean T.Tot -1.99) and neck of femur fractures (mean T.Tot -1.64) were not found to be associated with a mean T.tot less than -2.5. However, the mean aBMD scores were consistently less than -2.5 for both intertrochanteric/basi-cervical fractures and neck of femur fractures. Gender and calcium intake at the time of injury were associated with specific hip fracture patterns (P = 0.002 and P = 0.011, respectively). Hip fracture patterns following low energy trauma may be influenced by the pattern of reduced bone density in different areas of the hip. Intertrochanteric/basi-cervical fractures were associated with significantly lower T-Troc and T-Inter scores

  14. Osteoporosis and low bone mass at the femur neck or lumbar spine in older adults: United States, 2005-2008

    Science.gov (United States)

    Many current clinical guidelines recommend that assessment of osteoporosis or low bone mass, as defined by the World Health Organization (WHO) (1), be based on bone mineral density at either the femur neck region of the proximal femur (hip) or the lumbar spine (2,3). This data brief presents the mos...

  15. Bone remodelling in the proximal femur after Charnley total hip arthroplasty.

    Science.gov (United States)

    Cohen, B; Rushton, N

    1995-09-01

    We measured bone mineral density (BMD) in the proximal femur by dual-energy X-ray absorptiometry (DEXA) in 20 patients after cemented total hip arthroplasty over a period of one year. We found a statistically significant reduction in periprosthetic BMD after six months on the medial side and on the lateral side adjacent to the mid and distal thirds of the prosthesis. At one year after operation there was a mean 6.7% reduction in BMD in the region of the calcar and a mean 5.3% increase in BMD in the femoral shaft distal to the tip of the implant. These changes reflect a pattern of reduced stress in the proximal femur and increased stress around the tip of the prosthesis. They support current concepts of bone remodelling in the proximal femur in response to prosthetic implantation.

  16. Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization.

    Science.gov (United States)

    Jang, In Gwun; Kim, Il Yong

    2008-08-07

    In the field of bone adaptation, it is believed that the morphology of bone is affected by its mechanical loads, and bone has self-optimizing capability; this phenomenon is well known as Wolff's law of the transformation of bone. In this paper, we simulated trabecular bone adaptation in the human proximal femur using topology optimization and quantitatively investigated the validity of Wolff's law. Topology optimization iteratively distributes material in a design domain producing optimal layout or configuration, and it has been widely and successfully used in many engineering fields. We used a two-dimensional micro-FE model with 50 microm pixel resolution to represent the full trabecular architecture in the proximal femur, and performed topology optimization to study the trabecular morphological changes under three loading cases in daily activities. The simulation results were compared to the actual trabecular architecture in previous experimental studies. We discovered that there are strong similarities in trabecular patterns between the computational results and observed data in the literature. The results showed that the strain energy distribution of the trabecular architecture became more uniform during the optimization; from the viewpoint of structural topology optimization, this bone morphology may be considered as an optimal structure. We also showed that the non-orthogonal intersections were constructed to support daily activity loadings in the sense of optimization, as opposed to Wolff's drawing.

  17. A proximal femur aneurysmal bone cyst resulting in amputation: a rare case report.

    Directory of Open Access Journals (Sweden)

    Khodamorad Jamshidi

    2015-02-01

    Full Text Available Aneurysmal bone cyst (ABC is blood filled expansile cystic lesion that most commonly occurs in patients during the second decade of their lives. Traditionally it has been described as a benign lesion but can be locally aggressive and result in the destruction of the involved bone. Treatment methods include surgical excision and curettage with or without bone grafting. We report a proximal femur aneurysmal bone cyst, which resulted in the amputation of the lower extremity, even though all available classic methods of treatment were applied for it.

  18. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... the groups, while there was a trend towards decreasing bending mechanical properties in the glucocorticoid-2 group. In conclusion, 7 months of glucocorticoid treatment with malnutrition had a significant impact on the cortical microarchitecture of the sheep femur midshaft. These observed changes occurred 3...

  19. Chronic Osteomyelitis of the Femur with Segmental Bone Defect: Concepts and Treatment

    Directory of Open Access Journals (Sweden)

    Mohd. Y. Bajuri

    2017-04-01

    Full Text Available Chronic osteomyelitis of the femur has always been a challenging scenario for the treating surgeon. It leads to morbidity to the patient as it interferes with the patient's rehabilitation and mobilisation. This is further complicated with the presence of a segmental bone loss following debridement due to the infection. We present a case of a young man who had a femur fracture which was initially treated with intramedullary nailing and subsequently was complicated with deep surgical site infection leading to chronic osteomyelitis.

  20. Bone splint technique and plating application in adolescent high-energy comminuted fracture of distal femur with bone defects

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; DING Zhen-qi; ZHAI Wen-liang; KANG Liang-qi; YAO Xiao-tao

    2008-01-01

    @@ Comminuted fracture of distal femur is a common lower limb injury from traffic accidents, especially from motor accidents. Routine dynamic condylar screw ( DCS ) or 95-degree condylar plate ( CP ) sometimes cannot solve the bone defect in the center of alignment and contralateral diaphysis for the reason of absent screw anchor point, especially for AO C2. 2-2. 3 types.

  1. Pathological fracture of the femur in a patient with Paget's disease of bone: a case report.

    Science.gov (United States)

    Petrescu, Pompiliu HoraŢiu; Izvernariu, Dragoş Andrei; Iancu, Cătălina; Dinu, Gabriel Ovidiu; Berceanu-Văduva, Marcel Mihai; Crişan, Dan; Iacob, Mihaela; Bucur, Venera Margareta; RăuŢia, Ion Călin; Prejbeanu, Ion Radu; Dema, Sorin; DuŢă, Ciprian Constantin

    2016-01-01

    Paget's disease of bone is a benign disease characterized by exaggerated remodeling of the bone matrix after osteoclast-mediated bone destruction. Its etiology is still unknown, despite the fact that it was discovered and described in 1877, but genetic factors and environmental triggers were shown to play their part in the pathogenesis of the disease. The main clinical presentations of the disease are related to bone pain and deformities. Radiological diagnosis is the main detection tool, though many monostotic Paget's disease cases may remain undiagnosed. We present the case of an 81-year-old male patient admitted to the Clinic of Orthopedics, Emergency County Hospital, Timisoara, Romania, with intense pain and deformity of the upper left thigh. Radiological examination performed shows a complete fracture of the upper third diaphysis of the left femur with suggestive signs for Paget's disease of the bone therefore a biopsy was taken and the patient was treated by surgical realignment with favorable evolution. He was discharged 13 days after surgery. The biopsy of the bone revealed extensive bone remodeling with numerous osteoclasts and extensive bone matrix deposition, unevenly stained and unevenly mineralized and reverse cement lines, which are consistent with the diagnosis of Paget's disease of the bone. Histomorphometric analysis show intense matrix deposition with a highly active remodeling process. Computed tomography (CT) scans were performed three years later and show the extension of the disease into the lower half of the left femur.

  2. A Femur-Implant Model for the Prediction of Bone Remodeling Behavior Induced by Cementless Stem

    Institute of Scientific and Technical Information of China (English)

    He Gong; Lingyan Kong; Rui Zhang; Juan Fang; Meisheng Zhao

    2013-01-01

    Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue,as well as the selection of an appropriate implant in terms of architecture and material.In this paper,a finite element model of proximal femur was develop.ed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis.Cementless stems made of titanium,two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone.The distributions of bone density,von Mises stress,and interface shear stress were obtained.All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur,but the degrees of stress shielding were different.The amount of bone loss caused by titanium implant was in agreement with the clinical observation.The FGM stems caused less bone loss than that of the titanium stem,in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively,and the interface shear stresses were more evenly distributed in the model with FGM I stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems.The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view.The next steps are to fabricate FGM stem and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.

  3. Transplantation of human neonatal foreskin stromal cells in ex vivo organotypic cultures of embryonic chick femurs

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Vishnubalaji, Radhakrishnan

    2017-01-01

    NSSCs in ex vivo organotypic cultures of embryonic chick femurs. Isolated embryonic chick femurs (E10 and E11) were cultured for 10 days together with micro-mass cell pellets of hNSSCs, human umbilical vein endothelial cells (HUVEC) or a combination of the two cell types. Changes in femurs gross morphology...

  4. Fatigue stress injuries of the pelvic bones and proximal femur: evaluation with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kiuru, Martti J. [Department of Radiology, Helsinki University Central Hospital, P.O. Box 340, Haartmaninkatu 4, 00029 Helsinki (Finland); Research Institute of Military Medicine, Mannerheimintie 164, 00300 Helsinki (Finland); Pihlajamaki, Harri K. [Department of Surgery, Central Military Hospital, Mannerheimintie 164, 00300 Helsinki (Finland); Ahovuo, Juhani A. [Department of Radiology, Helsinki University Central Hospital, P.O. Box 340, Haartmaninkatu 4, 00029 Helsinki (Finland)

    2003-03-01

    The purpose of this study was to determine the prevalence and the distribution as well as male/female differences in patients with hip or pelvic pain based on MRI results. Three hundred forty consecutive conscripts (45 women, 295 men; age range 18-29 years; mean age 20.7 years) suffering from stress-related hip, buttock or groin pain took part in the study. All 340 patients underwent MR imaging. Radiographic data were available for 215 patients. Two radiologists interpreted the images by consensus. In MRI 174 stress injuries were diagnosed in 137 patients (32 women, 105 men). The incidence of bone stress injuries in women was significantly higher than that in men (p<0.0001). One hundred five of the injuries (60%) were related to the proximal femur, 70 (67%) to the neck, 34 (32%) to the proximal shaft, and one (1%) to the head. Sixty-nine of the 174 stress injuries (40%) concerned the pelvic bones: sacrum 28 (41%); inferior pubic ramus 34 (49%); superior pubic ramus 3 (4%); iliac bone 3 (4%); and acetabulum 1 (1%). In 31 of the 174 cases (18%) symptoms were contralateral to MR findings. Thirty-three of the 137 patients (24%) had multiple bone stress injuries, 29 had two bone stress injuries and 4 patients had three. The sensitivity of radiography was 37%, specificity 79%, accuracy 60%, positive predictive value 59% and negative predictive value 61%. The kappa value for agreement between radiography and MRI was poor (0.17, p=0.0008). Patients suffering from stress-related hip pain MRI revealed bone stress injuries in 40%; of these, 60% were located in the proximal femur and 40% in the pelvic bones. For accurate diagnosis of bone stress injuries, and to ensure appropriate treatment, the entire pelvis and both proximal femurs should be studied simultaneously by means of MRI. (orig.)

  5. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    Science.gov (United States)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca(2+)+Mg(2+)+ Na(+))/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.

    Science.gov (United States)

    Hosseinzadeh, M; Ghoreishi, M; Narooei, K

    2016-06-01

    In this study, the hyperelastic models of demineralized and deproteinized bovine cortical femur bone were investigated and appropriate models were developed. Using uniaxial compression test data, the strain energy versus stretch was calculated and the appropriate hyperelastic strain energy functions were fitted on data in order to calculate the material parameters. To obtain the mechanical behavior in other loading conditions, the hyperelastic strain energy equations were investigated for pure shear and equi-biaxial tension loadings. The results showed the Mooney-Rivlin and Ogden models cannot predict the mechanical response of demineralized and deproteinized bovine cortical femur bone accurately, while the general exponential-exponential and general exponential-power law models have a good agreement with the experimental results. To investigate the sensitivity of the hyperelastic models, a variation of 10% in material parameters was performed and the results indicated an acceptable stability for the general exponential-exponential and general exponential-power law models. Finally, the uniaxial tension and compression of cortical femur bone were studied using the finite element method in VUMAT user subroutine of ABAQUS software and the computed stress-stretch curves were shown a good agreement with the experimental data.

  7. Using a Truss-Inspired Model with the Uniform Strength Optimization Theory to Predict Spongy Bone Geometry in Proximal Femur

    Directory of Open Access Journals (Sweden)

    Hamed Pishdast

    2009-01-01

    Full Text Available This paper presents a new naïve approach for simulating bone remodeling process. It is based on the uniform strength theory of optimization and employs a truss-like model for bone. The truss was subjected to external loads including 5 point loads simulating the hip joint contact forces and 3 muscular forces at the attachment sites of the muscles to the bone and the rest are reactions of ligaments. The strain in the links was calculated and the links with high strains were identified. The initial truss is modified by introducing new links wherever the strain exceeds a prescribed or critical value. The critical value was assumed to be equal to an average of the absolute value of strains in the initial model. Each link which undergoes a high strain is replaced by several new links by adding new nodes around it using Delaunay method. Introducing the new links to the truss, which is conducted according to a weighted arithmetic mean formula, will strengthen the structure and reduce the strain within the respective zone. This procedure was repeated for several times. Convergence was achieved when there were no critical links remaining. This method was used to study the 2D shape of proximal femur in the frontal plane and provided results which are in a fairly good agreement with CT image of the human proximal femur.

  8. Effect of amputation level on the stress transferred to the femur by an artificial limb directly attached to the bone.

    Science.gov (United States)

    Newcombe, L; Dewar, M; Blunn, G W; Fromme, P

    2013-12-01

    Attachment of an artificial limb directly to the skeleton has a number of potential benefits and the technique has been implemented for several amputation sites. In this paper the transfer of stress from an external, transfemoral prosthesis to the femur during normal walking activity is investigated. The stress distribution in the femur and at the implant-bone interface is calculated using finite element analysis for the 3D geometry and inhomogeneous, anisotropic material properties obtained from a CT scan of a healthy femur. Attachment of the prosthetic leg at three different levels of amputation is considered. Stress concentrations are found at the distal end of the bone and adjacent to the implant tip and stress shielding is observed adjacent to the implant. It is found that the stress distribution in the femur distal to the epiphysis, where the femur geometry is close to cylindrical, can be predicted from a cylindrical finite element model, using the correct choice of bone diameter as measured from a radiograph. Proximal to the lesser trochanter the stress decreases as the femur geometry diverges significantly from a cylinder. The stress concentration at the distal, resected end of the bone is removed when a collared implant is employed. These findings form the basis for appropriate settings of an external fail-safe device to protect the bone from excessive stress in the event of an undue load.

  9. Effect of calcium citrate on bone integration in a rabbit femur defect model

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Peng-Fei Nie; Xiu-Cui Li; Ferdinand An Rompis; Hang Huang; Hua Zhang; Zhong-Lin Mu; Lei Peng; Wei Wang; Qing-Yu Chen; Zhong-Qin Lin; Shao-Wen Cheng; Dong-Quan Kou; Xiao-Zhou Ying; Yue Shen; Xiao-Jie Cheng

    2012-01-01

    ABSTRACT Objective:To explore effect of calcium citrate on bone integration in a rabbit femur defect model, and to compare the bone formation with different sizes by radiological and histological study. Methods:Twenty-four male Japanese white rabbits were randomly divided into three groups (GroupA, B, C) in this study. Under anesthesia, defects of four sizes (1.2, 1.5, 2.0 and2.5 mm) were created in each of the rabbits. Commercially pure calcium citrate powder was placed inside the medullary compartment of the femur (Experimental), while in the contralateral femur (Control) nothing was implanted. The defects were analyzed using radiography and histological analysis by using Imagepro-Plus6.0 software after animal was sacrificed at 4th(GroupA), 6th(GroupB) and8th(GroupC) weeks postoperatively. Four samples were analyzed for each size of defect and each healing period.Results:The histological and the radiologic evaluation were performed after sacrification of all rabbits on postoperative4th and6th weeks, It showed significant difference between the experimental group and the control group when these defects were less than or equal to2.0 mm. No statistical difference was observed when these defects were larger than2.0 mm at all healing periods except at the4th week.Conclusions: Calcium citrate affects the early periods of bone defects healing mechanism in Japanese white rabbits positively, especially when the defect is not too large. We suggest further studies on calcium citrate to determine the effects of various dosages, administration ways and the experimental time on the bone defects.

  10. Acute postoperative osteomyelitis in femur fracture: contribution of bone scintilography (case report)

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Natalie Ferreira; Rezende, Cleuza Maria de Faria; Sanchez-Ucros, Natalia; Laguardia, Priscilla [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Veterinaria; Diniz, Simone Odilia Fernandes; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia; Rodrigues, Carlos Jorge Simal [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina; Santos, Raquel Gouvea dos [Centro de Desenvolcimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia

    2009-07-01

    The treatment of bone fractures is aimed at consolidating and returns of function as soon as possible and can be performed by different methods. Treatment with the plate in fractures of the femur in bridge aims not to address the location of fracture and stabilize it, maintaining the anatomical axis by the fixation of proximal and distal segments. Postoperative follow-up of the fracture is necessary to evaluate the irrigation of the bone structure and the effect of the method. The scintigraphy is a method capable of assessing the degree of bone remodeling and the presence or absence of local bone homeostasis. The objective of this report is to present the case of a rabbit, male, which was subjected to osteotomy and fixation of the femoral diaphysis by means of the plate in the bridge. After 10 days the animal was subjected to scintigraphic and radiographic evaluations. The animal came to death and an autopsy was performed on the same when it was observed macroscopy consistent with acute osteomyelitis due to contamination postoperative time. Radiographic evaluation in acute osteomyelitis is unclear. The methods assist in the scintigraphic diagnosis of osteomyelitis by allowing the detection of functional changes in this infectious process. The bone scintigraphy with diphosphonates labeled with technetium-99m shows increased bone turnover in the infected area and its high sensitivity, even in an early stage makes it the method of choice in the diagnosis of acute osteomyelitis in patients without prior bone disease and bone radiologically normal. (author)

  11. SHORT TERM RESULTS OF MUSCLE PEDICLE BONE GRAFT (MPBG IN FRACTURE NECK FEMUR: A CASE SERIES OF 7 CASES

    Directory of Open Access Journals (Sweden)

    Sarabjeet

    2016-03-01

    Full Text Available INTRODUCTION Neglected, untreated and delayed neck femur fractures are commonly encountered fractures and the treatment dilemma arises specially when the patient is physiologically young and osteosynthesis is the preferred option. Past literature creates confusion as the various head salvage surgeries like valgus subtrochanteric osteotomy, non-vascularised fibular bone grafting, muscle pedicle bone grafting (Tensor fascia lata (TFL and Quadratus femoris graft and vascularised bone grafting do not have clear lines of indications. We present a series of fracture neck femur cases, each with delayed presentation beyond the vascular emergency period, which were treated with osteosynthesis with MPBG using tensor fascia lata muscle pedicle graft.

  12. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone.

    Science.gov (United States)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2012-06-01

    In this study, 18 female skeletally mature sheep were randomly allocated into three groups of six each. Group 1 (glucocorticoid-1) received prednisolone treatment (0.60 mg/kg/day, five times weekly) for 7 months. Group 2 (glucocorticoid-2) received the same treatment regime followed by observation of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group. Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between the groups, while there was a trend towards decreasing bending mechanical properties in the glucocorticoid-2 group. In conclusion, 7 months of glucocorticoid treatment with malnutrition had a significant impact on the cortical microarchitecture of the sheep femur midshaft. These observed changes occurred 3 months after glucocorticoid cessation, suggesting a delayed effect of glucocorticoid on cortical bone. Thus, changes in cortical bone beyond cancellous bone might further increase fracture risk in patients treated with glucocorticoids. This model might be used as a glucocorticoid-induced osteoporotic model for orthopaedic biomaterial, joint prosthesis and medical device researches.

  13. Changes in bone mineral density of the acetabulum and proximal femur after total hip resurfacing arthroplasty.

    Science.gov (United States)

    Huang, Qiang; Shen, Bin; Yang, Jing; Zhou, Zong-ke; Kang, Peng-de; Pei, Fu-xing

    2013-12-01

    Our aim was to investigate the changes in bone mineral density (BMD) of acetabulum and proximal femur after total hip resurfacing arthroplasty. A comparative study was carried out on 51 hips in 48 patients. Group A consisted of 25 patients (26 hips) who had undergone total hip resurfacing and group B consisted of 23 patients (25 hips) who had had large-diameter metal-on-metal total hip arthroplasty (THA). BMDs around the acetabulum and proximal femur were measured using dual-energy x-ray absorptiometry (DEXA) at 2 weeks, 6 months, 1 year and annually thereafter during the 3 years after surgery. At final follow-up, the acetabular net mean BMD decreased by 11% in group A and 10% in group B with no differences between two groups (P = .35). For the femoral side, in Gruen zone 1, the mean BMD increased by 4% in group A, whereas it decreased by 11% in group B (P = .029). In Gruen zone 7, the mean BMD increased by 8% at the final follow-up in group A, whereas it decreased by 13% in group B (P = .02). In both groups the mean BMD increased by 3% in Gruen zones 3, 4, 5, and 6. Stress-related bone loss of the acetabulum was comparable for MOM THA and resurfacing devices, but proximal femoral bone density increased in the resurfacing group and decreased in the THA group.

  14. A histological investigation on tissue responses to titanium implants in cortical bone of the rat femur.

    Science.gov (United States)

    Ohtsu, A; Kusakari, H; Maeda, T; Takano, Y

    1997-03-01

    Implant materials are placed under various sites-including cortical bone, spongy bone, and bone marrow-at the same time according to the depth at implantation. Although cortical bone is an important site for the prognosis of implantation, detailed reports on tissue responses to implantation have been meager. The present study aims to reveal tissue responses to pure titanium implantation in rat femoris cortical bone. The rats received titanium bars surgically in their femurs and were sacrificed 1 day to 40 weeks post-implantation. The prepared tissue specimens were processed for light and transmission electron microscopy (TEM). Further histochemical detections were performed. One day post-implantation, empty osteocytic lacunae indicating degeneration of osteocytes were found in pre-existing cortical bone around the implant. Such pre-existing bone was replaced by new bone, but remained in part even 40 weeks post-implantation. Light microscopy showed that direct contact between the implant and new bone was identified 12 weeks post-implantation. Chronological and ultrastructural observation showed that new bone deposition appeared to proceed toward the implant, and that the intervening layer at the interface was derived from the degenerated debris of multinucleated giant cells and/or osteoblasts. Furthermore, it seemed that the width of intervening layer varied in relation to the distance from the blood vessels. The cells showing tartrate resistant acid phosphatase activity possessed cytological features of osteoclasts under TEM; they were frequently observed in perivascular sites near the implants even after osseointegration, suggesting that bone remodeling took place steadily around the implant.

  15. [Thermo-elastic stress analysis of human bones].

    Science.gov (United States)

    Krüger-Franke, M; Heiland, A; Plitz, W; Refior, H J

    1995-01-01

    The Thermoelastic Stress Analysis (THESA) is a widely used procedure in motorcar- and airplane engineering. This study investigated the reliability of THESA for stress analysis of human bone. A human femur was cyclic stressed and the resulting stress pattern was scanned from the surface of the bone by means of the thermoelastic stress measuring instrument SPATE 9000. To proof whether the scan of SPATE 9000 is equivalent to the stress distribution of human femur surface, strain gauges are used to control the results at two different regions of the femur diaphysis under equal but static conditions. It could be shown, that both measuring methods lead to corresponding results of stress pattern on human femur surface.

  16. Long bone florid reactive periostitis ossificans: a case in the distal femur mimicking osteosarcoma.

    Science.gov (United States)

    Azorín, Daniel; López-Pino, Miguel A; González-Mediero, Imelda; Epeldegui, Tomás; López-Barea, Fernando

    2008-11-01

    Florid reactive periostitis ossificans is a well-known benign lesion classically described in hands and feet which histopathological features can lead to a misdiagnosis of osteosarcoma. To the best of our knowledge, there is only one previous report of this lesion in a long bone. In this study we report a case of florid reactive periostitis ossificans located in the distal metaphysis of the left femur that histologically mimicked an osteosarcoma and discuss the differential diagnosis between these two entities to warn about a diagnostic pitfall.

  17. Association of sarcopenia and physical activity with femur bone mineral density in elderly women

    Science.gov (United States)

    Lee, Inhwan; Ha, Changduk; Kang, Hyunsik

    2016-01-01

    [Purpose] This study examined the association of femur bone mineral density (BMD) with body composition and physical activity in elderly women. [Methods] This was a cross sectional study involving 119 women with mean age of 73.1±5.5 years. Body composition parameters including body mass index (BMI), percent of body fat (%BF), appendicular skeletal muscle mass (ASM) index and femur BMD was measured by dual-energy X-ray absorptiometry (DXA). Physical activity was assessed by the uniaxial accelerometer for 7 consecutive days including weekends. Based on femur BMD T-scores, subjects were classified as optimal group, osteopenia group, and osteoporosis group. Based on ASM index, subjects were classified as normal group and sarcopenia group. According to WHO recommendations of physical activity for elderly, the subjects were classified as active group or inactive group. Logistic regression analyses were used to determine the odds ratio (OR) for osteopenia and osteoporosis. [Results] There were linear decreases for body composition parameters including weight (P=.023), BMI (P=.039), lean mass (P=.032), ASM index (P=.007) and physical activity parameters including daily of step (P<.001), low intensity physical activity (P<.001), moderate intensity physical activity (P=.001) across femur BMD levels. Compared to the normal group (OR=1), the sarcopenia group had a significantly higher OR (OR=4.823; P=.042), and the inactive group had a significantly higher OR (OR=5.478; P=.005) having osteopenia and osteoporosis when compared to the active group (OR=1). [Conclusion] The findings of this study suggested that physical activity along with a healthy nutrition should be promoted as a preventive strategy against osteopenia and osteoporosis in elderly women. PMID:27298809

  18. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    Science.gov (United States)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning

  19. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M. [Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143 (United States); University of Health Sciences, Medical Informatics and Technology, 6060 Hall (Austria); AO Development Institute, 7270 Davos Platz (Switzerland); Medical University Innsbruck, 6020 Innsbruck (Austria); Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143 (United States)

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2

  20. Bone mineral density of rat femurs after hindlimb unloading and different physical rehabilitation programs

    Directory of Open Access Journals (Sweden)

    Adelton Andrade Barbosa

    2011-08-01

    Full Text Available Bone weakening can occur due to the absence of load on the skeleton or even short periods of decreased physical activity. Therefore, musculoskeletal diseases that involve temporary immobilization by casts, inactivity or tension increases the risk of fractures. Physical activity is the most studied procedure both to prevent damage and to restore bone structure. The present study aimed at evaluating, by bone densitometry on rat femurs, the influence of hindlimb unloading and later running activity on treadmill or free movement. Sixty-four Wistar rats were used, aged 65 days with a mean corporal mass of 316.11g, randomly divided into eight experimental groups: group 1, the suspended control with seven animals under hindlimb unloading regimen for 28 days, then euthanized; groups 2 and 3, the trained suspended comprising of 7 and five animals, respectively, subjected to hindlimb unloading for 28 days, followed by treadmill exercise for 28 days (group 2 or 56 days (group 3, then euthanized; groups 4 and 5, designated free suspended, comprised of 7 animals each under hindlimb unloading regimen for 28 days followed by free activity in cages for 28 days (group 4 or 56 days (group 5, then euthanized; groups 6, 7 and 8, negative controls, each with 8 animals allowed to free activity in cages and euthanized at the ages of 93, 121 and 149 days, respectively. Bone mineral density (BMD of the left femur was analyzed by bone densitometry. Unloading by tail-suspension decreased BMD while treadmill training and free activity in cages promoted its recovery in a similar way and over time.

  1. Respons Tulang Femur Tikus Ovariohisterektomi yang Mengkonsumsi Kasein dan Disuplementasi Calcitriol Selama 30 Minggu (THE RESPONSE OF BONE FEMUR OVARIOHISTERECTOMIZED RATS CONSUMING CASEIN AND CALCITRIOL SUPPLEMENTATION FOR 30 WEEKS

    Directory of Open Access Journals (Sweden)

    Hartiningsih .

    2015-05-01

    Full Text Available Calcitriol supplementation in ovariohisterectomized rat was known to decreased calcium retention.The objective of the research was to study the response of femur bone to calcitriol supplementation for 30weeks in ovariohisterectomized rats consuming casein. Twenty female Wistar rats at 8 weeks of age wererandomly divided into four groups (unovariohisterectomy without calcitriol supplementation (N,unovariohisterectomy with calcitriol supplementation (ND, ovariohisterectomy without calcitriolsupplementation (O and ovariohisterectomy with calcitriol supplementation (OD of five each. Thirtyweeks after surgery, femur was taken for histopathological and immunohistochemistry examination.Immunohistochemistry of distal femur metaphysis in group O and OD were revealed decreasing tartrateresistant alkaline phosphatase 5b (TRAP5b in trabecular bone, which was located in bone marrow space,and also in trabecular speculum surface. Histopathological analysis of distal femur metaphysis in groupN and ND were showed normal structure, meanwhile, distal femur metaphysis in group O and OD wereshown some abonormalities, such as increased of bone marrow space, domination of adipocytes in the bonemarrow, and decreased of trabecular bone speculum in metaphysis. Based on the results, it was concludedthat femur bone of ovariohisterectomized rats fed casein with and without calcitriol 8ng/daysupplementation for 30 weeks were showed unbalanced between resorption and formation of bone whichwas domination by bone resorption.

  2. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone.

    Science.gov (United States)

    Kim, Beom-Jun; Kwak, Mi Kyung; Ahn, Seong Hee; Kim, Hyeonmok; Lee, Seung Hun; Song, Kee-Ho; Suh, Sunghwan; Kim, Jae Hyeon; Koh, Jung-Min

    2017-08-01

    Despite the apparent biological importance of sympathetic activity on bone metabolism in rodents, its role in humans remains questionable. To clarify the link between the sympathetic nervous system and the skeleton in humans. Among 620 consecutive subjects with newly diagnosed adrenal incidentaloma, 31 patients with histologically confirmed pheochromocytoma (a catecholamine-secreting neuroendocrine tumor) and 280 patients with nonfunctional adrenal incidentaloma were defined as cases and controls, respectively. After adjustment for confounders, subjects with pheochromocytoma had 7.2% lower bone mass at the lumbar spine and 33.5% higher serum C-terminal telopeptide of type 1 collagen (CTX) than those without pheochromocytoma (P = 0.016 and 0.001, respectively), whereas there were no statistical differences between groups in bone mineral density (BMD) at the femur neck and total hip and in serum bone-specific alkaline phosphatase (BSALP) level. The odds ratio (OR) for lower BMD at the lumbar spine in the presence of pheochromocytoma was 3.31 (95% confidence interval, 1.23 to 8.56). However, the ORs for lower BMD at the femur neck and total hip did not differ according to the presence of pheochromocytoma. Serum CTX level decreased by 35.2% after adrenalectomy in patients with pheochromocytoma, whereas serum BSALP level did not change significantly. This study provides clinical evidence showing that sympathetic overstimulation in pheochromocytoma can contribute to adverse effects on human bone through the increase of bone loss (especially in trabecular bone), as well as bone resorption.

  3. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  4. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  5. Functional and oncologic outcomes after excision of the total femur in primary bone tumors: Results with a low cost total femur prosthesis

    Directory of Open Access Journals (Sweden)

    Ajay Puri

    2012-01-01

    Full Text Available Background: The extent of tumor may necessitate resection of the complete femur rarely to achieve adequate oncologic clearance in bone sarcomas. We present our experience with reconstruction in such cases using an indigenously manufactured, low-cost, total femoral prosthesis (TFP. We assessed the complications of the procedure, the oncologic and functional outcomes, and implant survival. Materials and Methods: Eight patients (four males and four females with a mean age of 32 years, operated between December 2003 and June 2009, had a TFP implanted. The diagnosis included osteogenic sarcoma (5, Ewing′s sarcoma (1, and chondrosarcoma (2. Mean followup was 33 months (9-72 months for all and 40 months (24-72 months in survivors. They were evaluated by Musculoskeletal Tumor Society score, implant survival as well as patient survival. Results: There was one local recurrence and five of seven patients are currently alive at the time of last followup. The Musculoskeletal Tumor Society score for patients ranged from 21 to 25 with a mean of 24 (80%. The implant survival was 88% at 5 years with only one TFP needing removal because of infection. Conclusions: A TFP in appropriately indicated patients with malignant bone tumors is oncologically safe. A locally manufactured, cost-effective implant provided consistent and predictable results after excision of the total femur with good functional outcomes.

  6. Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice.

    Science.gov (United States)

    Sankar, Uma; Pritchard, Zachary J; Voor, Michael J

    2016-05-03

    Shorter generation time and the power of genetic manipulation make mice an ideal model system to study bone biology as well as bone diseases. However their small size presents a challenge to perform strength measurements, particularly of the weight-bearing cancellous bone in the murine long bones. We recently developed an improved method to measure the axial compressive strength of the cancellous bone in the distal femur metaphysis in mice. Transverse micro-computed tomography image slices that are 7µm thick were used to locate the position where the epiphysis-metaphysis transition occurs. This enabled the removal of the distal femur epiphysis at the exact transition point exposing the full extent of metaphyseal trabecular bone, allowing more accurate and consistent measurement of its strength. When applied to a murine model system consisting of five month old male wild-type (WT) and Ca(2+)/calmodulin dependent protein kinase kinase 2 (CaMKK2) knockout (KO) Camkk2(-/-) mice that possess recorded differences in trabecular bone volume, data collected using this method showed good correlation between bone volume fraction and strength of trabecular bone. In combination with micro-computed tomography and histology, this method will provide a comprehensive and consistent assessment of the microarchitecture and tissue strength of the cancellous bone in murine mouse models.

  7. Episomal plasmid-based generation of induced pluripotent stem cells from fetal femur-derived human mesenchymal stromal cells.

    Science.gov (United States)

    Megges, Matthias; Oreffo, Richard O C; Adjaye, James

    2016-01-01

    Human bone mesenchymal stromal cells derived from fetal femur 55 days post-conception were reprogrammed to induced pluripotent stem cells using episomal plasmid-based expression of OCT4, SOX2, NANOG, LIN28, SV40LT, KLF4 and c-MYC and supplemented with the following pathway inhibitors - TGFβ receptor inhibitor (A-83-01), MEK inhibitor (PD325901), GSK3β inhibitor (CHIR99021) and ROCK inhibitor (HA-100). Successful induction of pluripotency in two iPS-cell lines was demonstrated in vitro and by the Pluritest.

  8. Bone radiofrequency ablation combined with prophylactic internal fixation for metastatic bone tumor of the femur from hepatocellular carcinoma.

    Science.gov (United States)

    Ogura, Koichi; Miyake, Ryoko; Shiina, Shuichiro; Shinoda, Yusuke; Okuma, Tomotake; Kobayashi, Hiroshi; Goto, Takahiro; Nakamura, Kozo; Kawano, Hirotaka

    2012-08-01

    A 64-year-old man with 6-year history of hepatocellular carcinoma (HCC) was referred to us regarding bone metastasis to the right proximal femur. Although he underwent radiotherapy for pain palliation and local tumor control, the pain persisted and the tumor relapsed 3 months after the radiotherapy and he was thought to be at high risk of pathologic fracture. Given hypervascularity and large tumor size, a prophylactic internal fixation combined with adjuvant radiofrequency ablation (RFA) was proposed to reduce blood loss and prevent viable tumor cells being disseminated. His postoperative course was uneventful without requiring blood transfusion and preoperative symptoms immediately disappeared after surgery. He became capable of weight-bearing walk with a single cane and was almost asymptomatic without local progression on the plain radiographs when he died 14 months after surgery. Combination therapy of RFA and internal fixation using intramedullary nailing for metastases of the long bones from HCC seems to be a very promising technique both for sufficient pain relief and for local control of the tumor. Adjuvant RFA may become a potential option for patients with metastases of the long bones for the purpose of prevention of tumor dissemination and reduction of intraoperative blood loss.

  9. Genetic Differences Control the Response of Femur and Lumbar Spine Trabecular Bone Microstructure to Dietary Calcium Restriction in Mice

    OpenAIRE

    2013-01-01

    Both dietary calcium and genetics influence bone density and structure. However, how genetics affect the adaptation response of bone parameters to dietary calcium (Ca) restriction is unknown. 11 inbred strains of mice were fed adequate (0.5%) or low (0.25%) Ca diets from 4-12 weeks of age and were evaluated for gene-by-diet interactions affecting bone structure at the femur and lumbar spine. We observed that genetics and diet main effects as well as gene-by-diet interactions si...

  10. Human fetal bone cells in delivery systems for bone engineering.

    Science.gov (United States)

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Bone neoformation in defects treated with platelet-rich fibrin membrane versus collagen membrane: a histomorphometric study in rabbit femurs.

    Directory of Open Access Journals (Sweden)

    Edwin Meza

    2015-02-01

    Full Text Available The aim of the present research was to compare bone neoformation in bone defects treated with platelet-rich fibrin (PRF and collagen membrane (CM at 3 and 5 weeks. For this purpose, two bone defects with a width of 4 mm and depth of 6 mm were created in the left distal femur diaphysis of New Zealand rabbits (n=12. The subjects were randomly allocated into two groups. One of the defects was covered with a platelet-rich fibrin membrane (Centrifuged resorbable autologous blood biopolymer without biochemical modification or a collagen membrane (gold standard - Neo Mem. The second defect was left uncovered (NC. The rabbits were sacrificed after 3 and 5 weeks (3 rabbits per period. The femur was completely removed and processed histomophometrically. The bone neformation analysis was performed using a differential point-counting method. Data was statistically analyzed (ANOVA, Tukey. The histomorphometric results showed that bone neformation in the defects treated with PRF at 3 weeks was equivalent to the CM (p<0.05. After 5 weeks, bone neformation obtained with PRF was higher than the control group and lower compared with the CM (p<0.05. The conclusion of the present study is that bone neformation in defects treated with PRF showed lower histomorphometric results compared with the one obtained with the collagen membrane and higher when compared with the control defects.

  12. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release

    Science.gov (United States)

    2011-04-01

    delivered on a collagen sponge (INFUSE Bone Graft; Medtronic) has been approved by FDA for posterior-lateral spine fusions, tibial fractures, and sinus...area was defined by drawing a quadrilateral area using the periosteal corners of the four host cortices as points of reference. The relative areas of...section of an FR +BMP scaffold in Figure 8 (the ap- proximate boundary of the implant is denoted by the box) shows a mature and fully bridged periosteal

  13. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nirmala, R.; Sheikh, Faheem A. [Chonbuk National University, Bio-Nano System Engineering, College of Engineering (Korea, Republic of); Kanjwal, Muzafar A. [Chonbuk National University, Department of Polymer Nano Science and Technology (Korea, Republic of); Lee, John Hwa [Chonbuk National University, College of Veterinary Medicine (Korea, Republic of); Park, Soo-Jin [Chonbuk National University, Department of Organic Materials and Fiber Engineering, Center for Healthcare Technology and Development (Korea, Republic of); Navamathavan, R. [College of Engineering, Chonbuk National University, Semiconductor Materials Processing Laboratory, School of Advanced Materials Engineering (Korea, Republic of); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Chonbuk National University, Department of Organic Materials and Fiber Engineering, Center for Healthcare Technology and Development (Korea, Republic of)

    2011-05-15

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N,N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus (S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli (E.coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  14. {sup 99m}Tc-MDP bone uptake in secondary hyperparathyroidism: comparison among mandible, cranium, radius and femur

    Energy Technology Data Exchange (ETDEWEB)

    Boasquevisque, Edson; Silva, Jorge Wagner Esteves da; Bernardo, Vanessa V. de Albuquerque; Macedo, Sara Mello Santana de; Boasquevisque, Camila S.

    2008-07-01

    Full text: Objective: Evaluating bone involvement in secondary hyperparathyroidism (SHPT) by {sup 99m}Tc-MDP uptake in the mandible, cranium, radius and femur and with data correlation with PTHi serum (Intact Parathyroid Hormone). Materials and Methods: In a prospective study of 54 patients with SHPT due to chronic renal disease and 15 normal individuals (control group), all patients had elevated serum PTHi, concentration and positive {sup 99m}Tc-MDP bone scintigraphy. Bone uptake measurements were carried out drawing regions-of-interest (ROI) on the mandible, posterior cranium, distal radius and proximal femur. Additionally, soft tissue uptake was measured with one region-of-interest on the internal tight soft tissue (BG). The ROI-BG ratio used as the index of normalized bone uptake. Results: The uptake differences from SHPT and control groups mainly for mandible (p = 0,001) and cranium (p = 0,002) were statistically significant, even when the SHPT groups were separated according to serum PTHi levels. There was increased bone uptake with the increased levels of PTHi serum. All of the mandibles of the SHPT patients were abnormal with 33% having focal lesions. Conclusions: The bone uptake in SHPT group was abnormal in all areas evaluated, with high uptake of {sup 99m}Tc-MDP correlated to the increase of PTHi serum concentration. (author)

  15. Decreased bone density of the distal femur after uncemented knee arthroplasty. A 1-year follow-up of 29 knees.

    Science.gov (United States)

    Petersen, M M; Lauritzen, J B; Pedersen, J G; Lund, B

    1996-08-01

    We measured the early adaptive bone remodeling of the distal femur prospectively for 1 year after uncemented total knee arthroplasty (TKA) in 29 knees with primary arthrosis. 18 patients were randomized to receive a PCA Modular femoral component (n 9) or a modified version of the same prosthesis (n 9) with an altered location of the porous coating. The other 11 patients (n 11) formed a consecutive series with the Duracon femoral component. In the trabecular bone above the femoral component, bone mineral density (BMD) was measured in 2 regions of interest (ROI) anteriorly to the fixation pegs (ROI 1) and above the pegs (ROI 2), using dual photon absorptiometry (DPA). There were no differences between the Modular component and the modified version regarding the postoperative decrease in BMD. There was a decrease in BMD in both ROI 1 and ROI 2 with all 3 different femoral components, and in both ROIs the highest bone loss rate was observed during the first 3 months after surgery. On average (n 29), a significant bone loss of 44% and 19% in ROI 1 and ROI 2, respectively, was reached at the 1-year follow-up, compared to the initial values. A decrease of this magnitude in BMD in the anterior distal femur 1 year after TKA may be an important determinant of periprosthetic fracture and later failure of the femoral component. In this experimental set-up, a modified femoral component with an altered location of the porous coating did not influence the development of bone loss.

  16. Extraction of 3D Femur Neck Trabecular Bone Architecture from Clinical CT Images in Osteoporotic Evaluation: a Novel Framework.

    Science.gov (United States)

    Sapthagirivasan, V; Anburajan, M; Janarthanam, S

    2015-08-01

    The early detection of osteoporosis risk enhances the lifespan and quality of life of an individual. A reasonable in-vivo assessment of trabecular bone strength at the proximal femur helps to evaluate the fracture risk and henceforth, to understand the associated structural dynamics on occurrence of osteoporosis. The main aim of our study was to develop a framework to automatically determine the trabecular bone strength from clinical femur CT images and thereby to estimate its correlation with BMD. All the 50 studied south Indian female subjects aged 30 to 80 years underwent CT and DXA measurements at right femur region. Initially, the original CT slices were intensified and active contour model was utilised for the extraction of the neck region. After processing through a novel process called trabecular enrichment approach (TEA), the three dimensional (3D) trabecular features were extracted. The extracted 3D trabecular features, such as volume fraction (VF), solidity of delta points (SDP) and boundness, demonstrated a significant correlation with femoral neck bone mineral density (r = 0.551, r = 0.432, r = 0.552 respectively) at p TEA method would be useful for spotting women vulnerable to osteoporotic risk.

  17. Early Bone Formation at a Femur Defect Using CGF and PRF Grafts in Adult Dogs: A Comparative Study.

    Science.gov (United States)

    Park, Hyun-Chun; Kim, Su-Gwan; Oh, Ji-Su; You, Jae-Seek; Kim, Jae-Sung; Lim, Sung-Chul; Jeong, Mi-Ae; Kim, Jin-Son; Jung, Chan; Kwon, Young-Sun; Ji, Hyeok

    2016-06-01

    The purpose of this study was to compare the predictability of new bone formation using an autologous concentrated growth factor (CGF) graft alone and platelet graft alone. Four bony defects of 8 mm were formed, and 3.7- × 10-mm implants were placed in the right femur. The platelet-rich fibrin (PRF), CGF, and synthetic bone were grafted to the bone defect area. Enzyme linked immunosorbent assay quantitative analysis and microscopic analysis of the fibrinogen structure were performed. At 4 weeks, the comparisons of each experimental group showed a significant difference between the CGF group and the synthetic bone graft group. When comparing the CGF and allograft material groups, the allograft group showed significantly more new bone formation. In the case of vascular endothelial growth factor, CGF had 1.5 times more than PRF. CGF showed a fibrinogen structure with a constant diameter. When applied to a clinical case, CGF is predicted to show better results than PRF.

  18. CT analysis of the upper end of the femur: the asterisk sign and ischaemic bone necrosis of the femoral head.

    Science.gov (United States)

    Dihlmann, W

    1982-01-01

    In computed tomography (CT) of the head of the femur, a star-shaped structure can be seen which we refer to as the asterisk or asterisk sign. The asterisk is formed by thickened weight-bearing bone trabeculae. It can be shown by CT that the asterisk exhibits a characteristic change in ischaemic bone necrosis of the femoral head, even when the disease is in an early stage. CT of the hip joint is therefore an important examination for early diagnosis of ischaemic disease of the femoral head.

  19. 3D CAD model reconstruction of a human femur from MRI images

    Directory of Open Access Journals (Sweden)

    Benaissa EL FAHIME

    2013-05-01

    Full Text Available Medical practice and life sciences take full advantage of progress in engineering disciplines, in particular the computer assisted placement technique in hip surgery. This paper describes the three dimensional model reconstruction of human femur from MRI images. The developed program enables to obtain digital shape of 3D femur recognized by all CAD software and allows an accurate placement of the femoral component. This technic provides precise measurement of implant alignment during hip resurfacing or total hip arthroplasty, thereby reducing the risk of component mal-positioning and femoral neck notching.

  20. Bone mineral density of the proximal femur after hip resurfacing arthroplasty: 1-year follow-up study

    Directory of Open Access Journals (Sweden)

    Anttila Esa

    2011-05-01

    Full Text Available Abstract Background Hip resurfacing arthroplasty (HRA is considered a bone-preserving procedure and may eliminate proximal femoral stress shielding and osteolysis. However, in addition to implant-related stress-shielding factors, various patient-related factors may also have an effect on bone mineral density (BMD of the proximal femur in patients with HRA. Thus, we studied the effects of stem-neck angle, demographic variables, and physical functioning on the BMD of the proximal femur in a one-year follow-up. Methods Thirty three patients (9 females and 24 males with a mean (SD age of 55 (9 years were included in the study. BMD was measured two days and 3, 6, and 12 months postoperatively and 10 regions of interest (ROI were used. Stem-neck angle was analyzed from anteroposterior radiographs. Results Three months postoperatively, BMD decreased in six out of 10 regions of interest (ROI on the side operated on and in one ROI on the control side (p Conclusions After an early drop, the BMD of the upper femur was restored and even exceeded the preoperative level at one year follow-up. From a clinical standpoint, the changes in BMD in these HRA patients could not be explained by stem-neck angle or patient related factors.

  1. Histological analysis of cells and matrix mineralization of new bone tissue induced in rabbit femur bones by Mg-Zr based biodegradable implants.

    Science.gov (United States)

    Ragamouni, Sravanthi; Kumar, Jerald Mahesh; Mushahary, Dolly; Nemani, Harishankar; Pande, Gopal

    2013-09-01

    The biological efficacy of bone inducing implant materials in situ can be assessed effectively by performing histological analysis. We studied the peri-implant bone regeneration around two types of biodegradable magnesium-zirconium alloys, Mg-5Zr and Mg-Zr-2Sr, using histological, histochemical and immunohistochemical methods in the femur of New Zealand White strain rabbits. Our study includes three animal groups: (a) Mg-5Zr, (b) Mg-Zr-2Sr and (c) control. In each group three animals were used and in groups 'a' and 'b' the respective alloys were implanted in cavities made at the distal ends of the femur; control animals were left without implants to observe natural bone healing. Qualitative assessment of the cellularity and matrix mineralization events of the newly formed bone tissue was done at three months after implantation by histological methods in methyl methacrylate embedded tissue without decalcifying the bone. Quantitative mineral content and density of the new bone (NB) were evaluated by the statistical analysis of dual energy X-ray absorptiometry (DXA) data obtained from three animals in each experimental group. Based on our analysis we conclude that Mg-Zr-2Sr alloy showed better osseointegration of the newly formed bone with the implant surface. Our methodology of studying peri-implant osteoinduction of degradable implants using low temperature methyl methacrylate embedding resin can be useful as a general method for determining the bio-efficacy of implant materials. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.

    Science.gov (United States)

    Lin, Kaili; Liu, Yong; Huang, Hai; Chen, Lei; Wang, Zhen; Chang, Jiang

    2015-06-01

    The investigation of the bone regeneration ability, degradation and excretion of the grafts is critical for development and application of the newly developed biomaterials. Herein, the in vivo bone-regeneration, biodegradation and silicon (Si) excretion of the new type calcium silicate (CaSiO3, CS) bioactive ceramics were investigated using rabbit femur defect model, and the results were compared with the traditional β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] bioceramics. After implantation of the scaffolds in rabbit femur defects for 4, 8 and 12 weeks, the bone regenerative capacity and degradation were evaluated by histomorphometric analysis. While urine and some organs such as kidney, liver, lung and spleen were resected for chemical analysis to determine the excretion of the ionic products from CS implants. The histomorphometric analysis showed that the bioresorption rate of CS was similar to that of β-TCP in femur defect model, while the CS grafts could significantly stimulate bone formation capacity as compared with β-TCP bioceramics (P < 0.05). The chemical analysis results showed that Si concentration in urinary of the CS group was apparently higher than that in control group of β-TCP. However, no significant increase of the Si excretion was found in the organs including kidney, which suggests that the resorbed Si element is harmlessly excreted in soluble form via the urine. The present studies show that the CS ceramics can be used as safe, bioactive and biodegradable materials for hard tissue repair and tissue engineering applications.

  3. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dirk, E-mail: d.mueller@uk-koeln.de [Department of Radiology, University of Cologne (Germany); Department of Radiology, Technische Universität München (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Baum, Thomas, E-mail: thomas-baum@gmx.de [Department of Radiology, Technische Universität München (Germany); Walter, Flavia, E-mail: flavia_walter2000@yahoo.de [Department of Radiology, Technische Universität München (Germany); Rechl, Hans, E-mail: rechl@tum.de [Department of Orthopaedics, Technische Universität München (Germany); Rummeny, Ernst J., E-mail: rummeny@tum.de [Department of Radiology, Technische Universität München (Germany); Woertler, Klaus, E-mail: klaus.woertler@tum.de [Department of Radiology, Technische Universität München (Germany)

    2014-10-15

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E{sub max}), slope (E{sub slope}) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology

  4. Premenopausal and postmenopausal changes in bone mineral density of the proximal femur measured by dual-energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Ravn, Pernille; Hetland, M L; Overgaard, K

    1994-01-01

    Total and regional bone mineral density (BMD) of the proximal femur was measured by DXA in 1238 healthy white women. In the 389 premenopausal women, aged 21-54 years, no bone loss was observed before the menopause, except in the femoral neck and Ward's triangle, in which BMD decreased by 0.3%/year...... femur and a postmenopausal bone loss, which is influenced mainly by YSM within the first 10-15 years after menopause. BMD correlated with body mass index (BMI) in the postmenopausal years, confirming...

  5. Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: Influence of the boundary conditions

    Directory of Open Access Journals (Sweden)

    Stukenborg-Colsman Christina

    2009-04-01

    Full Text Available Abstract Background There are several numerical investigations on bone remodelling after total hip arthroplasty (THA on the basis of the finite element analysis (FEA. For such computations certain boundary conditions have to be defined. The authors chose a maximum of three static load situations, usually taken from the gait cycle because this is the most frequent dynamic activity of a patient after THA. Materials and methods The numerical study presented here investigates whether it is useful to consider only one static load situation of the gait cycle in the FE calculation of the bone remodelling. For this purpose, 5 different loading cases were examined in order to determine their influence on the change in the physiological load distribution within the femur and on the resulting strain-adaptive bone remodelling. First, four different static loading cases at 25%, 45%, 65% and 85% of the gait cycle, respectively, and then the whole gait cycle in a loading regime were examined in order to regard all the different loadings of the cycle in the simulation. Results The computed evolution of the apparent bone density (ABD and the calculated mass losses in the periprosthetic femur show that the simulation results are highly dependent on the chosen boundary conditions. Conclusion These numerical investigations prove that a static load situation is insufficient for representing the whole gait cycle. This causes severe deviations in the FE calculation of the bone remodelling. However, accompanying clinical examinations are necessary to calibrate the bone adaptation law and thus to validate the FE calculations.

  6. Trabecular architecture analysis in femur radiographic images using fractals.

    Science.gov (United States)

    Udhayakumar, G; Sujatha, C M; Ramakrishnan, S

    2013-04-01

    Trabecular bone is a highly complex anisotropic material that exhibits varying magnitudes of strength in compression and tension. Analysis of the trabecular architectural alteration that manifest as loss of trabecular plates and connection has been shown to yield better estimation of bone strength. In this work, an attempt has been made toward the development of an automated system for investigation of trabecular femur bone architecture using fractal analysis. Conventional radiographic femur bone images recorded using standard protocols are used in this study. The compressive and tensile regions in the images are delineated using preprocessing procedures. The delineated images are analyzed using Higuchi's fractal method to quantify pattern heterogeneity and anisotropy of trabecular bone structure. The results show that the extracted fractal features are distinct for compressive and tensile regions of normal and abnormal human femur bone. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  7. Melatonin can Ameliorate Radiation-Induced Oxidative Stress and Inflammation-Related Deterioration of Bone Quality in Rat Femur.

    Science.gov (United States)

    Çakir, Zelal Ünlü; Demirel, Can; Kilciksiz, Sevil Cagiran; Gürgül, Serkan; Zincircioğlu, S Burhanedtin; Erdal, Nurten

    2016-06-01

    The aim of the present study was to evaluate the radioprotective effects of melatonin on the biomechanical properties of bone in comparison to amifostine (WR-2721). Forty Sprague Dawley rats were divided equally into 5 groups namely; control (C), irradiation (R; single dose of 50 Gy), irradiation + WR-2721 (R + WR-2721; irradiation + 200 mg/kg WR-2721) radiation + melatonin 25 mg/kg (R + M25; irradiation + 25 mg/kg melatonin), and radiation + melatonin 50 mg/kg (R + M50; irradiation + 50 mg/kg melatonin). In order to measure extrinsic (organ-level mechanical properties of bone; the ultimate strength, deformation, stiffness, energy absorption capacity) and intrinsic (tissue-level mechanical properties of bone; ultimate stress, ultimate strain, elastic modulus, toughness) features of the bone, a three-point bending (TPB) test was performed for biomechanical evaluation. In addition, a bone mineral density (BMD) test was carried out. The BMD and extrinsic properties of the diaphyseal femur were found to be significantly higher in the R + M25 group than in group R (p melatonin was similar to that of WR-2721. Thus, biomechanical quality of irradiated bone can be ameliorated by free radical scavenger melatonin.

  8. No association between the aluminium content of trabecular bone and bone density, mass or size of the proximal femur in elderly men and women

    Directory of Open Access Journals (Sweden)

    Mallmin Hans

    2006-08-01

    Full Text Available Abstract Background Aluminium is considered a bone toxic metal since poisoning can lead to aluminium-induced bone disease in patients with chronic renal failure. Healthy subjects with normal renal function retain 4% of the aluminium consumed. They might thus also accumulate aluminium and eventually be at risk of long-term low-grade aluminium intoxication that can affect bone health. Methods We therefore examined 62 patients with femoral neck fractures or osteoarthritis of the hip (age range 38–93, with the aim of examining whether aluminium in bone is associated with bone-mineral density (BMD, content (BMC or width of the femoral neck measured by dual-energy X-ray absorptiometry (DXA. During operations bone biopsies were taken from the trabecular bone of the proximal femur. The samples were measured for their content of aluminium using a mass spectrometer. Results No significant association between the aluminium content in bone and femoral neck BMD, BMC or width could be found after multivariate adjustment. Conclusion Our results indicate that the accumulated aluminium content in bone during life does not substantially influence the extent of osteoporosis.

  9. Trabecular orientation in the human femur and tibia and the relationship with lower-limb alignment for patients with osteoarthritis of the knee.

    Science.gov (United States)

    Sampath, Shameem A; Lewis, Sandra; Fosco, Matteo; Tigani, Domenico

    2015-04-13

    Wolff׳s Law suggests that the orientation of trabeculae in human bone changes in response to altered loading patterns. The aim of this study was to investigate trabecular orientation in both the femur and tibia and to compare this with the mechanical axis of the leg. The study involved analysis of radiographs from patients with osteoarthritis of the knee (n=91). For each patient, the trabecular orientation in both the distal femur and proximal tibia was measured from a standard anteroposterior radiograph of the knee and the mechanical axis of the leg was calculated from a long leg view taken while weight bearing. There was a significant correlation between the mechanical axis and the trabecular orientation in each of the regions considered in the femur (r=-0.41, -0.30, 0.52, and 0.23) and tibia (r=-0.27 and 0.31). Multiple regression analysis, with mechanical axis as the dependent variable, produced an R(2) of 0.62. Greater trabecular anisotropy (i.e. greater alignment) was observed in the medial femur and tibia compared to the lateral side (ptibia will reflect the angle of mechanical loading through the knee.

  10. Estimation of femoral bone density from trabecular direct wave and cortical guided wave ultrasound velocities measured at the proximal femur in vivo

    DEFF Research Database (Denmark)

    Barkmann, Reinhard; Dencks, Stefanie; Bremer, Alexander

    2008-01-01

    Bone mineral density (BMD) of the proximal femur is a predictor of hip fracture risk. We developed a Quantitative Ultrasound (QUS) scanner for measurements at this site with similar performance (FemUS). In this study we tested if ultrasound velocities of direct waves through trabecular bone...... echoes reflected from the skin of the leg to yield speed-of-sound (SOS) of different wave components. Data were cross-calibrated and pooled (62 women). Bivariate correlations and a multivariate model were calculated for the estimation of femur BMD. BMD correlated both with trabecular and cortical SOS...

  11. The precision and influence of rotation for measurements of bone mineral density of the distal femur following total knee arthroplasty: a methodological study using DEXA.

    Science.gov (United States)

    Therbo, Matthias; Petersen, Michael M; Schrøder, Henrik M; Nielsen, Palle K; Zerahn, Bo; Lund, Bjarne

    2003-12-01

    We evaluated the feasibility of DEXA (Norland XR-26 mark II) for quantitative measurements of bone mineral density (BMD) in the lateral plane of the distal femur after total knee arthroplasty (TKA). BMD was measured in 5-6 regions of interest (ROI) in close relation to the femoral component. In an in vitro study using 3 different distal femur phantoms, we found that the precision was affected by rotation of the distal femur. When BMD measurements were repeated within a range of motion of 40 degrees, 20 degrees, and 0 degrees, the coefficient of variation (CV) was approximately 15%, 10%, and 0.6%, respectively. We found that the use of bone cement for implant fixation had no effect on the level of BMD. Double measurements performed in 28 patients gave average CV values of 3.3%, 3.0%, and 2.6% for the uncemented Duracon, and Interax femoral components and the cemented AGC components, respectively. Our in vivo average CV measurements of BMD of the distal femur after TKA were on a level, suitable for repeated BMD measurements in prospective studies, which evaluate adaptive bone remodeling of the distal femur after cemented and uncemented TKA.

  12. A reliable method for measuring proximal tibia and distal femur bone mineral density using dual-energy X-ray absorptiometry

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; Janssen, Thomas W. J.; Rolf, Marijn P.; Roos, Jan C.; Burcksen, Jos; Knol, Dirk L.; de Groot, Sonja

    2014-01-01

    Purpose: To assess the intra- and inter-rater reliability of a standardized protocol for measuring proximal tibia and distal femur bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA). Methods: Ten able-bodied individuals (7 males) participated in this study. During one measuremen

  13. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de, E-mail: crisestanislau@hotmail.co, E-mail: sheilacr@fmvz.unesp.b, E-mail: fabioandre@fmvz.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Anestesiologia Veterinaria; Sergio Swain Muller, E-mail: diretoria@fmb.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Ortopedia; Louzada, Mario Jefferson Quirino, E-mail: louzada@fmva.unesp.b [Universidade Estadual Paulista (UNESP), Aracatuba, SP (Brazil). Faculdade de Medicina Veterinaria; Estanislau, Caroline de Abreu, E-mail: caestanis@hotmail.co

    2010-03-15

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  14. Fundamental ratios and logarithmic periodicity in human limb bones.

    Science.gov (United States)

    Pietak, Alexis; Ma, Siyan; Beck, Caroline W; Stringer, Mark D

    2013-05-01

    Fundamental mathematical relationships are widespread in biology yet there is little information on this topic with regard to human limb bone lengths and none related to human limb bone volumes. Forty-six sets of ipsilateral upper and lower limb long bones and third digit short bones were imaged by computed tomography. Maximum bone lengths were measured manually and individual bone volumes calculated from computed tomography images using a stereologic method. Length ratios of femur : tibia and humerus : ulna were remarkably similar (1.21 and 1.22, respectively) and varied little (bone volume ratios varied much more than upper limb ratios. The relationship between bone length and volume was found to be well described by power laws, with R(2) values ranging from 0.983 to 0.995. The most striking finding was a logarithmic periodicity in bone length moving from distal to proximal up the limb (upper limb λ = 0.72, lower limb λ = 0.93). These novel data suggest that human limb bone lengths and volumes follow fundamental and highly conserved mathematical relationships, which may contribute to our understanding of normal and disordered growth, stature estimation, and biomechanics.

  15. OUTCOME OF UNCEMENTED UNIPOLAR HEMIARTHROPLASTY IN FRACTURE NECK OF FEMUR, IN GERIATRIC PATIENTS IN RELATION TO BONE QUALITY

    Directory of Open Access Journals (Sweden)

    Mehraj Din

    2015-09-01

    Full Text Available BACKGROUND: Osteoporosis plays an important role in pathogenesis of fracture neck of femur in mobile elderly. Hemiarthroplasty is most common mode of management of femoral neck fractures in elderly in developing world. We report the outcome of uncemented hemiarthropl asty in elderly patients with a femoral neck fracture in relation to bone quality of patient as estimated by Dual energy x ray absorptiometry (DEXA scan. MATERIALS AND METHODS: 75 uncemented hemiarthroplasties for femoral neck fractures were performed in elderly patients more than 70 years of age between August 2008 and April 2012. The clinical, radiological results and bone mineral density of 65 hips in 65 patients who could be followed up were analyzed. For all cases Austin Moore prosthesis was implanted . RESULTS: The mean age of the patients was 79.96±7.21 years ( 7 1 to 96 years. 44 patients were women and 21 were men. Average duration of follow - up was 18.59±11.53 months ( R ange 4 to 44 months. The mean Harris Hip Score in patients with osteopenia was 80 .29±13.29 and in patients with osteoporosis it was 79.96 ± 11.67 at the time of the last follow - up. There was no significant difference in mean Harris hi p score in osteoporotic and non - osteoporotic patient’s p value 0.923. Out of 65 patients whose results were assessed in our study 48 patients (73.8% had osteoporosis and 17 patients (26.1% had Osteopenia. None of the patients in our study had a normal bone density. The mean T Score as measured on DEXA scan was - 3.74±1.57. CONCLUSION: Uncemented hemiarthro plasty for elderly patients more than 70 years of age with a femoral neck fracture showed satisfactory short - term results with no relationship to the bone quality

  16. Evaluation of laser photobiomodulation on bone defect in the femur of osteoporotic rats: a Raman spectral study

    Science.gov (United States)

    Soares, Luiz Guilherme P.; Aciole, Jouber Mateus d. S.; Neves, Bruno Luiz R. C.; Silveira, Landulfo; Pinheiro, Antônio L. B.

    2015-03-01

    Phototherapies have shown positive effects on the bone repair process, increasing the blood supply to the injured area. The aim of this study was to assess through Raman spectroscopy, the efficacy of laser phototherapy (λ = 780 nm, P = 70 mW, CW, 20.4 J/cm2 per session, 163.2 J/cm2 per treatment) on the bone repair process of osteoporotic rats. The osteoporosis induction was achieved by ovariectomy surgery. Thirty Wistar rats were divided into 4 groups (Basal; OVX, OVX + Clot and OVX + Clot + Laser), then subdivided into 2 subgroups according to the experimental time (15 and 30 days). After the osteoporosis induction time (60 days), a bone defect with 2 mm was created with a trephine drill in the right femur in the animals of groups OVX, Clot and Clot + Laser. After surgery, the irradiation protocol was applied in the same groups on repeated sessions every 48 hours during 15 days. The samples were analyzed by Raman Spectroscopy to assess the inorganic content of phosphate and carbonated hydroxyapatite (~960 and 1070 cm-1, respectively) and organic lipids and proteins (~1454 cm-1). Statistical analysis (ANOVA, Student-T test) showed significant difference between groups Basal, OVX + Clot, and OVX + Clot + Laser for the inorganic content peaks at ~960 (p≤0.001), and ~1070 cm-1 (p≤0.001) in both periods of 15 and 30 days, however on peak at ~1450 cm-1 no differences were detected. It was concluded that the Laser phototherapy increased deposition of HA on bone repair process of osteoporotic rats.

  17. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    Full Text Available A hypomagnetic field is an extremely weak magnetic field--it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption.

  18. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs.

    Science.gov (United States)

    Jia, Bin; Xie, Li; Zheng, Qi; Yang, Peng-fei; Zhang, Wei-ju; Ding, Chong; Qian, Ai-rong; Shang, Peng

    2014-01-01

    A hypomagnetic field is an extremely weak magnetic field--it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption.

  19. Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions

    Science.gov (United States)

    Goy, Dante Pascual; Gorosito, Emmanuel; Costa, Hermes S; Mortarino, Pablo; Pedemonte, Noelia Acosta; Toledo, Javier; Mansur, Herman S; Pereira, Marivalda M; Battaglino, Ricardo; Feldman, Sara

    2012-01-01

    At present, typical approaches employed to repair fractures and other bone lesions tend to use matrix grafts to promote tissue regeneration. These grafts act as templates, which promote cellular adhesion, growth and proliferation, osteoconduction, and even osteoinduction, which commonly results in de novo osteogenesis. The present work aimed to study the bone-repairing ability of hybrid matrixes (HM) prepared with polyvinyl alcohol (PVA) and bioactive glass in an experimental rabbit model. The HM were prepared by combining 30% bioactive glass (nominal composition of 58% SiO2 -33 % CaO - 9% P2O5) and 70% PVA. New Zealand rabbits were randomly divided into the control group (C group) and two groups with bone lesions, in which one received a matrix implant HM (Implant group), while the other did not (no Implant group). Clinical monitoring showed no altered parameters from either the Implant or the no Implant groups as compared to the control group, for the variables of diet grades, day and night temperatures and hemograms. In the Implant group, radiologic and tomographic studies showed implanted areas with clean edges in femoral non-articular direction, and radio-dense images that suggest incipient integration. Minimum signs of phlogosis could be observed, whereas no signs of rejection at this imaging level could be identified. Histological analysis showed evidence of osteo-integration, with the formation of a trabecular bone within the implant. Together, these results show that implants of hybrid matrixes of bioactive glass are capable of promoting bone regeneration. PMID:22848334

  20. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study

    Directory of Open Access Journals (Sweden)

    Lind Lars

    2010-02-01

    Full Text Available Abstract Background Drinking coffee has been linked to reduced calcium conservation, but it is less clear whether it leads to sustained bone mineral loss and if individual predisposition for caffeine metabolism might be important in this context. Therefore, the relation between consumption of coffee and bone mineral density (BMD at the proximal femur in men and women was studied, taking into account, for the first time, genotypes for cytochrome P450 1A2 (CYP1A2 associated with metabolism of caffeine. Methods Dietary intakes of 359 men and 358 women (aged 72 years, participants of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, were assessed by a 7-day food diary. Two years later, BMD for total proximal femur, femoral neck and trochanteric regions of the proximal femur were measured by Dual-energy X-ray absorptiometry (DXA. Genotypes of CYP1A2 were determined. Adjusted means of BMD for each category of coffee consumption were calculated. Results Men consuming 4 cups of coffee or more per day had 4% lower BMD at the proximal femur (p = 0.04 compared with low or non-consumers of coffee. This difference was not observed in women. In high consumers of coffee, those with rapid metabolism of caffeine (C/C genotype had lower BMD at the femoral neck (p = 0.01 and at the trochanter (p = 0.03 than slow metabolizers (T/T and C/T genotypes. Calcium intake did not modify the relation between coffee and BMD. Conclusion High consumption of coffee seems to contribute to a reduction in BMD of the proximal femur in elderly men, but not in women. BMD was lower in high consumers of coffee with rapid metabolism of caffeine, suggesting that rapid metabolizers of caffeine may constitute a risk group for bone loss induced by coffee.

  1. Calcium phosphate bone cement containing ABK and PLLA. Sustained release of ABK, the BMD of the femur in rats, and histological examination

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, T.; Tanaka, A.; Sasaki, S.; Takano, I.; Tahara, Y.; Ishii, Y. [Kyorin Univ., Tokyo (Japan). Dept. of Orhtopaedic Surgery

    2001-07-01

    Bone cement was prepared by mixing CPC95 (Mitsubishi Material Co., Ltd.), ABK, and PLLA at a ratio of 14 : 1 : 2. In vitro, Antibiotic sustained release tests were performed by the total amount exchange method. In animal experiments, the bone cement was infused into the right femur of 18-month-old female SD rats. After 1, 2, 4, or 6 months, the BMD was determined by DXA in the bilateral femoral bones. In addition, hard tissue specimens were prepared, and the state of bone formation was observed. The release of the antibiotic was 1.73 {mu}g/ml until 18 days after administration, maintaining a concentration over the MIC80 for MRSA. In the animal experiments, the BMD significantly increased after 2 - 4 months. In the hard tissue specimens, direct binding on the bone-cement interface and bone formation in the cement were observed after 1 month. (orig.)

  2. Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An In Vivo Study in Rabbit Femur

    Directory of Open Access Journals (Sweden)

    Lory Melin Svanborg

    2014-01-01

    Full Text Available This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone.

  3. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Jensen, Lars Juhl; Szklarczyk, Damian Milosz

    2012-01-01

    We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance...

  4. Autologous grafts of double-strut fibular cortical bone plate to treat the fractures and defects of distal femur: a case report and review of literature

    Directory of Open Access Journals (Sweden)

    CHEN Xu

    2012-02-01

    Full Text Available 【Abstract】We reported a 23-year-old man who was involved in a high-speed motorcycle accident. He sustained a closed fracture at the right distal femur. The primary fracture happened on February 2008. He underwent open reduction and internal fixation with cloverleaf plate. And one hundred days after the surgery, the proximal screws were pulled-out, but the bone union was not achieved. Treatment consisted of exchanging the cloverleaf plate with a locking compression plate and using an auto-iliac bone graft to fill the nonunion gap. In July 2009, the patient had a sharp pain in the right lower limb. The X-ray revealed that the plate implanted last year was broken, causing a nonunion at the fracture site. Immediately the plate and screws were removed and an intramedullary nail was inserted reversely from the distal femur as well as a 7 cm long bone from the right fibula was extracted and longitudinally split into two pieces to construct cortical bone plates. Then we placed them laterally and medially to fracture site, drilled two holes respectively, and fastened them with suture. We carried on auto-iliac bone grafting with the nonunion bone grafts. The follow-up at 15 months after operation showed that the treatment was successful, X-ray confirmed that there was no rotation and no angular or short deformity. We briefly reviewed the literature regarding such an unusual presentation and discussed in details the possible etiology and the advantages of autologous double-strut fibular grafts to cope with such an intractable situation. Key words: Femur; Transplantation, autologous; Bone screws

  5. Load and failure behavior of human muscle samples in the context of proximal femur replacement

    OpenAIRE

    Schleifenbaum, Stefan; Schmidt, Michael; Möbius, Robert; Wolfskämpf, Thomas; Schröder, Christian; Grunert, Ronny; Hammer, Niels; Prietzel, Torsten

    2016-01-01

    Background: To ensure adequate function after orthopedic tumor reconstruction, it is important to reattach the remaining soft tissue to the implant. This study aimed at obtaining mechanical properties of textile muscle-implant and muscle-bone connections in a preliminary test. Methods: Two groups of soft-tissue attachment were mechanically tested and compared: Native bone-muscle samples obtained from human femora and muscles attached to a prosthetic implant by means of Trevira® attachment tu...

  6. Effect of estrogen on morphine- and oxycodone-induced antinociception in a female femur bone cancer pain model.

    Science.gov (United States)

    Ono, Hiroko; Nakamura, Atsushi; Kanemasa, Toshiyuki; Sakaguchi, Gaku; Shinohara, Shunji

    2016-02-15

    Although estrous cycle has been reported to influence antiociceptive effect of morphine in several pain conditions, its effect on cancer pain is not well established. We investigated the effect of estrogen on morphine antinociception using a bone cancer pain model and compared its potency with that of oxycodone. Female mice were ovariectomized (OVX) for preparation of a femur bone cancer pain (FBC) model. β-estradiol was subcutaneously (s.c.) administered and antinociceptive effects of opioids was assessed using the von Frey monofilament test. Although morphine (5-20mg/kg, s.c.) did have significant antinociceptive effects in the FBC-OVX group, its effects in the FBC-OVX+β-estradiol (OVX+E) group was limited. Oxycodone (1-5mg/kg, s.c.) exhibited significant effects in both groups. Expression changes in opioid-related genes (μ-, κ-, δ-opioid receptors, prodynorphin, proenkephalin, proopiomelanocortin) in the spinal and supraspinal sites were examined among the sham-OVX, sham-OVX+E, FBC-OVX, and FBC-OVX+E groups by in situ hybridization. These studies detected a significant increase in prodynorphin in the spinal dorsal horn of the FBC-OVX+E group. Spinal injection of a dynorphin-A antibody to FBC-OVX+E mice restored antinociception of morphine. In conclusion, we detected a differential effect of estrogen on morphine- and oxycodone-induced antinociception in a female FBC model. The effect of morphine was limited with estrogen exposure, which may be due to estrogen- and pain-mediated spinal expression of dynorphin-A.

  7. Stimulatory effect of low-level GaAlAs laser (808 nm) on bone defect created surgically in rabbit femur

    Science.gov (United States)

    Li, Qiushi; Zhou, Yanmin; Qu, Zhou; Zhang, Tianfu

    2009-07-01

    Recently, low-level laser therapy (LLLT) has been reported to have a photobiomodulation effect on bio-tissues. Our aim was to evaluate the effect of low level GaAlAs laser on bone regeneration around bone defect sites created surgically in rabbit femur. Thirty rabbits were randomly divided into an experimental and a control groups. A GaAlAs semiconductor diode laser was applied in the experimental group( λ = 808nm, P =75mW, (symbol) =0.4mm,t=5min, ρE=28J/cm2)immediately after surgery once a day for 3 consecutive days with no irradiation in the control group. Rabbits were sacrificed on the 7th, 14th, 21th days after surgery (DAS) and femur samples were prepared for bone histomorphometry analysis. The results showed that the bone volume, the osteoid volume, osteoblast surface and the mineral apposition rate in the laser group were higher statistically (P<0.05) than those indices in the control group at different periods. These data revealed that LLLT can enhance bone regeneration. LLLT seems to have a clinical application in promoting bone healing around implant in the future.

  8. Analysis of trabecular bone architectural changes induced by osteoarthritis in rabbit femur using 3D active shape model and digital topology

    Science.gov (United States)

    Saha, P. K.; Rajapakse, C. S.; Williams, D. S.; Duong, L.; Coimbra, A.

    2007-03-01

    Osteoarthritis (OA) is the most common chronic joint disease, which causes the cartilage between the bone joints to wear away, leading to pain and stiffness. Currently, progression of OA is monitored by measuring joint space width using x-ray or cartilage volume using MRI. However, OA affects all periarticular tissues, including cartilage and bone. It has been shown previously that in animal models of OA, trabecular bone (TB) architecture is particularly affected. Furthermore, relative changes in architecture are dependent on the depth of the TB region with respect to the bone surface and main direction of load on the bone. The purpose of this study was to develop a new method for accurately evaluating 3D architectural changes induced by OA in TB. Determining the TB test domain that represents the same anatomic region across different animals is crucial for studying disease etiology, progression and response to therapy. It also represents a major technical challenge in analyzing architectural changes. Here, we solve this problem using a new active shape model (ASM)-based approach. A new and effective semi-automatic landmark selection approach has been developed for rabbit distal femur surface that can easily be adopted for many other anatomical regions. It has been observed that, on average, a trained operator can complete the user interaction part of landmark specification process in less than 15 minutes for each bone data set. Digital topological analysis and fuzzy distance transform derived parameters are used for quantifying TB architecture. The method has been applied on micro-CT data of excised rabbit femur joints from anterior cruciate ligament transected (ACLT) (n = 6) and sham (n = 9) operated groups collected at two and two-to-eight week post-surgery, respectively. An ASM of the rabbit right distal femur has been generated from the sham group micro-CT data. The results suggest that, in conjunction with ASM, digital topological parameters are suitable for

  9. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

    Science.gov (United States)

    Butcher, Michael T; White, Bartholomew J; Hudzik, Nathan B; Gosnell, W Casey; Parrish, John H A; Blob, Richard W

    2011-08-01

    Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 με) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values

  10. Is the corticomedullary index valid to distinguish human from nonhuman bones: a multislice computed tomography study.

    Science.gov (United States)

    Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert

    2013-09-10

    The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains.

  11. Orchidectomy-induced alterations in volumetric bone density, cortical porosity and strength of femur are attenuated by dietary conjugated linoleic acid in aged guinea pigs.

    Science.gov (United States)

    DeGuire, Jason R; Mak, Ivy L; Lavery, Paula; Agellon, Sherry; Wykes, Linda J; Weiler, Hope A

    2015-04-01

    Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with

  12. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... leg. In conclusion, resting femoral bone blood flow increases by physical exercise, but appears to level off with increasing exercise intensities. Moreover, while moderate systemic hypoxia does not change bone blood flow at rest or during exercise, intra-arterially administered adenosine during...

  13. Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa.

    Science.gov (United States)

    Croker, Sarah L; Reed, Warren; Donlon, Denise

    2016-03-01

    The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone

  14. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years

    Energy Technology Data Exchange (ETDEWEB)

    Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    We measured areal bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) at the lumbar spine and the proximal femur and for the total body in 179 subjects (91 girls and 88 boys) with no known disorders that might affect calcium metabolism. Results are also reported for lumbar spine bone mineral content (BMC) and for the derived variable, bone mineral apparent density (BMAD). Expected-for-age values for each variable were derived for boys and girls by using an expression that represented the sum of a steady increase due to growth plus a rapid increase associated with puberty. Normal ranges were derived by assuming that at least 95% of children would be included within 1.96 population standard deviations (SD) of the expected-for-age value. The normal range for lumbar spine BMD derived from our population of children was compared with previously published normal ranges based on results obtained from different bone densitometers in diverse geographic locations. The extent of agreement between the various normal ranges indicates that the derived expressions can be used for reporting routine spine, femur, and whole-body BMD measurements in children and adolescents. The greatest difference in expected-for-age values among the various studies was that arising from intermanufacturer variability. The application of published conversion factors derived from DXA measurements in adults did not account fully for these differences, especially in younger children. (author)

  15. Histopathological evaluation of potential impact of β-tricalcium phosphate (HA+ β-TCP) granules on healing of segmental femur bone defect.

    Science.gov (United States)

    Eftekhari, H; Farahpour, M R; Rabiee, S M

    2015-01-01

    Histopathological evaluation of β-tricalcium phosphate (HA+ β-TCP) granules demonstrated that it has properties to heal segmental femur bone defect in rat. In this study, 27 male white rats were examined. Rats were divided into tree groups. Surgical procedures were done after IP administration of ketamine 5 % and xylazine HCL 2 %. Then an approximately 5-mm long, 3-mm deep and 2-mm wide bone defect was created in the femur of one of the hind limbs using a No. 0.14 round bur. After inducing the surgical wound, all rats were colored and randomly divided into three experimental groups of nine animals each: Group 1 received medical pure β-tricalcium phosphate granules, group 2 received hydroxyapatite and third group was a control group with no treatment. Histopathological evaluation was performed on days 15, 30 and 45 after surgery. On day 45 after surgery, the quantity of newly formed lamellar bone in the healing site in β-TCP group was better than onward compared to HA and control groups. In conclusion, β-tri calcium phosphate (β-TCP) granules exhibited a reproducible bone-healing potential (Fig. 10, Ref. 28).

  16. Predicting the stiffness and strength of human femurs with real metastatic tumors.

    Science.gov (United States)

    Yosibash, Zohar; Plitman Mayo, Romina; Dahan, Gal; Trabelsi, Nir; Amir, Gail; Milgrom, Charles

    2014-12-01

    Predicting patient specific risk of fracture in femurs with metastatic tumors and the need for surgical intervention are of major clinical importance. Recent patient-specific high-order finite element methods (p-FEMs) based on CT-scans demonstrated accurate results for healthy femurs, so that their application to metastatic affected femurs is considered herein. Radiographs of fresh frozen proximal femur specimens from donors that died of cancer were examined, and seven pairs with metastatic tumor were identified. These were CT-scanned, instrumented by strain-gauges and loaded in stance position at three inclination angles. Finally the femurs were loaded until fracture that usually occurred at the neck. Histopathology was performed to determine whether metastatic tumors are present at fractured surfaces. Following each experiment p-FE models were created based on the CT-scans mimicking the mechanical experiments. The predicted displacements, strains and yield loads were compared to experimental observations. The predicted strains and displacements showed an excellent agreement with the experimental observations with a linear regression slope of 0.95 and a coefficient of regression R(2)=0.967. A good correlation was obtained between the predicted yield load and the experimental observed yield, with a linear regression slope of 0.80 and a coefficient of regression R(2)=0.78. CT-based patient-specific p-FE models of femurs with real metastatic tumors were demonstrated to predict the mechanical response very well. A simplified yield criterion based on the computation of principal strains was also demonstrated to predict the yield force in most of the cases, especially for femurs that failed at small loads. In view of the limited capabilities to predict risk of fracture in femurs with metastatic tumors used nowadays, the p-FE methodology validated herein may be very valuable in making clinical decisions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Autologous grafts of double-strut fibular cortical bone plate to treat the fractures and defects of distal femur: a case report and review of literature

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu; LI Jian-jun; KONG Zhan; YANG Dong-xiang; YUAN Xiang-nan

    2011-01-01

    We reported a 23-year-old man who was involved in a high-speed motorcycle accident. He sustained a closed fracture at the right distal femur. The primary fracture happened on February 2008. He underwent open reduction and internal fixation with cloverleaf plate. And one hundred days after the surgery, the proximal screws were pulled-out, but the bone union was not achieved. Treat ment consisted of exchanging the cloverleaf plate with a locking compression plate and using an auto-iliac bone graft to fill the nonunion gap. In July 2009, the patient had a sharp pain in the right lower limb. The X-ray revealed that the plate implanted last year was broken, causing a nonunion at the fracture site. Immediately the plate and screws were removed and an intramedullary nail was inserted reversely from the distal femur as well as a 7 cm long bone from the right fibula was extracted and longitudinally split into two pieces to construct cortical bone plates. Then we placed them laterally and medially to fracture site, drilled two holes respectively, and fastened them with suture. We carried on auto-iliac bone grafting with the nonunion bone grafts. The follow-up at 15 months after operation showed that the treatment was successful, X-ray confirmed that there was no rotation and no angular or short deformity. We briefly reviewed the literature regarding such an unusual presentation and discussed in details the possible etiology and the advantages of autologous double-strut fibular grafts to cope with such an intractable situation.

  18. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Denmark, DenmarkAbstractReplacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standard for bone replacement. However, there are several disadvantages such as donor site...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  19. Biomechanics in Different Areas of Human Proximal Femur%正常人股骨近端生物力学性能的区域性分析

    Institute of Scientific and Technical Information of China (English)

    樊向利; 郭征; 宫赫; 石磊; 李小康; 王攀; 张涌泉; 袁超凡; 王军

    2011-01-01

    Objective To analyze the cancellous bones micro-structure and biomechanical effects in different areas of proximal femur (head, neck and intertrochanter),providing the mechanical parameters for metal implant. Methods Seven fresh moist human's proximal femur specimens were examined by Micro-CT, and the trabecular structure was assessed in the area of head, neck and intertrochanter respectively. Meanwhile, the biomechanical effects which were in the direction of the principal load were comparatively analyzed by large scale micro- finite element analysis in the different areas. Results BMD,TMD and the elastic modulus showed the significant difference in the different areas of the proximal femur (head>neck>intertrochanter). Conclusion The biological properties and biomechanical effects in different areas of proximal femur have significant difference, which should be considered in designing and manufacturing the femoral implant in the future.%目的 分析股骨近端不同区域松质骨的显微结构及生物力学性能的差异性,为合理设计金属置人物提供力学参考.方法 取7个新鲜正常人体股骨近端标本,进行Micro-CT扫描,分别对股骨头、股骨颈、粗隆间的骨小梁的结构参数进行分析,并结合大型有限元三维有限元对比分析各区域在主要受力方向上的生物力学性能.结果 股骨头部的骨密度、骨矿含量、骨小梁密度、骨小梁数目明显高于股骨颈及粗隆间,差异有统计学意义(P<0.05),股骨颈与粗隆间相比则差异无统计学意义(P>0.05).结论 股骨近端不同区域的松质骨的显微结构及生物力学性能存在差异性,提示现有股骨近端金属置人物可能存在生物力学上的缺陷.

  20. Pleistocene Hominins as a Resource for Carnivores: A c. 500,000-Year-Old Human Femur Bearing Tooth-Marks in North Africa (Thomas Quarry I, Morocco.

    Directory of Open Access Journals (Sweden)

    Camille Daujeard

    Full Text Available In many Middle Pleistocene sites, the co-occurrence of hominins with carnivores, who both contributed to faunal accumulations, suggests competition for resources as well as for living spaces. Despite this, there is very little evidence of direct interaction between them to-date. Recently, a human femoral diaphysis has been recognized in South-West of Casablanca (Morocco, in the locality called Thomas Quarry I. This site is famous for its Middle Pleistocene fossil hominins considered representatives of Homo rhodesiensis. The bone was discovered in Unit 4 of the Grotte à Hominidés (GH, dated to c. 500 ky and was associated with Acheulean artefacts and a rich mammalian fauna. Anatomically, it fits well within the group of known early Middle Pleistocene Homo, but its chief point of interest is that the diaphyseal ends display numerous tooth marks showing that it had been consumed shortly after death by a large carnivore, probably a hyena. This bone represents the first evidence of consumption of human remains by carnivores in the cave. Whether predated or scavenged, this chewed femur indicates that humans were a resource for carnivores, underlining their close relationships during the Middle Pleistocene in Atlantic Morocco.

  1. Pleistocene Hominins as a Resource for Carnivores: A c. 500,000-Year-Old Human Femur Bearing Tooth-Marks in North Africa (Thomas Quarry I, Morocco).

    Science.gov (United States)

    Daujeard, Camille; Geraads, Denis; Gallotti, Rosalia; Lefèvre, David; Mohib, Abderrahim; Raynal, Jean-Paul; Hublin, Jean-Jacques

    2016-01-01

    In many Middle Pleistocene sites, the co-occurrence of hominins with carnivores, who both contributed to faunal accumulations, suggests competition for resources as well as for living spaces. Despite this, there is very little evidence of direct interaction between them to-date. Recently, a human femoral diaphysis has been recognized in South-West of Casablanca (Morocco), in the locality called Thomas Quarry I. This site is famous for its Middle Pleistocene fossil hominins considered representatives of Homo rhodesiensis. The bone was discovered in Unit 4 of the Grotte à Hominidés (GH), dated to c. 500 ky and was associated with Acheulean artefacts and a rich mammalian fauna. Anatomically, it fits well within the group of known early Middle Pleistocene Homo, but its chief point of interest is that the diaphyseal ends display numerous tooth marks showing that it had been consumed shortly after death by a large carnivore, probably a hyena. This bone represents the first evidence of consumption of human remains by carnivores in the cave. Whether predated or scavenged, this chewed femur indicates that humans were a resource for carnivores, underlining their close relationships during the Middle Pleistocene in Atlantic Morocco.

  2. Bone response to endosseous titanium implants surface-modified by blasting and chemical treatment: a histomorphometric study in the rabbit femur.

    Science.gov (United States)

    Park, Jin-Woo; Jang, Il-Sung; Suh, Jo-Young

    2008-02-01

    This study evaluated the effects of the addition of oxide structure with submicron-scale porous morphology on the periimplant bone response around titanium (Ti) implants with microroughened surfaces. Hydroxyapatite-blasted Ti implants with (experimental) and without (control) a porous oxide structure produced by chemical treatment were investigated in a rabbit femur model. Surface characterizations and in vivo bone response at 4 and 8 weeks after implantation were compared. The experimental implants had submicron-scale porous surface structure consisted of anatase and rutile phase, and the original R(a) values produced by blasting were preserved. The histomorphometric evaluation demonstrated statistically significantly increased bone-to-implant contact (BIC) for experimental implants, both in the three best consecutive threads (p < 0.01) and all threads (p < 0.05) at 4 weeks. There was no remarkable difference in the BIC% or bone area percentage between the two groups at 8 weeks. The porous Ti oxide surface enhanced periimplant bone formation around the Ti implants with microroughened surfaces at the early healing stage. Based on the results of this study, the addition of crystalline Ti oxide surface with submicron-sized porous morphology produced by chemical treatment may be an effective approach for enhancing the osseointegration of Ti implants with microroughened surfaces by increasing early bone-implant contact.

  3. Frequency of Osteoporosis and Osteopenia According To Bone Mineral Density of Proximal Femur Subregions in Normal and Osteopenic Postmenopausal Women With Respect to Total Hip Bone

    Directory of Open Access Journals (Sweden)

    Murat Ersöz

    2002-09-01

    Full Text Available In this study 29 normal (mean age: 65.6 ± 5.1 years and 33 osteopenic (mean age: 67.6 ± 4.9 years postmenopausal women according to total bone mineral density (BMD of the hip were evaluated for BMD values of subregions of proximal femur. The percentages for osteoporosis and osteopenia with respect to subregions were 13.8% and 58.6% for femoral neck and 20.7% and 41.4% for Ward’s triangle in normal group. In trochanteric and intertrochanteric measurements there were no T scores below –2.5 but 17.2% of the subjects were osteopenic with regard to trochanteric and 6.9% were osteopenic due to intertrochanteric BMD values. The percentages for osteoporosis and osteopenia with respect to subregion measurements were 57.6% and 42.4% for femoral neck, 60.6% and 36.4% for Ward’s triangle, 3% and 78.8% for trochanteric, 9.1% and 87.9% for intertrochanteric regions in osteopenic group according to total hip values. Knowing that hip fracture risk is increasing 2-3 fold for 1 standart deviation decrease from the young adult mean value for all subregions and knowing the relation between cervical hip fractures and BMD values of Ward’s triangle and femoral neck and the relation between intertrochanteric fractures and trochanteric BMD values, it is recommended to evaluate the BMD values of subregions of the hip besides the total hip values in daily practice.

  4. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  5. The relationship between the mechanical anisotropy of human cortical bone tissue and its microstructure

    Science.gov (United States)

    Espinoza Orias, Alejandro A.

    Orthopedics research has made significant advances in the areas of biomechanics, bone implants and bone substitute materials. However, to date there is no definitive model to explain the structure-property relationships in bone as a material to enable better implant designs or to develop a true biomechanical analog of bone. The objective of this investigation was to establish a relationship between the elastic anisotropy of cortical bone tissue and its microstructure. Ultrasonic wave propagation was used to measure stiffness coefficients for specimens sectioned along the length of a human femur. The elastic constants were orthotropic and varied with anatomical location. Stiffness coefficients were generally largest at the midshaft and stiffness anisotropy ratios were largest at the distal and proximal ends. These tests were run on four additional human femurs to assess the influence of phenotypic variation, and in most cases, it was found that phenotypes do not exert a significant effect. Stiffness coefficients were shown to be correlated as a power law relation to apparent density, but anisotropy ratios were not. Texture analysis was performed on selected samples to measure the orientation distribution of the bone mineral crystals. Inverse pole figures showed that bone mineral crystals had a preferred crystallographic orientation, coincident with the long axis of the femur, which is its principal loading direction. The degree of preferred orientation was represented in Multiples of a Random Distribution (MRD), and correlated to the anisotropy ratios. Variation in elastic anisotropy was shown to be primarily due to the bone mineral orientation. The results found in this work can be used to incorporate anisotropy into structural analysis for bone as a material.

  6. Higher serum ferritin level and lower femur neck strength in women at the stage of bone loss (≥ 45 years of age): The Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV).

    Science.gov (United States)

    Ahn, Seong Hee; Lee, Seokhyeon; Kim, Hyeonmok; Lee, Seung Hun; Kim, Beom-Jun; Koh, Jung-Min

    2016-11-01

    Despite the clear effect of iron on bone metabolism, most clinical studies related to bone health have only focused on bone mineral density (BMD). In the present study, we investigated the relationship between serum ferritin and composite indices of femur neck strength via a population-based, cross-sectional study using the Korea National Health and Nutrition Examination Survey (KNHANES). Our study series included 693 women at the stage of bone loss (≥ 45 years of age), defined based on the observed patterns of age-related BMD changes in the KNHANES. Geometric bone structure properties, including hip axis length (HAL) and femur neck width (FNW), were measured using hip dual-energy X-ray absorptiometry scans and were combined with BMD, body weight, and height to create composite indices of femur neck strength relative to load in three different failure modes: compression (CSI), bending (BSI), and impact strength indices (ISI). After adjustment for age, body mass index (BMI), lifestyle factors, serum 25-hydroxyvitamin D, calcium and phosphorus intake, diabetes, and menopause status, multiple regression analyses revealed that serum ferritin was inversely associated with the BMD values at the lumbar spine and femur neck, and the femur neck cortical thickness. Importantly, in all adjustment models, higher serum ferritin was consistently associated with the lower values for all three femur neck composite indices, such as CSI, BSI, and ISI. These data provide the first clinical evidence that increased total body iron stores reflected by higher serum ferritin may be associated with the decrease of bone strength relative to load.

  7. Measurement of bone mineral density at proximal femur by dual-energy X-ray Absorptiometry%股骨近端骨密度的测量

    Institute of Scientific and Technical Information of China (English)

    张华俦

    2012-01-01

    Bone mineral density (BMD) measured by dual-energy X-ray absorptionmetry can be regarded as "gold standard" for the diagnosis and treatment follow-up. The measurement of BMD at proximal femur can not only predict an occurrence of the hip fracture but also in the other part of body fracture. The elderly population with high incidence of osteoporosis often combine with many degenerative disease, such as degenerative scoliosis, osteophyte formation, intervertebral disc herniation etc. These pathological changes in the lumbar spine might reduce the accuracy of BMD in anterposterior position. So the measurement of BMD at proximal femur become more and more popular in the clinical trial or diagnosis and treatment of osteoporosis in Europen and American areas in recently. This article reviews the anatomy characteristics of proximal femur, method and purport of measurement of BMD at proximal femur, and refers to some matters must be paid more attention in the procedures of measurement of BMD and facilitate clinicians and technicians to assess the clinical meaning of measurement of BMD at proximal femur comprehensively.%双能X线骨密度仪检测骨密度是诊断骨质疏松症和疗效随访的金标准,特别是髋部骨密度的测量对于骨折的预测尤其测定部位本身骨折的预测作用较大.由于脊柱部位的骨密度测量值易受到脊柱退行性疾病的病理改变如退行性侧凸、骨赘增生、腰椎间盘突出等影响,测量的准确性下降.因而近年来欧美国家临床试验也好或者骨质疏松诊疗也好,大都以股骨近端的BMD测定为标准.本文就股骨近端解剖特点、骨密度测量的意义、方法以及测量的注意点作一个综述,以期帮助临床医生或技术员全面评估股骨近端骨密度测定的意义.

  8. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    Science.gov (United States)

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  9. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  10. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Science.gov (United States)

    Cavani, Francesco; Smargiassi, Alberto

    2015-01-01

    Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis. PMID:26064895

  11. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    Allogenic bone graft has been considered the gold standard in connection with bone graft material in revision joint arthroplasty. However, the lack of osteogenic potential and the risk of disease transmission are clinical challenges. The use of osteoinductive materials, such as demineralized bone...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... (gold standard), respectively. A standardized surgical procedure was used. At sacrifice 6 weeks after implantation, both distal femurs were harvested. The implant fixation was evaluated by mechanical push-out testing to test shear mechanical properties between implant and the host bone...

  12. Compression or tension? The stress distribution in the proximal femur

    Directory of Open Access Journals (Sweden)

    Meakin JR

    2006-02-01

    Full Text Available Abstract Background Questions regarding the distribution of stress in the proximal human femur have never been adequately resolved. Traditionally, by considering the femur in isolation, it has been believed that the effect of body weight on the projecting neck and head places the superior aspect of the neck in tension. A minority view has proposed that this region is in compression because of muscular forces pulling the femur into the pelvis. Little has been done to study stress distributions in the proximal femur. We hypothesise that under physiological loading the majority of the proximal femur is in compression and that the internal trabecular structure functions as an arch, transferring compressive stresses to the femoral shaft. Methods To demonstrate the principle, we have developed a 2D finite element model of the femur in which body weight, a representation of the pelvis, and ligamentous forces were included. The regions of higher trabecular bone density in the proximal femur (the principal trabecular systems were assigned a higher modulus than the surrounding trabecular bone. Two-legged and one-legged stances, the latter including an abductor force, were investigated. Results The inclusion of ligamentous forces in two-legged stance generated compressive stresses in the proximal femur. The increased modulus in areas of greater structural density focuses the stresses through the arch-like internal structure. Including an abductor muscle force in simulated one-legged stance also produced compression, but with a different distribution. Conclusion This 2D model shows, in principle, that including ligamentous and muscular forces has the effect of generating compressive stresses across most of the proximal femur. The arch-like trabecular structure transmits the compressive loads to the shaft. The greater strength of bone in compression than in tension is then used to advantage. These results support the hypothesis presented. If correct, a

  13. 3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study

    Science.gov (United States)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.

    2010-03-01

    Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.

  14. Bone mineral density measurements of the proximal femur from routine contrast-enhanced MDCT data sets correlate with dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, M. [Medical University of Vienna, Department of Radiology, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Bauer, J.S.; Dobritz, M.; Woertler, K.; Rummeny, E.J.; Baum, T. [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Beer, A.J. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Wolf, P. [Technische Universitaet Muenchen, Institute for Medical Statistics and Epidemiology, Munich (Germany)

    2013-02-15

    To evaluate the utility of femoral bone mineral density (BMD) measurements in routine contrast-enhanced multi-detector computed tomography (ceMDCT) using dual-energy X-ray absorptiometry (DXA) as the reference standard. Forty-one patients (33 women, 8 men) underwent DXA measurement of the proximal femur. Subsequently, transverse sections of routine ceMDCT of these patients were used to measure BMD of the femoral head and femoral neck. The MDCT-to-DXA conversion equations for BMD and T-score were calculated using linear regression analysis. The conversion equations were applied to the MDCT data sets of 382 patients (120 women, 262 men) of whom 74 had osteoporotic fractures. A correlation coefficient of r = 0.84 (P < 0.05) was calculated for BMD{sub MDCT} values of the femoral head and DXA T-scores of the total proximal femur using the conversion equation T-score = 0.021 x BMD{sub MDCT} - 5.90. The correlation coefficient for the femoral neck was r = 0.79 (P < 0.05) with the conversion equation T-score = 0.016 x BMD{sub MDCT} - 4.28. Accordingly, converted T-scores for the femoral neck in patients with versus those without osteoporotic fractures were significantly different (female, -1.83 versus -1.47; male, -1.86 versus -1.47; P < 0.05). BMD measurements of the proximal femur were computed in routine contrast-enhanced MDCT and converted to DXA T-scores, which adequately differentiated patients with and without osteoporotic fractures. (orig.)

  15. Bone regeneration with cultured human bone grafts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Nakajima, H. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology; Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Ohgushi, H.; Ueda, Y.; Takakura, Y. [Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology

    2001-07-01

    From 73 year old female patient, 3 ml of bone marrow was collected from the ilium. The marrow was cultured to concentrate and expand the marrow mesenchymal cells on a culture dish. The cultured cells were then subculturedeither on another culture dish or in porous areas of hydroxyapatite ceramics in the presence of dexamethasone and beta-glycerophosphate (osteo genic medium). The subculturedtissues on the dishes were analyzed by scanning electron microscopy (SEM), and subculturedtissues in the ceramics were implanted intraperitoneally into athymic nude mice. Vigorous growth of spindle-shaped cells and a marked formation of bone matrix beneath the cell layers was observed on the subculture dishes by SEM. The intraperitoneally implanted ceramics with cultured tissues revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the ceramics after 8 weeks. The in vitro bone formations on the culture dishes and in vivo bone formation in porous ceramics were detected. These results indicate that we can assemble an in vitro bone/ceramic construct, and due to the porous framework of the ceramic, the construct has osteogenic potential similar to that of autologous cancellous bone. A significant benefit of this method is that the construct can be made with only a small amount of aspirated marrow cells from aged patients with little host morbidity. (orig.)

  16. Subperiosteal hemangioendothelioma of the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ajay [Royal National Orthopaedic Hospital NHS Trust, Departments of Orthopaedic Oncology, Stanmore, Middlesex (United Kingdom); Saifuddin, Asif [Royal National Orthopaedic Hospital NHS Trust, Departments of Radiology, Stanmore, Middlesex (United Kingdom); London Bone and Soft Tissue Tumour Service, London (United Kingdom); University College London, Institute of Orthopaedics and Musculoskeletal Sciences, London (United Kingdom); Briggs, Tim W.R. [Royal National Orthopaedic Hospital NHS Trust, Departments of Orthopaedic Oncology, Stanmore, Middlesex (United Kingdom); London Bone and Soft Tissue Tumour Service, London (United Kingdom); University College London, Institute of Orthopaedics and Musculoskeletal Sciences, London (United Kingdom); Flanagan, Adrienne M. [Royal National Orthopaedic Hospital NHS Trust, Departments of Histopathology, Stanmore, Middlesex (United Kingdom); London Bone and Soft Tissue Tumour Service, London (United Kingdom); University College London, Institute of Orthopaedics and Musculoskeletal Sciences, London (United Kingdom)

    2006-10-15

    Primary neoplastic vascular lesions of bone are rare, and include haemangiomas, haemangioendothelioma, epithelioid haemangioendothelioma and angiosarcoma. These lesions may be multicentric, and when they involve bone are typically intraosseous and lytic. Radiological findings are not always specific. We report a case of haemangioendothelioma localised to the subperiosteum of the femur, a site not previously described for this lesion. The nomenclature for vascular neoplasms in bone is discussed. (orig.)

  17. [Proximal and total femur replacement].

    Science.gov (United States)

    Pennekamp, P H; Wirtz, D C; Dürr, H R

    2012-07-01

    Reconstruction of segmental bone defects of the proximal femur following wide tumor resection or revision arthroplasty. Aggressive benign or primary malignant bone tumors of the proximal femur; destructive metastases; massive segmental bone defects of the proximal femur; periprosthetic fractures. Local infection; very short life expectancy (acetabular bone stock. Anterolateral approach. Exposure and detachment of the iliopsoas and gluteus medius muscle from the proximal femur with a sufficient safety margin to the bone; distal transsection of the vastus lateralis/intermedius and rectus femoris muscle according to the extraosseous tumor extension; distal femur osteotomy al least 3 cm beyond the farthest point of tumor extension; in case of total femur replacement, additional lateral arthrotomy of the knee with resection of the ligaments and menisci; reaming of the medullary canal after securing the shaft with a Verbrugge clamp; trial assembly and reduction followed by the definitive implantation of the prosthesis with adjustment of the femoral neck anteversion in 5° increments; soft tissue reconstruction and fixation to an attachment tube covering the prosthesis; in case of total femur replacement, the preparation of the tibia is followed by the coupling of the tibial and femoral components. Infection prophylaxis, 20 kg partial weight bearing, continuous passive motion. A total of 20  patients with proximal femur replacement and 2 patients with total femur replacement implanted between June 2007 and December 2011 were retrospectively reviewed. Three patients had primary malignant bone tumors, while 19 patients underwent resection for metastatic disease. The mean age at surgery was 62.0 ± 18.1 years (18-82 years). Fifteen patients with a mean follow-up of 20.3 ± 17.2 months (4-51 months) were studied. Among the 22 cases, periprosthetic infection occurred in 3 patients (13.6%), dislocation in 2 patients (9.1%). Evaluation of the functional

  18. An analysis of factors affecting the mercury content in the human femoral bone.

    Science.gov (United States)

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  19. Hidatidosis de fémur: causa inusual de lesión ósea primaria Femur hydatidosis: a rare cause of primary bone lesion

    Directory of Open Access Journals (Sweden)

    Martín Munduteguy

    2009-12-01

    Full Text Available La hidatidosis ósea es rara, representando el 0,5- 4% del total de localizaciones y se caracteriza por un curso insidioso con un largo periodo de latencia, diagnosticándose en estadios muy avanzados. Se presenta un caso de hidatidosis del fémur con extensión extraósea en un varón de 62 años de edad, agricultor, con fractura patológica, en ocasión de un accidente vial, siendo los hallazgos radiológicos sugestivos de malignidad. Se efectuó laboratorio y exéresis parcial del fémur, que permitió el diagnóstico de hidatidosis ósea.Hydatidosis of bone is rare, accounting for only 0.5-4 % of cases in this topography. Is characterized by an insidious progression and a very large latency, therefore the disease being diagnosed at an advanced stage. This is the report of a case of the femur hydatidosis, in a 62- year-old man farmer, with pathological fracture, caused by a traffic accident. Radiographic findings suggest malignancy. Laboratory studies and a partial punction of femur were made with results for hydatidosis.

  20. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet.

    Science.gov (United States)

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-02-04

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower (p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  1. Large Segment Bone Allograft Reconstruction Following Femur Tumors Resection%大段异体骨移植重建股骨肿瘤性缺损

    Institute of Scientific and Technical Information of China (English)

    贾金鹏; 毕文志; 韩纲; 王威; 许猛; 李静东

    2012-01-01

    目的 探讨大段异体骨移植在股骨肿瘤扩大切除后缺损重建中的作用及临床效果.方法 回顾性分析从2005年1月至2010年1月共30例患者.均行股骨肿瘤保肢手术并采用大段异体骨重建肿瘤切除后缺损的患者.结果 22例患者获得随访,8例患者失访.10例患者死于多发转移.12例存活的患者随访时间为20个月至7年,平均随访时间4.2年.所有患者术后X线片显示异体骨位置良好.6例发生延迟愈合或不愈合.其中有5例发生应力性骨折,1例患者发生深部感染.2例患者发生内固定失败.1例患者局部复发.所有患者中未发现明显的排斥反应.结论 大段异体骨移植能够获重建股骨肿瘤后较大的骨缺损,满足了部分股骨肿瘤保肢治疗的需要,是股骨肿瘤保肢治疗中一种可以选择的方法.%Objective Probe into the feasibility of the clinical outcome of large segment bone allograft for reconstruction of the defect after femur tumor resection. Methods During January 2005 to January 2010, 30 patients were carried out limb-spanng surgery due to femur tumors, and large segment bone allograft was used to reconstruction the bone defects after tumor resection. Results 22 patients were followed up; 8 patients were lost of follow-up. 10 patients died of generalized metastases. Patients were followed up from 20 months to 7 years. The mean follow-up was 4. 2 years. There were 6 patients had delayed union or nonunion, 5 patients had stress fractures, 1 patient occurred primary deep infection. Failure of the internal fixation system occurred in 2 patients, lpatient had local recurrences. No evident immune rejection was observed. Conclusions Large segment bone allograft can meet to the present demand in reconstruction of the massive defect following femur tumor resection, and still to be a very useful alternative to prosthesis in limb-sparing surgery of femur tumors.

  2. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.

    Science.gov (United States)

    Patel, Priyesh V; Eckstein, Felix; Carballido-Gamio, Julio; Phan, Catherine; Matsuura, Maiko; Lochmüller, Eva-Maria; Majumdar, Sharmila; Link, Thomas M

    2007-10-01

    Newly developed fuzzy logic-derived structural parameters were used to characterize trabecular bone architecture in high-resolution magnetic resonance imaging (HR-MRI) of human cadaver calcaneus specimens. These parameters were compared to standard histomorphological structural measures and analyzed concerning performance in discriminating vertebral fracture status and estimating proximal femur fracture load. Sets of 60 sagittal 1.5 T and 3.0 T HR-MRI images of the calcaneus were obtained in 39 cadavers using a fast gradient recalled echo sequence. Structural parameters equivalent to bone histomorphometry and fuzzy logic-derived parameters were calculated using two chosen regions of interest. Calcaneal, spine, and hip bone mineral density (BMD) measurements were also obtained. Fracture status of the thoracic and lumbar spine was assessed on lateral radiographs. Finally, mechanical strength testing of the proximal femur was performed. Diagnostic performance in discriminating vertebral fracture status and estimating femoral fracture load was calculated using regression analyses, two-tailed t-tests of significance, and receiver operating characteristic (ROC) analyses. Significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters (r up to 0.92). Correlations between histomorphological or fuzzy logic parameters and calcaneal BMD were mostly significant (r up to 0.78). ROC analyses demonstrated that standard structural parameters were able to differentiate persons with and without vertebral fractures (area under the curve [A(Z)] up to 0.73). However, none of the parameters obtained in the 1.5-T images and none of the fuzzy logic parameters discriminated persons with and without vertebral fractures. Significant correlations were found between fuzzy or structural parameters and femoral fracture load. Using multiple regression analysis, none of the structural or fuzzy parameters were found to add discriminative value to BMD

  3. Ex vivo torsional properties of a 2.5 mm veterinary interlocking nail system in canine femurs. Comparison with a 2.4 mm limited contact bone plate.

    Science.gov (United States)

    Macedo, Aline S; Moens, Noel M M; Runciman, John; Gibson, Tom W G; Minto, Bruno W

    2017-03-20

    To evaluate the torsional properties of the Targon(®) Vet Nail System (TVS) in small canine femurs and to compare these properties to those of the 2.4 mm LC-DCP(®) plates. Thirty-six cadaveric femurs were allocated to three groups (n = 12). In all bones, points just distal to the lesser trochanter and just proximal to the fabellae were marked and a midshaft transverse osteotomy was performed. Group 1: bones were fixed with the 2.5 mm TVS with the bolts applied at the pre-identified marks. Group 2: A TVS system with 25% shorter inter-bolt distance was used. Group 3: A 7-hole 2.4 mm LC-DCP(®) plates were applied. All constructs were tested non-destructively for 10 cycles, followed by an acute torsion to failure. Torque at yield was 0.806 ± 0.183 and 0.805 ± 0.093 Nm for groups 1 and 2 and 1.737 ± 0.461 Nm for group 3. Stiffness was 0.05 ± 0.01, 0.05 ± 0.007, and 0.14 ± 0.015 Nm/° for groups 1 to 3 respectively. Maximal angular displacement under cyclic loading was 16.6° ± 2.5°, 15.6° ± 2.1°, and 7.8° ± 1.06° respectively. There was no significant difference for any of the parameters between groups 1 and 2. Both torque at yield and stiffness were significantly greater between group 3 and groups 1 and 2. The TVS had approximately half the torsional strength and approximately 1/3 of the stiffness of the 2.4 mm bone plate. Slippage of the locking mechanism was probably the cause of the early failure. The system should be considered as a low-strength and low-stiffness system when compared to bone plates.

  4. Correlação entre a densidade óssea mandibular, femural, lombar e cervical Correlation among mandibular, femoral, lumbar and cervical bone density

    Directory of Open Access Journals (Sweden)

    Paula Cabrini Scheibel

    2009-08-01

    movimentação ortodôntica.INTRODUCTION: Due to the rise in frequency of adult patients who currently are submitted to orthodontic treatment, general health conditions of this age have been a reason of inquiries correlated to events related to bone metabolism, as dental movements are dependent on the process of bone remodeling, even though in a local level. Different standards of bone density can give different answers to the orthodontic movement. AIM: The present study evaluated the correlation of the general bone mineral density (BMD to the mandibular region. METHODS: Therefore, 22 healthy women aged between 30 and 45 years old were selected for bone densitometry examinations of lumbar, cervical, femoral, as well as mandibular alveolar region. The correlations to these readings were tested as well as values of reference were established for cervical and mandibular areas. RESULTS: The results did not demonstrate significant correlation among the mandibular density to the others studied areas. There was only significant correlation between cervical and femural region. Normal BMD average value for mandibular region was 0.983g/cm² (SD = 0.334, whereas for cervical region was 0.768g/cm² (SD = 0.102, and the average values for lumbar and femoral regions were respectively 1.127g/cm² (SD = 0.067 and 0.925g/cm² (SD = 0.078, these last ones were similar to the reference values of World Health Organization (WHO. CONCLUSIONS: It is suggested that the examination of the femoral area can comprehend the expected value to cervical area, however particular densitometry examination for the mandibular area is needed, and the exploration of the traditional values (lumbar and femoral is not appropriate to the estimative of this area. Additional studies are necessary to evaluate local density variations and its influence on orthodontic movement.

  5. [Giant chondroblastoma of the femur].

    Science.gov (United States)

    Zaspa, O A

    2014-01-01

    Chondroblastoma is a benign cartilaginous bone tumor. The large dimension and aggressive local spread of the tumor may create a diagnostic problem. A 24 x 17 x 15-cm chondroblastoma is described in a 50 year-old woman. The tumor of typical structure was located in the upper femur, growing into soft tissues and pelvic bones. Thirteen months following interilioabdominal exarticulation, the patient was found to have neither local recurrence nor distant metastases.

  6. Phase-1 Bone Grafting Treat Femur Shaft Fracture%一期植骨治疗股骨干骨折的临床研究

    Institute of Scientific and Technical Information of China (English)

    张大魁; 陈渊; 梁春来

    2012-01-01

    [Objective] To explore the clinical cure effect of phase-1 bone grafting on femur shaft fracture. [Method] Collect the concerned cases for internal ixation combined with bone grafting method, after operation, treat with routine transfusion for anti-inflammation, then observe the cure effect. [Result] In he group 108 cases, followed up for 1~2y, the incisions were all cured in phase 1, without infection; among which, 106 cases had good union; other 2 bad u-lion, later cured with phase-2 therapy.[Conclusion] At open reduction and internal fixation, under patients' detailed condition, to take corresponding phase-. bone grafting can increase femur shaft fracture union rate and reduce such complications as nonunion and internal fixation device fracture.%[目的]探讨一期植骨治疗股骨干骨折的临床疗效.[方法]对2006年1月至2010年12月浙江省新昌县中医院骨伤科收治的股骨干骨折患者予以内固定联合植骨方法治疗,术后常规输液抗炎治疗,观察疗效.[结果]本组108例,随访时间1~2年.切口均一期愈合,无感染现象发生.其中106例骨折愈合良好.另2例出现愈合不良,后均经二期治疗骨折愈合.[结论]在对股骨干骨折行切开复位内固定时,根据患者的具体情况,采用相应的植骨方法行一期植骨,可增加股骨干骨折治愈率,减少骨不连及内固定装置断裂等并发症的发生.

  7. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; Del Rio Barquero, Luis M; Frangi, Alejandro F

    2011-12-01

    The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.

  8. Evaluation of bone deformities of the femur, tibia, and patella in Toy Poodles with medial patellar luxation using computed tomography.

    Science.gov (United States)

    Yasukawa, Shinji; Edamura, Kazuya; Tanegashima, Koji; Seki, Mamiko; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro; Hayashi, Kei

    2016-01-01

    To evaluate morphological parameters of the femur, tibia, and patella in Toy Poodles with medial patellar luxation (MPL) using three-dimensional (3D) computed tomography (CT) and to compare these parameters between radiography and CT. Thirty-five hindlimbs of Toy Poodles were divided into normal and grade 2 and 4 MPL groups. The anatomical and mechanical lateral proximal femoral angle, anatomical and mechanical lateral distal femoral angle (aLDFA, mLDFA), femoral varus angle (FVA), inclination of the femoral head angle, procurvation angle, anteversion angle (AA), frontal angle of the femoral neck, mechanical medial proximal or distal tibial angle, mechanical cranial proximal or distal tibial angle, tibial plateau angle, tibial torsion angle (TTA), Z angle, relative tibial tuberosity width, ratio of the medial distance of tibial tuberosity to the proximal tibial width (MDTT/PTW), patella size, and the patellar ligament length: patellar length (L:P) ratio were evaluated on radiography and 3D CT. The aLDFA, mLDFA, FVA, and TTA were significantly larger and the AA, MDTT/PTW, and patella were significantly smaller in the grade 4 MPL group. There were significant differences in many parameters between imaging tools, and CT was considered less susceptible to potential artefacts and rotational deformities. Toy Poodles with grade 4 MPL had significant femoral varus deformity, medial displacement of the tibial tuberosity, internal torsion of the proximal tibia, and hypoplasia of the patella.

  9. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    Science.gov (United States)

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  10. Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the osteoporotic fractures in men (MrOS) study.

    Science.gov (United States)

    Yang, Lang; Burton, Annabel C; Bradburn, Mike; Nielson, Carrie M; Orwoll, Eric S; Eastell, Richard

    2012-11-01

    This prospective case-cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly-selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow-up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross-sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1-SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44-3.63) to 6.91 (95% CI, 3.11-15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852-0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. Copyright © 2012 American Society for Bone and Mineral Research.

  11. Mechanical, biochemical and morphometric alterations in the femur of mdx mice.

    Science.gov (United States)

    Nakagaki, Wilson Romero; Bertran, Celso Aparecido; Matsumura, Cintia Yuri; Santo-Neto, Humberto; Camilli, José Angelo

    2011-02-01

    The bone tissue abnormalities observed in patients with Duchenne muscular dystrophy are frequently attributed to muscle weakness. In this condition, bones receive fewer mechanical stimuli, compromising the process of bone modeling. In the present study we hypothesize that other factors inherent to the disease might be associated with bone tissue impairment, irrespective of the presence of muscle impairment. Mdx mice lack dystrophin and present cycles of muscle degeneration/regeneration that become more intense in the third week of life. As observed in humans with muscular dystrophy, bone tissue abnormalities were found in mdx mice during more intense muscle degeneration due to age. Under these circumstances, muscle deficit is probably one of the factors promoting these changes. To test our hypothesis, we investigated the changes that occur in the femur of mdx mice at 21 days of age when muscle damage is still not significant. The mechanical (structural and material) and biochemical properties and morphometric characteristics of the femur of mdx and control animals were evaluated. The results demonstrated a lower strength, stiffness and energy absorption capacity in mdx femurs. Higher values for structural (load and stiffness) and material (stress, elastic modulus and toughness) properties were observed in the control group. Mdx femurs were shorter and were characterized by a smaller cortical area and thickness and a smaller area of epiphyseal trabecular bone. The hydroxyproline content was similar in the two groups, but there was a significant difference in the Ca/P ratios. Thermogravimetry showed a higher mineral matrix content in cortical bone of control animals. In conclusion, femurs of mdx mice presented impaired mechanical and biochemical properties as well as changes in collagen organization in the extracellular matrix. Thus, mdx mice developed femoral osteopenia even in the absence of significant muscle fiber degeneration. This weakness of the mdx femur is

  12. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P growth.

  13. Study on the Microstructure of Human Articular Cartilage/Bone Interface

    Institute of Scientific and Technical Information of China (English)

    Yaxiong Liu; Qin Lian; Jiankang He; Jinna Zhao; Zhongmin Jin; Dichen Li

    2011-01-01

    For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the microstructure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified cartilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 μm and 34.1 μm respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.

  14. Differential Age-related Changes in Bone Geometry between the Humerus and the Femur in Healthy Men.

    Science.gov (United States)

    Allen, Matti D; McMillan, S Jared; Klein, Cliff S; Rice, Charles L; Marsh, Greg D

    2012-04-01

    Muscle pull and weight-bearing are key mechanical determinants of bone geometry which is an important feature of bone strength that declines with adult aging. However, the relative importance of these determinants in young and old adults has not been evaluated systematically. To differentiate the influence of each type of mechanical loading we compared humeral and femoral bone shaft geometry and cross-sectional area (CSA) of the arm and thigh muscles in young and old men. Contiguous transverse MRI (Siemens 1.5T) scans of the arm and thigh were made in 10 young men (21.9 ± 1.0 years) and 10 old men (78.1 ± 4.9 years). Image analysis yielded total (TA), cortical (CA) and medullary (MA) CSA of the humeral and femoral shafts, as well as muscle CSA of the corresponding regions of the arm and thigh. Humeral CA was significantly greater in the young, whereas humeral and femoral MA were significantly greater in the older group. Significant correlations were found between arm muscle CSA and humeral CA (r = 0.73); between thigh muscle CSA and femoral CA (r = 0.69); and between body mass and femoral CA (r = 0.63) and TA (r = 0.55). Moderate correlations between muscle CSA and CA suggest that muscle pull is an important determinant of bone geometry. The significant difference observed between young and old in humeral, but not femoral CA, and the correlation between body mass and femoral, but not humeral cortical area, suggests that weight-bearing attenuates bone loss associated with adult aging.

  15. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale – the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  16. The biomechanical effect of artificial and human bone density on stopping and stripping torque during screw insertion.

    Science.gov (United States)

    Tsuji, Matthew; Crookshank, Meghan; Olsen, Michael; Schemitsch, Emil H; Zdero, Rad

    2013-06-01

    Orthopedic surgeons apply torque to metal screws manually by "subjective feel" to obtain adequate fracture fixation, i.e. stopping torque, and attempt to avoid accidental over-tightening that leads to screw-bone interface failure, i.e. stripping torque. Few studies have quantified stripping torque in human bone, and only one older study from 1980 reported stopping/ stripping torque ratio. The present aim was to measure stopping and stripping torque of cortical and cancellous screws in artificial and human bone over a wide range of densities. Sawbone blocks were obtained having densities from 0.08 to 0.80g/cm(3). Sixteen fresh-frozen human femurs of known standardized bone mineral density (sBMD) were also used. Using a torque screwdriver, 3.5-mm diameter cortical screws and 6.5-mm diameter cancellous screws were inserted for adequate tightening as determined subjectively by an orthopedic surgeon, i.e. stopping torque, and then further tightened until failure of the screw-bone interface, i.e. stripping torque. There were weak (R=0.25) to strong (R=0.99) linear correlations of absolute and normalized torque vs. density or sBMD. Maximum stopping torques normalized by screw thread area engaged by the host material were 15.2N/mm (cortical screws) and 13.4N/mm (cancellous screws) in sawbone blocks and 20.9N/mm (cortical screws) and 6.1N/mm (cancellous screws) in human femurs. Maximum stripping torques normalized by screw thread area engaged by the host material were 23.4N/mm (cortical screws) and 16.8N/mm (cancellous screws) in sawbone blocks and 29.3N/mm (cortical screws) and 8.3N/mm (cancellous screws) in human femurs. Combined average stopping/ stripping torque ratios were 80.8% (cortical screws) and 76.8% (cancellous screws) in sawbone blocks, as well as 66.6% (cortical screws) and 84.5% (cancellous screws) in human femurs. Surgeons should be aware of stripping torque limits for human femurs and monitor stopping torque during surgery. This is the first study of the

  17. Analysis of 20 KEV Electron Induced X-Ray Production in Skull, Femur/tibia Bones of Rats

    Science.gov (United States)

    Mehta, Rahul; Watson, Alec; Ali, Nawab; Soulsby, Michael; Chowdhury, Parimal

    2010-04-01

    Hind-limb suspension (HLS) of rats is a NASA validated model of simulated weightlessness. This study examines the effects of microgravity on the skeletal system of rats to assess whether or not exposure of rats to HLS for one week will induce alteration of structural features in selected bones. Four groups of rats were used: two unsuspended controls and two suspended groups. Body weight, food, and water intake were monitored daily before and after suspension. X-rays were measured by a liquid nitrogen cooled Si(li) detector on a Scanning Electron Microscope (SEM) that provided the 20 keV electron beam. X-ray data were collected from square cross sections between 100 μm2 and 104 μm2. The bones were measured for elemental levels of calcium, phosphorus, oxygen and carbon from both control and HLS rats. The average body weight of all HLS groups decreased compared to their respective unsuspended controls. Food and water intake was also lower in both suspended groups. A correlation among HLS and control samples in terms of the distribution of the primary elements was found in the bone tissue when analyzed as a function of position along the hind-leg and within the cross sections.

  18. Histomorphometric assessment of bone necrosis produced by two cryosurgery protocols using liquid nitrogen: an experimental study on rat femurs

    Directory of Open Access Journals (Sweden)

    Fábio Wildson Gurgel Costa

    2011-12-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of liquid nitrogen cryosurgery on the femoral diaphysis of rats. MATERIAL AND METHODS: The femoral diaphyses of 42 Wistar rats were exposed to three local and sequential applications of liquid nitrogen for 1 or 2 min, intercalated with periods of 5 min of passive thawing. The animals were sacrificed after 1, 2, 4 and 12 weeks and the specimens obtained were processed and analyzed histomorphometrically. RESULTS: The depth and extent of peak bone necrosis were 124.509 µm and 2087.094 µm for the 1-min protocol, respectively, and 436.424 µm and 12046.426 µm for the 2-min protocol. Peak necrosis was observed in the second experimental week with both cryotherapy protocols. CONCLUSIONS: The present results indicate that the 2-min protocol produced more marked bone necrosis than the 1-min protocol. Although our results cannot be entirely extrapolated to clinical practice, they contribute to the understanding of the behavior of bone tissue submitted to different cycles of liquid nitrogen freezing and may serve as a basis for new studies.

  19. Five-dimensional long bones biometry for estimation of femur length and fetal weight at term compared to two-dimensional ultrasound: a pilot study.

    Science.gov (United States)

    Laban, Mohamed; Alanwar, Ahmed A; Etman, Mohamed K; Elsokkary, Mohammed S; Elkotb, Ahmed M; Hasanien, Ahmad S; KhalafAllah, Ali E; Noah, Nancy M

    2017-07-27

    This study aimed to evaluate accuracy of five-dimensional long bones (5D LB) compared to two-dimensional ultrasound (2DUS) biometry to predict fetal weight among normal term women. Fifty six normal term women were recruited at Ain Shams Maternity Hospital, Egypt from 14 May to 30 November 2015. Fetal weight was estimated by Hadlock's IV formula using 2DUS and 5D LB. Estimated fetal weights (EFW) by 2DUS and 5D LB were compared with actual birth weights (ABW). Mean femur length (FL) was 7.07 ± 0.73 cm and 6.74 ± 0.67 cm by 2DUS and 5D LB (p = .02). EFW was 3309.86 ± 463.06 g by 2DUS and 3205.46 ± 447.85 g by 5D LB (p = .25). No statistical difference was observed between ABW and EFW by 2DUS (p = .7) or 5D LB (p = .45). Positive correlation was found between EFW by 2DUS, 5D LB, and ABW (r = 0.67 and 0.7; p ABW (p = .15). 2DUS and 5D LB had same accuracy for fetal weight estimation at normal term pregnancy.

  20. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  1. Longitudinal study on physical fitness parameters influencing bone mineral density reduction in middle-aged and elderly women: bone mineral density in the lumbar spine, femoral neck, and femur.

    Science.gov (United States)

    Iida, Tadayuki; Ikeda, Hiromi; Shiokawa, Michihisa; Aoi, Satomi; Ishizaki, Fumiko; Harada, Toshihide; Ono, Yuichiro

    2012-06-01

    The prolongation of the average life span of women has been associated with the rapidly aging society. However, serious problem have arisen as a result, such as an increase in the number of bed-ridden elderly patients with osteoporosis-associated femoral neck fracture. As preventive measures against osteoporosis for middle-aged to elderly women, 10,000 steps per day and intense exercise have been reported to inhibit bone mineral density (BMD) reduction. However, only a few studies have concretely reported on the type of physical fitness that is effective for BMD in particular parts of the body. In this study, a one-year longitudinal survey was performed involving generally healthy postmenopausal women to investigate physical fitness parameters influencing BMD in the lumbar spine, femoral neck, and femur. The subjects were 38 female residents of M City, aged 49-73 years. As physical fitness parameters, sit-ups, anteflexion in a sitting position, grip strength, mean amount of exercise (kcal), and area of outer body sway on standing straight with the eyes closed (m2) were measured. The BMD was measured in the lumbar spine (L2-L4), femoral neck, and femur. Logistic regression analysis was performed regarding the physical fitness parameters as explanatory variables and groups with and without BMD reduction over one year as those with and without risk as dependent variables. The number of sit-ups (odds ratio: 0.76, 95% CI: 0.61-0.96, p=0.022) was a preventive factor against BMD reduction of the lumbar spine, and ante flexion in a sitting position was a preventive factor against BMD reduction of the femoral neck (odds ratio: 0.88, 95% CI: 0.78-0.99, p=0.029). Regarding BMD reduction of the femur, the area of outer body sway on standing straight with the eyes closed tended to be not significant to the risk. It is suggested that physical fitness and local muscle strength are associated with BMD reduction in the lumbar spine, femoral neck, and femur.

  2. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L. Mill. (Cactaceae Cladodes as Calcium Source in Diet

    Directory of Open Access Journals (Sweden)

    Ezequiel Hernández-Becerra

    2017-02-01

    Full Text Available Mechanical, microstructural properties, mineral content and bone mineral density (BMD of the femur were evaluated in growing rats fed with Opuntia ficus indica (L. Mill. (Cactaceae cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet. The failure load of femurs was significantly lower (p ≤ 0.05 in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi and trabecular thickness (Tb.Th of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05 than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  3. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet

    Science.gov (United States)

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-01-01

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower (p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health. PMID:28165410

  4. Experimental research of injectable calcium sulfate-based bone graft in the sheep femur bone defects%可注射硫酸钙基人工骨在羊股骨缺损植骨中的实验研究

    Institute of Scientific and Technical Information of China (English)

    王逢贤; 尹本敬; 俞兴; 曹旭; 徐林

    2012-01-01

    [目的]通过可注射性植骨材料在羊股骨缺损的骨内植入,评价可注射硫酸钙基植骨材料的骨修复能力.[方法]建立绵羊单侧股骨缺损模型,将可注射硫酸钙基人工骨植入骨缺损内,于术后4、8、12周行大体观察及X线片检查缺损区骨痂生长情况.[结果]术后4周时材料大部分降解吸收,可见新生骨小梁结构,缺损区有部分骨痂形成;8周时可见大量新生骨小梁结构,部分形成成熟骨单位,可见骨母细胞,新生骨与宿主骨界面模糊,完成断端间的骨性桥接;12周时材料完全降解,形成的新生骨小梁部分出现重塑形成正常骨结构,缺损区被新骨完全替代,骨痂开始塑形,髓腔再通.[结论]可注射硫酸钙基人工骨作为骨移植替代材料,具有良好的骨传导性和骨诱导性,用于修复骨缺损可以取得良好的效果.%[Objective]To evaluate the osteogenetic ability of injectable calcium sulfate-based bone graft substitute by applying injectable bone graft material in the sheep femur bone defects. [ Method] The sheep unilateral femoral defect model was established, and the injectable calcium sulfate-based bone graft substitute was implanted into the bone defect. The callus growth was investigated at 4,8 and 12 weeks after surgery by gross observation and X-ray examination. [ Result] At 4 weeks after operation the majority of material was degraded and absorbed. New trabecular bone structure and some defect of callus formation were noted. At 8 weeks after operation a large number of new trabecular bone structure could be seen. Part of mature bone unit were formed, osteoblasts were noted, new bone was blurred at the host bone interface, and bone bridging was completed between the ends. At 12 weeks after operation material was degraded completely, the new bone grew into normal structure,and the defect was completely replaced by new bone. [ Conclusion ] Injectable calcium sulfate-based bone as a bone graft substitute

  5. Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center.

    Science.gov (United States)

    Nakajima, Yoshikazu; Tashiro, Takahito; Sugano, Nobuhiko; Yonenobu, Kazuo; Koyama, Tsuyoshi; Maeda, Yuki; Tamura, Yuichi; Saito, Masanobu; Tamura, Shin'ichi; Mitsuishi, Mamoru; Sugita, Naohiko; Sakuma, Ichiro; Ochi, Takahiro; Matsumoto, Yoichiro

    2007-09-01

    A new method for fluoroscopic tracking of a proximal bone fragment in femoral fracture reduction is presented. The proposed method combines 2-D and 3-D image registration from single-view fluoroscopy with tracking of the head center position of the proximal femoral fragment to improve the accuracy of fluoroscopic registration without the need for repeated manual adjustment of the C-arm as required in stereo-view registrations. Kinematic knowledge of the hip joint, which has a positional correspondence with the femoral head center and the pelvis acetabular center, allows the position of the femoral fragment to be determined from pelvis tracking. The stability of the proposed method with respect to fluoroscopic image noise and the desired continuity of the fracture reduction operation is demonstrated, and the accuracy of tracking is shown to be superior to that achievable by single-view image registration, particularly in depth translation.

  6. Human immunodeficiency virus and avascular necrosis of femur head:a case report

    Institute of Scientific and Technical Information of China (English)

    A.ATAHAN (C)A(G)ATAY; REYHAN K(UCU)KKAYA; MURAY AKYILDIZ; HANDE BERK; TANER YILDIRMAK; HALIT (O)ZS(U)T; HALUK ERAKSOY; SEMRA (C)ALANGU

    2004-01-01

    Avascular necrosis (AVN), also termed as osteonecrosis or aseptic necrosis, is a process caused by direct and indirect damage to the vascular supply of the involved bone.1-5 Clinical course of the disease is usually progressive and causes significant pain and limitation of movement. Trauma causes AVN by the obvious direct interruption of the vascular supply, but there are a variety of underlying systemic disorders associated with the development of AVN via indirect vascular compromise. The known risk factors include corticosteroid use, alcohol abuse, smoking, sickle cell anemia, coagulopathies, systemic lupus erythematosus, hypercholesterolemia, Gaucher ' s disease, chronic pancreatitis, and hyper-triglyceridemia.3 It is very difficult to define reasons of AVN in individual patient, because most of the patients had multiple risk factors for AVN. On the other hand, approximately 10%-20% of AVN cases have no known risk factors and are classified as idiopathic AVN.

  7. A STUDY OF CLOSED INTERLOCKING NAILING FOR FRACTURES OF SHAFT OF FEMUR IN ADULTS

    Directory of Open Access Journals (Sweden)

    Ashwin

    2013-06-01

    Full Text Available ABSTRACT: BACKGROUND:-This study is to determine the clinical course and results after interlocking nailing for femoral shaft fractures , merits and demerits of interlocking nailing, achieving the final goals of femoral shaft fracture management with special references to time for radiological union, knee stiffness, limb length discrepancy, ambulation and return to work. Femur is the strongest and heaviest bone in the human skeleton. It is also the longest bone contributing 26% to height of an individual. Fractures of the shaft of the femur are among the most common fractures encountered in orthopaedic practice, can cause prolong morbidity and extensive disability unless treatment is appropriate. Many treatment modalities were described; with many surgeons advocating different methods of treatment .At present Interlocking nailing of the femur seems to be the ideal method of treatment for complex femoral fractures.

  8. Bisphosphonate-associated atypical subtrochanteric femur fracture.

    Science.gov (United States)

    Wolin, Ely A; Banks, Kevin P; Vroman, Penny J

    2015-03-01

    Bisphosphonates help prevent progressive bone mineralization loss and subsequent osteoporotic fractures. However, long-term bisphosphonate therapy paradoxically increases the risk of a unique injury called an atypical subtrochanteric femur fracture. Despite this, the benefits of bisphosphonates outweigh the risks, because far more pathologic fractures are prevented than induced. The early identification of atypical subtrochanteric femur fractures is important as there is high associated morbidity and mortality. We describe a case of a 76-y-old woman with a completed bisphosphonate-associated atypical subtrochanteric femur fracture.

  9. Weakness in the mechanical properties of the femurs of growing female rats exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina [Medical University of Bialystok, Department of Toxicology, Bialystok (Poland); Majewska, Katarzyna [University of Warmia and Mazury (Poland). Faculty of Food Science

    2005-09-01

    The study assessed the effect of cadmium (Cd) intoxication on the risk of deformities and fractures of the growing bones of female rats, in order to model human exposure to this metal. For this purpose, bone mineral density and mechanical properties of the proximal and distal ends and diaphysis of the femur were investigated in female Wistar rats exposed to 1, 5 and 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months after the onset of weaning. Daily Cd doses received from drinking water during the treatment period were in the following ranges: 0.059-0.219, 0.236-1.005 and 2.247-9.649 mg/kg body weight at 1, 5 and 50 mg Cd/l, respectively. Biomechanical properties of the femoral proximal and distal ends were evaluated in a compression test, and those of the femoral diaphysis in a cutting test, with loading perpendicular to the longitudinal axis of the bone in all tests. The mineralization and mechanical properties of the bone tissue at various locations on the femur were affected by exposure to Cd in a dose- and duration-dependent manner. Exposure to 1 mg Cd/l (corresponding to low human exposure) during skeletal development weakened the fracture strength of the femoral neck and the trabecular bone at the level of the distal end of the femur and affected the elastic properties of the cortical bone at the femoral diaphysis. At higher levels of Cd exposure, adverse effects were generally observed after a shorter exposure period than for 1 mg Cd/l, and were more advanced. The cadmium-induced weakening of the biomechanical properties of bone at particular sites on the femur correlated with the decreased bone mineralization. The results indicate that even a low exposure to Cd may affect the mineralization and biomechanical properties of growing bone, thus enhancing the risk of fracture. (orig.)

  10. Weakness in the mechanical properties of the femur of growing female rats exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina [Medical University of Bialystok, Department of Toxicology, Bialystok (Poland); Majewska, Katarzyna [University of Warmia and Mazury, Olsztyn (Poland). Faculty of Food Science

    2005-05-01

    This study was aimed at assessing the effect of cadmium (Cd) intoxication on the risk of deformities and fractures of the growing bone on a female rat model of human exposure to this metal. For this purpose, bone mineral density (BMD) and mechanical properties of the proximal and distal ends and diaphysis of the femur were investigated in female Wistar rats exposed to 1, 5, and 50 mg Cd L{sup -1} in drinking water for 3, 6, 9, and 12 months since weaning. Daily Cd doses received from the drinking water during the treatment period were in the ranges 0.059-0.219, 0.236-1.005, and 2.247-9.649 mg kg{sup -1} body weight at 1, 5, and 50 mg Cd L{sup -1}, respectively. Biomechanical properties of the femoral proximal and distal ends were evaluated in a compression test and those of the femoral diaphysis in a cutting test with loading perpendicular to the bone longitudinal axis in all tests. Cd dose- and exposure duration-dependently affected the mineralization and mechanical properties of the bone tissue at various locations of the femur. Exposure to 1 mg Cd L{sup -1} (corresponding to low human exposure) during skeletal development weakened the fracture strength of the femoral neck and of the trabecular bone at the level of the distal end of the femur and affected the elastic properties of the cortical bone at the femoral diaphysis. At the higher levels of Cd treatment, the adverse action generally occurred after shorter exposure than at 1 mg Cd L{sup -1} and was more seriously advanced. The Cd-induced weakening in the bone biomechanical properties at particular sites of the femur correlated with the decreased bone mineralization. The results indicate that even low exposure to Cd may affect the mineralization and biomechanical properties of growing bone, thus increasing the risk of fractures. (orig.)

  11. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study.

    Science.gov (United States)

    Yang, L; Udall, W J M; McCloskey, E V; Eastell, R

    2014-01-01

    The quantitative computed tomography (QCT) scans in an individually matched case-control study of women with hip fracture were analysed. There were widespread deficits in the femoral volumetric bone mineral density (vBMD) and cortical thickness of cases, and cortical vBMD and thickness discriminated hip fracture independently of BMD by dual-energy X-ray absorptiometry (DXA). Acknowledging the limitations of QCT associated with partial volume effects, we used QCT in an individually matched case-control study of women with hip fracture to better understand its structural basis. Fifty postmenopausal women (55-89 years) who had sustained hip fractures due to low-energy trauma underwent QCT scans of the contralateral hip within 3 months of the fracture. For each case, postmenopausal women, matched by age (±5 years), weight (±5 kg) and height (±5 cm), were recruited as controls. We quantified cortical, trabecular and integral vBMD and apparent cortical thickness (AppCtTh) in four quadrants of cross-sections along the length of the femoral head (FH), femoral neck (FN), intertrochanter and trochanter and examined their association with hip fracture. Women with hip or intracapsular (IC) fracture had significantly (p hip and IC fractures independent of hip areal BMD (aBMD). The combination of AppCtTh and trabecular or integral vBMD discriminated hip fracture, whereas the combination of FH and FN AppCtTh discriminated IC fracture significantly (p hip aBMD. Deficits in vBMD and AppCtTh in cases were widespread in the proximal femur, and cortical vBMD and AppCtTh discriminated hip fracture independently of aBMD by DXA.

  12. Meyer’s Muscle Pedicle Bone Graft a Novel Procedure in Treatment of Neglected Fracture Neck of Femur in Pediatric Age Group-A Case Report

    OpenAIRE

    2016-01-01

    Meyers muscle pedicle graft has been used in delayed presentation and non-union of neck femur fracture in adults with good results. Delayed presentation or non-union neck femur in children is not uncommon in children. Subtrochanteric valgus osteotomy with or without fixation has been suggested with varying results. We present meyers muscle graft being used in paediatric age group with excellent result at 3 years follow-up. There are limited report literature of meyers muscle pedicle graft bei...

  13. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Science.gov (United States)

    Meier, Raphael P H; Seebach, Jörg D; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H; Muller, Yannick D

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  14. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    Directory of Open Access Journals (Sweden)

    Raphael P H Meier

    Full Text Available Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow and 10 days (kidney capsule. Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  15. Effect of glucocorticoids on lncRNA and mRNA expression profiles of the bone microcirculatory endothelial cells from femur head of Homo sapiens

    Directory of Open Access Journals (Sweden)

    Qingsheng Yu

    2015-06-01

    Full Text Available Appropriate gene expression patterns form the basis for bone microvascular endothelial cells' function in femoral head. Although previous studies have elucidated the impact of glucocorticoids on these cells' specific gene expression the exact differential transcriptomes and comprehensive gene expression profiles remain unknown. Using microarray-based platforms we investigated the transcriptome patterns before and after hydrocortisone administration of bone microvascular endothelial cells from human femoral head. Our results highlight the involvement of development differentiation and apoptosis in the bone microvascular endothelial cells. Elucidation of differential gene expression before and after hydrocortisone administration emphasizes the importance of regulatory networks to gene co-expression within biological processes induced by glucocorticoids. With Benjamini–Hochberg characterization we identified 73 up-regulated and 166 down-regulated long noncoding RNAs the expression of 107 of which significantly correlated with 172 mRNAs after administration of hydrocortisone. Transcriptome analysis of bone microvascular endothelial cells from human femoral head samples is highly informative because it is deduced from data comprised of large number of genes expressed above background. The data have been submitted to the repository of Gene Expression Omnibus (Series GSE60332.

  16. Dynamic Finite Element Analysis of Impulsive Stress Waves Propagating from Distal End of Femur

    Directory of Open Access Journals (Sweden)

    Sarai,Takaaki

    2012-10-01

    Full Text Available The human femur is subjected to an impulsive load at its distal end during daily life. Femoral bone fracture caused by impact loading is common in elderly women. It is important to clarify the dynamic response of the femur and to evaluate the change in its stress state during impact loading. A 3-dimensional model of the femur was prepared in the present study, and the impulsive stress waves propagating from the distal end of the femur were analyzed by the dynamic finite element method. This model showed that the von Mises equivalent stress is large on the anterior and posterior sides of the mid-diaphysis when the impact direction is different from that of the bone axis. As for the femoral neck, the absolute value of minimum principal stress initially increases on the medial side;slightly later the maximum principal stress increases on the lateral side. In this case, the absolute value of the maximum principal stress was found to be larger than that of the minimum principal stress, and the absolute value of the principal stress decreased as the impact angle increased. Further, the femoral neck and the trochanter were shown to have a higher risk of bone fracture when the impact direction is coincident with the bone axis.

  17. Meyer’s Muscle Pedicle Bone Graft a Novel Procedure in Treatment of Neglected Fracture Neck of Femur in Pediatric Age Group-A Case Report

    Science.gov (United States)

    Ponnanna, KM; Mannual, Sunil

    2016-01-01

    Meyers muscle pedicle graft has been used in delayed presentation and non-union of neck femur fracture in adults with good results. Delayed presentation or non-union neck femur in children is not uncommon in children. Subtrochanteric valgus osteotomy with or without fixation has been suggested with varying results. We present meyers muscle graft being used in paediatric age group with excellent result at 3 years follow-up. There are limited report literature of meyers muscle pedicle graft being used in children. PMID:27790536

  18. Age changes in human bone: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, W.D.

    1977-12-03

    The human skeleton steadily changes structure and mass during life because of a variety of internal and external factors. Extracellular substance and bone cells get old, characteristic structural remodeling occurs with age and these age-related changes are important in the discrimination between pathological and physiological changes. Perhaps 20 percent of the bone mass is lost between the fourth and the ninth decades, osteoblasts function less efficiently and gradual loss of bone substance is enhanced by delayed mineralization of an increased surface area of thin and relatively less active osteoid seams. After the fifth decade, osteoclasia and the number of Howship's lacunae increase, and with age, the number of large osteolytic osteocytes increases as the number of small osteocytes declines and empty osteocyte lacunae become more common. The result is greater liability to fracture and diminished healing or replacement of injured bone.

  19. Lewis肺癌细胞构建小鼠股骨骨癌痛行为模型%A mouse model of bone cancer pain signs constructed by Lewis lung carcinoma cells inoculation of the femur

    Institute of Scientific and Technical Information of China (English)

    黄晓玲; 孔高茵; 黄东

    2009-01-01

    目的 观察骨癌痛行为模型小鼠影像学改变和骨质损害程度.方法 将Lewis肺癌细胞接种于雄性C57BL/6小鼠股骨骨髓腔,构建骨癌痛动物行为模型.术后7 d始隔日观察小鼠自发痛反应、测定行走评分与热缩腿反射潜伏期.术后第7、15、23天,行双侧后肢X线摄片,评估肿瘤诱发的骨组织破坏程度.同时取术侧后肢行苏木精-伊红(HE)染色后观察骨质破坏情况,术后23 d另取腰段脊髓做神经胶质酸性蛋白(GFAP)免疫组化检查.结果 实验组接种后第11d左右出现明显自发痛行为,表现为自发抬足时间延长;第13天左右出现明显行走诱发患肢痛和热痛敏现象,表现为使用评分持续下降与缩腿潜伏期显著降低.术后23 d放射学结果显示,术侧股骨下段骨髓腔消失,骨皮质中断.同时HE染色可见肿瘤细胞充满骨髓腔,且穿破骨皮质向外生长,侵犯周围肌肉组织.免疫组化结果示术侧腰段脊髓星形胶质细胞增生、肥大.结论 采用Lewis肺癌细胞构建小鼠骨癌痛模型是可行的.%Objective To evaluate the behavior and bone destruction of the mouse model of bone cancer pain signs. Method A mouse model of bone cancer pain signs was developed by intra-femur inoculations of Lewis lung carcinoma cells in C57BL/6 mice. Spontane-ous lifting time, ambulatory score and paw withdrawal latencies to radiant heat stimulation were measured in alternative days throughout the experiment. The structural damage of the femur were monitored by radiogram on the 7th, 15th and 23rd day respectively, and the pathohisto-logical changes of the femur bones were observed by hematoxylin-eosin staining (HE) staining on the same days. Meanwhile, the glial fibril-lary acid protein (GFAP) immunohistochemistry changes of the spinal cord in lumbar segments on the 23rd day after inoculation were ob-served. Results Mice received intra-femur inoculation of Lewis lung carcinoma cells gradually developed

  20. Morphological characteristics of the developing proximal femur: A biomechanical perspective

    Directory of Open Access Journals (Sweden)

    Đurić Marija

    2012-01-01

    Full Text Available Introduction. In contrast to a plethora of studies on the proximal femur in adults, its external and internal morphology in growing children has not been sufficiently analyzed. Objective. We analyzed changes in external and internal morphology of the proximal femur during growth and development to interpret the links between them and concepts of the human femoral biomechanics. Methods. We assessed external geometry, internal trabecular and cortical arrangement, and bone mineral density (BMD of the proximal femur in 29 children (age at death from 1 month to 14 years from archaeological context by using microscopic and radiographic methods. Results. The results showed that both the femoral neck width and length increased with age, with the femoral neck becoming more elongated, while the collo-diaphyseal angle decreased. A strong relationship between age and adjusted areal BMD was found, showing continuous increase during childhood. Parallel trabecular pattern at birth changed to mature three distinct trabecular groups (longitudinal – principal compressive, transversal – tensile and randomly scattered starting from the age of 8 months. In older children the superior and inferior aspects of the femoral neck differently changed with growth, with medial neck having thicker cortex and trabeculae. Conclusion. In the light of bone adaptation principle, the observed changes in external and internal morphology are governed by mechanical forces acting on the developing femur. Our findings on the development of trabecular pattern and cortical distribution are compatible with recent views on the femoral biomechanics which point out the predominance of compressive stresses in the femoral neck, adaptation to shear stresses, multiaxial loading perspective, prevalence of muscle effects over body weight, and existence of adaptational eccentricity. [Projekat Ministarstva nauke Republike Srbije, br. 45005

  1. Pilot study on proximal femur strains during locomotion and fall-down scenario

    Energy Technology Data Exchange (ETDEWEB)

    Klodowski, Adam, E-mail: adam.klodowski@lut.fi; Valkeapaeae, Antti, E-mail: antti.valkeapaa@lut.fi; Mikkola, Aki, E-mail: aki.mikkola@lut.fi [Lappeenranta University of Technology (Finland)

    2012-09-15

    The most common and severe type of fracture among the elderly is known as a proximal femur fracture. Aging-related bone loss is one of the major contributing factors to increased likelihood of bone fracture. Specific exercises can be used to strain bones and increase bone strength to counter the effects of bone loss. The flexible multibody simulation approach can be used as a non-invasive method for estimating bone strains caused by physical activity. This method was recently used to analyze the strain of locomotion in regard to human femur and tibia leg bones. The current study focuses on strain analysis of the femoral neck. The research test person was a clinically healthy 65-year old Caucasian male. The computed tomography was used to build a geometrically accurate finite element model of the femur with inhomogeneous material properties derived from the voxel data. The anthropometric data was used to model the musculoskeletal system of the test person. The multibody skeletal model was utilized to estimate loading on the femoral neck during walking, which represents a routine daily activity. The flexible multibody simulation results were compared to strains that occurred during a simulated fall onto the greater trochanter of the femur. The fall simulation was made entirely using finite element software. Results from the finite element analysis were compared with the previous study showing that the test person does not belong to the high-risk hip fracture group. Finally, the estimated strains gathered from the walking simulation were compared to the strain values from the simulated fall-down scenario.

  2. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  3. Differences in compact bone tissue microscopic structure between adult humans (Homo sapiens) and Assam macaques (Macaca assamensis).

    Science.gov (United States)

    Nganvongpanit, Korakot; Phatsara, Manussabhorn; Settakorn, Jongkolnee; Mahakkanukrauh, Pasuk

    2015-09-01

    This study investigated the osteon structure of adult humans and Assam macaques, which served as a nonhuman primate model, to find an adequate key for species identification. Samples of compact bone from humans (n=5) and Assam macaques (n=5) - including humerus (n=20), radius (n=20), ulna (n=20), femur (n=20), tibia (n=20) and fibula (n=20) - were processed using conventional histological techniques. 100 secondary osteons from each sample were evaluated under light microscopy. Parameter measurements included: diameter, perimeter and area of Haversian canal and osteon; distance between centers of Haversian canals; and ratio between diameter of Haversian canal and osteon. Four parameters, including diameters and areas of Haversian canal and osteon, demonstrated significantly higher (P<0.05) values in humans than in Assam macaques. Therefore, compact bone microstructure could thus be used as a potential tool to differentiate human and nonhuman primates.

  4. Prediction of the mechanical response of the femur with uncertain elastic properties.

    Science.gov (United States)

    Wille, Hagen; Rank, Ernst; Yosibash, Zohar

    2012-04-30

    A mandatory requirement for any reliable prediction of the mechanical response of bones, based on quantitative computer tomography, is an accurate relationship between material properties (usually Young's modulus E) and bone density ρ. Many such E-ρ relationships are available based on different experiments on femur specimens with a large spread due to uncertainties. The first goal of this study is to pool and analyze the relevant available experimental data and develop a stochasticE-ρ relationship. This analysis highlights that there is no experimental data available to cover the entire density range of the human femur and that some "popular" E-ρ relationships are based on data that contains extreme scatter, while others are based on a very limited amount of information. The second goal is to use the newly developed stochastic E-ρ relationship in high-order finite element analyses (FEAs) for the computation of strains and displacements in two human proximal femurs, mimicking in vitro experiments. When compared with the experimental observations, the FEA predictions using the median of the stochastic E-ρ relationship follow the underlying distribution of the stochastic E-ρ relationship. Thus, most deviations of the FEA predictions from experimental observations can possibly be explained by uncertain elastic properties of the femur.

  5. Protective effect of Aronia melanocarpa polyphenols against cadmium-induced disorders in bone metabolism: a study in a rat model of lifetime human exposure to this heavy metal.

    Science.gov (United States)

    Brzóska, Malgorzata M; Rogalska, Joanna; Galazyn-Sidorczuk, Malgorzata; Jurczuk, Maria; Roszczenko, Alicja; Tomczyk, Michal

    2015-03-05

    It was investigated, in a female rat model of low and moderate lifetime human exposure to cadmium (Cd), whether polyphenols from Aronia melanocarpa berries (chokeberry; AMP) may offer protection from this heavy metal-induced disorders in bone metabolism. For this purpose, numerous indices of bone formation (osteocalcin, alkaline phosphatase, osteoprotegerin) and resorption (carboxy-terminal cross-linking telopeptides of type I collagen, soluble receptor activator of nuclear factor-κB ligand) in the serum and/or distal femur epiphysis (trabecular bone region), as well as bone mineral status (volumetric bone mineral density of the femur and content of mineral components, including calcium, in the bone tissue at the distal femur epiphysis) were evaluated in female Wistar rats that received a 0.1% aqueous extract of AMP, as the only drinking fluid (prepared from lyophilized extract by Adamed Consumer Healthcare), and/or Cd in diet (1 and 5mg/kg) for 3, 10, 17, and 24 months. Examination of the phytochemical profile of the aronia extract revealed high content of polyphenols (612.40 ± 3.33 mg/g), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among detected compounds anthocyanins were identified as dominating. The exposure to Cd, dose- and duration-dependently, enhanced resorption and inhibited formation of the bone tissue resulting in its decreased mineralization. The administration of AMP under the exposure to 1 and 5 mgCd/kg diet provided important protection from this heavy metal-induced disturbances in the bone turnover and changes in the bone mineral status, and the beneficial impact of polyphenols resulted from their independent action and interaction with Cd. These findings suggest that consumption of Aronia melanocarpa polyphenols may play a role in prevention against female skeleton damage due to chronic exposure to Cd and that chokeberry represents the good natural plant candidate for further investigations of its prophylactic use

  6. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by {sup 99m}Tc-MDP bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shunfang [Department of Nuclear Medicine, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China)], E-mail: yzyg@sh163.net; Dong Qianggang [Laboratory of Mol-diagnosis, Shanghai Cancer Institute of Shanghai Jiaotong University, Shanghai 200032 (China); Yao Ming [Laboratory of Pathology, Shanghai Cancer Institute of Shanghai Jiaotong University, Shanghai 200032 (China); Shi Meiping [Department of Pathology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Ye Jianding [Department of Radiology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Zhao Langxiang [Department of Pathology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Su Jianzhong; Gu Weiyong [Shanghai Thoracic Tumor Institute, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Xie Wenhui [Department of Nuclear Medicine, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Wang Kankan; Du Yanzhi [State Key Laboratory of Medical Genomics, Ruijin Hospital of Shanghai Jiaotong University, Shanghai 200025 (China); Li Yao [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Huang Yan [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China)], E-mail: huangyan@fudan.edu.cn

    2009-04-15

    Background: Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with {sup 99m}Tc-MDP bone scintigraphy. Methods: The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with {sup 99m}Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. Results: The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. Conclusion: SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as

  7. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by (99m)Tc-MDP bone scintigraphy.

    Science.gov (United States)

    Yang, Shunfang; Dong, Qianggang; Yao, Ming; Shi, Meiping; Ye, Jianding; Zhao, Langxiang; Su, Jianzhong; Gu, Weiyong; Xie, Wenhui; Wang, Kankan; Du, Yanzhi; Li, Yao; Huang, Yan

    2009-04-01

    Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with (99m)Tc-MDP bone scintigraphy. The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with (99m)Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as an accurate, sensitive, noninvasive tool to detect

  8. Diagnostic dry bone histology in human paleopathology.

    Science.gov (United States)

    de Boer, H H Hans; Van der Merwe, A E Lida

    2016-10-01

    Paleopathology is the study of trauma and disease as may be observed in ancient (human) remains. In contrast to its central role in current medical practice, microscopy plays a rather modest role in paleopathology. This is at least partially due to the differences between fresh and decomposed (i.e., skeletonized or "dry bone") tissue samples. This review discusses these differences and describes how they affect the histological analysis of paleopathological specimens. First, we provide a summary of some general challenges related to the histological analysis of palaeopathological specimens. Second, the reader is introduced in bone tissue histology and bone tissue dynamics. The remainder of the paper is dedicated to the diagnostic value of dry bone histology. Its value and limitations are illustrated by comparing several well-studied paleopathological cases with similar contemporary, clinical cases. This review illustrates that due to post-mortem loss of soft tissue, a limited number of disorders display pathognomonic features during histological analysis of skeletonized human remains. In the remainder of cases, histology may help to narrow down the differential diagnosis or is diagnostically unspecific. A comprehensive, multidisciplinary diagnostic approach therefore remains essential. Clin. Anat. 29:831-843, 2016. © 2016 Wiley Periodicals, Inc.

  9. Osteoblast recruitment routes in human cancellous bone remodeling

    DEFF Research Database (Denmark)

    Kristensen, Helene B; Levin Andersen, Thomas; Marcussen, Niels

    2014-01-01

    It is commonly proposed that bone forming osteoblasts recruited during bone remodeling originate from bone marrow perivascular cells, bone remodeling compartment canopy cells, or bone lining cells. However, an assessment of osteoblast recruitment during adult human cancellous bone remodeling......-terminal peptide versus osterix, and (ii) canopy cell densities, found to decline with age, and canopy-capillary contacts above eroded surfaces correlated positively with osteoblast density on bone-forming surfaces. Furthermore, we showed that bone remodeling compartment canopies arise from a mesenchymal envelope...

  10. A method for sex estimation using the proximal femur.

    Science.gov (United States)

    Curate, Francisco; Coelho, João; Gonçalves, David; Coelho, Catarina; Ferreira, Maria Teresa; Navega, David; Cunha, Eugénia

    2016-09-01

    The assessment of sex is crucial to the establishment of a biological profile of an unidentified skeletal individual. The best methods currently available for the sexual diagnosis of human skeletal remains generally rely on the presence of well-preserved pelvic bones, which is not always the case. Postcranial elements, including the femur, have been used to accurately estimate sex in skeletal remains from forensic and bioarcheological settings. In this study, we present an approach to estimate sex using two measurements (femoral neck width [FNW] and femoral neck axis length [FNAL]) of the proximal femur. FNW and FNAL were obtained in a training sample (114 females and 138 males) from the Luís Lopes Collection (National History Museum of Lisbon). Logistic regression and the C4.5 algorithm were used to develop models to predict sex in unknown individuals. Proposed cross-validated models correctly predicted sex in 82.5-85.7% of the cases. The models were also evaluated in a test sample (96 females and 96 males) from the Coimbra Identified Skeletal Collection (University of Coimbra), resulting in a sex allocation accuracy of 80.1-86.2%. This study supports the relative value of the proximal femur to estimate sex in skeletal remains, especially when other exceedingly dimorphic skeletal elements are not accessible for analysis.

  11. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  12. Imaging features of desmoplastic fibroma of the femur bone%股骨骨促结缔组织增生性纤维瘤的影像学特征

    Institute of Scientific and Technical Information of China (English)

    任国强; 卢再鸣; 潘诗农; 陆晓梅; 郭启勇

    2011-01-01

    目的 探讨股骨骨促结缔组织增生性纤维瘤(DFB)的影像学特征.方法 回顾分析经病理证实的10例股骨DFB患者的影像学资料.结果 X线平片显示,股骨干骺端见偏心性或中心性类圆形或梭形透亮影,病灶长轴沿股骨的长轴走向.CT可见股骨干骺端局部软组织肿块,邻近骨皮质缺损,骨质向内凹陷,边缘稍硬化,病灶内可见点状钙化.MRI表现为肿瘤在T1WI、T2WI均呈低信号.结论 DFB具有侵袭性特征,手术时需要较大的切除范围;其影像特征与非骨化纤维瘤等相似,易导致误诊,鉴别诊断有重要临床价值.%Objective To investigate the imaging features of desmoplastic fibroma of bone (DFB) on the femur.Methods Imaging data of 10 patients with pathologically proved DFB of the femur were analyzed retrospectively.Results Round or spindle-shaped eccentric or central translucent shadows were showed in distal femoral metaphysics, the long axis of lesions was along that of the femurs in plain X-ray films.CT showed local soft-tissue mass around the lesions, adjacent cortical bone defect with peripheral cortical attenuation and punctate calcifications.The zone of transition between tumor and normal bone was slightly hardened.MRI showed low signals on T2WI and TlWI.Conclusion DFB is a rare tumor with strong local aggressiveness.A wide surgical resection and careful long-term follow-up are necessary.Differential diagnosis from other soft tissue lesions presenting as bony erosion and benign fibrous lesions, especially from non-ossifying fibroma and fibrous dysplasia has important clinical significance of DFB.

  13. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  14. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  15. Test Bench Development for Femur Stability Assessment

    Directory of Open Access Journals (Sweden)

    Samuel SANCHEZ-CABALLERO

    2015-01-01

    Full Text Available This paper shows the design and development of a test bench for humanfemurs. The main uses of this test bench will run from artificial femurs comparisonwith real femurs, to join stability assessment after bone a fracture repair. Amongthis uses is specially designed for condylar fractures testing. The test bench isdeveloped from a self-made existing tensile/compression testing machine. Thedesign procedure is supported by a literature review about the bone mechanicalbehavior and composition generally and the knee joint performance and repairparticularly. On the basis of this review, the machine was designed to simulate theadduction and abduction movements of the joint. The magnitudes to be measuredare: the compression force, the bone displacement (vertical and the knee jointrotation

  16. Dynamic examination of the femur in a rat model of osteoporosis after injection of CPC containing ABK and PLLA

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A.; Kusaka, T.; Sasaki, S.; Takano, I.; Tahara, Y.; Ishii, Y. [Kyorin Univ. School of Medicine, Tokyo (Japan). Dept. of Orthopaedic Surgery

    2001-07-01

    We developed calcium phosphate cement containing antibiotics and poly lactic acid, and examined the effects on bone strength by injecting the cement into the medullary space of the femur in model rats with osteoporosis. A good strength of bone was obtained over 6 months by injecting bone paste into the medullary space of the femur in model rats with bone formation. (orig.)

  17. Scanning electron microscopy analysis of experimental bone hacking trauma of the mandible.

    Science.gov (United States)

    Alunni-Perret, Véronique; Borg, Cybèle; Laugier, Jean-Pierre; Bertrand, Marie-France; Staccini, Pascal; Bolla, Marc; Quatrehomme, Gérald; Muller-Bolla, Michèle

    2010-12-01

    The authors report on a macroscopic and microscopic study of human mandible bone lesions achieved by a single-blade knife and a hatchet. The aim of this work was to complete the previous data (scanning electron microscopy analysis of bone lesions made by a single-blade knife and a hatchet, on human femurs) and to compare the lesions of the femur with those of the mandible. The results indicate that the mandible is a more fragile bone, but the features observed on the mandible are quite similar to those previously observed on the femur. This work spells out the main scanning electron microscopy characteristics of sharp (bone cutting) and blunt (exerting a pressure on the bone) mechanisms on human bone. Weapon characteristics serve to explain all of these features.

  18. Mechanistic fracture criteria for the failure of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  19. 行走中股骨生物力学特性的有限元分析%Finite element analysis of biomechanics of human femur during gait

    Institute of Scientific and Technical Information of China (English)

    杨挺; 郑建河; 姚子龙; 马立敏; 张余

    2016-01-01

    Objective To simulate the optimal boundary conditions with the utilization of finite element, and to explore biomechanics of human femur during gait.Methods Volunteer′s femoral CT data was extracted before three-di-mensional reconstruction and meshing.A computer simulation software, Anybody, was used to simulate the normal move-ments during gait and export the muscle force exerted on femur during the activity.Geomagic studio and Hypermesh were used to match the coordinates between the target model and the model provided by AnyBody and load the muscle force to femur.After that, finite element analysis in Abaqus was performed to analyze the magnitude and concentration region of von Mises stress and strain on femur in gait process.Results The magnitude of von Mises reached the maximum of 27.70 MPa during the midstance phase of the gait cycle, which was located inferoposteriorly to the lesser trochanter.The stress magnitude reached the minimum of 0.62 MPa during the contralateral loading phase.The stress on femur during the swing phase concentrated on the medial mid-diaphysis, with a magnitude of 3.52 MPa.It was also during the mid-stance phase when the maximum of strain of 0.39 mm was observed at the femoral head.The maximum strain of 0.12 mm during the swing phase concentrated on femoral mid-diaphysis.The minimum strain of femur occurred in the contralateral load-ing phase.Conclusion During the mid-stance phase of gait cycle, the magnitude of stress reaches the maximum, which is located inferoposteriorly to the lesser trochanter of femur.The maximum strain of femur is located on the femoral head.%目的:利用有限元的方法,模拟人体最佳边界条件,探寻行走过程中股骨的生物力学情况。方法根据股骨CT数据进行三维重建,并且网格化。利用计算机仿真软件AnyBody模拟正常人平地行走时的动作,导出股骨在整个运动过程中受到的肌肉力。利用Geomagic studio和Hypermesh软件完成目标模

  20. Imageology Study of Icariin in Promoting Regenerate Ossification During Distraction Osteogenesis in Rabbits with Femur Bone Defect%淫羊藿苷促进家兔股骨牵拉成骨新骨形成的影像学研究

    Institute of Scientific and Technical Information of China (English)

    蔡立雄; 孙丙银; 郑素明; 刘效仿; 刘礼初; 吴玢; 杨海韵

    2014-01-01

    Objective To establish the model of distraction osteogenesis for rabbit femur bone defect, and to observe the effect of icariin on regenerate ossification after distraction osteogenesis, thus to find a method for promoting regenerate ossification after distraction osteogenesis. Methods After the rabbit model of bone defect had been established successfully, the rabbits were equipped with distraction device. And then the 24 modeled rab bits were randomly divided into 2 groups. The experimental group was injected with icariin extract of Herba Epimedii into the interspace of bone distraction, and the control group was given local injection of recombinant human bone morphogenetic protein-2 (rhBMP-2, 100μg/kg) . On week 0, 1, 4 and 6 after the resting period, X-ray photography was carried out in both groups. On week 6 after distraction osteogenesis, the bone specimens of distraction osteogenesis region in both groups were observed by micro-computerized tomography ( CT) for the comparison of bone mass, and bone mineral content and mineral density of the newly-formed bone. Results The results of the features of imageology, and the statistical data of the bone mineral content and density showed that osteogenesis speed and osteogenic quality of the experimental group were superior to those of the control group. Conclusion The rabbit model of distraction osteogenesis for femur bone defect has been established preliminarily, and icariin can promote the speed and quality of regenerate ossification after distraction osteogenesis.%【目的】建立家兔股骨骨缺损行牵拉成骨的模型;观察淫羊藿苷对牵拉成骨后新骨形成的影响,寻找促进牵拉区快速成骨的方法。【方法】骨缺损造模成功后,安装外固定支架,将造模成功的24只家兔随机分为2组,实验组于骨牵拉间隙区局部注射淫羊藿提取物淫羊藿苷液,对照组局部注射重组人骨形态发生蛋白-2(rhBMP-2,剂量均为100

  1. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron µCT study.

    Directory of Open Access Journals (Sweden)

    Bernhard Hesse

    Full Text Available Osteonecrosis of the jaw, in association with bisphosphonates (BRONJ used for treating osteoporosis or cancer, is a severe and most often irreversible side effect whose underlying pathophysiological mechanisms remain largely unknown. Osteocytes are involved in bone remodeling and mineralization where they orchestrate the delicate equilibrium between osteoclast and osteoblast activity and through the active process called osteocytic osteolysis. Here, we hypothesized that (i changes of the mineralized tissue matrix play a substantial role in the pathogenesis of BRONJ, and (ii the osteocyte lacunar morphology is altered in BRONJ. Synchrotron µCT with phase contrast is an appropriate tool for assessing both the 3D morphology of the osteocyte lacunae and the bone matrix mass density. Here, we used this technique to investigate the mass density distribution and 3D osteocyte lacunar properties at the sub-micrometer scale in human bone samples from the jaw, femur and tibia. First, we compared healthy human jaw bone to human tibia and femur in order to assess the specific differences and address potential explanations of why the jaw bone is exclusively targeted by the necrosis as a side effect of BP treatment. Second, we investigated the differences between BRONJ and control jaw bone samples to detect potential differences which could aid an improved understanding of the course of BRONJ. We found that the apparent mass density of jaw bone was significantly smaller compared to that of tibia, consistent with a higher bone turnover in the jaw bone. The variance of the lacunar volume distribution was significantly different depending on the anatomical site. The comparison between BRONJ and control jaw specimens revealed no significant increase in mineralization after BP. We found a significant decrease in osteocyte-lacunar density in the BRONJ group compared to the control jaw. Interestingly, the osteocyte-lacunar volume distribution was not altered after

  2. Aging, human immunodeficiency virus, and bone health

    Directory of Open Access Journals (Sweden)

    Kim C Mansky

    2010-09-01

    Full Text Available Kim C ManskyDivision of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USAAbstract: Highly active antiretroviral therapy (HAART has had a profound impact on improving the long-term prognosis for individuals infected with human immunodeficiency virus (HIV. HAART has been available for close to two decades, and now a significant number of patients with access to HAART are over the age of 50 years. Many clinical studies have indicated that HIV infection, as well as components of HAART, can increase the risk in these individuals to a variety of noninfectious complications, including a risk to bone health. There is a significant need for detailed mechanistic analysis of the aging, HIV-infected population regarding the risk of HIV infection and therapy in order to maintain bone health. Insights from basic mechanistic studies will help to shed light on the role of HIV infection and the components of HAART that impact bone health, and will help in identifying preventative countermeasures, particularly for individuals 50 years of age and older.Keywords: osteopenia, osteomalacia, osteoporosis, bisphosphonates, tenofovir, osteoimmunology

  3. Three-dimensional microarchitecture of human osteoporotic, osteoarthrotic and rheumatoid arthritic cancellous bones

    DEFF Research Database (Denmark)

    Ding, Ming; Overgaard, Søren

    Introduction: Osteoporosis (OP), osteoarthrosis (OA), and rheumatoid arthritis (RA) are the most common age-related degenerative bone diseases, and major public health problems in terms of enormous amount of economic cost. RA is considered as a major cause of secondary osteoporosis. At late stage...... did not support the traditional notion that RA and OP had similar low bone density. Thus, whether femur head bone tissues from these diseases have similar bone collagen, mineral and mechanical properties, more importantly bone quality, should be clarified in the future....

  4. ON THE QUESTION OF SIZE-INDEPENDENT SEX-SPECIFIC DIFFERENCES IN HUMAN LONG BONES

    NARCIS (Netherlands)

    KNUSSMANN, R; VANVARK, GN; HARTMANN, BR; DENAREND, A

    Forty six measurements of the humerus, radius, ulna, and femur of - depending on the bones 71-79 sexually known individuals from Holland were examined as to significant sex differences. With the exception of the depth of the fossa olecrani and the angle measurements significantly higher mean values

  5. ON THE QUESTION OF SIZE-INDEPENDENT SEX-SPECIFIC DIFFERENCES IN HUMAN LONG BONES

    NARCIS (Netherlands)

    KNUSSMANN, R; VANVARK, GN; HARTMANN, BR; DENAREND, A

    1994-01-01

    Forty six measurements of the humerus, radius, ulna, and femur of - depending on the bones 71-79 sexually known individuals from Holland were examined as to significant sex differences. With the exception of the depth of the fossa olecrani and the angle measurements significantly higher mean values

  6. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    Science.gov (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants.

  7. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping

    Science.gov (United States)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  8. Periosteal osteoblastoma of the distal femur

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Tetsuya; Yamamoto, Tetsuji; Akisue, Toshihiro; Marui, Takashi; Hitora, Toshiaki; Kawamoto, Teruya; Nagira, Keiko; Yoshiya, Shinichi; Kurosaka, Masahiro [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe (Japan); Fujita, Ikuo; Matsumoto, Keiji [Department of Orthopaedic Surgery, Hyogo Medical Center for Adults, Akashi, Hyogo (Japan)

    2004-02-01

    Osteoblastomas located on the surface of the cortical bone, so-called periosteal osteoblastomas, are extremely rare. We report on a case of periosteal osteoblastoma arising from the posterior surface of the right distal femur in a 17-year-old man. Roentgenographic, computed tomographic, magnetic resonance imaging, and histologic features of the case are presented. Periosteal osteoblastoma should be radiologically and histologically differentiated from myositis ossificans, avulsive cortical irregularity syndrome, osteoid osteoma, parosteal osteosarcoma, periosteal osteosarcoma, and high-grade surface osteosarcoma. Although periosteal osteoblastoma is rare, this tumor should be included in the differential diagnosis of surface-type bone tumors. (orig.)

  9. Fractures of the proximal femur: correlates of radiological evidence of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Salil H.; Murphy, Kieran P. [Johns Hopkins School of Medicine, Radiology, Baltimore, Maryland (United States)

    2006-04-15

    Fractures of the proximal femur are common sequelae of osteoporosis, and are responsible for significant morbidity and mortality in elderly patients worldwide. Plain film radiographic assessment methods to assess for fracture risk may be of particular value. The authors present the results of biomechanical testing, radiographic imaging, and histologic exam of 20 embalmed human bone specimens, with implications for clinical correlation of radiologic findings. Authors assessed bone architecture using the Singh Index, using a blinded 3-rater system to reduce bias and measure intra-observer reliability. After loading to failure with ultimate tensile strength (UTS), bone specimens were assessed by fracture location type and by trabecular bone volume (TBV). Singh scoring was performed with Inter-Class Correlation of 0.80 (F=0.24, by ICC Portney Model 2). A statistically-significant difference among the UTS distributions was noted for UTS by Fracture Site (F=4.49, p=0.026, by ANOVA). No significant association of Singh Index with TBV, or TBV with UTS, was observed, although a trend toward greater UTS with higher Singh grade was observed. The authors propose that the Singh Index is a valuable and reliable indicator which may reflect structural integrity in trabecular bone. Fracture site along the femur is associated with tensile strength. The authors, in the light of these findings, address the promise and potential impact of prophylactic hip augmentation in populations at risk for femoral neck pathology. (orig.)

  10. Bone density of defects treated with lyophilized amniotic membrane versus collagen membrane: a tomographic and histomorfogenic study in rabbit´s femur

    Directory of Open Access Journals (Sweden)

    Liz Katty Ríos

    2014-09-01

    Full Text Available ABSTRACT The aim of this study was to compare the bone density of bone defects treated with lyophilizated amniotic membrane (LAM and collagen Membrane (CM, at 3 and 5 weeks. Two bone defects of 4 mm in diameter and 6 mm deep were created in left distal femoral diaphysis of New Zealand rabbits (n = 12. The animals were randomly divided into 2 groups. One of the defects was covered with lyophilized amniotic membrane (Rosa Chambergo Tissue Bank/National Institute of Child Health-IPEN, Lima, Peru or collagen Membrane (Dentium Co, Seoul, Korea. The second was left uncovered (NC. The rabbits were killed after 3 and 5 weeks (3 rabbits/period. The results showed a high bone density and repair of the defect by new bone. The tomographic study revealed that the bone density of the defects treated with LAM at 3 weeks was equivalent to the density obtained with CM and higher density compared with NC (p 0.05. The results show that lyophilizated amniotic membrane provides bone density equal or higher to the collagen membrane. RESUMEN El propósito de este estudio fue comparar la densidad ósea (DO de defectos óseos tratados con membrana amniótica liofilizada (MAL y membrana de colágeno (MC, a las 3 y 5 semanas. Se crearon dos defectos óseos, de 4 mm de diámetro y 6 mm de profundidad, en la diáfisis femoral distal izquierda de conejos Nueva Zelanda (n=12. Los animales fueron divididos aleatoriamente en 2 grupos. Uno de los defectos fue cubierto con membrana amniótica liofilizada (Banco de tejidos Rosa Chambergo/INSN-IPEN, Lima, Perú o membrana de colágeno (Dentium Co, Seoul, Korea. El segundo se dejó sin cubrir (NC. Los conejos fueron sacrificados después de 3 y 5 semanas (3 conejos/periodo. Los resultados mostraron una alta DO y reparación del defecto por hueso neoformado. El estudio tomográfico reveló que la DO de los defectos tratados con MAL a las 3 semanas fue comparable a la densidad obtenida con MC y mayor comparado con la densidad de NC (p

  11. Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures.

    Science.gov (United States)

    Shigdel, Rajesh; Osima, Marit; Ahmed, Luai A; Joakimsen, Ragnar M; Eriksen, Erik F; Zebaze, Roger; Bjørnerem, Åshild

    2015-12-01

    Bone turnover markers (BTM) predict bone loss and fragility fracture. Although cortical porosity and cortical thinning are important determinants of bone strength, the relationship between BTM and cortical porosity has, however, remained elusive. We therefore wanted to examine the relationship of BTM with cortical porosity and risk of non-vertebral fracture. In 211 postmenopausal women aged 54-94 years with non-vertebral fractures and 232 age-matched fracture-free controls from the Tromsø Study, Norway, we quantified femoral neck areal bone mineral density (FN aBMD), femoral subtrochanteric bone architecture, and assessed serum levels of procollagen type I N-terminal propeptide (PINP) and C-terminal cross-linking telopeptide of type I collagen (CTX). Fracture cases exhibited higher PINP and CTX levels, lower FN aBMD, larger total and medullary cross-sectional area (CSA), thinner cortices, and higher cortical porosity of the femoral subtrochanter than controls (p≤0.01). Each SD increment in PINP and CTX was associated with 0.21-0.26 SD lower total volumetric BMD, 0.10-0.14 SD larger total CSA, 0.14-0.18 SD larger medullary CSA, 0.13-0.18 SD thinner cortices, and 0.27-0.33 SD higher porosity of the total cortex, compact cortex, and transitional zone (all p≤0.01). Moreover, each SD of higher PINP and CTX was associated with increased odds for fracture after adjustment for age, height, and weight (ORs 1.49; 95% CI, 1.20-1.85 and OR 1.22; 95% CI, 1.00-1.49, both pfracture after accounting for FN aBMD, cortical porosity or cortical thickness (OR ranging from 1.31 to 1.39, p ranging from 0.005 to 0.028). In summary, increased BTM levels are associated with higher cortical porosity, thinner cortices, larger bone size and higher odds for fracture. We infer that this is produced by increased periosteal apposition, intracortical and endocortical remodeling; and that these changes in bone architecture are predisposing to fracture.

  12. Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone

    Science.gov (United States)

    Li, Xin; Ling, Wen; Pennisi, Angela; Wang, Yuping; Khan, Sharmin; Heidaran, Mohammad; Pal, Ajai; Zhang, Xiaokui; He, Shuyang; Zeitlin, Andy; Abbot, Stewart; Faleck, Herbert; Hariri, Robert; Shaughnessy, John D.; van Rhee, Frits; Nair, Bijay; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2011-01-01

    Human placenta has emerged as a valuable source of transplantable cells of mesenchymal and hematopoietic origin for multiple cytotherapeutic purposes, including enhanced engraftment of hematopoietic stem cells, modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDACs) are mesenchymal-like stem cells isolated from postpartum human placenta. Multiple myeloma is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. We evaluated the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDACs in the severe combined immunodeficiency (SCID)–rab model of medullary myeloma-associated bone loss. Intrabone injection of PDACs into non-myelomatous and myelomatous implanted bone in SCID-rab mice promoted bone formation by stimulating endogenous osteoblastogenesis, and most PDACs disappeared from bone within 4 weeks. PDACs inhibitory effects on myeloma bone disease and tumor growth were dose-dependent and comparable with those of fetal human mesenchymal stem cells (MSCs). Intrabone, but not subcutaneous, engraftment of PDACs inhibited bone disease and tumor growth in SCID-rab mice. Intratumor injection of PDACs had no effect on subcutaneous growth of myeloma cells. A small number of intravenously injected PDACs trafficked into myelomatous bone. Myeloma cell growth rate in vitro was lower in coculture with PDACs than with MSCs from human fetal bone or myeloma patients. PDACs also promoted apoptosis in osteoclast precursors and inhibited their differentiation. This study suggests that altering the bone marrow microenvironment with PDAC cytotherapy attenuates growth of myeloma and that PDAC cytotherapy is a promising therapeutic approach for myeloma osteolysis. PMID:21732484

  13. Implantes de hidroxiapatita em falhas ósseas produzidas no fêmur de ratos submetidos ao tabagismo passivo Hydroxyapatite implants in bone defects produced in rat femurs submitted to passive tobacco exposure

    Directory of Open Access Journals (Sweden)

    Thiago Cerizza Pinheiro

    2008-10-01

    menores quando comparados com os do grupo controle. CONCLUSÃO: A neoformação óssea em defeitos do esqueleto pode ocorrer naturalmente em animais submetidos ao tabagismo passivo, no entanto, de forma mais lenta e em menor proporção.INTRODUCTION: Defects with bone mass loss are frequently treated with bone autografts. Endografts of bones using biomaterials, such as hydroxyapatite (HA also have been used for the same purpose, replacing autografts. However, bone tissue health conditions are basic for osteointegration of the implant. Thus, excessive tobacco consumption, either as an active or as a passive smoker, may harm the process of bone neoformation with a hydroxyapatite implant due to its deleterious effects to bone tissue. OBJECTIVE: To evaluate the nutritional status of the animals and the process of bone neoformation when porous hydroxyapatite granules are implanted in bone defects of the femur of rats submitted to passive tobacco exposure. METHOD: Porous hydroxyapatite granules were implanted in bone defects produced in the left distal femoral epiphysis of rats subjected to prolonged passive tobacco exposure. The animals were followed along the treatment of tobacco exposure during six months, to evaluate their physical conditions. After eight weeks of the bone implant with the biomaterial, the animals were sacrificed and the specimens of the implant region were submitted to routine histological testing, and maintained in paraffin blocks for morphometric histological and radiological analysis. RESULTS: The mass variation of the experimental group was found to be more intense than that of the control group. As to radiological findings, the control group had an apparent more radio lucent and organized image. In the morphological analysis, there was a better closing of the bone defect and osteointegration of hydroxyapatite in the control group. Upon comparing the volume of bone formed in the receiving area of the femur between the control and the experimental group

  14. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    Science.gov (United States)

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  15. Tea flavonoids for bone health: from animals to humans.

    Science.gov (United States)

    Shen, Chwan-Li; Chyu, Ming-Chien

    2016-10-01

    Osteoporosis is a skeletal disease characterized by a deterioration of bone mass and bone quality that predisposes an individual to a higher risk of fragility fractures. Emerging evidence has shown that the risk for low bone mass and osteoporosis-related fractures can be reduced by nutritional approaches aiming to improve bone microstructure, bone mineral density, and strength. Tea and its flavonoids, especially those of black tea and green tea, have been suggested to protect against bone loss and to reduce risk of fracture, due to tea's antioxidant and anti-inflammatory properties. Based on the results of animal studies, moderate intake of tea has shown to benefit bone health as shown by mitigation of bone loss and microstructural deterioration as well as improvement of bone strength and quality. Epidemiological studies have reported positive, insignificant, and negative impacts on bone mineral density at multiple skeletal sites and risk of fracture in humans with habitual tea consumption. There are limited human clinical trials that objectively and quantitatively assessed tea consumption and bone efficacy using validated outcome measures in a population at high risk for osteoporosis, along with safety monitoring approach. This review summarizes the current state of knowledge of laboratory animal research, epidemiological observational studies, and clinical trials assessing the skeletal effects of tea and its active flavonoids, along with discussion of relevant future directions in translational research.

  16. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  17. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Atul Kumar [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Gajiwala, Astrid Lobo [Tissue Bank, Tata Memorial Hospital, Parel, Mumbai 400012 (India); Rai, Ratan Kumar [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Khan, Mohd Parvez [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Singh, Chandan [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Barbhuyan, Tarun [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Vijayalakshmi, S. [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Chattopadhyay, Naibedya [Division of Endocrinology, Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR-Central Drug Research Institute, Lucknow 226031 (India); Sinha, Neeraj, E-mail: neerajcbmr@gmail.com [Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014 (India); Kumar, Ashutosh, E-mail: ashutoshk@iitb.ac.in [Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076 (India); Bellare, Jayesh R., E-mail: jb@iitb.ac.in [Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS® (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  18. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    Science.gov (United States)

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  19. Asymmetry and structural system analysis of the proximal femur meta-epiphysis: osteoarticular anatomical pathology

    Directory of Open Access Journals (Sweden)

    Baydoun Safaa

    2008-02-01

    Full Text Available Abstract Background The human femur is commonly considered as a subsystem of the locomotor apparatus with four conspicuous levels of organization. This phenomenon is the result of the evolution of the locomotor apparatus, which encompasses both constitutional and individual variability. The work therein reported, therefore, underlies the significance of observing anatomical system analysis of the proximal femur meta-epiphysis in normal conditions, according to the anatomic positioning with respect to the right or left side of the body, and the presence of system asymmetry in the meta-epiphysis structure, thus indicating structural and functional asymmetry. Methods A total of 160 femur bones of both sexes were compiled and a morphological study of 15 linear and angulated parameters of proximal femur epiphysis was produced, thus defining the linear/angulated size of tubular bones. The parameters were divided into linear and angulated groups, while maintaining the motion of the hip joint and transmission of stress to the unwanted parts of the limb. Furthermore, the straight and vertical diameters of the femoral head and the length of the femoral neck were also studied. The angle between the neck and diaphysis, the neck antiversion and angle of rotation of the femoral neck were subsequently measured. Finally, the condylo-diaphyseal angle with respect to the axis of extremity was determined. To visualize the force of intersystem ties, we have used the method of correlation galaxy construction. Results The absolute numeral values of each linear parameter were transformed to relative values. The values of superfluity coefficient for each parameter in the right and left femoral bone groups were estimated and Pearson's correlation coefficient has been calculated (> 0.60. Retrospectively, the observed results have confirmed the presence of functional asymmetry in the proximal femur meta-epiphysis. On the basis of compliance or insignificant difference in

  20. Morphological Study of Wormian Bones in Dried Human Skulls

    OpenAIRE

    Divyesh Patel; Ketan Chauhan; Dhananjay Patil

    2015-01-01

    Background: Wormian bones may be defined as a those accidental bones found in the cranium having no regular relation to their normal ossification centre. They are assocated with cranial and central nervous system abnormalities. Knowledge of these bones is important for anthropo-logists, forensic experts, radiologists, orthopedic and neurosurgeons to avoid misleading for multiple fractures of the skull. Materials and Methods: Adult dry human skulls (n= 27) of unknown age and sex availablei...

  1. A simplified procedure for preparation of undecalcified human bone sections

    DEFF Research Database (Denmark)

    Wallin, J A; Tkocz, I; Levinsen, J

    1985-01-01

    A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim-type diam...

  2. A simplified procedure for preparation of undecalcified human bone sections

    DEFF Research Database (Denmark)

    Wallin, J A; Tkocz, I; Levinsen, J

    1985-01-01

    A new type of apparatus for sectioning samples of hard, undecalcified bone is described. Slices of fresh or archeological human bone 4-5 mm thick are dehydrated and then embedded in epoxy resin. The apparatus used to prepare sections from the resulting blocks consists of a low-speed rim...

  3. Changes in bone mineral density and femoral neck narrowing in the proximal femur three to five years after hip resurfacing versus conventional total hip arthroplasty.

    Science.gov (United States)

    Gerhardt, Davey M J M; Smolders, José M H; Rijnders, Ton A J M; Hol, Annemiek; van Susante, Job L C

    2015-02-01

    We studied whether bone mineral density (BMD) is preserved without significant femoral neck narrowing (FNN) after hip resurfacing (RHA) (n=42) versus small diameter metal-on-metal total hip arthroplasty (MoM THA) (n=40). In this three to five year randomized trial BMD was measured in the calcar with dual energy absorptiometry (DXA) preoperatively, at three and six months, one, two, three and five years postoperatively. Four additional BMD regions of interest (ROIs) and femoral neck narrowing (FNN) were measured after RHA. BMD in the calcar increased to 107% (P<0.001) at one year and remained stable. Additional ROIs in the femoral neck and trochanter-area BMD changes fluctuated between 99.9% and 104.1%. FNN was minimal with a mean of 1.3% at three years. After THA BMD decreased in the calcar to 80% at one year (P<0.001) and stabilized. This bone stock preserving nature of RHA must be weighed against potential disadvantages caused by specific metal-on-metal bearing problems.

  4. Simultaneously detected parosteal osteoma and osteochondroma in the distal femur of a single patient.

    Science.gov (United States)

    Yun, Seong Jong; Jin, Wook; Park, Yong Koo; Han, Chung Soo; Ryu, Kyung Nam; Park, Ji Seon; Park, So Young

    2013-01-01

    Parosteal osteoma arising from long tubular bone is an extremely rare bone tumor and should be distinguished from parosteal osteosarcoma, whereas osteochondroma is a common benign bone tumor showing an outgrowth of medullary and cortical bone with a cartilaginous cap. This report describes simultaneously detected parosteal osteoma and osteochondroma arising from the distal femur in a single patient.

  5. Heterotopic ossification after the use of recombinant human bone morphogenetic protein-7

    Science.gov (United States)

    Papanagiotou, Marianthi; Dailiana, Zoe H; Karachalios, Theophilos; Varitimidis, Sokratis; Hantes, Michael; Dimakopoulos, Georgios; Vlychou, Marianna; Malizos, Konstantinos N

    2017-01-01

    AIM To present the incidence of heterotopic ossification after the use of recombinant human bone morphogenetic protein-7 (rhBMP-7) for the treatment of nonunions. METHODS Bone morphogenetic proteins (BMPs) promote bone formation by auto-induction. Recombinant human BMP-7 in combination with bone grafts was used in 84 patients for the treatment of long bone nonunions. All patients were evaluated radiographicaly for the development of heterotopic ossification during the standard assessment for the nonunion healing. In all patients (80.9%) with radiographic signs of heterotopic ossification, a CT scan was performed. Nonunion site palpation and ROM evaluation of the adjacent joints were also carried out. Factors related to the patient (age, gender), the nonunion (location, size, chronicity, number of previous procedures, infection, surrounding tissues condition) and the surgical procedure (graft and fixation type, amount of rhBMP-7) were correlated with the development of heterotopic ossification and statistical analysis with Pearsons χ2 test was performed. RESULTS Eighty point nine percent of the nonunions treated with rhBMP-7, healed with no need for further procedures. Heterotopic bone formation occurred in 15 of 84 patients (17.8%) and it was apparent in the routine radiological evaluation of the nonunion site, in a mean time of 5.5 mo after the rhBMP-7 application (range 3-12). The heterotopic ossification was located at the femur in 8 cases, at the tibia in 6, and at the humerus in οne patient. In 4 patients a palpable mass was present and only in one patient, with a para-articular knee nonunion treated with rhBMP-7, the size of heterotopic ossification affected the knee range of motion. All the patients with heterotopic ossification were male. Statistical analysis proved that patient’s gender was the only important factor for the development of heterotopic ossification (P = 0.007). CONCLUSION Heterotopic ossification after the use of rhBMP-7 in nonunions was

  6. On using the Microsoft Kinect$^{\\rm TM}$ sensors to determine the lengths of the arm and leg bones of a human subject in motion

    CERN Document Server

    Malinowski, M J

    2015-01-01

    The present study is part of a broader programme, exploring the possibility of involving the Microsoft Kinect$^{\\rm TM}$ sensor in the analysis of human motion. We examine the output obtained from the two available versions of this sensor in relation to the variability of the estimates of the lengths of eight bones belonging to the subject's extremities: of the humerus (upper arm), ulna (lower arm, forearm), femur (upper leg), and tibia (lower leg, shank). Large systematic effects in the output of the two sensors have been observed.

  7. Geometric morphometric analysis reveals sexual dimorphism in the distal femur.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2016-02-01

    An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Far cortical locking screws in distal femur fractures.

    Science.gov (United States)

    Adams, John D; Tanner, Stephanie L; Jeray, Kyle J

    2015-03-01

    Distal femur fractures routinely heal by secondary bone healing, which relies on interfragmentary motion. Periarticular locking plates are commonly used for fixation in distal femur fractures but are associated with a high nonunion rate, likely due to the stiffness of the constructs. Far cortical locking (FCL) screws are designed to allow micromotion at the near cortex while maintaining purchase in only the far cortex. Although clinical data are limited, these screws have been shown in biomechanical studies to provide excellent interfragmentary motion, and animal models have shown increased callus formation compared with traditional locking screws. The purpose of this study was to examine the clinical effects that FCL screws have on healing in distal femur fractures treated with locked constructs. In this retrospective case series, 15 patients with a distal femur fracture treated with MotionLoc screws (Zimmer, Warsaw, Indiana) were analyzed. Serial radiographs were evaluated for callus presence and time to union. All fractures were either 33-A3 or 33-C2 according to the AO classification system, and 5 (33%) were open. Bone loss was recorded in 2 patients. There were no nonunions, and average time to union was 24 weeks. There were no implant failures, and all 5 open fractures, including the 2 with bone loss, healed without intervention. There was 1 reoperation due to painful hardware. Although this is a small case series, these results are promising. Far cortical locking screws may provide the answer to the high nonunion rate associated with distal femur fractures treated with traditional locked constructs.

  9. O uso do aspirado de medula óssea de ilíaco em falhas ósseas de fêmures de camundongos: estudo experimental The use of inhaled bone marrow of ileum in bone failures of femurs of rats: experimental study

    Directory of Open Access Journals (Sweden)

    Alberto Tesconi Croci

    2004-03-01

    Full Text Available Os autores estudam a utilização de medula óssea em camundongos como estimulação da formação de calo ósseo. Foram utilizados dez camundongos adultos machos de linhagem isogênica gioto com peso de aproximadamente 250 gramas, e realizadas falhas ósseas na região distal do fêmur com alternância do lado direito e esquerdo, divididos em grupos A e B, sendo como controle camundongos com falha óssea isolado e com falhas ósseas com medula óssea colhida previamente de cada camundongo. Após análise qualitativa e quantitativa foi observado que o uso do aspirado de medula óssea não leva à estimulação da formação do calo ósseo e não há o aumento de processo inflamatório local.The aim of this study is to analyze the bone marrow employment in rats to stimulate the bone callus formation. Ten adult rats were used, male, isogenic, gioto lineage, approximate weight of 250 grams. Bone failures were produced at femur distal portion, alternating the right and left sides, and they were divided in group A and B. The control was held in rats presenting an isolated bone failure or having their bone marrow previously collected After quantitative and qualitative analysis, it was observed that the bone marrow utilization does not lead to the bone callus formation and there isn't an increase in the local inflammation process.

  10. A parametric approach to construct femur models and their fixation plates

    Directory of Open Access Journals (Sweden)

    Xiaozhong Chen

    2016-05-01

    Full Text Available Although anatomic plates reflect an important breakthrough in the treatment of distal femur fractures, there are still some patients experiencing healing complications. For individual differences in bone morphology and fractures, the development of patient specific plates is very complex and needs a long cycle. In this study, a parametric approach was proposed to conveniently construct femur models and design their fixation plates. First, the typical femur anatomy was described with the average femur model. Second, five surface features were defined to represent the femur surface model by setting up parameterization and parameter constraints. Third, according to the fracture information of a specific patient, customized plate surface with a suitable contour was created from the reconstructed femur model. Finally, the femur plate was represented by feature parameterization, and the hierarchical constraints between femur parameters and plate parameters were built to construct a plate model. The experimental results showed that the proposed method could effectively represent femur surface shape features and intuitively construct and edit individualized plates with high-level parameters. The method is competitive in time saving and design convenience and may provide a basic tool for digital restoration of incomplete femurs and the design of patient specific femur plates.

  11. Bioreactor cultivation of anatomically shaped human bone grafts.

    Science.gov (United States)

    Temple, Joshua P; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L

    2014-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes.

  12. Ethanol inhibits human bone cell proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friday, K.E.; Howard, G.A. (University of Washington, Seattle (USA))

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  13. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    Science.gov (United States)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  14. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren;

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group...

  15. Bisphosphonates and Atypical Fractures of Femur

    Directory of Open Access Journals (Sweden)

    Tero Yli-Kyyny

    2011-01-01

    Full Text Available Bisphosphonates are the most widely prescribed medicines for the treatment of osteoporosis and have generally been regarded as well-tolerated and safe drugs. Since 2005, there have been numerous case reports about atypical fractures of the femur linked to long-term treatment of osteoporosis with bisphosphonates. Some attempts to characterize pathophysiology and epidemiology of these fractures have been published as well. However, as the American Society for Bone and Mineral Research (ASBMR concluded in their task force report, the subject warrants further studies.

  16. Experimental Study of Diffusion Coefficients of Water through the Collagen: Apatite Porosity in Human Trabecular Bone Tissue

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2014-01-01

    Full Text Available We firstly measured the swelling of single trabeculae from human femur heads during water imbibition. Since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axes (length L, width W, and thickness T of plate-like trabeculae. For this aim, we developed a 3D analytical model of the water uptake by the sample that was performed according to Fickian transport mechanism. The results were then utilized to predict the swelling over time along the three sample directions (L, W, T and the apparent diffusion coefficients DT, DW, and DL.

  17. Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age.

    Science.gov (United States)

    Kaptoge, S; Welch, A; McTaggart, A; Mulligan, A; Dalzell, N; Day, N E; Bingham, S; Khaw, K-T; Reeve, J

    2003-06-01

    We measured the impact of diet, anthropometry, physical activity and lifestyle variables on rates of hip bone mineral density (BMD) loss in 470 white men and 474 white women aged 67-79 years at recruitment dwelling in the community. The subjects were recruited from a prospective population-based diet and cancer study (EPIC-Norfolk) in Eastern England. Dietary intake was measured at baseline using 7-day food diaries and used to calculate intakes of some 31 nutrients and 22 food groups. Standardised questionnaires were used to collect data on anthropometry, physical activity and lifestyle variables. BMD loss (percent per annum; % p.a.) was measured using dual-energy X-ray absorptiometry performed on two occasions an average of 3 years apart (range 2-5 years). The mean rate of BMD change at the total hip region was -0.17% p.a. (SD 1.3% p.a.) in men and -0.41% p.a. (SD 1.2% p.a.) in women. In both men and women, weight gain protected against (and weight loss promoted) BMD loss ( Pclimbing a flight of stairs, BMD increased at a rate of 0.22% p.a. ( P=0.005) and additionally a 10% increase in activities of daily living score was associated with BMD increasing at a rate of 0.12% p.a. ( P=0.011) in women. Nutritional variation appeared to have less impact on BMD loss. In men there was no evidence of an effect of any of the nutrients evaluated. However, in women, low intake of vitamin C was associated with faster rate of BMD loss. Women in the lowest tertile (7-57 mg/day) of vitamin C intake lost BMD at an average rate of -0.65% p.a., which was significantly faster compared to loss rates in the middle (58-98 mg/day) and upper (99-363 mg/day) tertiles of intake, which were -0.31% p.a. and -0.30% p.a., respectively ( P=0.016). There was no effect of fruits and vegetables, combined or separately, on rate of BMD loss. The results confirm that weight maintenance (or gain) and commonly practiced forms of physical activity appear to protect against BMD loss in this age group

  18. Correlation of measurable serum markers of inflammation with lung levels following bilateral femur fracture in a rat model

    Directory of Open Access Journals (Sweden)

    Benjamin W Sears

    2010-08-01

    Full Text Available Benjamin W Sears1, Dustin Volkmer1, Sherri Yong2, Ryan D Himes1, Kristen Lauing1, Michele Morgan1, Michael D Stover1, John J Callaci11Department of Orthopaedics, 2Department of Pathology, Loyola University Medical Center, Maywood, IL, USAIntroduction: Evaluation of the systemic inflammatory status following major orthopedic trauma has become an important adjunct in basing post-injury clinical decisions. In the present study, we examined the correlation of serum and lung inflammatory marker levels following bilateral femur fracture.Materials and methods: 45 Sprague Dawley rats underwent sham operation or bilateral femoral intramedullary pinning and mid-diaphyseal closed fracture via blunt guillotine. Animals were euthanized at specific time points after injury. Serum and lung tissue were collected, and 24 inflammatory markers were analyzed by immunoassay. Lung histology was evaluated by a blinded pathologist.Results: Bilateral femur fracture significantly increased serum markers of inflammation including interleukin (IL-2, IL-6, IL-10, GM-CSF, KC/GRO, MCP-1, and WBC. Femur fracture ­significantly increased serum and lung levels of IL-1a and KC/GRO at 6 hours. Lung levels of IL-6 ­demonstrated a trend towards significance. Histologic changes in pulmonary tissue after fracture included pulmonary edema and bone elements including cellular hematopoietic cells, bone fragments and marrow emboli.Discussion and conclusion: Our results indicate that bilateral femur fracture with fixation in rats results in increases in serum markers of inflammation. Among the inflammatory markers measured, rise in the serum KC/GRO (CINC-1, a homolog to human IL-8, correlated with elevated levels of lung KC/GRO. Ultimately, analysis of serum levels of KC/GRO (CINC-1, or human IL-8, may be a useful adjunct to guide clinical decisions regarding surgical timing.Keywords: blunt trauma, injury, cytokine, IL-8, bone marrow emboli

  19. Evaluation of new bone formation in normal and osteoporotic rats with a 3-mm femur defect: functional assessment with dynamic PET-CT (dPET-CT) using 2-deoxy-2-[(18)F]fluoro-D-glucose ( (18)F-FDG) and (18)F-fluoride.

    Science.gov (United States)

    Cheng, Caixia; Alt, Volker; Dimitrakopoulou-Strauss, Antonia; Pan, Leyun; Thormann, Ulrich; Schnettler, Reinhard; Weber, Klaus; Strauss, Ludwig G

    2013-06-01

    The aim of the current study was to assess the formation of new bone in a 3-mm created defect in the femur and its adjacent bone tissue in osteoporotic and normal animals. The assessment is based on bone remodeling and glucose metabolism in a rat model with a 3-mm created defct in the femur using (18)F-fluoride and 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) as tracers for dynamic PET-CT (dPET-CT). The (18)F-fluoride PET data were compared with those of (18)F-FDG. Osteoporosis was induced by ovariectomy and a calcium restricted diet in each rat (n = 7). Alternatively, a sham operation was performed in the control group (n = 8). After 3 months, all rats were operated to create a 3-mm defect using an oscillating saw in the distal metaphyseal femur, which was internally fixed with a metal plate. Eighteen weeks after osteoporosis induction and 6 weeks following femoral surgery, dPET-CT studies scan were performed with (18)F-FDG and (18)F-fluoride. Following PET data acquisition, standardized uptake values (SUVs) were calculated from the tracer concentration values. Then, a two-tissue compartmental learning-machine model was applied to the data for the calculation of the compartment parameters (K1-k4, VB, Ki). Furthermore, a non-compartmental model based on the fractal dimension was applied for quantitative analysis of both groups and both tracers. Finally, multivariate analysis was performed for the statistical analysis of the kinetic data. The values for K1 and Ki were higher in the osteoporotic rats than in the control group. Ki and K1 of (18)F-fluoride in the adjacent bone tissue differ significantly based on the Wilcoxon rank-sum test for the osteoporotic and control group (p < 0.05). The sensitivity and the negative predictive value (NPV) based on linear discriminant analysis was high with a value of 100 % for both tracers and both evaluated regions (defect and adjacent bone tissue) when comparing control and osteoporotic rats. The overall

  20. Three-dimensional microarchitecture of the proximal femur in osteoarthritis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Wang, B. L.; Ding, Ming; Overgaard, Søren

    2015-01-01

    microstructure has an important impact on bone quality. Recently, the quantification of bone architecture based on micro-CT has been widely used in the research of various bone diseases. OBJECTIVE: To observe the osteoarthritis- and rheumatoid arthritis-related changes in the properties of the proximal femur...... from each individual femur, perpendicular to the main trabecular direction on X-ray films. The specimens were analyzed by using micro-CT system. After scanning, the data were transferred to three-dimensional images, and then detailed structural parameters of the cortical bone, cancellous bone...

  1. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  2. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaissé, Jean-Marie; Hinge, Maja

    2016-01-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter...... of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts...... demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic....

  3. Morphological Study of Wormian Bones in Dried Human Skulls

    Directory of Open Access Journals (Sweden)

    Divyesh Patel

    2015-09-01

    Full Text Available Background: Wormian bones may be defined as a those accidental bones found in the cranium having no regular relation to their normal ossification centre. They are assocated with cranial and central nervous system abnormalities. Knowledge of these bones is important for anthropo-logists, forensic experts, radiologists, orthopedic and neurosurgeons to avoid misleading for multiple fractures of the skull. Materials and Methods: Adult dry human skulls (n= 27 of unknown age and sex availablein the Department of Anatomy, Govt. Medical College, Surat were included in the study. Result: Overall incidence of wormian bone was 44.4%. They occurred more frequently at lambdoid suture (48.14%.Wormian bones were also presentat asterion (18.5%, along the coronal suture (0.03%, along the parito-temporal suture (0.07%, along the occipito-mastoid suture (0.03%,andat pterion (0.03 %. Wormain bones were found 48.1% on left half of skull and 37.03% on right half of skull. Conclusion: The Wormian bones were more frequent at the lambdoid suture. The clinical importances of these variant bones were emphasized with relevant review of literature. [Natl J Med Res 2015; 5(3.000: 222-225

  4. Determinants of microdamage in elderly human vertebral trabecular bone.

    Directory of Open Access Journals (Sweden)

    Hélène Follet

    Full Text Available Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53 from donors 54-95 years of age (22 men and 30 women, 1 unknown and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types.

  5. DNA and bone structure preservation in medieval human skeletons.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Norton, Andrew L; Coulson-Thomas, Vivien J; Florencio-Silva, Rinaldo; Ali, Nadir; Elmrghni, Samir; Gil, Cristiane D; Sasso, Gisela R S; Dixon, Ronald A; Nader, Helena B

    2015-06-01

    Morphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem. We adapted and optimised a method that is frequently used for isolating DNA from modern samples, Chelex(®) 100 (Bio-Rad) extraction, for isolating DNA from archaeological human bones and teeth. The isolated DNA was analysed by real-time PCR using primers targeting the sex determining region on the Y chromosome (SRY) and STR typing using the AmpFlSTR(®) Identifiler PCR Amplification kit. Our results clearly show the preservation of bone matrix in medieval bones and the presence of intact osteocytes with well preserved encapsulated nuclei. In addition, we show how effective Chelex(®) 100 is for isolating ancient DNA from archaeological bones and teeth. This optimised method is suitable for STR typing using kits aimed specifically at degraded and difficult DNA templates since amplicons of up to 250bp were successfully amplified.

  6. Non-invasive photo acoustic approach for human bone diagnosis.

    Science.gov (United States)

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  7. The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo

    Science.gov (United States)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo

    2014-06-01

    Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore, micro-CT is a reliable and sensitive method for predicting unloading-induced bone loss in small animals.

  8. Automatic detection and measurement of femur length from fetal ultrasonography

    Science.gov (United States)

    Mukherjee, Prateep; Swamy, Gokul; Gupta, Madhumita; Patil, Uday; Krishnan, Kajoli Banerjee

    2010-03-01

    Femur bone length is used in the assessment of fetal development and in the prediction of gestational age (GA). In this paper, we present a completely automated two-step method for identifying fetal femur and measuring its length from 2D ultrasound images. The detection algorithm uses a normalized score premised on the distribution of anatomical shape, size and presentation of the femur bone in clinically acceptable scans. The measurement process utilizes a polynomial curve fitting technique to determine the end-points of the bone from a 1D profile that is most distal from the transducer surface. The method has been tested with manual measurements made on 90 third trimester femur images by two radiologists. The measurements made by the experts are strongly correlated (Pearson's coefficient = 0.95). Likewise, the algorithm estimate is strongly correlated with expert measurements (Pearson's coefficient = 0.92 and 0.94). Based on GA estimates and their bounds specified in Standard Obstetric Tables, the GA predictions from automated measurements are found to be within +/-2SD of GA estimates from both manual measurements in 89/90 cases and within +/-3SD in all 90 cases. The method presented in this paper can be adapted to perform automatic measurement of other fetal limbs.

  9. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  10. Initial stability comparison of modular hip implants in synthetic femurs.

    Science.gov (United States)

    Lee, T Q; Danto, M I; Kim, W C

    1998-08-01

    Synthetic femurs were used to assess the initial bone-implant interface stability of three total hip systems: Wright Medical Technology's Infinity smooth trochanteric module (S-TM), Infinity porous-coated trochanteric module (PC-TM), and Johnson and Johnson S-ROM with a porous surface. The hips were implanted into synthetic femurs, rigidly fixed, and subjected to internal rotation and cyclic, axial compressive loads. The results showed that all three implants achieved good initial implant stability and would be expected to permit bone ingrowth. The porous-coated implants showed greater initial implant stability with less axial micromotion compared with the smooth implants. This finding suggests that surface texture plays a role in initial stability of uncemented prostheses if the bone behaves similar to the material used in this study.

  11. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft)

    Science.gov (United States)

    Peckham, Steven M.; Badura, Jeffrey M.

    2007-01-01

    The combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS) carrier has been shown to induce bone formation in a number of preclinical and clinical investigations. In 2002, rhBMP-2/ACS at a 1.5-mg/cc concentration (INFUSE® Bone Graft, Medtronic Spinal and Biologics, Memphis, TN) was FDA-approved as an autograft replacement for certain interbody spinal fusion procedures. In 2004, INFUSE® Bone Graft was approved for open tibial fractures with an intermedullary (IM) nail fixation. Most recently, in March 2007, INFUSE® Bone Graft was approved as an alternative to autogenous bone grafts for sinus augmentations, and for localised alveolar ridge augmentations for defects associated with extraction sockets. The culmination of extensive preclinical and clinical research and three FDA approvals makes rhBMP-2 one of the most studied, published and significant advances in orthopaedics. This review article summarises a number of clinical findings of rhBMP-2/ACS, including the FDA-approved investigational device exemption (IDE) studies used in gaining the aforementioned approvals. PMID:17639384

  12. Microscopic residues of bone from dissolving human remains in acids.

    Science.gov (United States)

    Vermeij, Erwin; Zoon, Peter; van Wijk, Mayonne; Gerretsen, Reza

    2015-05-01

    Dissolving bodies is a current method of disposing of human remains and has been practiced throughout the years. During the last decade in the Netherlands, two cases have emerged in which human remains were treated with acid. In the first case, the remains of a cremated body were treated with hydrofluoric acid. In the second case, two complete bodies were dissolved in a mixture of hydrochloric and sulfuric acid. In both cases, a great variety of evidence was collected at the scene of crime, part of which was embedded in resin, polished, and investigated using SEM/EDX. Apart from macroscopic findings like residual bone and artificial teeth, in both cases, distinct microscopic residues of bone were found as follows: (partly) digested bone, thin-walled structures, and recrystallized calcium phosphate. Although some may believe it is possible to dissolve a body in acid completely, at least some of these microscopic residues will always be found. © 2015 American Academy of Forensic Sciences.

  13. Evaluation of skeletal tissue repair, part 2: enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model.

    Science.gov (United States)

    Smith, E L; Kanczler, J M; Gothard, D; Roberts, C A; Wells, J A; White, L J; Qutachi, O; Sawkins, M J; Peto, H; Rashidi, H; Rojo, L; Stevens, M M; El Haj, A J; Rose, F R A J; Shakesheff, K M; Oreffo, R O C

    2014-10-01

    There is an unmet need for improved, effective tissue engineering strategies to replace or repair bone damaged through disease or injury. Recent research has focused on developing biomaterial scaffolds capable of spatially and temporally releasing combinations of bioactive growth factors, rather than individual molecules, to recapitulate repair pathways present in vivo. We have developed an ex vivo embryonic chick femur critical size defect model and applied the model in the study of novel extracellular matrix (ECM) hydrogel scaffolds containing spatio-temporal combinatorial growth factor-releasing microparticles and skeletal stem cells for bone regeneration. Alginate/bovine bone ECM (bECM) hydrogels combined with poly(d,l-lactic-co-glycolic acid) (PDLLGA)/triblock copolymer (10-30% PDLLGA-PEG-PLDLGA) microparticles releasing dual combinations of vascular endothelial growth factor (VEGF), chondrogenic transforming growth factor beta 3 (TGF-β3) and the bone morphogenetic protein BMP2, with human adult Stro-1+bone marrow stromal cells (HBMSCs), were placed into 2mm central segmental defects in embryonic day 11 chick femurs and organotypically cultured. Hydrogels loaded with VEGF combinations induced host cell migration and type I collagen deposition. Combinations of TGF-β3/BMP2, particularly with Stro-1+HBMSCs, induced significant formation of structured bone matrix, evidenced by increased Sirius red-stained matrix together with collagen expression demonstrating birefringent alignment within hydrogels. This study demonstrates the successful use of the chick femur organotypic culture system as a high-throughput test model for scaffold/cell/growth factor therapies in regenerative medicine. Temporal release of dual growth factors, combined with enriched Stro-1+HBMSCs, improved the formation of a highly structured bone matrix compared to single release modalities. These studies highlight the potential of a unique alginate/bECM hydrogel dual growth factor release

  14. Bone invading NSCLC cells produce IL-7: mice model and human histologic data

    Directory of Open Access Journals (Sweden)

    Quarto Rodolfo

    2010-01-01

    Full Text Available Abstract Background Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies. Methods We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison. Results At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant. Conclusions We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.

  15. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC;

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...

  16. Ancient DNA in human bone remains from Pompeii archaeological site.

    Science.gov (United States)

    Cipollaro, M; Di Bernardo, G; Galano, G; Galderisi, U; Guarino, F; Angelini, F; Cascino, A

    1998-06-29

    aDNA extraction and amplification procedures have been optimized for Pompeian human bone remains whose diagenesis has been determined by histological analysis. Single copy genes amplification (X and Y amelogenin loci and Y specific alphoid repeat sequences) have been performed and compared with anthropometric data on sexing.

  17. [Microdetermination of fluoride in human bones (author's transl)].

    Science.gov (United States)

    Hanocq, M; Helson-Cambier, M

    1979-01-15

    A spectrophotometric method (cerium(III)-alizarin complexan-fluoride in presence of 25% dimethylsulfoxyde) is described for the determination of fluoride in human bones. The anion is determined after separation by microdiffusion as hydrofluoric acid using Petri boxes without any mineralization. This analytical method is selective, accurate and rapid.

  18. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  19. Subtrochanteric femur fracture treated by intramedullary fixation

    Institute of Scientific and Technical Information of China (English)

    Zu-Bin Zhou; Song Chen; You-Shui Gao; Yu-Qiang Sun; Chang-Qing Zhang; Yao Jiang

    2015-01-01

    Purpose: To discuss surgical technique, operative efficacy and clinical outcome of intramedullary fixation in the treatment of subtrochanteric femur fractures.Methods: From February 2011 to February 2013, 76 cases of subtrochanteric femur fractures were treated by intramedullary fixation in our hospital, including 53 males and 23 females, with the age range of 37 -72 years (mean 53.5 years).According to Seinsheimer classification, there were 2 cases of type Ⅰ, 7 type Ⅱ,15 type Ⅲ, 23 type Ⅳ and 29 type Ⅴ.Firstly, all patients underwent closed reduction with the guidance of C-arm fluoroscopy in a traction table.Two cases of type Ⅰ and 3 cases of type Ⅲ fractures had ideal closed reduction followed by internal fixation.The others needed additional limited open reduction.Radiographic examination was used to evaluate callus formation and fracture healing in postoperative 1, 3, 6 and 12 months follow-up.Functional recovery was evaluated by Harris Hip Scoring (HHS) system.Results: Patients were followed up for 6-12 months.All fractures were healed except one patient with delayed union.The average bone union time was 4.5 months.According to HHS system, 65 cases were considered as excellent in functional recovery, 8 good, 2 fair and 1 poor.The proportion of the patients with excellent and good recovery was 96.05%.Conclusion: Intramedullary fixation is feasible for the treatment of subtrochanteric femur fracture.The accuracy of intraoperative reduction and surgical skill are important for the clinical outcome and the patients' prognosis.

  20. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  1. Stable isotopic analysis on ancient human bones in Jiahu site

    Institute of Scientific and Technical Information of China (English)

    HU YaoWu; S.H.AMBROSE; WANG ChangSui

    2007-01-01

    Palaeodietary analysis is one of important topics in bioarchaeology field and has been paid great attention to by Chinese archaeometrists recently. Ancient human bones in Jiahu Site were analyzed by means of stable isotopes of C, N and 0.13 human bones were excluded from 28 bones for dietary reconstruction due to their unusual collagen contents, C and N contents, and C/N atomic ratios especially.δ13C(-20.37±0.53‰)in collagen of remaining samples showed that C3 food were consumed mainly, which is consistent of the archaeological findings that rice was the staple in Jiahu. According to the difference of δ15N and δ13C values in bone collagen, the samples can be classified into four clusters. The changes of δ15N values in bone collagen and δ13C values in hydroxylapatite through whole cultural phases indicated the transition from hunting to gathering and fishing to rice agriculture and animal domestication ultimately. Meanwhile, the δ18O change in hydroxylapatite showed that palaeoclimate was relatively constant during Jiahu culture.

  2. Stable isotopic analysis on ancient human bones in Jiahu site

    Institute of Scientific and Technical Information of China (English)

    S.H.AMBROSE

    2007-01-01

    Palaeodietary analysis is one of important topics in bioarchaeology field and has been paid great at- tention to by Chinese archaeometrists recently. Ancient human bones in Jiahu Site were analyzed by means of stable isotopes of C, N and O. 13 human bones were excluded from 28 bones for dietary re- construction due to their unusual collagen contents, C and N contents, and C/N atomic ratios espe- cially. δ 13C (-20.37±0.53‰) in collagen of remaining samples showed that C3 food were consumed mainly, which is consistent of the archaeological findings that rice was the staple in Jiahu. According to the difference of δ 15N and δ 13C values in bone collagen, the samples can be classified into four clusters. The changes of δ 15N values in bone collagen and δ 13C values in hydroxylapatite through whole cultural phases indicated the transition from hunting to gathering and fishing to rice agriculture and animal domestication ultimately. Meanwhile, the δ 18O change in hydroxylapatite showed that pa- laeoclimate was relatively constant during Jiahu culture.

  3. A study of individual identification by roentgenographic characteristic of long bones in human

    Energy Technology Data Exchange (ETDEWEB)

    Im, Han Heak; Kim, Jong Woo; Hong, Deok Hwa; Lee, Hae Kyung; Choi, Deuk Lin; Kim, Dae Ho; Kwon, Kui Hyang; Kim, Ki Jung [Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    1993-07-15

    Individual identification procedure is one of the most important part in medicolegal fields. Recently, radiolegal investigation methods have been widely applicated to the medicolegal field for the purpose of individual identification. So authors attempted to determine sex and calculate stature by using roentgenographic findings of long bones of 248 subjects in the living materials. In orthoscangraphic study for long bones, we measured total length, midshaft width, epiphyseal width, cortical width, head diameter of each bones. The total length, midshaft width, cortical width, condylar breath, horizontal and vertical head diameter of femur show statistically significant differentiation between two sexes, in tibia, total length, midshaft, cortical width, proximal and distal epiphyseal width show statistically significant. In fibula, Humerus, radius and ulna, total length is only statistically significant. And other results are statistically insignificant. Using femoral and filial lengths (mm) with 'Regression Analysis method' in SAS program, we derived the following formulae. Height (cm) = 95.62 {+-} 0.148 X Total length of Femur. (mm) Height (cm) = 82.07 {+-} 0.22 X Total length of Tibia. (mm) In conclusion, radiologic measurement of long bone might be one of the useful methods in individual identification of unknown subject in Korea.

  4. 髋关节表面置换术假体柄固定方式对股骨近端骨密度及应力影响%Effect of stem fixing methods on stress and bone mineral density in the proximal femur following hip resurfacing arthroplasty

    Institute of Scientific and Technical Information of China (English)

    屈瑾; 雷新玮; 展影; 张晨; 姜文学; 祁吉

    2014-01-01

    Objective To construct different 3-D finite element resurfacing arthroplasty of hip models and to explore the biomechanics influences of cement mantle varying in thickness on stress distribution and stressshielding in the proximal femur following hip resurfacing arthroplasty (RSAH),and evaluate the changes of bone mineral density in femur after RSAH,in order to find the adaptive methods to stem fixing.Methods A comparative study was carrie out in patients who underwent RSAH.The bone mineral Density of the proximal femur was measured through dual energy X-ray absorptiomenty of the four zone at post-operation and unoperation 6 months.Changes of bone mineral density ratio in proximal femur between post-operation and unoperation were compared and analyzed.the finite element models of RSAH with different thickness of cement mantle and normal femur were developed and stress analysis was performed under the load of body weight.Results The mean ration of bone mineral density of proximal femur in zone1,2,3 increased which was no significantly different from other areas (P > 0.05),the mean ration of bone mineral density of proximal femur in zone 4 and 5 increased which was significantly different from other areas (P < 0.05).Comparing with the 0 mm cement mantle model,the ratio of stress shielding of the cancellous bone around the stem in 1 mm cement mantle model has slightly increased,but also was less than 17%.The ratio of stress shielding was increased obviously in the 2 and 3 mm cement mantle mode and more than 17% in 1,2 and 5 zone.Conclusion The cement around stem not thicker than 1 mm produced slightly effect to the stress decreasing and did not result in marked stress shielding in the proximal femur following RSAH,and the bone stock of proximal femur can be well perserves and recovered.%目的 应用有限元分析方法研究髋关节表面置换术(RSAH)股骨侧假体柄周围骨水泥厚度与股骨近端应力分布间关系,比较术后手术侧与健

  5. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.

    Science.gov (United States)

    Lopes, Vitor M M; Neto, Maria A; Amaro, Ana M; Roseiro, Luis M; Paulino, M F

    2017-08-01

    The primary aim of this work was to validate the "numerical" cortex material properties (transversely isotropic) of synthetic femurs and to evaluate how the strain level of the cancellous bone can be affected by the FE modeling of the material's behavior. Sensitivity analysis was performed to find out if the parameters of the cortex material affect global strain results more than the Polyurethane (PU) foam used to simulate cancellous bone. Standard 4th generation composite femurs were made with 0.32g/cm(3) solid PU foam to model healthy cancellous bone, while 0.2g/cm(3) cellular PU was used to model unhealthy cancellous bone. Longitudinal and transversal Young's moduli of cortical bone were defined according the manufacturer data, while shear modulus and Poisson's ratios were defined from the literature. All femurs were instrumented with rosette strain gauges and loaded according to ISO7206 standards, simulating a one-legged stance. The experimental results were then compared with those from finite element analysis. When cortical bone was modelled as transversely isotropic, an overall FE/experimental error of 11% was obtained. However, with isotropic material the error rose to 20%. Strain field distributions predicted inside the two bone models were similar, but the strain state of a healthy cancellous bone was much more a compression state than that of unhealthy bone, the compression state decreased about 90%. Strain magnitudes show that average strain-levels of cancellous bone can be significantly affected by the properties of the cortical bone material and, therefore, simulations of femur-implanted systems must account for the composite behavior of the cortex, since small shear strains would develop near isotropic cancellous bone-implant interfaces. Moreover, the authors suggest that changing the volume fraction of glass fibers used to manufacture the cortical bone would allow a more realistic osteoporotic synthetic femurs to be produced. Copyright © 2017 IPEM

  6. Recent origin of low trabecular bone density in modern humans.

    Science.gov (United States)

    Chirchir, Habiba; Kivell, Tracy L; Ruff, Christopher B; Hublin, Jean-Jacques; Carlson, Kristian J; Zipfel, Bernhard; Richmond, Brian G

    2015-01-13

    Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.

  7. Emerging bone problems in patients infected with human immunodeficiency virus.

    Science.gov (United States)

    Mondy, Kristin; Tebas, Pablo

    2003-04-01

    Recently, a high incidence of osteopenia and osteoporosis has been observed in individuals infected with human immunodeficiency virus (HIV). This problem appears to be more frequent in patients receiving potent antiretroviral therapy. Other bone-related complications in HIV-infected individuals, including avascular necrosis of the hip and compression fracture of the lumbar spine, have also been reported. People living with HIV have significant alterations in bone metabolism, regardless of whether they are receiving potent antiretroviral therapy. The underlying mechanisms to account for these observations remain unknown, although studies are underway to examine the relationship between the bone abnormalities and other complications associated with HIV and antiretroviral therapy. HIV-infected patients with osteopenia or osteoporosis should be treated similarly to HIV-seronegative patients with appropriate use of nutritional supplements (calcium and vitamin D) and exercise. Hormone replacement and antiresorptive therapies might be also indicated.

  8. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain

    Science.gov (United States)

    Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.

    1997-01-01

    Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.

  9. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  10. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  11. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  12. An Upper Palaeolithic engraved human bone associated with ritualistic cannibalism.

    Science.gov (United States)

    Bello, Silvia M; Wallduck, Rosalind; Parfitt, Simon A; Stringer, Chris B

    2017-01-01

    Cut-marked and broken human bones are a recurrent feature of Magdalenian (~17-12,000 years BP, uncalibrated dates) European sites. Human remains at Gough's Cave (UK) have been modified as part of a Magdalenian mortuary ritual that combined the intensive processing of entire corpses to extract edible tissues and the modification of skulls to produce skull-cups. A human radius from Gough's Cave shows evidence of cut marks, percussion damage and human tooth marks, indicative of cannibalism, as well as a set of unusual zig-zagging incisions on the lateral side of the diaphysis. These latter incisions cannot be unambiguously associated with filleting of muscles. We compared the macro- and micro-morphological characteristics of these marks to over 300 filleting marks on human and non-human remains and to approximately 120 engraved incisions observed on two artefacts from Gough's Cave. The new macro- and micro-morphometric analyses of the marks, as well as further comparisons with French Middle Magdalenian engraved artefacts, suggest that these modifications are the result of intentional engraving. The engraved motif comfortably fits within a Magdalenian pattern of design; what is exceptional in this case, however, is the choice of raw material (human bone) and the cannibalistic context in which it was produced. The sequence of the manipulations suggests that the engraving was a purposeful component of the cannibalistic practice, implying a complex ritualistic funerary behaviour that has never before been recognized for the Palaeolithic period.

  13. Segmentation of radiographic images under topological constraints: application to the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, Pavan; Xie, Sheng Quan [University of Auckland, Department of Mechanical Engineering (Mechatronics), Auckland (New Zealand); Delmas, Patrice [University of Auckland, Department of Computer Science, Auckland (New Zealand); Xu, Wei Liang [Massey University, School of Engineering and Advanced Technology, Auckland (New Zealand)

    2010-09-15

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  14. Der umgedrehte Plattenfixateur zur osteosynthetischen Stabilisierung bei erschwerter Frakturheilung am proximalen Femur

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Strohm, P C; Müller, C A

    2009-01-01

    AIM: The aim of the study was to evaluate the application of a locked internal fixator in complex fractures of the proximal femur, in which the internal fixation with standard implants was not possible due to poor quality of bone or already failed internal fixation in the past. METHOD: Ten patients...... suffering from a pertrochanteric (n = 5), periprosthetic (n = 1) or subtrochanteric (n = 4) femural fracture between 2003 and 2008 were prospectively registered, underwent open reduction and internal fixation with an "upside-down" femur LISS (less invasive stabilisation system) and were followed up. In all...... of the implant. CONCLUSIONS: The "reversed" locked internal fixator could be a successful alternative implant for stabilisation of proximal femur fractures which could not be fixated by standard implants due to poor bone quality and circulation. It can also be used as a salvage procedure after internal failed...

  15. Epithelioid Hemangioendothelioma of the Femur with Benign Cystic Appearance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Ah; Kang, Heung Sik [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Kim, Yeo Goon [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, Jin Haeng [Dept. of Patholgy, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Oh, Joo Han [Dept. of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2011-12-15

    An epithelioid hemangioendothelioma is an intermediate grade tumor between hemangioma and angiosarcoma that frequently shows marked enhancement because it is a vascular tumor. Herein, we describe a rare case of a malignant epithelioid hemangioendothelioma of the femur that was mistaken as a benign lesion such as a simple bone cyst or fibrous dysplasia because the tumor had a benign cystic appearance on MRI and its imaging findings showed a histopathologic correlation.

  16. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J;

    2004-01-01

    an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8...... weeks, the implants were removed and embedded un-decalcified in methyl methacrylate (MMA). Sections were stained histochemically with Goldner's Trichrome stain and immuno-histochemically using human-specific antibodies against known osteogenic markers. Implanted human marrow stromal cells (hMSC) were...... able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24...

  17. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals.

    Science.gov (United States)

    Mondy, Kristin; Yarasheski, Kevin; Powderly, William G; Whyte, Michael; Claxton, Sherry; DeMarco, Debra; Hoffmann, Mary; Tebas, Pablo

    2003-02-15

    The underlying mechanisms of several bone disorders in human immunodeficiency virus (HIV)-infected persons and any relation to antiretroviral therapy have yet to be defined. A longitudinal study was conducted to estimate the prevalence of osteopenia or osteoporosis in HIV-infected persons; to assess bone mineralization, metabolism, and histomorphometry over time; and to evaluate predisposing factors. A total of 128 patients enrolled the study, and 93 were observed for 72 weeks. "Classic" risk factors (low body mass index, history of weight loss, steroid use, and smoking) for low bone mineral density (BMD) and duration of HIV infection were strongly associated with osteopenia. There was a weak association between low BMD and receipt of treatment with protease inhibitors; this association disappeared after controlling for the above factors. Markers of bone turnover tended to be elevated in the whole cohort but were not associated with low BMD. BMD increased slightly during follow-up. Traditional risk factors and advanced HIV infection play a more significant pathogenic role in the development of osteopenia and osteoporosis associated with HIV infection than do treatment-associated factors.

  18. Ossification of the femur and tibia of the post-hatching Japanese quail.

    Science.gov (United States)

    Ahmed, Yasser A; Soliman, Soha A; Abdel-Hafez, Enas A

    2013-09-01

    The current study aimed to describe the histological changes of the femur and tibia of the post-hatching quail. Femur and tibia from 1-day- to 6-weeks post-hatching quail were processed for light microscopy. Histological examination revealed that endochondral ossification was a delayed process in the development of femur and tibia preceded by periosteal ossification. Femur and tibia of 1-day-post-hatching quail consisted of growth cartilage enclosed in a tube of periosteal bone collar. The collar extended toward the epiphysis dividing it into articular cartilage proper and lateral articular cartilage. Down to the articular cartilage, there was a physeal growth cartilage, in which the chondrocytes were organized into resting, proliferative and hypertrophic zones. Focal areas of hypertrophic chondrocytes were observed in the epiphysis of the tibia but not of the femur, which acted as a nidus for formation of the secondary ossification centre after in 2-week-posthathcing quail. Primary ossification centre was seen in both femur and tibia after 2 weeks and ossification continued replacing the cartilage until the 6th week when only permanent articular cartilage remained. Cartilage canals were present in both femur and tibia starting from the day 1, but chondrified and completely disappeared after the 6th week. The current study suggests that the periosteal ossification preceded the endochondral ossification and plays an important role in quail long bones development.

  19. Pathological Fracture of the Femur by Metastatic Carcinoma Penis-a Rare Presentation.

    Science.gov (United States)

    Hussain, Shabbir; Solanki, Fanindra Singh; Sharma, Deepti B; Sharma, Dhananjay

    2016-04-01

    We report herein a clinical case of a patient with femur fracture due to metastasis from penile squamous cell carcinoma. A young man, who was treated for carcinoma penis, presented with pathological fracture of femur and lung metastasis from metastatic carcinoma penis after 18 months. Long bone metastasis from penile cancer is extremely rare, to the best of our knowledge; this is the first report of a patient with penile cancer spread to the femur from primary squamous cell carcinoma of the penis.

  20. Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods.

    Science.gov (United States)

    Kaminski, Artur; Grazka, Ewelina; Jastrzebska, Anna; Marowska, Joanna; Gut, Grzegorz; Wojciechowski, Artur; Uhrynowska-Tyszkiewicz, Izabela

    2012-08-01

    Accelerated electron beam (EB) irradiation has been a sufficient method used for sterilisation of human tissue grafts for many years in a number of tissue banks. Accelerated EB, in contrast to more often used gamma photons, is a form of ionizing radiation that is characterized by lower penetration, however it is more effective in producing ionisation and to reach the same level of sterility, the exposition time of irradiated product is shorter. There are several factors, including dose and temperature of irradiation, processing conditions, as well as source of irradiation that may influence mechanical properties of a bone graft. The purpose of this study was to evaluate the effect e-beam irradiation with doses of 25 or 35 kGy, performed on dry ice or at ambient temperature, on mechanical properties of non-defatted or defatted compact bone grafts. Left and right femurs from six male cadaveric donors, aged from 46 to 54 years, were transversely cut into slices of 10 mm height, parallel to the longitudinal axis of the bone. Compact bone rings were assigned to the eight experimental groups according to the different processing method (defatted or non-defatted), as well as e-beam irradiation dose (25 or 35 kGy) and temperature conditions of irradiation (ambient temperature or dry ice). Axial compression testing was performed with a material testing machine. Results obtained for elastic and plastic regions of stress-strain curves examined by univariate analysis are described. Based on multivariate analysis, including all groups, it was found that temperature of e-beam irradiation and defatting had no consistent significant effect on evaluated mechanical parameters of compact bone rings. In contrast, irradiation with both doses significantly decreased the ultimate strain and its derivative toughness, while not affecting the ultimate stress (bone strength). As no deterioration of mechanical properties was observed in the elastic region, the reduction of the energy

  1. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  2. Three-dimensional Finite Element Analysis and Biomechanical Study on Reconstruction of the Large Defect of Proximal Femur with Allograft Prosthesis Composite in Clinical Bone-Healing Phase%复合移植重建股骨近段大段骨缺损骨临床愈合期的三维有限元分析

    Institute of Scientific and Technical Information of China (English)

    行斌斌; 段宏; 屠重棋; 陈和仲; 罗教明

    2009-01-01

    Three-dimensional finite element models of the large defect of proximal femur were reconstructed with allograft prosthesis composite in clinical bone-healing phase;current model was under the given conditions of 138mm-intramedullary stem-length of host bone and 135mm defect-length of proximal femur. The femur was constructed with efilm software from CT data,then three-dimensional concrete models were created by using Proe-Wildfire software;the three-dimensional finite element models of allograft prosthesis composite were made in ANSYS11 software. Loads were simulated using the peaking values during stance walking. The stress on femur-cement-callus-prostheses and the influence of stress on the clinical bone-healing phase were analysed.The highest stress value of femur is on the medial side of the tip of the prostheses. The highest stress value of cement mantle is on the medical side of the cement mantle at the tip of the stem. The highest stress value of the prostheses is on the medial side near the upper 4cm of the stem tip. The highest stress value on the callus is at the medial side of the callus layer. The highest stress value on every part is under the corresponding fatigue strength. Clinical bone-healing phase model is well enough for stance walking.%建立同种异体骨与人工关节复合移植重建股骨近段大段骨缺损骨临床愈合期的三维有限元模型,设定股骨近段骨缺损长度为135 mm,假体柄植入宿主股骨髓腔内长度为138 mm,首先采用efilm软件对股骨CT扫描图像进行三维重建,将重建数据及测量的假体参数导入ProeWildfire3.0软件建立三维实体模型,而后在ANSYS11.0中建立三维有限元模型,以下肢稳态步行的峰值负荷生理加载,得出载荷对股骨、骨痂、骨水泥及假体应力分布的影响.股骨应力值在假体柄尖端内侧处达到最大值,骨水泥壳应力最大值位于假体柄尖端骨水泥壳内侧,假体应力最大值位于假体柄尖端近端4

  3. 中等强度游泳训练对生长期大鼠股骨骨密度和生物力学性能的影响%The effect of middle intensity of swimming training to the growth period rats' bone mineral density of femur and biomechanical properties

    Institute of Scientific and Technical Information of China (English)

    冯宁

    2012-01-01

    In order to study the effect of middle intensity of swimming training to the growth period rats' bone density of femur and biomechanical properties,This article comparatively divides 18 Wistar male rats into control group(n=10) and experimental group(n=8) with 60 min swimming,2% of body weight per day and total 10 weeks.At the end of training,the rats are put to death and the right femur is taken out.By using the method of DXA and CMT5504 to give three points bending experiment of the femur,then the computer automatically generate the index of bone structure and material mechanics.The results show that the effect of middle intensity of swimming training to trained nine weeks rats' bone density of femur is obviously lower than those of CON(P0.05).The change of rats' femoral biomechanical properties shows that the ability of rats' resist damage and deformation reduced.The article concludes that middle intensity of swimming trainingan leads the inhibitory effect of bone mineral density of femur,but there is little effect on biomechanical properties.%目的:探讨中等强度的游泳运动对生长期大鼠股骨骨密度(BMD)和生物力学性能的影响。方法:将4周龄Wistar雄性大鼠18只,分为对照组(n=10)、中等强度游泳组(n=8),中等强度游泳组负重2%自身体重游泳,每天运动60min,共训练9周(每周5d)。训练结束将大鼠处死后摘出右侧股骨,采用NORLAND公司生产的双能X线骨密度测定仪(DXA)测量股骨BMD;采用新三思集团生产的CMT5504微机控制电子万能试验机对股骨进行3点弯曲试验,电脑自动生成骨结构和材料力学指标。结果:大鼠经过9周训练后,中等强度游泳组股骨骨密度显著低于对照组(p〈0.05)。大鼠股骨生物力学性质变化结果表明,中等强度游泳组大鼠股骨抵抗破坏和变形的能力降低,但是没有显著性差异。结论:中等强度游泳训练对生长期大鼠股

  4. A Crust-based Method of Reconstructing Human Bone

    Institute of Scientific and Technical Information of China (English)

    MA Shu-chao; LIU Yi

    2014-01-01

    We present a crust-based procedure for modeling human being’s bone, which is based on voronoi diagram and its dual, Delaunay triangulation. In three-dimensional space, the crust algorithm can generate a 3D-model using a set of sample points. The purposes of this paper is to extract precise contour from CT series, then refer to these contours as sample points, and then apply the crust algorithm to these sample points to get three dimensional mesh.

  5. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  6. Clinical application of uncemented all-coated long stem prosthesis in mild and moderate femur bone defects during hip revision%非骨水泥型广泛涂层长柄假体在髋关节翻修股骨轻中度缺损重建中的应用

    Institute of Scientific and Technical Information of China (English)

    王龙强; 王黎明; 唐成; 金成哲; 顾强荣

    2011-01-01

    BACKGROUND: There is no uniform method to repair mild and moderate femur bone defects du ring hip revision. OBJECTIVE: To evaluate the clinical outcomes of uncemented all-coated long stem prosthesis in mild and moderate femur bone defect during hip revision. METHODS: Eleven patients had mild and moderate femur bone defects after primary hip arthroplasty, they all received uncemented all-coa tedlong stem prosthesis treatment. Among the 11 patients, 8 patients underwent dried bone allograft particles. RESULTS AND CONCLUSION: All the incisions healed by the first intension. All patients were followed up for 10 -60 months. There was significant difference in the mean Harris score between preoperation and postoperation (P< 0.01). X-ray examinaton showed that continuous radiolucent line of 3 mm occurred in 1 case, and no clinical symptoms were observed. Eight cases with dried bone allograft particles recovered within an average period of 5 months (3 -9 months). The uncemented all-coatedlong stem prosthesis can provide initial stabilization in repair of mild and moderate femur bone defects during revision hip arthroplasty, and the short-term clinical effects are satisfactory.%背景:股骨侧轻中度缺损翻修处理目前没有统一的解决方法.目的:评价非骨水泥型广泛涂层长柄假体在股骨轻中度缺损的髋关节翻修中应用的临床效果.方法:11例非感染性股骨侧轻中度骨缺损患者单髋初次翻修,均采用非骨水泥型广泛涂层长柄假体,其中8例患者行干燥同种异体颗粒植骨,3例患者未植骨.结果与结论:11例均获随访,最短随访时间10个月,最长随访60个月.翻修后切口均为Ⅰ期愈合.末次随访时Harris 评分好于翻修前(P < 0.01).翻修后2年1例股骨假体周围出现3 mm 透亮带,无明显临床症状,未作处理.患者均未见骨溶解,干燥同种异体颗粒骨融合时间3~9个月,平均5个月.提示,采用非骨水泥型广泛涂层长柄假体对股骨轻中

  7. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old X-Ray Exam: Femur (Upper Leg) KidsHealth > For Parents > X-Ray Exam: Femur (Upper Leg) A A A ... español Radiografía: fémur What It Is A femur X-ray is a safe and painless test that ...

  8. Sex determination in femurs of modern Egyptians: A comparative study between metric measurements and SRY gene detection

    Directory of Open Access Journals (Sweden)

    Iman F. Gaballah

    2014-12-01

    Conclusion: The SRY gene detection method for sex determination is quick and simple, requiring only one PCR reaction. It corroborates the results obtained from anatomical measurements and further confirms the sex of the femur bone in question.

  9. Bone formation induced in mouse thigh by cultured human cells.

    Science.gov (United States)

    Anderson, H C; Coulter, P R

    1967-04-01

    Cultured FL human amnion cells injected intramuscularly into cortisone-conditioned mice proliferate to form discrete nodules which become surrounded by fibroblasts. Within 12 days, fibroblastic zones differentiate into cartilage which calcifies to form bone. Experiments were conducted to test the hypothesis that FL cells behave as an inductor of bone formation. In the electron microscope, FL cells were readily distinguished from surrounding fibroblasts. Transitional forms between the two cell types were not recognized. Stains for acid mucopolysaccharides emphasized the sharp boundary between metachromatic fibroblastic and cartilaginous zones and nonmetachromatic FL cells. (35)S was taken up preferentially by fibroblasts and chondrocytes and then deposited extracellularly in a manner suggesting active secretion of sulfated mucopolysaccharides. FL cells showed negligible (35)S utilization and secretion. FL cells, labeled in vitro with thymidine-(3)H, were injected and followed radioautographically, during bone formation. Nuclear label of injected FL cells did not appear in adjacent fibroblasts in quantities sufficient to indicate origin of the latter from FL cells. The minimal fibroblast nuclear labeling seen may represent reutilization of label from necrotic FL cells. It is suggested that FL cells injected into the mouse thigh induced cartilage and bone formation by host fibroblasts.

  10. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Science.gov (United States)

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailab...

  11. Effects of spirulina, a blue-green alga, on bone metabolism in ovariectomized rats and hindlimb-unloaded mice.

    Science.gov (United States)

    Ishimi, Yoshiko; Sugiyama, Fumie; Ezaki, Junko; Fujioka, Maiko; Wu, Jian

    2006-02-01

    The safety and effectiveness were examined of the spirulina alga on bone metabolism in ovariectomized estrogen-deficient rats and hindlimb-unloaded mice. The dosage range was from an amount equal to that recommended in so-called health foods for humans (0.08 g/kg BW/day) to a 100-fold higher dose. The bone mineral density (BMD) of the whole femur and tibia of ovariectomized rats in the any spirulina-treated groups was not significantly different from that of the ovariectomized group, although BMD of the distal femur and proximal tibia was significantly lower in the spirulina-treated groups than in the ovariectomized group after a 6 week-experimental period. BMD of the femur and tibia was not affected by treatment with any dose of spirulina in hindlimb-unloaded mice. These results suggest that the intake of spirulina decreased BMD in the trabecular bone of rodents under estrogen-deficient conditions.

  12. A study of stress-free living bone and its application to space flight

    Science.gov (United States)

    Leblanc, A.; Spira, M.

    1983-01-01

    Observations of animals and human subjects in weightless space flight (Skylab and COSMOS) document altered bone metabolism. Bone metabolism is affected by a number of local and systemic factors. The calcification and growth of transplanted bone is independent of local muscle, nervous, and mechanical forces; therefore, transplanted bone would provide data on the role of local vs. systematic factors. Bone metabolism in living transplanted bone, devoid of stress, was investigated as a possible tool for the investigation of countermeasures against disuse bone loss. An animal model using Sprague-Dawley rats was developed for transplantation of femur bone tissue on a nutrient vascular pedicel. The long term course of these implants was assessed through the measure of regional and total bone mineral, blood flow, and methylene diphosphonate (MDP) uptake. Clomid, an estrogen agonist/antagonist, was shown to protect bone from disuse loss of minerals by retarding trabecular and cortical resorption.

  13. Tissue engineered humanized bone supports human hematopoiesis in vivo.

    Science.gov (United States)

    Holzapfel, Boris M; Hutmacher, Dietmar W; Nowlan, Bianca; Barbier, Valerie; Thibaudeau, Laure; Theodoropoulos, Christina; Hooper, John D; Loessner, Daniela; Clements, Judith A; Russell, Pamela J; Pettit, Allison R; Winkler, Ingrid G; Levesque, Jean-Pierre

    2015-08-01

    Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.

    Science.gov (United States)

    Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W

    2016-01-01

    Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.

  15. Comparative study on seeding methods of human bone marrow stromal cells in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    齐欣; 刘建国; 常颖; 徐莘香

    2004-01-01

    Background In general the traditional static seeding method has its limitation while the dynamic seeding method reveals its advantages over traditional static method. We compared static and dynamic seeding method for human bone marrow stromal cells (hBMSCs) in bone tissue engineering.Methods DNA assay was used for detecting the maximal initial seeding concentration for static seeding. Dynamic and static seeding methods were compared, when scaffolds were loaded with hBMSCs at this maximal initial cell seeding concentration. Histology and scanning electron microscope (SEM) were examined to evaluate the distribution of cells inside the constructs. Markers encoding osteogenic genes were measured by fluorescent RT-PCR. The protocol for dynamic seeding of hBMSCs was also investigated.Results DNA assay showed that the static maximal initial seeding concentration was lower than that in dynamic seeding. Histology and SEM showed even distribution and spread of cells in the dynamically seeded constructs, while their statically seeded counterparts showed cell aggregation.Fluorescent RT-PCR again showed stronger osteogenic potential of dynamically seeded constructs.Conclusion dynamic seeding of hBMSCs is a promising technique in bone tissue engineering.

  16. Stressfraktur efter epifysiodese i femur

    DEFF Research Database (Denmark)

    Al-Aubaidi, Zaid; Engell, Vilhelm; Lundgaard, Bjarne

    2010-01-01

    Growth guiding is currently widely practiced for deformity correction in the growing child. Different methods have been developed. In 2007 Stevens described a tension band device (8-plates) as a simple growth control method. Since then it has been widely used, e.g. in hemiepiphysiodesis to correc...... described. We present a case with a fracture in the distal femur through 8-plates screw holes....

  17. Development of a Human Cranial Bone Surrogate for Impact Studies.

    Science.gov (United States)

    Roberts, Jack C; Merkle, Andrew C; Carneal, Catherine M; Voo, Liming M; Johannes, Matthew S; Paulson, Jeff M; Tankard, Sara; Uy, O Manny

    2013-01-01

    In order to replicate the fracture behavior of the intact human skull under impact it becomes necessary to develop a material having the mechanical properties of cranial bone. The most important properties to replicate in a surrogate human skull were found to be the fracture toughness and tensile strength of the cranial tables as well as the bending strength of the three-layer (inner table-diplöe-outer table) architecture of the human skull. The materials selected to represent the surrogate cranial tables consisted of two different epoxy resins systems with random milled glass fiber to enhance the strength and stiffness and the materials to represent the surrogate diplöe consisted of three low density foams. Forty-one three-point bending fracture toughness tests were performed on nine material combinations. The materials that best represented the fracture toughness of cranial tables were then selected and formed into tensile samples and tested. These materials were then used with the two surrogate diplöe foam materials to create the three-layer surrogate cranial bone samples for three-point bending tests. Drop tower tests were performed on flat samples created from these materials and the fracture patterns were very similar to the linear fractures in pendulum impacts of intact human skulls, previously reported in the literature. The surrogate cranial tables had the quasi-static fracture toughness and tensile strength of 2.5 MPa√ m and 53 ± 4.9 MPa, respectively, while the same properties of human compact bone were 3.1 ± 1.8 MPa√ m and 68 ± 18 MPa, respectively. The cranial surrogate had a quasi-static bending strength of 68 ± 5.7 MPa, while that of cranial bone was 82 ± 26 MPa. This material/design is currently being used to construct spherical shell samples for drop tower and ballistic tests.

  18. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    DEFF Research Database (Denmark)

    Wong, C.; Gehrchen, P.M.; Kiaer, T.

    2008-01-01

    STUDY DESIGN: A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws. OBJECTIVE......: The validity of 2 bone remodeling algorithms was evaluated by comparing against prospective bone mineral content measurements. Also, the potential stress shielding effect was examined using the 2 bone remodeling algorithms and the experimental bone mineral data. SUMMARY OF BACKGROUND DATA: In previous studies......, in the human spine, the bone remodeling algorithms have neither been evaluated experimentally nor been examined by comparing to unsystematic experimental data. METHODS: The site-specific and nonsite-specific iterative bone remodeling algorithms were applied to a finite element model of the lumbar spine...

  19. Percutaneous cementoplasty for painful osteolytic distal femur metastases: a case report.

    Science.gov (United States)

    Lei, Mingxing; Liu, Yaosheng; Yang, Shaoxing; Jiang, Weigang; Cao, Yuncen; Liu, Shubin

    2016-01-01

    Percutaneous cementoplasty has been shown to immediately restore the mechanical stability of affected bones, prevent further risk of bone fractures, and allow immediate weight bearing. It is emerging as one of the most promising procedures for patients with painful bone metastasis who are unsuitable for surgery or who show resistance to radiotherapy and/or analgesic therapies. This study aimed at describing the procedure, indications, and benefits of percutaneous cementoplasty for painful osteolytic distal femur metastases. We report the case of a painful metastatic lesion in the left distal femur secondary to non-small-cell lung cancer in a 58-year-old woman. The patient underwent percutaneous cementoplasty and experienced effective pain relief and recovery of knee function postoperatively. In addition, no perioperative complication was observed. Percutaneous cementoplasty for osteolytic distal femur metastases offers effective pain relief and restores impaired knee function. Although this method may be a safe option, larger samples of retrospective or prospective confirmation are warranted.

  20. Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2017-12-01

    Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

  1. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  2. SEX DETERMINATION OF FEMUR: A MORPHOMETRIC ANALYSIS IN THE NORTH INDIAN POPULATION

    OpenAIRE

    Aprajita Sikka; Anjali Jain

    2016-01-01

    Bones are an important tool for establishing the biological profile of an individual. In the absence of skull and pelvis, long bones can play a major role in determining the sex. Femur is the longest and strongest bone of the body and resists environmental effects and hence becomes important in medico-legal investigations. AIMS To determine the sex of 180 femora and to set up baseline parameters for the North Indian population with the help of demarcating and limiting value...

  3. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  4. Simultaneous Periprosthetic Fractures of the Femur and the Acetabulum After Bipolar Hip Arthroplasty

    Science.gov (United States)

    Verettas, Dionysios-Alexandros; Chloropoulou, Pelagia-Paraskevi; Drosos, Georgios; Vogiatzaki, Theodosia; Tilkeridis, Konstantinos; Kazakos, Konstantinos

    2016-01-01

    Patient: Female, 68 Final Diagnosis: Periprosthetic fractures of the acetabulum and femur after bipolar hip arthroplasty Symptoms: Inability to walk Medication: — Clinical Procedure: Revision cup and internal fixation femur Specialty: Orhopedics and Traumatology Objective: Rare co-existance of disease or pathology Background: Although periprosthetic fractures of the femur are a recognized complication of total hip arthroplasty, periprosthetic fractures of the acetabulum are rare. Simultaneous periprosthetic fractures of both the acetabulum and the femur have not been reported, to our knowledge. Case Report: We report a simultaneous fracture of the acetabulum and the femur in a 68-year-old female patient who had previously sustained a subcapital fracture of the femur, treated with a bipolar uncemented prosthesis. We discuss the possible mechanism of this combination of fractures. Conclusions: Simultaneous periprosthetic fractures of the femur and the acetabulum can occur if, in the presence of osteoporotic bone, the metallic femoral head has migrated medially in the acetabulum while the femoral stem is not loose. PMID:28003639

  5. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  6. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    Science.gov (United States)

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations.

  7. Combined bilateral idiopathic necrosis of the humerus and femur heads: Bone scan, X-ray, CT, and MRI findings. Kombinierte beidseitige idiopathische Nekrose der Humerus- und Femurkoepfe: Skelettszintigraphie, Roentgen-, CT- und MRT-Befunde

    Energy Technology Data Exchange (ETDEWEB)

    Piepenburg, R.; Hahn, K. (Mainz Univ. (Germany). Klinik fuer Nuklearmedizin); Doll, G. (Mainz Univ. (Germany). Klinik fuer Roentgendiagnostik); Grimm, J. (Mainz Univ. (Germany). Orthopaedische Klinik)

    1992-12-01

    Untreated aseptic bone necroses close to a joint commonly leads to severe secondary arthrosis and destruction of the joint within a short time. Therefore, only a diagnosis in an early stage of the disease offers the chance of a successful joint- preserving therapy. In cases of clinically suspected aseptic bone necrosis but still negative or doubtful X-ray findings, bone scans or MRI are reliable methods of verifying the diagnosis. (orig./MG).

  8. A re-evaluation of the premaxillary bone in humans.

    Science.gov (United States)

    Barteczko, K; Jacob, M

    2004-03-01

    The discovery of the premaxillary bone (os incisivum, os intermaxillare or premaxilla) in humans has been attributed to Goethe, and it has also been named os Goethei. However, Broussonet (1779) and Vicq d'Azyr (1780) came to the same result with different methods. The first anatomists described this medial part of the upper jaw as a separate bone in the vertebrate skull, and, as we know, Coiter (1573) was the first to present an illustration of the sutura incisiva in the human. This fact, and furthermore its development from three parts:-(1) the alveolar part with the facial process, (2) the palatine process, and (3) the processus Stenonianus-can no longer be found in modern textbooks of developmental biology. At the end of the nineteenth and in the early twentieth century a vehement discussion focused on the number and position of its ossification centers and its sutures. Therefore, it is hard to believe that the elaborate work of the old embryologists is ignored and that the existence of a premaxillary bone in humans is even denied by many authors. Therefore this re-evaluation was done to demonstrate the early development of the premaxillary bone using the reconstructions of Felber (1919), Jarmer (1922) and data from our own observations on SEM micrographs and serial sections from 16 mm embryo to 68 mm fetus. Ossification of a separate premaxilla was first observed in a 16 mm embryo. We agree with Jarmer (1922), Peter (1924), and Shepherd and McCarthy (1955) that it develops from three anlagen, which are, however, not fully separated. The predominant sutura incisiva (rudimentarily seen on the facial side in a prematurely born child) and a shorter sutura intraincisiva argue in this sense. The later growth of this bone and its processes establish an important structure in the middle of the facial skull. Its architecture fits well with the functional test of others. We also focused on the relation of the developing premaxilla to the forming nasal septum moving from

  9. Effect of nonphytate phosphorus and phytase levels on broiler femur.

    Directory of Open Access Journals (Sweden)

    Luana Martins Schaly

    2009-03-01

    Full Text Available This experiment was carried out to evaluate the effect of nonphytate phosphorus (NPP and phytase levels on the weight, morphometry and weight/length index (WLI of broiler femurs at 21 and 42 days of age. One thousand, two hundred chicks were allocated in a completely randomized design and 4 x 3 factorial arrangement (NPP x phytase levels, with four replicates. The NPP levels, at each phase were of 0.45, 0.37, 0.29 and 0.21% in the initial phase, 0.41, 0.33, 0.25 and 0.17% in the growth phase, and of 0.37, 0.29, 0.21 and 0.13% in the final phase. The phytase levels used were 0, 500 and 1000U/kg of diet. At 21 and 42 days of age, 48 birds were sacrificed for femur collection. At 21 days, there was no effect (P > 0.05 of NPP x phytase interaction on bone parameters, but the NPP reduction decreased (P < 0.05 the weight, length and WLI of the femurs, and the inclusion of 500U/kg of phytase improved (P < 0.05 the weight and WLI of the bones. At 42 days of age, NPP x phytase interaction was significant (P < 0.05 for the weight and length, and birds fed diets with no phytase had femurs that were lighter and shorter when the lowest NPP levels were evaluated. However, the inclusion of 500 or 1000U/kg of phytase produced weights and lengths similar to those produced by treatment with recommended NPP levels, and the lower NPP levels evaluated caused a reduction (P < 0.05 in the diameter and WLI of femurs. It was concluded that diets with 0.29, 0.25 or 0.21% of NPP, with 500 U/kg of phytase, could be used with no negative effect on the femur quality in broilers from one to 42 days of age.

  10. Bone regenerative properties of rat, goat and human platelet-rich plasma.

    NARCIS (Netherlands)

    Plachokova, A.S.; Dolder, J. van den; Beucken, J.J.J.P. van den; Jansen, J.A.

    2009-01-01

    To explore the reported contradictory osteogenic capacity of platelet-rich plasma (PRP), the aim of the study was to examine and compare the bone regenerative effect of: PRPs of different species (rat, goat, human); human bone graft (HB) vs. HB combined with human PRP (HB+hPRP); and HB+hPRP vs. synt

  11. Can experimental data in humans verify the finite element-based bone remodeling algorithm?

    DEFF Research Database (Denmark)

    Wong, Christian; Gehrchen, P Martin; Kiaer, Thomas

    2008-01-01

    A finite element analysis-based bone remodeling study in human was conducted in the lumbar spine operated on with pedicle screws. Bone remodeling results were compared to prospective experimental bone mineral content data of patients operated on with pedicle screws....

  12. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    ) to investigate the age-related and osteoarthrosis-related changes in the mechanical properties of the human tibial cartilage-bone complex; and 3) to evaluate mutual associations among various properties. Normal specimens from human autopsy proximal tibiae were used for investigation of age variations...... in the properties of trabecular bone and the cartilage-bone complex, and osteoarthrotic specimens were used for the investigation of changes in the mechanical properties of the cartilage-bone complex induced by this disease process. The mechanical properties and physical/compositional properties of trabecular bone...... is parallel to the longitudinal loading axis of the tibia. The mechanical properties of the normal cartilage and bone vary with age and respond simultaneously to mechanical loading. Both cartilage and bone in early-stage OA are mechanically inferior to normal, and OA cartilage and bone have lost their unit...

  13. 酒精灭活骨复合人工假体治疗股骨远端骨巨细胞瘤及有限元分析%Clinical and finite element analysis of alcohol-deactivated autograft-prosthesis composite after resection of bone giant cell tumor in distal femur

    Institute of Scientific and Technical Information of China (English)

    许宋锋; 杨阳; 徐明; 于秀淳

    2011-01-01

    Objective To evaluate the clinical outcome of alcohol-deactivated autograft-prosthesis composite after resection of bone giant cell tumor in distal femur.Methods From January 2007 to October 2008,5 patients with bone giant cell tumor in distal femur were treated with alcohol-deactivated autograftprosthesis composite,including 3 males and 2 females with an average age of 29.6 years(range,22-40).Three patients were diagnosed with postoperative recurrence,and 2 with pathological fracture.All patients were of Campanacci Ⅲ.Three-dimensional finite element models with 40% bone defect in distal femur were established based on CT images of a healthy volunteer.Three times of body mass load corresponding to the normal walking gait cycle was applied.The influence on stress distribution of femur-cement and prosthesis stem was analyzed.Results All patients were followed up for average 37 months,there was no infection,recurrence,loosening and limb length inequality.The bony healing time was 6 to 11 months.The mean MSTS function score was 25.7(range,25-27).The mean ISOLS graft score was 31.4 (range,28-35).The finite element analysis showed that for the short-term model,the maximum stress was 145.82 MPa in the proximal femur,40.90 MPa in the medial side of 1/4 proximal cement,and 389.24 MPa in the proximal prosthesis stem.The maximum stress was not exceeding the fatigue strength in three sites.For the long-term model,with the bone healing,the maximum stress on three sites decreased to 139.05,36.95,and 253.65 MPa,respectively.Conclusion These results suggest that the alcohol-deactivated autograft-prosthesis composite after resection ot bone giant cell tumor in distal femur can reduce the tumor recurrence and improve the short-term limb function,It is stable in short term and can reduce stress shielding in long term.%目的 探讨酒精灭活骨复合人工假体治疗股骨远端骨巨细胞瘤的临床疗效.方法 2007年1月至2008年10月应用酒精灭活骨复合旋转铰

  14. The relevance of mouse models for investigating age-related bone loss in humans.

    Science.gov (United States)

    Jilka, Robert L

    2013-10-01

    Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized.

  15. Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone

    Science.gov (United States)

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688

  16. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  17. Endoprosthetic reconstruction for metastatic phaeochromocytoma in the distal femur: A case report.

    Science.gov (United States)

    Srikanth, Kanchana Pala; Srinivas, Chirukuri; Gowrishankarswamy, Lakshmipura Gangadharaiah; Chandrasekar, Chikkamuniyappa

    2016-01-01

    Metastatic spread of malignant phaeochromocytoma is known to involve multiple organs including the axial skeleton. Its presentation as a solitary lesion in the long bones of the extremities is extremely rare. We report a unique case of solitary metastatic phaeochromocytoma presenting in the distal femur, 16 years after excision of primary abdominal tumor. A 60 year old female, operated for adrenal phaeochromocytoma 16 years back was detected to have a bone tumor in her left distal femur. Chest and abdominal CT evaluation including bone scintigraphy confirmed the lesion to be solitary. Magnetic resonance imaging of the left femur revealed the tumor to be of aggressive nature. It involved whole of the distal femoral metaphysis with bone destruction, soft tissue extension and an impending pathological fracture. The tumor was histopathologically confirmed to be phaeochromocytoma. Patient underwent wide surgical resection of the tumor along with simultaneous endoprosthetic reconstruction. Following surgery, rehabilitation was rapid and effortless with patient ambulating independently. She had pain free full range of knee movements and resumed her daily activity uneventfully. On 18 months follow up the patient had no recurrence or complications. Late and solitary skeletal metastasis of malignant phaeochromocytoma although rare, can occur in the distal femur mimicking a primary bone tumor. Wide surgical excision and simultaneous endoprosthetic reconstruction should be considered as a treatment option. This not only permits limb salvage and early rehabilitation, but also restores form and function of the limb.

  18. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  19. Building bones in babies: can and should we exceed the human milk-fed infant's rate of bone calcium accretion?

    Science.gov (United States)

    Abrams, Steven A

    2006-11-01

    Increasing calcium absorption and bone calcium accretion to levels above those achieved by human milk-fed, full-term infants is possible with infant formulas. However, no data support such a goal or suggest that it is beneficial to short- or long-term bone health. Small differences in the bioavailability of calcium between infant formulas are unlikely to have long-term consequences. Long-term studies of the effects of infant feeding type on ultimate bone mass are needed. For now, the vitamin-replete breast-fed infant's rate of calcium accretion during the first year of life should be the standard targeted for infant formulas.

  20. Microtomography of the human tooth-alveolar bone complex

    Science.gov (United States)

    Dalstra, Michel; Cattaneo, Paolo M.; Beckmann, Felix; Sakima, Maurício T.; Lemor, Carsten; Laursen, Morten G.; Melsen, Birte

    2006-08-01

    In this study the structure of the adult human dentoalveolar process is examined using conventional and synchrotron radiation-based microtomography (SRμCT). Mandibular and maxillary segments containing two to five adjacent teeth were harvested at autopsy from 49 adult donors. These segments were embedded in blocks of methylmetacrylate and scanned using a conventional table-top μCT-scanner at a pixel size and slice thickness of 35 μm. A few segments were also scanned at a synchrotron facility at an initial pixel size of 16.4 μm, which was binned by a factor 2 to result in an effective voxel size of almost 32.8 μm. The three-dimensional reconstructions revealed how intricately the teeth are supported by the alveolar bone. Furthermore, this support is highly inhomogeneous with respect to the buccal, mesial, lingual and distal quadrants. Reflecting their various degrees of mineralization, tissues like bone, dentine, enamel and cementum, could well be identified, especially in the scans made with SRμCT. Despite comparable voxel sizes, the reconstructed data-sets obtained with conventional μCT were less detailed and somewhat fuzzy in appearance compared to the data-sets of SRμCT. However, for quantification of macroscopical features like the thickness of the alveolar wall or the presence of dehiscences/fenestrations this seemed sufficient.

  1. Inner ear contribution to bone conduction hearing in the human.

    Science.gov (United States)

    Stenfelt, Stefan

    2015-11-01

    Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia.

  2. Human foot bones from Klasies River main site, South Africa.

    Science.gov (United States)

    Rightmire, G Philip; Deacon, H J; Schwartz, Jeffrey H; Tattersall, Ian

    2006-01-01

    The caves at Klasies River contain abundant archaeological evidence relating to human evolution in the late Pleistocene of southern Africa. Along with Middle Stone Age artifacts, animal bones, and other food waste, there are hominin cranial fragments, mandibles with teeth, and a few postcranial remains. Three foot bones can now be added to this inventory. An adult first metatarsal is similar in size and discrete anatomical features to those from Holocene burials in the Cape Province. A complete and well-preserved second metatarsal is especially long and heavy at midshaft in comparison to all Holocene and more recent South African homologues. A large fifth metatarsal is highly distinctive in its morphology. In overall size, these pedal elements resemble specimens from late Pleistocene sites in western Asia, but there are some differences in proportions. The fossils support earlier suggestions concerning a relatively high level of sexual dimorphism in the African Middle Stone Age population. Squatting facets on the two lateral metatarsals appear to indicate a high frequency of kneeling among members of this group. The new postcranial material also underlines the fact that the morphology of particular skeletal elements of some of the 100,000-year-old Klasies River individuals falls outside the range of modern variation.

  3. [Biomechanical test study of rat femurs growing under different stress environment].

    Science.gov (United States)

    Liu, Yingxi; Zhao, Wenzhi; Zhang, Jun; Li, Shouju; Li, Jingnian; Sun, Xiaojiang

    2005-06-01

    By creating two kinds of stress environment in the same animal model, we performed a three-point bending test and a compressing test on the rat femurs growing under different stress conditions to characterize the effect of stress on bone mechanical properties. The right hindlimbs were subjected to sciatic nerve resection to become cripple and were used as unloading group; the left hindlimbs bore excess load and made up the overloading group; the normal rats were used as control group. The animals were encouraged to exercise for half an hour everyday in the morning, noon and evening. The experiment observation finished in four weeks. The biomechanical parameters of femur diaphyses were measured. The experiment results showed that stress environment may change several mechanical parameters of rat femurs. This study indicated that bone tissues can adapt to its stress environment by changing its mechanical properties. The experimental model in this article is practical and reliable.

  4. Magnetic resonance imaging findings of osteoid osteoma of the proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Michele; Minutoli, Fabio; Pandolfo, Ignazio; Vinci, Sergio; Blandino, Alfredo [Department of Radiological Sciences, University of Messina, Policlinico ' ' G. Martino' ' , Via Consolare Valeria, 98100, Messina (Italy); D' Andrea, Letterio [Department of Orthopedics, University of Messina, Policlinico ' ' G. Martino' ' , Via Consolare Valeria, 98100, Messina (Italy)

    2004-09-01

    Osteoid osteoma (OO) is a benign bone tumor whose main radiological finding is nidus. OO of the proximal femur can also result in non-specific findings such as hip joint effusion, perinidal bone marrow edema and soft tissue mass. Since the nidus may be difficult to identify with MR, these non-specific findings can lead to erroneous diagnosis. Therefore, MR imaging technique should be optimized in order to identify nidus. Since MR imaging has assumed increasing importance in the evaluation of disorders of the hip, radiologists must be aware of the spectrum of findings of OO of the proximal femur. The aim of this pictorial review is to show the MR imaging findings of intra-articular and extra-articular OO of the proximal femur. (orig.)

  5. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  6. Static or dynamic intramedullary nailing of femur and tibia.

    Science.gov (United States)

    Omerovic, Djemil; Lazovic, Faruk; Hadzimehmedagic, Amel

    2015-04-01

    The basic principle of non-surgical fracture treatment is to restore the original anatomical position of fractured fragments by different techniques, without direct access to the bone and without further traumatizing of tissues. Intramedullary nailing is synthesis and consolidation of fracture fragments with the main goal to gain strength and permanent placement of the implants. Two techniques of intramedullary osteosynthesis are used: with dynamic or with static intramedullary nail. Dynamization include conversion of static nail by removing screws from the longest fragment. The aim of this study is to determine whether there is a difference in the speed and quality of healing of the type A and B fractures of the femur and tibia treated by static or dynamic intramedullary nails and to compare the results. The study was conducted at the Clinic for Orthopaedics and Traumatology, Clinical Center University Sarajevo from January 2004 to June 2009. The study was retrospective-prospective, manipulative, controlled and it was conducted on a total of 129 patients with closed fractures of the diaphysis of the femur and tibia type A and type B, with different segments of bone, regardless of sex and age structure, with the exception of children under 14 years of age. Precisely there were 47 patients with femoral fractures and 82 patients with tibial fractures. The average number of weeks of healing femoral and tibial fractures was slightly in advantage of static intramedullary osteosynthesis, it was 17.08 weeks (SD=3.382). The average number of weeks of healing in 23 patients with fractures of the femur, treated by dynamic intramedullary osteosynthesis was 17.83 (SD=2.978). We can conclude that static intramedullary nailing osteosynthesis unable movements between fragments which directly stimulates bone formation and formation of minimal callus. Static intramedullary osteosynthesis resolve the problem of stabilizing the fracture, limb shortening and rotation of fragments.

  7. Scanning electron microscopy of human cortical bone failure surfaces.

    Science.gov (United States)

    Braidotti, P; Branca, F P; Stagni, L

    1997-02-01

    Undecalcified samples extracted from human femoral shafts are fractured by bending and the fracture surfaces are examined with a scanning electron microscope (SEM). The investigation is performed on both dry and wet (hydrated with a saline solution) specimens. SEM micrographs show patterns in many respects similar to those observed in fractography studies of laminated fiber-reinforced synthetic composites. In particular, dry and wet samples behave like brittle and ductile matrix laminates, respectively. An analysis carried out on the basis of the mechanisms that dominate the fracture process of laminates shows that a reasonable cortical bone model is that of a laminated composite material whose matrix is composed of extracellular noncollagenous calcified proteins, and the reinforcement is constituted by the calcified collagen fiber system.

  8. Anatomical evaluation and stress distribution of intact canine femur.

    Science.gov (United States)

    Verim, Ozgur; Tasgetiren, Suleyman; Er, Mehmet S; Ozdemir, Vural; Yuran, Ahmet F

    2013-03-01

    In the biomedical field, three-dimensional (3D) modeling and analysis of bones and tissues has steadily gained in importance. The aim of this study was to produce more accurate 3D models of the canine femur derived from computed tomography (CT) data by using several modeling software programs and two different methods. The accuracy of the analysis depends on the modeling process and the right boundary conditions. Solidworks, Rapidform, Inventor, and 3DsMax software programs were used to create 3D models. Data derived from CT were converted into 3D models using two different methods: in the first, 3D models were generated using boundary lines, while in the second, 3D models were generated using point clouds. Stress analyses in the models were made by ANSYS v12, also considering any muscle forces acting on the canine femur. When stress values and statistical values were taken into consideration, more accurate models were obtained with the point cloud method. It was found that the maximum von Mises stress on the canine femur shaft was 34.8 MPa. Stress and accuracy values were obtained from the model formed using the Rapidform software. The values obtained were similar to those in other studies in the literature. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  10. A physical mechanism for coupling bone resorption and formation in adult human bone

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Sondergaard, Teis Esben; Skorzynska, Katarzyna Ewa

    2009-01-01

    During skeletal remodeling, pre-osteoclasts and pre-osteoblasts are targeted to critical sites of the bone to resorb and reconstruct bone matrix, respectively. Coordination of site-specific recruitment of these two cell types is a prerequisite to maintain the specific architecture of each bone...... within strict limits throughout adult life. Here, we determined that the bone marrow microanatomy adjacent to remodeling areas is a central player in this process. By using histomorphometry and multiple immunostainings, we demonstrated in biopsies exhibiting coupled bone resorption and formation...... that osteoclasts and osteoblasts on the bone surface were always covered by a canopy of flat cells expressing osteoblast markers. In contrast, in biopsies in which this canopy was disrupted, bone formation was deficient. Three-dimensional visualizations revealed that this canopy covered the entire remodeling site...

  11. Cancellous and cortical bone imaging by reflected tomography.

    Science.gov (United States)

    Lasaygues, P; Lefebvre, J P

    2001-01-01

    This paper deals with the inverse scattering problem observed when ultrasonic waves are used to analyze biological media. The objective is to image cancellous and cortical bone by ultrasonic reflected tomography (URT). Because strong contrast and high absorbance bodies such as bones cannot be imaged at usual ultrasonic high frequencies (> 1 MHz), we adapted for low-frequency URT (Papoulis deconvolution). This resolution enhancement for human porous vertebrae and human and animal femur showed that high-resolution images can be obtained with low-frequency URT.

  12. Biomechanical and system analysis of the human femoral bone: correlation and anatomical approach

    Directory of Open Access Journals (Sweden)

    Haddad John J

    2007-05-01

    Full Text Available Abstract Background The human femur is the subsystem of the locomotor apparatus and has got four levels of its organization. This phenomenon is the result of the evolution of the locomotor apparatus, encompassing both constitutional and individual variability. The main aim of this investigation was to study the organization of the human femur as a system of collaborating anatomical structures and, on the basis of system analysis, to define the less stable parameters, whose reorganization can cause the exchange of the system's status. Methods Twenty-five (25 linear and non-linear (angle parameters were, therefore, investigated by specially designed tool and caliper on a material of 166 macerated human femurs of adult individuals of both sexes. The absolute values were transformed into the relative one (1.0 by the meaning of the transverse diameter of the femoral diaphysis, and handled with current methods of descriptive statistical analysis. By the value of variance (q2, the results were distributed into four major classes. Results The belonging of each group to the class was subsequently estimated in grades. According to this method, the excerpt was distributed into four classes as well depending on the total grades. The Pearson's coefficient in each class was calculated between the relative values of the investigated parameters. Two generations of system parameters were subsequently defined and analyzed. Conclusion This study has derived that the system meaning of each level of the femoral organization is related to the 'shaping effect' of femoral units' functions. Inasmuch as the angular parameters were most instable at this system, they were defined as morphological substrates of the individual variety.

  13. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    Science.gov (United States)

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  14. [Surgical treatment of pathologic fractures of the humerus and femur].

    Science.gov (United States)

    Gruber, G; Zacherl, M; Leithner, A; Giessauf, C; Glehr, M; Clar, H; Windhager, R

    2009-04-01

    devices, supported by bone cement, as the treatment of choice for pathologic fractures of the diaphysis and metaphysis of the humerus and femur. Wide resection should be reserved for selected cases, such as solitary bone metastasis of kidney carcinoma.

  15. Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject.

    Science.gov (United States)

    Ohman, Caroline; Zwierzak, Iwona; Baleani, Massimiliano; Viceconti, Marco

    2013-02-01

    It has been hypothesised that among different human subjects, the bone tissue quality varies as a function of the bone segment morphology. The aim of this study was to assess and compare the quality, evaluated in terms of hardness of packages of lamellae, of cortical and trabecular bones, at different anatomical sites within the human skeleton. The contralateral six long bones of an old human subject were indented at different levels along the diaphysis and at both epiphyses of each bone. Hardness value, which is correlated to the degree of mineralisation, of both cortical and trabecular bone tissues was calculated for each indentation location. It was found that the cortical bone tissue was harder (+18%) than the trabecular one. In general, the bone hardness was found to be locally highly heterogeneous. In fact, considering one single slice obtained for a bone segment, the coefficient of variation of the hardness values was up to 12% for cortical bone and up to 17% for trabecular bone. However, the tissue hardness was on average quite homogeneous within and among the long bones of the studied donor, although differences up to 9% among levels and up to 7% among bone segments were found. These findings seem not to support the mentioned hypothesis, at least not for the long bones of an old subject.

  16. Percutaneous cementoplasty for painful osteolytic distal femur metastases: a case report

    Directory of Open Access Journals (Sweden)

    Lei M

    2016-10-01

    Full Text Available Mingxing Lei,1 Yaosheng Liu,1 Shaoxing Yang,2 Weigang Jiang,1 Yuncen Cao,1 Shubin Liu1 1Department of Orthopedic Surgery, 2Department of Pulmonary Neoplasms Internal Medicine, The Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People’s Republic of China Abstract: Percutaneous cementoplasty has been shown to immediately restore the mechanical stability of affected bones, prevent further risk of bone fractures, and allow immediate weight bearing. It is emerging as one of the most promising procedures for patients with painful bone metastasis who are unsuitable for surgery or who show resistance to radiotherapy and/or analgesic therapies. This study aimed at describing the procedure, indications, and benefits of percutaneous cementoplasty for painful osteolytic distal femur metastases. We report the case of a painful metastatic lesion in the left distal femur secondary to non-small-cell lung cancer in a 58-year-old woman. The patient underwent percutaneous cementoplasty and experienced effective pain relief and recovery of knee function postoperatively. In addition, no perioperative complication was observed. Percutaneous cementoplasty for osteolytic distal femur metastases offers effective pain relief and restores impaired knee function. Although this method may be a safe option, larger samples of retrospective or prospective confirmation are warranted. Keywords: minimally invasive procedure, percutaneous cementoplasty, bone metastasis, distal femur

  17. Femur-mounted navigation system for the arthroscopic treatment of femoroacetabular impingement

    Science.gov (United States)

    Park, S. H.; Hwang, D. S.; Yoon, Y. S.

    2013-07-01

    Femoroacetabular impingement stems from an abnormal shape of the acetabulum and proximal femur. It is treated by resection of damaged soft tissue and by the shaping of bone to resemble normal features. The arthroscopic treatment of femoroacetabular impingement has many advantages, including minimal incisions, rapid recovery, and less pain. However, in some cases, revision is needed owing to the insufficient resection of damaged bone from a misreading of the surgical site. The limited view of arthroscopy is the major reason for the complications. In this research, a navigation method for the arthroscopic treatment of femoroacetabular impingement is developed. The proposed navigation system consists of femur attachable measurement device and user interface. The bone mounted measurement devices measure points on head-neck junction for registration and position of surgical instrument. User interface shows the three-dimensional model of patient's femur and surgical instrument position that is tracked by measurement device. Surgeon can know the three-dimensional anatomical structure of hip joint and surgical instrument position on surgical site using navigation system. Surface registration was used to obtain relation between patient's coordinate at the surgical site and coordinate of three-dimensional model of femur. In this research, we evaluated the proposed navigation system using plastic model bone. It is expected that the surgical tool tracking position accuracy will be less than 1 mm.

  18. A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait.

    Science.gov (United States)

    Fritz, Jessica M; Guan, Yabo; Wang, Mei; Smith, Peter A; Harris, Gerald F

    2009-11-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder characterized by skeletal deformities and increased bone fragility. There is currently no established clinical method for quantifying fracture risk in OI patients. This study begins the development of a patient-specific model for femur fracture risk assessment and prediction based on individuals' gait analysis data, bone geometry from imaging and material properties from nanoindentation (Young's modulus=19 GPa, Poisson's ratio=0.3). Finite element models of the femur were developed to assess fracture risk of the femur in a pediatric patient with OI type I. Kinetic data from clinical gait analysis was used to prescribe loading conditions on the femoral head and condyles along with muscle forces on the bone's surface. von Mises stresses were analyzed against a fracture strength of 115 MPa. The patient with OI whose femur was modeled showed no risk of femoral fracture during normal gait. The highest stress levels occurred during the mid-stance and loading responses phases of gait. The location of high stress migrated throughout the femoral diaphysis across the gait cycle. Maximum femoral stress levels occurred during the gait cycle phases associated with the highest loading. The fracture risk (fracture strength/von Mises stress), however, was low. This study provides a relevant method for combining functional activity, material property and analytical methods to improve patient monitoring.

  19. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    Science.gov (United States)

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (pcells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (pcells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration. Published by Elsevier Ltd.

  20. Engineering new bone via a minimally invasive route using human bone marrow-derived stromal cell aggregates, microceramic particles, and human platelet-rich plasma gel.

    Science.gov (United States)

    Chatterjea, Anindita; Yuan, Huipin; Fennema, Eelco; Burer, Ruben; Chatterjea, Supriyo; Garritsen, Henk; Renard, Auke; van Blitterswijk, Clemens A; de Boer, Jan

    2013-02-01

    There is a rise in the popularity of arthroscopic procedures in orthopedics. However, the majority of cell-based bone tissue-engineered constructs (TECs) rely on solid preformed scaffolding materials, which require large incisions and extensive dissections for placement at the defect site. Thus, they are not suitable for minimally invasive techniques. The aim of this study was to develop a clinically relevant, easily moldable, bone TEC, amenable to minimally invasive techniques, using human mesenchymal stromal cells (hMSCs) and calcium phosphate microparticles in combination with an in situ forming platelet-rich plasma gel obtained from human platelets. Most conventional TECs rely on seeding and culturing single-cell suspensions of hMSCs on scaffolds. However, for generating TECs amenable to the minimally invasive approach, it was essential to aggregate the hMSCs in vitro before seeding them on the scaffolds as unaggregated MSCs did not generate any bone. Twenty four hours of in vitro aggregation was determined to be optimal for maintaining cell viability in vitro and bone formation in vivo. Moreover, no statistically significant difference was observed in the amount of bone formed when the TECs were implanted via an open approach or a minimally invasive route. TECs generated using MSCs from three different human donors generated new bone through the minimally invasive route in a reproducible manner, suggesting that these TECs could be a viable alternative to preformed scaffolds employed through an open surgery for treating bone defects.

  1. 1型糖尿病模型大鼠股骨骨代谢紊乱及唑来膦酸的影响%Effects of zoledronic acid on bone metabolism disturbance in the femur of type 1 diabetic rat models

    Institute of Scientific and Technical Information of China (English)

    曹鲁宁; 崔敏; 于灵芝; 张娜; 赵旭

    2015-01-01

    BACKGROUND:Osteoporosis caused by diabetes melitus as common secondary osteoporosis has been paid more and more attention recently. Zoledronic acid serves as a novel drug for osteoporosis, and its effect on osteoblasts in vivo remains unclear. OBJECTIVE:To investigate the changes of the expression of bone morphogenetic protein 2 andNoggin in the femur of type 1 diabetes melitus rats and the effect of zoledronic acid on them. METHODS:Models of type 1 diabetes melitus were established by intraperitoneal injection of streptozotocin in 130 Wistar rats. 3 days later, rats with blood sugar > 16.7 mmol/L for three consecutive times were considered as successful models, 120 in total. These models were randomly divided into model, prevention and treatment groups. Rats in the prevention and treatment groups were intravenously administered zoledronic acid (0.1 mg/kg) on the day of modeling and 2 weeks after model establishment. An additional 40 rats were injected with citrate buffer solution as control group. RESULTS AND CONCLUSION: Compared with the control group, femur bone mineral density, serum alkaline phosphatase levels, and femur bone morphogenetic protein 2 mRNA expression levels were significantly lower in the model group (P 16.7 mmol/L鼠为造模成功鼠,共120只,随机等分为模型组、预防组和治疗组。后2组大鼠分别在造模后当天和2周后一次性静脉给予唑来膦酸(0.1 mg/kg)。另取40只大鼠注射柠檬酸缓冲液作为对照组。结果与结论:与对照组相比,模型组大鼠股骨骨密度、血清碱性磷酸酶水平、股骨骨形态发生蛋白2 mRNA表达水平明显降低(P <0.05),Noggin mRNA表达水平显著升高(P <0.05)。与模型组相比,预防组和治疗组大鼠骨密度和骨形态发生蛋白2 mRNA表达水平显著升高(P <0.05),Noggin mRNA表达水平显著降低(P <0.05),血清骨碱性磷酸酶水平也逐渐恢复。提示1型糖尿病大鼠骨代谢紊乱在病程早期即出现,

  2. Oral bisphosphonates and risk of subtrochanteric or diaphyseal femur fractures in a population-based cohort.

    Science.gov (United States)

    Kim, Seo Young; Schneeweiss, Sebastian; Katz, Jeffrey N; Levin, Raisa; Solomon, Daniel H

    2011-05-01

    Bisphosphonates are the primary therapy for postmenopausal and glucocorticoid-induced osteoporosis. Case series suggest a potential link between prolonged use of bisphosphonates and low-energy fracture of subtrochanteric or diaphyseal femur as a consequence of oversuppression of bone resorption. Using health care utilization data, we conducted a propensity score-matched cohort study to examine the incidence rates (IRs) and risk of subtrochanteric or diaphyseal femur fractures among oral bisphosphonate users compared with raloxifene or calcitonin users. A Cox proportional hazards model evaluated the risk of these fractures associated with duration of osteoporosis treatment. A total of 104 subtrochanteric or diaphyseal femur fractures were observed among 33,815 patients. The estimated IR of subtrochanteric or diaphyseal femur fractures per 1000 person-years was 1.46 [95% confidence interval (CI) 1.11-1.88] among the bisphosphonate users and 1.43 (95% CI 1.06-1.89) among raloxifene/calcitonin users. No significant association between bisphosphonate use and subtrochanteric or diaphyseal femur fractures was found [hazard ratio (HR) = 1.03, 95% CI 0.70-1.52] compared with raloxifene/calcitonin. Even with this large study size, we had little precision in estimating the risk of subtrochanteric or diaphyseal femur fractures in patients treated with bisphosphonates for longer than 5 years (HR = 2.02, 95% CI 0.41-10.00). The occurrence of subtrochanteric or diaphyseal femur fracture was rare. There was no evidence of an increased risk of subtrochanteric or diaphyseal femur fractures in bisphosphonate users compared with raloxifene/calcitonin users. However, this study cannot exclude the possibility that long-term bisphosphonate use may increase the risk of these fractures.

  3. Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging.

    Science.gov (United States)

    Tuljapurkar, Sonal R; McGuire, Timothy R; Brusnahan, Susan K; Jackson, John D; Garvin, Kevin L; Kessinger, Margaret A; Lane, Judy T; O' Kane, Barbara J; Sharp, John G

    2011-11-01

    Hematological deficiencies increase with aging, including anemias, reduced responses to hematopoietic stress and myelodysplasias. This investigation tested the hypothesis that increased bone marrow (BM) fat content in humans with age was associated with decreased numbers of side population (SP) hematopoietic stem cells, and this decrease correlated with changes in cytokine levels. BM was obtained from the femoral head and trochanteric region of the femur removed at surgery for total hip replacement (N = 100 subjects). In addition, BM from cadavers (N = 36), with no evidence of hip disease, was evaluated for fat content. Whole trabecular marrow samples were ground in a sterile mortar and pestle, and cellularity and lipid content determined. Marrow cells were stained with Hoechst dye and SP profiles were acquired. Plasma levels of insulin-like growth factor (IGF)-1, stromal-derived factor (SDF)-1 and interleukin (IL)-6 were measured using ELISA. Fat content in the BM of human subjects and cadavers increased with age. The numbers of SP stem cells in BM as well as plasma IGF-1 and SDF-1 levels decreased in correlation with increased BM fat. IL-6 had no relationship to changes in marrow fat. These data suggest that increased BM fat may be associated with a decreased number of SP stem cells and IGF-1 and SDF-1 levels with aging. These data further raise a more general question as to the role of adipose cells in the regulation of tissue stem cells. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  4. Design and Optimization of Sinusoidal Formed Femur Prosthesis

    Directory of Open Access Journals (Sweden)

    Ahmet Zafer ŞENALP

    2015-01-01

    Full Text Available One of the major problems in hip replacement surgery is the hip replacement loosening. Hip replacement loosening occurs over time after the surgery and it is related to the discretization between the bone cement and prosthesis. The underlying factors of this situation are the stress occurring in the bone cement and the shape of the prosthesis. In this study, cortical and trabecular layers of the femur, bone cement and prosthesis were modeled. The models of bone cement and prosthesis were constructed parametrically and two different sinusoidal formed prostheses were developed unlike the former prostheses shapes. Analyses were conducted for these two different sinusoidal forms by using finite element method and optimization was conducted to obtain the appropriate prosthesis stem shape and bone cement thickness by using parametric modeling in finite element analyses. For finite element analyses and optimization, Ansys Workbench software was used and analyses were conducted for 316LS stainless steel material. Finally, the optimum prosthesis stem shape and bone cement thickness was determined by using the results of the analyses in the first stage

  5. Three-dimensional microstructure of human alveolar trabecular bone: a micro-computed tomography study

    Science.gov (United States)

    2017-01-01

    Purpose The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration. Methods Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed. Results Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: 0.59±0.22 mm, D4: 1.20±0.48 mm), whereas Tb.Th had similar values (D1: 0.30±0.08 mm, D4: 0.22±0.05 mm). Conclusions Bone quality depended on Tb.Sp and number—that is, endosteal space architecture—rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies. PMID:28261521

  6. The finite cell method for bone simulations: verification and validation.

    Science.gov (United States)

    Ruess, Martin; Tal, David; Trabelsi, Nir; Yosibash, Zohar; Rank, Ernst

    2012-03-01

    Standard methods for predicting bone's mechanical response from quantitative computer tomography (qCT) scans are mainly based on classical h-version finite element methods (FEMs). Due to the low-order polynomial approximation, the need for segmentation and the simplified approach to assign a constant material property to each element in h-FE models, these often compromise the accuracy and efficiency of h-FE solutions. Herein, a non-standard method, the finite cell method (FCM), is proposed for predicting the mechanical response of the human femur. The FCM is free of the above limitations associated with h-FEMs and is orders of magnitude more efficient, allowing its use in the setting of computational steering. This non-standard method applies a fictitious domain approach to simplify the modeling of a complex bone geometry obtained directly from a qCT scan and takes into consideration easily the heterogeneous material distribution of the various bone regions of the femur. The fundamental principles and properties of the FCM are briefly described in relation to bone analysis, providing a theoretical basis for the comparison with the p-FEM as a reference analysis and simulation method of high quality. Both p-FEM and FCM results are validated by comparison with an in vitro experiment on a fresh-frozen femur.

  7. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities.

    Science.gov (United States)

    Kargozar, Saeid; Lotfibakhshaiesh, Nasrin; Ai, Jafar; Mozafari, Masoud; Brouki Milan, Peiman; Hamzehlou, Sepideh; Barati, Mahmood; Baino, Francesco; Hill, Robert G; Joghataei, Mohammad Taghi

    2017-08-01

    Designing and developing new biomaterials to accelerate bone healing are currently under progress. In this study, we attempted to promote osteogenesis using strontium- and cobalt-substituted bioactive glasses (BGs) seeded with human umbilical cord perivascular cells (HUCPVCs) in a critical size defect in the distal femur of rabbit animal model. The BG particles were successfully synthesized in the form of granules using the melt-derived route. After being isolated, HUCPVCs were expanded and then characterized to use during in vitro and in vivo procedures. The in vitro effects of the synthesized glasses on the isolated HUCPVCs as well as on cell lines SaOS-2 (selected for screening the osteogenetic potential) and HUVEC (selected for screening the angiogenic potential) were assessed by analyzing cytotoxicity, cell attachment, bone-like nodule formation, and real time PCR. The results of in vitro tests indicated cytocompatibility of the synthesized BG particles. For in vivo study, the HUCPVCs-seeded BGs were implanted into the animal's body. Radiographic imaging, histology and immunohistology staining were performed on the harvested specimens at 4 and 12weeks post-surgery. The in vivo evaluation of the samples showed that all the cell/glass constructs accelerated bone healing process in comparison with blank controls. The best in vitro and in vivo results were associated to the BGs containing both strontium and cobalt ions. This group of bioactive glasses is able to promote both osteogenesis and angiogenesis and can therefore be highly suitable for the development of advanced functional bone substitutes. Bone regeneration is considered as an unmet clinical need. The most recent researches focused on incorporation of strontium (Sr(2+)) and cobalt (Co(2+)) ions into bioactive glasses structure. Strontium is an alkaline earth metal which is currently used in the treatment of osteoporosis. Also, cobalt is considered as another promising element in the bone regeneration

  8. Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Wanlong Xu; Xibin Zhao; Qing Wang; Jungang Sun; Jiangbo Xu; Wenzheng Zhou; Hao Wang; Shigui Yan; Hong Yuan

    2014-01-01

    During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of ra-diotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subjected to radio-therapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no ob-vious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized withEchinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized withEchi-nococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease inMeriones meridiani without damaging the morphology or function of the sciatic nerve.

  9. Three-Dimensional Analysis of the Curvature of the Femoral Canal in 426 Chinese Femurs

    Directory of Open Access Journals (Sweden)

    Xiu-Yun Su

    2015-01-01

    Full Text Available Purpose. The human femur has long been considered to have an anatomical anterior curvature in the sagittal plane. We established a new method to evaluate the femoral curvature in three-dimensional (3D space and reveal its influencing factors in Chinese population. Methods. 3D models of 426 femurs and the medullary canal were constructed using Mimics software. We standardized the positions of all femurs using 3ds Max software. After measuring the anatomical parameters, including the radius of femoral curvature (RFC and banking angle, of the femurs using the established femur-specific coordinate system, we analyzed and determined the relationships between the anatomical parameters of the femur and the general characteristics of the population. Results. Pearson’s correlation analyses showed that there were positive correlations between the RFC and height (r=0.339, p<0.001 and the femoral length and RFC (r=0.369, p<0.001 and a negative correlation between the femoral length and banking angle (r=-0.223, p<0.001. Stepwise linear regression analyses showed that the most relevant factors for the RFC and banking angle were the femoral length and gender, respectively. Conclusions. This study concluded that the banking angle of the femur was significantly larger in female than in male.

  10. Comparison of the effectiveness of phalanges vs. humeri and femurs to estimate lizard age with skeletochronology

    Energy Technology Data Exchange (ETDEWEB)

    Comas, M.; Reguera, S.; Zamora-Camacho, F.J.; Salvado, H.; Moreno-Rueda, G.

    2016-07-01

    Skeletochronology allows estimation of lizard age with a single capture (from a bone), making long–term monitoring unnecessary. Nevertheless, this method often involves the death of the animal to obtain the bone. We tested the reliability of skeletochronology of phalanges (which may be obtained without killing) by comparing the estimated age from femurs and humeri with the age estimated from phalanges. Our results show skeletochronology of phalanges is a reliable method to estimate age in lizards as cross–section readings from all bones studied presented a high correlation and repeatability regardless of the bone chosen. This approach provides an alternative to the killing of lizards for skeletochronology studies. (Author)

  11. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  12. The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jo Eun; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Huh, Kyung Hoe [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Shin, Jae Myung [Dept. of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of); Oh, Sung Ook [A Plus Dental Clinic, Seoul (Korea, Republic of)

    2013-12-15

    This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

  13. Assessment of femoral bone quality using co-occurrence matrices and adaptive regions of interest

    Science.gov (United States)

    Fritscher, Karl David; Schuler, Benedikt; Grünerbl, Agnes; Hänni, Markus; Schwieger, Karsten; Suhm, Norbert; Schubert, Rainer

    2007-03-01

    The surgical treatment of femur fractures, which often result from osteoporosis, is highly dependent on the quality of the femoral bone. Unsatisfying results of surgical interventions like early loosening of implants may be one result of altered bone quality. However, clinical diagnostic techniques to quantify local bone quality are limited and often highly observer dependent. Therefore, the development of tools, which automatically and reproducibly place regions of interest (ROI) and asses the local quality of the femoral bone in these ROIs would be of great help for clinicians. For this purpose, a method to position and deform ROIs automatically and reproducibly depending on the size and shape of the femur will be presented. Moreover, an approach to asses the femur quality, which is based on calculating texture features using co-occurrence matrices and these adaptive regions, will be proposed. For testing purposes, 15 CT-datasets of anatomical specimen of human femora are used. The correlation between the texture features and biomechanical properties of the proximal femoral bone is calculated. First results are very promising and show high correlation between the calculated features and biomechanical properties. Testing the method on a larger data pool and refining the algorithms to further increase its sensitivity for altered bone quality will be the next steps in this project.

  14. CXC receptor knockout mice: characterization of skeletal features and membranous bone healing in the adult mouse.

    Science.gov (United States)

    Bischoff, David S; Sakamoto, Taylor; Ishida, Kenji; Makhijani, Nalini S; Gruber, Helen E; Yamaguchi, Dean T

    2011-02-01

    The potential role of CXC chemokines bearing the glu-leu-arg (ELR) motif in bone repair was studied using a cranial defect (CD) model in mice lacking the CXC receptor (mCXCR(-/-) knockout mice), which is homologous to knockout of the human CXC receptor 2 (CXCR2) gene. During the inflammatory stage of bone repair, ELR CXC chemokines are released by inflammatory cells and serve as chemotactic and angiogenic factors. mCXCR(-/-) mice were smaller in weight and length from base of tail to nose tip, compared to WT littermates. DEXA analysis indicated that bone mineral density (BMD), bone mineral content (BMC), total area (TA), bone area (BA), and total tissue mass (TTM) were decreased in the mCXCR(-/-) mice at 6, 12, and 18 weeks of age. Trabecular bone characteristics in mCXCR(-/-) (% bone, connectivity, number, and thickness) were reduced, and trabecular spacing was increased as evidenced by μCT. There was no difference in bone formation or resorption indices measured by bone histomorphometry. Trabecular BMD was not altered. Cortical bone volume, BMD, and thickness were reduced; whereas, bone marrow volume was increased in mCXCR(-/-). Decreased polar moment of inertia (J) in the tibias/femurs suggested that the mCXCR(-/-) long bones are weaker. This was confirmed by three-point bending testing of the femurs. CDs created in 6-week-old male mCXCR(-/-) and WT littermates were not completely healed at 12 weeks; WT animals, however, had significantly more bone in-growth than mCXCR(-/-). New bone sites were identified using polarized light and assessed for numbers of osteocyte (OCy) lacunae and blood vessels (BlV) around the original CD. In new bone, the number of BlV in WT was >2× that seen in mCXCR(-/-). Bone histomorphometry parameters in the cranial defect did not show any difference in bone formation or resorption markers. In summary, studies showed that mCXCR(-/-) mice have (1) reduced weight and size; (2) decreased BMD and BMC; (3) decreased amounts of trabecular

  15. Crestal bone resorption in augmented bone using mineralized freeze-dried bone allograft or pristine bone during submerged implant healing: a prospective study in humans.

    Science.gov (United States)

    Huang, Hsiang-yun; Ogata, Yumi; Hanley, James; Finkelman, Matthew; Hur, Yong

    2016-02-01

    There is limited evidence on the crestal bone level changes around implants placed in bone augmented by guided bone regeneration (GBR) during submerged healing. The purpose of this study was to prospectively compare radiographic crestal bone changes around implants placed in augmented bone with changes around implants placed in pristine bone. Patients receiving dental implants in the augmented or pristine mandibular posterior edentulous ridge were included in the study. The digital standardized radiographs from the implant placement procedure were compared to the radiographs from the second-stage procedure to evaluate the peri-implant marginal bone level changes. The soft tissue thickness (ST), width of keratinized mucosa (wKM), and early cover screw exposure (eIE) were measured at the time of the second-stage procedure. A total of 29 implants in 26 patients, 11 in augmented bone (test group) and 18 in pristine bone (control group), were analyzed. The mean peri-implant bone loss (ΔBL) was 0.74 ± 0.74 mm (mean ± SD) in the test group and 0.25 ± 0.55 mm (mean ± SD) in the control group. The differences between the test and control groups in the mesial, distal, and mean peri-implant crestal bone level changes were statistically significant (P = 0.009, P = 0.004, and P = 0.001, respectively). The confounding factors (ST, wKM, and eIE) were adjusted. More peri-implant crestal bone loss during the submerged healing period was observed in augmented bone than in pristine bone. Augmented bone may not exhibit the same characteristics as pristine bone during the implant submerged healing period. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Role of purinergic receptor polymorphisms in human bone

    DEFF Research Database (Denmark)

    Wesselius, Anke; Bours, Martijn J L; Agrawal, Ankita

    2011-01-01

    in the mechanotransductory process, where mechanical stimulation on bone leads to anabolic responses in the skeleton. A number of single nucleotide polymorphisms have been identified in the P2 receptor genes, where especially the P2X7 subtype has been the focus of extensive investigation where several polymorphisms have......Osteoporosis is a multifactorial disease with a strong genetic component. Variations in a number of genes have been shown to associate with bone turnover and risk of osteoporosis. P2 purinergic receptors are proteins that have ATP or other nucleotides as their natural ligands. Various P2Y and P2X...... receptor subtypes have been identified on bone cells. Several cellular functions in bone tissue are coupled to P2-receptor activation, including bone resorption, cytokine release, apoptosis, bone formation, and mineral deposition. Furthermore, ATP release and P2 purinergic signalling is a key pathway...

  17. Ancient Human Bone Microstructure in Medieval England: Comparisons between Two Socio-Economic Groups

    OpenAIRE

    Miszkiewicz, Justyna J.; Mahoney, Patrick

    2016-01-01

    Understanding the links between bone microstructure and human lifestyle is critical for clinical and anthropological research into skeletal\\ud growth and adaptation. The present study is the first to report correspondence between socio-economic status and variation in bone microstructure\\ud in ancient humans. Products of femoral cortical remodeling were assessed using histological methods in a large human medieval\\ud sample (N:450) which represented two distinct socio-economic groups. Osteona...

  18. Proximal femur reconstruction by an allograft prosthesis composite.

    Science.gov (United States)

    Donati, Davide; Giacomini, Stefano; Gozzi, Enrico; Mercuri, Mario

    2002-01-01

    Twenty-seven patients who had resection of the proximal femur for bone tumors and reconstruction with an allograft prosthesis composite are reported. In most of the patients, the prosthesis was a long-stem revision type, cemented in the allograft and uncemented in the femoral shaft. The abductor muscles and iliopsoas were sutured to the corresponding tendons on the allograft. Implant-related complications and functional results were evaluated and are reported. Twenty-two patients achieved a minimum followup of 36 months (range, 36-126 months; average, 58 months). The implant was removed in two patients (one for infection, one for intraoperative fracture of the allograft). One patient experienced nonunion, whereas in the remaining 24 patients, the allograft eventually united to the host bone. A frequent late complication (17 patients) was fracture of the greater trochanter of the allograft. In the whole series, only four new operations were done for implant-related complications. In 22 patients who could be evaluated, the functional evaluation according to the Musculoskeletal Tumor Society System was excellent in 16 (73%) patients, good in four (18%), and fair in two (9%). These results compare favorably with those of megaprostheses for tumor resection of the proximal femur, where a Trendelenburg gait almost always is present.

  19. Surgical treatment of metastatic disease of the femur.

    Science.gov (United States)

    Swanson, K C; Pritchard, D J; Sim, F H

    2000-01-01

    Nearly every malignant neoplasm has been described as having the capability to metastasize to bone. Of the estimated 1.2 million new cases of cancer diagnosed annually, more than 50% will eventually demonstrate skeletal metastasis. Advances in systemic and radiation therapy have led to a considerable improvement in the prognosis of patients with metastatic disease. As a result, orthopaedic surgeons are being asked with increasing frequency to evaluate and treat the manifestations of skeletal metastases. The femur is commonly the site of large impending lesions and complete pathologic fractures. Although the health status of some patients may preclude operative intervention, established pathologic fractures of the femur and metastatic lesions deemed likely to progress to imminent fracture generally should be treated surgically. A rational approach to selection of the proper treatment for these problems includes consideration of the patient's overall medical condition and the type, location, size, and extent of the tumor. Treatment principles are the same regardless of location. A construct should ideally provide enough stability to allow immediate full weight bearing with enough durability to last the patient's expected lifetime. All areas of weakened bone should be addressed at the time of surgery in anticipation of disease progression. To minimize disease progression and possible implant or internal fixation failure, postoperative external-beam irradiation should be considered.

  20. One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom

    Science.gov (United States)

    McPherson, Jane; Cheatham, Leah P.

    2015-01-01

    This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…

  1. One Million Bones: Measuring the Effect of Human Rights Participation in the Social Work Classroom

    Science.gov (United States)

    McPherson, Jane; Cheatham, Leah P.

    2015-01-01

    This article describes the integration of human rights content and a national arts-activism initiative--One Million Bones--into a bachelor's-level macro practice class as a human rights teaching strategy. Two previously validated scales, the Human Rights Exposure (HRX) in Social Work and the Human Rights Engagement (HRE) in Social Work (McPherson…

  2. Primary desmoplastic small round cell tumor of the femur

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Akihiko; Garcia, Joaquin [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Edgar, Mark A. [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Medical College of Cornell University, New York, NY (United States); Meyers, Paul A. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Morris, Carol D. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Surgery, Orthopaedic Service, New York, NY (United States); Panicek, David M. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2008-09-15

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  3. Atypical femur fractures associated with bisphosphonates: from prodrome to resolution

    Directory of Open Access Journals (Sweden)

    Braulio Sastre-Jala

    2015-10-01

    Full Text Available Atypical fractures related to the prolonged use of bisphosphonates are caused by low energy mechanisms and are characterized by oblique and transverse lines and frequent bilateralism. We present a clinical case of a patient who we believe illustrates, both in clinical and radiological aspects, the new definition of atypical femur fracture related to treatment using bisphosphonates treated conservatively and successfully with discharge and teriparatide 20 mcg/80 mcl s.c./24h. The appearance of painful symptoms in the upper thigh, especially if bilateral, in patients treated with bisphosphonates for long periods of time, makes it necessary to dismiss bone lesions that might otherwise suggest atypical fracture. In those cases where the fracture is incomplete, restoring bone metabolism through the administration of teriparatide 20 mcg/80 mcl s.c./24h could prevent displaced fractures.

  4. Normobaric interval hypoxic training in the treatment of fractures of the trochanteric region of the femur

    OpenAIRE

    2015-01-01

    Trochanteric fractures of the femur amount from 2 to 13.5 % of all fractures of bones and 28–37,5 % of femoral fractures, and unsatisfactory outcomes of their treatment — from 16 to 40 %. Negative impact on the outcome of the treatment have osteopo­rosis, immunosuppressive conditions associated with long-term therapy, hormonal therapy, diabetes and thyrotoxicosis.Objec­tive: To improve outcomes of treatment and rehabilitation in patients with fractures of the trochanteric region of the femur ...

  5. Persistent wound drainage after tumor resection and endoprosthetic reconstruction of the proximal femur

    DEFF Research Database (Denmark)

    Hettwer, Werner H; Horstmann, Peter F; Grum-Schwensen, Tomas A

    2014-01-01

    resection and subsequent endoprosthetic reconstruction of the proximal femur, between 2010 and 2012, in a single center. RESULTS: PWD for 7 days or more was observed in 41 cases (48%). The wounds only ceased oozing after a mean of 8.4 days, leading to prolonged administration of prophylactic antibiotics...... (mean 8.7 days) and length of hospital stay (mean 10.2 days). Total femur replacement, bone sarcoma and additional pelvic reconstruction were identified as significant independent risk factors for an even longer duration of PWD. CONCLUSION: Compared to conventional hip arthroplasty, PWD appears...

  6. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  7. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  8. Inca - interparietal bones in neurocranium of human skulls in central India.

    Science.gov (United States)

    Marathe, Rr; Yogesh, As; Pandit, Sv; Joshi, M; Trivedi, Gn

    2010-01-01

    Inca bones are accessory bones found in neurocranium of human skulls. Occurrence of Inca bones is rare as compared to other inter sutural bones such as wormian bones. These Inca ossicles are regarded as variants of the normal. The reporting of such occurrences is inadequate from Central India. To find the incidence of Inca variants in Central India. In the present study, 380 dried adult human skulls were examined. All specimen samples were procured from various Medical colleges of Central India. They were analyzed for gross incidence, sexual dimorphism and number of fragments of Inca bones. Gross incidence of Inca bones was found to be 1.315 %. Incidence rate was higher in male skulls than female skulls (male: 1.428%; female: 1.176%). The Inca bones frequently occurred signally. Out of the five observed Inca ossicles, two were fragmented. This data gives idea regarding gross incidence, sexual dimorphism and number of fragments of Inca bones in neurocranium of human skulls from Central India. The knowledge of this variable is useful for neurosurgeons, anthropologists and radiologists.

  9. The effects of different maceration techniques on nuclear DNA amplification using human bone.

    Science.gov (United States)

    Lee, Esther J; Luedtke, Jennifer G; Allison, Jamie L; Arber, Carolyn E; Merriwether, D Andrew; Steadman, Dawnie Wolfe

    2010-07-01

    Forensic anthropologists routinely macerate human bone for the purposes of identity and trauma analysis, but the heat and chemical treatments used can destroy genetic evidence. As a follow-up to a previous study on nuclear DNA recovery that used pig ribs, this study utilizes human skeletal remains treated with various bone maceration techniques for nuclear DNA amplification using the standard Combined DNA Index System (CODIS) markers. DNA was extracted from 18 samples of human lower leg bones subjected to nine chemical and heat maceration techniques. Genotyping was carried out using the AmpFlSTR COfiler and AmpFlSTR Profiler Plus ID kits. Results showed that heat treatments via microwave or Biz/Na(2)CO(3) in sub-boiling water efficiently macerate bone and produce amplifiable nuclear DNA for genetic analysis. Long-term use of chemicals such as hydrogen peroxide is discouraged as it results in poor bone quality and has deleterious effects on DNA amplification.

  10. [A general review on the procedures in a human temporal bone laboratory].

    Science.gov (United States)

    Oktay, Mehmet Faruk; Cüreoğlu, Sebahattin; Schachern, Patricia A; Paparella, Micheal M

    2006-01-01

    Structures of the human ear are usually inaccessible during life for examination of pathologic changes of the underlying disease, which is only possible with postmortem studies of the human temporal bone. Human temporal bone laboratories serve as a unique source of material for research in this respect. They enable comparison between histologic findings of temporal bone sections and the ear pathologies documented prior to death, as well as comparison of diseased ears with any selected temporal bone specimens, both of which provide invaluable knowledge to be shared among researchers and other laboratories. This article aims to provide insight into the functions of temporal bone laboratories and to familiarize the reader with histopathologic studies conducted therein.

  11. Three-dimensional geometric morphometric analysis reveals ethnic dimorphism in the shape of the femur.

    Science.gov (United States)

    Cavaignac, Etienne; Li, Ke; Faruch, Marie; Savall, Frederic; Chiron, Philippe; Huang, W; Telmon, Norbert

    2017-12-01

    Ethnic dimorphism in the distal femur has never been studied in a three-dimensional analysis focused on shape instead of size. Yet, this dimorphism has direct implications in orthopedic surgery and in anthropology. The goal of this study was to show that differences in distal femur shape related to ethnic dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. CT scans of the distal femur were taken from 482 patients who were free of any bone-related pathology: 240 patients were European (E) and 242 were Asian (A). Ten osteometric landmarks based on standard bone landmarks used in anthropometry were placed on these scans. Geometric morphometric analysis, principal component analysis (PCA), canonical variates analysis (CVA), and other discriminant analyses (Goodall's F-test and Mahalanobis distance) were performed. A cross-validation analysis was carried out to determine the percentage of cases in which the ethnicity was correctly estimated. The shape of the E and A distal femur differed significantly (Goodall's F = 94.43, P geometric morphometric analysis made it possible to demonstrate these differences. The large number of subjects studied has helped modernize the references for certain bone measurements, with direct implication for orthopedic surgery and anthropology.

  12. MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation

    DEFF Research Database (Denmark)

    Larsen, Maria T; Hother, Christoffer; Häger, Mattias

    2013-01-01

    The purpose of this study was to describe the microRNA (miRNA) expression profiles of neutrophils and their precursors from the initiation of granulopoiesis in the bone marrow to extravasation and accumulation in skin windows. We analyzed three different cell populations from human bone marrow, p...

  13. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells

    NARCIS (Netherlands)

    Mendes, SC; Tibbe, JM; Veenhof, M; Both, S; Oner, FC; van Blitterswijk, CA; de Bruijn, Joost D.

    2004-01-01

    The use of cell therapies in bone reconstruction has been the subject of extensive research. It is known that human bone marrow stromal cell (HBMSC) cultures contain a population of progenitor cells capable of differentiation towards the osteogenic lineage. In the present study, the correlation betw

  14. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    NARCIS (Netherlands)

    S. James (Sally); J. Fox (James); F. Afsari (Farinaz); J. Lee (Jennifer); S. Clough (Sally); C. Knight (Charlotte); J. Ashmore (James); P. Ashton (Peter); O. Preham (Olivier); M.J. Hoogduijn (Martin); R.D.A.R. Ponzoni (Raquel De Almeida Rocha); Y. Hancock; M. Coles (Mark); P.G. Genever (Paul)

    2015-01-01

    textabstractBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis

  15. [Identification of the primary lesion in a patient with concomitant breast and kidney cancer following fracture of the femur].

    Science.gov (United States)

    Sato, Yasufumi; Okishiro, Masatsugu; Ishida, Tomo; Morimoto, Yoshihiro; Kusama, Hiroki; Matsusita, Katsunori; Hashimoto, Tadayoshi; Kimura, Kei; Katsura, Yoshiteru; Nitta, Kanae; Kagawa, Yoshinori; Takeno, Atsushi; Sakisaka, Hideki; Nakahira, Shin; Taniguchi, Hirokazu; Egawa, Chiyomi; Takeda, Yutaka; Kato, Takeshi; Tamura, Shigeyuki; Takatsuka, Yuichi; Oku, Kazuko; Goto, Takayoshi; Nagano, Teruaki; Nakatsuka, Shinichi

    2014-11-01

    A 61-year-old woman was diagnosed with breast cancer [T3N3cM0: Stage IIIC, estrogen receptor [ER] (+), progesterone receptor [PgR] (+), human epidermal growth factor receptor 2[HER2] (-)]at the time of initial presentation. Following diagnosis, combined modality therapy including hormone therapy and chemotherapy were initiated, but hemorrhage from the primary lesion and bone metastases were observed. Priority was given to treatment of the breast cancer, and chemotherapy was administered, after which, right mastectomy and axillary lymph node sampling were performed to assess local disease control. In addition, concurrent right kidney enucleation was performed for a renal lesion. The renal neoplasm was diagnosed as T1aN0M0, Stage I. After this intervention, treatment of the breast cancer was continued, but pain of the right femoral region developed, and bone metastasis was diagnosed on close inspection. The bone metastasis was considered to derive from the breast cancer. During hospitalization, the patient fell and broke her right femur. Open reduction and internal fixation was performed immediately, and bone metastasis of kidney cancer was diagnosed via perioperative cytodiagnosis. Pulmonary metastasis, local recurrence, and metastasis to the shoulder blade have been detected. The metastases are considered to derive from the breast cancer, for which treatment has been continued. In the case of concomitant cancers, biopsy for metastatic foci can be considered essential, whenever it can be performed safely.

  16. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues.

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François; Gothot, André; Wislet, Sabine

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow.

  17. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    Science.gov (United States)

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  18. Analysis of bone mineral density of human bones for strength evaluation

    Indian Academy of Sciences (India)

    S N Khan; R M Warkhedkar; A K Shyam

    2015-08-01

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU correlates with BMD and T-scores. BMD is used in clinical medicine as an indirect indicator of osteoporosis and fracture risk. This medical bone density is not the true physical ``density'' of the bone, which would be computed as mass per volume. Dual-energy X-ray absorptiometry (DXA, previously DEXA), a means of measuring BMD, is the most widely used and most thoroughly studied bone density measurement technologies. Different types of bone strength are required for various applications, but this strength calculation requires different machines for each strength property or it is done by different software like X-ray, CT scan, DEXA and BIA. The paper includes the design of an experimental setup which performs different types of test like tension, compression, three point bending, four point bending and torsion. The modified correlation between BMD and HU for various strength calculations is found out and validated with the experimental results.

  19. Epiphyseal preservation and reconstruction with inactivated bone in distal femur for metaphyseal osteosarcoma in children%保留骨骺灭活再植术治疗儿童股骨远端骨肉瘤及术后肢体功能恢复特征

    Institute of Scientific and Technical Information of China (English)

    于秀淳; 刘晓平; 周银; 付志厚; 宋若先; 孙海宁; 徐明

    2007-01-01

    和肢体长度的保持.%BACKGROUND: Limb salvage operations with preservation of the epiphysis (LSPPE) had been used clinically in order to overcome discrepancy of affected limb and poorer limb function, but more post-operation complications existed, including infection, grafting bone resorption, fracture and internal fixation cinch.OBJECTIVE: To study the clinical related matters of inactivated bone replantation with preservation of the epiphysis in children limb salvage with osteosarcoma.DESIGN: Clinical observation regularly.SETTING: General Hospital of Jinan Military Area Command of Chinese PLA.MATERIALS: Eleven patients corresponded selected standard and accepted treatment from January 1999 to January distal metastasis was found with lung X-ray check and CT scanning, the patient would be excluded this study. There were 5 males, 6 females, and the mean age of (8±2) years old (4-11 years). The disease history was 1-6 months.FO) were adopted. After 2 weeks of chemotherapy, the operations of inactivated bone replantation with preservation of the epiphysis were performed. The operation was performed under epidural or general anesthesia. The patient lied on operating table. The knee anteriomedialis incision was adopted. Firstly, femur periosteum was opened beyond proximal end 2-3 cm from tumor, subperiosteum stripping was done to the proximal femur, descend femur with wire saw, separated and disconnected aboral periosteum, blunt dissecting femur aboral blood vessel and nerves to the popliteal fossa,deligating blood vessel around the tumor. Attachment of gastroenemius was cut off. Epiphyseal plate was identified carefully. According to pre-operation MR, the distal femur descend level was determined and the femur was descend with electro-saw. It was determined with cytology that no tumor cell existed in descend level, and reconstruction of bone de-fect with inactivated tumor-bone shell with 95% alcohol and bone cement containing ADR (20 g bone cement: 10 mg ADR), the diaphysis was fixed by intramedullary

  20. 3D打印技术在股骨远端骨肿瘤的应用%Application of 3D Printing Technology in the Treatment of Distal Femur Bone Tumor

    Institute of Scientific and Technical Information of China (English)

    马立敏; 张余; 周烨; 周霞; 夏虹; 蓝国波

    2013-01-01

    Objective:To investigate the application of individual digital resection plate in the treatment of bone tumor. Methods:Twenty-three patients with bone tumor by spiral CT scanner and MRI. The data was reconstructed by 3D imaging reconstruction workstation. The operation was simulated and the individual resection plate was designed on the virtual 3D model according to the surgical procedure. With the rapid prototyping technology, the individual resection plate was produced to guide the reduction of the bone tumor. Results:The average follow-up times were 48 months. No local recurrence, endoprostheses infection, loosening and fracture happened. Average scoring was 21 points according to Enneking system. Conclusion:Individual digital reduction plate is helpful in accurate reduction of bone tumor and can also save the operation time.%  目的:探讨个体化数字导板在股骨远端骨肿瘤的应用。方法:23例股骨远端患者,术前行64排螺旋CT扫描和MRI3.0T扫描,进行三维重建和股骨模型上模拟手术并设计复位导板,通过快速成型技术制作实体导板,术中引导骨肿瘤截骨。术后对手术效果进行评价。结果:平均随访48个月,无局部复发,无假体周围感染、松动及断裂事件发生。术后6个月以上进行功能评分,优16例,良5例,中2例,Enneking得分平均21分。结论:个体化数字导板应用于股骨远端骨肿瘤,可以明确骨折的复位位置,有利于骨折的精确复位,并且减少了手术的操作时间,达到更佳手术效果。

  1. Reimplantation of an Extruded Femoral Segment After Gamma Sterilization in A Type IIIA Supracondylar Femur Fracture: A Case Report

    Directory of Open Access Journals (Sweden)

    Aizah N

    2014-07-01

    Full Text Available Extruded bone is a rare complication of high energy open fractures, and there is only a handful of literature on reimplantation of the extruded segment. No clear guidelines exist regarding timing of reimplantation, stabilization of extruded bone segments, and also bone disinfection and sterilization techniques. Previous reports describe sterilization using thermal or chemical methods. We present a case of successful reimplantation of an extruded metaphyseal segment of femur after gamma sterilization in a fourteen- year old boy.

  2. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  3. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by means...... normal donors aged 16-83 years were tested in compression. The deformation was measured simultaneously in bone and cartilage to obtain the mechanical properties of both tissues. RESULTS: The stiffnesses and elastic energies of both cartilage and bone showed an initial increase, with maxima at 40 years......, followed by a steady decline. The viscoelastic energy was maximal at younger ages (16-29 years), followed by a steady decline. The energy absorption capacity did not vary with age. Stiffnesses and elastic energies were correlated significantly between cartilage and bone. CONCLUSIONS: The present study...

  4. Vertebral metastasis of femur primary osteosarcoma: a case report and literature review; Metastase vertebral de osteossarcoma primario de femur: relato de caso e revisao da literatura

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, Claudia Helena [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Radiologia Pediatrica; Francisco, Marina Celli; Lederman, Henrique Manoel [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: nana_celli@hotmail.com; Francisco, Fabiano Celli [Hospital de Caridade Sao Braz, Porto Uniao, SC (Brazil); Oliveira, Andrea Alencar de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Oncologia Pediatrica; Neves, Felipe Trentin [Hospital Ipiranga, Sao Paulo, SP (Brazil). Cirurgia Geral

    2006-10-15

    We present a case of a 21-year-old patient, bearer of femur primary osteosarcoma, who began with pain in the thoracic column. The metastasis of primary osteosarcoma has greater incidence on lungs, rarely affecting vertebras. We reviewed the literature about this disease and emphasized the image's characteristics on the several methods used (traditional radiographic exams, bone scintigraphy, computed tomography, magnetic resonance) and the main differential diagnostics. (author)

  5. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation.

    Science.gov (United States)

    Nicolodelli, Gustavo; Lizarelli, Rosane de Fátima Zanirato; Bagnato, Vanderlei Salvador

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788±0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  6. STUDY OF FUNCTIONAL OUTCOME OF DISTAL FEMUR FRACTURES TREATED BY OPEN REDUCTION AND INTERNAL FIXATION WITH LOCKING COMPRESSION PLATE

    Directory of Open Access Journals (Sweden)

    Sahaya R

    2016-04-01

    Full Text Available BACKGROUND Distal femur fractures account for about 7% of all femur fractures. These fractures can lead to knee stiffness and have the tendency to collapse into varus. The management of distal femur fractures has seen a paradigm shift from nonoperative measures to biological fixation and evolution of modern implants like Locking Compression Plate has been used in current times. With the use of Locking Compression Plate double plating can be avoided. In our study, we have evaluated the short-term Functional Outcome of patients who underwent open reduction internal fixation with Locking Compression Plate using Sander’s criteria. Ours is both prospective and retrospective study of 20 patients with distal femur fractures treated operatively from April 2013 to October 2015. Our surgical modality of treatment is open reduction and internal fixation with locking compression plate using standard lateral approach. We have used AO classification to classify the distal femur fractures. With the results of our study, we have come to a conclusion that locking compression plate is a best option for both intra-articular and extra-articular distal femur fractures. It avoids the use of dual plating of distal femur which requires extensive soft tissue stripping in both sides, resulting in reduced blood supply, potential non-union and implant failure. Locking Compression Plate also helps in anatomical reduction of comminuted intra-articular fractures and it could also be used effectively in osteoporotic bone.

  7. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  8. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  9. Development of a realistic in vivo bone metastasis model of human renal cell carcinoma.

    Science.gov (United States)

    Valta, Maija P; Zhao, Hongjuan; Ingels, Alexandre; Thong, Alan E; Nolley, Rosalie; Saar, Matthias; Peehl, Donna M

    2014-06-01

    About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastases. The incidence of RCC is increasing and bone metastatic RCC merits greater focus. Realistic preclinical bone metastasis models of RCC are lacking, hampering the development of effective therapies. We developed a realistic in vivo bone metastasis model of human RCC by implanting precision-cut tissue slices under the renal capsule of immunodeficient mice. The presence of disseminated cells in bone marrow of tissue slice graft (TSG)-bearing mice was screened by human-specific polymerase chain reaction and confirmed by immunohistology using human-specific antibody. Disseminated tumor cells in bone marrow of TSG-bearing mice derived from three of seven RCC patients were detected as early as 1 month after tissue implantation at a high frequency with close resemblance to parent tumors (e.g., CAIX expression and high vascularity). The metastatic patterns of TSGs correlated with disease progression in patients. In addition, TSGs retained capacity to metastasize to bone at high frequency after serial passaging and cryopreservation. Moreover, bone metastases in mice responded to Temsirolimus treatment. Intratibial injections of single cells generated from TSGs showed 100 % engraftment and produced X-ray-visible tumors as early as 3 weeks after cancer cell inoculation. Micro-computed tomography (μCT) and histological analysis revealed osteolytic characteristics of these lesions. Our results demonstrated that orthotopic RCC TSGs have potential to develop bone metastases that respond to standard therapy. This first reported primary RCC bone metastasis model provides a realistic setting to test therapeutics to prevent or treat bone metastases in RCC.

  10. Analysis of fatty acid composition in human bone marrow aspirates.

    Science.gov (United States)

    Deshimaru, Ryota; Ishitani, Ken; Makita, Kazuya; Horiguchi, Fumi; Nozawa, Shiro

    2005-09-01

    In the present study, the fatty acid composition of bone marrow aspirates and serum phospholipids in nine patients with hematologic diseases was investigated, and the effect of fatty acids on osteoblast differentiation in ST2 cells was examined. The concentrations of oleic acid and palmitic acid were significantly higher in bone marrow aspirates than in serum phospholipids, but the concentrations of other fatty acids did not differ. The rate of alkaline phosphatase positive ST2 cells induced by BMP2 was significantly increased by oleic acid, but was unaffected by the presence or absence of palmitic acid. We conclude that the fatty acid composition of bone marrow aspirates differs from that of serum phospholipids. This difference may affect osteoblast differentiation in the bone marrow microenvironment.

  11. Engineering bone tissue substitutes from human induced pluripotent stem cells

    National Research Council Canada - National Science Library

    Giuseppe Maria de Peppo; Iván Marcos-Campos; David John Kahler; Dana Alsalman; Linshan Shang; Gordana Vunjak-Novakovic; Darja Marolt

    2013-01-01

    ...) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling...

  12. INCIDENCE OF WORMIAN BONE IN HUMAN SKULLS IN RAJAST HAN

    Directory of Open Access Journals (Sweden)

    William F.

    2013-02-01

    Full Text Available ABSTRACT: Wormian bones are formations associated with insuff icient growth at suture closure and are regarded as epigenetic and hypostatic traits. There exists racial variation in its incidence. AIM : To find the incidence of wormian bone and compare with other study. MATERIAL AND METHOD : This was autopsy study on 150 dead bodies of both sexes of all age groups. RESULT - Incidence of wormian bone in Rajasthan was 4.7 % (4.1% in males & 3.6 % in females. This is comparable with study in other par t of India & abroad and it is in accordance with racial variation. CONCLUSION - knowledge of wormian bone is important to neuroanatomist, neurosurgeon, radiologist, anthropol ogist and morphologist

  13. First forensic records of termite activity on non-fossilized human bones in Brazil.

    Science.gov (United States)

    Queiroz, R A; Soriano, E P; Carvalho, M V D; Caldas-Junior, A F; Souza, E H A; Coelho-Junior, L G T M; Campello, R I C; Almeida, A C; Farias, R C A P; Vasconcellos, A

    2016-07-25

    The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855) (on two skeletons), and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  14. First forensic records of termite activity on non-fossilized human bones in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. Queiroz

    Full Text Available Abstract The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855 (on two skeletons, and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  15. Human Bone Matrix Changes During Deep Saturation Dives

    Science.gov (United States)

    2008-08-08

    agreement notwithstanding, much remains unknown about its pathogenesis, prevention, and treatment . DON is currently disqualifying for U.S. Navy divers...recourse for symptomatic treatment is surgical joint replacement.7 The principal mechanism of bone injury is generally accepted to be bubble formation...urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also

  16. A method for accounting for test fixture compliance when estimating proximal femur stiffness.

    Science.gov (United States)

    Rossman, Timothy; Dragomir-Daescu, Dan

    2016-09-06

    Fracture testing of cadaveric femora to obtain strength and stiffness information is an active area of research in developing tools for diagnostic prediction of bone strength. These measurements are often used in the estimation and validation of companion finite element models constructed from the femora CT scan data, therefore, the accuracy of the data is of paramount importance. However, experimental stiffness calculated from force-displacement data has largely been ignored by most researchers due to inherent error in the differential displacement measurement obtained when not accounting for testing apparatus compliance. However, having such information is necessary for validation of computational models. Even in the few cases when fixture compliance was considered the measurements showed large lab-to-lab variation due to lack of standardization in fixture design. We examined the compliance of our in-house designed cadaveric femur test fixture to determine the errors we could expect when calculating stiffness from the collected experimental force-displacement data and determined the stiffness of the test fixture to be more than 10 times the stiffness of the stiffest femur in a sample of 44 femora. When correcting the apparent femur stiffness derived from the original data, we found that the largest stiffness was underestimated by about 10%. The study confirmed that considering test fixture compliance is a necessary step in improving the accuracy of fracture test data for characterizing femur stiffness, and highlighted the need for test fixture design standardization for proximal femur fracture testing.

  17. The femur as a musculo-skeletal construct: a free boundary condition modelling approach.

    Science.gov (United States)

    Phillips, A T M

    2009-07-01

    Previous finite element studies of the femur have made simplifications to varying extents with regard to the boundary conditions used during analysis. Fixed boundary conditions are generally applied to the distal femur when examining the proximal behaviour at the hip joint, while the same can be said for the proximal femur when examining the distal behaviour at the knee joint. While fixed boundary condition analyses have been validated against in vitro experiments it remains a matter of debate as to whether the numerical and experimental models are indicative of the in vivo situation. This study presents a finite element model in which the femur is treated as a complete musculo-skeletal construct, spanning between the hip and knee joints. Linear and non-linear implementations of a free boundary condition modelling approach are applied to the bone through the explicit inclusion of muscles and ligaments spanning both the hip joint and the knee joint. A non-linear force regulated, muscle strain based activation strategy was found to result in lower observed principal strains in the cortex of the femur, compared to a linear activation strategy. The non-linear implementation of the model in particular, was found to produce hip and knee joint reaction forces consistent with in vivo data from instrumented implants.

  18. Augmented reality in bone tumour resection

    Science.gov (United States)

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  19. Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Eiken, Pia; Eastell, Richard

    2009-01-01

    of bone turnover. Two national observational register-based studies were performed: (1) cross-sectional study (N = 11,944) comparing age distribution, exposure, and trauma mechanisms between different types of proximal femur fractures and (2) matched cohort study in patients with prior nonhip fractures (N......Alendronate (aln) is a potent bisphosphonate with a prolonged duration of action. Recent reports have found long-term aln use to be common in patients with subtrochanteric or proximal diaphyseal femur fracture, raising concerns that these fractures could be a consequence of excessive suppression...... = 5187 + 10,374), testing the hypothesis that the increase in the risk of subsequent atypical femur fractures exceeded the increase in typical hip fractures. We also sought evidence of a dose-response relationship, where high adherence to or long-term use of aln led to more atypical femur fractures. We...

  20. 基于动态增强磁共振测定大鼠股骨近端骨髓血流灌注功能及稳定性%Perfusion function of rat proximal femur bone marrow and its stability determined using dynamic contrast-enhanced MRI

    Institute of Scientific and Technical Information of China (English)

    张亚峰; 程琼; 祝勇; 刘璠

    2011-01-01

    背景:随着磁共振成像线圈的改进和新对比剂的使用,利用动态增强磁共振测定大鼠骨髓血流灌注功能已成为可能.目的:建立基于动态增强磁共振测定大鼠股骨近端骨髓血流灌注功能的方法,并观察其稳定性.方法:Wistar大鼠尾静脉注射对比剂,基于动态增强磁共振,利用1.5T全身磁共振系统采集股骨近端骨髓的时间-信号强度数据.1周后重复测量1次.通过时间-信号强度曲线计算最大增强率和增强系数.结果与结论:前后两次测量的最大增强率分别为(140.42±17.17)%和(136.57±13.87)%,增强系数分别为(3.81±0.17)%/s和(3.71±0.20)%/s,两次检测的最大增强率和增强系数差异无显著性意义.说明基于动态增强磁共振的大鼠股骨近端骨髓血流灌注功能测定方法稳定可靠.%BACKGROUND: Due to improvement of MRI surface coil and new-type contrasts, it is possible to use dynamiccontrast-enhanced MRI to measure bone marrow blood perfusion function in rats.OBJECTIVE: To explore the methodology using dynamic contrast -enhanced MRI to measure the perfusion function of ratproximal femur bone marrow and explore its reliability.METHODS: Contrast agents were injected from tail vein into Wistar rats. Dynamic contrast -enhanced MRI was measured using1.5T whole body MRI scanner. One week later, the measurement was repeated. Then, time-signal intensity curve was explored.Maximum enhancement (ME) and enhancement slope (ES) were calculated.RESULTS AND CONCLUSION: ME of test 1 and test 2 were (140.42±17.17)% and (136.57±13.87)%, respectively. ES of test 1and test 2 were (3.81±0.17)%/s and (3.71±0.20)%/sec, respectively. There was no statistically significant difference in ME andES between the two tests. The methodology explored in this study which used dynamic contrast enhanced MRI to measure theperfusion function of rat proximal femur bone marrow were reliable and repeatable.

  1. 保骨量截骨全髋关节置换术治疗发育性髋关节发育不良%Treatment for adult developmental dysplasia of hip by total hip arthroplasty using bone-preserving femur osteotomy

    Institute of Scientific and Technical Information of China (English)

    杨太明; 刘祥; 高先亭; 许兴柏; 孔祥如; 朱爱祥; 杨光辉; 陈浩; 王博; 钱玉

    2016-01-01

    Objective To explore the operation method and therapeutic effect on adult developmental dysplasia of the hip ( DDH) combining osteoarthritis by total hip arthroplasty ( THA) using the technique of bone-preserving femur osteotomy .Methods From March 2008 to April 2014, 10 cases of 10 female patients with Crowe type Ⅳ of DDH combining osteoarthritis were treated in Department of Orthopaedic , the People's Hospital of Su Qian , Drum Tower Hospital Group of Nanjing , aged 41-55 (46 ±8) years.DDH Crowe type Ⅳ associated with osteoarthritis and greater trochanter the varus was a necessary enrolling creteria .Sliding osteotomy on greater trochanter without removing the top was used to correct varus .Subtrochanteric rotational shortening osteotomy was applied to treat limb lengthening and large femoral neck anteversion .The domestic S-R hip prosthesis was implanted .Inserts of the muscles were preserved on the osteomized bone to ensure that blood supply would be intact .The osteotomy gap was grafted with cancellous bones from proximal femur , femoral head and acetabulum reamers to promote healing.The femoral bone stock was preserved to the greatest extent .All the cases were followed up for (39 ±12)months (range, six months to six years).Results There was no limb discrepancy .No vascular or neural symptoms was found .The osteotomy gaps completely recovered with an average healing time of (7.5 ±1.5) weeks, ranged from six to eight weeks.The average preoperative modified Harris score was 44.5, which increased to 90.6 at the last follow-up.Conclusion The technique of THA using S-R implants and bi-osteotomy on proximal femur in treating adult DDH Crowe type Ⅳ associated with osteoarthritis might solve several problems during the surgery and preserve the femoral bone stock at the same time.%目的:探讨成人Crowe Ⅳ型发育性髋关节发育不良( DDH)合并骨关节炎全髋关节置换的手术方式及骨量保存。方法选择2008年3月至2014年4月

  2. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.

    Science.gov (United States)

    Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M

    2006-12-01

    Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by standard architectural metrics.

  3. Biomechanical properties of the mid-shaft femur in middle-aged hypophysectomized rats as assessed by bending test.

    Science.gov (United States)

    Bozzini, Clarisa; Picasso, Emilio O; Champin, Graciela M; Alippi, Rosa María; Bozzini, Carlos E

    2012-10-01

    Both stiffness and strength of bones are thought to be controlled by the "bone mechanostat". Its natural stimuli would be the strains of bone tissue (sensed by osteocytes) that are induced by both gravitational forces (body weight) and contraction of regional muscles. Body weight and muscle mass increase with age. Biomechanical performance of load-bearing bones must adapt to these growth-induced changes. Hypophysectomy in the rat slows the rate of body growth. With time, a great difference in body size is established between a hypophysectomized rat and its age-matched control, which makes it difficult to establish the real effect of pituitary ablation on bone biomechanics. The purpose of the present investigation was to compare mid-shaft femoral mechanical properties between hypophysectomized and weight-matched normal rats, which will show similar sizes and thus will be exposed to similar habitual loads. Two groups of 10 female rats each (H and C) were established. H rats were 12-month-old that had been hypophysectomized 11 months before. C rats were 2.5-month-old normals. Right femur mechanical properties were tested in 3-point bending. Structural (load-bearing capacity and stiffness), geometric (cross-sectional area, cortical sectional area, and moment of inertia), and material (modulus of elasticity and maximum elastic stress) properties were evaluated. The left femur was ashed for calcium content. Comparisons between parameters were performed by the Student's t test. Average body weight, body length, femur weight, femur length, and gastrocnemius weight were not significantly different between H and C rats. Calcium content in ashes was significantly higher in H than in C rats. Cross-sectional area, medullary area, and cross-sectional moment of inertia were higher in C rats, whereas cortical area did not differ between groups. Structural properties (diaphyseal stiffness, elastic limit, and load at fracture) were about four times higher in hypophysectomized rats

  4. Osteosynthesis of a periprosthetic fracture of the proximal femur with the distal femur LISS system

    DEFF Research Database (Denmark)

    Tarnowski, Jan Robert; Holck, Kim

    2008-01-01

    In this case report, we show how it is possible to perform osteosynthesis using minimal invasive techniques instead of conventional methods. In this instance the osteosynthesis was performed on a patient in poor general condition who had presented a periprosthetic fracture of the proximal femur....... For the osteosynthesis the Less invasive Stabilization System intended for distal femur fractures was used with success....

  5. 类风湿关节炎患者股骨和腰椎部位骨密度的临床研究%Clinical study of bone mineral density at site of proximal femur and lumbar vertebrae in patients with rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    刘童; 裴必伟; 徐胜前; 邓娟; 陈晨

    2011-01-01

    Objective To investigate the change of bone mineral density (BMD)at the site of proximal femur and lumbar vertebrae and the occurrence of osteoporosis (OP) in patients with rheumatoid arthritis( RA). Methods BMD of proximal femur and lumbar vertebrae ( L2-4) in 120 patients with RA and 120 healthy control subjects were measured by dual energy X-ray absorptiometry. The clinical and lab data were also recorded in details simultaneously . Results (1) BMD at total femoral area and lumbar 2, lumbar 3,lumbar 4,lumbar 2-4 region in patients with RA were obviously lower than that in healthy subjects (P 0. 05). The incidence of total OP in RA was 34. 2% , which significant higher than those in the control group(15.0% ) (P =0. 001). (2)Patients determined as OP according to BMD at proximal femur had longer duration of disease (t = 3. 658, P < 0. 0001 ) , higher HAQ scores (t = 2. 076, P = 0. 040 ) , worse function of joint ( x2 =14. 392, P = 0. 002 ) , more severer stage of X-ray scan of hands ( x2 = 7. 888 , P = 0. 048). Patients determined as OP according to BMD at Lumbar 24 had elder age(t =2. 476,P=0. 015). (3)The incidences of OP at position of lumbar 2 ( 29. 2% ) and lumbar 4 ( 19.4% ) in RA who taking corticosteroid were obviously higher than that who treated without corticosteroid ( 12. 5% , 4. 2% ) (P = 0.032,0.016). (4)Logistic Regression analysis indicate :duration of disease(OR = 1. 192,P=0.023,95%CI: 1. 024-1. 386 ) and joint function ( OR = 5. 453,P = 0. 033,95% C/: 1. 142-26. 035 ) were risk factors for the occurrence of OP in RA at site of proximal femur. Age( OR = 1. 058 ,P =0. 016 ,95% C/: 1. 010-1. 058 ) was the only risk factor for the occurrence of OP in RA at site of lumbar 2-4. Conclusions Compared with healthy control subjects ,the incidence of OP in patients with RA rise apparently. Pathogenesis of OP in RA patients at the site of proximal femur or lumbar are different.%目的 探讨类风湿关节炎(RA)患者股骨和腰椎部位骨密度(BMD)的

  6. Pediatric femur fractures, epidemiology and treatment

    Directory of Open Access Journals (Sweden)

    Petković Lazar

    2011-01-01

    Full Text Available Background/Aim. Femur fractures in children most often occur as a consequence of traffic accidents, during play and sport activities, and due to different pathological states. Diagnosis is rather simple and it includes physical and radiographycal examination. Femur fractures treatment in children can be operative and unoperative, depending on several facts: age, localisation and type of fracture, joint injuries of soft tissues, the presence of other injuries (in polytrauma, economical and social aspects, ect. The aim of this study was to present epidemiological characteristics of pediatric femur fractures, that is in the stage of development, including a special analysis of the used treatment techniques, as well as the comparison of the obtained data with those from the literature. Methods. The evaluation included following parameters: age, gender, cause, localisation and type of femur fracture, applied treatment and hospitalisation duration. Results. Among the presented 143 patients with femur fracture, 109 were boys and 34 were girls (3.2 : 1 ratio; p = 0.0001. Average age for both genders was 8.6 years, and no difference between boys and girls were found for the age (p = 0.758. In total, the most common fracture was diaphyseal fracture of femur in 93 (65.03% patients. The second was proximal fracture in 30 (20.98% patients, and the last distal fracture of the femur in 20 (13.99% patients (p = 0.0001. Three main causes of femur fracture can be distinguished: during play and sport activities in 67 (46.8% children, in traffic accidents in 64 (44.8% children, and pathological fractures in 12 (8.4% children. Inoperative treatment was applied in 82 (57.3% patients, and operative one in 61 (42.7% patients. The most common tretament was traction, in 71 (49.6% patients, followed by immobilization by hip spica cast mostly in young children. Intramedullar elastic nailing was applied in 16 (11.2% cases, and intramedullar rigid nailing (Küntscher in 19

  7. Femur specific polyaffine model to regularize the log-domain demons registration

    Science.gov (United States)

    Seiler, Christof; Pennec, Xavier; Ritacco, Lucas; Reyes, Mauricio

    2011-03-01

    Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.

  8. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts.

    Science.gov (United States)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja; Jensen, Pia Rosgaard; Alnaimi, Ragad Walid; Rolighed, Lars; Engelholm, Lars H; Marcussen, Niels; Andersen, Thomas Levin

    2016-06-01

    The mechanism coupling bone resorption and formation is a burning question that remains incompletely answered through the current investigations on osteoclasts and osteoblasts. An attractive hypothesis is that the reversal cells are likely mediators of this coupling. Their nature is a big matter of debate. The present study performed on human cancellous bone is the first one combining in situ hybridization and immunohistochemistry to demonstrate their osteoblastic nature. It shows that the Runx2 and CD56 immunoreactive reversal cells appear to take up TRAcP released by neighboring osteoclasts. Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone through electron microscopy and analysis of molecular markers. Periosteoclastic reversal cells show direct contacts with the osteoclasts and with the demineralized resorption debris. These early reversal cells show (1) ¾-collagen fragments typically generated by extracellular collagenases of the MMP family, (2) MMP-13 (collagenase-3) and (3) the endocytic collagen receptor uPARAP/Endo180. The prevalence of these markers was lower in the later reversal cells, which are located near the osteoid surfaces and morphologically resemble mature bone-forming osteoblasts. In conclusion, this study demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic.

  9. 3D Finite Element Analysis of a Man Hip Joint Femur under Impact Loads

    Institute of Scientific and Technical Information of China (English)

    YU Xue-zhong; GUO Yi-mu; LI Jun; ZHANG Yun-qiu; HE Rong-xin

    2007-01-01

    The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods: A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ, which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical results.

  10. Living with cracks: Damage and repair in human bone

    Science.gov (United States)

    Taylor, David; Hazenberg, Jan G.; Lee, T. Clive

    2007-04-01

    Our bones are full of cracks, which form and grow as a result of daily loading activities. Bone is the major structural material in our bodies. Although weaker than many engineering materials, it has one trick that keeps it ahead - it can repair itself. Small cracks, which grow under cyclic stresses by the mechanism of fatigue, can be detected and removed before they become long enough to be dangerous. This article reviews the work that has been done to understand how cracks form and grow in bone, and how they can be detected and repaired in a timely manner. This is truly an interdisciplinary research field, requiring the close cooperation of materials scientists, biologists and engineers.

  11. Microscopic and radiographic analysis of the effect of particle size of demineralized bovine cancellous bone matrix on the repair of bone defects in femurs of rabbits Análise microscópica e radiográfica do efeito do tamanho das partículas de matriz de osso medular bovino desmineralizado na reparação de defeito ósseo em fêmures de coelhos

    Directory of Open Access Journals (Sweden)

    Everdan Carneiro

    2005-06-01

    Full Text Available The bone tissue has a great regenerative potential, with ability to completely restore its structure and original functions. In some situations, though, bone defects cannot be self-repaired, thus requiring the use of grafts for a correct treatment and good prognosis. This work aimed at microscopically analyzing the effect of the particle size of demineralized bovine cancellous bone matrix in micro and macrogranular forms on the repair of bone defects in femurs of rabbits, with blood clot used as control. At 1, 3 and 6 months after implantation of the materials, the animals were killed and the anatomic specimens were removed. A foreign body-type granulomatous reaction containing macrophages and multinucleated giant cells in contact with the implanted particles was observed. These results suggest a failure in demineralization and/or interruption of the antigenic potential during production of the biomaterial. It is concluded that the size of the particles did not influence the evolution of the repair process of bone defects, acting only as bone-filler substances, and that the material implanted should be improved by quality control during production, since it may represent a good alternative for bone graft.O tecido ósseo possui grande potencial regenerativo com capacidade para restaurar completamente sua estrutura e função originais. Há situações em que os defeitos ósseos não conseguem por si só obter o reparo, casos em que se fazem necessários o uso de enxertos, para um correto tratamento e bom prognóstico. Este experimento teve o propósito de analisar microscopicamente o efeito do tamanho das partículas de matriz de osso medular bovino desmineralizado, nas formas micro e macrogranular, na reparação de defeito ósseo em fêmures de coelhos, tendo como controle o coágulo sanguíneo. Após 1,3 e 6 meses da implantação dos materiais, os animais foram mortos e as peças anatômicas removidas. Uma reação granulomatosa tipo corpo

  12. Use of recombinant human bone morphogenetic protein-2 with local bone graft instead of iliac crest bone graft in posterolateral lumbar spine arthrodesis.

    Science.gov (United States)

    Park, Daniel K; Kim, Sung S; Thakur, Nikhil; Boden, Scott D

    2013-05-20

    Prospective clinical study. Compare fusion rates between recombinant human bone morphogenetic protein-2 (rhBMP-2) and iliac crest bone graft (ICBG) with rhBMP-2 and local bone graft (LBG) (±bone graft extenders) in posterolateral fusion. Previous reports have shown higher fusion rates when adding rhBMP-2 to ICBG in lumbar posterolateral fusion, compared with ICBG alone. We compared the fusion success rates between rhBMP-2 delivered with ICBG versus that with LBG. Fusion rates were compared in patients with degenerative spondylolisthesis (1-2 levels) with accompanying lumbar stenosis. RhBMP-2 (INFUSE, Medtronic) was delivered on an absorbable collagen sponge (6 mg/side at 1.5 mg/mL) with ICBG alone or with LBG wrapped inside the sponge. Thin slice computed tomographic scans were assessed at 6, 12, and 24 months. In a consecutive series, 16 patients (30 levels) received ICBG with rhBMP-2 and 35 patients (49 levels) received LBG with rhBMP-2. For the ICBG cohort, 80.0%, 93.4%, 96.7% of levels were fused at 6, 12, and 24 months. In contrast, for the local bone with rhBMP-2 cohort, 87.7%, 98.0%, and 98.0% were fused at 6, 12, and 24 months. There was no statistically significant difference in fusion success rates between the 2 groups at any time point. As for fusion quality, the fusion mass showed superior quality in ICBG group than in the local bone group at each time point. This study validates the high fusion success rates previously reported by adding rhBMP-2 to ICBG and shows that local bone may be safely substituted for ICBG in 1- to 2-level posterolateral fusion. The fusion rates were comparable. The avoidance of ICBG harvest has implications for operative time, blood loss, and morbidity. Lastly, this is the first study that directly compares the fusion success rate and quality using local bone with rhBMP-2 versus ICBG with rhBMP-2 at various times. 4.

  13. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    Science.gov (United States)

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. © 2014 Anatomical Society.

  14. Parallel plate model for trabecular bone exhibits volume fraction-dependant bias

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; Odgaard, A;

    2000-01-01

    Unbiased stereological methods were used in conjunction with microcomputed tomographic (micro-CT) scans of human and animal bone to investigate errors created when the parallel plate model was used to calculate morphometric parameters. Bone samples were obtained from the human proximal tibia......, canine distal femur, rat tail, and pig spine and scanned in a micro-CT scanner. Trabecular thickness, trabecular spacing, and trabecular number were calculated using the parallel plate model. Direct thickness, and spacing and connectivity density were calculated using unbiased three-dimensional methods...

  15. ASSESSMENT OF RELATIONSHIP BETWEEN NECK SHAFT ANGLE AND NECK LENGTH WITH INTEREPICONDYLAR DISTANCE IN FEMUR

    Directory of Open Access Journals (Sweden)

    Ishita Ghosh

    2015-12-01

    Full Text Available Background: Femur is the longest and strongest bone of the body. It transmits body weight from hip bone to tibia in standing position. Femoral neck is a constricted part connecting head with shaft at an angle of about 125°-known as angle of inclination or neck shaft angle (NSA; this facilitates the movement of hip joint enabling the limb to swing clear of pelvis. Abnormal femoral neck angle (FNA may be associated with various clinical problems ranging from harmless in toeing gait in childhood to disabling osteoarthritis in adults. The current study attempted to find out if a co-relation exists between those parameters and other clinically measurable variables like inter-epicondylar distance or distance between greater trochanter to lateral epicondyle. This may help to predict the risk of fracture neck femur without any risk of radiation exposure and proper prophylactic measures can be undertaken (Vit-D, calcium to decrease risk of fracture. Results: Measurements were taken in dry femora mostly in East Indian population. Variables that were measured in 158 dry femora (85 femora from left side and 73 from the right side are: - a Neck shaft angle of femur, b Neck length of femur, c Neck circumference of femur, d Inter-epicondylar distance of femur, e Distance between lateral epicondyle and greater trochanter of femur. No significant difference was found between the right and left sided femoral groups regarding any of the study variables. From the analysis it was revealed that no positive or negative correlation exists between the study variables. Therefore, it is not possible to predict the value of one or more of them from the magnitude of the other variable(s. Conclusions: Our study attempted to find out if it was possible to predict the risk of fracture neck femur by simple clinical procedure without exposing the subjects to radiation hazards associated with a radiological imaging. A screening test and subsequent prophylactic measures could

  16. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans

    DEFF Research Database (Denmark)

    Nissen, Anne; Christensen, Mikkel; Knop, Filip K

    2014-01-01

    -minute glucose clamps with co-infusion of GIP (4 pmol/kg/min for 15 min, followed by 2 pmol/kg/min for 45 min) or placebo. The samples were analyzed for concentrations of degradation products of C-terminal telopeptide of type I collagen (CTX), a bone resorption marker. RESULTS regarding effects...

  17. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  18. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility.

  19. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  20. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Directory of Open Access Journals (Sweden)

    Verônica Fernandes Vianna

    2013-01-01

    Full Text Available Bone marrow stromal cells (BMSCs are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells and those that did not adhere by three days but did by six days (L-cells. Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics.

  1. Identification of molecular markers related to human alveolar bone cells and pathway analysis in diabetic patients.

    Science.gov (United States)

    Sun, X; Ren, Q H; Bai, L; Feng, Q

    2015-10-28

    Alveolar bone osteoblasts are widely used in dental and related research. They are easily affected by systemic diseases such as diabetes. However, the mechanism of diabetes-induced alveolar bone absorption remains unclear. This study systematically explored the changes in human alveolar bone cell-related gene expression and biological pathways, which may facilitate the investigation of its mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics and 5 male healthy adults were cultured. Total RNA was extracted from these cells and subjected to gene microarray analysis. Differentially expressed genes were screened, and a gene interaction network was constructed. An enrichment pathway analysis was simultaneously performed on differentially expressed genes to identify the biological pathways associated with changes in the alveolar bone cells of diabetic humans. In total, we identified 147 mRNAs that were differentially expressed in diabetic alveolar bone cells (than in the normal cells; 91 upregulated and 36 downregulated mRNAs). The constructed co-expression network showed 3 pairs of significantly-expressed genes. High-enrichment pathway analysis identified 8 pathways that were affected by changes in gene expression; three of the significant pathways were related to metabolism (inositol phosphate metabolism, propanoate metabolism, and pyruvate metabolism). Here, we identified a few potential genes and biological pathways for the diagnosis and treatment of alveolar bone cells in diabetic patients.

  2. Clinical Application of Human Mesenchymal Stromal Cells for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anindita Chatterjea

    2010-01-01

    Full Text Available The gold standard in the repair of bony defects is autologous bone grafting, even though it has drawbacks in terms of availability and morbidity at the harvesting site. Bone-tissue engineering, in which osteogenic cells and scaffolds are combined, is considered as a potential bone graft substitute strategy. Proof-of-principle for bone tissue engineering using mesenchymal stromal cells (MSCs has been demonstrated in various animal models. In addition, 7 human clinical studies have so far been conducted. Because the experimental design and evaluation parameters of the studies are rather heterogeneous, it is difficult to draw conclusive evidence on the performance of one approach over the other. However, it seems that bone apposition by the grafted MSCs in these studies is observed but not sufficient to bridge large bone defects. In this paper, we discuss the published human clinical studies performed so far for bone-tissue regeneration, using culture-expanded, nongenetically modified MSCs from various sources and extract from it points of consideration for future clinical studies.

  3. Local origins impart conserved bone type-related differences in human osteoblast behaviour.

    Science.gov (United States)

    Shah, M; Gburcik, V; Reilly, P; Sankey, R A; Emery, R J; Clarkin, C E; Pitsillides, A A

    2015-03-04

    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro.

  4. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  5. Analysis of the of bones through 3D computerized tomography; Analise de estrutura ossea atraves de microtomografia computadorizada 3D

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I.; Lopes, R.T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Oliveira, L.F. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica; Alves, J.M. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2009-03-15

    This work shows the analysis of the internal structure of the bones samples through 3D micro tomography technique (3D-{mu}TC). The comprehension of the bone structure is particularly important when related to osteoporosis diagnosis because this implies in a deterioration of the trabecular bone architecture, which increases the fragility and the possibility to have bone fractures. Two bone samples (human calcaneous and Wistar rat femur) were used, and the method was a radiographic system in real time with an X Ray microfocus tube. The quantifications parameters are based on stereological principles and they are five: a bone volume fraction, trabecular number, the ratio between surface and bone volume, the trabecular thickness and the trabecular separation. The quantifications were done with a program developed especially for this purpose in Nuclear Instrumentation Laboratory - COPPE/UFRJ. This program uses as input the 3D reconstructions images and generates a table with the quantifications. The results of the human calcaneous quantifications are presented in tables 1 and 2, and the 3D reconstructions are illustrated in Figure 5. The Figure 6 illustrate the 2D reconstructed image and the Figure 7 the 3D visualization respectively of the Wistar femur sample. The obtained results show that the 3D-{mu}TC is a powerful technique that can be used to analyze bone microstructures. (author)

  6. Morphological Characterization of the Frontal and Parietal Bones of the Human Skull

    Science.gov (United States)

    2017-03-01

    frozen, male postmortem human subject (PMHS) donors aged 76–86 yrs. The skulls did not have a history of musculoskeletal diseases nor did they...to 17 as assessed by computed tomography. European J of Plastic Surgery. 2015;38(3):193–198. Hubbard RP. Flexure of layered cranial bone. J of...changes with age and sex from computed tomography scans. J of Bone and Mineral Research. 2016;31(2):299–307. Approved for public release

  7. Changes in internal architectonics of proximal femur in children with hip dysplasia development

    Directory of Open Access Journals (Sweden)

    Dokhov M.M.

    2014-12-01

    Full Text Available The aim of the research is to identify common patterns of compensatory changes in internal architectonics of the proximal femur with valgus and varus deformity. Material and Methods. The parameters of the proximal femur were determined on the basis of 78 roentgenograms of children with hip dysplasia (1-4 years, 4-7 years, 7-16 years before and after surgical treatment (after 6 months. Results. The degree of change in internal architectonics of the bone substance has been determined after changing of the femoral neck-shaft angle achieved with the help of correcting osteotomy in different age groups. Conclusion. Maximum recovery of internal architectonics of the bone substance is observed in the groups aged 4-7 years.

  8. IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells.

    Science.gov (United States)

    Kim, Beom-Su; Kim, Hyung-Jin; Kim, Jin Seong; You, Yong-Ouk; Zadeh, Homa; Shin, Hong-In; Lee, Seung-Jin; Park, Yoon-Jeong; Takata, Takashi; Pi, Sung-Hee; Lee, Jun; You, Hyung-Keun

    2012-09-01

    The exact molecular mechanisms governing the differentiation of bone marrow stromal stem/progenitor cells (BMSCs) into osteoblasts remain largely unknown. In this study, a highly expressed protein that had a high degree of homology with interferon-induced transmembrane protein 1 (IFITM1) was identified using differentially expressed gene (DEG) screening. We sought to determine whether IFITM1 influenced osteoblast differentiation. During differentiation, IFITM1 expression gradually increased from 5 to 10days and subsequently decreased at 15 days in culture. Analysis of IFITM1 protein expression in several cell lines as well as in situ studies on human tissues revealed its selective expression in bone cells and human bone. Proliferation of human alveolar-derived bone marrow stromal cells (hAD-BMSCs) was significantly inhibited by IFITM1 knockdown by using short hairpin RNA, as were bone specific markers such as alkaline phosphatase, collagen type I α 1, bone sialoprotein, osteocalcin, and osterix were decreased. Calcium accumulation also decreased following IFITM1 knockdown. Moreover, IFITM1 knockdown in hAD-BMSCs was associated with inhibition of Runx2 mRNA and protein expression. Collectively, the present data provide evidence for the role of IFITM1 in osteoblast differentiation. The exact mechanisms of IFITM1's involvement in osteoblast differentiation are still under investigation.

  9. Human maxillary sinus floor elevation as a model for bone regeneration enabling the application of one-step surgical procedures

    NARCIS (Netherlands)

    Farre-Guasch, E.; Prins, H.J.; Overman, J.R.; ten Bruggenkate, C.M.; Schulten, E.A.J.M.; Helder, M.N.; Klein-Nulend, J.

    2013-01-01

    Bone loss in the oral and maxillofacial region caused by trauma, tumors, congenital disorders, or degenerative diseases is a health care problem worldwide. To restore (reconstruct) these bone defects, human or animal bone grafts or alloplastic (synthetic) materials have been used. However, several d

  10. Metastatic adenocarcinoma of Proximal Femur treated by Custom made Hip Prosthesis

    OpenAIRE

    Pal, Chandra Prakash; Gupta, Surabhi; Kumar, Deepak; Singh, Pulkesh

    2012-01-01

    Introduction: Bone is the third most common site of metastatic disease. Treatment of metastatic tumours of proximal femur usually used to be either palliative in the form of radiotherapy and chemotherapy or a very radical in form of hemipelvectomy and hip disarticulation. Both forms of treatment were associated with dismal outcomes. Now with the technological advancement and refinement in surgeries a custom made hip prosthesis offers a much better treatment option to the surgeon and a good qu...

  11. Atypical Subtrochanteric Femur Fracture in Patient with Metastatic Breast Cancer Treated with Zoledronic Acid

    OpenAIRE

    2012-01-01

    Several case series have suggested an association exists between atypical femoral subtrochanteric fractures and long-term use of bisphosphonates. It is thought that prolonged use of bisphosphonates may lead to adynamic, fragile bone. The radiologic features of atypical fractures include diffuse cortical thickening, transverse fracture, and beaking at the lateral subtrochanteric area. Atypical subtrochanteric femur fractures have been reported after use of alendronate, but there have been rare...

  12. Morphological analysis of the proximal femur using quantitative computed tomography

    Science.gov (United States)

    Jacobson, Donald; Carrera, Guilermo

    2006-01-01

    The anatomy of the proximal femur was studied in 35 specimens using quantitative computed tomography (QCT) and compared with anatomical sections studied by plane radiography and gross dissection. We found the primary supporting structure of the femoral head to be the primary compressive strut, which is a dense column of trabecular bone projecting from the pressure buttress of the medial femoral neck to the epiphyseal scar. Trabecular bone mushroomed from the epiphyseal scar and terminated at right angles to the cortex of the femoral head. We believe the primary compressive strut is the predominant load-bearing structure connecting the femoral head to the femoral neck, as many specimens lacked continuity of the head cortex to the femoral neck. Based on the CT number, the primary compressive strut had similar bone density to cortical structures such as the lesser trochanter, calcar femorale and posterior lateral femoral cortex. Ward’s triangle lacked structural integrity in many cases, and we doubt the significance of tensile trabculae for sharing load. Surgical techniques such as femoral fracture fixation, resurfacing hip arthroplasty and allograft transplantation may benefit from this knowledge. PMID:16896872

  13. Total lymphatic irradiation and bone marrow in human heart transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  14. A morphological study on femoral heads in human hip joint osteoarthrosis.

    Science.gov (United States)

    Morini, S; Pannarale, L; Braidotti, P; Marinozzi, A; Gaudio, E

    1996-01-01

    Several pathogenetical and clinical interpretation of osteoarthritic modifications are given in the literature. In this work we tried to compare in humans macroscopic, structural and ultrastructural observations on eight osteoarthritic with four femural heads from control patients. The sample for Light Microscopy and Scanning Electron Microscopy observations came from selected regions of the femural head, which included both cartilage and bone tissue of loaded and unloaded regions. The cartilage showed superficial lesions, such as erosions and fissures, and deep lesions that included matrix alterations and chondrocyte proliferation. In relation to the thickening of the subchondral bone we noticed an irregular bone-cartilage surface with signs of bone tissue proliferation. The trabeculae appeared thickened in loaded zones and rarefied in unloaded ones. Cavities were sometimes present at different depths in cancellous bone. Our observations allow us to conclude that cartilage lesions are precocious, diffusely located and relatively independent of the considered zone of the femural head, while bone tissue alterations seem evenly sited and chronologically subsequent. The cavities in the cancellous bone could produce load modifications and consequent bone deformity.

  15. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2016-12-09

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R(2)=0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 201x; xx(x):xx-xx.].

  16. Cadmium and postmenopausal bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P.; Moretti, E.S.; Dare, H.A.

    1987-01-01

    Neither ovariectomy alone nor dietary cadmium exposure alone caused statistically significant decreases in the mean calcium contents and calcium/dry weight ratios of the femurs and lumbar vertebrae. Exposure to 50 ppM dietary Cd caused a significant increase in the loss of bone calcium after ovariectomy such that the calcium contents and calcium to dry weight ratios of both femurs and lumbar vertebrae were strikingly lower than those of all other groups.

  17. Characterization of a Composite Material to Mimic Human Cranial Bone

    Science.gov (United States)

    2015-09-01

    a general population. These file formats can be sent directly to additive manufacturing machines , generically referred to as 3-D printers, to...Illustration of the SLA additive manufacturing process. The SLA machine used in this study to manufacture specimens was a Viper Si (3D Systems, Rock...architectures while possessing physical and mechanical characteristics similar to that of bone. We are utilizing additive manufacturing , more generally

  18. Late effects on human bone marrow after extended field radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, C.; Morardet, N.; Tubiana, M.

    1983-09-01

    Thirty-two patients with lymphoma were treated by extended radiotherapy (RT) at a dose of 40 Gy and were studied by ferrokinetic studies and surface counting at various times following irradiation. Loss of hematopoietic activity in the irradiated areas is compensated by increased activity in the non-irradiated areas. Despite the return of peripheral blood counts to normal, the hyperactivity of the non-irradiated bone marrow persists over up to 13 years after RT, while the hematopoietic activity of the irradiated areas remains depressed and is only slightly higher than immediately after RT. The hypoactivity persisted even when the hemopoietic tissues had been subjected to the intense stimulation provoked by an aplasia caused by chemotherapy. However, a recovery was observed for dose of 20 Gy or lower. The hemopoietic activity of the irradiated bone marrow appears to be related to the volume of the marrow irradiated and is higher after a mantle + inverted Y field than after a mantle field. Bone marrow scintigraphies with /sup 59/Fe in 7 out of 9 patients studied revealed an extension of hematopoiesis into a normally dormant area of the marrow, such as the femora. In 2 patients an erythropoietic activity was observed in spleens which had received a dose of 40 Gy, and extra medullary erythropoiesis was found in approximately two-thirds of the patients.

  19. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche

    Directory of Open Access Journals (Sweden)

    Zach S. Templeton

    2015-12-01

    Full Text Available BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014 and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006 and IL-1β (P = .001 in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.

  20. Challenges in Subtrochanteric Femur Fracture Management.

    Science.gov (United States)

    Hak, David J; Wu, Haotian; Dou, Chenhao; Mauffrey, Cyril; Stahel, Philip F

    2015-08-01

    Subtrochanteric femur fractures present significant treatment challenges. The deforming muscle forces make fracture reduction difficult. Treatment options include cephalomedullary nailing and various types of plate fixation. There is a high rate of treatment complications, including malunion, delayed union, nonunion, and implant failure.

  1. Human Bone Marrow Stromal Cells: A Reliable, Challenging Tool for In Vitro Osteogenesis and Bone Tissue Engineering Approaches

    Directory of Open Access Journals (Sweden)

    Ute Hempel

    2016-01-01

    Full Text Available Adult human bone marrow stromal cells (hBMSC are important for many scientific purposes because of their multipotency, availability, and relatively easy handling. They are frequently used to study osteogenesis in vitro. Most commonly, hBMSC are isolated from bone marrow aspirates collected in clinical routine and cultured under the “aspect plastic adherence” without any further selection. Owing to the random donor population, they show a broad heterogeneity. Here, the osteogenic differentiation potential of 531 hBMSC was analyzed. The data were supplied to correlation analysis involving donor age, gender, and body mass index. hBMSC preparations were characterized as follows: (a how many passages the osteogenic characteristics are stable in and (b the influence of supplements and culture duration on osteogenic parameters (tissue nonspecific alkaline phosphatase (TNAP, octamer binding transcription factor 4, core-binding factor alpha-1, parathyroid hormone receptor, bone gla protein, and peroxisome proliferator-activated protein γ. The results show that no strong prediction could be made from donor data to the osteogenic differentiation potential; only the ratio of induced TNAP to endogenous TNAP could be a reliable criterion. The results give evidence that hBMSC cultures are stable until passage 7 without substantial loss of differentiation potential and that established differentiation protocols lead to osteoblast-like cells but not to fully authentic osteoblasts.

  2. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold.

    Science.gov (United States)

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.

  3. Two-Stage Surgical Treatment for Non-Union of a Shortened Osteoporotic Femur

    Directory of Open Access Journals (Sweden)

    Galal Zaki Said

    2013-01-01

    Full Text Available Introduction: We report a case of non-union with severe shortening of the femur following diaphysectomy for chronic osteomyelitis.Case Presentation: A boy, aged 16 years presented with a dangling and excessively short left lower limb. He was using an elbow crutch in his right hand to help him walk. He had a history of diaphysectomy for chronic osteomyelitis at the age of 9. Examination revealed a freely mobile non-union of the left femur. The femur was the seat of an 18 cm shortening and a 4 cm defect at the non-union site; the knee joint was ankylosed in extension. The tibia and fibula were 10 cm short. Considering the extensive shortening in the femur and tibia in addition to osteoporosis, he was treated in two stages. In stage I, the femoral non-union was treated by open reduction, internal fixation and iliac bone grafting. The patient was then allowed to walk with full weight bearing in an extension brace for 7 months. In Stage II, equalization of leg length discrepancy (LLD was achieved by simultaneous distraction of the femur and tibia by unilateral frames. At the 6 month follow- up, he was fully weight bearing without any walking aid, with a heel lift to compensate the 1.5 cm shortening. Three years later he reported that he was satisfied with the result of treatment and was leading a normal life as a university student.Conclusions: Two-stage treatment succeeded to restore about 20 cm of the femoral shortening in a severely osteoporotic bone. It has also succeeded in reducing the treatment time of the external fixator.

  4. Optical detection of carotenoid antioxidants in human bone and surrounding tissue.

    Science.gov (United States)

    Ermakov, Igor V; Ermakova, Maia R; Rosenberg, Thomas D; Gellermann, Werner

    2013-11-01

    Carotenoids are known to play an important role in health and disease state of living human tissue based on their antioxidant and optical filtering functions. In this study, we show that carotenoids exist in human bone and surrounding fatty tissue both in significant and individually variable concentrations. Measurements of biopsied tissue samples with molecule-specific Raman spectroscopy and high-performance liquid chromatography reveal that all carotenoids that are known to exist in human skin are also present in human bone. This includes all carotenes, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. We propose quantitative reflection imaging as a noncontact optical method suitable for the measurement of composite carotenoid levels in bone and surrounding tissue exposed during open surgeries such as total knee arthroplasty, and as a proof of concept, demonstrate carotenoid measurements in biopsied bone samples. This will allow one to establish potential correlations between internal tissue carotenoid levels and levels in skin and to potentially use already existing optical skin carotenoid tests as surrogate marker for bone carotenoid status.

  5. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  6. Bone Composition in Male and Female Göttingen Minipigs Fed Variously Restrictedly and near ad Libitum

    DEFF Research Database (Denmark)

    Bollen, P. J. A.; Lemmens, A. G.; Beynen, A. C.

    2006-01-01

    diet 2 was a high fat, low fibre diet. A higher level of feed intake led to a significant increase in the following parameters: body weight development, bone size (length and width of rib and femur), bone volume (rib), bone (rib) dry matter and ash content (mg), as well as bone density (femur...... development, bone volume, and dry matter and ash content of the rib (mg) as compared to males. Also bone mineral concentrations in the femur, expressed as calcium, phosphorus and magnesium in mg/cm3, were significantly higher in females as compared to males, as was the Ca:Pi ratio. Bone density measurements...

  7. Quantification of bone mineral density to define osteoporosis in rat.

    Science.gov (United States)

    Srivastava, M; Mandal, S K; Sengupta, S; Arshad, M; Singh, M M

    2008-05-01

    The diagnosis of osteoporosis centers on assessment of bone mass and quality. In the absence of evidence-based guidelines to assess bone status in laboratory animals and unsuitability of use of T-/Z-scores meant for clinical application in animal studies, most investigators involved in new drug research and development employ clinical biomarkers and kits to assess bone turnover rate and portray change in bone mineral density (BMD) as percentage of increase/decrease, making comparative assessment of the effect highly impractical. This study proposes threshold boundaries of BMD (rT-score) in colony-bred Sprague-Dawley rats, distinct from those used clinically. Boundaries were obtained keeping fixed Type-I error (alpha=0.025). Femur neck was considered best for defining bone status using BMD measured by dual-energy X-ray absorptiometry. Findings demonstrate that BMD-1.96 and <-0.80 rT-score as osteopenia. Performance of boundaries to ascertain bone status was examined through simulation under different physiological/ hormonal states viz. estrogen deficiency, ageing, estrus cycle, pregnancy, and lactation. The Area Under the Receiver Operating Characteristic curve of 0.98 obtained using BMD of femur neck, being close to unity, shows excellent ability of the proposed rT-score to effectively identify osteoporosis. Further studies using certain hierarchical measures of bone quality such as histomorphometry, mechanical testing etc. could supplement these findings. Since, unlike humans, most laboratory animals including rats only exhibit osteopenia and do not fracture their bones, the proposed thresholds are intended to serve as categorical tools to define bone quality and not to predict fracture risk.

  8. Comparison of Percutaneous Cementoplasty with and Without Interventional Internal Fixation for Impending Malignant Pathological Fracture of the Proximal Femur

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Qing-Hua, E-mail: ddqinghua-tian@163.com; He, Cheng-Jian, E-mail: tianhechengjian@163.com; Wu, Chun-Gen, E-mail: 649514608@qq.com; Li, Yong-Dong, E-mail: tianliyongdong@163.com; Gu, Yi-Feng, E-mail: tianyifenggu@163.com; Wang, Tao, E-mail: tianandwangtao@163.com; Xiao, Quan-Ping, E-mail: tianxiaoquanping@163.com; Li, Ming-Hua, E-mail: tianminghuali@163.com [Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Department of Diagnostic and Interventional Radiology (China)

    2016-01-15

    PurposeTo compare the efficacy of percutaneous cementoplasty (PCP) with and without interventional internal fixation (IIF) on malignant impending pathological fracture of proximal femur.MethodsA total of 40 patients with malignant impending pathological fracture of proximal femur were selected for PCP and IIF (n = 19, group A) or PCP alone (n = 21, group B) in this non-randomized prospective study. Bone puncture needles were inserted into the proximal femur, followed by sequential installation of the modified trocar inner needles through the puncture needle sheath. Then, 15–45 ml cement was injected into the femur lesion.ResultsThe overall excellent and good pain relief rate during follow-ups were significantly higher in group A than that in group B (89 vs. 57 %, P = 0.034). The average change of VAS, ODI, KPS, and EFES in group A were significantly higher than those in group B at 1-, 3-, 6-month, 1-year (P < 0.05). Meanwhile, The stability of the treated femur was significantly higher in group A than that in group B (P < 0.05).ConclusionPCP and IIF were not only a safe and effective procedure, but resulted in greater pain relief, bone consolidation, and also reduced the risk of fracture than the currently recommended approach of PCP done on malignant proximal femoral tumor.

  9. Effect of boundary conditions on yield properties of human femoral trabecular bone.

    Science.gov (United States)

    Panyasantisuk, J; Pahr, D H; Zysset, P K

    2016-10-01

    Trabecular bone plays an important mechanical role in bone fractures and implant stability. Homogenized nonlinear finite element (FE) analysis of whole bones can deliver improved fracture risk and implant loosening assessment. Such simulations require the knowledge of mechanical properties such as an appropriate yield behavior and criterion for trabecular bone. Identification of a complete yield surface is extremely difficult experimentally but can be achieved in silico by using micro-FE analysis on cubical trabecular volume elements. Nevertheless, the influence of the boundary conditions (BCs), which are applied to such volume elements, on the obtained yield properties remains unknown. Therefore, this study compared homogenized yield properties along 17 load cases of 126 human femoral trabecular cubic specimens computed with classical kinematic uniform BCs (KUBCs) and a new set of mixed uniform BCs, namely periodicity-compatible mixed uniform BCs (PMUBCs). In stress space, PMUBCs lead to 7-72 % lower yield stresses compared to KUBCs. The yield surfaces obtained with both KUBCs and PMUBCs demonstrate a pressure-sensitive ellipsoidal shape. A volume fraction and fabric-based quadric yield function successfully fitted the yield surfaces of both BCs with a correlation coefficient [Formula: see text]. As expected, yield strains show only a weak dependency on bone volume fraction and fabric. The role of the two BCs in homogenized FE analysis of whole bones will need to be investigated and validated with experimental results at the whole bone level in future studies.

  10. Relationship between the shape and density distribution of the femur and its natural frequencies of vibration.

    Science.gov (United States)

    Campoli, G; Baka, N; Kaptein, B L; Valstar, E R; Zachow, S; Weinans, H; Zadpoor, A A

    2014-10-17

    It has been recently suggested that mechanical loads applied at frequencies close to the natural frequencies of bone could enhance bone apposition due to the resonance phenomenon. Other applications of bone modal analysis are also suggested. For the above-mentioned applications, it is important to understand how patient-specific bone shape and density distribution influence the natural frequencies of bones. We used finite element models to study the effects of bone shape and density distribution on the natural frequencies of the femur in free boundary conditions. A statistical shape and appearance model that describes shape and density distribution independently was created, based on a training set of 27 femora. The natural frequencies were then calculated for different shape modes varied around the mean shape while keeping the mean density distribution, for different appearance modes around the mean density distribution while keeping the mean bone shape, and for the 27 training femora. Single shape or appearance modes could cause up to 15% variations in the natural frequencies with certain modes having the greatest impact. For the actual femora, shape and density distribution changed the natural frequencies by up to 38%. First appearance mode that describes the general cortical bone thickness and trabecular bone density had one of the strongest impacts. The first appearance mode could therefore provide a sensitive measure of general bone health and disease progression. Since shape and density could cause large variations in the calculated natural frequencies, patient-specific FE models are needed for accurate estimation of bone natural frequencies.

  11. Noninvasive optical measurement of bone marrow lesions: a Monte Carlo study on visible human dataset

    Science.gov (United States)

    Su, Yu; Li, Ting

    2016-03-01

    Bone marrow is both the main hematopoietic and important immune organ. Bone marrow lesions (BMLs) may cause a series of severe complications and even myeloma. The traditional diagnosis of BMLs rely on mostly bone marrow biopsy/ puncture, and sometimes MRI, X-ray, and etc., which are either invasive and dangerous, or ionizing and costly. A diagnosis technology with advantages in noninvasive, safe, real-time continuous detection, and low cost is requested. Here we reported our preliminary exploration of feasibility verification of using near-infrared spectroscopy (NIRS) in clinical diagnosis of BMLs by Monte Carlo simulation study. We simulated and visualized the light propagation in the bone marrow quantitatively with a Monte Carlo simulation software for 3D voxelized media and Visible Chinese Human data set, which faithfully represents human anatomy. The results indicate that bone marrow actually has significant effects on light propagation. According to a sequence of simulation and data analysis, the optimal source-detector separation was suggested to be narrowed down to 2.8-3.2cm, at which separation the spatial sensitivity distribution of NIRS cover the most region of bone marrow with high signal-to-noise ratio. The display of the sources and detectors were optimized as well. This study investigated the light transport in spine addressing to the BMLs detection issue and reported the feasibility of NIRS detection of BMLs noninvasively in theory. The optimized probe design of the coming NIRS-based BMLs detector is also provided.

  12. Tumour necrosis factor-alpha (TNFα stimulates the growth of human bone marrow stromal cells