WorldWideScience

Sample records for human femoral trabecular

  1. Calcium and phosphorus concentrations and the calcium/phosphorus ratio in trabecular bone from the femoral neck of healthy humans as determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Tzaphlidou, Margaret

    2003-01-01

    The Ca and P concentrations as well as the Ca/P ratio were estimated in intact trabecular bone samples from the femoral neck of healthy humans, 34 women and 44 men, aged from 15 to 55 years, using instrumental neutron activation analysis. The mean values (M±SD) for the investigated parameters (on a dry-weight basis) were: 12.1±3.0%, 5.94±1.71%, 2.07±0.25 and 10.9±2.5%, 5.30±1.23%, 2.07±0.22 for females and males, respectively. A statistically significant (p≤0.05) decrease of Ca concentration with age was found only for males while the P concentration and the Ca/P ratio were not affected by age. No statistically significant sex-related differences were observed in any of the parameters. The mean values for Ca, P and the Ca/P ratio lay close to the median of the very wide range of published data. The individual variation for the Ca/P ratio in trabecular bone from the healthy human femoral neck was lower than those for Ca and P separately. This suggests that the specificity of the Ca/P ratio is better than that of Ca and P concentrations and may be more reliable for the diagnosis of bone disorders

  2. Mechanical properties of femoral trabecular bone in dogs

    Directory of Open Access Journals (Sweden)

    Nolte Ingo

    2005-03-01

    Full Text Available Abstract Background Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. Methods From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated. Results The elastic modulus along principal bone trajectories was found to be 11.2 GPa ± 0.4, 10.5 ± 2.1 GPa and 10.5 ± 1.8 GPa, respectively. The mean density of the specimens was 1.40 ± 0.09 g/cm3. The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads. Discussion This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data. Conclusion This study provides data about directional elastic

  3. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    Science.gov (United States)

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  4. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    Science.gov (United States)

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  5. The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2005-01-01

    Gap junctions play an important role in bone development and function, but the lack of pharmacological tools has hampered the gap junction research. The antiarrhythmic peptides stimulate gap junction communication between cardiomyocytes, but effects in noncardiac tissue are unknown. The purpose...... of this study was to examine whether antiarrhythmic peptides, which are small peptides increasing gap junctional conductivity, show specific binding to osteoblasts and investigate the effect of the stable analog rotigaptide (ZP123) on gap junctional intercellular communication in vitro and on bone mass...... and strength in vivo. Cell coupling and calcium signaling were assessed in vitro on human, primary, osteoblastic cells. In vivo effects of rotigaptide on bone strength and density were determined 4 wk after ovariectomy in rats treated with either vehicle, sc injection twice daily (300 nmol per kilogram body...

  6. A micro-architectural evaluation of osteoporotic human femoral heads to guide implant placement in proximal femoral fractures.

    Science.gov (United States)

    Jenkins, Paul J; Ramaesh, Rishikesan; Pankaj, Pankaj; Patton, James T; Howie, Colin R; Goffin, Jérôme M; Merwe, Andrew van der; Wallace, Robert J; Porter, Daniel E; Simpson, A Hamish

    2013-10-01

    The micro-architecture of bone has been increasingly recognized as an important determinant of bone strength. Successful operative stabilization of fractures depends on bone strength. We evaluated the osseous micro-architecture and strength of the osteoporotic human femoral head. 6 femoral heads, obtained during arthroplasty surgery for femoral neck fracture, underwent micro-computed tomography (microCT) scanning at 30 μm, and bone volume ratio (BV/TV), trabecular thickness, structural model index, connection density, and degree of anisotropy for volumes of interest throughout the head were derived. A further 15 femoral heads underwent mechanical testing of compressive failure stress of cubes of trabecular bone from different regions of the head. The greatest density and trabecular thickness was found in the central core that extended from the medial calcar to the physeal scar. This region also correlated with the greatest degree of anisotropy and proportion of plate-like trabeculae. In the epiphyseal region, the trabeculae were organized radially from the physeal scar. The weakest area was found at the apex and peripheral areas of the head. The strongest region was at the center of the head. The center of the femoral head contained the strongest trabecular bone, with the thickest, most dense trabeculae. The apical region was weaker. From an anatomical and mechanical point of view, implants that achieve fixation in or below this central core may achieve the most stable fixation during fracture healing.

  7. Age variations in the properties of human tibial trabecular bone

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Danielsen, CC

    1997-01-01

    We tested in compression specimens of human proximal tibial trabecular bone from 31 normal donors aged from 16 to 83 years and determined the mechanical properties, density and mineral and collagen content. Young's modulus and ultimate stress were highest between 40 and 50 years, whereas ultimate...... strain and failure energy showed maxima at younger ages. These age-related variations (except for failure energy) were non-linear. Tissue density and mineral concentration were constant throughout life, whereas apparent density (the amount of bone) varied with ultimate stress. Collagen density (the...... amount of collagen) varied with failure energy. Collagen concentration was maximal at younger ages but varied little with age. Our results suggest that the decrease in mechanical properties of trabecular bone such as Young's modulus and ultimate stress is mainly a consequence of the loss of trabecular...

  8. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  9. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Age variations in the properties of human tibial trabecular bone and cartilage

    DEFF Research Database (Denmark)

    Ding, Ming

    2000-01-01

    , such as apparent, apparent ash and collagen densities of human tibial trabecular bone have significant relationships with age. Tissue density and mineral concentration remain constant throughout life. Trabecular bone is tougher in the younger age, i.e. fracture requires more energy. Collagen density was the single......Initiated and motivated by clinical and scientific problems such as age-related bone fracture, prosthetic loosening, bone remodeling, and degenerative bone diseases, much significant research on the properties of trabecular bone has been carried out over the last two decades. This work has mainly...... focused on the central vertebral trabecular bone, while little is known about age-related changes in the properties of human peripheral (tibial) trabecular bone. Knowledge of the properties of peripheral (tibial) trabecular bone is of major importance for the understanding of degenerative diseases...

  11. Finite element analysis of trabecular bone structures : a comparison of image-based meshing techniques

    NARCIS (Netherlands)

    Ulrich, D.; Rietbergen, van B.; Weinans, H.; Rüegsegger, P.

    1998-01-01

    In this study, we investigate if finite element (FE) analyses of human trabecular bone architecture based on 168 microm images can provide relevant information about the bone mechanical characteristics. Three human trabecular bone samples, one taken from the femoral head, one from the iliac crest,

  12. Elemental distribution in human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C., E-mail: catia.santos@itn.pt [Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa (Portugal); Campus Tecnológico e Nuclear, IST/CTN, Universidade Técnica de Lisboa E.N. 10, 2686-953 Sacavém (Portugal); Fonseca, M. [Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa (Portugal); Universidade Europeia|Laureate International Universities, 1500-210 Lisboa (Portugal); Corregidor, V. [Campus Tecnológico e Nuclear, IST/CTN, Universidade Técnica de Lisboa E.N. 10, 2686-953 Sacavém (Portugal); Silva, H. [Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa (Portugal); Campus Tecnológico e Nuclear, IST/CTN, Universidade Técnica de Lisboa E.N. 10, 2686-953 Sacavém (Portugal); Luís, H.; Jesus, A.P. [Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa (Portugal); and others

    2014-07-15

    Osteoporosis is the most common bone disease with severe symptoms and harmful effects on the patient quality of life. Because abnormal distribution and concentration of the major and trace elements may help to characterize the disease, ion beam analysis is applied to the study of bone samples. Proton Induced X-ray Emission and Elastic Backscattering Spectrometry are applied for qualitative and quantitative analysis of an osteoporotic bone sample, for the determination of the Ca/P ratio and analysis of the distribution of major and trace elements. The analysis was made both in trabecular and cortical bone and the results are in agreement with the information found in literature.

  13. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  14. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    International Nuclear Information System (INIS)

    Lima Filho, Jose de M.; Vieira, Jose W.; Lima, Vanildo J. de M.; Lima, Lindeval F.; Lima, Fernando R.A.; Vasconcelos, Wagner E. de

    2011-01-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  15. Atomic force microscopy on human trabecular bone from an old woman with osteoporotic fractures

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Jørgensen, Henrik L; Pedersen, Morten

    2005-01-01

    AFM images were taken of the exterior surface of a single trabecula, extracted from a human femoral head removed during surgery for a hip fracture in an old women with former fractures. The images showed a dense structure of bundled collagen fibrils banded with 67 nm periodicity. Bundles were see...

  16. Trabecular evidence for a human-like gait in Australopithecus africanus.

    Directory of Open Access Journals (Sweden)

    Meir M Barak

    Full Text Available Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.

  17. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    Science.gov (United States)

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  18. Blood flow and microdialysis in the human femoral head

    DEFF Research Database (Denmark)

    Bøgehøj, Morten; Emmeluth, Claus; Overgaard, Søren

    2007-01-01

    BACKGROUND: If it would be possible to detect lack of flow and/or the development of ischemia in bone, we might have a way of predicting whether a broken bone will heal. We established microdialysis (MD) and laser Doppler (LD) flow measurement in the human femoral head in order to be able to detect...

  19. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  20. Micro-CT characterization of human trabecular bone in osteogenesis imperfecta

    Science.gov (United States)

    Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald

    2011-03-01

    Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.

  1. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  2. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    Science.gov (United States)

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I

    2000-01-01

    Structure model type and trabecular thickness are important characteristics in describing cancellous bone architecture. It has been qualitatively observed that a radical change of trabeculae from plate-like to rod-like occurs in aging, bone remodeling, and osteoporosis. Thickness of trabeculae has...... traditionally been measured using model-based histomorphometric methods on two-dimensional (2-D) sections. However, no quantitative study has been published based on three-dimensional (3-D) methods on the age-related changes in structure model type and trabecular thickness for human peripheral (tibial......, structure model type and trabecular thickness were quantified by means of novel 3-D methods. Structure model type was assessed by calculating the structure model index (SMI). The SMI was quantified based on a differential analysis of the triangulated bone surface of a structure. This technique allows...

  4. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts

    DEFF Research Database (Denmark)

    Christiansen, Mette; Kveiborg, M.; Kassem, M.

    2000-01-01

    In order to understand the reasons for age-related impairment of the function of bone forming osteoblasts, we have examined the steady-state mRNA levels of the transcription factor CBFA1 and topoisomerase I during cellular aging of normal human trabecular osteoblasts, by the use of semiquantitati...

  5. Direct estimation of human trabecular bone stiffness using cone beam computed tomography.

    Science.gov (United States)

    Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo

    2018-04-10

    The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Variability of morphometric parameters of human trabecular tissue from coxo-arthritis and osteoporotic samples

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2012-01-01

    Full Text Available Morphometric and architectural bone parameters change in diseases such as osteoarthritis and osteoporosis. The mechanical strength of bone is primarily influenced by bone quantity and quality. Bone quality is defined by parameters such as trabecular thickness, trabecular separation, trabecular density and degree of anisotropy that describe the micro-architectural structure of bone. Recently, many studies have validated microtomography as a valuable investigative technique to assess bone morphometry, thanks to micro-CT non-destructive, non-invasive and reliability features, in comparison to traditional techniques such as histology. The aim of this study is the analysis by micro-computed tomography of six specimens, extracted from patients affected by osteoarthritis and osteoporosis, in order to observe the tridimensional structure and calculate several morphometric parameters.

  7. Quantitative CT assessment of proximal femoral bone density. An experimental study concerning its correlation to breaking load for femoral neck fractures

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.H.; Schulze, C.; Gufler, H.; Langer, M.; Bonnaire, F.; Hoenninger, A.; Kuner, E.

    1997-01-01

    Purpose: In an experimental study, the correlation between the trabecular bone density of the different regions of the proximal femur and the fracture load in the setting of femoral neck fractures was examined. Methods: The bone mineral density 41 random proximal human femora was estimated by single-energy quanitative CT (SE-QCT). The trabecular bone density was measured at the greatest possible extracortical volume at midcapital, midneck and intertrochanteric level and in the 1 cm 3 volumes of the centres of these regions in a standardised 10 mm thick slice in the middle of the femoral neck axis (in mg/ml Ca-hydroxyl apatite). The proximal femora were then isolated and mounted on a compression/bending device under two-legged stand conditions and loaded up to the point when a femoral neck fracture occurred. Results: Statistical analysis revealed a linear correlation between the trabecular bone density and the fracture load for the greater regions, with the highest value in the maximal area of the head (coefficient factor r=0.76). Conclusion: According to our data, the measurement of the trabecular bone by SE-QCT at the femoral head is a more confident adjunct than the neck or trochanteric area to predict a femoral neck fracture. (orig.) [de

  8. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  9. Using a method based on Potts Model to segment a micro-CT image stack of trabecular bones of femoral region

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Pedro H.A. de; Cabral, Manuela O.M., E-mail: andrade.pha@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Engenharia Nuclear; Vieira, Jose W.; Correia, Filipe L. de B., E-mail: jose.wilson59@uol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Lima, Fernando R. De A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (brazil)

    2015-07-01

    Exposure Computational Models are composed basically of an anthropomorphic phantom, a Monte Carlo (MC) code, and an algorithm simulator of the radioactive source. Tomographic phantoms are developed from medical images and must be pre-processed and segmented before being coupled to a MC code (which simulates the interaction of radiation with matter). This work presents a methodology used for treatment of micro-CT images stack of a femur, obtained from a 30 year old female skeleton provided by the Imaging Laboratory for Anthropology of the University of Bristol, UK. These images contain resolution of 60 micrometers and from these a block containing only 160 x 60 x 160 pixels of trabecular tissues and bone marrow was cut and saved as ⁎.sgi file (header + ⁎.raw file). The Grupo de Dosimetria Numerica (Recife-PE, Brazil) developed a software named Digital Image Processing (DIP), in which a method for segmentation based on a physical model for particle interaction known as Potts Model (or q-Ising) was implemented. This model analyzes the statistical dependence between sites in a network. In Potts Model, when the values of spin variables at neighboring sites are identical, it is assigned an 'energy of interaction' between them. Otherwise, it is said that the sites do not interact. Making an analogy between network sites and the pixels of a digital image and, moreover, between the spins variables and the intensity of the gray scale, it was possible to apply this model to obtain texture descriptors and segment the image. (author)

  10. Using a method based on Potts Model to segment a micro-CT image stack of trabecular bones of femoral region

    International Nuclear Information System (INIS)

    Andrade, Pedro H.A. de; Cabral, Manuela O.M.; Lima, Fernando R. De A.

    2015-01-01

    Exposure Computational Models are composed basically of an anthropomorphic phantom, a Monte Carlo (MC) code, and an algorithm simulator of the radioactive source. Tomographic phantoms are developed from medical images and must be pre-processed and segmented before being coupled to a MC code (which simulates the interaction of radiation with matter). This work presents a methodology used for treatment of micro-CT images stack of a femur, obtained from a 30 year old female skeleton provided by the Imaging Laboratory for Anthropology of the University of Bristol, UK. These images contain resolution of 60 micrometers and from these a block containing only 160 x 60 x 160 pixels of trabecular tissues and bone marrow was cut and saved as ⁎.sgi file (header + ⁎.raw file). The Grupo de Dosimetria Numerica (Recife-PE, Brazil) developed a software named Digital Image Processing (DIP), in which a method for segmentation based on a physical model for particle interaction known as Potts Model (or q-Ising) was implemented. This model analyzes the statistical dependence between sites in a network. In Potts Model, when the values of spin variables at neighboring sites are identical, it is assigned an 'energy of interaction' between them. Otherwise, it is said that the sites do not interact. Making an analogy between network sites and the pixels of a digital image and, moreover, between the spins variables and the intensity of the gray scale, it was possible to apply this model to obtain texture descriptors and segment the image. (author)

  11. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus

    Directory of Open Access Journals (Sweden)

    Reinaldo Cesar

    2017-06-01

    Full Text Available Abstract Introduction Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA. However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS. Methods Correlations between Bone Quality Index (BQI, determined by calcaneal ultrasonometry of thirty (30 individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E and ultimate compressive strength (UCS from axial compression tests of ninety (90 proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12, first and fourth lumbar (L1 and L4. Results Analysis of variance (ANOVA showed significant differences for E (p = 0.001, for UCS (p = 0.0001 and BQI. Spearman’s rank correlation coefficient (rho between BQI and E (r = 0.499 and BQI and UCS (r = 0.508 were moderate. Discussion Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.

  12. Multi-element determination in cancellous bone of human femoral head by PIXE

    International Nuclear Information System (INIS)

    Yuanxun Zhang; Yongping Zhang; Yongpeng Tong; Shijing Qiu; Xiaotao Wu; Kerong Dai

    1996-01-01

    Proton Induced X-ray Emission (PIXE) method is used for the determination of elemental concentrations in cancellous bone of human femoral head from five autopsies and seven patients with femoral neck broken. The specimen preparation and experimental procedure are described in detail. Using the t test, the results show that the concentrations of P, Ca, Fe, Cu, Sr in control group are higher than those in patient group, but the concentrations of S, K, Zn, Mn are not significantly different. The physiological functions of metallic elements in human bone are also discussed. (author). 19 refs., 1 fig., 4 tabs

  13. Quantitative Comparison of the Microscopic Anatomy of the Human ACL Femoral and Tibial Entheses

    Science.gov (United States)

    Beaulieu, Mélanie L.; Carey, Grace E.; Schlecht, Stephen H.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p fibrocartilage tissue area (p fibrocartilage depth (p fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. PMID:26134706

  14. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.

    Science.gov (United States)

    Schildhauer, T A; Peter, E; Muhr, G; Köller, M

    2009-02-01

    We analyzed leukocyte functions and cytokine response of human leukocytes toward porous tantalum foam biomaterial (Trabecular Metaltrade mark, TM) in comparison to equally sized solid orthopedic metal implant materials (pure titanium, titanium alloy, stainless steel, pure tantalum, and tantalum coated stainless steel). Isolated peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) were cocultured with equally sized metallic test discs for 24 h. Supernatants were analyzed for cytokine content by enzyme-linked immunosorbent assay. Compared to the other used test materials there was a significant increase in the release of IL (interleukin)-1ra and IL-8 from PMN, and of IL-1ra, IL-6, and TNF-alpha from PBMC in response to the TM material. The cytokine release correlated with surface roughness of the materials. In contrast, the release of IL-2 was not induced showing that mainly myeloid leukocytes were activated. In addition, supernatants of these leukocyte/material interaction (conditioned media, CM) were subjected to whole blood cell function assays (phagocytosis, chemotaxis, bacterial killing). There was a significant increase in the phagocytotic capacity of leukocytes in the presence of TM-conditioned media. The chemotactic response of leukocytes toward TM-conditioned media was significantly higher compared to CM obtained from other test materials. Furthermore, the bactericidal capacity of whole blood was enhanced in the presence of TM-conditioned media. These results indicate that leukocyte activation at the surface of TM material induces a microenvironment, which may enhance local host defense mechanisms.

  15. Femoral morphology and femoropelvic musculoskeletal anatomy of humans and great apes: a comparative virtopsy study.

    Science.gov (United States)

    Morimoto, Naoki; Ponce de León, Marcia S; Nishimura, Takeshi; Zollikofer, Christoph P E

    2011-09-01

    The proximal femoral morphology of fossil hominins is routinely interpreted in terms of muscular topography and associated locomotor modes. However, the detailed correspondence between hard and soft tissue structures in the proximal femoral region of extant great apes is relatively unknown, because dissection protocols typically do not comprise in-depth osteological descriptions. Here, we use computed tomography and virtopsy (virtual dissection) for non-invasive examination of the femoropelvic musculoskeletal anatomy in Pan troglodytes, P. paniscus, Gorilla gorilla, Pongo pygmaeus, and Homo sapiens. Specifically, we analyze the topographic relationship between muscle attachment sites and surface structures of the proximal femoral shaft such as the lateral spiral pilaster. Our results show that the origin of the vastus lateralis muscle is anterior to the insertion of gluteus maximus in all examined great ape specimens and humans. In gorillas and orangutans, the insertion of gluteus maximus is on the inferior (anterolateral) side of the lateral spiral pilaster. In chimpanzees, however, the maximus insertion is on its superior (posteromedial) side, similar to the situation in modern humans. These findings support the hypothesis that chimpanzees and humans exhibit a shared-derived musculoskeletal topography of the proximal femoral region, irrespective of their different locomotor modes, whereas gorillas and orangutans represent the primitive condition. Caution is thus warranted when inferring locomotor behavior from the surface topography of the proximal femur of fossil hominins, as the morphology of this region may contain a strong phyletic signal that tends to blur locomotor adaptation. Copyright © 2011 Wiley-Liss, Inc.

  16. Effects of glaucoma medications and preservatives on cultured human trabecular meshwork and non-pigmented ciliary epithelial cell lines.

    Science.gov (United States)

    Ammar, David A; Kahook, Malik Y

    2011-10-01

    We investigated the potential cytotoxicity of various topical ophthalmic glaucoma formulations containing different preservatives in cultured human trabecular meshwork (TM) and non-pigmented ciliary epithelial (NPCE) cell lines. We tested 0.004% travoprost preserved with either 0.015% benzalkonium chloride (BAK), sofZia or 0.001% Polyquad (PQ); and 0.005% latanoprost preserved with 0.020% BAK. We also tested a range of BAK concentrations in balanced salt solution (BSS). TM cells were treated for 10 min at 37°C with solutions diluted 1:10 to mimic the reduced penetration of topical preparations to the anterior chamber. Viability was determined by the uptake of the fluorescent vital dye calcein-AM (n = 6). BAK solutions (diluted 1:10) demonstrated a dose-dependent reduction in cell viability in both cell types (TM and NPCE). With a 1:10 dilution of 0.020% BAK, there were significantly more living NPCE cells (89 ± 6%) than TM cells (57 ± 6%; p < 0.001). In TM cells, travoprost + BAK had statistically fewer live cells (83 ± 5%) than both travoprost + sofZia (97 ± 5%) and travoprost + PQ (97 ± 6%; p < 0.05). Compared with BSS-treated NPCE cells, travoprost had statistically fewer live cells (p < 0.05) when preserved with BAK (85 ± 16%), sofZia (91 ± 6%) or PQ (94 ± 2%). These results demonstrate that substitution of BAK from topical ophthalmic drugs results in greater viability of cultured TM cells, the cells involved in the conventional outflow pathway. Cultured NPCE, responsible for aqueous inflow, appear more resilient to BAK.

  17. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: immunohistochemical profile of a number of inflammatory cytokines.

    Science.gov (United States)

    Taurone, Samanta; Ripandelli, Guido; Pacella, Elena; Bianchi, Enrica; Plateroti, Andrea Maria; De Vito, Stefania; Plateroti, Pasquale; Grippaudo, Francesca Romana; Cavallotti, Carlo; Artico, Marco

    2015-02-01

    Glaucoma occurs when there are imbalances between the production and the drainage of the eye liquid. The vast majority of the aqueous humor leaves the eye through the trabecular meshwork (TM). The cause of hypertonicity may be due to an alteration in the thickness of the TM. In the majority of cases the molecular changes that determine primary open‑angle glaucoma (POAG) are unclear. However, it has been hypothesized that the significant increase in the extracellular matrix (ECM) of the fibrillary bands in the TM is associated with possible inflammatory conditions. In this study the tissue distribution of interleukin (IL)‑6, IL‑1β, transforming growth factor-β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF‑α) was analyzed in TM samples from patients with POAG by immunohistochemistry. Seven specimens from patients with POAG and three control tissues were analyzed by immunohistochemistry using specific antibodies against these cytokines. Morphological changes in the TM, such as increased cell content, macrophages, fibrosis and accumulation of neutrophils, were observed by transmission electron microscopy. In human TM tissues, an evident immunoreactivity for IL‑6, IL‑1β and TNF‑α was observed in patients with POAG when compared with the control subjects, indicating that these cytokines may be correlated with disease activity. TM endothelial cells secrete a number of factors and cytokines that modulate the functions of the cells and the ECM of the conventional outflow pathway. In the TM in glaucoma, macrophages produce cytokines, including IL‑6, IL‑1β and TNF‑α, leading to an acute inflammatory response and recruitment of other immune cells, including T lymphocytes. In addition, TGF‑β1 regulates and induces the expression of IL‑6 in TM that indirectly induces angiogenesis by stimulating VEGF expression. The present results support previous evidence that suggests that growth factors and cytokines

  18. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    Science.gov (United States)

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  19. Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses.

    Science.gov (United States)

    Beaulieu, Mélanie L; Carey, Grace E; Schlecht, Stephen H; Wojtys, Edward M; Ashton-Miller, James A

    2015-12-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p<0.001), a 43% greater calcified fibrocartilage tissue area (p<0.001), and a 226% greater uncalcified fibrocartilage depth (p<0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    Science.gov (United States)

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  1. Effects of benzalkonium chloride- or polyquad-preserved fixed combination glaucoma medications on human trabecular meshwork cells.

    Science.gov (United States)

    Ammar, David A; Kahook, Malik Y

    2011-01-01

    We investigated the potential short and long-term effects in cultured human trabecular meshwork (TM) cells of various topical glaucoma formulations containing different preservatives. We tested the fixed combination medications 0.004% travoprost plus 0.5% timolol preserved with either 0.015% benzalkonium chloride (BAK; DuoTrav®), or with 0.001% polyquad (PQ; DuoTrav(®) BAK-free); and 0.005% latanoprost plus 0.5% timolol preserved with 0.020% BAK (Xalacom(®)). Also tested was a range of BAK concentrations (0.001%-0.020%) in balanced salt solution (BSS). Cells were treated for 25 min at 37 °C with solutions diluted 1:10 and 1:100 to mimic the reduced penetration of topical preparations to the anterior chamber. The percentage of live cells was determined immediately after treatment through the uptake of the fluorescent vital dye calcein-AM. To determine any long-term effects, we assayed release of matrix metalloproteinase 9 (MMP-9) and apoptosis 24 h after treatments. BAK demonstrated a dose-dependent reduction in TM cell viability, ranging from 71±5% live cells at 0.001% BAK (diluted 1:10) to 33±3% live cells at 0.020% BAK (diluted 1:10). Travoprost (0.004%) plus 0.5% timolol preserved with 0.015% BAK had statistically fewer live TM cells (79±7%) than the same preparation preserved with 0.001% polyquad® (PQ; 93±1%; p<0.001). Latanoprost plus timolol preserved with 0.020% BAK (29±9% live cells) was similar to the 0.020% BAK (33±3%) treatment. However, travoprost plus timolol preserved in 0.015% BAK had significantly more live cells (83±12%) than the 1:10 dilution of 0.015% BAK (49±10%). We also found 0.020% BAK (diluted 1:100) resulted in elevated levels of extracellular MMP-9 at 24 h. These results demonstrate that the substitution of the preservative BAK from topical ophthalmic drugs results in greater in vitro viability of TM cells. Travoprost with timolol, but not latanoprost with timolol, countered some of the toxic BAK effects. BAK treatment

  2. Trabecular bone deficits among Vietnamese immigrants.

    Science.gov (United States)

    Melton, L J; Marquez, M A; McCready, L K; Achenbach, S J; Riggs, B L; Amin, S; Khosla, S

    2011-05-01

    Compared to white women, lower areal bone mineral density (aBMD) in middle-aged Vietnamese immigrants is due to reduced trabecular volumetric bone mineral density (vBMD), which in turn is associated with greater trabecular separation along with lower estrogen levels. The epidemiology of osteoporosis in Asian populations is still poorly known, but we previously found a deficit in lumbar spine aBMD among postmenopausal Southeast Asian women, compared to white women, that persisted after correction for bone size. This issue was revisited using more sophisticated imaging techniques. Twenty Vietnamese immigrants (age, 44-79 years) were compared to 162 same-aged white women with respect to aBMD at the hip, spine and wrist, vBMD at the hip and spine by quantitative computed tomography and vBMD and bone microstructure at the ultradistal radius by high-resolution pQCT. Bone turnover and sex steroid levels were assessed in a subset (20 Vietnamese and 40 white women). The aBMD was lower at all sites among the Vietnamese women, but femoral neck vBMD did not differ from middle-aged white women. Significant differences in lumbar spine and ultradistal radius vBMD in the Vietnamese immigrants were due to lower trabecular vBMD, which was associated with increased trabecular separation. Bone resorption was elevated and bone formation depressed among the Vietnamese immigrants, although trends were not statistically significant. Serum estradiol was positively associated with trabecular vBMD in the Vietnamese women, but their estrogen levels were dramatically lower compared to white women. Although reported discrepancies in aBMD among Asian women are mainly an artifact of smaller bone size, we identified a specific deficit in the trabecular bone among a sample of Vietnamese immigrants that may be related to low estrogen levels and which needs further study.

  3. Tribological changes in the articular cartilage of a human femoral head with avascular necrosis.

    Science.gov (United States)

    Seo, Eun-Min; Shrestha, Suman K; Duong, Cong-Truyen; Sharma, Ashish Ranjan; Kim, Tae-Woo; Vijayachandra, Ayyappan; Thompson, Mark S; Cho, Myung Guk; Park, Sungchan; Kim, Kwanghoon; Park, Seonghun; Lee, Sang-Soo

    2015-06-29

    The present study evaluated the tribological properties of the articular cartilage surface of the human femoral head with postcollapse stage avascular necrosis (AVN) using atomic force microscopy. The cartilage surface in the postcollapse stage AVN of the femoral head was reported to resemble those of disuse conditions, which suggests that the damage could be reversible and offers the possibilities of success of head-sparing surgeries. By comparing the tribological properties of articular cartilage in AVN with that of osteoarthritis, the authors intended to understand the cartilage degeneration mechanism and reversibility of AVN. Human femoral heads with AVN were explanted from the hip replacement surgery of four patients (60-83 years old). Nine cylindrical cartilage samples (diameter, 5 mm and height, 0.5 mm) were sectioned from the weight-bearing areas of the femoral head with AVN, and the cartilage surface was classified according to the Outerbridge Classification System (AVN0, normal; AVN1, softening and swelling; and AVN2, partial thickness defect and fissuring). Tribological properties including surface roughness and frictional coefficients and histochemistry including Safranin O and lubricin staining were compared among the three groups. The mean surface roughness Rq values of AVN cartilage increased significantly with increasing Outerbridge stages: Rq = 137 ± 26 nm in AVN0, Rq = 274 ± 49 nm in AVN1, and Rq = 452 ± 77 nm in AVN2. Significant differences in Rq were observed among different Outerbridge stages in all cases (p AVN0, μ = 0.143 ± 0.025 in AVN1, and μ = 0.171 ± 0.039 in AVN2. Similarly to the statistical analysis of surface roughness, significant statistical differences were detected between different Outerbridge stages in all cases (p AVN. The underlying mechanism of these results can be related to proteoglycan loss within the articular cartilage that is also observed in osteoarthritis. With regard to the tribological properties, the

  4. Anterior Femoral Bow and Possible Effect on the Stifle Joint: A Comparison between Humans and Dogs.

    Science.gov (United States)

    Ocal, M K; Sabanci, S S; Cobanoglu, M; Enercan, M

    2017-08-01

    The aim of the study was to compare the anterior bow of the femur between dogs and humans in terms of the possible impact on the stifle joint. The femoral radiographs obtained retrospectively were used to determine the angles and positions of the anterior bow in both dogs (n = 135) and humans (n = 57). Descriptive statistics and Pearson's correlation analysis were used for the statistical analyses of the variables. The mean anterior bow angle (ABA) was 18.3 ± 2.02° and 4.88 ± 1.24° in dogs and humans, respectively. The bow position was at the distal shaft in dogs (64.9 ± 2.04%) and almost at the mid-shaft of the bone (46.5 ± 5.52%) in humans. The ABA was related to the bow position in both humans and dogs. Additionally, the angle correlated with age in humans, while it was correlated with weight and breed in dogs. In conclusion, it is suggested that the anterior bow should be used as a landmark on the femoral axis for the biomechanical research of stifle joint, and dog stifle could be used as a suitable model for human knee in experimental studies for clinicians, while making sure that ethical principles are fully respected. © 2017 Blackwell Verlag GmbH.

  5. Electron absorbed fractions of energy and S-values in an adult human skeleton based on {mu}CT images of trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J; De O Lira, C A B [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Professor Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Richardson, R B [Radiation Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); Brown, K Robson, E-mail: rkramer@uol.com.br [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)

    2011-03-21

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on {mu}CT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 {mu}m thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters {sup 14}C, {sup 59}Fe, {sup 131}I, {sup 89}Sr, {sup 32}P and {sup 90}Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 {mu}m endosteum and the previously recommended 10 {mu}m endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by {approx}20% when the beta emitters are in marrow.

  6. Diagnostics of femoral head status in humans using laser spectroscopy - In vitro studies.

    Science.gov (United States)

    Lin, Huiying; Li, Wansha; Zhang, Hao; Chen, Peng; Chen, Delong; He, Wei; Svanberg, Sune; Svanberg, Katarina

    2017-10-01

    Osteonecrosis of the femoral head (ONFH), a recalcitrant and disabling disease, is caused by inadequate or fully disrupted blood supply to the affected segment of the subchondral bone. Theoretically, there will develop gas-filled pores during the bone decay process due to lacking blood supply. Unfortunately, the relationship between the gas-filled pores and ONFH is still unclear. Here, we have introduced diode laser absorption spectroscopy to detect oxygen and water vapor signals in the femoral heads from hip replacement in 19 patients. Five samples are affected by osteoarthritis (OA) and the others are related to ONFH. Oxygen and water vapor signals could be obtained, demonstrating the presence of gas-filled pores in both the OA and ONFH groups while the measurement results showed no significant difference. A study of gas exchange was also performed on one excised bone sample to study how these gas pores communicate with the ambient air. The results suggested that the obtained oxygen signals inside the bone samples originate from the invasion of ambient air, which is not expected in vivo. In conclusion, the ability to detect the gas signal of laser absorption spectroscopy shows the potential for the medical application of assessing the human femoral head in vivo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.

    Science.gov (United States)

    Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G

    2015-12-16

    The evaluation of viscoelastic properties of human medial patello-femoral ligament is fundamental to understand its physiological function and contribution as stabilizer for the selection of the methods of repair and reconstruction and for the development of scaffolds with adequate mechanical properties. In this work, 12 human specimens were tested to evaluate the time- and history-dependent non linear viscoelastic properties of human medial patello-femoral ligament using the quasi-linear viscoelastic (QLV) theory formulated by Fung et al. (1972) and modified by Abramowitch and Woo (2004). The five constant of the QLV theory, used to describe the instantaneous elastic response and the reduced relaxation function on stress relaxation experiments, were successfully evaluated. It was found that the constant A was 1.21±0.96MPa and the dimensionless constant B was 26.03±4.16. The magnitude of viscous response, the constant C, was 0.11±0.02 and the initial and late relaxation time constants τ1 and τ2 were 6.32±1.76s and 903.47±504.73s respectively. The total stress relaxation was 32.7±4.7%. To validate our results, the obtained constants were used to evaluate peak stresses from a cyclic stress relaxation test on three different specimens. The theoretically predicted values fit the experimental ones demonstrating that the QLV theory could be used to evaluate the viscoelastic properties of the human medial patello-femoral ligament. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  9. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Theofilos Tourtas

    Full Text Available Pathologic processes in glaucoma include increased apoptosis, accumulation of extracellular material in the trabecular meshwork and optic nerve, condensations of the cytoskeleton and precocious cellular senescence. Oxidative stress was shown to generate these alterations in primary ocular cells. Fatty acids omega-3 and -6 are alleged to constitute a prophylaxis against these deleterious effects. Here, we tested actual preventive effects omega-3 and -6 against peroxide induced stress responses in primary human trabecular meshwork cells. Changes of mitochondrial activity, proliferation, heat shock proteins, extracellular matrix components, and inflammatory markers were evaluated. Alterations of the cytoskeleton were evaluated by phalloidin labeling. Here we report a repressive effect of omega-6 on metabolic activity and proliferation, which was not detected for omega-3. Both agents were able to prevent the anti-proliferative effect of H₂O₂, but only omega-3 prevented metabolic repression. Expression of heat shock protein 27 was unaltered by both fatty acids, whereas heat shock protein 90 was significantly induced by both. Omega-6 increased fibronectin and connective tissue growth factor synthesis, as well as the amount of secreted fibronectin. Omega-3, instead, induced plasminogen activator inhibitor 1 synthesis. H₂O₂ further increased fibronectin production in omega-6 supplemented cells, which was not the case in omega-3 treated cells. H₂O₂ stimulation of plasminogen activator inhibitor 1 and connective tissue growth factor was repressed by both fatty acids. Both fatty acids appeared to abolish H₂O₂ mediated stimulation of nuclear factor κB and IL-6, but not IL-1α and IL-8. H₂O₂ induced formation of cross-linked actin networks and stress fibers, which was reduced by preemptive application of omega-3. Omega-6, in contrast, had no protective effect on that, and even seemed to promote condensation. Based on the observed side

  10. Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation

    DEFF Research Database (Denmark)

    Bailey, Damian M; Rasmussen, Peter; Evans, Kevin A

    2018-01-01

    This study examined to what extent the human cerebral and femoral circulation contribute to free radical formation during basal and exercise-induced responses to hypoxia. Healthy participants (5♂, 5♀) were randomly assigned single-blinded to normoxic (21% O2) and hypoxic (10% O2) trials...... hypoxia (P free radical-mediated lipid peroxidation subsequent to inadequate antioxidant defense. This was pronounced during exercise across the femoral circulation in proportion to the increase in local O2 uptake (r = -0.397 to -0.459, P = 0.037 to 0...... with measurements taken at rest and 30min after cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled from the brachial artery (a), internal jugular and femoral veins (v) for non-enzymatic antioxidants (HPLC), ascorbate radical (A...

  11. Trabecular bone in the calcaneus of runners.

    Directory of Open Access Journals (Sweden)

    Andrew Best

    Full Text Available Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6, rearfoot-striking runners (n = 6, and non-runners (n = 6, all males aged 20-41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (<0.80. Trabecular thickness was positively correlated with weekly running distance (r2 = 0.417, p<0.05 and years running (r2 = 0.339, p<0.05 and negatively correlated with age at onset of running (r2 = 0.515, p<0.01 Trabecular thickness, mineral density and bone volume ratio of nonrunners were highly correlated with body mass (r2 = 0.824, p<0.05 and nonrunners were significantly heavier than runners (p<0.05. Adjusting for body mass revealed significantly thicker trabeculae in the posterior calcaneus of forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the

  12. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Elham [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Li, Jun; Jasiuk, Iwona [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801 (United States); McKittrick, Joanna [University of California, San Diego, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2015-09-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds.

  13. Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents

    International Nuclear Information System (INIS)

    Hamed, Elham; Novitskaya, Ekaterina; Li, Jun; Jasiuk, Iwona; McKittrick, Joanna

    2015-01-01

    The elastic moduli of trabecular bone were modeled using an analytical multiscale approach. Trabecular bone was represented as a porous nanocomposite material with a hierarchical structure spanning from the collagen–mineral level to the trabecular architecture level. In parallel, compression testing was done on bovine femoral trabecular bone samples in two anatomical directions, parallel to the femoral neck axis and perpendicular to it, and the measured elastic moduli were compared with the corresponding theoretical results. To gain insights on the interaction of collagen and minerals at the nanoscale, bone samples were deproteinized or demineralized. After such processing, the treated samples remained as self-standing structures and were tested in compression. Micro-computed tomography was used to characterize the hierarchical structure of these three bone types and to quantify the amount of bone porosity. The obtained experimental data served as inputs to the multiscale model and guided us to represent bone as an interpenetrating composite material. Good agreement was found between the theory and experiments for the elastic moduli of the untreated, deproteinized, and demineralized trabecular bone. - Highlights: • A multiscale model was used to predict the elastic moduli of trabecular bone. • Samples included demineralized, deproteinized and untreated bone. • The model portrays bone as a porous, interpenetrating two phase composite. • The experimental elastic moduli for trabecular bone fell between theoretical bounds

  14. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  15. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells.

    Science.gov (United States)

    Peotter, Jennifer L; Phillips, Jenny; Tong, Tiegang; Dimeo, Kaylee; Gonzalez, Jose M; Peters, Donna M

    2016-10-01

    We previously demonstrated that an αvβ5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy

    Science.gov (United States)

    Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

    2012-06-01

    Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

  17. Trabecular bone in the calcaneus of runners.

    Science.gov (United States)

    Best, Andrew; Holt, Brigitte; Troy, Karen; Hamill, Joseph

    2017-01-01

    Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6), rearfoot-striking runners (n = 6), and non-runners (n = 6), all males aged 20-41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the posterior calcaneus.

  18. Age-Related Changes in Trabecular and Cortical Bone Microstructure

    Directory of Open Access Journals (Sweden)

    Huayue Chen

    2013-01-01

    Full Text Available The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT, micro-CT, and high resolution peripheral quantitative CT (HR-pQCT, imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  19. Age-related changes in trabecular and cortical bone microstructure.

    Science.gov (United States)

    Chen, Huayue; Zhou, Xiangrong; Fujita, Hiroshi; Onozuka, Minoru; Kubo, Kin-Ya

    2013-01-01

    The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions associated with aging, and age is an independent risk factor for osteoporotic fractures. With the development of noninvasive imaging techniques such as computed tomography (CT), micro-CT, and high resolution peripheral quantitative CT (HR-pQCT), imaging of the bone architecture provides important information about age-related changes in bone microstructure and estimates of bone strength. In the past two decades, studies of human specimens using imaging techniques have revealed decreased bone strength in older adults compared with younger adults. The present paper addresses recently studied age-related changes in trabecular and cortical bone microstructure based primarily on HR-pQCT and micro-CT. We specifically focus on the three-dimensional microstructure of the vertebrae, femoral neck, and distal radius, which are common osteoporotic fracture sites.

  20. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  1. Mucopolysaccharides in the trabecular meshwork

    International Nuclear Information System (INIS)

    Ohnishi, Yoshitaka; Yamana, Yasuo; Abe, Masahiro

    1982-01-01

    The localization of 35 S-sulfate and 3 H-glucosamine in the trabecular region of the hamster was studied by light and electron microscopic autoradiography after the intraperitoneal injection. Exposed silver grains of 35 S-sulfate were concentrated in the trabecular meshwork, sclera and cornea, and grains of 35 H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells and fibroblasts in Schlemm's canal and the trabecular meshwork. Thereafter, the grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the juxtacanalicular connective tissue. These results suggest that endothelial cells in the trabecular region synthesize and secrete the sulfated mucopolysaccharides and hyaluronic acid. (author)

  2. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.

    Science.gov (United States)

    Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S

    2013-12-01

    In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices ( and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (), 0.07 to 0.11 (), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.

  3. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  4. Characterization of trabecular bone plate-rod microarchitecture using multirow detector CT and the tensor scale: Algorithms, validation, and applications to pilot human studies

    Science.gov (United States)

    Saha, Punam K.; Liu, Yinxiao; Chen, Cheng; Jin, Dakai; Letuchy, Elena M.; Xu, Ziyue; Amelon, Ryan E.; Burns, Trudy L.; Torner, James C.; Levy, Steven M.; Calarge, Chadi A.

    2015-01-01

    Purpose: Osteoporosis is a common bone disease associated with increased risk of low-trauma fractures leading to substantial morbidity, mortality, and financial costs. Clinically, osteoporosis is defined by low bone mineral density (BMD); however, increasing evidence suggests that trabecular bone (TB) microarchitectural quality is an important determinant of bone strength and fracture risk. A tensor scale based algorithm for in vivo characterization of TB plate-rod microarchitecture at the distal tibia using multirow detector CT (MD-CT) imaging is presented and its performance and applications are examined. Methods: The tensor scale characterizes individual TB on the continuum between a perfect plate and a perfect rod and computes their orientation using optimal ellipsoidal representation of local structures. The accuracy of the method was evaluated using computer-generated phantom images at a resolution and signal-to-noise ratio achievable in vivo. The robustness of the method was examined in terms of stability across a wide range of voxel sizes, repeat scan reproducibility, and correlation between TB measures derived by imaging human ankle specimens under ex vivo and in vivo conditions. Finally, the application of the method was evaluated in pilot human studies involving healthy young-adult volunteers (age: 19 to 21 yr; 51 females and 46 males) and patients treated with selective serotonin reuptake inhibitors (SSRIs) (age: 19 to 21 yr; six males and six females). Results: An error of (3.2% ± 2.0%) (mean ± SD), computed as deviation from known measures of TB plate-width, was observed for computer-generated phantoms. An intraclass correlation coefficient of 0.95 was observed for tensor scale TB measures in repeat MD-CT scans where the measures were averaged over a small volume of interest of 1.05 mm diameter with limited smoothing effects. The method was found to be highly stable at different voxel sizes with an error of (2.29% ± 1.56%) at an in vivo voxel size

  5. Attenuating trabecular morphology associated with low magnesium diet evaluated using micro computed tomography.

    Directory of Open Access Journals (Sweden)

    Shu-Ju Tu

    Full Text Available The literature shows that bone mineral density (BMD and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice.Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3 was obtained using a standard phantom.We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA, and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96% decrease in Mg and a 40% (71% decrease in Ca in plasma (urine excretion.This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice.

  6. Factors affecting the aluminium content of human femoral head and neck.

    Science.gov (United States)

    Zioła-Frankowska, Anetta; Dąbrowski, Mikołaj; Kubaszewski, Łukasz; Rogala, Piotr; Frankowski, Marcin

    2015-11-01

    Tissues for the study were obtained intraoperatively during hip replacement procedures from 96 patients. In all the cases, the indication for this treatment was primary or secondary degenerative changes in the hip joint. The subject of the study was the head and neck of the femur, resected in situ. Aluminium concentrations measured in femoral head and neck samples from patients aged between 25 and 91 were varied. Statistical methods were applied to determine the variations in relation to the parameters from the background survey. Significant differences in the aluminium content of femoral head samples were observed between patients under and over 60 years of age. Based on the results, it was confirmed that the aluminium accumulates in bones over a lifetime. The study showed that the content of aluminium in the head and neck of the femur depends on the factors such as: type of medicines taken, contact with chemicals at work, differences in body anatomy and sex. The study on the levels of aluminium in bones and the factors affecting its concentration is a valuable source of information for further research on the role of aluminium in bone diseases. Based on the investigations, it was found that the GF-AAS technique is the best analytical tool for routine analysis of aluminium in complex matrix samples. The use of femoral heads in the investigations was approved by the Bioethics Committee of the University of Medical Sciences in Poznań (Poland). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Orientation-weighted local Minkowski functionals in 3D for quantitative assessment of trabecular bone structure in the hip

    Science.gov (United States)

    Boehm, H. F.; Bitterling, H.; Weber, C.; Kuhn, V.; Eckstein, F.; Reiser, M.

    2007-03-01

    Fragility fractures or pathologic fractures of the hip, i.e. fractures with no apparent trauma, represent the worst complication in osteoporosis with a mortality close to 25% during the first post-traumatic year. Over 90% of hip fractures result from falls from standing height. A substantial number of femoral fractures are initiated in the femoral neck or the trochanteric regions which contain an internal architecture of trabeculae that are functionally highly specialized to withstand the complex pattern of external and internal forces associated with human gait. Prediction of the mechanical strength of bone tissue can be achieved by dedicated texture analysis of data obtained by high resolution imaging modalities, e.g. computed tomography (CT) or magnetic resonance tomography (MRI). Since in the case of the proximal femur, the connectivity, regional distribution and - most of all - the preferred orientation of individual trabeculae change considerably within narrow spatial limits, it seems most reasonable to evaluate the femoral bone structure on an orientation-weighted, local scale. In past studies, we could demonstrate the advantages of topological analysis of bone structure using the Minkowski Functionals in 3D on a global and on a local scale. The current study was designed to test the hypothesis that the prediction of the mechanical competence of the proximal femur by a new algorithm considering orientational changes of topological properties in the trabecular architecture is feasible and better suited than conventional methods based on the measurement of the mineral density of bone tissue (BMD).

  8. Quantitative CT assessment of proximal femoral bone density. An experimental study concerning its correlation to breaking load for femoral neck fractures; Quantitative CT des proximalen Femurs. Experimentelle Untersuchungen zur Korrelation mit der Bruchlast bei Schenkelhalsfrakturen

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago-Tellez, C.H.; Schulze, C.; Gufler, H.; Langer, M. [Abt. Roentgendiagnostik, Radiologische Universitaetsklinik, Albert-Ludwigs-Univ. Freiburg (Germany); Bonnaire, F.; Hoenninger, A.; Kuner, E. [Abt. Unfallchirurgie, Chirurgische Universitaetsklinik, Albert-Ludwigs-Univ. Freiburg (Germany)

    1997-12-01

    Purpose: In an experimental study, the correlation between the trabecular bone density of the different regions of the proximal femur and the fracture load in the setting of femoral neck fractures was examined. Methods: The bone mineral density 41 random proximal human femora was estimated by single-energy quanitative CT (SE-QCT). The trabecular bone density was measured at the greatest possible extracortical volume at midcapital, midneck and intertrochanteric level and in the 1 cm{sup 3} volumes of the centres of these regions in a standardised 10 mm thick slice in the middle of the femoral neck axis (in mg/ml Ca-hydroxyl apatite). The proximal femora were then isolated and mounted on a compression/bending device under two-legged stand conditions and loaded up to the point when a femoral neck fracture occurred. Results: Statistical analysis revealed a linear correlation between the trabecular bone density and the fracture load for the greater regions, with the highest value in the maximal area of the head (coefficient factor r=0.76). Conclusion: According to our data, the measurement of the trabecular bone by SE-QCT at the femoral head is a more confident adjunct than the neck or trochanteric area to predict a femoral neck fracture. (orig.) [Deutsch] Ziel: In einer experimentellen Versuchsserie wurde der Zusammenhang zwischen der Knochendichte an verschiedenen Lokalisationen des proximalen Femurs und der maximalen Last bei der Entstehung von Schenkelhalsfrakturen (Bruchlast) untersucht. Methode: An 41 frisch entnommenen proximalen Leichenfemora wurde die trabekulaere Knochendichte mit Hilfe der Ein-Energie Quantitativen Computertomographie (SE-QCT) bei einer Schichtdicke von 10 mm in der Mitte der Schenkelhalsachse bestimmt. Erfasst wurden die maximale extrakortikale, zylinderfoermige Messregion im Hueftkopf, Schenkelhals und der Intertrochantaerregion sowie das 1 cm{sup 3} umfassende Zentrum dieser Regionen. Die Praeparate wurden unter Zweibeinstandbedingungen

  9. External fixation of femoral defects in athymic rats: Applications for human stem cell implantation and bone regeneration

    Directory of Open Access Journals (Sweden)

    Terasa Foo

    2013-01-01

    Full Text Available An appropriate animal model is critical for the research of stem/progenitor cell therapy and tissue engineering for bone regeneration in vivo. This study reports the design of an external fixator and its application to critical-sized femoral defects in athymic rats. The external fixator consists of clamps and screws that are readily available from hardware stores as well as Kirschner wires. A total of 35 rats underwent application of the external fixator with creation of a 6-mm bone defect in one femur of each animal. This model had been used in several separate studies, including implantation of collagen gel, umbilical cord blood mesenchymal stem cells, endothelial progenitor cells, or bone morphogenetic protein-2. One rat developed fracture at the proximal pin site and two rats developed deep tissue infection. Pin loosening was found in nine rats, but it only led to the failure of external fixation in two animals. In 8 to 10 weeks, various degrees of bone growth in the femoral defects were observed in different study groups, from full repair of the bone defect with bone morphogenetic protein-2 implantation to fibrous nonunion with collagen gel implantation. The external fixator used in these studies provided sufficient mechanical stability to the bone defects and had a comparable complication rate in athymic rats as in immunocompetent rats. The external fixator does not interfere with the natural environment of a bone defect. This model is particularly valuable for investigation of osteogenesis of human stem/progenitor cells in vivo.

  10. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures.

    Science.gov (United States)

    Maeda, Yuki; Sugano, Nobuhiko; Saito, Masanobu; Yonenobu, Kazuo

    2011-03-01

    Many studies that analyzed bone mineral density (BMD) and skeletal factors of hip fractures were based on uncalibrated radiographs or dual-energy xray absorptiometry (DXA). Spatial accuracy in measuring BMD and morphologic features of the femur with DXA is limited. This study investigated differences in BMD and morphologic features of the femur between two types of hip fractures using quantitative computed tomography (QCT). Forty patients with hip fractures with normal contralateral hips were selected for this study between 2003 and 2007 (trochanteric fracture, n=18; femoral neck fracture, n=22). Each patient underwent QCT of the bilateral femora using a calibration phantom. Using images of the intact contralateral femur, BMD measurements were made at the point of minimum femoral-neck cross-sectional area, middle of the intertrochanteric region, and center of the femoral head. QCT images also were used to measure morphologic features of the hip, including hip axis length, femoral neck axis length, neck-shaft angle, neck width, head offset, anteversion of the femoral neck, and cortical index at the femoral isthmus. No significant differences were found in trabecular BMD between groups in those three regions. Patients with trochanteric fractures showed a smaller neck shaft angle and smaller cortical index at the femoral canal isthmus compared with patients with femoral neck fractures. We conclude that severe osteoporosis with thinner cortical bone of the femoral diaphysis is seen more often in patients with trochanteric fracture than in patients with femoral neck fracture. Level IV, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

  11. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  12. Trabecular mineral content of the spine in women with hip fracture: CT measurement

    International Nuclear Information System (INIS)

    Firooznia, H.; Rafii, M.; Golimbu, C.; Schwartz, M.S.; Ort, P.

    1986-01-01

    The trabecular bone mineral content (BMC) of the spine was measured by computed tomography in 185 women aged 47-84 years with vertebral fracture (n = 74), hip fracture (n = 83), and both vertebral and hip fracture (n = 28). Eighty-seven percent of vertebral-fracture patients, 38% of hip-fracture patients, and 82% of vertebral- and hip-fracture patients had spinal BMC values below the fifth percentile for healthy premenopausal women and values 64%, 9%, and 68% below the fifth percentile for age-matched control subjects. No significant loss of spinal trabecular bone was seen in patients with hip fracture. If it is assumed that the rate of trabecular bone loss is the same in the spine and femoral neck, then hip fracture (unlike osteoporotic vertebral fracture) is not associated with disproportionate loss of trabecular bone. Hip fracture occurs secondary to weakening of bone and increased incidence of falls. Bone weakening may be due to disproportionate loss of trabecular or cortical bone, proportionate loss of both, or other as yet undetermined qualitative changes in bone

  13. Femoral nerve damage (image)

    Science.gov (United States)

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  14. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions.

    Science.gov (United States)

    Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2017-09-01

    Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.

  15. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells.

    Science.gov (United States)

    Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M

    2017-12-01

    Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.

    Science.gov (United States)

    Rieger, R; Auregan, J C; Hoc, T

    2018-03-01

    The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Spontaneous stress fractures of the femoral neck

    International Nuclear Information System (INIS)

    Dorne, H.L.; Lander, P.H.

    1985-01-01

    The diagnosis of spontaneous stress fractures of the femoral neck, a form of insufficiency stress fracture, can be missed easily. Patients present with unremitting hip pain without a history of significant trauma or unusual increase in daily activity. The initial radiographic features include osteoporosis, minor alterations of trabecular alignment, minimal extracortical or endosteal reaction, and lucent fracture lines. Initial scintigraphic examinations performed in three of four patients showed focal increased radionuclide uptake in two and no focal abnormality in one. Emphasis is placed on the paucity of early findings. Evaluation of patients with persistent hip pain requires a high degree of clinical suspicion and close follow-up; the sequelae of undetected spontaneous fractures are subcapital fracture with displacement, angular deformity, and a vascular necrosis of the femoral head

  18. Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue.

    Science.gov (United States)

    Qadan, Maha A; Piuzzi, Nicolas S; Boehm, Cynthia; Bova, Wesley; Moos, Malcolm; Midura, Ronald J; Hascall, Vincent C; Malcuit, Christopher; Muschler, George F

    2018-03-01

    Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (P CTP ) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. Mean [Cell], [CTP] and P CTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm 2 ; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences

  19. Genetic Dissection of Trabecular Bone Structure with Mouse Intersubspecific Consomic Strains

    Directory of Open Access Journals (Sweden)

    Taro Kataoka

    2017-10-01

    Full Text Available Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15, has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4 on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.

  20. Osteoarthritis alters the patellar bones subchondral trabecular architecture.

    Science.gov (United States)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2017-09-01

    Following the principles of "morphology reveals biomechanics," the cartilage-osseous interface and the trabecular network show defined adaptation in response to physiological loading. In the case of a compromised relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise. To describe and quantify the changes within the subchondral bone plate (SBP) and trabecular architecture, 10 human OA patellae were investigated by CT and micro-CT. The results are presented in comparison to a previously published dataset of 10 non-OA patellae which were evaluated in the same manner. The analyzed OA samples showed no distinctive mineralization pattern in regards to the physiological biomechanics, but a highly irregular disseminated distribution. In addition, no regularity in bone distribution and architecture across the trabecular network was found. We observed a decrease of material as the bone volume and trabecular thickness/number were significantly reduced. In comparison to non-OA samples, greatest differences for all parameters were found within the first mm of trabecular bone. The differences decreased toward the fifth mm in a logarithmic manner. The interpretation of the logarithmic relation leads to the conclusion that the main impact of OA on bony structures is located beneath the SBP and lessens with depth. In addition to the clear difference in material with approximately 12% less bone volume in the first mm in OA patellae, the architectural arrangement is more rod-like and isotropic, accounting for an architectural decrease in stability and support. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1982-1989, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Transcriptional profiling of human femoral mesenchymal stem cells in osteoporosis and its association with adipogenesis.

    Science.gov (United States)

    Choi, Yong Jun; Song, Insun; Jin, Yilan; Jin, Hyun-Seok; Ji, Hyung Min; Jeong, Seon-Yong; Won, Ye-Yeon; Chung, Yoon-Sok

    2017-10-20

    Genetic alterations are major contributing factors in the development of osteoporosis. Osteoblasts and adipocytes share a common origin, mesenchymal stem cells (MSCs), and their genetic determinants might be important in the relationship between osteoporosis and obesity. In the present study, we aimed to isolate differentially expressed genes (DEGs) in osteoporosis and normal controls using human MSCs, and elucidate the common pathways and genes related to osteoporosis and adipogenesis. Human MSCs were obtained from the bone marrow of femurs from postmenopausal women during orthopedic surgeries. RNA sequencing (RNA-seq) was carried out using next-generation sequencing (NGS) technology. DEGs were identified using RNA-seq data. Ingenuity pathway analysis (IPA) was used to elucidate the common pathway related to osteoporosis and adipogenesis. Candidate genes for the common pathway were validated with other independent osteoporosis and obese subjects using RT-PCR (reverse transcription-polymerase chain reaction) analysis. Fifty-three DEGs were identified between postmenopausal osteoporosis patients and normal bone mineral density (BMD) controls. Most of the genetic changes were related to the differentiation of cells. The nuclear receptor subfamily 4 group A (NR4A) family was identified as possible common genes related to osteogenesis and adipogenesis. The expression level of the mRNA of NR4A1 was significantly higher in osteoporosis patients than in controls (p=0.018). The expression level of the mRNA of NR4A2 was significantly higher in obese patients than in controls (p=0.041). Some genetic changes in MSCs are involved in the pathophysiology of osteoporosis. The NR4A family might comprise common genes related to osteoporosis and obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Analysis of correlation between trabecular microstructure and clinical imaging parameters in fracture region of osteoporotic hip].

    Science.gov (United States)

    Peng, Jing; Zhou, Yong; Min, Li; Zhang, Wenli; Luo, Yi; Zhang, Xuelei; Zou, Chang; Shi, Rui; Tu, Chongqi

    2014-05-01

    To analyze the correlation between the trabecular microstructure and the clinical imaging parameters in the fracture region of osteoporotic hip so as to provide a simple method to evaluate the trabecular microstructure by a non-invasive way. Between June 2012 and January 2013, 16 elderly patients with femoral neck fracture underwent hip arthroplasty were selected as the trial group; 5 young patients with pelvic fracture were selected as the control group. The hip CT examination was done, and cancellous bone volume/marrow cavity volume (CV/MV) was analyzed with Mimics 10.01 software in the control group. The CT scan and bone mineral density (BMD) measurement were performed on normal hips of the trial group, and cuboid specimens were gained from the femoral necks at the place of the tensional trabeculae to evaluate the trabecular microstructure parameters by Micro-CT, including bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), connect density (Conn.D), and structure model index (SMI). The correlation between imaging parameters and microstructure parameters was analyzed. In the trial group, the BMD value was 0.491-0.698 g/cm2 (mean, 0.601 g/cm2); according to World Health Organization (WHO) standard, 10 cases were diagnosed as having osteoporosis, and 6 cases as having osteopenia. The CV/MV of the trial group (0.670 1 +/- 0.102 0) was significantly lower than that of the control group (0.885 0 +/- 0.089 1) (t = -4.567, P = 0.000). In the trial group, CV/MV had correlation with BV/TV, Tb.Th, and SMI (P 0.05). BV/TV had correlation with Tb.Th, Tb.N, Tb.Sp, and SMI (P microstructure parameters (P > 0.05). CV/MV obviously decreases in the osteoporotic hip, and there is a correlation between CV/MV and the microstructure parameters of BV/TV, Tb.Th, and SMI, to some extent, which can reflect the variety of the microstructure of the trabeculae. There is no correlation between BMD of femoral neck and

  3. Trabecular bone structure correlates with hand posture and use in hominoids.

    Directory of Open Access Journals (Sweden)

    Zewdi J Tsegai

    Full Text Available Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan, suspensory (Pongo, Hylobates and Symphalangus and manipulative (Homo taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link

  4. Nitrite and S-Nitrosohemoglobin Exchange Across the Human Cerebral and Femoral Circulation: Relationship to Basal and Exercise Blood Flow Responses to Hypoxia.

    Science.gov (United States)

    Bailey, Damian M; Rasmussen, Peter; Overgaard, Morten; Evans, Kevin A; Bohm, Aske M; Seifert, Thomas; Brassard, Patrice; Zaar, Morten; Nielsen, Henning B; Raven, Peter B; Secher, Niels H

    2017-01-10

    The mechanisms underlying red blood cell (RBC)-mediated hypoxic vasodilation remain controversial, with separate roles for nitrite () and S-nitrosohemoglobin (SNO-Hb) widely contested given their ability to transduce nitric oxide bioactivity within the microcirculation. To establish their relative contribution in vivo, we quantified arterial-venous concentration gradients across the human cerebral and femoral circulation at rest and during exercise, an ideal model system characterized by physiological extremes of O 2 tension and blood flow. Ten healthy participants (5 men, 5 women) aged 24±4 (mean±SD) years old were randomly assigned to a normoxic (21% O 2 ) and hypoxic (10% O 2 ) trial with measurements performed at rest and after 30 minutes of cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled simultaneously from the brachial artery and internal jugular and femoral veins with plasma and RBC nitric oxide metabolites measured by tri-iodide reductive chemiluminescence. Blood flow was determined by transcranial Doppler ultrasound (cerebral blood flow) and constant infusion thermodilution (femoral blood flow) with net exchange calculated via the Fick principle. Hypoxia was associated with a mild increase in both cerebral blood flow and femoral blood flow (Pflow during exercise (Pvenous; Parterial; P0.05). These findings suggest that hypoxia and, to a far greater extent, exercise independently promote arterial-venous delivery gradients of intravascular nitric oxide, with deoxyhemoglobin-mediated reduction identified as the dominant mechanism underlying hypoxic vasodilation. © 2016 American Heart Association, Inc.

  5. Trabecular bone structure and strength - remodelling and repair

    DEFF Research Database (Denmark)

    Mosekilde, Lis; Ebbesen, Ebbe Nils; Erikstrup, Lise Tornvig

    2000-01-01

    The strength of the spinal trabecular bone declines by a factor of 4-5 from the age of 20 to 80 years. At the same time, the volumetric (apparent) density declines by a factor of only 2. This discrepancy can be explained by the known power relationship between density and strength; this power rel......; and the hydraulic effect of the bone marrow. In order to answer these questions, more in vitro and in vivo studies on human bone in relation to aging, to immobilisation, to exercise and in relation to different treatment regimens are needed.......The strength of the spinal trabecular bone declines by a factor of 4-5 from the age of 20 to 80 years. At the same time, the volumetric (apparent) density declines by a factor of only 2. This discrepancy can be explained by the known power relationship between density and strength; this power...

  6. Trabecular meshwork stiffness in glaucoma.

    Science.gov (United States)

    Wang, Ke; Read, A Thomas; Sulchek, Todd; Ethier, C Ross

    2017-05-01

    Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β 2 (TGF-β 2 ), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 3D Architecture of Trabecular Bone in the Pig Mandible and Femur: Inter-Trabecular Angle Distributions

    Directory of Open Access Journals (Sweden)

    Yehonatan Ben-Zvi

    2017-09-01

    Full Text Available Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA analysis—an analysis of network topological parameters and regularity of network-forming nodes—was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes. These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study, we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices, analyze the ITA parameters in porcine proximal femora and mandibles, and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with three edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkably conserved, but locally do adapt to applied stresses.

  8. Prediction of mechanical properties of trabecular bone using quantitative MRI

    International Nuclear Information System (INIS)

    Lammentausta, E; Hakulinen, M A; Jurvelin, J S; Nieminen, M T

    2006-01-01

    Techniques for quantitative magnetic resonance imaging (MRI) have been developed for non-invasive estimation of the mineral density and structure of trabecular bone. The R* 2 relaxation rate (i.e. 1/T* 2 ) is sensitive to bone mineral density (BMD) via susceptibility differences between trabeculae and bone marrow, and by binarizing MRI images, structural variables, such as apparent bone volume fraction, can be assessed. In the present study, trabecular bone samples of human patellae were investigated in vitro at 1.5 T to determine the ability of MRI-derived variables (R* 2 and bone volume fraction) to predict the mechanical properties (Young's modulus, yield stress and ultimate strength). Further, the MRI variables were correlated with reference measurements of volumetric BMD and bone area fraction as determined with a clinical pQCT system. The MRI variables correlated significantly (p 2 and MRI-derived bone volume fraction further improved the prediction of yield stress and ultimate strength. Although pQCT showed a trend towards better prediction of the mechanical properties, current results demonstrate the feasibility of combined MR imaging of marrow susceptibility and bone volume fraction in predicting the mechanical strength of trabecular bone and bone mineral density

  9. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    Science.gov (United States)

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro: Application of a stratified model

    Science.gov (United States)

    Lee, Kang Il

    2012-08-01

    The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  11. Femoral component loosening after hip resurfacing arthroplasty

    International Nuclear Information System (INIS)

    Zustin, Jozef; Sauter, Guido; Hahn, Michael; Morlock, Michael M.; Ruether, Wolfgang; Amling, Michael

    2010-01-01

    Before the re-introduction of the current generation of total hip resurfacing arthroplasty, component loosening and osteolysis were of great concern to the orthopaedic community. Early, mid- and long-term clinical results are encouraging, but component loosening still exists. Macroscopic, contact radiographic and histopathological analyses after undecalcified preparation of bone tissue specimens were performed. To investigate the frequency and morphological patterns of the loosening of the femoral component, we analysed a series of 190 retrieved femoral remnants that were revised for aseptic failures. Thirty-five (18.4%) hips were revised for clinical and/or radiographic loosening of the femoral component. Pseudoarthrosis (n = 17; median in situ time: 16 weeks, interquartile range [IQR]: 9 to 34), collapsed osteonecrosis (n = 5; median in situ time: 79 weeks, IQR: 63 to 97), cement-socket debonding (n = 3; median in situ time: 89 weeks, IQR: 54 to 97) and at later follow-up bone-cement loosening (n = 10; median in situ time: 175 weeks; IQR 112 to 198; p =0.005) were distinct patterns of the femoral remnant-implant loosening. Fibrocartilaginous metaplasia of interface bone trabeculae (n = 38; median in situ time: 61 weeks, IQR: 32 to 138) was strongly associated with femoral component loosening (p = 0.009). Both the trabecular hyperosteoidosis (n = 32; median in situ time: 71 weeks, IQR 50 to 129) and excessive intraosseous lymphocyte infiltration (n = 12; median in situ time: 75 weeks, IQR 51 to 98) at the bone-cement interface correlated strongly with fibrocartilaginous metaplasia (p = 0.001 and p = 0.016 respectively) and all three lesions were associated with the female gender (p = 0.021, p = 0.009, and p = 0.051). Femoral component loosening at early follow-up was mostly caused by pathological changes of the femoral remnant bone tissue: pseudoarthrosis and collapsed osteonecrosis. Fibrocartilaginous metaplasia was frequently observed in hips with femoral

  12. Determination of calcium, phosphorus, and the calcium/phosphorus ratio in cortical bone from the human femoral neck by neutron activation analysis

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Tzaphlidou, Margaret

    2002-01-01

    Concentrations of Ca and P as well as the Ca/P ratio were estimated in intact cortical bone samples from the femoral neck of healthy humans, 33 women and 45 men, aged from 15 to 55 yr using instrumental neutron activation analysis. Mean values (M±SD) for the investigated parameters (on dry weight basis) were: 23.0±3.9%, 10.7±2.4% and 2.17±0.31, respectively. No statistically significant differences of the above parameters were observed related either to age or sex. The mean values for Ca, P and Ca/P ratio were within a very wide range of published data and close to their median. The individual variation for the Ca/P ratio in cortical bone from the healthy human femoral neck was lower than those for Ca and P separately. This means that specificity of Ca/P ratio is better than those of Ca and P concentrations are and may be more reliable for diagnosis of bone disorders

  13. Assessment of jawbone trabecular bone structure amongst osteoporotic women by cone-beam computed tomography: the OSTEOSYR project.

    Science.gov (United States)

    Barngkgei, Imad; Al Haffar, Iyad; Shaarani, Eyad; Khattab, Razan; Mashlah, Ammar

    2016-11-01

    To assess the trabecular bone structure of jawbones and the dens (the odontoid process of the second cervical vertebra) amongst osteoporotic and nonosteoporotic women using cone-beam computed tomography (CBCT). Analysis of the dens trabecular bone structure aimed to test the validity of CBCT in such analysis. Thirty-eight women who went under dual-energy X-ray absorptiometry (DXA) examination were scanned by CBCT. Cuboids from different areas of jawbones and the dens were extracted from each scan. Trabecular thickness (Tb.Th), trabecular separation (Tb.S), bone volume fraction (BV/TV), specific bone surface (BS/TV) and connectivity density were calculated. Student's t-test, Pearson correlation, and logistic regression analysis were used to explore differences in these measures between groups. Jawbone-derived measures showed insignificant differences (P > 0.05) between osteoporotic and non-osteoporotic groups, and weak correlations with femoral neck and lumbar vertebrae T-scores (r ≤ 0.4). Dens-derived measures, however, resulted in the opposite (r = 0.34-0.38 [P value = 0.02-0.036] and r = 0.48-0.61 [P value ≤ 0.003]) and the highest accuracy of osteoporosis prediction: 84.2% and 78.9% respectively. Trabecular bone structure of the mandible and maxilla is not affected in osteoporosis as assessed by CBCT. Dens trabecular bone analysis revealed the opposite, so some trabecular bone measures may be assessed by CBCT, which may aid in predicting osteoporosis. © 2015 Wiley Publishing Asia Pty Ltd.

  14. A pilot study of regenerative therapy using controlled release of recombinant human fibroblast growth factor for patients with pre-collapse osteonecrosis of the femoral head.

    Science.gov (United States)

    Kuroda, Yutaka; Asada, Ryuta; So, Kazutaka; Yonezawa, Atsushi; Nankaku, Manabu; Mukai, Kumi; Ito-Ihara, Toshiko; Tada, Harue; Yamamoto, Michio; Murayama, Toshinori; Morita, Satoshi; Tabata, Yasuhiko; Yokode, Masayuki; Shimizu, Akira; Matsuda, Shuichi; Akiyama, Haruhiko

    2016-08-01

    We evaluated the safety and clinical outcomes of a single local administration of gelatin hydrogel impregnated with recombinant human fibroblast growth factor (rhFGF)-2 for the treatment of the precollapse stage of osteonecrosis of the femoral head (ONFH). Patients with ONFH (precollapse stage ≤2) received a single local administration of 800 μg of rhFGF-2-impregnated gelatin hydrogel and were followed up for one year. The surgery was performed using a minimally invasive technique involving a 1-cm skin incision, and walking was allowed from day one postoperatively. The primary outcomes included occurrence of adverse events and complications. The secondary outcomes included changes in the Harris hip scores, visual analog scale for pain scores, University of California, Los Angeles (UCLA) activity scores, and radiological images. We included ten patients, of which five experienced 14 adverse events, including one complication from spinal anesthesia. However, patients completely recovered from all adverse events. The mean clinical scores significantly improved by one year postoperatively compared with the pre-operative scores (before vs. after: visual analog score for pain, 21.2 vs. 5.3 mm; UCLA activity score, 5.5 vs. 6.6; Harris hip score, 81.0 vs. 96.9 points). There was only one case of femoral head collapse; however, this occurred in a hip with extensive necrosis. Stage progression and collapse did not occur in the other nine cases. Computed tomography confirmed bone regeneration in the femoral heads. Clinical application of rhFGF-2-impregnated gelatin hydrogel for patients with precollapse ONFH was feasible and safe.

  15. Kinetic examination of femoral bone modeling in broilers.

    Science.gov (United States)

    Prisby, R; Menezes, T; Campbell, J; Benson, T; Samraj, E; Pevzner, I; Wideman, R F

    2014-05-01

    Lameness in broilers can be associated with progressive degeneration of the femoral head leading to femoral head necrosis and osteomyelitis. Femora from clinically healthy broilers were dissected at 7 (n = 35, 2), 14 (n = 32), 21 (n = 33), 28 (n = 34), and 42 (n = 28) d of age, and were processed for bone histomorphometry to examine bone microarchitecture and bone static and dynamic properties in the secondary spongiosa (IISP) of the proximal femoral metaphysis. Body mass increased rapidly with age, whereas the bone volume to tissue volume ratio remained relatively consistent. The bone volume to tissue volume ratio values generally reflected corresponding values for both mean trabecular thickness and mean trabecular number. Bone metabolism was highest on d 7 when significant osteoblast activity was reflected by increased osteoid surface to bone surface and mineralizing surface per bone surface ratios. However, significant declines in osteoblast activity and bone formative processes occurred during the second week of development, such that newly formed but unmineralized bone tissue (osteoid) and the percentages of mineralizing surfaces both were diminished. Osteoclast activity was elevated to the extent that measurement was impossible. Intense osteoclast activity presumably reflects marked bone resorption throughout the experiment. The overall mature trabecular bone volume remained relatively low, which may arise from extensive persistence of chondrocyte columns in the metaphysis, large areas in the metaphysis composed of immature bone, destruction of bone tissue in the primary spongiosa, and potentially reduced bone blood vessel penetration that normally would be necessary for robust development. Delayed bone development in the IISP was attributable to an uncoupling of osteoblast and osteoclast activity, whereby bone resorption (osteoclast activity) outpaced bone formation (osteoblast activity). Insufficient maturation and mineralization of the IISP may contribute

  16. Focal femoral condyle resurfacing.

    LENUS (Irish Health Repository)

    Brennan, S A

    2013-03-01

    Focal femoral inlay resurfacing has been developed for the treatment of full-thickness chondral defects of the knee. This technique involves implanting a defect-sized metallic or ceramic cap that is anchored to the subchondral bone through a screw or pin. The use of these experimental caps has been advocated in middle-aged patients who have failed non-operative methods or biological repair techniques and are deemed unsuitable for conventional arthroplasty because of their age. This paper outlines the implant design, surgical technique and biomechanical principles underlying their use. Outcomes following implantation in both animal and human studies are also reviewed. Cite this article: Bone Joint J 2013;95-B:301-4.

  17. Trabecular microstructure and surface changes in the greater tuberosity in rotator cuff tears

    International Nuclear Information System (INIS)

    Jiang, Yebin; Zhao, Jenny; Ouyang, Xiaolong; Genant, Harry K.; Holsbeeck, Marnix T. van; Flynn, Michael J.

    2002-01-01

    Abstract Objective. When planning surgery in patients with rotator cuff tear, strength of bone at the tendon insertion and trabecular bone structure in the greater tuberosity are usually taken into consideration. We investigated radiographic changes in bone structure of the greater tuberosity in rotator cuff tears.Design. Twenty-two human cadaveric shoulders from subjects ranging from 55 to 75 years of age were obtained. The integrity of the rotator cuff was examined by sonography to determine if it is intact without any tear, or torn partially or completely. The humeral head was sectioned in 3 mm thick coronal slab sections and microradiographed. After digitization of the microradiographs and imaging processing with in-house semi-automated image processing software tools developed using software interfaces on a Sun workstation, the trabecular histomorphometrical structural parameters and connectivity in the greater tuberosity were quantified. The degenerative changes on the surface of the greater tuberosity were interpreted blindly by 2 independent readers.Results. Among the 22 shoulder specimens, the rotator cuff was found intact in 10 shoulders, partially in 7 and fully torn in 5. Statistically significant loss in apparent trabecular bone volume fraction, number of trabecular nodes, and number of trabecular branches, and a statistically significant increase in apparent trabecular separation and number of trabecular free ends were found in the greater tuberosity of the shoulders with tears. The loss was greater in association with full tear than in partial tear. Thickening of the cortical margin of the enthesis, irregularity of its surface, and calcification beyond the tidemark were observed in 2 (20%) shoulders with intact rotator cuff, in 6 (86%) shoulders with partial tear, and in 5 (100%) shoulders with full tear.Conclusions. Rotator cuff tears are associated with degenerative changes on the bone surface and with disuse osteopenia of the greater tuberosity

  18. A tissue engineering strategy for the treatment of avascular necrosis of the femoral head.

    Science.gov (United States)

    Aarvold, A; Smith, J O; Tayton, E R; Jones, A M H; Dawson, J I; Lanham, S; Briscoe, A; Dunlop, D G; Oreffo, R O C

    2013-12-01

    Skeletal stem cells (SSCs) and impaction bone grafting (IBG) can be combined to produce a mechanically stable living bone composite. This novel strategy has been translated to the treatment of avascular necrosis of the femoral head. Surgical technique, clinical follow-up and retrieval analysis data of this translational case series is presented. SSCs and milled allograft were impacted into necrotic bone in five femoral heads of four patients. Cell viability was confirmed by parallel in vitro culture of the cell-graft constructs. Patient follow-up was by serial clinical and radiological examination. Tissue engineered bone was retrieved from two retrieved femoral heads and was analysed by histology, microcomputed tomography (μCT) and mechanical testing. Three patients remain asymptomatic at 22- to 44-month follow-up. One patient (both hips) required total hip replacement due to widespread residual necrosis. Retrieved tissue engineered bone demonstrated a mature trabecular micro-architecture histologically and on μCT. Bone density and axial compression strength were comparable to trabecular bone. Clinical follow-up shows this to be an effective new treatment for focal early stage avascular necrosis of the femoral head. Unique retrieval analysis of clinically translated tissue engineered bone has demonstrated regeneration of tissue that is both structurally and functionally analogous to normal trabecular bone. Copyright © 2013 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  19. Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.

    Science.gov (United States)

    Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo

    2011-06-01

    This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.

  20. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian; Widdows, Kate L.; Erol, Melek M.; Nandakumar, Anandkumar; Roqan, Iman S.; Ansari, Tahera I.; Boccaccini, Aldo R.

    2012-01-01

    amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating

  1. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    Science.gov (United States)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  2. Agreement between radiographic and photographic trabecular patterns

    International Nuclear Information System (INIS)

    Korstjens, C.M.; Geraets, W.G.M.; Stelt, P.F. van der; Spruijt, R.J.; Mosekilde, L.

    1998-01-01

    Purpose: It has been hypothesized that photographs can facilitate the interpretation of the radiographic characteristics of trabecular bone. The reliability of these photographic and radiographic approaches has been determined, as have various agreements between the two approaches and their correlations with biomechanical characteristics. Material and Methods: Fourteen vertebral bodies were obtained at autopsy from 6 women and 8 men aged 22-76 years. Photographs (n=28) and radiographs (n=28) were taken of midsagittal slices from the third lumbar vertebra. The radiographs and photographs were digitized and the geometric properties of the trabecular architecture were then determined with a digital images analysis technique. Information on the compressive strength and ash density of the vertebral body was also available. Results: The geometric properties of both radiographs and photographs could be measured with a high degree of reliability (Cronbach's α>0.85). Agreement between the radiographic and photographic approaches was mediocre as only the radiographic measurements showed insignificant correlations (p<0.05) with the biomechanical characteristics. We suggest that optical phenomena may result in the significant correlations between the photographs and the biomechanical characteristics. Conclusion: For digital image processing, radiography offers a superior description of the architecture of trabecular bone to that offered by photography. (orig.)

  3. Agreement between radiographic and photographic trabecular patterns

    Energy Technology Data Exchange (ETDEWEB)

    Korstjens, C.M.; Geraets, W.G.M.; Stelt, P.F. van der [Dept. of Oral Radiology, Academic Centre for Dentistry, Amsterdam (Netherlands); Spruijt, R.J. [Div. of Psychosocial Research and Epidemiology, Netherlands Cancer Inst., Amsterdam (Netherlands); Mosekilde, L. [Dept. of Cell Biology, Univ. of Aarhus (Denmark)

    1998-11-01

    Purpose: It has been hypothesized that photographs can facilitate the interpretation of the radiographic characteristics of trabecular bone. The reliability of these photographic and radiographic approaches has been determined, as have various agreements between the two approaches and their correlations with biomechanical characteristics. Material and Methods: Fourteen vertebral bodies were obtained at autopsy from 6 women and 8 men aged 22-76 years. Photographs (n=28) and radiographs (n=28) were taken of midsagittal slices from the third lumbar vertebra. The radiographs and photographs were digitized and the geometric properties of the trabecular architecture were then determined with a digital images analysis technique. Information on the compressive strength and ash density of the vertebral body was also available. Results: The geometric properties of both radiographs and photographs could be measured with a high degree of reliability (Cronbach`s {alpha}>0.85). Agreement between the radiographic and photographic approaches was mediocre as only the radiographic measurements showed insignificant correlations (p<0.05) with the biomechanical characteristics. We suggest that optical phenomena may result in the significant correlations between the photographs and the biomechanical characteristics. Conclusion: For digital image processing, radiography offers a superior description of the architecture of trabecular bone to that offered by photography. (orig.)

  4. Femoral head avascular necrosis

    International Nuclear Information System (INIS)

    Chrysikopoulos, H.; Sartoris, D.J.; Resnick, D.L.; Ashburn, W.; Pretorius, T.

    1988-01-01

    MR imaging has been shown to be more sensitive and specific than planar scintigraphy for avascular necrosis (AVN) of the femoral head. However, experience with single photon emission CT (SPECT) is limited. The authors retrospectively compared 1.5-T MR imaging with SPECT in 14 patients with suspected femoral head AVN. Agreement between MR imaging and SPECT was present in 24 femurs, 14 normal and ten with AVN. MR imaging showed changes of AVN in the remaining four femoral heads. Of these, one was normal and the other three inconclusive for AVN by SPECT. The authors conclude that MR imaging is superior to SPECT for the evaluation of AVN of the hip

  5. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  6. Relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro: application of a stratified model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of)

    2012-08-15

    The present study aims to provide insight into the relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21 - 0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  7. Relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro: application of a stratified model

    International Nuclear Information System (INIS)

    Lee, Kang Il

    2012-01-01

    The present study aims to provide insight into the relationships of the phase velocity with the micro architectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21 - 0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.

  8. Genomic and post-genomic effects of anti-glaucoma drugs preservatives in trabecular meshwork

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto, E-mail: izzotti@unige.it [Mutagenesis Unit, IRCCS AOU San Martino – IST, Genova (Italy); Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa (Italy); La Maestra, Sebastiano; Micale, Rosanna Tindara; Longobardi, Maria Grazia [Department of Health Sciences, University of Genoa, Via A. Pastore 1, 16132 Genoa (Italy); Saccà, Sergio Claudio [Ophthalmology Unit, IRCCS AOU San Martino-IST, Genova (Italy)

    2015-02-15

    Highlights: • Glaucoma drug preservatives induce DNA damage in trabecular meshwork cells. • Cellular alteration is related with the occurrence of activation of apoptosis through the intrinsic pathway. • Drug preservatives unable to induce cell damage are ineffective in killing bacteria. • Anti glaucoma drugs should be formulated as single-dose usage devoid of genotoxic preservatives. - Abstract: Oxidative stress plays an important role in glaucoma. Some preservatives of anti-glaucoma drugs, commonly used in glaucoma therapy, can prevent or induce oxidative stress in the trabecular meshwork. The aim of this study is to evaluate cellular and molecular damage induced in trabecular meshwork by preservatives contained in anti-glaucoma drugs. Cell viability (MTT test), DNA fragmentation (Comet test), oxidative DNA damage (8-oxo-dG), and gene expression (cDNA microarray) have been evaluated in trabecular meshwork specimens and in human trabecular meshwork cells treated with benzalkonium chloride, polyQuad, purite, and sofzia-like mixture. Moreover, antimicrobial effectiveness and safety of preservative contents in drugs was tested. In ex vivo experiments, benzalkonium chloride and polyQuad induced high level of DNA damage in trabecular meshwork specimens, while the effect of purite and sofzia were more attenuated. The level of DNA fragmentation induced by benzalkonium chloride was 2.4-fold higher in subjects older than 50 years than in younger subjects. Benzalkonium chloride, and polyQuad significantly increased oxidative DNA damage as compared to sham-treated specimens. Gene expression was altered by benzalkonium chloride, polyQuad, and purite but not by sofzia. In in vitro experiments, benzalkonium chloride and polyQuad dramatically decreased trabecular meshwork cell viability, increased DNA fragmentation, and altered gene expression. A lesser effect was also exerted by purite and sofzia. Genes targeted by these alterations included Fas and effector caspase-3

  9. Biophysical stimulation in osteonecrosis of the femoral head

    Directory of Open Access Journals (Sweden)

    Massari Leo

    2009-01-01

    Full Text Available Osteonecrosis of the femoral head is the endpoint of a disease process that results from insufficient blood flow and bone-tissue necrosis, leading to joint instability, collapse of the femoral head, arthritis of the joint, and total hip replacement. Pain is the most frequent clinical symptom. Both bone tissue and cartilage suffer when osteonecrosis of the femoral head develops. Stimulation with pulsed electromagnetic fields (PEMFs has been shown to be useful for enhancing bone repair and for exerting a chondroprotective effect on articular cartilage. Two Italian studies on the treatment of avascular necrosis of the femoral head with PEMFs were presented in this review. In the first study, 68 patients suffering from avascular necrosis of the femoral head were treated with PEMFs in combination with core decompression and autologous bone grafts. The second one is a retrospective analysis of the results of treatment with PEMFs of 76 hips in 66 patients with osteonecrosis of the femoral head. In both studies clinical information and diagnostic imaging were collected at the beginning of the treatment and at the time of follow up. Statistical analysis was performed using chi-square test. Both authors hypothesize that the short-term effect of PEMF stimulation may be to protect the articular cartilage from the catabolic effect of inflammation and subchondral bone-marrow edema. The long-term effect of PEMF stimulation may be to promote osteogenic activity at the necrotic area and prevent trabecular fracture and subchondral bone collapse. PEMF stimulation represents an important therapeutic opportunity to resolve the Ficat stage-I or II disease or at least to delay the time until joint replacement becomes necessary.

  10. Ultrasound method applied to characterize healthy femoral diaphysis of Wistar rats in vivo

    International Nuclear Information System (INIS)

    Fontes-Pereira, A.; Matusin, D.P.; Rosa, P.; Schanaider, A.; Krüger, M.A. von; Pereira, W.C.A.

    2014-01-01

    A simple experimental protocol applying a quantitative ultrasound (QUS) pulse-echo technique was used to measure the acoustic parameters of healthy femoral diaphyses of Wistar rats in vivo. Five quantitative parameters [apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), time slope of apparent backscatter (TSAB), integrated reflection coefficient (IRC), and frequency slope of integrated reflection (FSIR)] were calculated using the echoes from cortical and trabecular bone in the femurs of 14 Wistar rats. Signal acquisition was performed three times in each rat, with the ultrasound signal acquired along the femur's central region from three positions 1 mm apart from each other. The parameters estimated for the three positions were averaged to represent the femur diaphysis. The results showed that AIB, FSAB, TSAB, and IRC values were statistically similar, but the FSIR values from Experiments 1 and 3 were different. Furthermore, Pearson's correlation coefficient showed, in general, strong correlations among the parameters. The proposed protocol and calculated parameters demonstrated the potential to characterize the femur diaphysis of rats in vivo. The results are relevant because rats have a bone structure very similar to humans, and thus are an important step toward preclinical trials and subsequent application of QUS in humans

  11. Fisiología trabecular y glaucoma de ángulo abierto Trabecular physiology and open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Yoanner Martín Perera

    2012-01-01

    Full Text Available El glaucoma constituye una de las enfermedades oculares más frecuentes en el mundo. Su etiología es variada, pero el problema radica generalmente en la evacuación del humor acuoso a nivel de la red trabecular y del canal de Schlemm. Se realizó una revisión bibliográfica sobre los principales mecanismos envueltos en la función trabecular: capacidad fagocítica de las células trabeculares, regulación de la composición de la matriz extracelular, contracción-relajación de las células trabeculares y los cambios en su volumen y forma. Un mayor conocimiento de la fisiología trabecular y su relación con la fisiopatología del glaucoma permitirá un mejor manejo de la enfermedad, así como el desarrollo de nuevos fármacos que tengan como diana la vía trabecular de manera selectiva y que permitan evitar los efectos secundarios relacionados con el empleo de medicamentos poco específicos.Glaucoma is one of the most common eye diseases worldwide, but usually the problem lies in the evacuation of aqueous humor at the trabecular meshwork and Schlemm's canal. A literature review was made about the main mechanisms involved in the trabecular function: the phagocytic capacity of trabecular cells, the regulation of the extracellular matrix composition, the contraction-relaxation of trabecular cells and the changes in their volume and shape. A better understanding of the trabecular physiology and the pathophysiology of glaucoma will allow better disease management and development of new drugs that have as their target the trabecular pathway in a selective way and that avoid the side effects associated with the use of nonspecific drugs.

  12. The stability of the femoral component of a minimal invasive total hip replacement system.

    NARCIS (Netherlands)

    Willems, M.M.M.; Kooloos, J.G.M.; Gibbons, P.; Minderhoud, N.; Weernink, T.; Verdonschot, N.J.J.

    2006-01-01

    In this study, the initial stability of the femoral component of a minimal invasive total hip replacement was biomechanically evaluated during simulated normal walking and chair rising. A 20 mm diameter canal was created in the femoral necks of five fresh frozen human cadaver bones and the femoral

  13. 21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. (a) Identification. A hip joint femoral (hemi-hip...

  14. 21 CFR 888.3570 - Knee joint femoral (hemi-knee) metallic uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femoral (hemi-knee) metallic uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3570 Knee joint femoral (hemi-knee) metallic uncemented prosthesis. (a) Identification. A knee joint femoral (hemi-knee...

  15. The Relationship between Trabecular Bone Structure Modeling Methods and the Elastic Modulus as Calculated by FEM

    Directory of Open Access Journals (Sweden)

    Tomasz Topoliński

    2012-01-01

    Full Text Available Trabecular bone cores were collected from the femoral head at the time of surgery (hip arthroplasty. Investigated were 42 specimens, from patients with osteoporosis and coxarthrosis. The cores were scanned used computer microtomography (microCT system at an isotropic spatial resolution of 36 microns. Image stacks were converted to finite element models via a bone voxel-to-element algorithm. The apparent modulus was calculated based on the assumptions that for the elastic properties, E=10 MPa and ν=0.3. The compressive deformation as calculated by finite elements (FE analysis was 0.8%. The models were coarsened to effectively change the resolution or voxel size (from 72 microns to 288 microns or from 72 microns to 1080 microns. The aim of our study is to determine how an increase in the distance between scans changes the elastic properties as calculated by FE models. We tried to find a border value voxel size at which the module values were possible to calculate. As the voxel size increased, the mean voxel volume increased and the FEA-derived apparent modulus decreased. The slope of voxel size versus modulus relationship correlated with several architectural indices of trabecular bone.

  16. Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice.

    Science.gov (United States)

    Zhang, Y; Wang, L; Song, Y; Zhao, X; Wong, M S; Zhang, W

    2016-03-01

    The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis. The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice. The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively. Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K. This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and

  17. Femoral Cortical Bone Mineral Density and Biomechanical Properties in Sheep Consuming an Acidifying Diet

    Directory of Open Access Journals (Sweden)

    Eileen S. Hackett

    2009-01-01

    Full Text Available Dietary acidity is a likely contributor to the development of osteoporosis. Dietary acidosis in an ovine model has effects on trabecular bone that have been previously shown to mimic human osteoporosis. Effects on cortical bone using this model have not been investigated. The objective of this study was to examine the effects of dietary acidosis on cortical bone mineral density and material properties. Skeletally mature ovariectomized (OVX sheep consumed either a normal diet (ND or a metabolic acidosis diet (MA for 6 or 12 months. Whole femoral and cortical bone beam BMD was determined using dual energy x-ray absorptiometry (DEXA. Beams were then subjected to three point flexure monotonically to failure to determine strength and modulus and then ashed to determine percent mineralization. Femoral BMD in adult OVX ND 6 mo sheep was significantly greater than those in the non-OVX ND group. The BMD in the MA groups was lower than the control non-OVX ND group. Cortical beams had significantly decreased modulus in all MA and OVX groups when compared with the non-OVX ND group and a tendency towards decreased strength in all groups with significance only in the OVX ND 6 mo sheep. Percent mineralization increased in MA and OVX groups when compared to the non-OVX ND group and was significantly increased in the OVX ND 6 mo and OVX MA 12 mo groups. A significant correlation was seen between BMD of the beam and breaking strength and modulus. Dietary acidity impacts cortical bone and results in reduced material properties that may contribute to failure.

  18. Particle migration and gap healing around trabecular metal implants

    DEFF Research Database (Denmark)

    Rahbek, O; Kold, S; Zippor, Berit

    2005-01-01

    Bone on-growth and peri-implant migration of polyethylene particles were studied in an experimental setting using trabecular metal and solid metal implants. Cylindrical implants of trabecular tantalum metal and solid titanium alloy implants with a glass bead blasted surface were inserted either i...

  19. Avascular necrosis of the femoral head: MR imaging with histologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chae Guk; Cha, Seong Sook; Eun, Choong Ki; Yang, Young Il; Choi, Jang Seok [Pusan Paik Hospital, College of Medicine, Inje University, Busan (Korea, Republic of); Park, Dong Woo [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1995-07-15

    To correlate MR findings with histologic findings in avascular necrosis (AVN) of the femoral head. MR findings was performed with 8 femoral head specimens using T1-and proton density weighted coronal SE sequences, and compared with contact radiography and histologic sections. In each specimen, necrotic zone in the superior portion of femoral head, repair zone located inferior to the necrotic zone, and rim adjacent to normal bone marrow could be defined. Necrotic zone showed high signal intensity on both T1-and proton density-weighted images in 3 cases which were composed of necrotic bone and marrow, and low signal intensity on both sequences in 2 cases which were composed of necrotic bone marrow with amorphous cellular debris. Mixed high and low signal intensities were seen in 3 cases. The repair zone showed low signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 5 cases which were composed of thickened trabecular bone and mesenchymal tissue and also showed intermediate signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 3 cases which were composed of osteoid, chondroid and undifferentiated mesenchymal cells. Rim shown as the low signal intensity on T1 weighted image in all cases was corresponded to viable thickened trabecular bone. MR imaging would be the best modality in the diagnosis of avascular necrosis of femoral head and when used in conjunction with degree and location of signal intensity, the prediction of histologic finding may be possible.

  20. Avascular necrosis of the femoral head: MR imaging with histologic correlation

    International Nuclear Information System (INIS)

    Lee, Chae Guk; Cha, Seong Sook; Eun, Choong Ki; Yang, Young Il; Choi, Jang Seok; Park, Dong Woo

    1995-01-01

    To correlate MR findings with histologic findings in avascular necrosis (AVN) of the femoral head. MR findings was performed with 8 femoral head specimens using T1-and proton density weighted coronal SE sequences, and compared with contact radiography and histologic sections. In each specimen, necrotic zone in the superior portion of femoral head, repair zone located inferior to the necrotic zone, and rim adjacent to normal bone marrow could be defined. Necrotic zone showed high signal intensity on both T1-and proton density-weighted images in 3 cases which were composed of necrotic bone and marrow, and low signal intensity on both sequences in 2 cases which were composed of necrotic bone marrow with amorphous cellular debris. Mixed high and low signal intensities were seen in 3 cases. The repair zone showed low signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 5 cases which were composed of thickened trabecular bone and mesenchymal tissue and also showed intermediate signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 3 cases which were composed of osteoid, chondroid and undifferentiated mesenchymal cells. Rim shown as the low signal intensity on T1 weighted image in all cases was corresponded to viable thickened trabecular bone. MR imaging would be the best modality in the diagnosis of avascular necrosis of femoral head and when used in conjunction with degree and location of signal intensity, the prediction of histologic finding may be possible

  1. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  2. Femoral Prosthesis Infection by Rhodotorula mucilaginosa▿

    Science.gov (United States)

    Savini, Vincenzo; Sozio, Federica; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Febbo, Fabio; Balbinot, Andrea; Di Bonaventura, Giovanni; Piccolomini, Raffaele; Parruti, Giustino; D'Antonio, Domenico

    2008-01-01

    This case report is a case history of a femoral prosthesis infection caused by Rhodotorula mucilaginosa in a human immunodeficiency virus patient. Though the pathogenicity of this organism for bone tissue has been previously reported, this is the first reported case of an orthopedic prosthesis infection by this species of the genus Rhodotorula. PMID:18753353

  3. Mucopolysaccharides in the trabecular meshwork. Light and electron microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Yoshitaka; Yamana, Yasuo; Abe, Masahiro (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1982-09-01

    The localization of /sup 35/S-sulfate and /sup 3/H-glucosamine in the trabecular region of the hamster was studied by light and electron microscopic autoradiography after the intraperitoneal injection. Exposed silver grains of /sup 35/S-sulfate were concentrated in the trabecular meshwork, sclera and cornea, and grains of /sup 35/H-glucosamine were localized in the trabecular region. The radioactivity of both isotopes was observed in the Golgi apparatuses of the endothelial cells and fibroblasts in Schlemm's canal and the trabecular meshwork. Thereafter, the grains were noted over the entire cytoplasm, except for the nucleus, and then were incorporated into the amorphous substance and collagen fibers in the juxtacanalicular connective tissue. These results suggest that endothelial cells in the trabecular region synthesize and secrete the sulfated mucopolysaccharides and hyaluronic acid.

  4. Proximal femoral fractures

    DEFF Research Database (Denmark)

    Palm, Henrik; Teixidor, Jordi

    2015-01-01

    searched the homepages of the national heath authorities and national orthopedic societies in West Europe and found 11 national or regional (in case of no national) guidelines including any type of proximal femoral fracture surgery. RESULTS: Pathway consensus is outspread (internal fixation for un...

  5. Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model

    International Nuclear Information System (INIS)

    Verburg, Hennie; Ridder, Laurens C van de; Verhoeven, Vincent WJ; Pilot, Peter

    2014-01-01

    In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA

  6. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images.

    Science.gov (United States)

    Dong, Pei; Haupert, Sylvain; Hesse, Bernhard; Langer, Max; Gouttenoire, Pierre-Jean; Bousson, Valérie; Peyrin, Françoise

    2014-03-01

    Osteocytes, the most numerous bone cells, are thought to be actively involved in the bone modeling and remodeling processes. The morphology of osteocyte is hypothesized to adapt according to the physiological mechanical loading. Three-dimensional micro-CT has recently been used to study osteocyte lacunae. In this work, we proposed a computationally efficient and validated automated image analysis method to quantify the 3D shape descriptors of osteocyte lacunae and their distribution in human femurs. Thirteen samples were imaged using Synchrotron Radiation (SR) micro-CT at ID19 of the ESRF with 1.4μm isotropic voxel resolution. With a field of view of about 2.9×2.9×1.4mm(3), the 3D images include several tens of thousands of osteocyte lacunae. We designed an automated quantification method to segment and extract 3D cell descriptors from osteocyte lacunae. An image moment-based approach was used to calculate the volume, length, width, height and anisotropy of each osteocyte lacuna. We employed a fast algorithm to further efficiently calculate the surface area, the Euler number and the structure model index (SMI) of each lacuna. We also introduced the 3D lacunar density map to directly visualize the lacunar density variation over a large field of view. We reported the lacunar morphometric properties and distributions as well as cortical bone histomorphometric indices on the 13 bone samples. The mean volume and surface were found to be 409.5±149.7μm(3) and 336.2±94.5μm(2). The average dimensions were of 18.9±4.9μm in length, 9.2±2.1μm in width and 4.8±1.1μm in depth. We found lacunar number density and six osteocyte lacunar descriptors, three axis lengths, two anisotropy ratios and SMI, that are significantly correlated to bone porosity at a same local region. The proposed method allowed an automatic and efficient direct 3D analysis of a large population of bone cells and is expected to provide reliable biological information for better understanding the

  7. Assessment of bone mineral density by DXA and the trabecular microarchitecture of the calcaneum by texture analysis in pre- and postmenopausal women in the evaluation of osteoporosis

    Directory of Open Access Journals (Sweden)

    Karunanithi R

    2007-01-01

    Full Text Available The in vivo evaluation of trabecular bone structure could be useful in the diagnosis of osteoporosis for the characterization of therapeutic response and understanding the role of parameters other than bone mineral density (BMD in defining skeletal status. This study was made to evaluate changes taking place in the trabecular architecture of bone with age and menopausal status in women. The findings are compared with the femoral neck bone as well as the trochantar bone mineral density determined by dual energy X-ray absorptiometry (DXA, which is a standard reference test for evaluation of osteoporosis. Seventy females were recruited for the study, 25 pre-menopausal (mean age ± SD: 39.4 ± 3.8 and 45 postmenopausal (mean age ± SD: 57.9 ± 7.9 women. The right femoral neck bone mineral density was measured for them by dual energy X-ray absorptiometry (DXA. For the same individuals, lateral view radiographs of the right calcaneum were taken as well. The radiographs were digitized and the region of interest (ROI of 256 x 256 pixels was selected, the run-length matrix was computed for calculating seven parameters [Table 1] and the two-dimensional fast Fourier transform of the image was calculated. Using the FFT, the power spectral density (PSD was derived and the root mean square (RMS value was determined. Our results confirm that age has a significant influence on the texture of the trabecular bone and bone mineral density.

  8. Contribution of the endosteal surface of cortical bone to the trabecular pattern seen on IOPA radiographs: an in vitro study

    Directory of Open Access Journals (Sweden)

    P T Ravikumar

    2012-01-01

    Full Text Available Objectives: A study was conducted to assess the contribution of the cancellous and endosteal surface of the cortical bone to the trabecular pattern seen in an IOPA radiograph. Materials and methods: An in vitro study analyzing the contribution of the endosteal surface of cortical bone and cancellous bone to the trabecular pattern was conducted, using 60 specimens of desiccated human mandibles. The mode of execution involved IOPA radiographic evaluation of premolarmolar segments in the specimens before and after removal of cancellous bone. The radiographs were numbered for identification and subjected to evaluation by 5 dentomaxillofacial radiologists who were doubleblinded to ensure an unbiased interpretation. Results: The trabecular pattern appreciation by the experts in the IOPA radiographs before and after removal of cancellous bone displayed immaculate correlation as per the Goodman-Kruskal Gamma Coefficient values which was 0.78 indicating a very large correlation. The relative density of trabecular pattern was significantly higher in radiograph before than after removal of cancellous bone with p-value less than 0.05. Conclusion: Based on these results it was adjudged that both the cancellous and endosteal surface of cortical bone contributed significantly to the trabecular pattern in an IOPA radiograph.

  9. Age-related changes in cortical and trabecular bone mineral status: A quantitative CT study in lumbar vertebrae

    International Nuclear Information System (INIS)

    Tanno, M.; Horiuchi, T.; Nakajima, I.; Maeda, S.; Igarashi, M.; Yamada, H.

    2000-01-01

    To investigate the age and sex dependence of the bone mineral status of human lumbar vertebrae with special regard to differences between cortical and trabecular bone. The study group comprised 125 normal Japanese healthy volunteers (54 males and 71 females), and was subdivided into adult male and female groups (subjects younger than 40 years), intermediate male and female groups (ages ranging between 41 and 64 years) and old male and female groups (subjects older than 65 years). The cortical bone mineral status was estimated using a single-energy quantitative CT (SE-QCT) technique, whereas trabecular bone mineral density (BMD) was estimated using a dual-energy (DE-QCT) technique. A considerable gender difference in the age-related cortical bone status was found. There was a significant reduction of the mean values of the cortical volume and BMD in the old female group compared with those obtained in the old male group. The results suggest that in men, cortical and trabecular bone volume decrease very little with age. In women, cortical volume and BMD and trabecular BMD decrease with age while trabecular bone volume does not. The study showed that all variables had higher values in men than in women and that the difference increased with age

  10. Biomechanics and Mechanobiology of Trabecular Bone: A Review

    Science.gov (United States)

    Oftadeh, Ramin; Perez-Viloria, Miguel; Villa-Camacho, Juan C.; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength. PMID:25412137

  11. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  12. Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis.

    Science.gov (United States)

    Sano, Hiroshige; Kondo, Naoki; Shimakura, Taketoshi; Fujisawa, Junichi; Kijima, Yasufumi; Kanai, Tomotake; Poole, Kenneth E S; Yamamoto, Noriaki; Takahashi, Hideaki E; Endo, Naoto

    2018-01-01

    Bone modeling is a biological process of bone formation that adapts bone size and shape to mechanical loads, especially during childhood and adolescence. Bone modeling in cortical bone can be easily detected using sequential radiographic images, while its assessment in trabecular bone is challenging. Here, we performed histomorphometric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and we proposed the criteria for histologically identifying an active modeling-based bone formation, which we call a "forming minimodeling structure" (FMiS). Evidence of FMiSs was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was significant higher in specimens displaying FMiSs compared with the specimens without these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p  modeling-based bone formation on trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histological evidence of modeling-based bone formation, understanding of this physiology in relation to bone homeostasis is crucial.

  13. Iodixanol in femoral arteriography

    International Nuclear Information System (INIS)

    Thorstensen, Oe.; Albrechtsson, U.; Calissendorff, B.; Larusdottir, H.; Norgren, L.; Tengvar, M.; Bolstad, B.; Aspelin, P.

    1994-01-01

    Two contrast media, iodixanol (Visipaque, Nycomed) 270 mg I/ml and iohexol (Omnipaque, Nycomed) 300 mg I/ml, were compared in femoral arteriography, in 147 patients. Both contrast media were diagnostically effective for use in femoral arteriography, without any significant difference. Pain was reported in connection with injection of iohexol by 36% of the patients, after injection of iodixanol none reported pain. Seventy-two percent of the patients in the iodixanol group reported a sensation of warmth in connection with contrast injection versus 90% in the iohexol group. The average intensity of the warmth was greater with iohexol than with iodixanol. Fourteen percent of patients in the iodixanol group and 1% in the iohexol group reported one or more subjective adverse events. (orig.)

  14. Radiographic femoral varus measurement is affected unpredictably by femoral rotation

    DEFF Research Database (Denmark)

    Miles, James Edward

    Radiographic measurements of femoral varus are used to determine if intervention to correct femoral deformity is required, and to calculate the required correction. The varus angle is defined as the angle between the proximal femoral long axis (PFLA) and an axis tangential to the distal femoral...... and externally by 5° and 10° using plastic wedges. Accuracy of rotation was within +1°. Digital radiographs were obtained at each position. Varus angles were measured using ImageJ, employing two definitions of PFLA. Mean varus angles increased with 10° of either internal or external rotation with both PFLA...... rotation angles. The effect of rotation on varus angle measurements in these femoral specimens contradicts a previous report using CT. The most probable explanation is the difference in femoral positioning: the CT study used a slightly elevated position compared to that in this study, resulting in better...

  15. Electron absorbed fractions in skeletal soft tissues based on red bone marrow segmentation at runtime in muCT images of human trabecular bone;Fracoes absorvidas de eletrons em tecidos moles do esqueleto avaliadas com base na segmentacao em tempo de execucao da medula ossea vermelha contida em imagens muCT do osso trabecular humano

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, J.W. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, Recife, PE (Brazil); Kramer, R. [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica; Khoury, H.J. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Robson-Brown, K. [University of Bristol, Bristol (United Kingdom). Dept. of Archaeology and Anthropology

    2009-07-01

    Skeletal dosimetry determines equivalent dose or absorbed fractions in the red bone marrow (RBM) and the osteogenic cells on bone surfaces (BSC). Following a method used earlier for the BSC, RBM and yellow bone marrow (YBM) have been segmented in the marrow cavities of muCT images of human spongiosa at runtime, i.e. during the execution of the Monte Carlo calculation, which avoids the necessity to segment RBM and YBM externally in muCT images for many different cellularities and to store the data. Using this internal RBM/YBM segmentation, this study presents electron absorbed fractions for the RBM and the BSC as a function of the voxel resolution and also compares the results with data from other investigations. (author)

  16. A trabecular metal implant 4 months after placement: clinical-histologic case report.

    Science.gov (United States)

    Spinato, Sergio; Zaffe, Davide; Felice, Pietro; Checchi, Luigi; Wang, Hom-Lay

    2014-02-01

    The aim of this case report was to histologically evaluate the behavior of a trabecular metal (TM) implant composed of titanium and spatial 3-dimensional tantalum (Ta) trabeculae. This study is the first human histologic case report of this implant. A TM implant was placed in a 54-year-old woman exhibiting moderate chronic periodontitis. After periodontal treatment, the implant was inserted under favorable clinical conditions. Patient was not seen for 4 months because of unrelated breast reduction surgery. At the surgical reopening, periimplant inflammation affecting the coronal third of the implant was observed 4 months after implant placement. With patient's consent, the implant was removed for histologic analysis. Histology highlighted a greater amount of bone in close contact with Ta trabeculae than titanium surfaces. The finding of bone formation around the Ta trabeculae suggests that trabecular metal material promotes bone ingrowth for secondary implant stability. Additional evidence is needed to confirm this observation.

  17. Morphobiochemical diagnosis of acute trabecular microfractures using gamma correction Tc-99m HDP pinhole bone scan with histopathological verification.

    Science.gov (United States)

    Bahk, Yong-Whee; Hwang, Seok-Ha; Lee, U-Young; Chung, Yong-An; Jung, Joo-Young; Jeong, Hyeonseok S

    2017-11-01

    We prospectively performed gamma correction pinhole bone scan (GCPBS) and histopathologic verification study to make simultaneous morphobiochemical diagnosis of trabecular microfractures (TMF) occurred in the femoral head as a part of femoral neck fracture.Materials consisted of surgical specimens of the femoral head in 6 consecutive patients. The specimens were imaged using Tc-99m hydroxymethylene diphosphonate (HDP) pinhole scan and processed by the gamma correction. After cleansing with 10% formalin solution, injured specimen surface was observed using a surgical microscope to record TMF. Morphological findings shown in the photograph, naive pinhole bone scan, GCPBS, and hematoxylin-eosin (H&E) stain of the specimen were reciprocally correlated for histological verification and the usefulness of suppression and enhancement of Tc-99m HDP uptake was biochemically investigated in TMF and edema and hemorrhage using gamma correction.On the one hand, GCPBS was able to depict the calcifying calluses in TMF with enhanced Tc-99m HDP uptake. They were pinpointed, speckled, round, ovoid, rod-like, geographic, and crushed in shape. The smallest callus measured was 0.23 mm in this series. On the other hand, GCPBS biochemically was able to discern the calluses with enhanced high Tc-99m HDP uptake from the normal and edema dipped and hemorrhage irritated trabeculae with washed out uptake.Morphobiochemically, GCPBS can clearly depict microfractures in the femoral head produced by femoral neck fracture. It discerns the microcalluses with enhanced Tc-99m HDP uptake from the intact and edema dipped and hemorrhage irritated trabeculae with suppressed washed out Tc-99m HDP uptake. Both conventional pinhole bone scan and gamma correction are useful imaging means to specifically diagnose the microcalluses naturally formed in TMF.

  18. Rationale for the evaluation of trabecular bone turnover

    International Nuclear Information System (INIS)

    Kimmel, D.B.; Jee, W.S.S.

    1976-01-01

    A procedure for the morphometric evaluation of trabecular bone is identified. Its scrupulous use allows total identification of bone formation and resorption rates, items necessary for the direct histologic analysis of bone turnover

  19. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  20. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    Science.gov (United States)

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  1. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  2. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images.

    Science.gov (United States)

    Modlesky, Christopher M; Whitney, Daniel G; Carter, Patrick T; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman

    2014-03-01

    Magnetic resonance imaging (MRI) is used to assess trabecular bone microarchitecture in humans; however, image processing can be labor intensive and time consuming. One aim of this study was to determine the pattern of trabecular bone microarchitecture in the distal femur of typically developing children. A second aim was to determine the proportion and location of magnetic resonance images that need to be processed to yield representative estimates of trabecular bone microarchitecture. Twenty-six high resolution magnetic resonance images were collected immediately above the growth plate in the distal femur of 6-12year-old typically developing children (n=40). Measures of trabecular bone microarchitecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the lateral aspect of the distal femur were determined using the twenty most central images (20IM). The average values for appBV/TV, appTb.N, appTb.Th and appTb.Sp from 20IM were compared to the average values from 10 images (10IM), 5 images (5IM) and 3 images (3IM) equally dispersed throughout the total image set and one image (1IM) from the center of the total image set using linear regression analysis. The resulting mathematical models were cross-validated using the leave-one-out technique. Distance from the growth plate was strongly and inversely related to appBV/TV (r(2)=0.68, p0.05). However, there was a progressive decrease in the strength of the relationships as a smaller proportion of images were used to predict estimates from 20IM (r(2)=0.98 to 0.99 using 10IM, 0.94 to 0.96 using 5IM, 0.87 to 0.90 using 3IM and 0.66 to 0.72 using 1IM; all pimage sets agreed extremely well with estimates from 20IM. The findings indicate that partial magnetic resonance image sets can be used to provide reasonable estimates of trabecular bone microarchitecture status in the distal femur of typically

  3. Bone mineral density and trabecular bone tissue quality in obese men

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2017-02-01

    Full Text Available Obesity and osteoporosis are the two metabolic dise­ases with increased prevalence over last decades and a strong impact on the global morbidity and mortality have gained a status of major health threats worldwide. There is evidence that the higher body mass index (BMI values are associated with greater bone mineral density (BMD resulting in a site-specific protective effect for fragility fractures. On the other hand, higher BMI values increases incidence of falls and is associated with worse fractures consolidation. However, trabecular bone score (TBS indirectly explores bone quali­ty, independently of BMD. The aim of the study was to determine the connection between the BMD and TBS parameters in Ukrainian men suffering from obesity. Methods. We examined 396 men aged 40–89 years, by the BMI all the subjects were divided into 2 groups: Group A — with obesity and BMI ≥ 30 kg/m2 (n = 129 and Group B — without obesity and BMI < 30 kg/m2 (n = 267. The BMD of total body, lumbar spine at the site L1–L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA. The TBS of L1–L4 was assessed by means of TBS iNsight (Med-Imaps, Pessac, France. Results. In general, obese men had a significantly higher BMD of lumbar spine, femoral neck, total body and ultradistal forearm (p < 0.001 in comparison with men without obesity. The TBS of L1–L4 was significantly lower in obese men compared to non-obese men (p < 0.001. The significant positive correlation between the fat mass and the BMD at different sites was observed. The correlation between the fat mass and TBS of L1–L4 was also significant, but negative. Conclusions. Obesity negatively affects the quality of trabecular bone, while bone mineral density was significantly higher.

  4. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    Science.gov (United States)

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  5. [Ex vivo microCT analysis of possible microfractures of the femoral head during implantation of a cementless hip resurfacing femoral component].

    Science.gov (United States)

    Lerch, M; Olender, G; von der Höh, N; Thorey, F; von Lewinski, G; Meyer-Lindenberg, A; Windhagen, H; Hurschler, C

    2009-01-01

    Microfractures of the femoral head during implantation of the femoral components are suspected to be a cause of fractures at the implant/neck junction which represent a common failure mode in hip resurfacing arthroplasty. Callus formation observed in femoral head retrievals suggests the occurrence of microfractures inside the femoral head, which might be inadvertently caused by the surgeon during implantation. The aim of this biomechanical study was to analyse whether or not the implantation of a cementless femoral component hip resurfacing system causes microfractures in the femoral head. After the preparation of 20 paired human cadaveric femoral heads, the cementless femoral component ESKA Typ BS (ESKA Implants GmbH & Co., Lübeck) was implanted on 9 specimens with an impaction device that generates 4.5 kN impaction force. On 9 specimens the femoral component was implanted by hand. One head was used as a fracture model, 1 specimen served as control without manipulation. The femoral component used for impaction was equipped with hinges to enable its removal without further interfering with the bone stock. Specimens were scanned with a microCT device before and after impaction and the microCT datasets before and after impaction were compared to identify possible microfractures. Twenty strikes per hand or with the impaction device provided sufficient implant seating. Neither the macroscopic examination nor the 2-dimensional microCT analysis revealed any fractures of the femoral heads after impaction. At least macroscopically and in the 2-dimensional microCT analysis, implantation of the cementless hip resurfacing femoral component ESKA Typ BS with 4.5 kN or by hand does not seem to cause fractures of the femoral head. Georg Thieme Verlag KG Stuttgart, New York.

  6. [Radiographic appraisal between metal and bone interosculate backfill after total hip arthroplasty with trabecular metal cup].

    Science.gov (United States)

    Li, Wei; Zhou, Yi-Xin; Wu, Jian; Xu, Hui; Ji, Song-Jie

    2009-02-15

    To evaluate the bone refilling in the interface between the trabecular metal (TM) acetabular shell and the bone surface according to consecutive X film measuring after surgery. From July 2006 to July 2007, 35 patients (40 hips) accepted total hip replacement using trabecular metal monoblock acetabular cup system (TM). The cup was made of a ellipse shaped press fit Tantalum shell and high cross-linked PE liner (Longevity) with 28 mm inner diameter. The patients demography was: 16 male (20 hips), 19 female (20 hips), 5 bilateral hip replacements, age from 41 - 71 (mean 53), including 18 avascular necrosis hips, 16 osteoarthritis hips (including those secondary to a dysplasia hip), 4 avascular necrosis hips after femoral neck fracture, 2 Ankylosis Spondylitis. All the 40 total hip replacements used posterior approach, using hemispherical acetabular reamer and 2 mm press fit of final metal shell without screw fixation. The consecutive X film was taken at the end time of surgery and 2, 6, 12, 24 weeks, and 12 months. The clinical results was evaluate according to Harris scoring system, and the standard pelvis AP X film was measured at the interface between metal shell and the acetabular bone surface, witch was divided into five regions (A, B, C, D, E). Totally 32 patients (37 hips) were followed with average 8.7 months (7 - 12 months). The Harris before surgery was 50.5 (32 - 85), promoted to 91.0 (72 - 100), including 29 excellent, 6 good, 2 fair, and the total excellent and good rate was 94.6%. Complications include 4 patients leg length discrepancy from 1 - 2 cm, 3 patients moderate thigh pain and released after conservative therapy. No infection and dislocation was found. Twenty-one patients (23 hips) were found lucent line at the bone-metal interface from 1 - 5 mm, most common in B region and BC boundary than C, D, and CD boundary. All the patients followed was found the lucent line disappeared and refilled with bone at X film 24 weeks after surgery, however, no

  7. Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models

    International Nuclear Information System (INIS)

    Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M.; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J.; Waldt, Simone; Bauer, Jan S.

    2015-01-01

    Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n = 12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0–5.6 % and 1.3–6.1 %, respectively, and were not statistically significant (p > 0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r = 0.89–0.99; p < 0.05). The correlation coefficients r were not significantly different for the two preservation methods (p > 0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure

  8. FRACTAL ANALYSIS OF TRABECULAR BONE: A STANDARDISED METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ian Parkinson

    2011-05-01

    Full Text Available A standardised methodology for the fractal analysis of histological sections of trabecular bone has been established. A modified box counting method has been developed for use on a PC based image analyser (Quantimet 500MC, Leica Cambridge. The effect of image analyser settings, magnification, image orientation and threshold levels, was determined. Also, the range of scale over which trabecular bone is effectively fractal was determined and a method formulated to objectively calculate more than one fractal dimension from the modified Richardson plot. The results show that magnification, image orientation and threshold settings have little effect on the estimate of fractal dimension. Trabecular bone has a lower limit below which it is not fractal (λ<25 μm and the upper limit is 4250 μm. There are three distinct fractal dimensions for trabecular bone (sectional fractals, with magnitudes greater than 1.0 and less than 2.0. It has been shown that trabecular bone is effectively fractal over a defined range of scale. Also, within this range, there is more than 1 fractal dimension, describing spatial structural entities. Fractal analysis is a model independent method for describing a complex multifaceted structure, which can be adapted for the study of other biological systems. This may be at the cell, tissue or organ level and compliments conventional histomorphometric and stereological techniques.

  9. Influence of cortical endplates on ultrasonic properties of trabecular bone

    International Nuclear Information System (INIS)

    Kim, Yoon Mi; Lee, Kang Il

    2015-01-01

    The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 mm and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

  10. Hyperfunctioning solid/trabecular follicular carcinoma of the thyroid gland.

    Science.gov (United States)

    Giovanella, Luca; Fasolini, Fabrizio; Suriano, Sergio; Mazzucchelli, Luca

    2010-01-01

    A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the (99m)Tc-pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules.

  11. Hyperfunctioning Solid/Trabecular Follicular Carcinoma of the Thyroid Gland

    Directory of Open Access Journals (Sweden)

    Luca Giovanella

    2010-01-01

    Full Text Available A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the 99mTc-pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules.

  12. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens

    Science.gov (United States)

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2017-01-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk. PMID:29170581

  13. INAA of cortical and trabecular bone samples from animals

    International Nuclear Information System (INIS)

    Takata, M.K.; Saiki, M.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was applied to determine Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Sr and Zn in bovine and porcine rib bones. Precise results were obtained in analyses of freeze-dried cortical and trabecular bones separately, and also of whole bone ashes. Cortical tissues presented higher concentrations of Ba, Ca, Mg, Mn, Na, P, Sr and Zn than those obtained in trabecular ones. Comparisons were also made between the results obtained for bovine and porcine rib bones. (author)

  14. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue.

    Science.gov (United States)

    Pemmer, B; Roschger, A; Wastl, A; Hofstaetter, J G; Wobrauschek, P; Simon, R; Thaler, H W; Roschger, P; Klaushofer, K; Streli, C

    2013-11-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. © 2013. Published by Elsevier Inc. All rights reserved.

  15. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆

    Science.gov (United States)

    Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.

    2013-01-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  16. Quantitative computed tomography in measurement of vertebral trabecular bone mass

    International Nuclear Information System (INIS)

    Nilsson, M.; Johnell, O.; Jonsson, K.; Redlund-Johnell, I.

    1988-01-01

    Measurement of bone mineral concentration (BMC) can be done by several modalities. Quantitative computed tomography (QCT) can be used for measurements at different sites and with different types of bone (trabecular-cortical). This study presents a modified method reducing the influence of fat. Determination of BMC was made from measurements with single-energy computed tomography (CT) of the mean Hounsfield number in the trabecular part of the L1 vertebra. The method takes into account the age-dependent composition of the trabecular part of the vertebra. As the amount of intravertebral fat increases with age, the effective atomic number for these parts decreases. This results in a non-linear calibration curve for single-energy CT. Comparison of BMC values using the non-linear calibration curve or the traditional linear calibration with those obtained with a pixel-by-pixel based electron density calculation method (theoretically better) showed results clearly in favor of the non-linear method. The material consisted of 327 patients aged 6 to 91 years, of whom 197 were considered normal. The normal data show a sharp decrease in trabecular bone after the age of 50 in women. In men a slower decrease was found. The vertebrae were larger in men than in women. (orig.)

  17. Long range node-strut analysis of trabecular bone microarchitecture

    DEFF Research Database (Denmark)

    Schmah, Tanya; Marwan, Norbert; Thomsen, Jesper Skovhus

    2011-01-01

    PURPOSE: We present a new morphometric measure of trabecular bone microarchitecture, called mean node strength (NdStr), which is part of a newly developed approach called long range node-strut analysis. Our general aim is to describe and quantify the apparent "latticelike" microarchitecture of th...

  18. Femoral head necrosis; Hueftkopfnekrose

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, J.; Scheurecker, G.; Scheurecker, A.; Stoeger, A.; Huber, A. [Roentgeninstitut am Schillerpark, Linz (Austria); Hofmann, S. [Orthopaedisches Landeskrankenhaus Stolzalpe (Austria)

    2009-05-15

    The epidemiology and pathohistogenesis of avascular femoral head necrosis has still not been clarified in detail. Because the course of the disease runs in stages and over a long time period nearly always culminates in the necessity for a total hip prosthesis, an exact radiological evaluation is of paramount importance for the treatment. There is a need for a common staging system to enable comparison of different therapy concepts and especially their long-term results. In this article the ARCO staging system is described in full detail, which includes all radiological modalities as well as histopathological alterations. (orig.) [German] Bei der avaskulaeren Femurkopfnekrose handelt es sich um ein Krankheitsbild, dessen Ursachen noch immer nicht vollstaendig geklaert sind. Da die Erkrankung stadienhaft verlaeuft und ueber einen laengeren Zeitraum betrachtet nahezu immer in einem prothetischen Hueftersatz muendet, ist eine genaue radiologische Abklaerung fuer die Behandlung von enormer Bedeutung. Um Langzeiterfolge verschiedener Therapiekonzepte vergleichen zu koennen, sind eine exakte Beschreibung und darauf basierend die Verwendung einer einheitlichen Stadieneinteilung wuenschenswert. In der vorliegenden Arbeit wird die ARCO-Stadieneinteilung im Detail beschrieben, die alle bildgebenden Methoden beruecksichtigt und histopathologische Veraenderungen mit einbezieht. (orig.)

  19. Anorexia Nervosa: Analysis of Trabecular Texture with CT.

    Science.gov (United States)

    Tabari, Azadeh; Torriani, Martin; Miller, Karen K; Klibanski, Anne; Kalra, Mannudeep K; Bredella, Miriam A

    2017-04-01

    Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.

  20. Changes of enzyme activities in lens after glaucoma trabecular resection

    Directory of Open Access Journals (Sweden)

    Jian-Ping Wang

    2013-08-01

    Full Text Available AIM: To observe the change of lens antioxidant enzyme activity after glaucoma trabecular resection. METHODS: Thirty-two eyes of sixteen New-Zealand rabbits(2.2-2.4kgwere divided into two groups. The left eyes of rabbits underwent standard glaucoma trabecular resection were treatment group, and the normal right eyes served as controls. Transparency of lenses was monitored by a slit-lamp biomicroscopy before and after glaucoma trabecular resection. The morphology of lens cells was observed under the light microscope.The activities of Na+-K+-ATPase,catalase(CAT, glutathion peroxidase(GSH-px, glutathione reductase(GR, superoxide dismutase(SODand content of malondialdehyde(MDAin lenses were detected six months after trabecular resection. RESULTS: Lenses were clear in both treatment group and normal control group during the six months after operation. The morphology and structure of lens cells were normal under the light microscope in both operation group and normal group. The activity of lens cells antioxidant enzyme activity were significantly decreased in operation group compared with control group, Na+-K+-ATPase declined by 20.97%, CAT declined by 16.36%, SOD declined by 4.46%, GR declined by 4.85%, GSH-px declined by 10.02%, and MDA increased by 16.31%. CONCLUSION: Glaucoma trabecular resection can induce the change of Na+-K+-ATPase, CAT, GSH-px, GR, SOD and MDA in lens of rabbit. Glaucoma filtration surgery for the occurrence of cataract development mechanism has important guiding significance.

  1. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Science.gov (United States)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  2. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  3. Posterior Femoral Single Limb Osteotomy for the Removal of Well-Fixed Modular Femoral Neck Components

    Directory of Open Access Journals (Sweden)

    Keith A Fehring

    2017-07-01

    Full Text Available Modular neck femoral components were introduced to optimize femoral neck anteversion, leg length, offset, and stability in total hip arthroplasty. However, concerns have been raised in recent years regarding early failure of these implants due to corrosion, pseudotumor, as well as fracture of the modular neck. Removing modular neck femoral implants is challenging as removal of the modular femoral neck leaves a proximally coated femoral stem level with the proximal bone of the femoral neck. We describe a posterior femoral single limb osteotomy  (posterior cut of an extended trochanteric osteotomy for the removal of a modular neck femoral component.

  4. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  5. Complete resolution of avascular necrosis of the human femoral head treated with adipose tissue-derived stem cells and platelet-rich plasma.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Jeon, Jeong Ho; Lee, Sang Hee

    2014-12-01

    We report a case of a 43-year-old man with early stage (stage 1) avascular necrosis (AVN) of the femoral head treated with adipose tissue-derived stem cells (ASCs) and platelet-rich plasma (PRP). ASC-containing stromal vascular fraction was mixed with PRP and hyaluronic acid. This mixture was then injected into the diseased hip under ultrasound guidance. The affected hip was reinjected weekly with additional PRP for 4 weeks. The patient was followed-up with sequential magnetic resonance imaging (MRI) scans at 3, 18, and 21 months after treatment, together with Visual Analogue Scale (VAS) Walking Index, Functional Rating Index, Harris Hip Score, and Range of Motion (ROM) assessments. The patient's severe hip pain was considerably improved at 3 months after treatment, with pain scores, ROM and MRI showing near complete resolution of AVN. Pain scores, ROM and MRI at 18 and 21 months after treatment indicated complete resolution of AVN. This case represents the first evidence of complete resolution of early stage AVN of the hip following treatment with ASCs/PRP. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  7. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Automated selection of trabecular bone regions in knee radiographs

    International Nuclear Information System (INIS)

    Podsiadlo, P.; Wolski, M.; Stachowiak, G. W.

    2008-01-01

    Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the ''gold standard'' that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8x12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI)=0.83 (medial) and 0.81 (lateral) and the offset=[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions

  9. Femoral revision with impaction allografting and an uncemented femoral component

    DEFF Research Database (Denmark)

    Nickelsen, T N; Erenbjerg, M; Retpen, J B

    2008-01-01

    A technique for uncemented revision of the femoral component which combines impaction allografting and the use of a long-stemmed proximally coated titanium prostheses (Bimetric, Biomet Inc.) is described. The results after a mean follow-up of 112 months are reported. From 1991 to 1995 femoral...... implants 88% had no pain, 10% had slight pain and only 2% had severe pain. Thirty-eight patients had radiographic signs of remodelling of the graft and/or cortical repair. In cases with a successful outcome, the results have been encouraging in relation to clinical performance, regeneration of bone...

  10. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice.

    Science.gov (United States)

    Le, Phuong T; Bishop, Kathleen A; Maridas, David E; Motyl, Katherine J; Brooks, Daniel J; Nagano, Kenichi; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2017-12-01

    Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow

  11. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    Science.gov (United States)

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  12. Validation of calcaneus trabecular microstructure measurements by HR-pQCT.

    Science.gov (United States)

    Metcalf, Louis M; Dall'Ara, Enrico; Paggiosi, Margaret A; Rochester, John R; Vilayphiou, Nicolas; Kemp, Graham J; McCloskey, Eugene V

    2018-01-01

    Assessment of calcaneus microstructure using high-resolution peripheral quantitative computed tomography (HR-pQCT) might be used to improve fracture risk predictions or to assess responses to pharmacological and physical interventions. To develop a standard clinical protocol for the calcaneus, we validated calcaneus trabecular microstructure measured by HR-pQCT against 'gold-standard' micro-CT measurements. Ten human cadaveric feet were scanned in situ using HR-pQCT (isotropic 82μm voxel size) at 100, 150 and 200ms integration times, and at 100ms integration time following removal of the calcaneus from the foot (ex vivo). Dissected portions of these bones were scanned using micro-computed tomography (micro-CT) at an isotropic 17.4μm voxel size. HR-pQCT images were rigidly registered to those obtained with micro-CT and divided into multiple 5mm sided cubes to evaluate and compare morphometric parameters between the modalities. Standard HR-pQCT measurements (derived bone volume fraction (BV/TV d ); trabecular number, Tb.N; derived trabecular thickness, Tb.Th d ; derived trabecular spacing, Tb.Sp d ) and corresponding micro-CT voxel-based measurements (BV/TV, Tb.N, Tb.Th, Tb.Sp) were compared. A total of 108 regions of interest were analysed across the 10 specimens. At all integration times HR-pQCT BV/TV d was strongly correlated with micro-CT BV/TV (r 2 =0.95-0.98, RMSE=1%), but BV/TV d was systematically lower than that measured by micro-CT (mean bias=5%). In contrast, HR-pQCT systematically overestimated Tb.N at all integration times; of the in situ scans, 200ms yielded the lowest mean bias and the strongest correlation with micro-CT (r 2 =0.61, RMSE=0.15mm -1 ). Regional analysis revealed greater accuracy for Tb.N in the superior regions of the calcaneus at all integration times in situ (mean bias=0.44-0.85mm -1 ; r 2 =0.70-0.88, pmicrostructure, particularly in the superior region of the calcaneus, can be assessed by HR-pQCT. The highest integration time

  13. Femoral neck radiography: effect of flexion on visualization

    International Nuclear Information System (INIS)

    Garry, S.C.; Jhangri, G.S.; Lambert, R.G.W.

    2005-01-01

    To determine whether flexion improves radiographic visualization of the femoral neck when the femur is externally rotated. Five human femora, with varying neck-shaft and anteversion angles, were measured and immobilized. Degree of flexion required to bring the femoral neck horizontal was measured, varying the rotation. Next, one bone was radiographed in 16 positions, varying rotation in 15 o and flexion in 10 o increments. Radiographs were presented in randomized blinded fashion to 15 staff radiologists for scoring of femoral neck visualization. Following this, all 5 bones were radiographed in 4 positions of rotation and at 0 o and 20 o flexion, and blinded randomized review of radiographs was repeated. Comparisons between angles and rotations were made using the Mann-Whitney test. The flexion angle required to bring the long axis of the femoral neck horizontal correlated directly with the degree of external rotation (ρ o internal rotation to 30 o external rotation (ρ o flexion was applied to bones in external rotation, visualization significantly improved at 15 o (ρ o (ρ o ) of flexion can significantly improve radiographic visualization. This manoeuvre could be useful for radiography of the femoral neck when initial radiographs are inadequate because of external rotation of the leg. (author)

  14. Comparison of different plasticity criteria for trabecular bone failure modelling

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej

    2008-01-01

    Roč. 8, č. 1 (2008), s. 10177-10178 ISSN 1617-7061. [Annual Meeting of International Association of Applied Mathematics and Mechanics. Bremen, 31.03.2008-04.04.2008] R&D Projects: GA ČR(CZ) GA103/05/1020 Institutional research plan: CEZ:AV0Z20710524 Keywords : nanoindentation * plasticity criteria * trabecular bone Subject RIV: FI - Traumatology, Orthopedics

  15. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    Science.gov (United States)

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    Science.gov (United States)

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

  17. Estudio de la microestructura femoral de pacientes con coxartrosis y con fractura de cadera mediante micro-TAC

    OpenAIRE

    Sainz-Aja Guerra, J.A.; Alonso, M.A.; Ferreño Blanco, D.; Pérez-Núñez, M.I.; Ruiz Martínez, E.; García-Ibarbia, C.; Casado del Prado, J.A.; Gutiérrez-Solana, F.; Riancho, J.A.

    2016-01-01

    La disminución de la densidad mineral ósea (DMO), es decir, del volumen de tejido óseo por unidad de volumen del esqueleto, es característica de la osteoporosis, mientras que se ha sugerido que la artrosis se acompaña de un aumento de la DMO a nivel local y sistémico. Para comprobar esta hipótesis analizamos mediante microTAC el hueso trabecular de la cabeza femoral de 10 pacientes con fractura de cadera y 9 con coxartrosis. El análisis no reveló diferencias significativas entre ambos grupos ...

  18. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Armas, Laura A G; Akhter, Mohammed P; Drincic, Andjela; Recker, Robert R

    2012-01-01

    Patients with Type 1 Diabetes Mellitus (DM) have markedly increased risk of fracture, but little is known about abnormalities in bone microarchitecture or remodeling properties that might give insight into the pathogenesis of skeletal fragility in these patients. We report here a case-control study comparing bone histomorphometric and micro-CT results from iliac biopsies in 18 otherwise healthy subjects with Type 1 Diabetes Mellitus with those from healthy age- and sex-matched non-diabetic control subjects. Five of the diabetics had histories of low-trauma fracture. Transilial bone biopsies were obtained after tetracycline labeling. The biopsy specimens were fixed, embedded, and scanned using a desktop μCT at 16 μm resolution. They were then sectioned and quantitative histomorphometry was performed as previously described by Recker et al. [1]. Two sections, >250 μm apart, were read from the central part of each biopsy. Overall there were no significant differences between diabetics and controls in histomorphometric or micro-CT measurements. However, fracturing diabetics had structural and dynamic trends different from nonfracturing diabetics by both methods of analysis. In conclusion, Type 1 Diabetes Mellitus does not result in abnormalities in bone histomorphometric or micro-CT variables in the absence of manifest complications from the diabetes. However, diabetics suffering fractures may have defects in their skeletal microarchitecture that may underlie the presence of excess skeletal fragility. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M. [Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143 (United States); University of Health Sciences, Medical Informatics and Technology, 6060 Hall (Austria); AO Development Institute, 7270 Davos Platz (Switzerland); Medical University Innsbruck, 6020 Innsbruck (Austria); Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143 (United States)

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2

  20. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    International Nuclear Information System (INIS)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M.

    2009-01-01

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R 2 =0.61 (MF

  1. The effect of core decompression on local expression of BMP-2, PPAR-γ and bone regeneration in the steroid-induced femoral head osteonecrosis

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-08-01

    Full Text Available Abstract Background To investigate the efficacy of the sole core decompression surgery for the treatment of steroid-induced femoral head osteonecrosis. Methods The model was established by administration of steroids in combination with horse serum. The rabbits with bilateral femoral head osteonecrosis were randomly selected to do the one side of core decompression. The other side was used as the sham. Quantitative RT-PCR and western blot techniques were used to measure the local expression of BMP-2 and PPAR-γ. Bone tissues from control and operation groups were histologically analyzed by H&E staining. The comparisons of the local expression of BMP-2 and PPAR-γ and the bone regeneration were further analyzed between different groups at each time point. Results The expression of BMP-2 in the osteonecrosis femoral head with or without decompression was significantly lower than that in normal animals. BMP-2 expression both showed the decreasing trend with the increased post-operation time. No significant difference of BMP-2 expression occurred between femoral head osteonecrosis with and without decompression. The PPAR-γ expression in the femoral head osteonecrosis with and without core decompression both was significantly higher than that in control. Its expression pattern showed a significantly increased trend with increased the post-operation time. However, there was no significant difference of PPAR-γ expression between the femoral head osteonecrosis with and without decompression at each time point. Histopathological analysis revealed that new trabecular bone and a large number of osteoblasts were observed in the steroid-induced femoral head osteonecrosis with lateral decompression at 8 weeks after surgery, but there still existed trabecular bone fractures and bone necrosis. Conclusions Although decompression takes partial effect in promoting bone regeneration in the early treatment of femoral head osteonecrosis, such an effect does not

  2. Scanning electron microscopy of the trabecular meshwork: Understanding the pathogenesis of primary angle closure glaucoma

    Directory of Open Access Journals (Sweden)

    Ramanjit Sihota

    2012-01-01

    Full Text Available Purpose: To study ultrastructural changes of the trabecular meshwork in acute and chronic primary angle closure glaucoma (PACG and primary open angle glaucoma (POAG eyes by scanning electron microscopy. Materials and Methods: Twenty-one trabecular meshwork surgical specimens from consecutive glaucomatous eyes after a trabeculectomy and five postmortem corneoscleral specimens were fixed immediately in Karnovsky solution. The tissues were washed in 0.1 M phosphate buffer saline, post-fixed in 1% osmium tetraoxide, dehydrated in acetone series (30-100%, dried and mounted. Results: Normal trabecular tissue showed well-defined, thin, cylindrical uveal trabecular beams with many large spaces, overlying flatter corneoscleral beams and numerous smaller spaces. In acute PACG eyes, the trabecular meshwork showed grossly swollen, irregular trabecular endothelial cells with intercellular and occasional basal separation with few spaces. Numerous activated macrophages, leucocytes and amorphous debris were present. Chronic PACG eyes had a few, thickened posterior uveal trabecular beams visible. A homogenous deposit covered the anterior uveal trabeculae and spaces. Converging, fan-shaped trabecular beam configuration corresponded to gonioscopic areas of peripheral anterior synechiae. In POAG eyes, anterior uveal trabecular beams were thin and strap-like, while those posteriorly were wide, with a homogenous deposit covering and bridging intertrabecular spaces, especially posteriorly. Underlying corneoscleral trabecular layers and spaces were visualized in some areas. Conclusions: In acute PACG a marked edema of the endothelium probably contributes for the acute and marked intraocular pressure (IOP elevation. Chronically raised IOP in chronic PACG and POAG probably results, at least in part, from decreased aqueous outflow secondary to widening and fusion of adjacent trabecular beams, together with the homogenous deposit enmeshing trabecular beams and spaces.

  3. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck.

    Science.gov (United States)

    Enríquez-Pérez, Iris A; Galindo-Ordoñez, Karla E; Pantoja-Ortíz, Christian E; Martínez-Martínez, Arisaí; Acosta-González, Rosa I; Muñoz-Islas, Enriqueta; Jiménez-Andrade, Juan M

    2017-08-10

    Type-1 diabetes mellitus (T1DM) results in loss of innervation in some tissues including epidermis and retina; however, the effect on bone innervation is unknown. Likewise, T1DM results in pathological bone loss and increased risk of fracture. Thus, we quantified the density of calcitonin gene-related peptide (CGRP + ) sensory and tyrosine hydroxylase (TH + ) sympathetic nerve fibers and determined the association between the innervation density and microarchitecture of trabecular bone at the mouse femoral neck. Ten weeks-old female mice received 5 daily administrations of streptozocin (i.p. 50mg/kg) or citrate (control group). Twenty weeks later, femurs were analyzed by microCT and processed for immunohistochemistry. Confocal microscopy analysis revealed that mice with T1DM had a significant loss of both CGRP + and TH + nerve fibers in the bone marrow at the femoral neck. Likewise, microCT analysis revealed a significant decrease in the trabecular bone mineral density (tBMD), bone volume/total volume ratio (BV/TB), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp) in mice with T1DM as compared to control mice. Analysis of correlation revealed a positive and significant association between density of CGRP + or TH + nerve fibers with tBMD, BV/TV, Tb.Th and Tb.Sp, but not with trabecular number (there was a positive association only for CGRP + ) and degree of anisotropy (DA). This study suggests an interaction between sensory and sympathetic nervous system and T1DM-induced bone loss. Identification of the factors involved in the loss of CGRP + sensory and TH + sympathetic fibers and how they regulate bone loss may result in new avenues to treat T1DM-related osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Automatic analysis of trabecular bone structure from knee MRI

    DEFF Research Database (Denmark)

    Marques, Joselene; Granlund, Rabia; Lillholm, Martin

    2012-01-01

    We investigated the feasibility of quantifying osteoarthritis (OA) by analysis of the trabecular bone structure in low-field knee MRI. Generic texture features were extracted from the images and subsequently selected by sequential floating forward selection (SFFS), following a fully automatic......, uncommitted machine-learning based framework. Six different classifiers were evaluated in cross-validation schemes and the results showed that the presence of OA can be quantified by a bone structure marker. The performance of the developed marker reached a generalization area-under-the-ROC (AUC) of 0...

  5. Trabecular metal acetabular components in primary total hip arthroplasty

    DEFF Research Database (Denmark)

    Laaksonen, Inari; Lorimer, Michelle; Gromov, Kirill

    2018-01-01

    Background and purpose - Trabecular metal (TM) cups have demonstrated favorable results in acetabular revision and their use in primary total hip arthroplasty (THA) is increasing. Some evidence show that TM cups might decrease periprosthetic infection (PPI) incidence. We compared the survivorship...... of TM cups with that of other uncemented cups in primary THA, and evaluated whether the use of TM cups is associated with a lower risk of PPI. Patients and methods - 10,113 primary THAs with TM cup and 85,596 THAs with other uncemented cups from 2 high-quality national arthroplasty registries were...

  6. Trabecular bone structure and strength - remodelling and repair

    DEFF Research Database (Denmark)

    Mosekilde, Lis; Ebbesen, Ebbe Nils; Erikstrup, Lise Tornvig

    2000-01-01

    vertical and horizontal struts reaching a certain magnitude and thereby inducing buckling under compression. 4) Microdamage and microfractures will occur - mainly in these very loaded vertical struts. The microfractures will be repaired by microcallus formation, and these calluses will later be removed...... can never be isolated in vivo, other factors need to be investigated: The interplay between the cortical shell and the trabecular network; transmission of load; the interplay between soft tissues (cartilage, connective tissue, muscle) and bone; the shock absorbing capacity of the discs...

  7. Hyperfunctioning Solid/Trabecular Follicular Carcinoma of the Thyroid Gland

    OpenAIRE

    Luca Giovanella; Fabrizio Fasolini; Sergio Suriano; Luca Mazzucchelli

    2010-01-01

    A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the 9 9 m T c -pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissu...

  8. Mammary and femoral hydatid cysts.

    Science.gov (United States)

    Shamim, Muhammad

    2010-08-01

    Hydatid cyst disease most commonly affects liver and lungs, but it can affect all viscera and soft tissues of the body. Simultaneous mammary and femoral hydatid cysts, without any other visceral involvement, are extremely rare. This is a case report of 25-years-old female, presenting with lump in left breast mimicking fibroadenoma and lump in right thigh mimicking fibroma. Both turned out to be hydatid cysts.

  9. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  10. Spread of Injectate Around Hip Articular Sensory Branches of the Femoral Nerve in Cadavers

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Greher, Manfred; Moriggl, Bernhard

    2018-01-01

    of the femoral nerve. Methods: Fifteen cadaver sides were injected with 5 mL dye in the iliopsoas plane guided by ultrasound. Dissection was performed to verify the spread of injectate around the hip articular branches of the femoral nerve. Results: In 10 dissections (67% [95% confidence interval: 38.......2-32%]) adhesions partially obstructed the spread of dye. Conclusion: An injection of 5 mL in the iliopsoas plane spreads around all hip articular branches of the femoral nerve in 10 of 15 cadaver sides. If these findings translate to living humans, injection of local anaesthetic into the iliopsoas plane could...

  11. Relationship of bony trabecular characteristics and age to bone mass

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Song, Young Han; Yoon, Young Nam; Lee, Wan; Lee, Byung Do

    2006-01-01

    Bony strength is dependent on bone mass and bony structure. So this study was designed to investigate the relationship between the bone mass and bony mass and bony trabecular characteristics. Study subjects were 51 females (average age 68.6 years) and 20 males (average age 66.4 years). Bony mineral density (BMD, grams/cm 2 ) of proximal femur was measured by a dual energy X-ray absorptiometry (DEXA). Regions of interest (ROIs) were selected from the digitized radiographs of proximal femur. A customized computer program processed morphologic operations (MO) of ROIs. 44 skeletal variables of MO were calculated from ROIs on the Ward's triangle and greater trochanter of femur. WHO BMD classes were predicted by MO variables of the same ROI. Classification and Regression Tree analysis was used for calculating weighted kappa values, sensitivity and specificity of MO. The discriminating factors of morphologic operation were branch point, branch point [per cm sq]. Age also played important role in distinguishing osteoporotic classes. The sensitivity of MO at Ward's triangle and Greater Trochanter was 91.8%, 65.6%, respectively. The specificity of MO was 100% at Ward's triangle and Greater Trochanter. Bony trabecular characteristics obtained using radiological bone morphometric analysis seem to be related to bone mass

  12. A Morphological Insight of the Femoral Vein

    Directory of Open Access Journals (Sweden)

    Ferreira AH

    2015-10-01

    Full Text Available A total of 13 cadavers (12 men and 1 women of different age group were used for the study with the purpose to determine the prevalence of femoral vein duplication. Lower limb regions (26 sides were carefully dissected as per the standard dissection procedure. Femoral vein (unitruncular was found in 96.15% of specimen. Bitruncular configurations (total bifidity was found in a male cadaver of 75 years of age (3.85%. In the right lower limb, 6.5 cms below the inguinal ligament the femoral vein - lateral ramus received the lateral circumflex femoral vein, and the medial circumflex femoral vein, and the lateral and medial ramii formed a common venous trunk. Knowledge of the truncular venous variations is important to recognize and avoid potential errors in diagnosis of deep venous thrombosis of the femoral vein, in the case of an occluded duplicated trunk.

  13. Suitability of texture features to assess changes in trabecular bone architecture

    DEFF Research Database (Denmark)

    Veenland, JF; Grashuis, JL; Weinans, H

    2002-01-01

    The purpose of this study was to determine the ability of texture features to assess changes in trabecular bone architecture as projected in radiographs. Micro-CT datasets of trabecular bone were processed to simulate different changes in architecture. Radiographs were simulated by projecting the...

  14. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    Science.gov (United States)

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.

  15. Evaluation of perfusion of the femoral head after femoral neck fracture using bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Satoshi; Ishido, Yasuhiro [Saiseikai Sendai Hospital, Kagoshima (Japan); Okano, Toshihiro [Ibusuki National Hospital, Kagoshima (Japan); Komiya, Setsuro [Kagoshima Univ. (Japan). Faculty of Medicine

    2002-09-01

    We treated 13 patients for femoral neck fracture. They consisted of 2 males and 11 females, and were classified according to Garden stage classification; Stage I, 3 cases; Stage II, 2 cases; Stage III, 2 cases; Stage IV, 4 cases. Two trochanteric fracture cases were used by control. We evaluated perfusion of the femoral head after femoral neck fracture using bone scintigraphy, which is considered useful for evaluation of perfusion of the femoral neck before operation. (author)

  16. Evaluation of perfusion of the femoral head after femoral neck fracture using bone scintigraphy

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Ishido, Yasuhiro; Okano, Toshihiro; Komiya, Setsuro

    2002-01-01

    We treated 13 patients for femoral neck fracture. They consisted of 2 males and 11 females, and were classified according to Garden stage classification; Stage I, 3 cases; Stage II, 2 cases; Stage III, 2 cases; Stage IV, 4 cases. Two trochanteric fracture cases were used by control. We evaluated perfusion of the femoral head after femoral neck fracture using bone scintigraphy, which is considered useful for evaluation of perfusion of the femoral neck before operation. (author)

  17. MR imaging in avascular necrosis of the femoral head: Histologic correlation

    International Nuclear Information System (INIS)

    Lang, P.; Genant, H.K.; Jergesen, H.E.; Chafetz, N.I.; Block, J.; Moseley, M.E.

    1987-01-01

    MR imaging at 2.0 T was performed in six intraoperatively obtained femoral head specimens with avascular necrosis. Contact radiography and gross morphologic and histologic sectioning were performed. A low-signal intensity ring or band surrounding a high-signal-intensity area represented the reactive tissue interface of mesenchymal infiltrate, amorphous cellular debris, and thickened trabecular bone adjacent to the necrotic zone. Segmental areas of decreased signal intensity were observed once the repair process had invaded the entire necrotic zone. Viable and necrotic marrow both demonstrated high signal intensities on short and long repetition time/echo time sequences. MR signal intensities are not tissue specific. In combination with anatomic configuration and location, however, prediction of tissue composition and stage of disease on which the mode of therapy is determined appears possible. MR imaging at 2.0 T provides improved marrow contrast in avascular necrosis

  18. The study of the hemodynamics in femoral heads by positron emission tomography

    International Nuclear Information System (INIS)

    Iwanami, Hisako

    1998-01-01

    Evaluation of the hemodynamics in bone tissue is important for clarifying the pathogenesis and pathology of necrotic disease. However, there is no established method of non-invasive quantitative measurement of the blood flow in bone tissue. In addition, the blood volume representing the vascular bed volume is difficult to measure and remains unclear. To evaluate the applicability of positron emission tomography (PET) to the measurement of the blood flow and blood volume in bone tissue, we measured the blood flow and blood volume in the femoral head and evaluated age-associated hemodynamic changes in healthy adult males. The subjects were 16 healthy adult males (31 hip joints) and 1 male (2 hip joints) with trauma who underwent unilateral prosthetic replacement of the femoral head. Their age ranged from 20 to 78 years (mean, 42 years). The blood flow was measured by the dynamic study method using H 2 15 O while the blood volume was measured by the steady state method using C 15 O. The blood flow was 1.68-6.47 ml/min./100 g (mean±SD, 3.49±1.28), and the blood volume was 1.67-6.03 ml/100 ml (mean±SD, 2.99±1.25). With age the blood flow significantly decreased (p<0.01), and the blood volume significantly increased (p<0.05). Our results showed that the blood flow and blood volume in bone tissue can be measured in vivo by PET. Both the blood flow and blood volume in the femoral head considerably differed among individuals. The age-related changes in the femoral head may result from decreased trabecular bone with age and its replacement by blood. Though additional cases should be evaluated, PET is adequately applicable to experimental and clinical studies in orthopedic surgery. (author)

  19. Fixation strength of a polyetheretherketone femoral component in total knee arthroplasty.

    Science.gov (United States)

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-11-01

    Introducing polyetheretherketone (PEEK) polymer as a material for femoral components in total knee arthroplasty (TKA) could potentially lead to a reduction of the cemented fixation strength. A PEEK implant is more likely to deform under high loads, rendering geometrical locking features less effective. Fixation strength may be enhanced by adding more undercuts or specific surface treatments. The aim of this study is to measure the initial fixation strength and investigate the associated failure patterns of three different iterations of PEEK-OPTIMA ® implants compared with a Cobalt-Chromium (CoCr) component. Femoral components were cemented onto trabecular bone analogue foam blocks and preconditioned with 86,400 cycles of compressive loading (2600 N-260 N at 1 Hz). They were then extracted while the force was measured and the initial failure mechanism was recorded. Four groups were compared: CoCr, regular PEEK, PEEK with an enhanced cement-bonding surface and the latter with additional surface primer. The mean pull-off forces for the four groups were 3814 N, 688 N, 2525 N and 2552 N, respectively. The initial failure patterns for groups 1, 3 and 4 were the same; posterior condylar foam fracture and cement-bone debonding. Implants from group 2 failed at the cement-implant interface. This study has shown that a PEEK-OPTIMA ® femoral TKA component with enhanced macro- and microtexture is able to replicate the main failure mechanism of a conventional CoCr femoral implant. The fixation strength is lower than for a CoCr implant, but substantially higher than loads occurring under in-vivo conditions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. New quantitative ultrasound techniques for bone analysis at the distal radius in hip fracture cases: differences between femoral neck and trochanteric fractures.

    Science.gov (United States)

    Horii, Motoyuki; Fujiwara, Hiroyoshi; Sakai, Ryo; Sawada, Koshiro; Mikami, Yasuo; Toyama, Syogo; Ozaki, Etsuko; Kuriyama, Nagato; Kurokawa, Masao; Kubo, Toshikazu

    2017-01-01

    Ample evidence on etiological and pathological differences between femoral neck and trochanteric fracture cases suggests the possibility of individualized treatment. There are many issues related to areal bone mineral density and other quantitative computed tomography parameters of the proximal femur. Although osteoporosis is a systemic problem, little has been reported regarding differences in bone structural parameters, including bone mineral density, between them in regions other than the proximal femur. Participants were consecutive female patients >50 years of age admitted to the Saiseikai Suita Hospital (Osaka prefecture, Japan) for their first hip fracture between January 2012 and September 2014. Cortical thickness (CoTh, mm), volumetric trabecular bone mineral density (TBD, mg/cm 3 ), and elastic modulus of trabecular bone (EMTb, GPa) were obtained as the new QUS parameters using the LD-100 system (Oyo Electric, Kyoto, Japan). The mean values of these parameters were compared between femoral neck and trochanteric fracture cases. In addition, correlations between age and each QUS parameter were investigated for each fracture type. A receiver operating characteristic (ROC) curve analysis was performed to examine the degree of effect each parameter on the fracture types. The area under the curve (AUC) for each parameter was compared to the AUC for age. There were 63 cases of femoral neck fracture (mean age, 78.2 years) and 37 cases of trochanteric fracture (mean age, 85.9 years). Mean TBD and EMTb were significantly higher for femoral neck fractures. There were significant negative correlations between QUS parameters and age for femoral neck fractures (P fractures were above those for trochanteric fractures for TBD and EMTb. AUCs were 0.72 for age, and 0.61, 0.65, and 0.65 for CoTh, TBD, and EMTb, respectively. The new QUS parameters indicated that TR fracture cases were more osteoporotic than were FN fracture cases, even at the distal radius. There might be

  1. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men.

    Science.gov (United States)

    Thomsen, Jesper Skovhus; Niklassen, Andreas Steenholt; Ebbesen, Ebbe Nils; Brüel, Annemarie

    2013-11-01

    The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory

  2. Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling

    Directory of Open Access Journals (Sweden)

    Hunter KS

    2014-03-01

    Full Text Available Kendall S Hunter,1 Todd Fjield,2 Hal Heitzmann,2 Robin Shandas,1 Malik Y Kahook3 1Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; 2Glaukos Corporation, Laguna Hills, CA, USA; 3University of Colorado Hospital Eye Center, Aurora, CO, USA Abstract: Micro-invasive glaucoma surgery with the Glaukos iStent® or iStent inject® (Glaukos Corporation, Laguna Hills, CA, USA is intended to create a bypass through the trabecular meshwork to Schlemm's canal to improve aqueous outflow through the natural physiologic pathway. While the iStent devices have been evaluated in ex vivo anterior segment models, they have not previously been evaluated in whole eye perfusion models nor characterized by computational fluid dynamics. Intraocular pressure (IOP reduction with the iStent was evaluated in an ex vivo whole human eye perfusion model. Numerical modeling, including computational fluid dynamics, was used to evaluate the flow through the stents over physiologically relevant boundary conditions. In the ex vivo model, a single iStent reduced IOP by 6.0 mmHg from baseline, and addition of a second iStent further lowered IOP by 2.9 mmHg, for a total IOP reduction of 8.9 mmHg. Computational modeling showed that simulated flow through the iStent or iStent inject is smooth and laminar at physiological flow rates. Each stent was computed to have a negligible flow resistance consistent with an expected significant decrease in IOP. The present perfusion results agree with prior clinical and laboratory studies to show that both iStent and iStent inject therapies are potentially titratable, providing clinicians with the opportunity to achieve lower target IOPs by implanting additional stents. Keywords: glaucoma, iStent, trabecular bypass, intraocular pressure, ab-interno, CFD

  3. Shape and Site Dependent in Vivo Degradation of Mg-Zn Pins in Rabbit Femoral Condyle

    Directory of Open Access Journals (Sweden)

    Pei Han

    2014-02-01

    Full Text Available A type of specially designed pin model of Mg-Zn alloy was implanted into the full thickness of lesions of New Zealand rabbits’ femoral condyles. The recovery progress, outer surface healing and in vivo degradation were characterized by various methods including radiographs, Micro-CT scan with surface rendering, SEM (scanning electron microscope with EDX (Energy Dispersive X-ray analysis and so on. The in vivo results suggested that a few but not sufficient bridges for holding force were formed between the bone and the implant if there was a preexisting gap between them. The rapid degradation of the implantation in the condyle would result in the appearance of cavities. Morphological evaluation of the specially designed pins indicated that the cusp was the most vulnerable part during degradation. Furthermore, different implantation sites with distinct components and biological functions can lead to different degradation rates of Mg-Zn alloy. The rate of Mg-Zn alloy decreases in the following order: implantation into soft tissue, less trabecular bone, more trabecular bone, and cortical bone. Because of the complexities of in vivo degradation, it is necessary for the design of biomedical Mg-Zn devices to take into consideration the implantation sites used in clinics.

  4. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck

    OpenAIRE

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L.; Liu, Yunlong; Edenberg, Howard J.; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.

    2008-01-01

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure an...

  5. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  6. Ethnic differences in trabecular meshwork height by optical coherence tomography.

    Science.gov (United States)

    Chen, Rebecca I; Barbosa, Diego T; Hsu, Chi-Hsin; Porco, Travis C; Lin, Shan C

    2015-04-01

    Differences in ocular anatomy may contribute to ethnic differences in glaucoma risk. Because the trabecular meshwork (TM) plays an important role in aqueous outflow, its anatomy in relation to at-risk populations may provide insight into a potential contributor to elevated intraocular pressure and thus to probability of glaucoma development. To investigate whether differences exist in TM height between ethnic groups. This prospective study took place from January 1, 2012, to December 31, 2013. Adult patients who self-reported as being of white, Asian, Hispanic, or African American ethnicity were recruited from ophthalmology clinics at the University of California, San Francisco. The TM height was assessed using spectral-domain anterior segment optical coherence tomography. Trabecular meshwork height was measured from the scleral spur to the Schwalbe line. We hypothesized that ethnicities with a higher prevalence of glaucoma would tend to have shorter TM heights. We collected data from 460 eyes of 291 participants after excluding 34 optical coherence tomographic scans owing to poor image quality. The final sample was 32.2% white, 45.1% Asian, 10.5% African American, and 12.1% Hispanic. There were 64.2% women, and the mean age was 68.1 years. The mean (SD) TM height among all eyes included in the study was 836 (131) μm. The mean (SD) TM height was characterized among white (851 [131] μm), Asian (843 [126] μm), Hispanic (822 [147] μm), and African American (771 [118] μm) persons. Ethnicity was not associated with TM height overall (P = .23, linear mixed regression model). However, the TM heights of African American participants (771 μm) were shorter than those of white (851 μm; adjusted difference 95% CI, -119.8 to -8.1; P = .02) and Asian (843 μm; adjusted difference 95% CI, -117.4 to -10.8; P = .02) participants. Although TM height is not associated with ethnicity overall, African American individuals have shorter TM heights compared with Asian and white

  7. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit.

    Science.gov (United States)

    Li, Haile; Liu, Danping; Li, Chen; Zhou, Shanjian; Tian, Dachuan; Xiao, Dawei; Zhang, Huan; Gao, Feng; Huang, Jianhua

    2017-12-01

    Mesenchymal stem cells (MSCs)-derived exosomes exhibit protective effects on damaged or diseased tissues. Hypoxia-inducible factor 1α (HIF-1α) plays a critical role in bone development. However, HIF-1α is easily biodegradable under normoxic conditions. The bone-marrow-derived mesenchymal stem cells (BMSCs) were transfected with adenovirus carrying triple point-mutations (amino acids 402, 564, and 803) in the HIF-1α coding sequence (CDS). The mutant HIF-1α can efficiently express functional proteins under normoxic conditions. To date, no study has reported the role of exosomes secreted by mutant HIF-1α modified BMSCs in the recovery of the early steroid-induced avascular necrosis of femoral head (SANFH). In this study, we firstly analyzed exosomes derived from BMSCs modified by mutant (BMSC-Exos MU ) or wild-type HIF-1α (BMSC-Exos WT ). In vitro, we investigated the osteogenic differentiation capacity of BMSCs modified by BMSC-Exos MU or BMSC-Exos WT , and the angiogenesis effects of BMSC-Exos MU and BMSC-Exos WT on human umbilical vein endothelial cells (HUVECs). Besides, the healing of the femoral head was also assessed in vivo. We found that the potential of osteogenic differentiation of BMSCs treated with BMSC-Exos MU was higher than the wild-type group in vitro. In addition, BMSC-Exos MU stimulated the proliferation, migration, and tube formation of HUVECs in a dose-dependent manner. Compared with the BMSC-Exos WT or PBS control group, the injection of BMSC-Exos MU into the necrosis region markedly accelerated the bone regeneration and angiogenesis, which were indicated by the increased trabecular reconstruction and microvascular density. Taken together, our data suggest that BMSC-Exos MU facilitates the repair of SANFH by enhancing osteogenesis and angiogenesis. © 2017 International Federation for Cell Biology.

  8. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  9. Femoral head allograft disinfection system using moderate heat

    International Nuclear Information System (INIS)

    Knaepler, H.; Von Garrel, T.

    1999-01-01

    The employment of a reliable thermal viral inactivation process, which minimally manipulates tissues, for surgically retrieved femoral head allografts addresses the increased concerns with virus transmissibility while minimizing the loss of biological properties. The newest European and German surgical bone banking guidelines have incorporated the use of independently validated then-nal viral inactivation methods in place of repeat serological testing of donor. Our investigations have shown that heat treatment at 80 degree C for a minimum of 10 minutes provides safe, good quality cancellous bone allografts and increases the cost-effectiveness and simplicity of managing a hospital frozen femoral head bone bank. Human femoral head centers were contaminated with different vegetative bacterial and viral suspensions. A core temperature of 80 degree C for 10 minutes was sufficient to fully inactivate 3 x 106 ml Staphylococcus aureus and Streptococcus faecalis, and >5 loglo steps of cytomeglia (herpes group), polio (enterovirus), and yellow fever (arbovirus) viruses. A one hour treatment in a water bath set at 80 degree sufficient to fully inactivate E. coli, proteus vulgaris, and Pseudomonas aerog. vegetative suspensions; 20 minutes was sufficient to fully inactivate the D antigen (rhesus factor) but had no effect on A or B antigens. Several biomechanical and biological properties of bone following a one hour treatment in a water bath set at 80 degree C were investigated. Employing compression and tension tests, 80 degree C treated human and porcine cancellous bone blocks showed reductions in properties ranging from 8-19% compared to untreated control groups. Osteointegration at 3 months following treatment of explanted and then reimplanted autograft rat diaphyseal segment was 15% less than untreated controls. Subsequently, a thermal disinfection system for femoral heads from living donors (Lobator Marburg Bone Bank System, Telos GmbH, Hungen, Germany) was developed. A

  10. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  11. Clinical Application of Solid Model Based on Trabecular Tibia Bone CT Images Created by 3D Printer.

    Science.gov (United States)

    Cho, Jaemo; Park, Chan-Soo; Kim, Yeoun-Jae; Kim, Kwang Gi

    2015-07-01

    The aim of this work is to use a 3D solid model to predict the mechanical loads of human bone fracture risk associated with bone disease conditions according to biomechanical engineering parameters. We used special image processing tools for image segmentation and three-dimensional (3D) reconstruction to generate meshes, which are necessary for the production of a solid model with a 3D printer from computed tomography (CT) images of the human tibia's trabecular and cortical bones. We examined the defects of the mechanism for the tibia's trabecular bones. Image processing tools and segmentation techniques were used to analyze bone structures and produce a solid model with a 3D printer. These days, bio-imaging (CT and magnetic resonance imaging) devices are able to display and reconstruct 3D anatomical details, and diagnostics are becoming increasingly vital to the quality of patient treatment planning and clinical treatment. Furthermore, radiographic images are being used to study biomechanical systems with several aims, namely, to describe and simulate the mechanical behavior of certain anatomical systems, to analyze pathological bone conditions, to study tissues structure and properties, and to create a solid model using a 3D printer to support surgical planning and reduce experimental costs. These days, research using image processing tools and segmentation techniques to analyze bone structures to produce a solid model with a 3D printer is rapidly becoming very important.

  12. Treatment of neglected femoral neck fracture

    Directory of Open Access Journals (Sweden)

    Anil K Jain

    2015-01-01

    Full Text Available Intra-capsular femoral neck fractures are seen commonly in elderly people following a low energy trauma. Femoral neck fracture has a devastating effect on the blood supply of the femoral head, which is directly proportional to the severity of trauma and displacement of the fracture. Various authors have described a wide array of options for treatment of neglected/nonunion (NU femoral neck fracture. There is lack of consensus in general, regarding the best option. This Instructional course article is an analysis of available treatment options used for neglected femoral neck fracture in the literature and attempt to suggest treatment guides for neglected femoral neck fracture. We conducted the "Pubmed" search with the keywords "NU femoral neck fracture and/or neglected femoral neck fracture, muscle-pedicle bone graft in femoral neck fracture, fibular graft in femoral neck fracture and valgus osteotomy in femoral neck fracture." A total of 203 print articles were obtained as the search result. Thirty three articles were included in the analysis and were categorized into four subgroups based on treatment options. (a treated by muscle-pedicle bone grafting (MPBG, (b closed/open reduction internal fixation and fibular grafting (c open reduction and internal fixation with valgus osteotomy, (d miscellaneous procedures. The data was pooled from all groups for mean neglect, the type of study (prospective or retrospective, classification used, procedure performed, mean followup available, outcome, complications, and reoperation if any. The outcome of neglected femoral neck fracture depends on the duration of neglect, as the changes occurring in the fracture area and fracture fragments decides the need and type of biological stimulus required for fracture union. In stage I and stage II (Sandhu′s staging neglected femoral neck fracture osteosynthesis with open reduction and bone grafting with MPBG or Valgus Osteotomy achieves fracture union in almost 90

  13. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  14. Subchondral insufficiency fractures of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.; Cassar-Pullicino, V.N. [Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG, Shropshire (United Kingdom); Darby, A.J. [Department of Pathology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG, Shropshire (United Kingdom)

    2004-02-01

    The aim of this study was to increase awareness of, and to show the variable clinical and radiological features of, subchondral insufficiency fractures of the femoral head. The clinical and radiological findings in 7 patients with subchondral insufficiency fractures of the femoral head were reviewed retrospectively. The diagnosis was confirmed histologically in 4 patients. Radiographs were performed in all patients, MRI in 5 and scintigraphy in 4 patients. Radiographs showed varying degrees of femoral head collapse in 4 patients. In the remaining 3 patients radiographs showed a normal femoral head, regional osteoporosis and focal sclerosis, respectively. Magnetic resonance imaging showed a low-signal band on T1- and T2-weighted images in the subchondral bone adjacent or parallel to the articular surface associated with bone marrow oedema. Scintigraphy showed increased uptake in the femoral head. Insufficiency fractures of the femoral head are easily overlooked or confused with avascular necrosis and, when there is significant joint destruction, osteoarthritis. Unsuspected insufficiency fracture of the femoral head can lead to significant and rapid loss of bone stock in osteoporotic patients waiting for arthroplasty for osteoarthritis. Increased awareness of this condition will hopefully lead to earlier diagnosis and a successful outcome of conservative treatment. (orig.)

  15. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    Science.gov (United States)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  16. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    Science.gov (United States)

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography

    International Nuclear Information System (INIS)

    Singer, K.P.; Breidahl, P.D.; Royal Perth Hospital

    1990-01-01

    Quantitative computed tomography was used to assess vertebral trabecular density in 26 post-mortem spines from individuals aged between 14 and 80 years. All vertebrae from T10 to L1 were scanned transversely near the mid-vertebral level with calculations of trabecular density in HUs averaged and referenced to a mineral equivalent phantom. An age-related decline in trabecular density was recorded (r=0.55, p<0.0001). Density measures from the anterior aspect of the vertebral body were significantly greater than from postero-lateral regions. From T10 to L1, there was a significant decrease in trabecular density, whereas density measures multiplied by vertebral body cross-sectional area were constant. Predictions of vertebral compressive strength using quantitative computed tomography may become more accurate by increasing the sampling area per scan and including vertebral body cross-sectional area as part of the radiologic assessment. (orig.)

  18. Multiobjective topology optimization of trabecular Bone Structure in the spine and the femur: Implications for biomimcry

    Science.gov (United States)

    Elbanna, Ahmed; Peetz, Darin

    Bone is classically considered to be a self-optimizing structure in accordance with Wolff's law. However, while the structure's ability to adapt to changing stress patterns has been well documented, whether it is fully optimal for compliance is less certain (Sigmund, 2002). Given the complexity of many biological systems, it is expected that this structure serves several purposes. We present a multi-objective topology optimization formulation for trabecular bone in the human body at two locations: the vertebrae and the femur. We account for the effect of different conflicting objectives such as maximization of stiffness, maximization of surface area, and minimization of buckling susceptibility. Our formulation enables us to determine the relative role of each of these objective in optimizing the structure. Moreover, it provides an opportunity to explore what structural features have to evolve to meet a certain objective requirements that may have been absent otherwise. For example, inclusion of stability considerations introduce numerous horizontal and diagonal members in the topology in the case of human vertebrae under vertical loading. However, the stability is found to play a lesser role in the case of the femur bone optimization. Our formulation enables investigation of bone adaptation at different locations of the body as well as under different loading and boundary conditions (e.g. healthy and diseased discs for the case of the spine). We discuss the implications of our findings on developing design rules for bio-inspired and bio-mimetic architectured materials. National Science Foundation: CMMI.

  19. Frequency of ipsilateral femoral neck fractures in patients with ...

    African Journals Online (AJOL)

    Background: Ipsilateral associated femoral neck and shaft fractures are reported to occur in 2.5-6% of all femoral shaft fractures. Objective: To establish the frequency of ipsilateral femoral neck fractures amongst all patients presenting with femoral shaft fractures in Mulago Hospital. Methodology: This was a descriptive ...

  20. Pregnant ewes exposed to multiple endocrine disrupting pollutants through sewage sludge-fertilized pasture show an anti-estrogenic effect in their trabecular bone

    Energy Technology Data Exchange (ETDEWEB)

    Lind, P. Monica, E-mail: Monica.Lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Ullerakersvaegen 40, 751 85 Uppsala (Sweden); Oberg, Denise [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Larsson, Sune [Department of Orthopaedics, Uppsala University, Uppsala (Sweden); Kyle, Carol E. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Orberg, Jan [Department of Environmental Toxicology, Uppsala University, Uppsala (Sweden); Rhind, Stewart M. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)

    2010-05-01

    Pregnant ewes were maintained on pastures fertilized, twice yearly, with either sewage sludge (2.25 tonnes dry matter/ha; Treated; T) or inorganic fertilizer containing equivalent amounts of nitrogen (Control; C), to determine effects on maternal and fetal bone structures, density and mechanical properties of exposure to environmental concentrations of multiple endocrine disrupting compounds (EDCs) and heavy metal pollutants. The ewes were maintained on the respective pastures from the age of about 8 months until they were 4-6 years of age and they were slaughtered at 110 d gestation. Metaphyseal parts of adult ewe femurs exhibited a significantly reduced mean, total cross sectional area (CSA, - 4%; p < 0.05), lower trabecular bone mineral content (BMC, mg/mm; - 18%; p < 0.05), trabecular bone mineral density (BMD, mg/cm{sup 3}, - 8.0%; p < 0.05) and trabecular CSA, mm{sup 2}, - 11.1%; p < 0.05) in T compared with C animals. Femurs of T ewes were stronger than those of C ewes but this may reflect greater body weights. At the mid-diaphyseal part of the fetal bones, there was a reduction in endosteal circumference (- 6.7%, p < 0.05) and marrow cavity area (- 13.8%, p < 0.05) in the female T fetuses compared with female C fetuses. In the male fetuses the mid-diaphyseal part total bone mineral content was higher (+ 3.0%, p < 0.05) in T than in C animals. No treatment difference in biomechanical bending was detected in the fetuses. It is concluded that ewes grazing pasture fertilized with sewage sludge exhibited an anti-estrogenic effect on their trabecular bone in the form of reduced mineral content and density, despite increased body weight. It is suggested that human exposure to low levels of multiple EDCs may have implications for bone structure and human health.

  1. High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats.

    Science.gov (United States)

    Thongchote, Kanogwun; Charoenphandhu, Narattaphol; Krishnamra, Nateetip

    2008-02-01

    High physiological prolactin (PRL) stimulated intestinal calcium absorption and renal calcium uptake in mammals. Previous histomorphometric study revealed a significant increase in bone turnover in the trabecular part of the PRL-exposed long (cortical) bone; however, whole-bone densitometric analysis was unable to demonstrate such effect. We therefore studied differential changes in bone mineral density (BMD) and contents (BMC) of the femoral diaphysis and metaphysis in adult female rats exposed to high PRL induced by anterior pituitary (AP) transplantation. The estrogen-dependent effects of PRL on the femur were also investigated. We found that chronic exposure to PRL had no effect on BMD or BMC of the femoral diaphysis, which represented the cortical part of the long bone. It is interesting that 7 weeks after an AP transplantation, BMD and BMC of the femoral metaphysis were significantly decreased by 8% and 14%, respectively. Ovariectomy (Ovx) for 2, 5, and 7 weeks also decreased BMD and BMC in the femoral metaphysis, but not in the diaphysis. However, the AP transplantation plus Ovx (AP+Ovx) produced no additive effects. Nevertheless, 2.5 microg/kg 17beta-estradiol (E2) supplementation abolished the osteopenic effects of both Ovx and AP+Ovx on the femur. As for the L5-6 vertebrae, BMD and BMC were not affected by PRL exposure, but were significantly decreased by Ovx and AP+Ovx, and such decreases were completely prevented by E2 supplementation. It could be concluded that high physiological PRL induced a significant osteopenia in the trabecular part, i.e., the metaphysis, of the femora of adult female rats in an estrogen-dependent manner. Since PRL had no detectable effect on the vertebrae, the effects of PRL on bone appeared to be site-specific.

  2. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  3. Subtrochanteric femoral fracture during trochanteric nailing for the treatment of femoral shaft fracture.

    Science.gov (United States)

    Yun, Ho Hyun; Oh, Chi Hun; Yi, Ju Won

    2013-09-01

    We report on three cases of subtrochanteric femoral fractures during trochanteric intramedullary nailing for the treatment of femoral shaft fractures. Trochanteric intramedullary nails, which have a proximal lateral bend, are specifically designed for trochanteric insertion. When combined with the modified insertion technique, trochanteric intramedullary nails reduce iatrogenic fracture comminution and varus malalignment. We herein describe technical aspects of trochanteric intramedullary nailing for femoral shaft fractures to improve its application and prevent implant-derived complications.

  4. Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation.

    Science.gov (United States)

    Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek

    2018-05-04

    Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Spatial Differences in the Distribution of Bone Between Femoral Neck and Trochanteric Fractures.

    Science.gov (United States)

    Yu, Aihong; Carballido-Gamio, Julio; Wang, Ling; Lang, Thomas F; Su, Yongbin; Wu, Xinbao; Wang, Manyi; Wei, Jie; Yi, Chen; Cheng, Xiaoguang

    2017-08-01

    There is little knowledge about the spatial distribution differences in volumetric bone mineral density and cortical bone structure at the proximal femur between femoral neck fractures and trochanteric fractures. In this case-control study, a total of 93 women with fragility hip fractures, 72 with femoral neck fractures (mean ± SD age: 70.6 ± 12.7 years) and 21 with trochanteric fractures (75.6 ± 9.3 years), and 50 control subjects (63.7 ± 7.0 years) were included for the comparisons. Differences in the spatial distributions of volumetric bone mineral density, cortical bone thickness, cortical volumetric bone mineral density, and volumetric bone mineral density in a layer adjacent to the endosteal surface were investigated using voxel-based morphometry (VBM) and surface-based statistical parametric mapping (SPM). We compared these spatial distributions between controls and both types of fracture, and between the two types of fracture. Using VBM, we found spatially heterogeneous volumetric bone mineral density differences between control subjects and subjects with hip fracture that varied by fracture type. Interestingly, femoral neck fracture subjects, but not subjects with trochanteric fracture, showed significantly lower volumetric bone mineral density in the superior aspect of the femoral neck compared with controls. Using surface-based SPM, we found that compared with controls, both fracture types showed thinner cortices in regions in agreement with the type of fracture. Most outcomes of cortical and endocortical volumetric bone mineral density comparisons were consistent with VBM results. Our results suggest: 1) that the spatial distribution of trabecular volumetric bone mineral density might play a significant role in hip fracture; 2) that focal cortical bone thinning might be more relevant in femoral neck fractures; and 3) that areas of reduced cortical and endocortical volumetric bone mineral density might be more relevant for

  6. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico); Garipov, R., E-mail: ruslan.garipov@mrsolutions.co.uk [MR Solutions Ltd, Surrey (United Kingdom); Rodríguez, A. O., E-mail: arog@xanum.uam.mx [Departamento Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, México, DF 09340 (Mexico)

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  7. Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone

    Science.gov (United States)

    Amouriq, Yves; Evenou, Pierre; Arlicot, Aurore; Normand, Nicolas; Layrolle, Pierre; Weiss, Pierre; Guédon, Jean-Pierre

    2010-03-01

    For some authors trabecular bone is highly visible in intraoral radiographs. For other authors, the observed intrabony trabecular pattern is a representation of only the endosteal surface of cortical bone, not of intermedullary striae. The purpose of this preliminary study was to investigate the true anatomical structures that are visible in routine dental radiographs and classically denoted trabecular bone. This is a major point for bone texture analysis on radiographs. Computed radiography (CR) images of dog mandible section in molar region were compared with simulations calculated from high-resolution micro-CT volumes. Calculated simulations were obtained using the Mojette Transform. By digitally editing the CT volume, the simulations were separated into trabecular and cortical components into a region of interest. Different images were compared and correlated, some bone micro-architecture parameters calculated. A high correlation was found between computed radiographs and calculated simulations from micro-CT. The Mojette transform was successful to obtain high quality images. Cortical bone did not contribute to change in a major way simulated images. These first results imply that intrabony trabecular pattern observed on radiographs can not only be a representation of the cortical bone endosteal surface and that trabecular bone is highly visible in intraoral radiographs.

  8. Estimation of trabecular bone parameters in children from multisequence MRI using texture-based regression

    Energy Technology Data Exchange (ETDEWEB)

    Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné [Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Armitage, Paul [The Academic Unit of Radiology, The University of Sheffield, Sheffield S10 2JF (United Kingdom); Whitby, Elspeth [The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield S10 2SF (United Kingdom); King, David [The Academic Unit of Child Health, The University of Sheffield, Sheffield S10 2TH (United Kingdom); Dimitri, Paul [The Mellanby Centre for Bone Research, The University of Sheffield, Sheffield S10 2RX (United Kingdom); Frangi, Alejandro F. [Center for Computational Imaging and Simulation Technologies in Biomedicine, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2016-06-15

    Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by using a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.

  9. Assessment of spinal trabecular bone by quantitative computed tomography

    International Nuclear Information System (INIS)

    Soya, Toshio; Seto, Hikaru; Futatsuya, Ryusuke; Kamei, Tetsuya; Kakishita, Masao

    1987-01-01

    151 normal values of spinal trabecular bone mineral content (BMC) for 79 men and 72 women were studied by single energy quantitative computed tomography (QCT). The BMC value has a great relation to age. It has a maximum in the age of 20 years in men and in the age of 20 ∼ 30 years in women, and decreases gradually after these ages with a more rapid reduction in women (1.1 % per year in men and 1.6 % per year in women). In younger generation (under 50 years of age) the average value of the BMC is 180 mg/ml K 2 HPO 4 equivalent in men, 189 mg/ml in women, and in older generation, is 123 mg/ml and 112 mg/ml respectively. In the individual case, the fluctuation of inter-vertebrae (L1, L2 and L3) has large variation, therefore, to estimate one's BMC enoughly the measurement of at least three vertebrae should be done. There found no physical factor which attributes to the BMC value. It is suggested that the BMC are affected by age and sex. (author)

  10. Assessment of spinal trabecular bone by quantitative CT

    International Nuclear Information System (INIS)

    Adachi, Toshiki; Kozakura, Yoshihiro; Kato, Isamu; Yamamoto, Yoshio

    1988-01-01

    127 normal values of spinal trabecular bone mineral content (BMC) for 67 males (age range : 20 ∼ 77) and 60 females (age range : 23 ∼ 76) were studied by quantitative computed tomography (QCT). We have measured L1, L2 and L3 vertebrae, but there is no significant difference between L1, L2 and L3 BMC, so we caliculated the individual BMC from the average of the three vertebrae data. The BMC value was found to be greatly enfluenced by age. Its maximum at the age of 20 years for males and females, and decreases gradually with an increase in age with a much more reduction seen in the females. The mean value of BMC for the males was approximately 171 mg/ml K 2 HPO 4 equivalent to the 20 - 40 age range years and the females was approximately 183 mg/ml, so that by the age 70, the males were reduced by 35 % to approximately 110 mg/ml, the females were reduced by 50 % to approximately 92 mg/ml. The interrelation was analyzed by using a cubic regression study which revealed an adequate correlation (r = 0.77 in the males, r = 0.85 in the females) between BMC and age. (author)

  11. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  12. Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan; Goo, Jin Mo [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Moon Kyung Chul [Dept. of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); An, Sang Bu [Dept. of radiology, National Cancer Center, Goyang (Korea, Republic of); Kim, Kwang Gi [Dept. of Biomedical Engineering, Division of Basic and Applied Sciences, National Cancer Center, Goyang (Korea, Republic of)

    2011-05-15

    To evaluate the reproducibility of 3-dimensional histomorphometry for the microarchitecture analysis of trabecular bone parameters using multidetector computed tomography (MDCT). Thirty-six specimens from porcine vertebral bodies were imaged five times with a 64- detector row MDCT system using the same scan protocols. Locations of the specimens were nearly identical through the scans. Three-dimensional structural parameters of trabecular bone were derived from the five data sets using image analyzing software. The features measured by the analysis programs were trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index. The structural trabecular parameters showed excellent reproducibility through repeated scanning. Intraclass correlation coefficients of all seven structural parameters were in the range of 0.998 to 1.000. Coefficients of variation of the six structural parameters, excluding structural model index, were not over 1.6%. The measurement of the trabecular structural parameters using multidetector CT and three-dimensional histomophometry analysis program was validated and showed excellent reproducibility. This method could be used as a noninvasive and easily available test in a clinical setting.

  13. Herniography off femoral, obturator and perineal hernias

    International Nuclear Information System (INIS)

    Ekberg, O.; Nordblom, I.; Fork, F.T.; Gullmo, A.

    1985-01-01

    Positive contrast herniography was used in the workup of 550 patients with unclear groin pain. The majority of these patients had rather characteristic hernias of indirect, direct or femoral type. However, now and then diagnostic problems arose. A femoral hernia may look like a direct or even obturator hernia. There is also a variety of multilocular femoral hernias and other types. A femoral hernia may be present together with other hernias in the ipsilateral or contralateral groin. Obturator hernias are usually small but are always confined to the obturator canal laterally in the obturator foramen. Abnormalities in the pouch of Douglas may include a deep rectogenital pouch, diverticula and true herniations. These uncommon herniographic findings are described and discussed. (orig.) [de

  14. SEX DETERMINATION FROM FEMORAL HEAD DIAMETERS IN ...

    African Journals Online (AJOL)

    hi-tech

    2000-03-01

    Mar 1, 2000 ... In medico-legal cases where sophisticated methods of sex determination is lacking, these ... scientific methods(3). Using the visual method ... between the sexes and the values of the right and left femoral head diameters.

  15. Bilateral femoral neck fractures following pelvic irradiation

    International Nuclear Information System (INIS)

    Mitsuda, Kenji; Nishi, Hosei; Oba, Hiroshi

    1977-01-01

    Over 300 cases of femoral neck fractures following radiotherapy for intrapelvic malignant tumor have been reported in various countries since Baensch reported this disease in 1927. In Japan, 40 cases or so have been reported, and cases of bilateral femoral neck fractures have not reached to ten cases. The authors experienced a case of 75 year-old female who received radiotherapy for cancer of the uterus, and suffered from right femoral neck fracture 3 months after and left femoral neck fracture one year and half after. As clinical symptoms, she had not previous history of trauma in bilateral femurs, but she complained of a pain in a hip joint and of gait disturbance. The pain in left femoral neck continued for about one month before fracture was recognized with roentgenogram. As histopathological findings, increase of fat marrow, decrease of bone trabeculae, and its marked degeneration were recognized. Proliferation of some blood vessels was found out, but thickness of the internal membrane and thrombogenesis were not recognized. Treatment should be performed according to degree of displacement of fractures. In this case, artificial joint replacement surgery was performed to the side of fracture of this time, because this case was bilateral femoral neck fractures and the patient had received artificial head replacement surgery in the other side of fracture formerly. (Tsunoda, M.)

  16. Differential Canalograms Detect Outflow Changes from Trabecular Micro-Bypass Stents and Ab Interno Trabeculectomy.

    Science.gov (United States)

    Parikh, Hardik A; Loewen, Ralitsa T; Roy, Pritha; Schuman, Joel S; Lathrop, Kira L; Loewen, Nils A

    2016-11-04

    Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself.

  17. Three-dimensional quantification of structures in trabecular bone using measures of complexity

    DEFF Research Database (Denmark)

    Marwan, Norbert; Kurths, Jürgen; Thomsen, Jesper Skovhus

    2009-01-01

    The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensiona......The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three......-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures...... evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (µCT) from human proximal tibiae and lumbar vertebrae at different stages...

  18. Endothelial nitric oxide synthase deficiency influences normal cell cycle progression and apoptosis in trabecular meshwork cells

    Directory of Open Access Journals (Sweden)

    Qiong Liao

    2016-06-01

    Full Text Available AIM: To clarify how the endothelial nitric oxide synthase (eNOS, NOS3 make effect on outflow facility through the trabecular meshwork (TM. METHODS: Inhibition of NOS3 gene expression in human TM cells were conducted by three siRNAs. Then the mRNA and protein levels of NOS3 in siRNA-treated and negative control (NC cells were determined, still were the collagen, type IV, alpha 1 (COL4A1 and fibronectin 1 by real-time PCR and Western blot analysis. In addition, NOS3 concentrations in culture supernatant fluids of TM cells were measured. Cell cycle and cell apoptosis analysis were performed using flow cytometry. RESULTS: The mRNA level of NOS3 was decreased by three different siRNA interference, similar results were obtained not only of the relative levels of NOS3 protein, but also the expression levels of COL4A1 and fibronectin 1. The number of cells in S phase was decreased, while contrary result was obtained in G2 phase. The number of apoptotic cells in siRNA-treated groups were significant increased compared to the NC samples. CONCLUSION: Abnormal NOS3 expression can make effects on the proteins levels of extracellular matrix component (e.g. fibronectin 1 and COL4A1. Reduced NOS3 restrains the TM cell cycle progression at the G2/M-phase transition and induced cell apoptosis.

  19. Trace and macro elements in the femoral bone as indicators of long-term environmental exposure to toxic metals in European brown bear (Ursus arctos) from Croatia.

    Science.gov (United States)

    Lazarus, Maja; Orct, Tatjana; Reljić, Slaven; Sedak, Marija; Bilandžić, Nina; Jurasović, Jasna; Huber, Đuro

    2018-05-21

    We explored the long-term accumulation of aluminium, strontium, cadmium and lead in the compact and trabecular bone of the femoral epiphysis, metaphysis and diaphysis in 41 brown bears (Ursus arctos) from Croatia. Also, we assessed their influence on macro and trace elements (sodium, magnesium, phosphorus, potassium, calcium, manganese, iron, cobalt, copper, zinc and barium) in bears' bone. There were no sex differences in element levels in general, while age was associated with bone length and levels of all elements, except for cadmium. Elements had different levels depending on the part of the bone sampled. More pronounced differences were observed between the compact and trabecular regions, with higher levels of majority of elements found in compact bone. Moderate to high associations (Spearman coefficient, r S  = 0.59-0.97) were confirmed between calcium and potassium, magnesium, phosphorus, manganese, cobalt, zinc, strontium and lead. Lead levels in the bone were below those known to cause adverse health effects, but in 4 of 41 animals they exceeded baseline levels for domestic animals. The femoral bone of the brown bear reflected the accumulative nature of lead and strontium well, as it did the impairment of bone-forming essential element levels associated with these two elements. However, the distribution pattern of elements along the bone was not uniform, so additional care should be taken when choosing on the part of the bone sampled.

  20. An adaptation model for trabecular bone at different mechanical levels

    Directory of Open Access Journals (Sweden)

    Lv Linwei

    2010-07-01

    Full Text Available Abstract Background Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different. Methods An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method. Results The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone. Conclusions The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological

  1. Subtrochanteric Femoral Fracture during Trochanteric Nailing for the Treatment of Femoral Shaft Fracture

    OpenAIRE

    Yun, Ho Hyun; Oh, Chi Hun; Yi, Ju Won

    2013-01-01

    We report on three cases of subtrochanteric femoral fractures during trochanteric intramedullary nailing for the treatment of femoral shaft fractures. Trochanteric intramedullary nails, which have a proximal lateral bend, are specifically designed for trochanteric insertion. When combined with the modified insertion technique, trochanteric intramedullary nails reduce iatrogenic fracture comminution and varus malalignment. We herein describe technical aspects of trochanteric intramedullary nai...

  2. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Femoral rotation unpredictably affects radiographic anatomical lateral distal femoral angle measurements

    DEFF Research Database (Denmark)

    Miles, James Edward

    2016-01-01

    Objective: To describe the effects of internal and external femoral rotation on radiographic measurements of the anatomical lateral distal femoral angle (a-LDFA) using two methods for defining the anatomical proximal femoral axis (a-PFA). Methods: Digital radiographs were obtained of 14 right...... femora at five degree intervals from 10° external rotation to 10° internal rotation. Using freely available software, a-LDFA measurements were made using two different a-PFA by a single observer on one occasion. Results: Mean a-LDFA was significantly greater at 10° external rotation than at any other...... rotation. The response of individual femora to rotation was unpredictable, although fairly stable within ±5° of zero rotation. Mean a-LDFA for the two a-PFA methods differed by 1.5°, but were otherwise similarly affected by femoral rotation. Clinical significance: If zero femoral elevation can be achieved...

  4. Evaluation of a pig femoral head osteonecrosis model

    Directory of Open Access Journals (Sweden)

    Kim Harry

    2010-03-01

    Full Text Available Abstract Background A major cause of osteonecrosis of the femoral head is interruption of a blood supply to the proximal femur. In order to evaluate blood circulation and pathogenetic alterations, a pig femoral head osteonecrosis model was examined to address whether ligature of the femoral neck (vasculature deprivation induces a reduction of blood circulation in the femoral head, and whether transphyseal vessels exist for communications between the epiphysis and the metaphysis. We also tested the hypothesis that the vessels surrounding the femoral neck and the ligamentum teres represent the primary source of blood flow to the femoral head. Methods Avascular osteonecrosis of the femoral head was induced in Yorkshire pigs by transecting the ligamentum teres and placing two ligatures around the femoral neck. After heparinized saline infusion and microfil perfusion via the abdominal aorta, blood circulation in the femoral head was evaluated by optical and CT imaging. Results An angiogram of the microfil casted sample allowed identification of the major blood vessels to the proximal femur including the iliac, common femoral, superficial femoral, deep femoral and circumflex arteries. Optical imaging in the femoral neck showed that a microfil stained vessel network was visible in control sections but less noticeable in necrotic sections. CT images showed a lack of microfil staining in the epiphysis. Furthermore, no transphyseal vessels were observed to link the epiphysis to the metaphysis. Conclusion Optical and CT imaging analyses revealed that in this present pig model the ligatures around the femoral neck were the primary cause of induction of avascular osteonecrosis. Since the vessels surrounding the femoral neck are comprised of the branches of the medial and the lateral femoral circumflex vessels, together with the extracapsular arterial ring and the lateral epiphyseal arteries, augmentation of blood circulation in those arteries will improve

  5. Efficacy analysis of tomosynthesis in the diagnosis of the femoral head osteochondropathy (Legg-Calvé-Perthes disease

    Directory of Open Access Journals (Sweden)

    A. Yu. Vasil'ev

    2017-01-01

    Full Text Available Background: Despite the fact that the prevalence of the femoral head osteochondropathy is 2.9% of all bone and muscle disorders and 25% of the disorders of the hip joint, this problem demands special attention, while late diagnosis could lead to disability of the patient.Aim: To compare and clarify X-ray symptomatology of Legg-Calvé-Perthes disease found by standard digital radiography and by tomosynthesis.Materials and methods: Eighty six patients aged from 5 to 12 years with the femoral head osteochondropathy were allocated into two groups: 43  patients from the group  1 were assessed by standard two-plane digital radiography (frontal and Lauenstein projections, whereas 43  patients from the group  2 were assessed by direct plane tomosynthesis only. The investigations were performed with the X-ray machine FDR AcSelerate  200 (Fujifilm, Japan with the function of tomosynthesis. Radiographic symptoms of the disease were assessed in the subgroups that were identified depending on the disease stage: 24 patients had stage I, 20 – stage II, 20 – stage III, and 22 – stages IV and V.Results: Standard radiography could not detect any bone abnormalities in any patient with stage I of Legg-Calvé-Perthes disease (n1 = 12, 100%; however, by means of tomosynthesis, all patients from this subgroup (n2 = 12, 100% had minimally increased density on the affected side. In 9  (75% patients, tomosynthesis showed cystiform remodeling of trabecular structure in subchondral parts of the femoral head of the affected hip, and in 2 (17% patients, flattening of the inner epiphysis pole was visualized. At stage II of the disease standard radiography showed femoral head compression with widening of the joint space in 8 (80% patients, absence of subchondral lucency in 6 (60%, and increased density of the femoral head in 4 (40%. In all these patients (n2 = 10, 100% tomosynthesis showed signs of intra-articular effusion, in 6 (60% cases there were

  6. Correlation of ultrasound appearance, gross anatomy, and histology of the femoral nerve at the femoral triangle.

    Science.gov (United States)

    Lonchena, Tiffany K; McFadden, Kathryn; Orebaugh, Steven L

    2016-01-01

    Correlation between ultrasound appearance, gross anatomic characteristics, and histologic structure of the femoral nerve (FN) is lacking. Utilizing cadavers, we sought to characterize the anatomy of the FN, and provide a quantitative measure of its branching. We hypothesize that at the femoral crease, the FN exists as a group of nerve branches, rather than a single nerve structure, and secondarily, that this transition into many branches is apparent on ultrasonography. Nineteen preserved cadavers were investigated. Ultrasonography was sufficient to evaluate the femoral nerve in nine specimens; gross dissection was utilized in all 19. Anatomic characteristics were recorded, including distances from the inguinal ligament to femoral crease, first nerve branch, and complete arborization of the nerve. The nerves from nine specimens were excised for histologic analysis. On ultrasound, the nerve became more flattened, widened, and less discrete as it coursed distally. Branching of the nerve was apparent in 12 of 18 images, with mean distance from inguinal ligament of 3.9 (1.0) cm. However, upon dissection, major branching of the femoral nerve occurred at 3.1 (1.0) cm distal to the inguinal ligament, well proximal to the femoral crease. Histologic analysis was consistent with findings at dissection. The femoral nerve arborizes into multiple branches between the inguinal ligament and the femoral crease. Initial branching is often high in the femoral triangle. As hypothesized, the FN exists as a closely associated group of nerve branches at the level of the femoral crease; however, the termination of the nerve into multiple branches is not consistently apparent on ultrasonography.

  7. A theoretical framework for strain-related trabecular bone maintenance and adaptation.

    Science.gov (United States)

    Ruimerman, R; Hilbers, P; van Rietbergen, B; Huiskes, R

    2005-04-01

    It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for these mechanisms we have proposed a mathematical theory (Nature 405 (2000) 704). This theory is based on hypothetical osteocyte stimulation of osteoblast bone formation, as an effect of elevated strain in the bone matrix, and a role for microcracks and disuse in promoting osteoclast resorption. Applied in a 2-D Finite Element Analysis model, the theory explained the formation of trabecular patterns. In this article we present a 3-D FEA model based on the same theory and investigated its potential morphological predictability of metabolic reactions to mechanical loads. The computations simulated the development of trabecular morphological details during growth, relative to measurements in growing pigs, reasonably realistic. They confirmed that the proposed mechanisms also inherently lead to optimal stress transfer. Alternative loading directions produced new trabecular orientations. Reduction of load reduced trabecular thickness, connectivity and mass in the simulation, as is seen in disuse osteoporosis. Simulating the effects of estrogen deficiency through increased osteoclast resorption frequencies produced osteoporotic morphologies as well, as seen in post-menopausal osteoporosis. We conclude that the theory provides a suitable computational framework to investigate hypothetical relationships between bone loading and metabolic expressions.

  8. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    Science.gov (United States)

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  9. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    Science.gov (United States)

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Femoral head vitality after intracapsular hip fracture

    International Nuclear Information System (INIS)

    Stroemqvist, B.

    1983-01-01

    Femoral head vitality before, during and at various intervals from the operation was determined by tetracycline labeling and/or 99 sp (m)Tc-MDP scintimetry. In a three-year follow-up, healing prognosis could be determined by scintimetry 3 weeks from operation; deficient femoral head vitality predicting healing complications and retained vitality predicting uncomplicated healing. A comparison between pre- and postoperative scintimetry indicated that further impairment of the femoral head vitality could be caused by the operative procedure, and as tetracycline labeling prior to and after fracture reduction in 370 fractures proved equivalent, it was concluded that the procedure of osteosynthesis probably was responsible for capsular vessel injury, using a four-flanged nail. The four-flanged nail was compared with a low-traumatic method of osteosynthesis, two hook-pins, in a prospective randomized 14 month study, and the postoperative femoral head vitality was significantly better in the hook-pin group. This was also clearly demonstrated in a one-year follow-up for the fractures included in the study. Parallel to these investigations, the reliability of the methods of vitality determination was found satisfactory in methodologic studies. For clinical purpose, primary atraumatic osteosynthesis, postoperative prognostic scintimetry and early secondary arthroplasty when indicated, was concluded to be the appropriate approach to femoral neck fracture treatment. (Author)

  11. Avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Kokubo, Takeshi; Takatori, Yoshio; Kamogawa, Morihide; Nakamura, Toshitaka; Ninomiya, Setsuo; Yoshikawa, Kohki; Itai, Yuji; Iio, Masahiro; Mitamura, Tadayuki

    1990-01-01

    T1-weighted MR images of thirty-six hips in 25 patients with avascular necrosis of the femoral head were obtained two to five times during the course of 2 to 26 months. We investigated these MR images in the light of the chronological change and compared them with plain radiographs. MR images changes in 16 femoral head; in general, the abnormal low intensity area in the femoral head reduced in extent and the internal high intensity area became smaller of disappeared. Thirteen femoral heads among them became more flattened on plain radiographs in the same period. It is noted that four different zones are defined in the femoral head after bone necrosis takes place: the dead bone marrow, the dead marrow which still contains fat, the reactive interface and the hyperemic bone marrow. In T1-weighted MR images, the dead bone marrow, the reactive interface and the hyperemic bone marrow are demonstrated as low intensity area, while the dead marrow containing fat may remain high in intensity. On the basis of this knowledge of histopathology and MR images of this disease, we suggest that reduction of the abnormal low intensity area and disappearance of the internal high intensity area on MR images can be regarded as diminution of hyperemia in the living bone marrow and loss of fat in the dead bone marrow, respectively. (author)

  12. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  13. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I; Mueller, D; Matsuura, M; Lochmueller, E-M; Zysset, P; Eckstein, F

    2008-01-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  14. Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells.

    Science.gov (United States)

    Keller, Kate E; Bradley, John M; Sun, Ying Ying; Yang, Yong-Feng; Acott, Ted S

    2017-10-01

    The actin cytoskeleton of trabecular meshwork (TM) cells plays a role in regulating aqueous humor outflow. Many studies have investigated stress fibers, but F-actin also assembles into other supramolecular structures including filopodia. Recently, specialized filopodia called tunneling nanotubes (TNTs) have been described, which communicate molecular signals and organelles directly between cells. Here, we investigate TNT formation by TM cells. Human TM cells were labeled separately with the fluorescent dyes, DiO and DiD, or with mitochondrial dye. Fixed or live TM cells were imaged using confocal microscopy. Image analysis software was used to track fluorescent vesicles and count the number and length of filopodia. The number of fluorescently labeled vesicles transferred between cells was counted in response to specific inhibitors of the actin cytoskeleton. Human TM tissue was stained with phalloidin. Live-cell confocal imaging of cultured TM cells showed transfer of fluorescently labeled vesicles and mitochondria via TNTs. In TM tissue, a long (160 μm) actin-rich cell process bridged an intertrabecular space and did not adhere to the substratum. Treatment of TM cells with CK-666, an Arp2/3 inhibitor, significantly decreased the number and length of filopodia, decreased transfer of fluorescently labeled vesicles and induced thick stress fibers compared to vehicle control. Conversely, inhibiting stress fibers using Y27632 increased transfer of vesicles and induced long cell processes. Identification of TNTs provides a means by which TM cells can directly communicate with each other over long distances. This may be particularly important to overcome limitations of diffusion-based signaling in the aqueous humor fluid environment.

  15. Selective arteriography in femoral head fractures

    Energy Technology Data Exchange (ETDEWEB)

    Mannella, P; Galeotti, R; Borrelli, M; Benea, G; Massari, L; Chiarelli, G M

    1986-01-01

    The choice between conservative and radical operation in case of femoral neck fractures is very important because it is the determining factor for a successfull therapy. In case of epiphysial necrosis, an endoprosthesis as well as an osteosynthesis will be carried out. Selective arteriography of the medical circumflex artery represents the most reliable study to establish, immediately after the fractures, the possible presence of a post-traumatic ischemic necrosis. Angiography, as a reliable diagnostic tool, has to be carried out in the most selective way and needs the image subtraction technique. The authors report their preliminary results on the reliability of angiography in the femoral epiphyseal ischemic necrosis diagnosed by comparing the results of angiography with the wood light test carried out on the surgically removed femoral head. 18 refs.

  16. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    International Nuclear Information System (INIS)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da; Alves, Jose Marcos

    2014-01-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  17. Two and three-dimensional morphometric analysis of trabecular bone using X-ray microtomography (μCT)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandro Marcio Hakme da; Silva, Orivaldo Lopes da; Silva Junior, Nelson Ferreira da, E-mail: alhakme@sc.usp.br [Universidade de Sao Paulo (EESC/FMRP/IQSC/USP), Sao Carlos, SP (Brazil); Alves, Jose Marcos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Departamento de Engenharia Eletrica e Computacao

    2014-07-01

    Introduction: trabecular bones have a porous microstructure and can be modeled as linear elastic solids, heterogeneous and anisotropic. In the literature, few investigations have compared the two- dimensional (2D) and three-dimensional (3D) morphometric analyses of cancellous bone. Methods: In this investigation eighteen cylindrical samples of cancellous bone (10 mm of diameter and 20 mm of height) were obtained from six bovine head femurs, with similar values for the weight and age, of the same race and gender. The samples were harvested and freeze at - 20 °C before carrying out the micro CT analysis. The CT-Analyzer software was used to measure in three directions (superior-inferior, lateral-medial and anterior-posterior) parameters such as trabecular thickness, trabecular separation, trabecular number and the eigenvalues of the fabric tensor (M). Results: the Comparison of 2D and 3D analyses for the parameters: 2D (plate model) trabecular thickness, trabecular separation and trabecular number were statistically different (p = 0) showing that measurements are not similar to the 3D ones. However, 2D (rod model) trabecular thickness and 3D trabecular thickness measurements presented no significant difference (p = 0.26). The eigenvalues show that the bovine trabecular microstructure has a tendency to transversally isotropic symmetry. Discussion: The method proved to be quite interesting for the characterization of the bone structure through 3D measurements of trabecular bone morphometric parameters in the three possible directions of loading. The results show that x-ray microtomography (μCT) is a technique of great potential for characterization and generating bone quality parameters for the diagnosis of bone metabolism diseases. (author)

  18. 99mTc-MDP scintigraphy of femoral head necrosis following femoral neck fracture

    International Nuclear Information System (INIS)

    Lee, Soon Jin; Lee, Jun Hyung; Kim, Eun Kyung; Lee, Sun Wha; Kim, Soon Yong

    1985-01-01

    Secondary ischemic necrosis of femoral head due to loss of blood supply following to femoral neck fracture is well known. The regional distribution of bone-seeking radiopharmaceuricals in the skeleton can depend on a number of factors, but bone blood flow is a major physiological determinant of regional skeletal uptake of Tc-99m polyphosphate and bone imaging may thus be used for the evaluation of vascularity of the femoral head. The authors made a comparative study of scintigraphic findings and operative findings of 28 cases of femoral neck fracture treated at Kyung Hee University Hospital from April 1980 to May 1984. The results were as follows: 1. In 16 cases of proven avascular necorsis of femoral head, scintigraphy showed absent or decreased activity in 14 cases (87.5%), while radiography showed increased density in 10 cases (62.5%). 2. In 12 cases of proven vital femoral head, scintigraphy showed increased activity in 9 cases (75%) and radiography showed decreased density in 9 cases (75%). 3. 99mTc-MDP scintigraphy was an excellent and useful method for assessing bone vitality of femoral head

  19. {sup 99m}Tc-MDP scintigraphy of femoral head necrosis following femoral neck fracture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Jin; Lee, Jun Hyung; Kim, Eun Kyung; Lee, Sun Wha; Kim, Soon Yong [Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    1985-02-15

    Secondary ischemic necrosis of femoral head due to loss of blood supply following to femoral neck fracture is well known. The regional distribution of bone-seeking radiopharmaceuricals in the skeleton can depend on a number of factors, but bone blood flow is a major physiological determinant of regional skeletal uptake of Tc-99m polyphosphate and bone imaging may thus be used for the evaluation of vascularity of the femoral head. The authors made a comparative study of scintigraphic findings and operative findings of 28 cases of femoral neck fracture treated at Kyung Hee University Hospital from April 1980 to May 1984. The results were as follows: 1. In 16 cases of proven avascular necorsis of femoral head, scintigraphy showed absent or decreased activity in 14 cases (87.5%), while radiography showed increased density in 10 cases (62.5%). 2. In 12 cases of proven vital femoral head, scintigraphy showed increased activity in 9 cases (75%) and radiography showed decreased density in 9 cases (75%). 3. 99mTc-MDP scintigraphy was an excellent and useful method for assessing bone vitality of femoral head.

  20. Development of a mechanical testing and loading system for trabecular bone studies for long term culture

    Directory of Open Access Journals (Sweden)

    DB Jones

    2003-03-01

    Full Text Available A highly accurate (�3% mechanical loading and measurement system combined with a trabecular bone diffusion culture-loading chamber has been developed, which provides the ability to study trabecular bone (and possibly cartilage under controlled culture and loading conditions over long periods of time. The loading device has been designed to work in two main modes, either to apply a specific compressive strain to a trabecular bone cylinder or to apply a specific force and measure the resulting deformation. Presently, precisely machined bone cylinders can be loaded at frequencies between 0.1 Hz to 50 Hz and amplitudes over 7,000�e. The system allows accurate measurement of many mechanical properties of the tissue in real time, including visco-elastic properties. This paper describes the technical components, reproducibility, precision, and the calibration procedures of the loading system. Data on long term culture and mechanical responses to different loading patterns will be published separately.

  1. NUMERICAL AND MECHANICAL ANALYSES OF A 3D-PRINTED TITANIUM TRABECULAR DENTAL IMPLANT

    Directory of Open Access Journals (Sweden)

    Luboš Řehounek

    2017-06-01

    Full Text Available The main focus of this paper is to investigate and describe a novel biomaterial structure. The trabecular structure has only recently been recognized as a viable alternative for prostheses and implants and seems to have very promising biocompatibility and mechanical properties. The 3D printing technique was used to create test specimens. These specimens were then tested by nanoindentation and tensile and compression tests. A numerical model was created and curve-fitted to represent the mechanical behavior of the trabecular structure. A significant reduction in the values of Young’s modulus E was observed. The values of E for conventional implant materials are approximately 110–120GPa and the trabecular structure reached a value just below 1GPa. The next effort will be to apply the model onto a real implant. It is the “four leaf clover” implant variant by authors F. Denk Jr., A. Jíra and F. Denk Sr.

  2. frequency of ipsilateral femoral neck fractures in patients

    African Journals Online (AJOL)

    Background: Ipsilateral associated femoral neck and shaft fractures are reported to occur in 2.5-6% of all femoral shaft ... nailing of the shaft fracture, which makes treatment of the neck ... chest, spine), while the other had maxillofacial injuries.

  3. Three-Dimensional Analysis of the Curvature of the Femoral Canal in 426 Chinese Femurs

    Directory of Open Access Journals (Sweden)

    Xiu-Yun Su

    2015-01-01

    Full Text Available Purpose. The human femur has long been considered to have an anatomical anterior curvature in the sagittal plane. We established a new method to evaluate the femoral curvature in three-dimensional (3D space and reveal its influencing factors in Chinese population. Methods. 3D models of 426 femurs and the medullary canal were constructed using Mimics software. We standardized the positions of all femurs using 3ds Max software. After measuring the anatomical parameters, including the radius of femoral curvature (RFC and banking angle, of the femurs using the established femur-specific coordinate system, we analyzed and determined the relationships between the anatomical parameters of the femur and the general characteristics of the population. Results. Pearson’s correlation analyses showed that there were positive correlations between the RFC and height (r=0.339, p<0.001 and the femoral length and RFC (r=0.369, p<0.001 and a negative correlation between the femoral length and banking angle (r=-0.223, p<0.001. Stepwise linear regression analyses showed that the most relevant factors for the RFC and banking angle were the femoral length and gender, respectively. Conclusions. This study concluded that the banking angle of the femur was significantly larger in female than in male.

  4. Planning corrective osteotomy of the femoral bone using three-dimensional modeling. Part II

    Directory of Open Access Journals (Sweden)

    Vladimir E. Baskov

    2017-10-01

    Full Text Available Introduction. Three-dimensional (3D modeling and prototyping are increasingly being used in various branches of surgery for planning and performing surgical interventions. In orthopedics, this technology was first used in 1990 for performing knee-joint surgery. This was followed by the development of protocols for creating and applying individual patterns for navigation in the surgical interventions for various bones. Aim. The study aimed to develop a new 3D method for planning and performing corrective osteotomy of the femoral bone using an individual pattern and to identify the advantages of the proposed method in comparison with the standard method of planning and performing surgical intervention. Materials and methods. A new method for planning and performing corrective osteotomy of the femoral bone in children with various pathologies of the hip joint is presented. The outcomes of planning and performing corrective osteotomy of the femoral bone in 27 patients aged 5 to 18 years (32 hip joints with congenital and acquired deformity of the femoral bone were analyzed. Conclusion. The use of computer 3D modeling for planning and implementing corrective interventions on the femoral bone improves the treatment results owing to an almost perfect performance accuracy achieved by the minimization of possible human errors reduction in the surgery duration; and reduction in the radiation exposure for the patient.

  5. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Intraoperative optical coherence tomography and ab interno trabecular meshwork surgery with the Trabectome

    Directory of Open Access Journals (Sweden)

    Junker B

    2017-09-01

    Full Text Available Bernd Junker,1 Jens F Jordan,2 Carsten Framme,1 Amelie Pielen1 1University Eye Hospital, Medical School Hannover, Hannover, 2Eye Center, Medical Center, University of Freiburg, Freiburg, Germany Importance: This study is the first description of the use of the intraoperative optical coherence tomography (iOCT for trabecular meshwork surgery with the Trabectome in a regular clinical setting.Background: The aim of this study is to evaluate intraoperatively the immediate success of ab interno trabeculotomy with the Trabectome defined as a removal of the trabecular meshwork.Design: This is a retrospective clinical study performed in the University Eye Hospital, Medical School Hannover.Participants: A total of nine consecutive Caucasian patients suffering from primary open angle glaucoma, pigment dispersion glaucoma, or pseudoexfoliation glaucoma took part in the study.Methods: All patients underwent ab interno trabeculotomy surgery with the Trabectome using a commercially available iOCT to visualize the anterior chamber angle (ACA before and after the procedure. The visualization was done using a modified Swan-Jacobs lens (all nine patients or without lens (view from above, five patients.Main outcome measures: The main outcome of this study is the success of visualization of the ACA on iOCT, especially the postprocedural visualization of the wound gap after removal of the trabecular meshwork.Results: Using the view from above, the ACA could be visualized before and after the procedure in only two of the five cases. Using the modified Swan-Jacobs lens, the ACA could be visualized before the procedure and the trabecular meshwork opening after the procedure in all nine patients.Conclusion: The iOCT can be used to objectify the immediate success of the surgical procedure, ie, the removal of the trabecular meshwork, of ab interno trabeculotomy with the Trabectome. The procedure itself cannot be captured sufficiently via iOCT. Keywords: glaucoma, imaging

  7. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies

    Directory of Open Access Journals (Sweden)

    AM Taylor

    2012-04-01

    Full Text Available It is widely held that bone architecture is finely regulated in accordance with homeostatic requirements. Aberrant remodelling (hyperdensification and/or cyst formation in the immediately subchondral region has previously been described in bone underlying cartilage in arthropathies. The present study examined the trabecular architecture of samples of bone, initially in the severe osteoarthropathy of alkaptonuria, but subsequently in osteoarthritis using a combination of light microscopy, 3D scanning electron microscopy and quantitative backscattered electron scanning electron microscopy. We report an extraordinary and previously unrecognised bone phenotype in both disorders, including novel microanatomical structures. The underlying subchondral trabecular bone contained idiosyncratic architecture. Trabecular surfaces had numerous outgrowths that we have termed "trabecular excrescences", of which three distinct types were recognised. The first type arose from incomplete resorption of branching secondary trabeculae arising from the deposition of immature (woven bone in prior marrow space. These were characterised by very deeply scalloped surfaces and rugged edges. The second type had arisen in a similar way but been smoothed over by new bone deposition. The third type, which resembled coarse stucco, probably arises from resting surfaces that had been focally reactivated. These were poorly integrated with the prior trabecular wall. We propose that these distinctive microanatomical structures are indicative of abnormal osteoclast/osteoblast modelling in osteoarthropathies, possibly secondary to altered mechanical loading or other aberrant signalling. Identification of the mechanisms underlying the formation of trabecular excrescences will contribute to a better understanding of the role of aberrant bone remodelling in arthropathies and development of new therapeutic strategies.

  8. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    Science.gov (United States)

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Femoral fracture repair using a locking plate technique in an adult captive polar bear (Ursus maritimus).

    Science.gov (United States)

    Zimmerman, Dawn M; Dew, Terry; Douglass, Michael; Perez, Edward

    2010-02-01

    To report successful femoral fracture repair in a polar bear. Case report. Female polar bear (Ursus maritimus) 5 years and approximately 250 kg. A closed, complete, comminuted fracture of the distal midshaft femur was successfully reduced and stabilized using a compression plating technique with 2 specialized human femur plates offering axial, rotational, and bending support, and allowing the bone to share loads with the implant. Postoperative radiographs were obtained at 11.5 weeks, 11 months, and 24 months. Bone healing characterized by marked periosteal reaction was evident at 11 months with extensive remodeling evident at 24 months. No complications were noted. Distal mid shaft femoral fracture was reduced, stabilized, and healed in an adult polar bear with a locking plate technique using 2 plates. Previously, femoral fractures in polar bears were considered irreparable. Use of 2 plates applied with a locking plate technique can result in successful fracture repair despite large body weight and inability to restrict postoperative activity.

  10. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI

    DEFF Research Database (Denmark)

    Marques, Joselene; Genant, Harry K.; Lillholm, Martin

    2013-01-01

    loss were assessed by a segmentation process. Aiming to quantify and potentially capture the structure of the trabecular bone anatomy, a machine learning approach used a set of texture features for training a classifier to recognize the trabecular bone of a knee with radiographic osteoarthritis. Using...

  11. Distributional variations in trabecular architecture of the mandibular bone: an in vivo micro-CT analysis in rats.

    Directory of Open Access Journals (Sweden)

    Zhongshuang Liu

    Full Text Available To evaluate the effect of trabecular thickness and trabecular separation on modulating the trabecular architecture of the mandibular bone in ovariectomized rats.Fourteen 12-week-old adult female Wistar rats were divided into an ovariectomy group (OVX and a sham-ovariectomy group (sham. Five months after the surgery, the mandibles from 14 rats (seven OVX and seven sham were analyzed by micro-CT. Images of inter-radicular alveolar bone of the mandibular first molars underwent three-dimensional reconstruction and were analyzed.Compared to the sham group, trabecular thickness in OVX alveolar bone decreased by 27% (P = 0.012, but trabecular separation in OVX alveolar bone increased by 59% (P = 0.005. A thickness and separation map showed that trabeculae of less than 100 μm increased by 46%, whereas trabeculae of more than 200 μm decreased by more than 40% in the OVX group compared to those in the sham group. Furthermore, the OVX separation of those trabecular of more than 200 μm was 65% higher compared to the sham group. Bone mineral density (P = 0.028 and bone volume fraction (p = 0.001 were also significantly decreased in the OVX group compared to the sham group.Ovariectomy-induced bone loss in mandibular bone may be related to the distributional variations in trabecular thickness and separation which profoundly impact the modulation of the trabecular architecture.

  12. Radiographic landmarks for locating the femoral origin of the superficial medial collateral ligament.

    Science.gov (United States)

    Hartshorn, Timothy; Otarodifard, Karimdad; White, Eric A; Hatch, George F Rick

    2013-11-01

    Little has been written about the use of radiographic landmarks for locating the origin of the superficial medial collateral ligament (sMCL). A standardized radiographic landmark for the sMCL origin using intraoperative fluoroscopic imaging may be of value in aiding the surgeon in accurate femoral tunnel placement in the setting of extensive soft tissue disruption and bony attrition. To determine a reproducible radiographic landmark that will assist in correct femoral tunnel placement in sMCL repair and reconstruction. Descriptive laboratory study. Ten fresh-frozen unmatched human cadaveric knees were dissected, and the origin of the sMCL was exposed. A 2-mm metallic marker was then placed at the center of the femoral origin of the sMCL. True lateral fluoroscopically assisted digital radiographs were obtained of the knee with the posterior and distal femoral condyles overlapping in a standardized fashion. With the use of computer software, reference lines were drawn on the images, creating 4 quadrants. Two independent examiners performed quantitative measurements of the sMCL origin in relation to this axis and to the Blumensaat line. Mean measurements showed the sMCL origin to be closely related to the intersection point of the Blumensaat line and a line drawn distally from the posterior femoral cortex on a true lateral radiograph. The sMCL origin was found at a mean point 1.6 ± 4.3 mm posterior and 4.9 ± 2.1 mm proximal to the intersection of a line paralleling the posterior femoral cortex and a line drawn perpendicular to the posterior femoral cortical line, where it intersects the Blumensaat line. In 5 of 10 specimens, the center of the sMCL origin fell precisely on the Blumensaat line. The remaining specimens had sMCL origins anterior to the Blumensaat line. The femoral origin of the sMCL was found in the proximal and posterior quadrants in 8 of 10 specimens. With a relatively small amount of deviation, the sMCL origin can be consistently identified on a true

  13. Angiographic analysis of avascular necrosis of a femoral head -selective angiography of medial femoral circumflex artery-

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Kyung Nam; Yoon, Yup; Lee, Sun Wha; Lim, Jae Hoon [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1991-07-15

    The degree of anatomical revascularization of a necrotic femoral head and traumatic hip would provide information about treatment and prognosis. The authors analyzed the vascular changes of femoral head among unilateral avascular necrosis, bilateral avascular necrosis, and traumatic hips. Forty - four patients with avascular necrosis and 19 patients with traumatic hips were examined by selective angiography of the medial femoral circumflex artery. In the traumatic hip cases, 12 (63%) showed occlusion, 2 (11%) hypertrophy of the capsular branches, and 5 ( 26 % ) were normal . In the avascular necrosis cases, 15 (25%) showed occlusion, 39 (67%) had hypertrophy of the capsular branches, and 4 (7%) had normal findings. Hypertrophy of the superior capsular branch of the medial femoral circumflex artery is more frequently observed in avascular necrosis than in traumatic hip. Bilateral avascular necrosis reveals more frequent incidences than unilateral cases. Selective angiography could help in the therapy plan and also provide information about the contralateral side.

  14. Angiographic analysis of avascular necrosis of a femoral head -selective angiography of medial femoral circumflex artery-

    International Nuclear Information System (INIS)

    Ryu, Kyung Nam; Yoon, Yup; Lee, Sun Wha; Lim, Jae Hoon

    1991-01-01

    The degree of anatomical revascularization of a necrotic femoral head and traumatic hip would provide information about treatment and prognosis. The authors analyzed the vascular changes of femoral head among unilateral avascular necrosis, bilateral avascular necrosis, and traumatic hips. Forty - four patients with avascular necrosis and 19 patients with traumatic hips were examined by selective angiography of the medial femoral circumflex artery. In the traumatic hip cases, 12 (63%) showed occlusion, 2 (11%) hypertrophy of the capsular branches, and 5 ( 26 % ) were normal . In the avascular necrosis cases, 15 (25%) showed occlusion, 39 (67%) had hypertrophy of the capsular branches, and 4 (7%) had normal findings. Hypertrophy of the superior capsular branch of the medial femoral circumflex artery is more frequently observed in avascular necrosis than in traumatic hip. Bilateral avascular necrosis reveals more frequent incidences than unilateral cases. Selective angiography could help in the therapy plan and also provide information about the contralateral side

  15. Medullar fat influences texture analysis of trabecular microarchitecture on X-ray radiographs

    International Nuclear Information System (INIS)

    Chappard, Daniel; Pascaretti-Grizon, Florence; Gallois, Yves; Mercier, Philippe; Basle, Michel F.; Audran, Maurice

    2006-01-01

    Alteration of trabecular architecture is a predictor of fracture risk in osteoporosis. Until now, microarchitecture analysis is difficult to evaluate in routine clinical practice for osteoporosis. Texture analysis on X-ray images has been advocated to be a suitable method to assess microarchitecture in bone diseases. The X-ray acquisition conditions have been often taken into consideration; however, the influence of anatomical conditions on texture parameters has received little interest. Because fat is a well-known problem with computed tomography and densitometry, we have designed a cadaver study to compare the influence of marrow lipids on numerous texture parameters. Twenty-one human distal radii were obtained, radiographed, and analyzed using a software that measures: heterogeneity, skeletonized parameters, run-lengths and fractal dimensions. Texture parameters were measured before, and after an extensive delipidation period lasting 3 weeks. Quality of the radiographs was improved after defatting. Delipidation had a very significant effect on measurements: afterwards defatting, the images were less blurred, and a better delineation of trabeculae and marrow cavities was obtained. This provoked an increase of parameters based on the grey level distribution but had no influence on parameters describing the reticulated honeycomb microarchitecture of the trabeculae (i.e., fractal dimension). Some parameters appeared anisotropy-sensitive, due to the different constitution and size of the trabeculae. The fat content of bone marrow induces noise that can modify some texture parameters. One should take into account the fat content of the marrow when using texture analysis to compare patients with osteoporosis due to various etiologies

  16. Fibrous dysplasia of the femoral neck

    International Nuclear Information System (INIS)

    Savage, P.E.; Stoker, D.J.

    1984-01-01

    Fibrous dysplasia of the femur is usually observed in the intertrochanteric region. It is rarely confined to the femoral neck. We present four cases illustrating the radiographic appearance and spectrum of this condition which all showed the relatively lucent variety of fibrous dysplasia with varying degrees of expansion and surrounding sclerosis. The natural history of this condition is discussed. (orig.)

  17. Femoral Hernia At Mulago Hospital, Uganda

    African Journals Online (AJOL)

    user

    2004-12-02

    Dec 2, 2004 ... consecutive patients operated for femoral hernia over a period of twelve months. Results: There were ... The age ranged from 42 years to 70 years old with a mean of 54.6 years old. All the .... cholecystectomy. At this point in ...

  18. Radiation-induced femoral head necrosis

    African Journals Online (AJOL)

    2011-03-25

    Mar 25, 2011 ... had open medial menisectomy of the left knee following medial meniscal tear ... postoperative recovery and mobilised full weight-bearing immediately [Figure 6]. ... obtained from the oncologists at the time of this review), and there was a ... previous trauma such as femoral neck fracture, Gaucher's disease ...

  19. Transvenous liver biopsy via the femoral vein

    International Nuclear Information System (INIS)

    Khosa, F.; McNulty, J.G.; Hickey, N.; O'Brien, P.; Tobin, A.; Noonan, N.; Ryan, B.; Keeling, P.W.N.; Kelleher, D.P.; McDonald, G.S.A.

    2003-01-01

    AIM: To study the safety, effectiveness and diagnostic value of transvenous forceps biopsy of the liver in 54 patients with coagulopathy, gross ascites or morbid obesity and suspected liver disease in whom percutaneous liver biopsy was contraindicated. MATERIAL AND METHODS: Forceps biopsy of the liver via the femoral vein was attempted in 54 adult patients with advanced liver disease of unknown aetiology who had coagulation disorders (41 cases), gross ascites (11 cases) or morbid obesity (two cases). In each patient two to six biopsies (average four) were taken using a radial jaw forceps inserted via the right or left femoral vein. RESULTS: The procedure was successful in 53 cases. Hepatic vein catheterization failed in one patient. Adequate liver tissue for diagnosis was obtained in 84% of cases. One patient developed delayed haemorrhage at 12 h from a capsular leak that was undetected during the biopsy procedure. This patient required blood transfusions and laparotomy to control bleeding. There were no deaths in the 53 patients studied. Transient minor chest and shoulder pain was encountered during sheath insertion into a hepatic vein in 23 patients. Three patients developed a femoral vein haematoma, which resolved with conservative treatment. CONCLUSION: Transvenous liver biopsy via the femoral vein is another safe, effective, simple alternative technique of biopsy when the percutaneous route is contraindicated

  20. Postmortem Femoral Blood Concentrations of Risperidone

    DEFF Research Database (Denmark)

    Linnet, Kristian; Johansen, Sys Stybe

    2014-01-01

    Postmortem femoral blood concentrations of the antipsychotic drug risperidone and the active metabolite 9-hydroxyrisperidone were determined by an achiral LC-MS/MS method in 38 cases. The cause of death was classified as unrelated to risperidone in 30 cases, in which the sum of the concentration ...

  1. Aseptic necrosis of femoral head complicating thalassemia

    International Nuclear Information System (INIS)

    Orzincolo, C.; Castaldi, G.; Scutellary, P.N.; Bariani, L.; Pinca, A.

    1986-01-01

    Aseptic necrosis of the femoral head is described in 4 patients, selected from 280 patients with homozygous β-thalassemia (Cooley anemia). The incidence of the complication appears to be very high (14.5per mille) in thalassemia, compared to the general population. The possible mechanism are discussed. (orig.)

  2. Lateral femoral traction pin entry: risk to the femoral artery and other medial neurovascular structures

    Directory of Open Access Journals (Sweden)

    Appleton Paul

    2010-01-01

    Full Text Available Abstract Background Femoral skeletal traction assists in the reduction and transient stabilization of pelvic, acetabular, hip, and femoral fractures when splinting is ineffective. Traditional teaching has recommended a medial entry site for insertion of the traction pin in order to minimize injury to the femoral artery as it passes through Hunter's canal. The present anatomical study evaluates the risk to the femoral artery and other medial neurovascular structures using a lateral entry approach. Methods Six embalmed cadavers (twelve femurs were obtained for dissection. Steinman pins were drilled from lateral to medial at the level of the superior pole of the patella, at 2 cm, and at 4 cm proximal to this point. Medial superficial dissection was then performed to identify the saphenous nerve, the superior medial geniculate artery, the adductor hiatus, the tendinous insertion of the adductor magnus and the femoral artery. Measurements localizing these anatomic structures relative to the pins were obtained. Results The femoral artery was relatively safe and was no closer than 29.6 mm (mean from any of the three Steinman pins. The superior medial geniculate artery was the medial structure at most risk. Conclusions Lateral femoral traction pin entry is a safe procedure with minimal risk to the saphenous nerve and femoral artery. Of the structures examined, only the superior medial geniculate artery is at a risk of iatrogenic injury due to its position. The incidence of such injury in clinical practice and its clinical significance is not known. Lateral insertion facilitates traction pin placement since it minimizes the need to move the contralateral extremity out of the way of the drilling equipment or the need to elevate or externally rotate the injured extremity relative to the contralateral extremity.

  3. The therapeutic effect of negative pressure in treating femoral head necrosis in rabbits.

    Science.gov (United States)

    Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong

    2013-01-01

    Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN.

  4. Preoperative virtual reduction reduces femoral malrotation in the treatment of bilateral femoral shaft fractures.

    Science.gov (United States)

    Omar, Mohamed; Suero, Eduardo M; Hawi, Nael; Decker, Sebastian; Krettek, Christian; Citak, Musa

    2015-10-01

    In bilateral femoral shaft fractures, significant malrotation (>15°) occurs in about 40 % of cases after intramedullary nailing. Most of the methods that provide rotational control during surgery are based on a comparison to the intact femur and, thus, not applicable for bilateral fractures. In this study, we evaluated if preoperative virtual reduction can help improving rotational alignment in patients with bilateral femoral shaft fractures. Seven patients with bilateral femoral shaft fractures were initially treated with external fixation of both femurs. After obtaining a CT scan of both legs, the fractures were reduced virtually using the software program VoXim®, and the amount and direction of rotational correction were calculated. Subsequently, the patients were treated by antegrade femoral nailing and rotation was corrected to the preoperatively calculated amount. After external fixation, the mean rotational difference between both legs was 15.0° ± 10.2°. Four out of seven patients had a significant malrotation over 15°. Following virtual reduction, the mean rotational difference between both legs was 2.1° ± 1.2°. After intramedullary nailing, no case of malrotation occurred and the mean rotational difference was 6.1° ± 2.8°. Preoperative virtual reduction allows determining the pretraumatic femoral antetorsion and provided useful information for the definitive treatment of bilateral femoral shaft fractures. We believe that this procedure is worth being implemented in the clinical workflow to avoid malrotation after intramedullary nailing.

  5. A biomechanical evaluation of proximal femoral nail antirotation with respect to helical blade position in femoral head: A cadaveric study

    Directory of Open Access Journals (Sweden)

    Jin-Ho Hwang

    2012-01-01

    Full Text Available Objective: Despite new developments in the management of osteoporotic fractures, complications like screw cutout are still found in the fixation of proximal femur fractures even with biomechanically proven better implants like proximal femoral nail antirotation (PFNA. The purpose of this cadaveric study was to investigate the biomechanical stability of this device in relation to two common positions (center-center and inferior-center of the helical blade in the femoral head in unstable trochanteric fractures. Materials and Methods: Eight pairs of human cadaveric femurs were used; in one group [center-center (C-C group], the helical blade of PFNA was fixed randomly in central position both in anteroposterior and lateral view, whereas in the other group it was fixed in inferior one-third position in anteroposterior and in central position in lateral view [inferior-center (I-C group]. Unstable intertrochanteric fracture was created and each specimen was loaded cyclically till load to failure Results: Angular and rotational displacements were significantly higher within the C-C group compared to the I-C group in both unloaded and loaded condition. Loading to failure was higher in the I-C group compared to the C-C group. No statistical significance was found for this parameter. Correlations between tip apex distance, cyclic loading which lead to femoral head displacement, and ultimate load to failure showed a significant positive relationship. Conclusion: The I-C group was superior to the C-C group and provided better biomechanical stability for angular and rotational displacement. This study would be a stimulus for further experimental studies with larger number specimens and complex loading protocols at multicentres.

  6. Femoral neck fracture following groin irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, Perry W; Roberts, Heidi L; Perez, Carlos A

    1995-04-30

    Purpose: The incidence and risk factors are evaluated for femoral neck fracture following groin irradiation for gynecologic malignancies. Methods and Materials: The radiation therapy records of 1313 patients with advanced and recurrent cancer of the vagina, vulva, cervix, and endometrium, treated at the Mallinckrodt Institute of Radiology from 1954 to 1992, were reviewed. Median follow-up was 12.7 years. From this group, 207 patients were identified who received irradiation to the pelvis and groins with anterposterior-posterior anterior (AP-PA), 18 MV photons. Data were reviewed regarding irradiation dose to the femoral neck and other presumed risk factors including age, primary site, stage, groin node status, menopausal status, estrogen use, cigarette use, alcohol consumption, and osteoporosis. Results: The per-patient incidence of femoral neck fracture was 4.8% (10 out of 207). Four patients developed bilateral fractures. However, the cumulative actuarial incidence of fracture was 11% at 5 years and 15% at 10 years. Cox multivariate analysis of age, weight, and irradiation dose showed that only irradiation dose may be important to developing fracture. Step-wise logistic regression of presumed prognostic factors revealed that only cigarette use and x-ray evidence of osteoporosis prior to irradiation treatment were predictive of fracture. Conclusion: Femoral head fracture is a common complication of groin irradiation for gynecologic malignancies. Fracture in our database appears to be related to irradiation dose, cigarette use, and x-ray evidence of osteoporosis. Special attention should be given in treatment planning (i.e., shielding of femoral head/neck and use of appropriate electron beam energies for a portion of treatment) to reduce the incidence of this complication.

  7. Femoral neck fracture following groin irradiation

    International Nuclear Information System (INIS)

    Grigsby, Perry W.; Roberts, Heidi L.; Perez, Carlos A.

    1995-01-01

    Purpose: The incidence and risk factors are evaluated for femoral neck fracture following groin irradiation for gynecologic malignancies. Methods and Materials: The radiation therapy records of 1313 patients with advanced and recurrent cancer of the vagina, vulva, cervix, and endometrium, treated at the Mallinckrodt Institute of Radiology from 1954 to 1992, were reviewed. Median follow-up was 12.7 years. From this group, 207 patients were identified who received irradiation to the pelvis and groins with anterposterior-posterior anterior (AP-PA), 18 MV photons. Data were reviewed regarding irradiation dose to the femoral neck and other presumed risk factors including age, primary site, stage, groin node status, menopausal status, estrogen use, cigarette use, alcohol consumption, and osteoporosis. Results: The per-patient incidence of femoral neck fracture was 4.8% (10 out of 207). Four patients developed bilateral fractures. However, the cumulative actuarial incidence of fracture was 11% at 5 years and 15% at 10 years. Cox multivariate analysis of age, weight, and irradiation dose showed that only irradiation dose may be important to developing fracture. Step-wise logistic regression of presumed prognostic factors revealed that only cigarette use and x-ray evidence of osteoporosis prior to irradiation treatment were predictive of fracture. Conclusion: Femoral head fracture is a common complication of groin irradiation for gynecologic malignancies. Fracture in our database appears to be related to irradiation dose, cigarette use, and x-ray evidence of osteoporosis. Special attention should be given in treatment planning (i.e., shielding of femoral head/neck and use of appropriate electron beam energies for a portion of treatment) to reduce the incidence of this complication

  8. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture

    DEFF Research Database (Denmark)

    Woloszynski, T; Podsiadlo, P; Stachowiak, G W

    2012-01-01

    OBJECTIVE.: To develop a system for prediction of progression of radiographic knee osteoarthritis (OA) using tibial trabecular bone (TB) texture. METHODS.: We studied 203 knees with (n=68) or without (n=135) radiographic tibiofemoral OA in 105 subjects (90 men, 15 women, mean age 54 years) who ha...

  9. A theoretical framework for strain-related trabecular bone maintenance and adaptation

    NARCIS (Netherlands)

    Ruimerman, R.; Hilbers, P.A.J.; Rietbergen, van B.; Huiskes, R.

    2005-01-01

    It is assumed that density and morphology of trabecular bone is partially controlled by mechanical forces. How these effects are expressed in the local metabolic functions of osteoclast resorption and osteoblast formation is not known. In order to investigate possible mechano-biological pathways for

  10. Relationship between tissue stiffness and degree of mineralization of developing trabecular bone

    NARCIS (Netherlands)

    Mulder, L.; Koolstra, J.H.; den Toonder, J.M.J.; van Eijden, T.M.G.J.

    2008-01-01

    It is unknown how the degree of mineralization of bone in individual trabecular elements is related to the corresponding mechanical properties at the bone tissue level. Understanding this relationship is important for the comprehension of the mechanical behavior of bone at both the apparent and

  11. Revision total knee arthroplasty with the use of trabecular metal cones

    DEFF Research Database (Denmark)

    Jensen, Claus L; Petersen, Michael Mygind; Schrøder, Henrik

    2012-01-01

    "Trabecular Metal Cone" (TM Cone) (Zimmer, Inc, Warsaw, Ind) for reconstruction of bone loss in the proximal tibia during revision total knee arthroplasty is now optional. Forty patients were randomized to receive revision total knee arthroplasty with or without TM Cone (No TM Cone). The Anderson...

  12. Multi-axial fatigue of trabecular bone with respect to normal walking

    CERN Document Server

    Mostakhdemin, Mohammad; Syahrom, Ardiyansyah

    2016-01-01

    This book focuses on the analysis and treatment of osteoporotic bone based on drug administration, tracking fatigue behavior and taking into consideration the mechanical interaction of implants with trabecular bone. Weak trabeculae are one of the most important clinical features that need to be addressed in order to prevent hip joint fractures.

  13. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture

    NARCIS (Netherlands)

    Rietbergen, van B.; Odgaard, A.; Kabel, J.; Huiskes, H.W.J.

    1996-01-01

    A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric

  14. Preliminary report of cells at risk at the bone surface in trabecular bone

    International Nuclear Information System (INIS)

    Jee, W.S.S.; Wronski, T.J.; Kimmel, D.B.; Dell, R.B.; Johnson, F.

    1975-01-01

    This is a report of some early work on the cells at risk portion of the dynamic microanatomical dosimetry program of the Bone Group. The cells lining the trabecular bone of thoracic vertebral bodies from beagles aged 568, 2942, 4117, 4277, 4629, and 4801 days were characterized. Histologic and sampling experience gained in this attempt indicates that further improvements are needed

  15. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats.

    Science.gov (United States)

    Levkovitch-Verbin, Hana; Quigley, Harry A; Martin, Keith R G; Valenta, Danielle; Baumrind, Lisa A; Pease, Mary Ellen

    2002-02-01

    To develop and characterize a model of pressure-induced optic neuropathy in rats. Experimental glaucoma was induced unilaterally in 174 Wistar rats, using a diode laser with wavelength of 532 nm aimed at the trabecular meshwork and episcleral veins (combination treatment group) or only at the trabecular meshwork (trabecular group) through the external limbus. Intraocular pressure (IOP) was measured by a tonometer in rats under ketamine-xylazine anesthesia. Possible retinal vascular compromise was evaluated by repeated fundus examinations and by histology. The degree of retinal ganglion cell (RGC) loss was assessed by a masked, semiautomated counting of optic nerve axons. Effects of laser treatment on anterior ocular structures and retina were judged by light microscopy. After the laser treatment, IOP was increased in all eyes to higher than the normal mean IOP of 19.4 +/- 2.1 mm Hg (270 eyes). Peak IOP was 49.0 +/- 6.1 mm Hg (n = 108) in the combination group that was treated by a laser setting of 0.7 seconds and 0.4 W and 34.0 +/- 5.7 mm Hg (n = 46) in the trabecular group. Mean IOP after 6 weeks was 25.5 +/- 2.9 mm Hg in glaucomatous eyes in the combination group compared with 22.0 +/- 1.8 mm Hg in the trabecular group. IOP in the glaucomatous eyes was typically higher than in the control eyes for at least 3 weeks. In the combination group, RGC loss was 16.1% +/- 14.4% at 1 week (n = 8, P = 0.01), 59.7% +/- 25.7% at 6 weeks (n = 88, P < 0.001), and 70.9% +/- 23.6% at 9 weeks (n = 12, P < 0.001). The trabecular group had mean axonal loss of 19.1% +/- 14.0% at 3 weeks (n = 9, P = 0.004) and 24.3% +/- 20.2% at 6 weeks (n = 25, P < 0.001), increasing to 48.4% +/- 32.8% at 9 weeks (n = 12, P < 0.001). Laser treatment led to closure of intertrabecular spaces and the major outflow channel. The retina and choroid were normal by ophthalmoscopy at all times after treatment. Light microscopic examination showed only loss of RGCs and their nerve fibers. Increased IOP caused

  16. CT study of avascular necrosis of femoral head in adults

    International Nuclear Information System (INIS)

    Liu Jihua; Du Yuqing; Xu Aide

    2000-01-01

    Objective: To study the early and new CT signs of avascular necrosis of femoral head in adults. Methods: The CT scans of 127 cases with this condition were analyzed. Results: There were 90 hip joints with femoral head normal in shape, including 67 femoral heads with only high-density sclerosis and 23 ones with high-density and low-density areas. In 111 hip joints, the femoral head was depressed and manifested purely high-density sclerosis in 25 and mixed-density areas in 86. Air-filled cysts appeared in 43 femoral heads. In follow-up cases, the changes in shape and density of femoral head followed some rules. Conclusion: Purely high-density sclerosis is an early sign and is of great diagnostic value combined with its special shape. Air in femoral heads is also a sign of the disease

  17. Assessment of bone quality in the isolated femoral head for intracapsular fractures of the femoral head. Analysis of bone architecture using micro-CT and pQCT, and comparison with extracapsular fractures

    International Nuclear Information System (INIS)

    Sando, Masaru

    2003-01-01

    Block sections were prepared from the five locations, central portion, superior portion, inferior portion, anterior portion, and posterior portion, of the region around the fracture of the femoral head isolated from 21 patients (16 patients with intracapsular fracture, 5 patients with extracapsular fracture). Cancellous bone microstructure, cortical bone thickness, and bone density were evaluated and analyzed for differences in the mechanism from which intracapsular versus extracapsular fracture and fragility developed. The method of evaluating the bone architecture differed from conventional bone histomorphometry of hard tissues and involved non-invasive micro-CT measurements, while the bone density was measured by peripheral quantitative computed topography (pQCT). The results indicate that in comparison to patients with extracapsular fractures, patients with intracapsular fractures showed significant decreases in the trabecular thickness of superior and posterior portions in the cancellous bone. The cortical bone thickness was significantly decreased in the superior portion. Bone density was significantly decreased in the superior portion, while in the extracapsular fracture group density tended to be lower in the inferior, anterior, and posterior portions, although this was not statistically significant. Although there have been previous studies on the bone quality of the femoral head isolated from intracapsular fracture of the femoral head, most reports are of two-dimensional analysis of coronal sections. As far as we are aware, there have been no previous reports comparing individual locations to extracapsular fractures. In view of the various reports that bone density is lower in the extracapsular fracture compared to the intracapsular fracture, we speculate that extracapsular fracture results from the effects of external forces on decreased bone density, while in the intracapsular fracture type, thinning of the superior portion of the cortical bone creates

  18. Experimental erbium: YAG laser photoablation of trabecular meshwork in rabbits: an in-vivo study.

    Science.gov (United States)

    Dietlein, T S; Jacobi, P C; Schröder, R; Krieglstein, G K

    1997-05-01

    Photoablative laser trabecular surgery has been proposed as an outflow-enhancing treatment for open-angle glaucoma. The aim of the study was to investigate the time course of repair response following low-thermal Erbium: YAG laser trabecular ablation. In 20 anaesthetized rabbits gonioscopically controlled ab-interno photoablation of the ligamenta pectinata and underlying trabecular meshwork (TM) was performed with a single-pulsed (200 microseconds) Erbium: YAG (2.94 microns) laser. The right eye received 12-15 single laser pulses (2 mJ) delivered through an articulated zirconium fluoride fiberoptic and a 200 microns (core diameter) quartz fiber tip, the left unoperated eye served as control. At time intervals of 30 minutes, 2, 10, 30, and 60 days after laser treatment, eyes were processed for light- and scanning electron microscopy. The applied energy density of 6-4 J cm-2 resulted in visible dissection of the ligamenta pectinata and reproducible microperforations of the TM exposing scleral tissue accompanied by blood reflux from the aqueous plexus. The initial ablation zones measured 154 +/- 36 microns in depth and 45 +/- 6 microns in width. Collateral thermal damage zones were 22 +/- 8 microns. At two days post-operative, ablation craters were still blood- and fibrin-filled. The inner surface of the craters were covered with granulocytes. No cellular infiltration of the collateral thermal damage zone was observed. At 10 days post-operative, progressive fibroblastic proliferation was observed, resulting in dense scar tissue formation with anterior synechiae, proliferating capillaries and loss of intertrabecular spaces inside the range of former laser treatment at 60 days post-operative. Trabecular microperforations were closed 60 days after laser treatment in all rabbits. IOP in treated and contralateral eyes did not significantly change its level during whole period of observation. Low-thermal infrared laser energy with minimal thermal damage to collateral

  19. Early magnetic resonance imaging and histologic findings in a model of avascular necrosis of femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takuya [Kanazawa Univ. (Japan). School of Medicine

    1997-12-01

    The present study was performed to examine early MR images and histologic findings using a canine model of avascular necrosis of femoral head (ANFH). The ANFH model was surgically induced. At three days, 1, 2 and 4 weeks after surgery, the proximal femurs were excised. MR images were obtained in 4 dogs at 3 days and 7 dogs at each of the other intervals. Histologic examinations were performed on 7 dogs at each interval. Three days after surgery, MR showed almost no abnormal findings. Histologic changes included edematous bone marrow and bleeding in the bone marrow in some regions. One week after surgery, empty lacunae in trabecular bones and immature fibrous tissues in the bone marrow were seen in some cases, but appositional bone was not yet apparent. In only one case, abnormal MR findings -a ringlike pattern- were seen. Two weeks after surgery, 4 cases showed appositional bones on histology and abnormalities on MR images. Four weeks after surgery, fibrous tissues had matured and appositional bones had increased. Therefore, all 7 cases showed MR imaging abnormalities. Abnormal MR images included a ringlike pattern, and homogeneous and inhomogeneous patterns. These results indicated that MR imaging shows abnormality 2 weeks after surgery at the latest. (author)

  20. Is Trabecular Bone Score Valuable in Bone Microstructure Assessment after Gastric Bypass in Women with Morbid Obesity?

    Directory of Open Access Journals (Sweden)

    Agustina Pia Marengo

    2017-12-01

    Full Text Available Introduction: The effects of bariatric surgery on skeletal health raise many concerns. Trabecular bone score (TBS is obtained through the analysis of lumbar spine dual X-ray absorptiometry (DXA images and allows an indirect assessment of skeletal microarchitecture (MA. The aim of our study was to evaluate the changes in bone mineral density (BMD and alterations in bone microarchitecture assessed by TBS in morbidly obese women undergoing Roux-en-Y gastric bypass (RYGB, over a three-year follow-up. Material/Methods: A prospective study of 38 morbidly obese white women, aged 46.3 ± 8.2 years, undergoing RYGB was conducted. Biochemical analyses and DXA scans with TBS evaluation were performed before and at one year and three years after surgery. Results: Patients showed normal calcium and phosphorus plasma concentrations throughout the study. However, 25-hydroxyvitamin D (25(OHD3 decreased, and 71% of patients had a vitamin D deficiency at three years. BMD at femoral neck and lumbar spine (LSBMD significantly decreased 13.53 ± 5.42% and 6.03 ± 6.79%, respectively, during the three-year follow-up; however Z-score values remained above those for women of the same age. TBS was within normal ranges at one and three years (1.431 ± 106 and 1.413 ± 85, respectively, and at the end of the study, 73.7% of patients had normal bone MA. TBS at three years correlated inversely with age (r = −0.41, p = 0.010, body fat (r = −0.465, p = 0.004 and greater body fat deposited in trunk (r = −0.48, p = 0.004, and positively with LSBMD (r = 0.433, p = 0.007, fat mass loss (r = 0.438, p = 0.007 and lean mass loss (r = 0.432, p = 0.008. In the regression analysis, TBS remained associated with body fat (β = −0.625, p = 0.031; R2 = 0.47. The fracture risk, calculated by FRAX® (University of Sheffield, Sheffield, UK, with and without adjustment by TBS, was low. Conclusion: Women undergoing RYGB in the mid-term have a preserved bone MA, assessed by TBS.

  1. Computer tomographic determination of femoral anteversion

    International Nuclear Information System (INIS)

    Jend, H.H.

    1986-01-01

    Thirty-two macerated femora were examined by CT in order to determine the degree of anteversion and to relate this to the position of the femur and to the various reference lines quoted in the literature. The accuracy of CT is the same as that of the Rippstein method, provided the following conditions are met: 1. Position of the femur with its long axis perpendicular to the image plane. 2. Demonstration of the maximal configuration of the femoral condyles to enable one to construct a tangent to the dorsal aspect of the condyle. 3. Demonstration of the head and neck by a plane which divides the neck into approximately equal portions and sections the femoral head. These conditions are more easily met, even in immobile patients, than the requirements for the Rippstein method. (orig.) [de

  2. Intracorporeal knotting of a femoral nerve catheter

    Directory of Open Access Journals (Sweden)

    Ghanem, Mohamed

    2015-01-01

    Full Text Available Peripheral nerve catheters are effective and well-established tools to provide postoperative analgesia to patients undergoing orthopedic surgery. The performance of these techniques is usually considered safe. However, placement of nerve catheters may be associated with a considerable number of side effects and major complications have repeatedly been published. In this work, we report on a patient who underwent total knee replacement with spinal anesthesia and preoperative insertion of femoral and sciatic nerve catheters for postoperative analgesia. During insertion of the femoral catheter, significant resistance was encountered upon retracting the catheter. This occurred due to knotting of the catheter. The catheter had to be removed by operative intervention which has to be considered a major complication. The postoperative course was uneventful. The principles for removal of entrapped peripheral catheters are not well established, may differ from those for neuroaxial catheters, and range from cautious manipulation up to surgical intervention.

  3. Femoral head fracture without hip dislocation

    Directory of Open Access Journals (Sweden)

    Aggarwal Aditya K

    2013-10-01

    Full Text Available 【Abstract】Femoral head fractures without dislocation or subluxation are extremely rare injuries. We report a neglected case of isolated comminuted fracture of femoral head without hip dislocation or subluxation of one year duration in a 36-year-old patient who sustained a high en- ergy trauma due to road traffic accident. He presented with painful right hip and inability to bear full weight on right lower limb with Harris hip score of 39. He received cementless total hip replacement. At latest follow-up of 2.3 years, functional outcome was excellent with Harris hip score of 95. Such isolated injuries have been described only once in the literature and have not been classified till now. The purpose of this report is to highlight the extreme rarity, possible mechanism involved and a novel classification system to classify such injuries. Key words: Femur head; Hip dislocation; Classification; Arthroplasty, replacement, hip

  4. Ipsilateral femoral neck and trochanter fracture

    Directory of Open Access Journals (Sweden)

    Devdatta S Neogi

    2011-01-01

    Full Text Available Ipsilateral fractures in the neck and trochanteric region of the femur are very rare and seen in elderly osteoporotic patients. We present a case of a young man who presented with ipsilateral fracture of the femoral neck and a reverse oblique fracture in the trochanteric region following a motor vehicle accident. A possible mechanism, diagnostic challenge, and awareness required for identifying this injury are discussed.

  5. Proximal focal femoral deficiency: A case report

    Directory of Open Access Journals (Sweden)

    Shashank Sharma

    2015-01-01

    Full Text Available Proximal focal femoral deficiency (PFFD is a rare congenital anomaly resulting in limb shortening and disability in young. The exact cause of the disease is not known and it may present as varying grades of affection involving the proximal femur and the acetabulum. Recognition of this rare abnormality on radiographs can help manage these cases better since early institution of therapy may help in achieving adequate growth of the femur.

  6. Radiofrequency ablation of two femoral head chondroblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Petsas, Theodore [Department of Radiology, University of Patras (Greece); Megas, Panagiotis [Department of Orthopaedic Surgery, University of Patras (Greece)]. E-mail: panmegas@med.upatras.gr; Papathanassiou, Zafiria [Department of Radiology, University of Patras (Greece)

    2007-07-15

    Chondroblastoma is a rare benign cartilaginous bone tumor. Surgical resection is the treatment of choice for pain relief and prevention of further growth. Open surgical techniques are associated with complications, particularly when the tumors are located in deep anatomical sites. The authors performed RF ablation in two cases of subarticular femoral head chondroblastomas and emphasize its positive impact. The clinical course, the radiological findings and the post treatment results are discussed.

  7. [Avascular necrosis of the femoral head].

    Science.gov (United States)

    Porubský, Peter; Trč, Tomáš; Havlas, Vojtěch; Smetana, Pavel

    Avascular necrosis of the femoral head in adults is not common, but not too rare diseases. In orthopedic practice, it is one of the diseases that are causing implantation of hip replacement at a relatively early age. In the early detection and initiation of therapy can delay the implantation of prosthesis for several years, which is certainly more convenient for the patient and beneficial. This article is intended to acquaint the reader with the basic diagnostic procedures and therapy.

  8. MYCOTIC FEMORAL PSEUDOANEURYSMS FROM INTRAVENOUS DRUG ABUSE

    Directory of Open Access Journals (Sweden)

    Vojko Flis

    2004-04-01

    Full Text Available Background. Parenteral drug abuse is the most common cause of infected femoral artery pseudoaneurysms (IFAP. This complication of intravenous drug abuse is not only limb threatening but can also be life threatening. The management of the IFAP is difficult and controversial. Generally speaking, ligation and excision of the pseudoaneurysm without revascularization is accepted procedure in majority of the patients. However it is not regarded as an appropriate procedure for cases where the high probability of amputation is expected from acute interruption of the femoral artery flow.Patients, methods and results. We present three cases of young (average 20 years, range 18–24 patients with IFAP, in which a primary reconstruction was performed due to absence of doppler signal over pedal arteries after ligation of common femoral artery. In two of them complications in form of haemorrhage and repeated infection developed in late postoperative period. The first one, had an excision and ligation while the second one had a reconstruction made by means of a silver impregnated dacron prosthesis. None of the patients required an amputation.Conclusions. Overall prognosis and prognosis of the reconstruction in parenteral drug abuse patients is uncertain because there is a high incidence of postoperative drug injection despite aggressive drug rehabilitation.

  9. Radionuclide patterns of femoral head disease

    Energy Technology Data Exchange (ETDEWEB)

    Webber, M M; Wagner, J; Cragin, M D [California Univ., Los Angeles (USA). Dept. of Radiological Sciences

    1977-12-01

    The pattern of uptake of bone marrow specific radio-sup(99m)Tc sulfur colloid and the pattern of uptake of bone mineral specific radio-sup(99m)Tc pryophosphate may be valuable in assessing bone vascularity in diseases suspected of causing impaired blood supply, or indicate the presence of reactive bone formation. The low energy of the technetium label has been shown to be superior to /sup 18/F and /sup 85/Sr, and leads to greater imaging detail on the scans. Femoral head scanning with mineral and/or marrow specific radionuclides offers the clinician a method of evaluating the status of the femoral head and possibly an early diagnosis of avascular necrosis before roentgenographic changes occur. This study, which reports on a 5-year experience using radionuclide scanning to assess femoral head vascularity, begins with baseline or normal studies followed by variations of the normal pattern. Typical scan patterns of hip pathology described above are also presented.

  10. Development of femoral bone fracture model simulating muscular contraction force by pneumatic rubber actuator.

    Science.gov (United States)

    Sen, Shin; Ando, Takehiro; Kobayashi, Etsuko; Miyamoto, Hideaki; Ohashi, Satoru; Tanaka, Sakae; Joung, Sanghyun; Park, Il-Hyung; Sakuma, Ichiro

    2014-01-01

    In femoral fracture reduction, orthopedic surgeons must pull distal bone fragments with great traction force and return them to their correct positions, by referring to 2D-fluoroscopic images. Since this method is physically burdensome, the introduction of robotic assistance is desirable. While such robots have been developed, adequate control methods have not yet been established because of the lack of experimental data. It is difficult to obtain accurate data using cadavers or animals because they are different from the living human body's muscle characteristics and anatomy. Therefore, an experimental model for simulating human femoral characteristics is required. In this research, human muscles are reproduced using a McKibben-type pneumatic rubber actuator (artificial muscle) to develop a model that simulates typical femur muscles using artificial muscles.

  11. Assessment of Cortical and Trabecular Bone Changes in Two Models of Post-Traumatic Osteoarthritis

    Science.gov (United States)

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D.; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Donahue, Tammy L Haut

    2015-01-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans. PMID:26147652

  12. Structure model index does not measure rods and plates in trabecular bone

    Directory of Open Access Journals (Sweden)

    Phil L Salmon

    2015-10-01

    Full Text Available Structure model index (SMI is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4, to cylindrical (SMI = 3 to planar (SMI = 0. The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+ and negative (SMI- components, bone volume fraction (BV/TV, the fraction of the surface that is concave (CF, and mean ellipsoid factor (EF in trabecular bone using 38 X-ray microtomography (XMT images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile. We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely less than 20%, of the trabecular surface is concave (CF 0.155 – 0.700. SMI is unavoidably influenced by aberrations from SMI-, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from SMI's close and artefactual relationship with BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with

  13. Incidence of Avascular Necrosis of the Femoral Head After Intramedullary Nailing of Femoral Shaft Fractures

    Science.gov (United States)

    Kim, Ji Wan; Oh, Jong-Keon; Byun, Young-Soo; Shon, Oog-Jin; Park, Jai Hyung; Oh, Hyoung Keun; Shon, Hyun Chul; Park, Ki Chul; Kim, Jung Jae; Lim, Seung-Jae

    2016-01-01

    Abstract The goal of this study was to determine the incidence of avascular necrosis of the femoral head (AVNFH) after intramedullary nailing of femoral shaft fractures and to identify risk factors for developing AVNFH. We retrospectively reviewed all patients with femoral shaft fractures treated with antegrade intramedullary nailing at 10 institutions. Among the 703 patients enrolled, 161 patients were excluded leaving 542 patients in the study. Average age was 42.1 years with average follow-up of 26.3 months. Patient characteristics and fracture patterns as well as entry point of femoral nails were identified and the incidence of AVNFH was investigated. Patients were divided into 2 groups according to open versus closed physis, open versus closed fractures, and age (<20 versus ≥20 years). Overall incidence of AVNFH was 0.2% (1 of 542): the patient was 15-year-old boy. Of 25 patients with open physis, the incidence of AVNFH was 4%, whereas none of 517 patients with closed physis developed AVNFH (P < 0.001). The incidence of AVNFH in patients aged < 20 versus ≥20 years was 1.1% (1 of 93) and 0.0% (0 of 449), respectively (P = 0.172), which meant that the incidence of AVNFH was 0% in adult with femur shaft fracture. Of 61 patients with open fractures, the incidence of AVNFH was 0%. The number of cases with entry point at the trochanteric fossa or tip of the greater trochanter (GT) was 324 and 218, respectively, and the incidence of AVNFH was 0.3% and 0.0%, respectively (P = 0.412). In patients aged ≥20 years with isolated femoral shaft fracture, there was no case of AVNFH following antegrade intramedullary nailing regardless of the entry point. Therefore, our findings suggest that the risk of AVNFH following antegrade femoral nailing is extremely low in adult patients. PMID:26844518

  14. Ipsilateral femoral neck and shaft fractures: An overlooked association

    International Nuclear Information System (INIS)

    Daffner, R.H.; Riemer, B.L.; Butterfield, S.L.

    1991-01-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG)

  15. Ipsilateral femoral neck and shaft fractures: An overlooked association

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H. (Dept. of Diagnostic Radiology, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA)); Riemer, B.L.; Butterfield, S.L. (Dept. of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA))

    1991-05-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG).

  16. MR evaluation of femoral neck version and tibial torsion

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, James Karl; Dwek, Jerry R. [University of California, San Diego, Children' s Hospital and Health Center, Department of Radiology, San Diego, CA (United States); Pring, Maya E. [Rady Children' s Hospital, Department of Pediatric Orthopedic Surgery, San Diego, CA (United States)

    2012-01-15

    Abnormalities of femoral neck version have been associated with a number of hip abnormalities in children, including slipped capital femoral epiphysis, proximal femoral focal deficiency, coxa vara, a deep acetabulum and, rarely, developmental dysplasia of the hip. Orthopedic surgeons also are interested in quantifying the femoral neck anteversion or retroversion in children especially to plan derotational osteotomies. Historically, the angle of femoral version and tibial torsion has been measured with the use of radiography and later by CT. Both methods carry with them the risks associated with ionizing radiation. Techniques that utilize MR are used less often because of the associated lengthy imaging times. This article describes a technique using MRI to determine femoral neck version and tibial torsion with total scan times of approximately 10 min. (orig.)

  17. Computerized tomography in evaluation of decreased acetabular and femoral anteversion

    International Nuclear Information System (INIS)

    Toennis, D.; Skamel, H.J.

    2003-01-01

    Computerized tomography has received a new importance. It has been shown that decreased anteversion of femur and acetabulum, when both have decreased angles, are causing pain and osteoarthritis of the hip joint. Operative treatment should be performed before osteoarthritis develops. Exact measurements therefore are necessary. The investigation should be performed in prone position to have the pelvis lying in a defined and normal position. Femoral torsion is measured between the transverse axis of the knee and the femoral neck. The transverse axis for measurement of the femoral anteversion is defined by a rectangular line to the sagittal plane. For evaluation of the femoral anteversion in total the angle of the condyles has to be added to the femoral neck angle when the knee is found in internal rotation. Acetabular anteversion should be measured at the level where the femoral head is still in full contact and congruence with the anterior margin of the acetabulum. (orig.) [de

  18. Compartment Syndrome following Open Femoral Fracture with an Isolated Femoral Vein Injury Treated with Acute Repair

    Directory of Open Access Journals (Sweden)

    David Walmsley

    2014-01-01

    Full Text Available Acute compartment syndrome is a surgical emergency and its diagnosis is more difficult in obtunded or insensate patients. We present the case of a 34-year-old woman who sustained a Gustilo-Anderson grade III open midshaft femur fracture with an isolated femoral vein injury treated with direct repair. She developed lower leg compartment syndrome at 48 hours postoperatively, necessitating fasciotomies. She was subsequently found to have a DVT in her femoral vein at the level of the repair and was started on therapeutic anticoagulation. This case highlights the importance of recognition of isolated venous injuries in a trauma setting as a risk factor for developing compartment syndrome.

  19. Delayed appearance of hypaesthesia and paralysis after femoral nerve block

    OpenAIRE

    Stefan Landgraeber; Thomas Albrecht; Ulrich Reischuck; Marius von Knoch

    2012-01-01

    We report on a female patient who underwent an arthroscopy of the right knee and was given a continuous femoral nerve block catheter. The postoperative course was initially unremarkable, but when postoperative mobilisation was commenced, 18 hours after removal of the catheter, the patient noticed paralysis and hypaesthesia. Examination confirmed the diagnosis of femoral nerve dysfunction. Colour duplex sonography of the femoral artery and computed tomography of the lumbar spine and pelvis yie...

  20. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified...... matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes...... in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage. Udgivelsesdato: 2004 May...

  1. Decreased trabecular bone biomechanical competence, apparent density, IGF-II and IGFBP-5 content in acromegaly

    DEFF Research Database (Denmark)

    Ueland, Thor; Ebbesen, Ebbe Nils; Thomsen, Jesper Skovhus

    2002-01-01

    of these growth factors in relation to biomechanical properties in acromegaly. MATERIALS AND METHODS: Trabecular bone biomechanical competence (compression test), apparent density (peripheral quantitative computed tomography, pQCT), and bone matrix contents of calcium (HCl hydrolysis) and IGFs (guanidinium......-HCl extraction) were measured in iliac crest biopsies from 13 patients with active acromegaly (two women and 11 men, aged 21-61 years) and 21 age- and sex-matched controls (four women and 17 men, aged 23-64 years). RESULTS: Trabecular bone pQCT was reduced in acromegalic patients compared with controls (P = 0...... bone content of IGF-I, IGFBP-3, or osteocalcin. However, IGF-II and IGFBP-5 content was decreased (P acromegaly, supporting previous observations...

  2. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    International Nuclear Information System (INIS)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M.

    2010-01-01

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle ( 64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78.8% classification accuracy and outperformed the WND

  3. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M. [Tribology Laboratory, School of Mechanical Engineering, University of Western Australia, Crawley, Western Australia 6009 (Australia); Chair of Computer Systems and Networks, Faculty of Electronics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2010-05-15

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system

  4. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients.

    Science.gov (United States)

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L

    2017-04-03

    Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography

  5. In vitro and in vivo experimental studies on trabecular meshwork degeneration induced by benzalkonium chloride (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Baudouin, Christophe; Denoyer, Alexandre; Desbenoit, Nicolas; Hamm, Gregory; Grise, Alice

    2012-12-01

    Long-term antiglaucomatous drug administration may cause irritation, dry eye, allergy, subconjunctival fibrosis, or increased risk of glaucoma surgery failure, potentially due to the preservative benzalkonium chloride (BAK), whose toxic, proinflammatory, and detergent effects have extensively been shown experimentally. We hypothesize that BAK also influences trabecular meshwork (TM) degeneration. Trabecular specimens were examined using immunohistology and reverse transcriptase-polymerase chain reaction. A trabecular cell line was stimulated by BAK and examined for apoptosis, oxidative stress, fractalkine and SDF-1 expression, and modulation of their receptors. An experimental model was developed with BAK subconjunctival injections to induce TM degeneration. Mass spectrometry (MS) imaging assessed BAK penetration after repeated instillations in rabbit eyes. Trabecular specimens showed extremely low densities of trabecular cells and presence of cells expressing fractalkine and fractalkine receptor and their respective mRNAs. Benzalkonium in vitro induced apoptosis, oxidative stress, and fractalkine expression and inhibited the protective chemokine SDF-1 and Bcl2, also inducing a sustained intraocular pressure (IOP) increase, with dramatic apoptosis of trabecular cells and reduction of aqueous outflow. MS imaging showed that BAK could access the TM at measurable levels after repeated instillations. BAK enhances all characteristics of TM degeneration typical of glaucoma-trabecular apoptosis, oxidative stress, induction of inflammatory chemokines-and causes degeneration in acute experimental conditions, potentially mimicking long-term accumulation. BAK was also shown to access the TM after repeated instillations. These findings support the hypothesis that antiglaucoma medications, through toxicity of their preservative, may cause further long-term trabecular degeneration and therefore enhance outflow resistance, reducing the impact of IOP-lowering agents.

  6. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity.

    Directory of Open Access Journals (Sweden)

    Ratan Kumar Rai

    Full Text Available Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx. Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group, and restoration was allowed to become comparable to sham Ovx (control group using bone mineral density (BMD and µCT determinants. We used a technique combining (1H NMR spectroscopy with (31P and (13C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1 and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and

  7. Relationships between age and microarchitectural descriptors of iliac trabecular bone determined by microCT.

    Science.gov (United States)

    Deguette, C; Ramond-Roquin, A; Rougé-Maillart, C

    2017-06-01

    Estimation of age at death is a major issue in anthropology. The main anthropological histological methods propose studying the architecture of cortical bone. In bone histomorphometry, researches on metabolic bone diseases have provided normative tables for trabecular bone volume (BV/TV) according to age and gender of individuals on trans-iliac bone biopsies. We have used microCT, a non-destructive tool for measuring bone volume and trabecular descriptors to compare the French tables to a series of forensic anthropological population and if the two iliac bones could be used interchangeably. Coxal bone of a personal forensic collection whose age and gender were known (DNA identification) were used. Bone samples, centered on the same area than bone biopsy. MicroCT (pixel size: 36μm) was used to measure BV/TV and morphometric trabecular parameters of microarchitecture. An adjusted Z-score was calculated for BV/TV to compare with normative tables and a right/left comparison of trabecular parameters was provided. Twenty-seven iliac bones, which 20 forming 10 complete pelvises, aged between 24 and 73y.o. (average of 47.7 y.o.) were used. All adjusted Z-score were within normal values. There was a strong positive correlation between right and left sides for Tb.Th, Tb.N and Tb.Sp, but an insignificant correlation was obtained for BV/TV. Normative tables between age and BV/TV are valid and therefore usable in anthropology. They may represent an alternative to determine the age at death. Nevertheless, it requires a precise technique that could be a drawback in current practice. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Strain analysis of trabecular bone using time-resolved X-ray microtomography

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Zlámal, Petr; Kytýř, Daniel; Kroupa, M.

    2011-01-01

    Roč. 633, Suppl. 1 (2011), s. 148-151 ISSN 0168-9002. [International Workshop on Radiation Imaging Detectors /11./. Praha, 28.06.2009-02.07.2009] R&D Projects: GA ČR(CZ) GP103/07/P483 Institutional research plan: CEZ:AV0Z20710524 Keywords : trabecular bone * X-ray microtomography * strain analysis * intrinsic material properties Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.207, year: 2011

  9. Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study

    OpenAIRE

    Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K.; Bhattacharya, Sanjoy K.; Parel, Jean-Marie A

    2009-01-01

    Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In a...

  10. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    Science.gov (United States)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  11. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    Science.gov (United States)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  12. A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image

    International Nuclear Information System (INIS)

    Han, Seung Yun; Lee, Sun Bok; Oh, Sung Ook; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2003-01-01

    To evaluate the relationship between morphometric analysis of microstructure from digital radiographic image and trabecular bone strength. One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI(100 x 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p<0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  13. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    Science.gov (United States)

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (Pmicro-CT and CBCT (Pimplant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  14. Estimation of femoral bone density from trabecular direct wave and cortical guided wave ultrasound velocities measured at the proximal femur in vivo

    DEFF Research Database (Denmark)

    Barkmann, Reinhard; Dencks, Stefanie; Bremer, Alexander

    2008-01-01

    but not soft tissue SOS. Coefficient of determination, percentage residual error (RMSE) and level of significance (p) were R(2)=0.51, RMSE=12.6%, p2)=0.53, RMSE=12.3%, p... the correlation to R(2)=0.69, RMSE=10.4%, p

  15. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Klintstroem, Eva; Smedby, Oerjan [Linkoeping University, Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden); UHL County Council of Oestergoetland, Department of Radiology, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences (IMH)/Radiology, Linkoeping (Sweden); Moreno, Rodrigo [Linkoeping University, Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences (IMH)/Radiology, Linkoeping (Sweden); Brismar, Torkel B. [KUS Huddinge, Department of Clinical Science, Intervention and Technology at Karolinska Institutet and Department of Radiology, Stockholm (Sweden)

    2014-02-15

    Bone strength depends on both mineral content and bone structure. The aim of this in vitro study was to develop a method of quantitatively assessing trabecular bone structure by applying three-dimensional image processing to data acquired with multi-slice and cone-beam computed tomography using micro-computed tomography as a reference. Fifteen bone samples from the radius were examined. After segmentation, quantitative measures of bone volume, trabecular thickness, trabecular separation, trabecular number, trabecular nodes, and trabecular termini were obtained. The clinical machines overestimated bone volume and trabecular thickness and underestimated trabecular nodes and number, but cone-beam CT to a lesser extent. Parameters obtained from cone beam CT were strongly correlated with μCT, with correlation coefficients between 0.93 and 0.98 for all parameters except trabecular termini. The high correlation between cone-beam CT and micro-CT suggest the possibility of quantifying and monitoring changes of trabecular bone microarchitecture in vivo using cone beam CT. (orig.)

  16. To study the role of dynamic magnetic resonance imaging in assessing the femoral head vascularity in intracapsular femoral neck fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Abhishek, E-mail: abhiortho27@gmail.co [Department of Orthopedics, 513, Thermal Colony, Sector-22, Faridabad 121005, Haryana (India); Sankaran, Balu; Varghese, Mathew [Department of Orthopedics, St Stephen' s Hospital, Tis hazari, Delhi, New Delhi 110054 (India)

    2010-09-15

    Intracapsular femoral neck fractures remain unsolved fractures even after improvement in techniques of diagnosis and internal fixation. Individuals who sustain displaced femoral neck fractures are at high risk of developing avascular necrosis and non-union. Although several methods for predicting the viability of femoral head have been reported, they are not effective or widely used because of unreliability, potential complications and technical difficulties. Dynamic MRI was introduced in the recent past as a simple, non-invasive technique to predict the femoral head viability after the femoral neck fractures. In this study role of dynamic MRI was studied in 30 patients with 31 intracapsular femoral neck fractures. Fractures were divided in to three types according to dynamic curve patterns on MRI evaluation and were followed up for 6 months to 2 years to observe the final outcome. Sensitivity, Specificity and the Accuracy of dynamic MRI in predicting vascularity after femoral neck fracture are 87%, 88% and 87%, respectively. Type A or Type B curve pattern is a positive factor to successful osteosynthesis with p value <0.0001 (Chi-square test). This is a statistically significant value. From this finding it can be suggested that the reliability of dynamic curves A and B in predicting maintained vascularity of femoral head is high. This investigation can be used to predict the vascularity of femoral head after intracapsular femoral neck fractures. There was a good correlation between the outcomes of fractures and dynamic MRI curves done within 48 h of injury. This signifies the role of dynamic MRI in predicting the vascularity of femoral head as early as 48 h. A treatment algorithm can be suggested on the basis of dynamic MRI curves. The fractures with Type C dynamic curve should be considered as fractures with poor vascularity of femoral head and measures to enhance the vascularity of femoral head along with rigid internal fixation should be undertaken to promote

  17. To study the role of dynamic magnetic resonance imaging in assessing the femoral head vascularity in intracapsular femoral neck fractures

    International Nuclear Information System (INIS)

    Kaushik, Abhishek; Sankaran, Balu; Varghese, Mathew

    2010-01-01

    Intracapsular femoral neck fractures remain unsolved fractures even after improvement in techniques of diagnosis and internal fixation. Individuals who sustain displaced femoral neck fractures are at high risk of developing avascular necrosis and non-union. Although several methods for predicting the viability of femoral head have been reported, they are not effective or widely used because of unreliability, potential complications and technical difficulties. Dynamic MRI was introduced in the recent past as a simple, non-invasive technique to predict the femoral head viability after the femoral neck fractures. In this study role of dynamic MRI was studied in 30 patients with 31 intracapsular femoral neck fractures. Fractures were divided in to three types according to dynamic curve patterns on MRI evaluation and were followed up for 6 months to 2 years to observe the final outcome. Sensitivity, Specificity and the Accuracy of dynamic MRI in predicting vascularity after femoral neck fracture are 87%, 88% and 87%, respectively. Type A or Type B curve pattern is a positive factor to successful osteosynthesis with p value <0.0001 (Chi-square test). This is a statistically significant value. From this finding it can be suggested that the reliability of dynamic curves A and B in predicting maintained vascularity of femoral head is high. This investigation can be used to predict the vascularity of femoral head after intracapsular femoral neck fractures. There was a good correlation between the outcomes of fractures and dynamic MRI curves done within 48 h of injury. This signifies the role of dynamic MRI in predicting the vascularity of femoral head as early as 48 h. A treatment algorithm can be suggested on the basis of dynamic MRI curves. The fractures with Type C dynamic curve should be considered as fractures with poor vascularity of femoral head and measures to enhance the vascularity of femoral head along with rigid internal fixation should be undertaken to promote

  18. Surgery for pathological proximal femoral fractures, excluding femoral head and neck fractures: resection vs. stabilisation.

    Science.gov (United States)

    Zacherl, Max; Gruber, Gerald; Glehr, Mathias; Ofner-Kopeinig, Petra; Radl, Roman; Greitbauer, Manfred; Vecsei, Vilmos; Windhager, Reinhard

    2011-10-01

    Pathological femoral head and neck fractures are commonly treated by arthroplasty. Treatment options for the trochanteric region or below are not clearly defined. The purpose of this retrospective, comparative, double-centre study was to analyse survival and influences on outcome according to the surgical technique used to treat pathological proximal femoral fractures, excluding fractures of the femoral head and neck. Fifty-nine patients with 64 fractures were operated up on between 1998 and 2004 in two tertiary referral centres and divided into two groups. One group (S, n = 33) consisted of patients who underwent intramedullary nailing alone, and the other group (R, n = 31) consisted of patients treated by metastatic tissue resection and reconstruction by means of different implants. Median survival was 12.6 months with no difference between groups. Surgical complications were higher in the R group (n = 7) vs. the S group (n = 3), with no statistically significant difference. Patients with surgery-related complications had a higher survival rate (p = 0.049), as did patients with mechanical implant failure (p = 0.01). Survival scoring systems did not correlate with actual survival. Resection of metastases in patients with pathological fractures of the proximal femur, excluding femoral head and neck fractures, has no influence on survival. Patients with long postoperative survival prognosis are at risk of implant-related complications.

  19. Self-designed femoral neck guide pin locator for femoral neck fractures.

    Science.gov (United States)

    Xia, Shengli; Wang, Ziping; Wang, Minghui; Wu, Zuming; Wang, Xiuhui

    2014-01-01

    Closed reduction and fixation with 3 cannulated screws is a widely accepted surgery for the treatment of femoral neck fractures. However, how to obtain optimal screw placement remains unclear. In the current study, the authors designed a guide pin positioning system for femoral neck fracture cannulated screw fixation and examined its application value by comparing it with freehand guide needle positioning and with general guide pin locator positioning provided by equipment manufacturers. The screw reset rate, screw parallelism, triangle area formed by the link line of the entry point of 3 guide pins, and maximum vertical load bearing of the femoral neck after internal fixation were recorded. As expected, the triangle area was largest in the self-designed positioning group, followed by the general positioning group and the freehand positioning group. The difference among the 3 groups was statistically significant (P.05). The authors’ self-designed guide pin positioning system has the potential to accurately insert cannulated screws in femoral neck fractures and may reduce bone loss and unnecessary radiation.

  20. Biogeometry of femoral neck for implant placement

    Directory of Open Access Journals (Sweden)

    Patwa J

    2006-01-01

    Full Text Available Background : Treatment of fracture neck femur with three cannulated cancellous screws in an apex proximal configuration is practised in many parts of the world. Methods : Dimensions of femoral neck at the middle of transcervical neck using CT scan (live neck and vernier caliper (dry cadeveric neck in 20 subjects respectively were measured. Results : Inferior half of the neck is narrower than superior half. Conclusion : Biogeometry of the neck of femur does not accomodate two inferior screws and thus fixation of fracture neck femur with three canulated cancellous screws in an apex distal configuration is recommended.

  1. Superficial femoral artery: current treatment options

    International Nuclear Information System (INIS)

    Tepe, Gunnar; Schmehl, Joerg; Heller, Stephan; Wiesinger, Benjamin; Claussen, Claus D.; Duda, Stephan H.

    2006-01-01

    Treatment of the superficial femoral artery (SFA) has been among the least effective of all endovascular procedures in terms of long-term patency. The relatively small vessel lumen, in conjunction with a high plaque burden, slow flow, and a high frequency of primary occlusions, contributes to a considerable rate of acute technical failures. Because of these technical limitations a much effort has been made during the past years. This manuscript should summarize the hopes and limitations of different approaches such as brachytherapy, cutting balloons, stents and stent grafts, drug-eluting stents, and drug-coated balloons. (orig.)

  2. [Treatment of avascular necrosis of femoral head after femoral neck fracture with pedicled iliac bone graft].

    Science.gov (United States)

    Wang, Benjie; Zhao, Dewei; Guo, Lin; Yang, Lei; Li, Zhigang; Cui, Daping; Tian, Fengde; Liu, Baoyi

    2011-05-01

    To explore the effectiveness of pedicled iliac bone graft transposition for treatment of avascular necrosis of femoral head (ANFH) after femoral neck fracture. Between June 2002 and December 2006, 22 cases (22 hips, 16 left hips and 6 right hips) of ANFH after femoral neck fracture were treated with iliac bone graft pedicled with ascending branch of the lateral femoral circumflex vessels. There were 18 males and 4 females with an age range from 28 to 48 years (mean, 37.5 years). The time from injury to internal fixation was 2-31 days, and all fractures healed within 12 months after internal fixation. The ANFH was diagnosed at 15-40 months (mean, 22 months) after internal fixation. The ANFH duration was 3-11 months (mean, 8 months). According to Association Research Circulation Osseous (ARCO) staging system, 2 hips were classified as stage IIa, 3 hips as stage IIb, 3 hips as stage IIc, 3 hips as stage IIIa, 7 hips as stage IIIb, and 4 hips as stage IIIc. The preoperative Harris hip score (HHS) was 64.10 +/- 5.95. All incisions healed by first intention and the patients had no complication of lung embolism, sciatic nerve injury, lower limb deep venous thrombosis, and numbness and pain of donor site. All patients were followed up 2.5 to 6.3 years (mean, 4.8 years). The fracture healing time was 8-12 months, and no femoral neck fracture recurred. The HHS was 90.20 +/- 5.35 at last follow-up, showing significant difference when compared with the preoperative value (t = -18.447, P = 0.000). The hip function were excellent in 11 hips, good in 10 hips, fair in 1 hip, and the excellent and good rate was 95.5%. Four hips were radiographically progressed in ARCO staging, 18 hips remained stable with a stable rate of 81.8%. Pedicled iliac bone graft transposition is an ideal option for treatment of ANFH after internal fixation of femoral neck fracture for the advantages of femoral head revascularization, sufficient cancellous bone supply, and relatively simple procedure.

  3. Comparison of Radial Access, Guided Femoral Access, and Non-Guided Femoral Access Among Women Undergoing Percutaneous Coronary Intervention.

    Science.gov (United States)

    Koshy, Linda M; Aberle, Laura H; Krucoff, Mitchell W; Hess, Connie N; Mazzaferri, Ernest; Jolly, Sanjit S; Jacobs, Alice; Gibson, C Michael; Mehran, Roxana; Gilchrist, Ian C; Rao, Sunil V

    2018-01-01

    This study was conducted to determine the association between radial access, guided femoral access, and non-guided femoral access on postprocedural bleeding and vascular complications after percutaneous coronary intervention (PCI). Bleeding events and major vascular complications after PCI are associated with increased morbidity, mortality, and cost. While the radial approach has been shown to be superior to the femoral approach in reducing bleeding and vascular complications, whether the use of micropuncture, fluoroscopy, or ultrasound mitigates these differences is unknown. We conducted a post hoc analysis of women in the SAFE-PCI for Women trial who underwent PCI and had the access method identified (n = 643). The primary endpoint of postprocedure bleeding or vascular complications occurring within 72 hours or at discharge was adjudicated by an independent clinical events committee and was compared based on three categories of access technique: radial, guided femoral (fluoroscopy, micropuncture, ultrasound), or non-guided femoral (none of the aforementioned). Differences between the groups were determined using multivariate logistic regression using radial access as the reference. Of the PCI population, 330 underwent radial access, 228 underwent guided femoral access, and 85 underwent non-guided femoral access. There was a statistically significant lower incidence of the primary endpoint with radial access vs non-guided femoral access; however, there was no significant difference between radial approach and femoral access guided by fluoroscopy, micropuncture, or ultrasound. This post hoc analysis demonstrates that while radial access is safer than non-guided femoral access, guided femoral access appears to be associated with similar bleeding events or vascular complications as radial access.

  4. Current indications for open Kuntscher nailing of femoral shaft ...

    African Journals Online (AJOL)

    Current indications for open Kuntscher nailing of femoral shaft fractures. A S Bajwa FCS(SA)ORTH. E Schnaid FCS(SA)ORTH. M E B Sweet MD PhD(rned). University of Witwatersrand, Johannesburg, South Africa. Key Words: Kuntscher nail, intramedullary nail, femoral fracture. We retrospectively reviewed 32 patients with.

  5. Bilateral impacted femoral neck fracture in a renal disease patient ...

    African Journals Online (AJOL)

    Spontaneous bilateral femoral neck facture in a renal disease patient is not common. We report a case of 47-year-old female patient with chronic renal failure and on regular hemodialysis for the past 5 years who sustained bilateral impacted femoral neck fracture without history of trauma and injury and refused any surgical ...

  6. Slipped capital femoral epiphysis: A modern treatment protocol

    Directory of Open Access Journals (Sweden)

    Slavković Nemanja

    2009-01-01

    Full Text Available The treatment of a patient with slipped capital femoral epiphysis begins with an early diagnosis and accurate classification. On the basis of symptom duration, clinical findings and radiographs, slipped capital femoral epiphysis is classified as pre-slip, acute, acute-on-chronic and chronic. The long-term outcome of slipped capital femoral epiphysis is directly related to severity and the presence or absence of avascular necrosis and/or chondrolysis. Therefore, the first priority in the treatment of slipped capital femoral epiphysis is to avoid complications while securing the epiphysis from further slippage. Medical treatment of patients with acute and acute-on-chronic slipped capital femoral epiphysis, as well as those presented in pre-slip stage, is the safest, although time-consuming. Manipulations, especially forced and repeated, are not recommended due to higher avascular necrosis risk. The use of intraoperative fluoroscopy to assist in the placement of internal fixation devices has markedly increased the success of surgical treatment. Controversy remains as to whether the proximal femoral epiphysis in severe, chronic slipped capital femoral epiphysis should be realigned by extracapsular osteotomies or just fixed in situ. The management protocol for slipped capital femoral epiphysis depends on the experience of the surgeon, motivation of the patient and technical facilities.

  7. Femoral neck fractures: A prospective assessment of the pattern ...

    African Journals Online (AJOL)

    OBJECTIVE: To review the pattern of femoral neck fractures, complications and outcome following fixation with Austin-Moore endoprosthesis. METHOD: A two year prospective study in patients who had fracture of the femoral neck based on strict inclusion criteria. All the patients were treated by Austin-Moore ...

  8. Femoral bifurcation with ipsilateral tibia hemimelia: Early outcome of ...

    African Journals Online (AJOL)

    Hereby, we present a case report of a 2-year-old boy who first presented in our orthopedic clinic as a 12-day-old neonate, with a grossly deformed right lower limb from a combination of complete tibia hemimelia and ipsilateral femoral bifurcation. Excision of femoral exostosis, knee disarticulation and prosthetic fitting gives ...

  9. Proximal Focal Femoral Deficiency in Ibadan a Developing ...

    African Journals Online (AJOL)

    The cultural aversion to amputation in our environment makes it difficult to employ that option of treatment. Proximal focal femoral deficiency in Ibadan a developing country's perspective and a review of the literature. Keywords: Proximal focal femoral deficiency , congenital malformations , limb malformations , lower limb ...

  10. [Treatment of femoral neck fracture--preference to internal fixation].

    Science.gov (United States)

    Minato, Izumi

    2011-03-01

    In the guidelines for the treatment of femoral neck fracture, prosthetic replacement is recommended in displaced one and internal fixation is in undisplaced one. However, in the long view, survived femoral head after internal fixation can be superior to prosthesis which will deteriorate as time goes by. Surgical method should be considered not only by type of fracture but general status of the patient.

  11. Blockade of acid sensing ion channels attenuates the augmented exercise pressor reflex in rats with chronic femoral artery occlusion.

    Science.gov (United States)

    Tsuchimochi, Hirotsugu; Yamauchi, Katsuya; McCord, Jennifer L; Kaufman, Marc P

    2011-12-15

    We found previously that static contraction of the hindlimb muscles of rats whose femoral artery was ligated evoked a larger reflex pressor response (i.e. exercise pressor reflex) than did static contraction of the contralateral hindlimb muscles which were freely perfused. Ligating a femoral artery in rats results in blood flow patterns to the muscles that are remarkably similar to those displayed by humans with peripheral artery disease. Using decerebrated rats, we tested the hypothesis that the augmented exercise pressor reflex in rats with a ligated femoral artery is attenuated by blockade of the acid sensing ion channel (ASIC) 3. We found that femoral arterial injection of either amiloride (5 and 50 μg kg(-1)) or APETx2 (100 μg kg(-1)) markedly attenuated the reflex in rats with a ligated femoral artery. In contrast, these ASIC antagonists had only modest effects on the reflex in rats with freely perfused hindlimbs. Tests of specificity of the two antagonists revealed that the low dose of amiloride and APETx2 greatly attenuated the pressor response to lactic acid, an ASIC agonist, but did not attenuate the pressor response to capsaicin, a TRPV1 agonist. In contrast, the high dose of amiloride attenuated the pressor responses to lactic acid, but also attenuated the pressor response to capsaicin. We conclude that ASIC3 on thin fibre muscle afferents plays an important role in evoking the exercise pressor reflex in rats with a compromised arterial blood supply to the working muscles.

  12. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    Science.gov (United States)

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.

  13. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Magnetic resonance imaging of the femoral head necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Shinya; Asada, Kanji; Yoshida, Kenjiro and others

    1986-06-01

    Ten patients with avascular femoral head necrosis and four normal adults were examined by magnetic resonance imaging (MRI). In addition, the relationship between MRI and pathophysiology of three operated-on avascular femoral heads was evaluated. The medullary cavities of the normal femoral heads had a strong signal intensity on the saturation recovery (SR) image due to fat marrow, and the T/sub 1/ relaxation time was 160 +- 11 msec. In avascular femoral head necrosis, the necrotic area had a low signal intensity on the SR image and a prolonged T/sub 1/ relaxation time, while the reactive fibrous area had more prolonged T/sub 1/ relaxation time. For these reasons, MRI was found to show the pathological changes of avascular femoral head necrosis and can be expected to be useful for making early diagnoses and operation planning.

  15. Magnetic resonance imaging of the femoral head necrosis

    International Nuclear Information System (INIS)

    Narita, Shinya; Asada, Kanji; Yoshida, Kenjiro

    1986-01-01

    Ten patients with avascular femoral head necrosis and four normal adults were examined by magnetic resonance imaging (MRI). In addition, the relationship between MRI and pathophysiology of three operated-on avascular femoral heads was evaluated. The medullary cavities of the normal femoral heads had a strong signal intensity on the saturation recovery (SR) image due to fat marrow, and the T 1 relaxation time was 160 ± 11 msec. In avascular femoral head necrosis, the necrotic area had a low signal intensity on the SR image and a prolonged T 1 relaxation time, while the reactive fibrous area had more prolonged T 1 relaxation time. For these reasons, MRI was found to show the pathological changes of avascular femoral head necrosis and can be expected to be useful for making early diagnoses and operation planning. (author)

  16. Three-dimensional trabecular bone architecture of the lumbar spine in bone metastasis from prostate cancer: comparison with degenerative sclerosis

    International Nuclear Information System (INIS)

    Tamada, Tsutomu; Sone, Teruki; Imai, Shigeki; Kajihara, Yasumasa; Fukunaga, Masao; Jo, Yoshimasa

    2005-01-01

    Prostate cancer frequently metastasizes to bone, inducing osteosclerotic lesions. The objective of this study was to clarify the three-dimensional (3D) trabecular bone microstructure in bone metastasis from prostate cancer by comparison with normal and degenerative sclerotic bone lesions, using microcomputed tomography (micro-CT). A total of 32 cancellous bone samples were excised from the lumbar spine of six autopsy patients: 15 metastatic samples (one patient), eight degenerative sclerotic samples (four patients) and the rest from normal sites (three patients). The samples were serially scanned cross-sectionally by micro-CT with a pixel size of 23.20 μm, slice thickness of 18.56 μm, and image matrix of 512 x 512. Each image data set consisted of 250 consecutive slices. The volumes of interest (96 x 96 x 120 voxels) were defined in the original image sets and 3D indices of the trabecular microstructure were determined. The trabecular thickness (Tb.Th) in degenerative sclerotic lesions was significantly higher than that in normal sites, whereas no significant difference was observed in trabecular number (Tb.N). By contrast, in metastatic lesions, the Tb.N was significantly higher with increased bone volume fraction (BV/TV) than in normal sites, and no significant difference was found in Tb.Th. The characteristics of the trabecular surface in the metastatic samples showed concave structural elements with an increase in BV/TV, indicating osteolysis of the trabecular bone. In 3D reconstructed images, increased trabecular bone with an irregular surface was observed in samples from metastatic sites, which were uniformly sclerotic on soft X-ray radiographs. These results support, through 3D morphological features, the strong bone resorption effect in bone metastasis from prostate cancer. (orig.)

  17. Outcomes of trochanteric femoral fractures treated with proximal femoral nail: an analysis of 100 consecutive cases

    Directory of Open Access Journals (Sweden)

    Korkmaz MF

    2014-04-01

    Full Text Available Mehmet Fatih Korkmaz,1 Mehmet Nuri Erdem,2 Zeliha Disli,3 Engin Burak Selcuk,4 Mustafa Karakaplan,1 Abdullah Gogus5 1Department of Orthopedics and Traumatology, Inonu University School of Medicine, Malatya, Turkey; 2Department of Orthopedics and Traumatology, Nisantasi University School of Medicine, Istanbul, Turkey; 3Department of Anesthesiology, Malatya Government Hospital, Malatya, Turkey; 4Department of Family Medicine, Inonu University School of Medicine, Malatya, Turkey; 5Department of Orthopedics and Traumatology, Florence Nightingale Hospital, Istanbul, Turkey Purpose: In this study, we aimed to report the results of a retrospective study carried out at our institute regarding cases of patients who had suffered proximal femoral fractures between January 2002 and February 2007, and who were treated with a proximal femoral nail. Materials and methods: One hundred consecutive cases were included in the study. A case documentation form was used to obtain intraoperative data including age, sex, mechanism of injury, type of fracture according to Association for Osteosynthesis/Association for the Study of Internal Fixation (AO/ASIF classification and the American Society of Anesthesiologists' (ASA physical status classification (ASA grade. Clinical and radiographic examinations were performed at the time of admission and at the 6th week; subsequent visits were organized on the 3rd month, 6th month, and 12th month, and in patients with longer follow-up and annually postoperatively. The Harris score of hip function was used, and any change in the position of the implants and the progress of the fracture union, which was determined radiologically, was noted. Results: The mean age of the patients was 77.66 years (range: 37–98 years, and the sex distribution was 32 males and 68 females. Seventy-three fractures were reduced by closed means, whereas 27 needed limited open reduction. The mean follow-up time for the study group was 31.3 months (range

  18. Role of disc area and trabecular bone density on lumbar spinal column fracture risk curves under vertical impact.

    Science.gov (United States)

    Yoganandan, Narayan; Moore, Jason; Pintar, Frank A; Banerjee, Anjishnu; DeVogel, Nicholas; Zhang, JiangYue

    2018-04-27

    While studies have been conducted using human cadaver lumbar spines to understand injury biomechanics in terms of stability/energy to fracture, and physiological responses under pure-moment/follower loads, data are sparse for inferior-to-superior impacts. Injuries occur under this mode from underbody blasts. determine role of age, disc area, and trabecular bone density on tolerances/risk curves under vertical loading from a controlled group of specimens. T12-S1 columns were obtained, pretest X-rays and CTs taken, load cells attached to both ends, impacts applied at S1-end using custom vertical accelerator device, and posttest X-ray, CT, and dissections done. BMD of L2-L4 vertebrae were obtained from QCT. Survival analysis-based Human Injury Probability Curves (HIPCs) were derived using proximal and distal forces. Age, area, and BMD were covariates. Forces were considered uncensored, representing the load carrying capacity. The Akaike Information Criterion was used to determine optimal distributions. The mean forces, ±95% confidence intervals, and Normalized Confidence Interval Size (NCIS) were computed. The Lognormal distribution was the optimal function for both forces. Age, area, and BMD were not significant (p > 0.05) covariates for distal forces, while only BMD was significant for proximal forces. The NCIS was the lowest for force-BMD covariate HIPC. The HIPCs for both genders at 35 and 45 years were based on population BMDs. These HIPCs serve as human tolerance criteria for automotive, military, and other applications. In this controlled group of samples, BMD is a better predictor-covariate that characterizes lumbar column injury under inferior-to-superior impacts. Published by Elsevier Ltd.

  19. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  20. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bergmann de Carvalho

    2012-03-01

    Full Text Available PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS. METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T while the other did not (OVX, those groups were compared to a control group (C not ovariectomized. Tibolone administration (1mg/day began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at POBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T e o outro não (OVX. Esses grupos foram comparados a um grupo controle (C não ooforectomizado. A administração de tibolona (1mg/dia começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona

  1. Planning for corrective osteotomy of the femoral bone using 3D-modeling. Part I

    Directory of Open Access Journals (Sweden)

    Alexey G Baindurashvili

    2016-09-01

    Full Text Available Introduction. In standard planning for corrective hip osteotomy, a surgical intervention scheme is created on a uniplanar paper medium on the basis of X-ray images. However, uniplanar skiagrams are unable to render real spatial configuration of the femoral bone. When combining three-dimensional and uniplanar models of bone, human errors inevitably occur, causing the distortion of preset parameters, which may lead to glaring errors and, as a result, to repeated operations. Aims. To develop a new three-dimensional method for planning and performing corrective osteotomy of the femoral bone, using visualizing computer technologies. Materials and methods. A new method of planning for corrective hip osteotomy in children with various hip joint pathologies was developed. We examined the method using 27 patients [aged 5–18 years (32 hip joints] with congenital and acquired femoral bone deformation. The efficiency of the proposed method was assessed in comparison with uniplanar planning using roentgenograms. Conclusions. Computerized operation planning using three-dimensional modeling improves treatment results by minimizing the likelihood of human errors and increasing planning and surgical intervention  accuracy.

  2. Adipose tissue depot volume relationships with spinal trabecular bone mineral density in African Americans with diabetes.

    Directory of Open Access Journals (Sweden)

    Gary C Chan

    Full Text Available Changes in select adipose tissue volumes may differentially impact bone mineral density. This study was performed to assess cross-sectional and longitudinal relationships between computed tomography-determined visceral (VAT, subcutaneous (SAT, inter-muscular (IMAT, and pericardial adipose tissue (PAT volumes with respective changes in thoracic vertebral and lumbar vertebral volumetric trabecular bone mineral density (vBMD in African Americans with type 2 diabetes. Generalized linear models were fitted to test relationships between baseline and change in adipose volumes with change in vBMD in 300 African American-Diabetes Heart Study participants; adjustment was performed for age, sex, diabetes duration, study interval, smoking, hypertension, BMI, kidney function, and medications. Participants were 50% female with mean ± SD age 55.1±9.0 years, diabetes duration 10.2±7.2 years, and BMI 34.7±7.7 kg/m2. Over 5.3 ± 1.4 years, mean vBMD decreased in thoracic/lumbar spine, while mean adipose tissue volumes increased in SAT, IMAT, and PAT, but not VAT depots. In fully-adjusted models, changes in lumbar and thoracic vBMD were positively associated with change in SAT (β[SE] 0.045[0.011], p<0.0001; 0.40[0.013], p = 0.002, respectively. Change in thoracic vBMD was positively associated with change in IMAT (p = 0.029 and VAT (p = 0.016; and change in lumbar vBMD positively associated with baseline IMAT (p<0.0001. In contrast, vBMD was not associated with change in PAT. After adjusting for BMI, baseline and change in volumes of select adipose depots were associated with increases in thoracic and lumbar trabecular vBMD in African Americans. Effects of adiposity on trabecular bone appear to be site-specific and related to factors beyond mechanical load.

  3. Assessment of vertebral microarchitecture in overt and mild Cushing's syndrome using trabecular bone score.

    Science.gov (United States)

    Vinolas, Helene; Grouthier, Virginie; Mehsen-Cetre, Nadia; Boisson, Amandine; Winzenrieth, Renaud; Schaeverbeke, Thierry; Mesguich, Charles; Bordenave, Laurence; Tabarin, Antoine

    2018-05-21

    Osteoporotic fractures associated with Cushing's syndrome (CS) may occur despite normal bone mineral density (BMD). Few studies have described alterations in vertebral microarchitecture in glucocorticoid-treated patients and during CS. Trabecular bone score (TBS) estimates trabecular microarchitecture from dual-energy X-ray absorptiometry acquisitions. Our aim was to compare vertebral BMD and TBS in patients with overt CS and mild autonomous cortisol secretion (MACE), and following cure of overt CS. University Hospital. Monocentric retrospective cross-sectional and longitudinal studies of consecutive patients. A total of 110 patients were studied: 53 patients had CS (35, 11 and 7 patients with Cushing's disease, bilateral macronodular adrenal hyperplasia and ectopic ACTH secretion respectively); 39 patients had MACE (10 patients with a late post-operative recurrence of Cushing's disease and 29 patients with adrenal incidentalomas); 18 patients with non-secreting adrenal incidentalomas. 14 patients with overt CS were followed for up to 2 years after cure. Vertebral osteoporosis at BMD and degraded microarchitecture at TBS were found in 24% and 43% of patients with CS, respectively (P < .03). As compared to patients with nonsecreting incidentalomas, patients with MACE had significantly decreased TBS (P < .04) but not BMD. Overt fragility fractures tended to be associated with low TBS (P = .07) but not with low BMD. TBS, but not BMD values, decreased with the intensity of hypercortisolism independently of its aetiology (P < .01). Following remission of CS, TBS improved more markedly and rapidly than BMD (10% vs 3%, respectively; P < .02). Trabecular bone score may be a promising, noninvasive, widely available and inexpensive complementary tool for the routine assessment of the impact of CS and MACE on bone in clinical practice. © 2018 John Wiley & Sons Ltd.

  4. Inhibition of hyaluronan synthesis reduces versican and fibronectin levels in trabecular meshwork cells.

    Directory of Open Access Journals (Sweden)

    Kate E Keller

    Full Text Available Hyaluronan (HA is a major component of the extracellular matrix (ECM and is synthesized by three HA synthases (HAS. Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU, or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.

  5. Outcomes of trochanteric femoral fractures treated with proximal femoral nail: an analysis of 100 consecutive cases.

    Science.gov (United States)

    Korkmaz, Mehmet Fatih; Erdem, Mehmet Nuri; Disli, Zeliha; Selcuk, Engin Burak; Karakaplan, Mustafa; Gogus, Abdullah

    2014-01-01

    In this study, we aimed to report the results of a retrospective study carried out at our institute regarding cases of patients who had suffered proximal femoral fractures between January 2002 and February 2007, and who were treated with a proximal femoral nail. One hundred consecutive cases were included in the study. A case documentation form was used to obtain intraoperative data including age, sex, mechanism of injury, type of fracture according to Association for Osteosynthesis/Association for the Study of Internal Fixation (AO/ASIF) classification and the American Society of Anesthesiologists' (ASA) physical status classification (ASA grade). Clinical and radiographic examinations were performed at the time of admission and at the 6th week; subsequent visits were organized on the 3rd month, 6th month, and 12th month, and in patients with longer follow-up and annually postoperatively. The Harris score of hip function was used, and any change in the position of the implants and the progress of the fracture union, which was determined radiologically, was noted. The mean age of the patients was 77.66 years (range: 37-98 years), and the sex distribution was 32 males and 68 females. Seventy-three fractures were reduced by closed means, whereas 27 needed limited open reduction. The mean follow-up time for the study group was 31.3 months (range: 12-75 months). Postoperative radiographs showed a near-anatomical fracture reduction in 78% of patients. The Harris hip score was negatively correlated with the ASA score and patient age. No cases of implant failure were observed. Three patients died before discharge (one due to pulmonary embolism, two due to cardiac arrest), and five patients died due to unrelated medical conditions within the first 3 months of the follow-up. Our study showed that proximal femoral nail is a reliable fixation with good fracture union, and it is not associated with major complications in any type of trochanteric femoral fracture.

  6. Avascular necrosis of the femoral head after osteosynthesis of femoral neck fracture.

    Science.gov (United States)

    Min, Byung-Woo; Kim, Sung-Jin

    2011-05-18

    The reported incidence of avascular necrosis after femoral neck fracture fixation varies widely, and there is no consensus regarding its risk factors. We evaluated the incidence of avascular necrosis of the femoral head with the use of contemporary techniques for femoral neck fracture fixation. We then sought to determine what potential risk factors influenced the development of avascular necrosis.Between 1990 and 2005, one hundred sixty-three intracapsular femoral neck fractures in 163 patients were treated with internal fixation at our level-I trauma center. All patients were monitored until conversion to total hip arthroplasty or for a minimum of 2 years postoperatively. Ten patients (10 hips) died and 7 patients (7 hips) were lost to follow-up. The remaining 146 patients (146 hips) had a mean 5.2 years of follow-up (range, 3 months to 17 years). The incidence of avascular necrosis was 25.3% (37 hips). The average time to diagnosis of avascular necrosis was 18.8 months (range, 3-47 months). Patient sex, age, interval from injury to surgery, and mechanism of injury were statistically not associated with the development of avascular necrosis. The quality of fracture reduction, adequacy of fixation, degree of displacement, and comminution of the posterior cortex were significantly associated. After we controlled for patient and radiographic characteristics, multivariate analyses indicated that the important predictors for avascular necrosis are poor reduction (odds ratio=13.889) and initial displacement of the fracture (odds ratio=4.693). Copyright 2011, SLACK Incorporated.

  7. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones.

    Science.gov (United States)

    Ho, Jung-Ting; Wu, Jay; Huang, Heng-Li; Chen, Michael Y c; Fuh, Lih-Jyh; Hsu, Jui-Ting

    2013-11-09

    This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. The cellular synthetic bones in 4 density groups (Groups 1-4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice.

  8. Analysis of slipped capital femoral epiphysis

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Sponseller, P.D.; Griffin, P.P.

    1988-01-01

    CT with multiplanar reconstruction (CT/MPR) was used to assess 25 adolescents with known or suspected slipped capital femoral epiphysis (SCFE). CT/MPR localizes the epiphysis in three planes, establishing its relationship to the acetabulum and the metaphyseal neck. MPR facilitates measurements of head-neck angles, residusal head-neck contact, and relative retrovision. CT/MPR may establish the true age of the epiphyseal failure and can reveal subtle SCFE in the face of normal plain films. Patients often present with confusing histories; clues to the true age of failure include subtle signs of healing, remodeling, or new bone buttressing. Characterization of acute versus chronic conditions influences preoperative planning. Postoperatively, CT/MPR confirms early results and follows epiphyseal fusion and remodelling. It also detects complications, such as pin or graft migration avascular necrosis (AVN), or chondrolysis

  9. Femoral neck buttressing: a radiographic and histologic analysis

    International Nuclear Information System (INIS)

    Dixon, T.; Benjamin, J.; Lund, P.; Graham, A.; Krupinski, E.

    2000-01-01

    Objective. To examine the incidence, radiographic and histologic findings of medial femoral neck buttressing in a consecutive group of patients undergoing total hip arthroplasty.Design. Biomechanical parameters were evaluated on standard anteroposterior pelvic radiographs of 113 patients prior to hip replacement surgery. Demographic information on all patients was reviewed and histologic evaluation was performed on specimens obtained at the time of surgery.Results. The incidence of medial femoral neck buttressing was found to be 50% in a consecutive series of patients undergoing total hip arthroplasty. The incidence was slightly higher in women (56% vs 41%). Patients with buttressing had increased neck-shaft angles and smaller femoral neck diameters than were seen in patients without buttressing. Histologic evaluation demonstrated that the buttress resulted from deposition bone by the periosteum on the femoral neck in the absence of any evidence of femoral neck fracture.Conclusion. It would appear that femoral neck buttressing occurs in response to increased joint reactive forces seen at the hip being transmitted through the femoral neck. The increased joint reactive force can be related to the increased neck shaft angle seen in patients with buttressing. (orig.)

  10. Clinical study on 44 cases of femoral hernia

    International Nuclear Information System (INIS)

    Yamamoto, Ryo; Shinozaki, Hiroharu; Kase, Kenichi; Kobayashi, Kenji; Sasaki, Junichi

    2012-01-01

    Femoral hernia is a surgical disease that is frequently associated with incarceration and necessitates emergency surgery. However, there are only a few studies referred which have compared emergency and elective surgery for femoral hernias. We retrospectively reviewed the clinical characteristics of patients diagnosed as having femoral hernia between 2005 and 2009 in our institution. The clinical features of emergency repairs were compared with those of elective ones, and diagnostic values of preoperative diagnostic modalities were studied. The mean age of the patients was 73±12 years. Females comprised 68% of the cases, and right femoral hernias comprised 70% of the cases. Incarceration was associated with 66% of the cases (29 patients), and emergency surgery was performed in 52% of the patients (23 patients). Bowel resection was performed in 32% of the cases (14 patients). The mean age, body temperature, white blood cell (WBC) count, and LDH value were higher in the emergency repairs than in the elective one, and most of the hernias were repaired with McVay's procedure. CT scans had a high diagnostic value in detecting femoral hernias (44%) and incarceration (88%). It was confirmed that femoral hernias were frequently associated with incarceration and CT scan has a high diagnostic value in femoral hernias. (author)

  11. Simultaneous avascular necrosis of both medial and lateral femoral condyles

    International Nuclear Information System (INIS)

    Mansberg, R.

    2002-01-01

    Full text: Avascular necrosis (AVN) of a femoral condyle is a common orthopaedic condition. While both medial and lateral femoral condyles may be involved either singly or sequentially the simultaneous occurrence of AVN of both femoral condyles is extremely uncommon. A 57-year-old male is presented who developed the onset of severe left sided knee pain suddenly at rest. Plain and tomographic radiography was unremarkable and a bone scan was performed. Markedly increased vascularity was demonstrated in the left knee with intense osteoblastic activity in the left medial and femoral condyles more marked in the lateral femoral condyle. A diagnosis of AVN of both femoral condyles was made and a MRI exam was performed to confirm this unusual diagnosis. The MRI showed a diffuse increase in intensity bilaterally with subtle bony change in the subarticular bone consistent with AVN more marked in the left lateral femoral condyle. The patients' symptoms resolved with supportive treatment. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. Treatment of the femoral neck peudoarthrosis in childhood: Case report

    Directory of Open Access Journals (Sweden)

    Vukašinović Zoran

    2013-01-01

    Full Text Available Introduction. Femoral neck fractures in children and adolescents are rare. However, their complications are frequent - avascular necrosis, femoral neck pseudoarthrosis, premature physeal closure with consequent growth disturbance and coxa vara deformity. Case Outline. A 9.5­year­old boy was injured in a car accident, and femoral neck fracture was diagnosed. Prior to admission at our hospital he was surgically treated several times. He was admitted at our hospital eight months following the accident. On the X­ray transcervical pseudoarthrosis of the femoral neck was found, as well as coxa vara deformity and metaphyseal avascular necrosis. He was operated at our hospital; all previously placed ostefixation material was removed, valgus osteotomy of 30 degrees was done as well as additional local osteoplasty using the commercial osteoindactive agent (Osteovit®. Postoperatively, we applied skin traction, bed rest and physical therapy. At the final follow­up, the patient was recovered completely. He is now painless, the legs are of equal length, range of movements in the left hip is full, life activity is normal. The X­ray shows that the femoral neck pseudoarthrosis is fully healed. Conclusion. This case is presented in order to encourage other colleagues to challenge the problematic situation such as this one. Also, we would like to remind them what one should think about and what should be taken into consideration in the primary treatment of femoral neck fractures in children. Valgus femoral osteotomy, as a part of the primary treatment of femoral neck fracture in children (identically as in the adults can prevent the occurrence of femoral neck pseudoarthrosis.

  13. Early integration of a bone plug in the femoral tunnel in rectangular tunnel ACL reconstruction with a bone-patellar tendon-bone graft: a prospective computed tomography analysis.

    Science.gov (United States)

    Suzuki, Tomoyuki; Shino, Konsei; Nakagawa, Shigeto; Nakata, Ken; Iwahashi, Takehiko; Kinugasa, Kazutaka; Otsubo, Hidenori; Yamashita, Toshihiko

    2011-12-01

    The purpose of this prospective study was to evaluate how early the bone plug was integrated into the rectangular femoral tunnel after anatomical ACL reconstruction using a bone-patellar tendon-bone (BTB) graft via a rectangular tunnel (RT BTB ACL-R). Twenty consecutive patients who had undergone the reconstruction procedure were evaluated by CT scans at 4 and 8 weeks postoperatively. In each scan, 30 slices for multiplanar reconstruction were collected parallel to the long axis of the parallelepiped femoral tunnel and perpendicular to the tendinous plane of the bone plug. Each slice was classified as "complete," indicating no visible gap between the plug and the tunnel wall or trabecular continuity or "incomplete," showing a visible gap. Bone plug-tunnel integration was evaluated as "excellent," "good," "fair," or "poor" for >20, 11-20, 5-10, and values at the anterior interface between the bone plug and the tunnel wall were also measured on both scans. The mean changes in CT value at 8 weeks were significantly lower than those at 4 weeks. This study shows that bone plug-femoral tunnel integration was almost complete by 8 weeks after surgery using RT BTB ACL-R.

  14. Ipsilateral femoral shaft and vertical patella fracture: a case report

    Science.gov (United States)

    Ozkan, Korhan; Eceviz, Engin; Sahin, Adem; Ugutmen, Ender

    2009-01-01

    Introduction A femoral shaft fracture with an ipsilateral patella fracture has been, to our knowledge, given only cursory attention in English-speaking literature. Case presentation A 15 year old male patient had hitten by a car to his motorcycle came to emergency room and he had been operated for his femoral shaft freacture and vertical patellar fracture which was iniatally missed. Conclusion To us it is vital to obtain CT scan of the patient’s knee if there is an ipsilateral femoral fracture with an ipsilateral knee effusion and a punction which reveals hematoma even in the absence of a fracture line seen in AP and lateral projections. PMID:19829933

  15. Aneurysm of the superficial femoral artery in an infant

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M.; Komuro, H.; Matoba, K.; Kaneko, M. [Dept. of Paediatric Surgery, Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan); Niitsu, M.; Itai, Y. [Dept. of Radiology, Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan)

    2003-04-01

    An isolated arterial aneurysm in childhood is extremely rare. We report a 1-year-old girl with an aneurysm of the right superficial femoral artery, presenting as an asymptomatic mass of the thigh. The aneurysm involved the whole superficial femoral artery (9 cm in length), and surgical treatment would have required replacement of the affected artery. Conservative treatment was chosen, influenced by the patient's rapid growth at that time. Non-invasive, 3-D contrast-enhanced magnetic resonance angiography (MRA) was useful as an alternative to conventional angiography for detailed evaluation of the femoral arteries, including the aneurysm. (orig.)

  16. Avascular osteonecrosis of the femoral condyle after arthroscopic surgery

    International Nuclear Information System (INIS)

    Al-Kaar, M.; Garcia, J.; Fritschy, D.; Bonvin, J.C.

    1997-01-01

    Avascular osteonecrosis of the femoral condyle after arthroscopic surgery. Retrospective review of 10 patients who presented with avascular necrosis of the ipsilateral femoral condyle following arthroscopic meniscectomy (9 medial, 1 lateral). The bone lesions were evaluated by radiography and MRI, which were repeated for few patients. MRI allows earlier diagnosis of avascular necrosis of the femoral condyle and offers an evaluation of extent of the lesions whose evolution is variable: 3 patients required a knee prosthesis, the other 7 patients were treated medically. (authors)

  17. Does the Watson-Jones or Modified Smith-Petersen Approach Provide Superior Exposure for Femoral Neck Fracture Fixation?

    Science.gov (United States)

    Lichstein, Paul M; Kleimeyer, John P; Githens, Michael; Vorhies, John S; Gardner, Michael J; Bellino, Michael; Bishop, Julius

    2018-04-24

    A well-reduced femoral neck fracture is more likely to heal than a poorly reduced one, and increasing the quality of the surgical exposure makes it easier to achieve anatomic fracture reduction. Two open approaches are in common use for femoral neck fractures, the modified Smith-Petersen and Watson-Jones; however, to our knowledge, the quality of exposure of the femoral neck exposure provided by each approach has not been investigated. (1) What is the respective area of exposed femoral neck afforded by the Watson-Jones and modified Smith-Petersen approaches? (2) Is there a difference in the ability to visualize and/or palpate important anatomic landmarks provided by the Watson-Jones and modified Smith-Petersen approaches? Ten fresh-frozen human pelvi underwent both modified Smith-Petersen (utilizing the caudal extent of the standard Smith-Petersen interval distal to the anterosuperior iliac spine and parallel to the palpable interval between the tensor fascia lata and the sartorius) and Watson-Jones approaches. Dissections were performed by three fellowship-trained orthopaedic traumatologists with extensive experience in both approaches. Exposure (in cm) was quantified with calibrated digital photographs and specialized software. Modified Smith-Petersen approaches were analyzed before and after rectus femoris tenotomy. The ability to visualize and palpate seven clinically relevant anatomic structures (the labrum, femoral head, subcapital femoral neck, basicervical femoral neck, greater trochanter, lesser trochanter, and medial femoral neck) was also recorded. The quantified area of the exposed proximal femur was utilized to compare which approach afforded the largest field of view of the femoral neck and articular surface for assessment of femoral neck fracture and associated femoral head injury. The ability to visualize and palpate surrounding structures was assessed so that we could better understand which approach afforded the ability to assess structures that

  18. Femoral artery pseudoaneurysm as a complication of angioplasty. How can it be prevented?

    Science.gov (United States)

    Gupta, Prabha Nini; Salam Basheer, Abdul; Sukumaran, Gireesh Gomaty; Padmajan, Sabin; Praveen, Satheesan; Velappan, Praveen; Nair, Bigesh Unnikrishnan; Nair, Sandeep Govindan; Kunjuraman, Usha Kumari; Madthipat, Unnikrishnan; R, Jayadevan

    2013-01-01

    Femoral pseudoaneurysm is a common complication of repeated femoral puncture during cardiac catheterisation. We describe here the development of femoral pseudoaneurysms in a patient with Takayasu's arteritis, which healed in response to conservative treatment, and review the literature on the prevention and treatment of femoral pseudoaneurysm. PMID:27326111

  19. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    International Nuclear Information System (INIS)

    Zuki, Mervet El; Omami, Galal; Horner, Keith

    2014-01-01

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  20. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  1. Estimating the mechanical competence parameter of the trabecular bone: a neural network approach

    Directory of Open Access Journals (Sweden)

    Érica Regina Filletti

    Full Text Available Abstract Introduction The mechanical competence parameter (MCP of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT, and 83 in vivo distal radius magnetic resonance image samples (MRI. Results It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion There is a strong correlation (R2 = 0.97 between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.

  2. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    Directory of Open Access Journals (Sweden)

    Pingping Han

    2016-06-01

    Full Text Available Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  3. Texture analysis of trabecular bone using conventional radiographs: medical imaging and osteoporosis

    International Nuclear Information System (INIS)

    Karunanithi, R.; Panicker, T.M.R.; Paul Korath, M.; Jagadeesan, K.; Ganesan, S.

    2008-01-01

    Osteoporosis is characterized by reduced bone mass, microstructural deterioration with advancing age, and an increase in fracture risk. The accurate clinical assessment of bone strength and fracture risk is important for management of bone loss diseases such as osteoporosis risk. From a clinical point of view, microarchitecture is an interesting aspect to study and define patterns of bone alterations with aging and pathology. Microarchitecture seems to be a determinant of bone fragility independent of bone density. Moreover, bone microarchitecture seems to be important to understand the mechanisms of bone fragility independent of bone density. Moreover bone microarchitecture seems to be important to understand the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. In the case of osteoporosis the bone texture of the trabecular network as it appears on the plain radiographs can be quantified by applying image processing tools. Among the factors conditioning bone strength and osteoporotic fractures, bone mineral density is the most important and the best studied. Though, other factors also play a role: macroarchitecture of bones, cortical thickness, quality of bone crystal and of collagen network and trabecular microarchitecture. The microarchitecture plays a major role, and is an aspect of the definition of osteoporosis. Therefore, it would be very helpful if these alterations could be measured in addition to bone mineral density with noninvasive techniques, such as radiographs, and to assess the status of the bone by texture analysis

  4. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.

    Science.gov (United States)

    Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara

    2013-04-01

    A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Crohn’s disease and Trabecular Metal implants: a report of two cases and literature review

    Directory of Open Access Journals (Sweden)

    C. Peron

    2015-10-01

    Full Text Available Aim The aim of the present study was to report two cases with Crohn’s disease in whom dental implants successfully osseointegrated and remained functionally stable up to 13 and 12 months of follow-up, respectively. Cases presentation In cases 1 (age 35 years and 2 (age 36 years, tooth 24 and 14, respectively, were atraumatically extracted and a particulated bone grafting material (buccal and palatal aspect of the defect and a Trabecular Metal implant (11.5 mm length, 4.7 mm diameter were inserted in each extraction socket. After implant placement and abutment connection with the final torque (25 Ncm, the provisional restoration was adapted in the oral cavity creating the emergence profile. The provisional crown was screw-retained and had slight occlusal contacts in the centric occlusion (intercuspation position. A periapical radiograph was taken as a control radiograph at the baseline. Postoperatively, antibiotics were prescribed as well as analgesics and an oral rinse was recommended. In both cases, the provisional restoration was removed after 2 weeks and replaced with a full ceramic restoration. Case-1 and case-2 were followed up after 13 months and 12 months respectively. In both cases postoperative healing was uneventful and radiographs taken at follow-up showed no evidence of crestal bone loss. Implants in both cases demonstrated an excellent clinical condition at follow-up. Conclusion Trabecular Metal implants can osseointegrate and remain functionally stable in patients with Crohn’s disease.

  6. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Zuki, Mervet El [Dept. of Oral Medicine and Radiology, Benghazi University College of Dentistry, Benghazi (Libya); Omami, Galal [Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong (Hong Kong); Horner, Keith [Dept. of Oral Radiology, University Dental Hospital of Manchester, Manchester (United Kingdom)

    2014-06-15

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  7. Trabecular architecture of the manual elements reflects locomotor patterns in primates.

    Science.gov (United States)

    Matarazzo, Stacey A

    2015-01-01

    The morphology of trabecular bone has proven sensitive to loading patterns in the long bones and metacarpal heads of primates. It is expected that we should also see differences in the manual digits of primates that practice different methods of locomotion. Primate proximal and middle phalanges are load-bearing elements that are held in different postures and experience different mechanical strains during suspension, quadrupedalism, and knuckle walking. Micro CT scans of the middle phalanx, proximal phalanx and the metacarpal head of the third ray were used to examine the pattern of trabecular orientation in Pan, Gorilla, Pongo, Hylobates and Macaca. Several zones, i.e., the proximal ends of both phalanges and the metacarpal heads, were capable of distinguishing between knuckle-walking, quadrupedal, and suspensory primates. Orientation and shape seem to be the primary distinguishing factors but differences in bone volume, isotropy index, and degree of anisotropy were seen across included taxa. Suspensory primates show primarily proximodistal alignment in all zones, and quadrupeds more palmar-dorsal orientation in several zones. Knuckle walkers are characterized by having proximodistal alignment in the proximal ends of the phalanges and a palmar-dorsal alignment in the distal ends and metacarpal heads. These structural differences may be used to infer locmotor propensities of extinct primate taxa.

  8. Morpho-functional study of ionizing radiation effects on the rabbits` femoral vein; Avaliacao morfofuncional do efeito da radiacao ionizante sobre a veia femoral. Estudo experimental em coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Mauro Yoshimitsu

    1996-12-31

    In this study we evaluate the effects of the ionizing radiation on the rabbits femoral vein. The samples of femoral vein were obtained from 56 New Zealand rabbits, male with ageing from 90 to 120 days, that were divided into 4 groups of 14 animals: one control group non-irradiated and three animal groups sacrificed 2 days, 14 days and 90 days after irradiation. In the three irradiated rabbits groups, each animal received the total dose 4000 cGy (rads) divided in 10 sessions of 400 cGy, a dose equivalent that utilized on clinical therapeutic. A morpho functional study of vein samples was carried out with: light microscopy: stained by hematoxin - eosin, Masson`s tricromic, and Verhoeff. Immunohistochemical: reactions of immunoperoxidase with monoclonal mouse anti-human endothelial cell factor CD-31 and anti-human Von Willebrand factor (factor VIII), to study the vein endothelium. Histomorphometry of elastic fiber system stained by Weigert`s resorcin-fuchsin with and without prior oxidation with oxone; for the study of mature, elaunin or pre-mature and oxytalan or young elastic fibers. Electronic microscopy: transmission and scanning. With the methodology utilized we observe changes in the femoral vein of the animals submitted to irradiation in relation to the control group, thus described: there is formation of vacuoles between the endothelium and the basal membrane, called sub endothelial vacuoles, in focal areas. The factor VIII and CD-31 endothelial antigens are preserved with no changes in their functions. Focal alterations are present in the endothelial surface with disorder in the setting and orientation of the endothelial cells. there is degeneration of the elastic fibers with significant decrease in their quantity in the stage, 2 days and 14 days after irradiation. There is increase in the quantity of elastic fibers in the late stage, 90 days after irradiation, tending to normality. In this present study, the changes described are not accompanied by venous

  9. Morpho-functional study of ionizing radiation effects on the rabbits` femoral vein; Avaliacao morfofuncional do efeito da radiacao ionizante sobre a veia femoral. Estudo experimental em coelhos

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Mauro Yoshimitsu

    1995-12-31

    In this study we evaluate the effects of the ionizing radiation on the rabbits femoral vein. The samples of femoral vein were obtained from 56 New Zealand rabbits, male with ageing from 90 to 120 days, that were divided into 4 groups of 14 animals: one control group non-irradiated and three animal groups sacrificed 2 days, 14 days and 90 days after irradiation. In the three irradiated rabbits groups, each animal received the total dose 4000 cGy (rads) divided in 10 sessions of 400 cGy, a dose equivalent that utilized on clinical therapeutic. A morpho functional study of vein samples was carried out with: light microscopy: stained by hematoxin - eosin, Masson`s tricromic, and Verhoeff. Immunohistochemical: reactions of immunoperoxidase with monoclonal mouse anti-human endothelial cell factor CD-31 and anti-human Von Willebrand factor (factor VIII), to study the vein endothelium. Histomorphometry of elastic fiber system stained by Weigert`s resorcin-fuchsin with and without prior oxidation with oxone; for the study of mature, elaunin or pre-mature and oxytalan or young elastic fibers. Electronic microscopy: transmission and scanning. With the methodology utilized we observe changes in the femoral vein of the animals submitted to irradiation in relation to the control group, thus described: there is formation of vacuoles between the endothelium and the basal membrane, called sub endothelial vacuoles, in focal areas. The factor VIII and CD-31 endothelial antigens are preserved with no changes in their functions. Focal alterations are present in the endothelial surface with disorder in the setting and orientation of the endothelial cells. there is degeneration of the elastic fibers with significant decrease in their quantity in the stage, 2 days and 14 days after irradiation. There is increase in the quantity of elastic fibers in the late stage, 90 days after irradiation, tending to normality. In this present study, the changes described are not accompanied by venous

  10. Avascular osteonecrosis of the femoral condyle after arthroscopic surgery; Osteonecrose aseptique du condyle femoral apres meniscectomie par voie arthroscopique

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kaar, M.; Garcia, J. [Hopital Cantonal Geneve, Geneva (Switzerland); Fritschy, D.; Bonvin, J.C. [Policlinique de Chirurgie, Hopital Cantonal Universitaire, Geneve (Switzerland)

    1997-04-01

    Avascular osteonecrosis of the femoral condyle after arthroscopic surgery. Retrospective review of 10 patients who presented with avascular necrosis of the ipsilateral femoral condyle following arthroscopic meniscectomy (9 medial, 1 lateral). The bone lesions were evaluated by radiography and MRI, which were repeated for few patients. MRI allows earlier diagnosis of avascular necrosis of the femoral condyle and offers an evaluation of extent of the lesions whose evolution is variable: 3 patients required a knee prosthesis, the other 7 patients were treated medically. (authors). 21 refs.

  11. Ultrasound-guided block of sciatic and femoral nerves: an anatomical study.

    Science.gov (United States)

    Waag, Sonja; Stoffel, Michael H; Spadavecchia, Claudia; Eichenberger, Urs; Rohrbach, Helene

    2014-04-01

    The sheep is a popular animal model for human biomechanical research involving invasive surgery on the hind limb. These painful procedures can only be ethically justified with the application of adequate analgesia protocols. Regional anaesthesia as an adjunct to general anaesthesia may markedly improve well-being of these experimental animals during the postoperative period due to a higher analgesic efficacy when compared with systemic drugs, and may therefore reduce stress and consequently the severity of such studies. As a first step 14 sheep cadavers were used to establish a new technique for the peripheral blockade of the sciatic and the femoral nerves under sonographic guidance and to evaluate the success rate by determination of the colorization of both nerves after an injection of 0.5 mL of a 0.1% methylene blue solution. First, both nerves were visualized sonographically. Then, methylene blue solution was injected and subsequently the length of colorization was measured by gross anatomical dissection of the target nerves. Twenty-four sciatic nerves were identified sonographically in 12 out of 13 cadavers. In one animal, the nerve could not be ascertained unequivocally and, consequently, nerve colorization failed. Twenty femoral nerves were located by ultrasound in 10 out of 13 cadavers. In three cadavers, signs of autolysis impeded the scan. This study provides a detailed anatomical description of the localization of the sciatic and the femoral nerves and presents an effective and safe yet simple and rapid technique for performing peripheral nerve blocks with a high success rate.

  12. early functional outcome of distal femoral fractures at kenyatta

    African Journals Online (AJOL)

    The leading cause was RTA, followed by falls from a height. ... Distal femoral fractures cause considerable morbidity .... as means and standard deviations. .... Anaesthesia. Spinal. 37 (80). General Anaesthesia (GA). 9 (20). Transfusion.

  13. Femoral neck fractures complicating gaucher disease in children

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, A.B.; Jacobs, B.

    1984-09-01

    In normal children, fractures of the femoral neck are uncommon and accompany severe trauma and multiple injuries elsewhere in the skeleton. In children with Gaucher disease, a rare hereditary disorder of lipid metabolism, midcervical or basicervical fractures can occur with minor or no trauma and without other injury to the skeleton. Three children with Gaucher disease who developed pathologic fractures of the femoral neck are described. In all three, the fractures occurred between five and nine years of age, and the fracture lines passed through areas of abnormal bone characterized by poorly defined patches of increased and decreased density and cortical thinning along the medial femoral necks. In the affected hips, there was no evidence of avascular necrosis of the femoral heads at the time of injury. One child's fracture was preceeded by multiple bone 'crisis' localized to the proximal femora.

  14. Femoral neck fractures complicating gaucher disease in children

    International Nuclear Information System (INIS)

    Goldman, A.B.; Jacobs, B.

    1984-01-01

    In normal children, fractures of the femoral neck are uncommon and accompany severe trauma and multiple injuries elsewhere in the skeleton. In children with Gaucher disease, a rare hereditary disorder of lipid metabolism, midcervical or basicervical fractures can occur with minor or no trauma and without other injury to the skeleton. Three children with Gaucher disease who developed pathologic fractures of the femoral neck are described. In all three, the fractures occurred between five and nine years of age, and the fracture lines passed through areas of abnormal bone characterized by poorly defined patches of increased and decreased density and cortical thinning along the medial femoral necks. In the affected hips, there was no evidence of avascular necrosis of the femoral heads at the time of injury. One child's fracture was preceeded by multiple bone 'crisis' localized to the proximal femora. (orig.)

  15. Effectiveness of plate augmentation for femoral shaft nonunion after nailing

    Directory of Open Access Journals (Sweden)

    Chin-Jung Lin

    2012-08-01

    Conclusion: Plate augmentation with retention of the nail with autologous bone grafting may be an effective and reliable alternative in treating nonunion of the femoral shaft fracture after open reduction and internal fixation with intramedullary nail.

  16. 'Femoral head necrosis' in metabolic and hormonal osteopathies

    International Nuclear Information System (INIS)

    Heuck, F.H.W.; Treugut, H.

    1984-01-01

    The pathogenesis of bone necrosis is discussed with special attention and with respect to metabolic, hormonal, and vascular factors. The influence of statics and dynamics of the hip joint bones for the development of aseptic necrosis are discussed. 45 patients with ''idiopathic femoral head necroses'' were observed, including 6 cases of renal osteopathy following renal transplantation and immune suppression therapy, 14 cases of long term corticoid therapy, and 11 cases of liver diseases of different genesis. The femoral head necrosis understood as complication of an osteopathy. In our patients there were 31 males and 14 females - which means higher involvement of males. Plain radiological findings and CT-findings of changes of the femoral heat structure in different stages of the disease are described. Early diagnosis of metabolic and hormonal osteopathies is demanded for a joint keeping therapy of the beginning femoral head necrosis. (orig.) [de

  17. Short-term outcome of patients with closed comminuted femoral ...

    African Journals Online (AJOL)

    Short-term outcome of patients with closed comminuted femoral shaft fracture treated with locking intramedullary sign nail at Muhimbili Orthopaedic Institute in Tanzania. Billy T. Haonga, Felix S. Mrita, Edmundo E. Ndalama, Jackline E. Makupa ...

  18. Delayed appearance of hypaesthesia and paralysis after femoral nerve block

    Directory of Open Access Journals (Sweden)

    Stefan Landgraeber

    2012-03-01

    Full Text Available We report on a female patient who underwent an arthroscopy of the right knee and was given a continuous femoral nerve block catheter. The postoperative course was initially unremarkable, but when postoperative mobilisation was commenced, 18 hours after removal of the catheter, the patient noticed paralysis and hypaesthesia. Examination confirmed the diagnosis of femoral nerve dysfunction. Colour duplex sonography of the femoral artery and computed tomography of the lumbar spine and pelvis yielded no pathological findings. Overnight the neurological deficits decreased without therapy and were finally no longer detectable. We speculate that during the administration of the local anaesthetic a depot formed, localised in the medial femoral intermuscular septa, which was leaked after first mobilisation. To our knowledge no similar case has been published up to now. We conclude that patients who are treated with a nerve block should be informed and physician should be aware that delayed neurological deficits are possible.

  19. Incidence and predictors of post-catheterization femoral artery pseudoaneurysms

    Directory of Open Access Journals (Sweden)

    Hussein Heshmat Kassem

    2013-09-01

    Conclusion: Femoral artery pseudoaneurysms are not uncommon. Female gender, obesity, hypertension, the use of antiplatelet and/or anticoagulant therapy and faulty puncture techniques are independent risk factors for FAPs.

  20. Delayed appearance of hypaesthesia and paralysis after femoral nerve block

    Science.gov (United States)

    Landgraeber, Stefan; Albrecht, Thomas; Reischuck, Ulrich; von Knoch, Marius

    2012-01-01

    We report on a female patient who underwent an arthroscopy of the right knee and was given a continuous femoral nerve block catheter. The postoperative course was initially unremarkable, but when postoperative mobilisation was commenced, 18 hours after removal of the catheter, the patient noticed paralysis and hypaesthesia. Examination confirmed the diagnosis of femoral nerve dysfunction. Colour duplex sonography of the femoral artery and computed tomography of the lumbar spine and pelvis yielded no pathological findings. Overnight the neurological deficits decreased without therapy and were finally no longer detectable. We speculate that during the administration of the local anaesthetic a depot formed, localised in the medial femoral intermuscular septa, which was leaked after first mobilisation. To our knowledge no similar case has been published up to now. We conclude that patients who are treated with a nerve block should be informed and physician should be aware that delayed neurological deficits are possible. PMID:22577509

  1. Femoral neck fractures complicating gaucher disease in children

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, A B; Jacobs, B

    1984-09-01

    In normal children, fractures of the femoral neck are uncommon and accompany severe trauma and multiple injuries elsewhere in the skeleton. In children with Gaucher disease, a rare hereditary disorder of lipid metabolism, midcervical or basicervical fractures can occur with minor or no trauma and without other injury to the skeleton. Three children with Gaucher disease who developed pathologic fractures of the femoral neck are described. In all three, the fractures occurred between five and nine years of age, and the fracture lines passed through areas of abnormal bone characterized by poorly defined patches of increased and decreased density and cortical thinning along the medial femoral necks. In the affected hips, there was no evidence of avascular necrosis of the femoral heads at the time of injury. One child's fracture was preceeded by multiple bone 'crisis' localized to the proximal femora.

  2. The effects of femoral external derotational osteotomy on frontal plane alignment.

    Science.gov (United States)

    Nelitz, M; Wehner, T; Steiner, M; Dürselen, L; Lippacher, S

    2014-11-01

    Femoral osteotomies are the preferred treatment in significant torsional deformity of the femur. The influence of torsional osteotomies on frontal plane alignment is poorly understood. Therefore, the aim of the present study was to evaluate the effects of external derotational osteotomies on proximal, mid-shaft and distal levels onto frontal plane alignment. The effect of rotation around the anatomical axis of the femur on frontal plane alignment was determined with a 3D computer model, created from CT data of a right human cadaver femur. Virtual torsional osteotomies of 10°, 20° and 30° were performed at proximal, mid-shaft and distal levels under five antecurvatum angles of the femur. The change of the frontal plane alignment was expressed by the mechanical lateral femoral angle. Proximal derotational osteotomies resulted in an increased mechanical lateral distal femoral angle (mLDFA) of 0.8°-2.6° for 10°, of 1.6°-5.1° for 20° and of 2.3-7.9° for 30° derotational osteotomy, indicating an increased varus angulation. Supracondylar derotational osteotomy resulted in a decreased mLDFA of -0.1° to -1.7° for 10°, of -0.2 to -3.7° for 20° and of -0.7 to -6.9° for 30° derotational osteotomy, indicating an increased valgus angulation. The effect increased with the amount of torsional correction and virtually increased antecurvatum angles. Mid-shaft torsional osteotomies had the smallest effect on frontal plane alignment. This three-dimensional computer model study demonstrates the relationship between femoral torsional osteotomies and frontal plane alignment. Proximal external derotational osteotomies tend to result in an increased varus angulation, whilst distal external derotational osteotomies tend to result in an increased valgus angulation. As a clinical consequence, torsional osteotomies have an increased risk of unintentional implications on frontal plane alignment.

  3. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck.

    Science.gov (United States)

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L; Liu, Yunlong; Edenberg, Howard J; Econs, Michael J; Foroud, Tatiana; Turner, Charles H

    2008-10-08

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure and density by correlating gene expression in the proximal femur with the femoral neck phenotypes linked to the QTLs on Chr 4. RNA was extracted from proximal femora of 4-wk-old rats from F344 and LEW strains, and two other strains, Copenhagen 2331 and Dark Agouti, were used as a negative control. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 arrays. A total of 99 genes in the 4q21-q41 region were differentially expressed (P level of the gene in that strain. A total of 18 candidate genes were strongly correlated (r(2) > 0.50) with femoral neck width and prioritized for further analysis. Quantitative PCR analysis confirmed 14 of 18 of the candidate genes. Ingenuity pathway analysis revealed several direct or indirect relationships among the candidate genes related to angiogenesis (VEGF), bone growth (FGF2), bone formation (IGF2 and IGF2BP3), and resorption (TNF). This study provides a shortened list of genetic determinants of skeletal traits at the hip and may lead to novel approaches for prevention and treatment of hip fracture.

  4. Sex-specific functional adaptation of the femoral diaphysis to body composition.

    Science.gov (United States)

    Lacoste Jeanson, Alizé; Santos, Frédéric; Dupej, Ján; Velemínská, Jana; Brůžek, Jaroslav

    2018-03-24

    The human femoral diaphysis is often used to reconstruct loading histories (mobility, activity, body mass). The proximal femur is known to be differentially affected by changes in total fat-mass (FM), fat-free mass (FFM), and body fat percentage (BF%), but the adaptation of the entire diaphysis to body composition has not been thoroughly characterized to date. Understanding how the femoral diaphysis adapts to body components would benefit biomechanical interpretations of the femoral variation and nutrition-related studies. Combining various methods from clinical nutrition, biological anthropology, and geometric morphometrics, we evaluated the correlation of measures taken on the entire femoral diaphysis with estimated FM, FFM, and BF% from 61 CT scans (17 females, 44 males). The sample was predominantly composed of people with obesity. Cortical area of the cross-sections and local cortical thickness showed high correlation with BF% in particular, in females only. The curvature significantly decreased with FM and BF% in both sexes. The lowest correlations are found with FFM. The observed sexual dimorphism is consistent with differing aging processes; cortical bone decreases in females through endosteal resorption while it remains almost constant in males who compensate for endosteal resorption by periosteal apposition on the diaphyseal surface. The functional adaptation to compressive forces indicates a systemic endosteal apposition of bone material with increased BF% and FM in females only. FM and BF% are linked to a straighter femur in both sexes, suggesting an optimization of the resistance to compressive loads by distributing them more linearly along the entire diaphysis. © 2018 Wiley Periodicals, Inc.

  5. Validation of a new classification system for interprosthetic femoral fractures.

    Science.gov (United States)

    Pires, Robinson Esteves Santos; Silveira, Marcelo Peixoto Sena; Resende, Alessandra Regina da Silva; Junior, Egidio Oliveira Santana; Campos, Tulio Vinicius Oliveira; Santos, Leandro Emilio Nascimento; Balbachevsky, Daniel; Andrade, Marco Antônio Percope de

    2017-07-01

    Interprosthetic femoral fracture (IFF) incidence is gradually increasing as the population is progressively ageing. However, treatment remains challenging due to several contributing factors, such as poor bone quality, patient comorbidities, small interprosthetic fragment, and prostheses instability. An effective and specific classification system is essential to optimize treatment management, therefore diminishing complication rates. This study aims to validate a previously described classification system for interprosthetic femoral fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Incidence and predictors of post-catheterization femoral artery pseudoaneurysms

    OpenAIRE

    Kassem, Hussein Heshmat; Elmahdy, Mahmoud Farouk; Ewis, Essam Baligh; Mahdy, Soilman Ghareeb

    2013-01-01

    Background: Femoral artery pseudoaneurysm (FAP) is a troublesome complication after transfemoral catheter procedures. The incidence and predictors of FAP as a separate entity have not been extensively studied. Aim: Detect prospectively the incidence and predictors of post catheterization FAP. Methods: From June 2009 till June 2011, we prospectively included all patients who underwent catheterization from the femoral approach. Duplex ultrasound was performed in cases with clinical suspic...

  7. Mechanical Characterization of Femoral Cartilage Under Unicompartimental Osteoarthritis

    OpenAIRE

    Vidal-Lesso, A.; Ledesma-Orozco, E.; Daza-Benítez, L.; Lesso-Arroyo, R.

    2014-01-01

    The aim of this study was to determine the mechanical properties and thickness of articular cartilage in the unaffected femoral regions in cases of unicompartimental osteoarthritis on the knees. The specimens were tested using a 3mm plane-ended cylindrical indenter and a displacement of 0.5mm was applied at specific points in seven femoral knee cartilages with unicompartimental osteoarthritis. The thickness, stiffness, elastic modulus, shear modulus and bulk modulus were obtained. These prope...

  8. OUTCOME OF INTERTROCHANTERIC FRACTURES TREATED WITH SHORT FEMORAL NAIL

    Directory of Open Access Journals (Sweden)

    Yadkikar Shriniwas V, Yadkikar Vishnu S, Patel Mayank, Dhruvilkumar Gandhi, Kunkulol Rahul

    2015-07-01

    Full Text Available Aim: To study the functional and anatomical outcome of Inter trochanteric fractures of femur treated with Short femoral nail. Method: This was retrospective study carried out in which 60 patients (50 Male & 10 Female of 5th to 8th decade of life who underwent Short femoral nail fixation for both Stable & unstable Inter Trochanteric fractures. From the records each patient data was assessed for time required for mobilization, average fracture healing time, degree and grade of hip range of movements, complications, anatomical reduction achieved using Short femoral nail fixation. Results: 55 cases achieved Anatomical reduction. Good to Excellent Hip range of Motion was in 55 (90 % cases. Fracture union was seen in all cases. No evidence of Z Effect, AVN of femoral head, Implant failure, Fracture of femoral shaft below the Nail tip was seen in any case, However Reverse Z Effect was seen in 4 & shortening of less than 2 cm was seen in 2 cases, External rotation of 10 degree was seen in1 case. Average fracture Union time was 14 weeks. Conclusion: Short femoral nail appears to be better implant for fixation of both Stable & unstable Inter Trochanteric fractures as it fulfills the biomechanical demands being minimally invasive, less blood loss , it prevents excessive varus collapse at fracture site, produces less stress riser effect below the nail tip, Short operative time, Facilitates early mobilization & functional recovery of patients. But Anatomical fracture reduction & optimal implant placement are absolutely must for better results.

  9. Femoral Neck Shaft Angle in Men with Fragility Fractures

    Directory of Open Access Journals (Sweden)

    S. P. Tuck

    2011-01-01

    Full Text Available Introduction. Femoral neck shaft angle (NSA has been reported to be an independent predictor of hip fracture risk in men. We aimed to assess the role of NSA in UK men. Methods. The NSA was measured manually from the DXA scan printout in men with hip (62, 31 femoral neck and 31 trochanteric, symptomatic vertebral (91, and distal forearm (67 fractures and 389 age-matched control subjects. Age, height, weight, and BMD (g/cm2: lumbar spine, femoral neck, and total femur measurements were performed. Results. There was no significant difference in mean NSA between men with femoral neck and trochanteric hip fractures, so all further analyses of hip fractures utilised the combined data. There was no difference in NSA between those with hip fractures and those without (either using the combined data or analysing trochanteric and femoral neck shaft fractures separately, nor between fracture subjects as a whole and controls. Mean NSA was smaller in those with vertebral fractures (129.2° versus 131°: P=0.001, but larger in those with distal forearm fractures (129.8° versus 128.5°: P=0.01. Conclusions. The conflicting results suggest that femoral NSA is not an important determinant of hip fracture risk in UK men.

  10. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    Science.gov (United States)

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  11. Beta-particle dosimetry of the trabecular skeleton using Monte Carlo transport within 3D digital images

    International Nuclear Information System (INIS)

    Jokisch, D.W.; Bouchet, L.G.; Patton, P.W.; Rajon, D.A.; Bolch, W.E.

    2001-01-01

    Presently, skeletal dosimetry models utilized in clinical medicine simulate electron path lengths through skeletal regions based upon distributions of linear chords measured across bone trabeculae and marrow cavities. In this work, a human thoracic vertebra has been imaged via nuclear magnetic resonance (NMR) spectroscopy yielding a three-dimensional voxelized representation of this skeletal site. The image was then coupled to the radiation transport code EGS4 allowing for 3D tracing of electron paths within its true 3D structure. The macroscopic boundaries of the trabecular regions, as well as the cortex of cortical bone surrounding the bone site, were explicitly considered in the voxelized transport model. For the case of a thoracic vertebra, energy escape to the cortical bone became significant at source energies exceeding ∼2 MeV. Chord-length distributions were acquired from the same NMR image, and subsequently used as input for a chord-based dosimetry model. Differences were observed in the absorbed fractions given by the chord-based model and the voxel transport model, suggesting that some of the input chord distributions for the chord-based models may not be accurate. Finally, this work shows that skeletal mass estimates can be made from the same NMR image in which particle transport is performed. This feature allows one to determine a skeletal S-value using absorbed fraction and mass data taken from the same anatomical tissue sample. The techniques developed in this work may be applied to a variety of skeletal sites, thus allowing for the development of skeletal dosimetry models at all skeletal sites for both males and females and as a function of subject age

  12. Necrosis de la cabeza femoral tras fractura del cuello femoral tratada mediante osteosíntesis

    OpenAIRE

    Martínez Martín, Angel Antonio; Panisello Sebastiá, Juan José; Lallana Duplá, J.; Herrera Rodríguez, Antonio

    2000-01-01

    Se presenta un análisis retrospectivo de las necrosis aparecidas en 233 pacientes con fractura de cuello femoral fijada con tornillos de esponjosa. La edad media fue de 80,6 años. Setenta y un pacientes (26%) tuvieron una fractura no desplazada (Garden I o II) y 172 (74%) una fractura desplazada (Garden III o IV). Seis meses tras la cirugía 170 pacientes sobrevivían (72,9%). Treinta y cuatro de ellos (20%) habían desarrollado necrosis y 10 (5,9%) colapso. Tras un seguimiento de 12 meses 114 p...

  13. Combined Radial and Femoral Access Strategy and Radial-Femoral Rendezvous in Patients With Long and Complex Iliac Occlusions.

    Science.gov (United States)

    Hanna, Elias B; Mogabgab, Owen N; Baydoun, Hassan

    2018-01-01

    We present cases of complex, calcified iliac occlusive disease revascularized via a combined radial-femoral access strategy. Through a 6-French, 125-cm transradial guiding catheter, antegrade guidewires and catheters are advanced into the iliac occlusion, while retrograde devices are advanced transfemorally. The transradial and transfemoral channels communicate, allowing the devices to cross the occlusion into the true lumen (radial-femoral antegrade-retrograde rendezvous).

  14. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Greve, Sara V; Blicher, Marie K; Kruger, Ruan

    2016-01-01

    BACKGROUND: Carotid-femoral pulse wave velocity (cfPWV) adds significantly to traditional cardiovascular risk prediction, but is not widely available. Therefore, it would be helpful if cfPWV could be replaced by an estimated carotid-femoral pulse wave velocity (ePWV) using age and mean blood pres...... that these traditional risk scores have underestimated the complicated impact of age and blood pressure on arterial stiffness and cardiovascular risk....

  15. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.

    Science.gov (United States)

    Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt

    2018-05-03

    There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge  = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2  = 0.76), elastic modulus (R 2  = 0.63), failure energy (R 2  = 0.38), and minimum stress (R 2  = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  17. Femoral neck-shaft angle in extra-capsular proximal femoral fracture fixation; does it make a TAD of difference?

    Science.gov (United States)

    Walton, N P; Wynn-Jones, H; Ward, M S; Wimhurst, J A

    2005-11-01

    The effect of femoral neck-shaft angle and implant type on the accuracy of lag screw placement in extra-capsular proximal femoral fracture fixation was investigated. Radiographs of all extra-capsular proximal femoral fractures seen in one unit over 18 months were reviewed. Of 399 cases, 307 (237 female, 70 male) were included in the study as they had no contra-lateral proximal femoral metal work. Femoral neck-shaft angle (NSA) of the uninjured hip and magnification adjusted tip-apex distance (TAD) of femoral head lag screw were measured. Type of fixation implant was 135 degrees classic hip screw (CHS) (n=144) or 130 degrees intra-medullary hip screw (IMHS) (n=163). Mean contra-lateral NSA was 130.2 degrees (112.9--148 degrees ) and 64 patients (58 female, 6 male) had a NSA TAD was 18.7 mm (5.8--43.8mm) and 88.9% of cases had a TAD of less than 25 mm. TAD values were significantly greater using an IMHS if NSA was 125 degrees (p=0.028). This was not the case with the CHS. The use of the 130 degrees -IMHS in patients with a NSA 125 degrees and caution is advocated when using this device in such cases.

  18. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  19. Does a trochanteric lag screw improve fixation of vertically oriented femoral neck fractures? A biomechanical analysis in cadaveric bone.

    Science.gov (United States)

    Hawks, Michael A; Kim, Hyunchul; Strauss, Joseph E; Oliphant, Bryant W; Golden, Robert D; Hsieh, Adam H; Nascone, Jason W; O'Toole, Robert V

    2013-10-01

    We assessed the biomechanical performances of a trochanteric lag screw construct and a traditional inverted triangle construct in the treatment of simulated Pauwels type 3 femoral neck fractures. An inverted triangle construct (three 7.3-mm cannulated screws placed in inverted triangle orientation) and a trochanteric lag screw construct (two 7.3-mm cannulated screws placed across the superior portion of the femoral neck and one 4.5-mm lag screw placed perpendicular to the fracture in superolateral to inferomedial orientation) were tested in nine matched pairs of non-osteoporotic human cadaveric femora. We used a previously described vertically oriented femoral neck fracture model and testing protocol that incrementally loaded the constructs along the mechanical axis of the femur to 1400 N. Specimens that survived incremental loading underwent cyclic loading. Apparent construct stiffness, force at 3mm of displacement, and survival of incremental loading were recorded. The trochanteric lag screw group had a 70% increase in stiffness (261 N/mm [29 standard deviation] versus 153 N/mm [16 standard deviation]; P=0.026) and a 43% increase in force required for displacement (620 N versus 435 N; P=0.018) compared with the inverted triangle group. One trochanteric lag screw and no inverted triangle specimen survived incremental loading. A trochanteric lag screw construct applied to vertically oriented femoral neck fractures provides marked improvement in mechanical performance compared with the inverted triangle construct. © 2013.

  20. Prevention of excessive postoperative sliding of the short femoral nail in femoral trochanteric fractures.

    Science.gov (United States)

    Ito, Juji; Takakubo, Yuya; Sasaki, Kan; Sasaki, Junya; Owashi, Kazuya; Takagi, Michiaki

    2015-05-01

    Lag screw cut-out is one of the major postoperative complications on femoral trochanteric fractures. However, precise analyses of excessive sliding and lag screw cut-out were limited. The purpose of this study was to investigate the factors that induce this unfavorable event. From April 2010 to April 2013, 226 patients were operated in our institute using a short femoral nail. Among them, 177 patients (29 males and 148 females) with a mean age of 84 years (60-97 years), who were followed up >3 months, were included in this study. The postoperative sliding distance, fracture type (AO/OTA classification), tip-apex distance (TAD), reduction pattern in the postoperative X-ray (antero-posterior and lateral views), bone quality (canal flare and cortical indices), walking ability at the time of pre-injury and final follow-up, and complications were investigated retrospectively. The mean sliding distance was 3.7 mm, and one cut-out case (0.6 %) was observed. The sliding distance of the AO/OTA 31-A2 fractures was significantly longer than that of the A1 fractures (p fractures, an accurate reduction in the lateral view at surgery is important, particularly in unstable fractures.

  1. Multiplanar CT assessment of femoral head displacement in slipped capital femoral epiphysis

    Energy Technology Data Exchange (ETDEWEB)

    Monazzam, Shafagh [Rady Children' s Hospital and Health Center, Department of Orthopedics, San Diego, CA (United States); Dwek, Jerry R. [Rady Children' s Hospital and Health Center, Department of Radiology, San Diego, CA (United States); Hosalkar, Harish S. [Center for Hip Preservation, Department of Orthopedic Surgery, TriCity Medical Center, Oceanside, CA (United States)

    2013-12-15

    With recent changing approaches to the management of slipped capital femoral epiphysis (SCFE), the accurate radiographic assessment of maximum extent of displacement is crucial for planning surgical treatment. To determine what plane best represents the maximum SCFE displacement as quantified by the head-neck angle difference (HNAD), whether HNAD can quantitatively differentiate the SCFE cohort from the normal cohort, based on CT, and how Southwick slip angle (SSA) compares to HNAD. We reviewed 19 children with SCFE (23 affected hips) with preoperative CT scans and 27 age- and sex-matched children undergoing abdominal CT for non-orthopedic problems. Head-neck angle (HNA), the angle between the femoral epiphysis and the neck axis, was measured in three planes on each hip and the HNAD (affected - unaffected hip) was determined. SSA was measured on radiographs. The coronal HNAD (mean 8.7 ) was less than both the axial-oblique (mean 30.7 ) and sagittal (mean 37.4 ) HNADs, which were also greater than the HNADs of the normal cohort. Grouping HNAD measurements by SSA severity classification did not consistently distinguish between SCFE severity levels. Axial-oblique and sagittal planes best represent the maximum SCFE displacement while biplanar radiograph may underestimate the extent of the displacement, thereby potentially altering the management between in situ pinning and capital realignment. (orig.)

  2. Preliminary result on trabecular bone score (TBS in lumbar vertebrae with experimentally altered microarchitecture

    Directory of Open Access Journals (Sweden)

    M. Di Stefano

    2013-01-01

    Full Text Available The aim of this preliminary research is to investigate the reliability of a new qualitative parameter, called Trabecular Bone Score (TBS, recently proposed for evaluating the microarchitectural arrangement of cancellous bone in scans carried out by dual energy X-ray absorptiometry (DXA. Vertebral bodies of 15 fresh samples of lumbar spines of adult pig were analysed either in basal conditions and with altered microarchitecture of the cancellous bone obtained by progressive drilling. The examined bony areas do not show changes in bone mineral density (BMD, whereas TBS values decrease with the increasing alteration of the vertebral microtrabecular structure. Our preliminary data seem to confirm the reliability of TBS as a qualitative parameter useful for evaluating the microarchitectural strength in bony areas quantitatively analysed by DXA.

  3. Varus femoral osteotomy improves sphericity of the femoral head in older children with severe form of Legg-Calvé-Perthes disease.

    Science.gov (United States)

    Terjesen, Terje; Wiig, Ola; Svenningsen, Svein

    2012-09-01

    In the Norwegian prospective study on Legg-Calvé-Perthes disease (LCPD), we found varus femoral osteotomy gave better femoral head sphericity at a mean of 5 years postoperative than physiotherapy in children older than 6.0 years at diagnosis with femoral head necrosis of more than 50%. That study did not include separate analyses for hips with 100% necrosis and those with a percentage of necrosis between 50% and 100%. We asked whether (1) femoral osteotomy improves femoral head sphericity at followup in all patients with more than 50% femoral head necrosis or in selected groups only and (2) there is a critical age between 6.0 and 10.0 years over which femoral osteotomy does not improve the prognosis. We treated 70 patients with unilateral LCPD, age at diagnosis of more than 6.0 years, and femoral head necrosis of more than 50% with varus femoral osteotomy between 1996 and 2000. We classified necrosis using the Catterall classification. We established a control group of 51 similar children who received physiotherapy. At the 5-year followup visit, the hips were graded according to femoral head shape: spherical, ovoid, or flat. At 5-year followup, there was no difference between the treatment groups in radiographic outcome in Catterall Group 3 hips. In Catterall Group 4 hips, femoral head sphericity was better in the osteotomy group, with flat femoral heads in 14% compared to 75% after physiotherapy. The same trend toward better head sphericity occurred when the lateral pillar classification was used. In children aged 6.0 to 10.0 years, in whom the whole femoral head is affected, femoral head sphericity 5 years after femoral osteotomy was better than that after physiotherapy.

  4. Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.

    Science.gov (United States)

    Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C

    2017-11-01

    To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone.

    Science.gov (United States)

    Levrero-Florencio, Francesc; Pankaj, Pankaj

    2018-01-01

    Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.

  6. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Techion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Zaretzky, Asaph [The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel (Israel); Psakhie, Sergey G. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  7. Microstructural properties of trabecular bone autografts: comparison of men and women with and without osteoporosis.

    Science.gov (United States)

    Xie, Fen; Zhou, Bin; Wang, Jian; Liu, Tang; Wu, Xiyu; Fang, Rui; Kang, Yijun; Dai, Ruchun

    2018-03-05

    The microstructure of autologous bone grafts from men over 50 years old and postmenopausal women undergoing spinal fusion were evaluated using micro-CT. We demonstrated postmenopausal women, especially those with osteoporosis (OP) presented more serious microarchitectural deterioration of bone grafts. This study was undertaken to determine microstructural properties of cancellous bone used as autologous bone grafts from osteoporosis patients undergoing lumbar fusion by comparing microstructural indices to controls. Cancellous bone specimens from spinous processes were obtained from 41 postmenopausal women (osteoporosis women, n = 19; controls, n = 22) and 26 men over 50 years old (osteoporosis men, n = 8; controls, n = 18) during lumbar fusion surgery. The microstructural parameters were measured using micro-CT. Significant difference in bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th), and structure model index (SMI) value existed between postmenopausal women with OP and controls. Significant difference in trabecular number (Tb.N) existed between men over 50 years old with OP and controls. Postmenopausal women exhibited lower BV/TV, Tb.Th, and higher SMI value than men over 50 years old. Postmenopausal women with OP exhibited lower BV/TV, Tb.Th, and higher BS/BV than men over 50 years old with OP. Post-menopausal women and older men with OP have worse bone quality in autografts than non-osteoporotic men and women. Postmenopausal women with OP presented serious microarchitectural deterioration in older population.

  8. Usefulness of the Trabecular Bone Score for assessing the risk of osteoporotic fracture.

    Science.gov (United States)

    Redondo, L; Puigoriol, E; Rodríguez, J R; Peris, P; Kanterewicz, E

    2018-04-01

    The trabecular bone score (TBS) is an imaging technique that assesses the condition of the trabecular microarchitecture. Preliminary results suggest that TBS, along with the bone mineral density assessment, could improve the calculation of the osteoporotic fracture risk. The aim of this study was to analyse TBS values and their relationship with the clinical characteristics, bone mineral density and history of fractures of a cohort of posmenopausal women. We analysed 2,257 posmenopausal women from the FRODOS cohort, which was created to determine the risk factors for osteoporotic fracture through a clinical survey and bone densitometry with vertebral morphometry. TBS was applied to the densitometry images. TBS values ≤1230 were considered indicative of degraded microarchitecture. We performed a simple and multiple linear regression to determine the factors associated with this index. The mean TBS value in L1-L4 was 1.203±0.121. Some 55.3% of the women showed values indicating degraded microarchitecture. In the multiple linear regression analysis, the factors associated with low TBS values were age, weight, height, spinal T-score, glucocorticoid treatment, presence of type 2 diabetes and a history of fractures due to frailty. TBS showed microarchitecture degradation values in the participants of the FRODOS cohort and was associated with anthropometric factors, low bone mineral density values, the presence of fractures, a history of type 2 diabetes mellitus and the use of glucocorticoids. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  9. [Femoral artery pseudoaneurysms encountered in orthopedics and traumatology].

    Science.gov (United States)

    Raherinantenaina, F; Rajaonanahary, T M A; Rakoto Ratsimba, H N

    2015-12-01

    Most published articles regarding orthopedic- and trauma-related femoral artery pseudoaneurysms (FAPs) are case reports in English. Reported cases are often associated with a literature review but actually provide little robust data. We wanted to summarize the current knowledge on diagnostic and therapeutic features of these FAPs. A new case of superficial FAP is described followed by a review of the literature. A bibliographic search was performed online (PubMed, ScinceDirect) from 1964 to 2015 using the descriptors "traumatic femoral pseudoaneurysm, orthopedic surgery, osteochondroma". A total of 64 cases of FAPs was analyzed. There were 50 men with an average age of 40.72±26.45 years old. The most common clinical presentation was painful swelling (34%). Arteriography was the commonest radiological investigation used (63%). The main etiologies were orthopedic injuries (47%), surgery of the upper thigh (30%) and femoral osteochondromas (23%). Arterial injuries included superficial femoral (47%) and profunda femoris artery (50%). The treatment was open surgery (56%) or endovascular repair (36%). Deep femoral artery and its branches were embolized (47%) or ligated (38%). Endovascular stenting was performed in 30% of posttraumatic FAPs. All FAPs relating to osteochondromas were repaired surgically. Postoperative courses were uneventful in 95% of patients. Endovascular embolization is preferred in management of postsurgical FAPs which have usually involved the deep femoral artery. Endovascular stenting graft may be proposed for posttraumatic FAPs, for which the superficial femoral trunk is the most often involved vessel. Surgical repair should be performed when endovascular stenting graft is not feasible. Surgical repair is mandatory for all FAPs secondary to traumatic exostoses. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Structural and functional studies of bioobjects prepared from femoral heads

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, I. A., E-mail: IKirilova@niito.ru; Podorozhnaya, V. T., E-mail: VPodorognaya@niito.ru [Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, 17, Frunze, Novosibirsk, 630091 (Russian Federation); Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634021 (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, 634050 (Russian Federation); Popova, K. S., E-mail: kseniya@ispms.tsc.ru; Uvarkin, P. V., E-mail: uvarkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634021 (Russian Federation)

    2015-11-17

    Results of examination of physicomechanical characteristics of samples of medial femoral head cuts are presented. The samples of medial femoral head cuts resected in 6 patients with coxarthrosis in primary endoprosthetic replacement of a coxofemoral joint have been tested for micro- and nanohardness. Young’s modulus and elemental composition of bone tissue have been investigated. To estimate the architectonics of cancellous tissue of the femoral head, adjacent cuts of the same patient have been analyzed. The porosity of bone tissue was estimated from macroscopic images obtained using macrophotography. The total porosity is calculated as the ratio of the total length of straight line segments overlapping pores to the total length of secants. A three-point bending test of the samples has shown that their strength changed from 0.187 to 1.650 MPa and their elasticity modulus changes from 1.69 to 8.15 MPa. The microhardness of the samples changes in the range 220–265 MPa and the average microhardness of medial femoral head cuts is 240 MPa. The elemental composition of medial femoral head cuts is represented by basic Ca, P, O, Na and Mg elements as well as by Sn, S, Fe, Cr, and C in microamounts. The atomic Ca to P ratio for bone tissue is 1.55. It is revealed that pores of the upper part of the femoral head have a more regular shape and in the lower part they are more elongated along the cut and occupy a larger volume. The lower part of the femoral head has a higher porosity (39 and 33%) than the upper part (34 and 30%). The total porosity of all samples does not exceed 37%.

  11. Radiological assessment of the femoral bowing in Japanese population

    Directory of Open Access Journals (Sweden)

    Abdelaal Ahmed Hamed Kassem

    2016-01-01

    Full Text Available Introduction: Differences in the magnitude of bowing between races are well-known characteristics of the femur. Asian races have an increased magnitude of femoral bowing but most of the orthopedic implants designed for the femur do not match this exaggerated bowing. We calculated the sagittal and coronal femoral bowing in the Japanese population at different levels of the femur and addressed its surgical significance. Material and methods: We calculated the sagittal and coronal bowing of 132 Japanese femora using CT scan of the femur. A mathematical calculation of the radius of curvature at proximal, middle, and distal regions of the femur was used to determine the degree of femoral bowing. Results: Mean sagittal bowing of the femur was 581, 188, and 161 mm for the proximal, middle, and distal thirds of the femur and mean lateral bowing was 528, 5092, and 876 mm, respectively. Mean sagittal and coronal bowing for the whole femur was 175 and 2640 mm, respectively. No correlation was found between age, gender, length of femur, and the degree of bowing. Conclusion: Our study reveals that femoral bowing in the Japanese population is 175 mm in the sagittal plane and 2640 mm in the coronal plane; these values are greater than the femoral bowing in other ethnic groups studied in the literature. This may result in varying degrees of mismatch between the western-manufactured femoral intramedullary implants and the Japanese femur. We recommend that orthopedic surgeons to accurately perform preoperative evaluation of the femoral bowing to avoid potential malalignment, rotation, and abnormal stresses between the femur and implant.

  12. Femoral Condyle Fracture during Anterior Cruciate Ligament Reconstruction

    Directory of Open Access Journals (Sweden)

    Selahattin Ozyurek

    2015-07-01

    Full Text Available Dear Editor,We have greatly enjoyed reading the case report entitled “‘Femoral Condyle Fracture during Revision of Anterior Cruciate Ligament Reconstruction: Case Report and a Review of Literature in the issue of Arch Bone Jt Surg. 2015;3(2 with great interest. We would like to commend the authors for their detailed and valuable work. Although various case reports have described postoperative distal femur fracture at a range of time intervals (1,2 intraoperative intra-articular distal femur fracture is a unique entity.However, we believe that some important additional observations seem necessary to be contributed through this study. In this article, the authors stated that, to the best of their knowledge, there is no other case report in the literature introducing a femoral condyle fracture during arthroscopic ACL reconstruction or revision reconstruction. Nevertheless, we would like to call the attention of the readers to the fact that that the literature contains one additional case report re‌porting on intraoperative distal femoral coronal plane (Hoffa fracture during primary ACL reconstruction (2. Werner BC and Miller MD presented of case report of an intraoperative distal femoral coronal plane (Hoffa fracture that occurred during independent femoral tunnel drilling and dilation in a primary ACL reconstruction. As in the their case, this type of fracture can occur with appropriately placed femoral tunnels, but the risk can increase with larger graft diameters in patients with smaller lateral femoral condyles The patient was treated with open reduction and internal fixation, without compromise of graft stability and with good recovery of function. We believe that tailoring graft size to the size of the patient is important to prevent similar adverse events.

  13. Sex-specific patterns in cortical and trabecular bone microstructure in the Kirsten Skeletal Collection, South Africa.

    Science.gov (United States)

    Beresheim, Amy C; Pfeiffer, Susan K; Grynpas, Marc D; Alblas, Amanda

    2018-02-07

    The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime. The 206 adult individuals ( n female = 75, n male = 131, mean = 47.9 ± 15.8 years) from the Kirsten Skeletal Collection, U. Stellenbosch, lived in the Cape Town metropole from the late 1960s to the mid-1990s. To study age-related changes in cortical and trabecular bone microstructure, photomontages of mid-thoracic rib cross-sections were quantitatively examined. Variables include relative cortical area (Rt.Ct.Ar), osteon population density (OPD), osteon area (On.Ar), bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp). All cortical variables demonstrated significant relationships with age in both sexes, with women showing stronger overall age associations. Peak bone mass was compromised in some men, possibly reflecting poor nutritional quality and/or substance abuse issues throughout adolescence and early adulthood. In women, greater predicted decrements in On.Ar and Rt.Ct.Ar suggest a structural disadvantage with age, consistent with postmenopausal bone loss. Age-related patterns in trabecular bone microarchitecture are variable and difficult to explain. Except for Tb.Th, there are no statistically significant relationships with age in women. Men demonstrate significant negative correlations between BV/TV, Tb.N, and age, and a significant positive correlation between Tb.Sp and age. This research highlights sex-specific differences in patterns of age-related bone loss, and provides context for discussion of contemporary South African bone health. While the study sample demonstrates indicators of poor bone quality, osteoporosis research continues to be under-prioritized in South Africa. © 2018 Wiley Periodicals, Inc.

  14. [Reproducibility and accuracy in the morphometric and mechanical quantification of trabecular bone from 3 Tesla magnetic resonance images].

    Science.gov (United States)

    Alberich-Bayarri, A; Martí-Bonmatí, L; Sanz-Requena, R; Sánchez-González, J; Hervás Briz, V; García-Martí, G; Pérez, M Á

    2014-01-01

    We used an animal model to analyze the reproducibility and accuracy of certain biomarkers of bone image quality in comparison to a gold standard of computed microtomography (μCT). We used magnetic resonance (MR) imaging and μCT to study the metaphyses of 5 sheep tibiae. The MR images (3 Teslas) were acquired with a T1-weighted gradient echo sequence and an isotropic spatial resolution of 180μm. The μCT images were acquired using a scanner with a spatial resolution of 7.5μm isotropic voxels. In the preparation of the images, we applied equalization, interpolation, and thresholding algorithms. In the quantitative analysis, we calculated the percentage of bone volume (BV/TV), the trabecular thickness (Tb.Th), the trabecular separation (Tb.Sp), the trabecular index (Tb.N), the 2D fractal dimension (D(2D)), the 3D fractal dimension (D(3D)), and the elastic module in the three spatial directions (Ex, Ey and Ez). The morphometric and mechanical quantification of trabecular bone by MR was very reproducible, with percentages of variation below 9% for all the parameters. Its accuracy compared to the gold standard (μCT) was high, with errors less than 15% for BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z. Our experimental results in animals confirm that the parameters of BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z obtained by MR have excellent reproducibility and accuracy and can be used as imaging biomarkers for the quality of trabecular bone. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  15. Fracturing of revision of a cobalt-chrome femoral head after fracturing of a ceramic femoral head, with diffuse metallosis. Case report

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Dantas Costa Marques

    2013-04-01

    Full Text Available We presente a case of a fracture of a cobalt-chrome femoral head after revision of a hip total prosthesis with ceramic femoral head fracture. During surgery we found the cobalt-chrome femoral head fracture, wear of the polyethylene and massive metallosis in muscular and cartilaginous tissue. Both femoral stem and acetabular cup were stable and without apparent wearing. After surgical debridement, we promoted the substitution of the femoral head and the acetabular polyethylene by similar ones. After 12 months of follow-up, the patient has no pain complaints, function limit or systemic signs associated with malign metallosis

  16. Femoral shaft bowing in the coronal plane has more significant effect on the coronal alignment of TKA than proximal or distal variations of femoral shape.

    Science.gov (United States)

    Kim, Jong-Min; Hong, Soo-Heon; Kim, Jong-Min; Lee, Bum-Sik; Kim, Dong-Eun; Kim, Kyung-Ah; Bin, Seong-Il

    2015-07-01

    The aim of this study was to determine (1) variations in the shape of the proximal, middle, and distal femur in a series of Korean patients who had undergone total knee arthroplasty (TKA), (2) the preoperative relationship between these three parameters and the distal valgus cutting angle referenced off the femoral intramedullary guide, and (3) whether there was any relationship between femoral bowing and variations in the shape of the proximal or distal femur in the coronal plane. The preoperative long-standing anteroposterior radiographs of 316 consecutive osteoarthritis patients who underwent primary TKA from 2009 to 2011 were examined. The femoral neck shaft angle, the femoral shaft bowing angle, and the mechanical lateral distal femoral angle were measured to assess the shape of the proximal, middle, and distal femur, respectively. The valgus cutting angle of the femur was defined as the angle between the distal anatomical and mechanical axes of the femur. The study population showed large variations in femoral shape. The mean femoral intramedullary guide angle was 6.5° ± 1.3° (range: 4°-13°). The femoral shaft bowing angle was the factor that showed the strongest correlation with this angle (P shaft angle showed no correlation (n.s.). The femoral shaft bowing angle showed a weak correlation with the mechanical lateral distal femoral angle (P = 0.001), but was not significantly correlated with the femoral neck shaft angle (n.s.). Apparent femoral bowing (>3° of lateral or medial bowing) was found in 42 (13.3 %) of cases (37 cases of lateral bowing and five of medial bowing). Cases with lateral apparent femoral bowing >3° had a distal cutting angle of 8.6° ± 2.2° relative to the femoral intramedullary guide. The femoral intramedullary guide angle was mainly influenced by femoral shaft bowing among femoral deformities in the coronal plane. Therefore, to increase the accuracy of distal femoral cut during TKA, it is necessary to confirm femoral

  17. A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation A study on synthetic bones

    Directory of Open Access Journals (Sweden)

    Korhan Ozkan

    2015-01-01

    Conclusion: The proximal femoral intramedullary nail provides more stability and allows for earlier weight bearing than the locking plate when used for the treatment of unstable intertrochanteric fractures of the femur. Clinicians should be cautious for early weight bearing with locking plate for unstable intertrochanteric femur fractures.

  18. Mechanical and morphological properties of trabecular bone samples obtained from third metacarpal bones of cadavers of horses with a bone fragility syndrome and horses unaffected by that syndrome.

    Science.gov (United States)

    Symons, Jennifer E; Entwistle, Rachel C; Arens, Amanda M; Garcia, Tanya C; Christiansen, Blaine A; Fyhrie, David P; Stover, Susan M

    2012-11-01

    To determine morphological and mechanical properties of trabecular bone of horses with a bone fragility syndrome (BFS; including silicate-associated osteoporosis). Cylindrical trabecular bone samples from the distal aspects of cadaveric third metacarpal bones of 39 horses (19 horses with a BFS [BFS bone samples] and 20 horses without a BFS [control bone samples]). Bone samples were imaged via micro-CT for determination of bone volume fraction; apparent and mean mineralized bone densities; and trabecular number, thickness, and separation. Bone samples were compressed to failure for determination of apparent elastic modulus and stresses, strains, and strain energy densities for yield, ultimate, and failure loads. Effects of BFS and age of horses on variables were determined. BFS bone samples had 25% lower bone volume fraction, 28% lower apparent density, 18% lower trabecular number and thickness, and 16% greater trabecular separation versus control bone samples. The BFS bone samples had 22% lower apparent modulus and 32% to 33% lower stresses, 10% to 18% lower strains, and 41 % to 52% lower strain energy densities at yield, ultimate, and failure loads, compared with control bone samples. Differences between groups of bone samples were not detected for mean mineral density and trabecular anisotropy. Results suggested that horses with a BFS had osteopenia and compromised trabecular bone function, consistent with bone deformation and pathological fractures that develop in affected horses. Effects of this BFS may be systemic, and bones other than those that are clinically affected had changes in morphological and mechanical properties.

  19. Morphometric analysis of rat femoral vessels under a video magnification system

    Directory of Open Access Journals (Sweden)

    Rui Sergio Monteiro de Barros

    Full Text Available Abstract The right femoral vessels of 80 rats were identified and dissected. External lengths and diameters of femoral arteries and femoral veins were measured using either a microscope or a video magnification system. Findings were correlated to animals’ weights. Mean length was 14.33 mm for both femoral arteries and femoral veins, mean diameter of arteries was 0.65 mm and diameter of veins was 0.81 mm. In our sample, rats’ body weights were only correlated with the diameter of their femoral veins.

  20. Trochanteric entry femoral nails yield better femoral version and lower revision rates-A large cohort multivariate regression analysis.

    Science.gov (United States)

    Yoon, Richard S; Gage, Mark J; Galos, David K; Donegan, Derek J; Liporace, Frank A

    2017-06-01

    Intramedullary nailing (IMN) has become the standard of care for the treatment of most femoral shaft fractures. Different IMN options include trochanteric and piriformis entry as well as retrograde nails, which may result in varying degrees of femoral rotation. The objective of this study was to analyze postoperative femoral version between three types of nails and to delineate any significant differences in femoral version (DFV) and revision rates. Over a 10-year period, 417 patients underwent IMN of a diaphyseal femur fracture (AO/OTA 32A-C). Of these patients, 316 met inclusion criteria and obtained postoperative computed tomography (CT) scanograms to calculate femoral version and were thus included in the study. In this study, our main outcome measure was the difference in femoral version (DFV) between the uninjured limb and the injured limb. The effect of the following variables on DFV and revision rates were determined via univariate, multivariate, and ordinal regression analyses: gender, age, BMI, ethnicity, mechanism of injury, operative side, open fracture, and table type/position. Statistical significance was set at pregression analysis revealed that a lower BMI was significantly associated with a lower DFV (p=0.006). Controlling for possible covariables, multivariate analysis yielded a significantly lower DFV for trochanteric entry nails than piriformis or retrograde nails (7.9±6.10 vs. 9.5±7.4 vs. 9.4±7.8°, pregression analysis. However, this is not to state that the other nail types exhibited abnormal DFV. Translation to the clinical impact of a few degrees of DFV is also unknown. Future studies to more in-depth study the intricacies of femoral version may lead to improved technology in addition to potentially improved clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Case report: AVN of the femoral head five year follow-up of the combination of ipsilateral femoral neck and sub-trochanteric fracture.

    Science.gov (United States)

    Zhang, Wei; Zhu, Feng; Dong, Hanqing; Xu, Yaozeng

    2016-04-01

    To our knowledge, the type of combination of ipsilateral femoral neck and sub-trochanteric fracture is rare. And the long term follow-up is seldom been reported. A 60 year old woman suffered from a traffic accident. We gave her the intramedullary nail treatment for the combination of ipsilateral femoral neck and sub-trochanteric fracture, and the fracture indeed cured after one year and there is no clue of necrosis of the femoral head, but after 5 years, there is an evidence of necrosis of the femoral head. Combination of ipsilateral femoral neck and sub-trochanteric fracture should be kept in mind. Patients with this unusual fracture should be kept under surveillance for longer than might be thought currently to be necessary for there is a possibility of necrosis of the femoral head, even a nondisplaced femoral neck fracture.

  2. Avascular necrosis of the femoral head in HIV infected patients

    Directory of Open Access Journals (Sweden)

    Marcos Almeida Matos

    Full Text Available Avascular necrosis (AVN of the femoral head is an emerging complication in HIV infected patients. It has been suggested that the increased incidence of AVN in this population may be caused by an increased prevalence of predisposing factors for osteonecrosis, including protease inhibitors, hyperlipidemia, corticosteroid use, alcohol and intravenous drug abuse. The aim of this study was to assess the risk factors for avascular necrosis developing in the femoral head of HIV infected individuals. This study consisted of meta-analysis of the secondary data extracted from current literature. The selected articles allowed two study groups to be drawn up for comparison. Group 1 comprised 324 individuals infected by the HIV virus, who did not present femoral head AVN. Group 2 comprised 32 HIV positive patients, who presented femoral head AVN. The parameters used for analysis were as follows: age, gender, sexual preference, use of intravenous drugs, time of diagnosis, CD4+ cell count, use of antiretroviral agents and duration, serum cholesterol and serum triglycerides. The present study found a statistically significant association between hypertriglyceridemia, hypercholesterolemia, sexual preference and intravenous drug abuse. The authors concluded that femoral head osteonecrosis is associated with hyperlipidemia (hypercholesterolemia and hypertriglyceridemia and intravenous drug abuse. This study supports the hypothesis that protease inhibitors play a role in the development of osteonecrosis through a tendency to cause hyperlipidemia.

  3. Valgus Slipped Capital Femoral Epiphysis in Patient with Hypopituitarism

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kotoura

    2017-01-01

    Full Text Available Slipped capital femoral epiphysis (SCFE is a common disease of adolescent and the epiphysis is positioned more posteromedially in relation to the femoral neck shaft with varus SCFE; however, posterolateral displacement of the capital epiphysis, valgus SCFE, occurs less frequently. We report a case of valgus SCFE in a 17-year-old boy with hypopituitarism. After falling down, he experienced difficulty in walking. The radiographs were inconclusive; however three-dimensional computed tomography images showed lateral displacement of the epiphysis on the right femoral head. Valgus SCFE was diagnosed. The patient underwent in situ pinning of both sides. In situ pinning on the left side was performed as a prophylactic pinning because of endocrine abnormalities. At the 1-year follow-up, he could walk without any difficulty and there were no signs of pain. The epiphysis is commonly positioned more posteromedially in relation to the femoral neck shaft with most SCFE, but, in this case, the epiphysis slipped laterally. Differential diagnosis included femoral neck fracture (Delbet-Colonna type 1; however, this was less likely due to the absence of other clinical signs. Therefore, we diagnosed the patient as SCFE. When children complain of leg pain and limp, valgus SCFE that may not be visualized on anteroposterior radiographs needs to be considered.

  4. Clinical use of femoral artery hemostasis sticking after interventional procedure via femoral artery access

    International Nuclear Information System (INIS)

    Zhu Zhongsheng; Chen Shaoliang; Ye Fei; Zhang Junjie; Zhou Jie; Tian Nailiang; Lin Song; Liu Zhizhong; Xiao Pingxi; Qu Hong

    2010-01-01

    Objective: To observe the clinical effect of the use of femoral artery hemostasis sticking V+PAD after the interventional procedure via femoral artery access. Methods: By using random permutation list 80 patients, who decided to receive coronary angiography and percutaneous transluminal coronary angioplasty, were randomly selected. Of the 80 patients, hemostasis sticking V + PAD was employed in 40 patients with even numbers (trial group), only manual compression was adopted to stop bleeding in another 40 patients with odd numbers (control group). All the patients were informed about this trial and had to sign a consent letter. The pressure time, the treatment method of access site after hemostasis, the posture in bed, the immobilization time, the comfort degree of patients, the complications of access site prior to discharge, etc. were observed and the results were compared between two groups. Results: There was no significant difference between two groups as respect to age, gender ratios,activated clotting time (ACT) value and blood pressure. However, significantly difference in the compression time and bed rest time existed between the two groups. The compression time in trial group and control group was (7.9 ± 0.5) min and (19.8 ± 5.1) min respectively (P<0.01), while the bed rest time in trial group and control group was (6.1 ± 5.0) hours and (23.9 ± 0.2) hours respectively (P<0.01). All patients in trial group was supine in bed with the head side of the bed raised at 30 degree immediately after the procedure, and the head side of the bed was further raised to 90 degree one hour later. The puncture site was bandaged with conventional compression and immobilization was not employed. Patients could lie in bed with free posture and the patient's comfort degree was greatly improved. During hospitalization no complications related to puncture site occurred in all patients except one obese woman in trial group who developed pseudoaneurysm. Conclusion: Femoral

  5. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Cheng, Alice; Boyan, Barbara D; Humayun, Aiza; Cohen, David J; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  6. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.

    Science.gov (United States)

    Cheng, Alice; Humayun, Aiza; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2014-10-07

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

  7. Morpho-functional study of ionizing radiation effects on the rabbits' femoral vein

    International Nuclear Information System (INIS)

    Sakiyama, Mauro Yoshimitsu

    1995-01-01

    In this study we evaluate the effects of the ionizing radiation on the rabbits femoral vein. The samples of femoral vein were obtained from 56 New Zealand rabbits, male with ageing from 90 to 120 days, that were divided into 4 groups of 14 animals: one control group non-irradiated and three animal groups sacrificed 2 days, 14 days and 90 days after irradiation. In the three irradiated rabbits groups, each animal received the total dose 4000 cGy (rads) divided in 10 sessions of 400 cGy, a dose equivalent that utilized on clinical therapeutic. A morpho functional study of vein samples was carried out with: light microscopy: stained by hematoxin - eosin, Masson's tricromic, and Verhoeff. Immunohistochemical: reactions of immunoperoxidase with monoclonal mouse anti-human endothelial cell factor CD-31 and anti-human Von Willebrand factor (factor VIII), to study the vein endothelium. Histomorphometry of elastic fiber system stained by Weigert's resorcin-fuchsin with and without prior oxidation with oxone; for the study of mature, elaunin or pre-mature and oxytalan or young elastic fibers. Electronic microscopy: transmission and scanning. With the methodology utilized we observe changes in the femoral vein of the animals submitted to irradiation in relation to the control group, thus described: there is formation of vacuoles between the endothelium and the basal membrane, called sub endothelial vacuoles, in focal areas. The factor VIII and CD-31 endothelial antigens are preserved with no changes in their functions. Focal alterations are present in the endothelial surface with disorder in the setting and orientation of the endothelial cells. there is degeneration of the elastic fibers with significant decrease in their quantity in the stage, 2 days and 14 days after irradiation. There is increase in the quantity of elastic fibers in the late stage, 90 days after irradiation, tending to normality. In this present study, the changes described are not accompanied by venous

  8. A STUDY OF UNSTABLE INTERTROCHANTERIC FEMORAL FRACTURES TREATED BY TROCHANTERIC FEMORAL NAIL

    Directory of Open Access Journals (Sweden)

    Sreenivasa Neikar

    2017-11-01

    Full Text Available BACKGROUND Intertrochanteric fracture is one of the most common fracture of the hip especially in the elderly. The incidence of intertrochanteric fracture is rising because of the increase in number of elderly population along with superadded osteoporosis. MATERIALS AND METHODS Study included cases of unstable intertrochanteric fractures (AO and OTA Classification 31-A2 and 31-A3 fracture patterns that were operated with the short trochanteric femoral nail, which fitted into the inclusion criteria done in medical college hospital, Vijayanagara Institute of Medical Sciences, Bellary, from February 2015 to September 2016. RESULTS The age distribution was from 40 to 80 years. The largest group of patients were from 61 to 70 years. The average age was 60.5 years. The number of male patients in our series was 20 (66.7% and female was 10 (33.3%. Right side was affected in 11 cases (36.7% and left side in 19 cases (63.3%. Good reduction was achieved in 23 patients (76.7%. Acceptable reduction was achieved in 7 (23.3% patients due to severe comminution. In our study, 25 patients (83.33% had no complications. We encountered one intraoperative complication in the form of greater trochanter splintering, while inserting the nail. In our study, we encountered following postoperative complications. We noticed one case of delayed union, one case of Z effect and 2 cases of varus malunion. CONCLUSION We conclude that short trochanteric femoral nail provides good fixation for unstable intertrochanteric fractures if proper preoperative planning, good reduction and surgical technique are followed leading to high rate of bone union and minimal soft tissue damage especially for Asian patients with relatively small femora.

  9. A Case of Late Femoral Pseudoaneurysm Caused by Stent Disconnection

    International Nuclear Information System (INIS)

    Rivolta, Nicola; Fontana, Federico; Piffaretti, Gabriele; Tozzi, Matteo; Carrafiello, Gianpaolo

    2010-01-01

    We present the case of a late superficial femoral artery stent disconnection causing an asymptomatic pseudoaneurysm successfully treated with a stent-graft. A 67-year-old female was referred to our department for evaluation of claudication of the left lower limb and was diagnosed to have a total occlusion of the superficial femoral artery. Three nitinol stents were used to revascularize this artery. At 48 months, duplex-ultrasonography control revealed the presence of a 45-mm saccular femoral dilatation; X-rays and CT angiography showed fractures of the proximal stents and the presence of a pseudoaneurysm at the site of the distal stents disconnection. The pseudoaneurysm was excluded using two stent-grafts. We conclude that patients and surgeons should be aware of structural complications with all stents. Rigorous follow-up controls should be mandatory. Endovascular repair proved to be feasible and durable to manage a previous endovascular procedure.

  10. Femoral arteriographic finding in acute ergotism: Report of A Case

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, H S; Lee, K N; Cha, S B [St. Mary' s Hospital, Catholic Medical College, Seoul (Korea, Republic of)

    1971-10-15

    A case of acute ergotism with angiographic demonstration of bilateral femoral artery involvement is reported. A 27-year-old married woman was admitted because of sudden onset of severe pain in both flanks and lower legs, followed by numbness and coldness of the skin on both legs. The attack occurred after the administration of ergot tartrate as postpartum care. Femoral arteriography was performed on 10th day of illness with the Seldinger technic. The femoral arteries were generally smaller in caliber than normal. There was no definite evidence of occlusive disease. Findings were more or less symmetrical and extended to lower legs where only fine branches were visualized. The final diagnosis was diffuse vasospasm due to acute ergotism with secondary occlusion of the arteries of lower leg bilaterally.

  11. Emergency Stenting of a Ruptured Infected Anastomotic Femoral Pseudoaneurysm

    International Nuclear Information System (INIS)

    Klonaris, Chris; Katsargyris, Athanasios; Matthaiou, Alexandros; Giannopoulos, Athanasios; Tsigris, Chris; Papadopouli, Katerina; Tsiodras, Sotiris; Bastounis, Elias

    2007-01-01

    A 74-year-old man presented with a ruptured infected anastomotic femoral pseudoaneurysm. Due to severe medical comorbidities he was considered unsuitable for conventional surgical management and underwent an emergency endovascular repair with a balloon-expandable covered stent. The pseudoaneurysm was excluded successfully and the patient had an uneventful postoperative recovery with long-term suppressive antimicrobials. He remained well for 10 months after the procedure with no signs of recurrent local or systemic infection and finally died from an acute myocardial infarction. To our knowledge, emergency endovascular treatment of a free ruptured bleeding femoral artery pseudoaneurysm has not been documented before in the English literature. This case illustrates that endovascular therapy may be a safe and efficient alternative in the emergent management of ruptured infected anastomotic femoral artery pseudoaneurysms when traditional open surgery is contraindicated

  12. Femoral arteriographic finding in acute ergotism: Report of A Case

    International Nuclear Information System (INIS)

    Rhee, H. S.; Lee, K. N.; Cha, S. B.

    1971-01-01

    A case of acute ergotism with angiographic demonstration of bilateral femoral artery involvement is reported. A 27-year-old married woman was admitted because of sudden onset of severe pain in both flanks and lower legs, followed by numbness and coldness of the skin on both legs. The attack occurred after the administration of ergot tartrate as postpartum care. Femoral arteriography was performed on 10th day of illness with the Seldinger technic. The femoral arteries were generally smaller in caliber than normal. There was no definite evidence of occlusive disease. Findings were more or less symmetrical and extended to lower legs where only fine branches were visualized. The final diagnosis was diffuse vasospasm due to acute ergotism with secondary occlusion of the arteries of lower leg bilaterally

  13. Avascular Necrosis of the Femoral Head: Are Any Genes Involved?

    Science.gov (United States)

    Pouya, Farzaneh; Kerachian, Mohammad Amin

    2015-01-01

    Avascular necrosis of the femoral head (ANFH) is a pathologic process that results from interruption of blood supply to the femur bone resulting in the death of bone cells and collapse of the femoral head. Nontraumatic ANFH continues to be a significant challenge to orthopedic surgeons. While the exact mechanisms remain elusive, many new insights have emerged from research in the last decade that has given us a clearer picture of the pathogenesis of nontraumatic ANFH. Progression to the end stage of ANFH appears to be related to five main mechanisms: hypercoagulable conditions, angiogenesis suppressions, hyperadipogenesis, heritable states, and switching the bone remodelling into bone resorption. Researchers have been examining the pathogenic mechanisms of ANFH but none of these theories have been firmly confirmed although some appear more plausible than the others. All of these factors can switch bone remodelling into bone resorption, which can further lead to ANFH progression ending up to femoral head collapse. PMID:26213697

  14. Assessment of femoral head perfusion by dynamic MR imaging

    International Nuclear Information System (INIS)

    Ochi, Ryuya; Nakano, Tetsuo; Miyazono, Kazuki; Tsurugami, Hiroshi; Fukuda, Tomohiro; Inaba, Daisuke; Takada, Koji

    2004-01-01

    We studied femoral head perfusion in 21 femoral neck fractures using dynamic MR imaging (MRI) between November 2001 and July 2002. MRI patterns divided into four groups when the results between the fractured side and unaffected side were compared. Femoral head perfusion at the fractured side was normal in Type A, about half in Type B, and absent in Type C. When perfusion at both the fractured side and unaffected side was absent, Exceptional Type was suspected. The Garden I group consisted of one Type B. The Garden II group consisted of one Type A, six Type B, one Type C, and two Exceptional Type. The Garden III group consisted of two Type B and one Type C, and the Garden IV group consisted of six Type C and one Exceptional Type. Post operations of by internal fixation confirmed the incidence of aseptic necrosis using MRI. (author)

  15. A cementless, proximally fixed anatomic femoral stem induces high micromotion with nontraumatic femoral avascular necrosis: A finite element study

    Directory of Open Access Journals (Sweden)

    Wen-Chuan Chen

    2014-07-01

    Full Text Available Decrease in bone mineral density of metaphysis in patients with nontraumatic avascular necrosis of the femoral head (AVN is considered the main factor leading to aseptic loosening of the femoral component. Researchers have hypothesized that a cementless, anatomic stem fixed proximally to the metaphysis has a higher risk for aseptic loosening than a straight stem that is fixed at the diaphysis in patients with nontraumatic AVN. The purpose of the current study was to evaluate the effects of cancellous bone stiffness at the metaphysis and stem geometry on the micromotion of the femoral stem relative to the femur. The VerSys (straight and ABG (anatomic femoral stems were enrolled in this finite element study to determine the performance of prosthetic micromotion. The simulated load to the hip joint during heel strike was assigned. Results showed that the VerSys model represented better resistance in micromotion between the bone/stem interface than the ABG model in either normal or poor cancellous bone stiffness at the metaphysis. The bone quality at the metaphysis of patients with nontraumatic AVN should be considered prior to selecting a femoral stem. In consideration of initial stability, acementless, straight stem that fits the isthmus is more favourable than an anatomic stem that is fixed to the proximal area of the canal.

  16. The Effect of a Moderate Intensity Aerobic Exercise Followed by a Period of Detraining on Femoral Micro structures and It\\'s Strength in Oophorectomized Rats

    Directory of Open Access Journals (Sweden)

    S Hojjati

    2015-10-01

    Full Text Available Background and aim: Exercise activities increase bone mass, however, the effect of  detraining and inactivity on osteoporosis in active people who take part in regular physical activity, are still not well understood. The purpose of this study was to investigate the effect of treadmill running exercise together with detraining on osteoporosis in Oophorectomized rats. Methods: Fifty female rats divided randomly into control experimental 1 (oophorectomized rats for 12 weeks experimental 2 (oophorectomized rats for 22 weeks experimental 3 (oophorectomized rats undergoing treadmill running exercise and experimental 4 (oophorectomized rats undergoing treadmill running exercise together with a period of detraining groups. Control group sacrificed in the beginning of the study. The experimental groups of 3 and 4 exercised for 10 weeks. After the training period, The experimental groups of 1 and 3 were sacrificed, while, experimental groups 4 and 2 remained detraining. The exercise program consisted of running on a treadmill (3 days/week for 10 weeks. The speed of treadmill was adjusted constant at 12 m/min and the duration of exercise began from 10 min in the first week and reached up to 64 min in the 10th week of exercise. At the end of study, all rats were sacrificed and their femurs were removed for bone micro structures (cortical and trabecular thickness, and trabecular separation and bone strength analysis. We used One-Way ANOVA and  post hoc Scheffe test to compare the groups after evaluation of Homology of variances by Shapiro wilk test. P&le 0.05 considered significant. Results: Trabecular thickness decreased significantly in experimental groups of 1 and 2 compared with control group (P<0.05. Bone strength and cortical thicknesses decreased significantly in experimental groups of 2 compared with control group (P<0.01. Bone strength and femoral micro structures improved in experimental group of 3 compared with experimental group of 1 and in

  17. Image features of herniation pit of the femoral neck

    International Nuclear Information System (INIS)

    Zhang Xuezhe; Li Guangming; Wang Cunli; Wang Guimin

    2008-01-01

    Objective: To evaluate imaging appearances of herniation pit of the femoral neck. Methods: We retrospectively analyzed the X-ray, CT and MRI findings of 9 patients with herniation pit of the femoral neck. All nine patients were male with the age ranging from 21 to 73 years. They had pain in the hip from two months to two years duration. Results: The bilateral hips were affected in six patients, the right hips in the other 3 patients. Of the nine patients, X-ray plain films (2 cases), CT scanning(6 cases), and MR scanning (5 cases ) were performed. The size of the lesions ranged from 0.5 cm x 0.6 cm to 1.0 cm x 1.5 cm, located in the anterosuperior portion of the femoral neck (n=7) or anteroinferior portion (n=2). X-ray plain films showed an osteolytic lesion surrounded by a sclerotic rim. CT scanning showed the lesion just below the cortex of the femoral neck surrounded by a rim of sclerosis or associated with a small cortical break in two patients. MR scanning showed low signal intensity in five patients on T 1 WI and high signal intensity surrounded by a rim of low signal intensity (n=3) or low signal intensity (n=2) on T 2 WI, and high signal intensity on fat suppression MR image. A small joint effusion was observed in two cases on T 2 WI. Conclusion: The CT and MRI findings of herniation pit of the femoral neck are characteristic, it is useful in defining the diagnosis of the herniation pit of the femoral neck. (authors)

  18. Stress fracture of the femoral neck in a child (stress fracture)

    International Nuclear Information System (INIS)

    Coldwell, D.; Gross, G.W.; Boal, D.K.

    1984-01-01

    Femoral neck stress fracture is extremely rare in childhood. We report a case of femoral neck stress fracture in an 11-year-old girl. Differentials diagnosis and a brief review of the literature follow. (orig.)

  19. The treatment of nonisthmal femoral shaft nonunions with im nail exchange versus augmentation plating.

    Science.gov (United States)

    Park, Jin; Kim, Sul Gee; Yoon, Han Kook; Yang, Kyu Hyun

    2010-02-01

    The purpose of this study was to compare the results between exchange nailing (EN) and augmentation plating (AP) with a nail left in situ for nonisthmal femoral shaft nonunion after femoral nailing. : Retrospective data analysis, November 1996-March 2006. A level I trauma center. Eighteen patients with 18 nonisthmal femoral nonunions. Seven patients with 7 fractures treated for nonisthmal femoral shaft nonunions after femoral nailing with EN and 11 patients with 11 fractures treated for nonisthmal femoral shaft nonunions after nailing with AP combined with bone grafting. Union and complications. Five nonunions in the EN group failed to achieve union (72% failure rate), whereas all 11 pseudarthroses in the AP group obtained osseous union. Fisher exact test showed a higher nonunion rate of EN compared with AP for nonisthmal femoral shaft nonunion (odds ratio, 6.5; P = 0.002). AP with autogenous bone grafting may be a better option than EN for nonisthmal femoral nonunions.

  20. Automatic quantification of tibio-femoral contact area and congruity

    DEFF Research Database (Denmark)

    Tummala, Sudhakar; Nielsen, Mads; Lillholm, Martin

    2012-01-01

    We present methods to quantify the medial tibio- femoral (MTF) joint contact area (CA) and congruity index (CI) from low-field magnetic resonance imaging (MRI). Firstly, based on the segmented MTF cartilage compartments, we computed the contact area using the Euclidian distance transformation....... The CA was defined as the area of the tibial superior surface and the femoral inferior surface that are less than a voxel width apart. Furthermore, the CI is computed point-by-point by assessing the first- and second-order general surface features over the contact area. Mathematically, it is the inverse...

  1. Morfología femoral proximal en fracturas de cadera

    OpenAIRE

    Calvo de Mora Rebollo, María Jesús; Albareda Albareda, Jorge Cruz; Seral García, Belén; Martín Ruiz, G.; Lasierra Sanromán, José Manuel; Seral Iñigo, Fernando

    2003-01-01

    Es frecuente observar como pacientes que han sufrido una fractura de cadera, si se fracturan posteriormente la cadera contralateral, es del mismo tipo que la primera fractura. El objetivo de este trabajo es tratar de relacional la morfología femoral proximal con la producción de un tipo determinado de fractura. Para ello hemos realizado un estudio prospectivo en 50 pacientes mayores de 65 años, sin distinción de sexo, que han ingresado en nuestro servicio por fractura femoral proximal, 25 ...

  2. Repair of femoral trochanteric osteotomy in the dog

    International Nuclear Information System (INIS)

    Whitelock, R.G.; Dyce, J.; Houlton, J.E.F.

    1997-01-01

    The records and radiographs of 24 dogs that underwent femoral trochanteric osteotomy repair were reviewed. Osteotomy repair was performed with either a pin and tension band wire or a lag screw technique. Significant clinical complications associated with the osteotomy were identified in one dog (4 per cent) six weeks after surgery, although abnormal radiographic changes were evident in 15 dogs (62 per cent). The method of repair did not influence healing and there were comparable radiographic complication rates. It is concluded that femoral trochanteric osteotomy is not associated with significant clinical problems, despite a high incidence of abnormal radiographic findings

  3. [SURGICAL HIP DISLOCATION APPROACH FOR TREATMENT OF FEMORAL HEAD FRACTURE].

    Science.gov (United States)

    Tang, Yanfeng; Liu, Youwen; Zhu, Yingjie; Li, Jianming; Li, Wuyin; Li, Qiyi; Jia, Yudong

    2015-11-01

    To discuss the value of surgical hip dislocation approach in the treatment of femoral head fracture. A retrospectively analysis was made on the clinical data of 15 patients with femoral head fractures treated through surgical hip dislocation approach between January 2010 and February 2013. There were 11 men and 4 women with an average age of 30.8 years (range, 15-63 years). The causes included traffic accident injury in 9 cases, falling injury from height in 5 cases, and sports injury in 1 case. According to Pipkin typing, 2 cases were rated as type I, 7 cases as type II, 1 case as type III, and 5 cases as type IV. The interval of injury and operation was 2-10 days (mean, 4.1 days). Reduction was performed in 10 patients within 6 hours after injury, and then bone traction was given for 4-6 weeks except 5 patients who received reduction in the other hospital. Primary healing of incision was obtained in all patients after surgery without complications of dislocation and lower limbs deep venous thrombosis. The mean follow-up time was 29.9 months (range, 25-36 months). During follow-up, there was no infection, breakage of internal fixation, or nonunion of femoral greater trochanter fracture. In 3 patients having necrosis of the femoral head, 2 had no obvious symptoms [staging as IIa and IIb respectively according to Association Research Circulation Osseous (ARCO) staging system], and 1 (stage IIIb) had nonunion of the femoral neck fracture, who underwent total hip arthroplasty (THA). In 4 patients having myositis ossificans (2 cases of grade I, 1 case of grade II, and 1 case of grade III based on Brooker grading), no treatment was given in 3 cases and the focus was removed during THA in 1 case. According to the Thompson-Epstein scale at last follow-up, the results were excellent in 9 cases, good in 3 cases, fair in 1 case, and poor in 2 cases, and the excellent and good rate was 80%. Surgical hip dislocation approach can not only protect the residual vessels of the

  4. Medial circumflex femoral artery flap for ischial pressure sore

    Directory of Open Access Journals (Sweden)

    Palanivelu S

    2009-01-01

    Full Text Available A new axial pattern flap based on the terminal branches of the medial circumflex femoral artery is described for coverage of ischial pressure sore. Based on the terminal branches of the transverse branch of medial circumflex femoral artery, which exit through the gap between the quadratus femoris muscle above and the upper border of adductor magnus muscle below, this fascio cutaneous flap is much smaller than the posterior thigh flap but extremely useful to cover ischeal pressure sores. The skin redundancy below the gluteal fold allows a primary closure of the donor defect. It can also be used in combination with biceps femoris muscle flap.

  5. Case of slipped capital femoral epiphysis following radiation

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Usui, Hiroshi; Nakamura, Yutaka; Chiba, Masahiro; Yamaji, Shushin; Oba, Yoshihiro

    1987-06-01

    A 12-year-old boy presented with pain of the right hip joint and claudication. At the age of 7 months, the patient had received prophylactic irradiation of 30 Gy to the pelvic area including lumbar vertebrae and bilateral hip joints following extirpation of the right undescended testicle for embryonal carcinoma. Roentgenograph showed slipped capial femoral epiphysis. A review of the literature suggests that bone growth and hormonal changes in the early stage of puberty are involved, in addition to radiation damaged epiphyseal cartilage, in the pathophysiologic mechanisms of radiation induced slipped capital femoral epiphysis. (Namekawa, K.).

  6. Can femoral dialysis catheter insertion cause a life threatening complication?

    Directory of Open Access Journals (Sweden)

    Nurkay Katrancıoğlu

    2014-09-01

    Full Text Available Venous catheter (VC insertion may be necessary for the patients with renal failure facing vascular access problem. Femoral VCs are commonly used for their lower complication rates especially in emergency clinics. The incidence of bleeding associated with VC is reported 0.5-1.6%, however, life threatening hemorrhage and complications requiring surgical intervention are very rare. In this manuscript, we aimed to present a case with hemolytic uremic syndrome complicated with retroperitoneal hematoma after femoral VC insertion. J Clin Exp Invest 2014; 5 (3: 472-474

  7. Postoperative hemoglobin level in patients with femoral neck fracture

    OpenAIRE

    Nagra, Navraj; van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward

    2018-01-01

    Objective: The aim of this study was to analyze the changes of hemoglobin levels in patients undergoing fixation for femoral neck fracture.Methods: Peroperative hemoglobin levels of patients who underwent either dynamic hip screw (DHS) fixation (n=74; mean age: 80 years) or hip hemiarthroplasty (n=104; mean age: 84 years) for femoral neck fracture was monitored.Results: There was a statistically and clinically significant mean drop of 31.1 g/L between the preoperative (D0) and postoperative D...

  8. Identification of avascular necrosis in the dysplastic proximal femoral epiphysis

    International Nuclear Information System (INIS)

    Mandell, G.A.; Harcke, H.T.; MacKenzie, W.G.; Bassett, G.S.; Scott, C.I. Jr.; Wills, J.S.

    1989-01-01

    Bilateral radiographic irregularities and deformities of the proximal femoral epiphyses are features of both multiple epiphyseal dysplasia and bilateral idiopathic avascular necrosis. In the past these entities have been difficult to differentiate. This report documents radiographically the occurrence of avascular necrosis in 10 patients with multiple epiphyseal dysplasia by recognizing the superimposition of sclerosis and subchondral fissuring on pre-existing symmetrically irregular proximal femoral ossification centers. Scintigraphic (photopenia) or magnetic resonance (loss of signal) criteria of avascular necrosis confirm its added presence and help to establish an imaging scheme to identify avascular necrosis superimposed on multiple epiphyseal dysplasia. (orig.)

  9. Avascular necrosis associated with nailing of femoral neck fracture