WorldWideScience

Sample records for human fat skin

  1. Archaea on human skin.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.

  2. Serotonin in human skin

    Institute of Scientific and Technical Information of China (English)

    Jianguo Huang; Qiying Gong; Guiming Li

    2005-01-01

    In this review the authors summarize data of a potential role for serotonin in human skin physiology and pathology. The uncovering of endogenous serotonin synthesis and its transformation to melatonin underlines a putative important role of this pathway in melanocyte physiology and pathology. Pathways of the biosynthesis and biodegradation of serotonin have been characterized in human beings and its major cellular populations. Moreover, receptors of serotonin are expressed on keratinocytes, melanocytes, and fibroblasts and these mediate phenotypic actions on cellular proliferation and differentiation. And the widespread expression of a cutaneous seorotoninergic system indicates considerable selectivity of action to facilitate intra-, auto-, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner. Melatonin, in turn, can also act as a hormone, neurotransmitter, cytokine, biological modifier and immunomodulator. Thus, Serotonin local synthesis and cellular localization could thus become of great importance in the diagnosis and management of cutaneous pathology.

  3. The effect of various dietary fats on skin tumor initiation.

    Science.gov (United States)

    Locniskar, M; Belury, M A; Cumberland, A G; Patrick, K E; Fischer, S M

    1991-01-01

    The type of dietary fat has been shown to modulate the initiation stage of mammary tumorigenesis, with saturated fat fed before and/or during carcinogen treatment resulting in increased tumor incidence. This study was designed to determine whether different types of dietary fat alter the initiation stage of skin carcinogenesis by use of the initiation-promotion mouse skin carcinogenesis model. Sencar mice were divided into three groups and maintained on one of the experimental diets. The AIN-76-based diets consisted of 10% total fat with various types of fat: 8.5% menhaden oil plus 1.5% corn oil, 8.5% coconut oil plus 1.5% corn oil, and 10% corn oil. After three weeks mice were initiated with 10 nmol dimethylbenz[a]anthracene (DMBA). Two weeks later, all mice were switched to a diet containing 5% corn oil. Promotion began four weeks after initiation with twice-weekly application of 1 microgram 12-O-tetradecanoylphorbol-13-acetate and continued for 12 weeks. No statistically significant differences in kilocalories of food consumed or body weights were observed between diet groups during the study. The final papilloma incidence, yield, and size were not significantly different among the diet groups. In a parallel study, [3H]DMBA binding to epidermal DNA showed no dietary differences. Unlike the mammary carcinogenesis model, these data suggest that the type of fat fed during DMBA initiation had minimal effects on this stage of skin carcinogenesis.

  4. Tissue Engineered Human Skin Equivalents

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2012-01-01

    Full Text Available Human skin not only serves as an important barrier against the penetration of exogenous substances into the body, but also provides a potential avenue for the transport of functional active drugs/reagents/ingredients into the skin (topical delivery and/or the body (transdermal delivery. In the past three decades, research and development in human skin equivalents have advanced in parallel with those in tissue engineering and regenerative medicine. The human skin equivalents are used commercially as clinical skin substitutes and as models for permeation and toxicity screening. Several academic laboratories have developed their own human skin equivalent models and applied these models for studying skin permeation, corrosivity and irritation, compound toxicity, biochemistry, metabolism and cellular pharmacology. Various aspects of the state of the art of human skin equivalents are reviewed and discussed.

  5. Millimeter wave dosimetry of human skin.

    Science.gov (United States)

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  6. Influence of Subcutaneous Fat Layer in Skin Temperature

    Directory of Open Access Journals (Sweden)

    Eduardo Borba Neves

    2016-03-01

    Full Text Available The aim of this study was to determine the correlation between the subcutaneous fat layer and the temperature variation (core - skin in two body regions, measured by infrared sensors. This study involved 43 volunteers selected among undergraduate students in physical education. The thermal images and skinfold thickness were acquired from subscapular region (SB for male and triceps region (TR for female volunteers, of right side. In this study, subscapular skinfold thickness was inversely correlated with skin temperature (r = -0.638, p = 0.004 and directly correlated with ΔT [core – skin] (r = 0.653, p = 0.003. However, the results for the triceps region showed no significant correlation between triceps skinfold thickness and skin temperature or ΔT [core – skin]. When the sample was separated into two groups by skinfold thickness, with cut off at 12mm, average comparison tests for ΔT [core – skin] shows statistically significant difference between groups for the subscapular site (Student t test for independent sample, p value = 0.023, but not for the triceps site (Wilcoxon Signed Ranks and the Mann-Whitney tests, p value = 0.268. In short, the findings suggest that subcutaneous fat layer correlates negatively with skin temperature in subscapular region.

  7. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  8. Structured Light Scanning of Skin, Muscle and Fat

    DEFF Research Database (Denmark)

    Wilm, Jakob; Jensen, Sebastian Hoppe Nesgaard; Aanæs, Henrik

    of error that various encoding strategies show, and propose an error correcting model, which can bring down the measurement bias considerably. Samples of raw and unprocessed pig tissue were used with the number of sampled surface points Nmeat = 1.2 * 106, Nskin = 4.0 * 106 and Nfat = 2.1 * 106 from 8......We investigate the quality of structured light 3D scanning on pig skin, muscle and fat. These particular materials are interesting in a number of industrial and medical use-cases, and somewhat challenging because they exhibit subsurface light scattering. Our goal therefor is to quantify the amount...

  9. Regular-fat dairy and human health

    DEFF Research Database (Denmark)

    Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas

    2016-01-01

    In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort...... dairy foods have on human health. The emerging scientific evidence indicates that the consumption of regular fat dairy foods is not associated with an increased risk of cardiovascular disease and inversely associated with weight gain and the risk of obesity. Dairy foods, including regular-fat milk...... to disseminate, explore and discuss the state of the science on the relationship between regular fat dairy products and health, symposia were programmed by dairy industry organizations in Europe and North America at The Eurofed Lipids Congress (2014) in France, The Dairy Nutrition Annual Symposium (2014...

  10. Skin Diseases: Cross-section of human skin

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  11. Sexual hormones in human skin.

    Science.gov (United States)

    Zouboulis, C C; Chen, W-C; Thornton, M J; Qin, K; Rosenfield, R

    2007-02-01

    The skin locally synthesizes significant amounts of sexual hormones with intracrine or paracrine actions. The local level of each sexual steroid depends upon the expression of each of the androgen- and estrogen-synthesizing enzymes in each cell type, with sebaceous glands and sweat glands being the major contributors. Sebocytes express very little of the key enzyme, cytochrome P450c17, necessary for synthesis of the androgenic prohormones dehydroepiandrosterone and androstenedione, however, these prohormones can be converted by sebocytes and sweat glands, and probably also by dermal papilla cells, into more potent androgens like testosterone and dihydrotestosterone. Five major enzymes are involved in the activation and deactivation of androgens in skin. Androgens affect several functions of human skin, such as sebaceous gland growth and differentiation, hair growth, epidermal barrier homeostasis and wound healing. Their effects are mediated by binding to the nuclear androgen receptor. Changes of isoenzyme and/or androgen receptor levels may have important implications in the development of hyperandrogenism and the associated skin diseases such as acne, seborrhoea, hirsutism and androgenetic alopecia. On the other hand, estrogens have been implicated in skin aging, pigmentation, hair growth, sebum production and skin cancer. Estrogens exert their actions through intracellular receptors or via cell surface receptors, which activate specific second messenger signaling pathways. Recent studies suggest specific site-related distribution of ERalpha and ERbeta in human skin. In contrast, progestins play no role in the pathogenesis of skin disorders. However, they play a major role in the treatment of hirsutism and acne vulgaris, where they are prescribed as components of estrogen-progestin combination pills and as anti-androgens. These combinations enhance gonadotropin suppression of ovarian androgen production. Estrogen-progestin treatment can reduce the need for shaving

  12. Skin and the non-human human

    DEFF Research Database (Denmark)

    Rösing, Lilian Munk

    2013-01-01

    The article puts forward an aesthetic and psychoanalytic analysis of Titian's painting, The Flaying of Marsyas, arguing that the painting is a reflection on the human subject as a being constituted by skin and by a core of non-humanity. The analysis is partly an answer to Melanie Hart's (2007......) article 'Visualizing the mind: Looking at Titian's Flaying of Marsyas', addressing features of the painting not commented on by Hart, and supplementing Hart's (Kleinian) theoretical frame by involving Didier Anzieu's 'skin ego', Slavoj Zizek's concept of the 'non-human', Giorgio Agamben's term...

  13. Effect of Replacing Beef Fat with Chicken Skin on Some Properties of Model System Chicken Emulsions

    Directory of Open Access Journals (Sweden)

    Aslı Zungur

    2015-12-01

    Full Text Available Model system chicken emulsions were prepared by replacing 5, 10, 15 and 20 % beef fat with chicken skin. Moisture, protein, fat, ash and pH were determined in raw and heat processed emulsions. Emulsion samples were evaluated for cooking characteristics, TBA values and colour parameters (L*, a*, b*. Addition of chicken skin decreased fat content and increased moisture and protein content of emulsion samples. Chicken skin replacement significantly increased water holding capacity and cooking yield and decreased fluid release. Increasing chicken skin in formulation increased a* and b* values of emulsion samples. Therefore, adding of chicken skin instead of beef fat is useful in improving technological quality and producing low fat formulation.

  14. Novel nuances of human brown fat

    DEFF Research Database (Denmark)

    Scheele, Camilla; Larsen, Therese Juhlin; Nielsen, Søren

    2014-01-01

    There is a current debate in the literature on whether human fat derived from the supraclavicular region should be classified as brown, or as the white fat-derived less potent, brite/beige. This commentary addresses whether the existing classification defined in mice is sufficient to describe the......, the classification of adipocyte subtypes defined in mice may need reconsideration when applying to humans.......There is a current debate in the literature on whether human fat derived from the supraclavicular region should be classified as brown, or as the white fat-derived less potent, brite/beige. This commentary addresses whether the existing classification defined in mice is sufficient to describe...... the types of thermogenic adipocytes in humans. We recently published a contradictory mRNA expression signature of human supraclavicular fat defined by an upregulation of the brite marker TBX1 along with the classical brown markers ZIC1 and LHX8, as well as genes indicating brown fat activity including UCP1...

  15. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members,

  16. Human papillomaviruses and skin cancer.

    Science.gov (United States)

    Smola, Sigrun

    2014-01-01

    Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 120 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood. The clinical relevance of genus beta-PV infection has clearly been demonstrated in patients suffering from epidermodysplasia verruciformis (EV), a rare inherited disease associated with ahigh rate of skin cancer. In the normal population genus beta-PV are suspected to have an etiologic role in skin carcinogenesis as well but this is still controversially discussed. Their oncogenic potency has been investigated in mouse models and in vitro. In 2009, the International Agency for Research on Cancer (IARC) classified the genus beta HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. This chapter will give an overview on the knowns and unknowns of infections with genus beta-PV and discuss their potential impact on skin carcinogenesis in the general population.

  17. Influence of rendering methods on yield and quality of chicken fat recovered from broiler skin

    Directory of Open Access Journals (Sweden)

    Liang-Kun Lin

    2017-06-01

    Full Text Available Objective In order to utilize fat from broiler byproducts efficiently, it is necessary to develop an appropriate rendering procedure and establish quality information for the rendered fat. A study was therefore undertaken to evaluate the influence of rendering methods on the amounts and general properties of the fat recovered from broiler skin. Methods The yield and quality of the broiler skin fat rendered through high and lower energy microwave rendering (3.6 W/g for 10 min and 2.4 W/g for 10 min for high power microwave rendering (HPMR and high power microwave rendering (LPMR, respectively, oven baking (OB, at 180°C for 40 min, and water cooking (WC, boiling for 40 min were compared. Results Microwave-rendered skin exhibited the highest yields and fat recovery rates, followed by OB, and WC fats (p<0.05. HPMR fat had the highest L*, a*, and b* values, whereas WC fat had the highest moisture content, acid values, and thiobarbituric acid (TBA values (p<0.05. There was no significant difference in the acid value, peroxide value, and TBA values between HPMR and LPMR fats. Conclusion Microwave rendering at a power level of 3.6 W/g for 10 min is suggested base on the yield and quality of chicken fat.

  18. Angiogenic properties of adult human thymus fat.

    Science.gov (United States)

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  19. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  20. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  1. Weighing Posthumanism: Fatness and Contested Humanity

    Directory of Open Access Journals (Sweden)

    Sofia Apostolidou

    2016-11-01

    Full Text Available Our project on fatness begins by turning attention to the multiple cultural instances in which fatness has been intrinsically linked with notions such as self—neglect and poor self—management. In Foucauldian terms, we analyse the fat subject as a failed homo economicus, an individual who has failed to be an “entrepreneur of himself, being for himself his own capital, being for himself his own producer, being for himself the source of [his] earnings” (Foucault, 2008, p. 226. From this perspective, we analyse instances of collective hatred towards fat subjects as direct results of the biopolitical triplet of responsibility, rationality, and morality. Morality is our bridge into the field of posthumanism, in which, as we demonstrate, these biopolitical imperatives also apply, reinforced by the field’s fascination with prosthetics and enhancement. Where, by biopolitical standards, fat subjects have failed to manage themselves, posthuman subjects find themselves guilty of not responsibly, rationally, and morally manipulating themselves to optimal productivity. Using criticism that disability studies scholars like Sarah S. Jain and Vivian Sobchack have voiced about posthumanism, we demonstrate the ways in which, within posthumanism, all subjects can be found as lacking when compared to their potential, enhanced post­human version.

  2. Weighing Posthumanism: Fatness and Contested Humanity

    Directory of Open Access Journals (Sweden)

    Sofia Apostolidou

    2016-11-01

    Full Text Available Our project on fatness begins by turning attention to the multiple cultural instances in which fatness has been intrinsically linked with notions such as self—neglect and poor self—management. In Foucauldian terms, we analyse the fat subject as a failed homo economicus, an individual who has failed to be an “entrepreneur of himself, being for himself his own capital, being for himself his own producer, being for himself the source of [his] earnings” (Foucault, 2008, p. 226. From this perspective, we analyse instances of collective hatred towards fat subjects as direct results of the biopolitical triplet of responsibility, rationality, and morality. Morality is our bridge into the field of posthumanism, in which, as we demonstrate, these biopolitical imperatives also apply, reinforced by the field’s fascination with prosthetics and enhancement. Where, by biopolitical standards, fat subjects have failed to manage themselves, posthuman subjects find themselves guilty of not responsibly, rationally, and morally manipulating themselves to optimal productivity. Using criticism that disability studies scholars like Sarah S. Jain and Vivian Sobchack have voiced about posthumanism, we demonstrate the ways in which, within posthumanism, all subjects can be found as lacking when compared to their potential, enhanced post­human version.

  3. Development of human skin equivalents to unravel the impaired skin barrier in atopic dermatitis skin

    NARCIS (Netherlands)

    Eweje, M.O.

    2016-01-01

    The studies in this thesis describes the barrier defects in Atopic Dermatitis (AD) skin and various techniques to develop AD Human Skin Equivalents (HSEs) which can be used to better understand the role of several factors in the pathogenesis of AD skin. The results described show that Inflammation p

  4. Cross-generational trans fat intake exacerbates UV radiation-induced damage in rat skin.

    Science.gov (United States)

    Barcelos, R C S; Vey, L T; Segat, H J; Roversi, K; Roversi, Kr; Dias, V T; Trevizol, F; Kuhn, F T; Dolci, G S; Pase, C S; Piccolo, J; Veit, J C; Emanuelli, T; Luz, S C A; Bürger, M E

    2014-07-01

    We evaluated the influence of dietary fats on ultraviolet radiation (UVR)-induced oxidative damage in skin of rats. Animals from two consecutive generations born of dams supplemented with fats during pregnancy and breastfeeding were maintained in the same supplementation: soybean-oil (SO, rich in n-6 FA, control group), fish-oil (FO, rich in n-3 FA) or hydrogenated-vegetable-fat (HVF, rich in TFA). At 90 days of age, half the animals from the 2nd generation were exposed to UVR (0.25 J/cm(2)) 3×/week for 12 weeks. The FO group presented higher incorporation of n-3 FA in dorsal skin, while the HVF group incorporated TFA. Biochemical changes per se were observed in skin of the HVF group: greater generation of reactive oxygen species (ROS), lower mitochondrial integrity and increased Na(+)K(+)-ATPase activity. UVR exposure increased skin wrinkles scores and ROS generation and decreased mitochondrial integrity and reduced-glutathione levels in the HVF group. In FO, UVR exposure was associated with smaller skin thickness and reduced levels of protein-carbonyl, together with increased catalase activity and preserved Na(+)K(+)-ATPase function. In conclusion, while FO may be protective, trans fat may be harmful to skin health by making it more vulnerable to UVR injury and thus more prone to develop photoaging and skin cancer.

  5. A Fusion Approach for Efficient Human Skin Detection

    OpenAIRE

    Tan, Wei Ren; Chan, Chee Seng; Yogarajah, Pratheepan; Condell, Joan

    2014-01-01

    A reliable human skin detection method that is adaptable to different human skin colours and illu- mination conditions is essential for better human skin segmentation. Even though different human skin colour detection solutions have been successfully applied, they are prone to false skin detection and are not able to cope with the variety of human skin colours across different ethnic. Moreover, existing methods require high computational cost. In this paper, we propose a novel human skin de- ...

  6. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells....

  7. Human skin: an independent peripheral endocrine organ.

    Science.gov (United States)

    Zouboulis, C C

    2000-01-01

    The historical picture of the endocrine system as a set of discrete hormone-producing organs has been substituted by organs regarded as organized communities in which the cells emit, receive and coordinate molecular signals from established endocrine organs, other distant sources, their neighbors, and themselves. In this wide sense, the human skin and its tissues are targets as well as producers of hormones. Although the role of hormones in the development of human skin and its capacity to produce and release hormones are well established, little attention has been drawn to the ability of human skin to fulfil the requirements of a classic endocrine organ. Indeed, human skin cells produce insulin-like growth factors and -binding proteins, propiomelanocortin derivatives, catecholamines, steroid hormones and vitamin D from cholesterol, retinoids from diet carotenoids, and eicosanoids from fatty acids. Hormones exert their biological effects on the skin through interaction with high-affinity receptors, such as receptors for peptide hormones, neurotransmitters, steroid hormones and thyroid hormones. In addition, the human skin is able to metabolize hormones and to activate and inactivate them. These steps are overtaken in most cases by different skin cell populations in a coordinated way indicating the endocrine autonomy of the skin. Characteristic examples are the metabolic pathways of the corticotropin-releasing hormone/propiomelanocortin axis, steroidogenesis, vitamin D, and retinoids. Hormones exhibit a wide range of biological activities on the skin, with major effects caused by growth hormone/insulin-like growth factor-1, neuropeptides, sex steroids, glucocorticoids, retinoids, vitamin D, peroxisome proliferator-activated receptor ligands, and eicosanoids. At last, human skin produces hormones which are released in the circulation and are important for functions of the entire organism, such as sex hormones, especially in aged individuals, and insulin-like growth

  8. Development of human skin equivalents to unravel the impaired skin barrier in atopic dermatitis skin

    OpenAIRE

    Eweje, M.O.

    2016-01-01

    The studies in this thesis describes the barrier defects in Atopic Dermatitis (AD) skin and various techniques to develop AD Human Skin Equivalents (HSEs) which can be used to better understand the role of several factors in the pathogenesis of AD skin. The results described show that Inflammation plays a pivotal role in the development of epidermal and SC features of AD skin and that AD epidermal features can be maintained in vitro when AD skin biopsies are used to generate explant-HSEs. The...

  9. [Development of skin moisture and body fat measurement system for mobile application].

    Science.gov (United States)

    Huang, Naihan; Chen, Xiang; Wang, Congzheng; Dong, Zhongfei

    2014-03-01

    Integrating physiological parameters measurement into mobile devices is a development tendency of mobile healthcare. Measurement methods for skin moisture and body fat content are studied in this paper. Electrodes are designed for easy integration into mobile devices, and can be embedded in the cover of the mobile phone. Experiments were conducted to obtain a fast and easy measurement method. The results of evaluation show that the measurement system can achieve the same accuracy as commercial products (with correlation above 0.9 and root mean squared error below 4%) in skin moisture and body fat content measurement. Measurement of local-area body fat content showed a nearly linear positive correlation between local-area body fat content and local-area body impedance.

  10. Photoprotection of human skin beyond ultraviolet radiation.

    Science.gov (United States)

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2014-01-01

    Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy.

  11. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  12. Influence of trans fat on skin damage in first-generation rats exposed to UV radiation.

    Science.gov (United States)

    Barcelos, Raquel Cristine S; Vey, Luciana T; Segat, Hecson Jesser; Benvegnú, Dalila M; Trevizol, Fabíola; Roversi, Karine; Roversi, Katiane; Dias, Verônica T; Dolci, Geisa S; Kuhn, Fábio T; Piccolo, Jaqueline; CristinaVeit, Juliana; Emanuelli, Tatiana; Bürger, Marilise E

    2015-01-01

    The influence of trans fatty acids (TFA) on lipid profile, oxidative damage and mitochondrial function in the skin of rats exposed to ultraviolet radiation (UVR) was assessed. The first-generation offspring of female Wistar rats supplemented from pregnancy with either soybean oil (C-SO, rich in n-6 FA; control group) or hydrogenated vegetable fat (HVF, rich in TFA) were continued with the same supplements until adulthood, when half of each group was exposed to UVR for 12 weeks. The HVF group showed higher TFA cutaneous incorporation, increased protein carbonyl (PC) levels, decreased functionality of mitochondrial enzymes and antioxidant defenses of the skin. After UVR, the HVF group showed increased skin thickness and reactive species (RS) generation, with decreased skin antioxidant defenses. RS generation was positively correlated with skin thickness, wrinkles and PC levels. Once incorporated to skin, TFA make it more susceptible to developing UVR-induced disorders.

  13. Black and white human skin differences

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Maibach, H I

    1979-01-01

    This review of black and white human skin differences emphasizes the alleged importance of factors other than the obvious, i.e., skin color. Physicochemical differences and differences in susceptibility to irritants and allergens suggest a more resistant black than white skin. Differences appear...... to exist in the frequency of which several skin diseases occur among blacks and whites. A striking feature in this literature is the disagreement between authors. Common for much of this information is difficulty of interpretation, because of socioeconomic influences and other environmental factors....

  14. Black and white human skin differences

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Maibach, H I

    1979-01-01

    This review of black and white human skin differences emphasizes the alleged importance of factors other than the obvious, i.e., skin color. Physicochemical differences and differences in susceptibility to irritants and allergens suggest a more resistant black than white skin. Differences appear...... to exist in the frequency of which several skin diseases occur among blacks and whites. A striking feature in this literature is the disagreement between authors. Common for much of this information is difficulty of interpretation, because of socioeconomic influences and other environmental factors....

  15. Physico-chemical characterisation of the fat from red-skin rambutan (Nephellium lappaceum L.) seed.

    Science.gov (United States)

    Manaf, Yanty Noorziana Abdul; Marikkar, Jalaldeen Mohammed Nazrim; Long, Kamariah; Ghazali, Hasanah Mohd

    2013-01-01

    The seeds (6.9±0.2% by weight of fruit) of the red-skin rambutan (Nephelium lappaceum L.) contain a considerable amount of crude fat (38.0±4.36%) and thus, the aim of the study was to determine the physico-chemical properties of this fat for potential applications. The iodine and saponification values, and unsaponifiable matter and free fatty acid contents of the seed fat were 50.27 g I2/100g fat, 182.1 mg KOH/g fat, 0.8% and 2.1%, respectively. The fat is pale yellow with a Lovibond color index of 3.1Y+1.1R. The fatty acid profile indicates an almost equal proportion of saturated (49.1%) and unsaturated (50.9%) fatty acids, where oleic (42.0%) and arachidic (34.3%) acids were the most dominant fatty acids. It also contained small amounts of stearic (8.0%), palmitic (4.6%), gadoleic (5.9%), linoleic (2.2%), behenic (2.1%) palmitoleic (0.7%) myristic (0.1%) and erucic (0.1%) acids. HPLC analysis showed that the fat comprised mainly unknown triacylglycerols (TAG) with high retention times indicating they have higher carbon numbers compared with many vegetable oils. The fat has melting and cooling points of 44.2°C and -42.5°C, respectively, making it a semi-solid at room temperature. The solid content at 0°C was 53.5% and the fat melted completely at 40°C. z-Nose analysis showed that the presence of high levels of volatile compounds in red-skin rambutan seed and seed fat.

  16. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  17. Trans fat bans and human freedom.

    Science.gov (United States)

    Resnik, David

    2010-03-01

    A growing body of evidence has linked consumption of trans fatty acids to cardiovascular disease. To promote public health, numerous state and local governments in the United States have banned the use of artificial trans fats in restaurant foods, and additional bans may follow. Although these policies may have a positive impact on human health, they open the door to excessive government control over food, which could restrict dietary choices, interfere with cultural, ethnic, and religious traditions, and exacerbate socioeconomic inequalities. These slippery slope concerns cannot be dismissed as far-fetched, because the social and political pressures are place to induce additional food regulations. To protect human freedom and other values, policies that significantly restrict food choices, such as bans on types of food, should be adopted only when they are supported by substantial scientific evidence, and when policies that impose fewer restrictions on freedom, such as educational campaigns and product labeling, are likely to be ineffective.

  18. Weighing Posthumanism : Fatness and Contested Humanity

    NARCIS (Netherlands)

    Apostolidou, S.; Sturm, J.

    2016-01-01

    Our project on fatness begins by turning attention to the multiple cultural instances in which fatness has been intrinsically linked with notions such as self—neglect and poor self—management. In Foucauldian terms, we analyse the fat subject as a failed homo economicus, an individual who has failed

  19. Barrier properties of human skin equivalents : rising to the surface

    NARCIS (Netherlands)

    Thakoersing, Varsha Sakina

    2012-01-01

    Human skin equivalents (HSEs) are generated from isolated skin cells. As the primary function of the skin is to form a barrier, in this thesis the barrier properties of three HSEs were assessed and compared with native human skin. The results show that all HSEs have a decreased skin barrier function

  20. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  1. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  2. Relationships between rodent white adipose fat pads and human white adipose fat depots

    Directory of Open Access Journals (Sweden)

    Daniella E. Chusyd

    2016-04-01

    Full Text Available The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of white adipose tissue. Thus, further research is warranted to more carefully define the strengths and limitations of rodent white adipose tissue as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.

  3. Detecting fat content of food from a distance: olfactory-based fat discrimination in humans.

    Science.gov (United States)

    Boesveldt, Sanne; Lundström, Johan N

    2014-01-01

    The desire to consume high volumes of fat is thought to originate from an evolutionary pressure to hoard calories, and fat is among the few energy sources that we can store over a longer time period. From an ecological perspective, however, it would be beneficial to detect fat from a distance, before ingesting it. Previous results indicate that humans detect high concentrations of fatty acids by their odor. More important though, would be the ability to detect fat content in real food products. In a series of three sequential experiments, using study populations from different cultures, we demonstrated that individuals are able to reliably detect fat content of food via odors alone. Over all three experiments, results clearly demonstrated that humans were able to detect minute differences between milk samples with varying grades of fat, even when embedded within a milk odor. Moreover, we found no relation between this performance and either BMI or dairy consumption, thereby suggesting that this is not a learned ability or dependent on nutritional traits. We argue that our findings that humans can detect the fat content of food via odors may open up new and innovative future paths towards a general reduction in our fat intake, and future studies should focus on determining the components in milk responsible for this effect.

  4. Anisotropy of light propagation in human skin

    Science.gov (United States)

    Nickell, Stephan; Hermann, Marcus; Essenpreis, Matthias; Farrell, Thomas J.; Krämer, Uwe; Patterson, Michael S.

    2000-10-01

    Using spatially resolved, steady state diffuse reflectometry, a directional dependence was found in the propagation of visible and near infrared light through human skin in vivo. The skin's reduced scattering coefficient µ's varies by up to a factor of two between different directions of propagation at the same position. This anisotropy is believed to be caused by the preferential orientation of collagen fibres in the dermis, as described by Langer's skin tension lines. Monte Carlo simulations that examine the effect of partial collagen fibre orientation support this hypothesis. The observation has consequences for non-invasive diagnostic methods relying on skin optical properties, and it could be used non-invasively to determine the direction of lines of cleavage in order to minimize scars due to surgical incisions.

  5. Deposition of contaminant aerosol on human skin

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roed, Jørn; Byrne, M.A.

    2006-01-01

    Over recent years, it has been established that deposition of various types of pollutant aerosols (e.g., radioactive) on human skin can have serious deleterious effects on health. However. only few investigations in the past have been devoted to measurement of deposition velocities on skin...... of particles of the potentially problematic sizes. An experimental programme has shown the deposition velocities on skin of particles in the ca. 0.5-5 mu m AMAD range to be high and generally associated with great variations. A series of investigations have been made to identify some of the factors that lead...... to this variation. Part of the variation was found to be caused by differences between individuals, whereas another part was found to be related to environmental factors, The identification of major influences on skin contaminant deposition is important in estimating health effects as well as in identifying means...

  6. Temporal Stability of the Human Skin Microbiome.

    Science.gov (United States)

    Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2016-05-05

    Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states.

  7. Peripheral fat loss and decline in adipogenesis in older humans.

    Science.gov (United States)

    Caso, Giuseppe; McNurlan, Margaret A; Mileva, Izolda; Zemlyak, Alla; Mynarcik, Dennis C; Gelato, Marie C

    2013-03-01

    Aging is associated with a redistribution of body fat including a relative loss of subcutaneous peripheral fat. These changes in body fat can have important clinical consequences since they are linked to increased risk of metabolic complications. The causes and mechanisms of loss of peripheral fat associated with aging are not clear. The aim of this study was to assess whether defects in adipogenesis contribute to fat loss in aging humans, as suggested from animal studies, and to evaluate the role of inflammation on pathogenesis of fat loss. Preadipocytes isolated from subcutaneous peripheral fat of healthy young and elderly subjects were compared in their ability to replicate and differentiate. The results show that both the rate of replication and differentiation of preadipocytes are reduced in older subjects. The reduction in adipogenesis is accompanied by a higher plasma level of the inflammatory marker, soluble tumor necrosis factor receptor 2, and greater release of tumor necrosis factor α from fat tissue. Thus, the gradual relative loss of peripheral fat in aging humans may in part result from a defect in adipogenesis, which may be linked to inflammation and increased release of proinflammatory cytokines from fat tissue. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Lecithin decreases human milk fat loss during enteral pumping.

    Science.gov (United States)

    Chan, Melissa M; Nohara, Masaru; Chan, Benjamin R; Curtis, Julie; Chan, Gary M

    2003-05-01

    The fat content of human milk provides the majority of calories for infants. However, large fat losses in human milk have been observed using enteral pump systems, causing poor growth in infants. The fat may adhere in the pump system. Lecithin, a phospholipid, has been used in the food industry as a lipophilic emulsifier of fats. The purpose of this study was to evaluate the effects of lecithin on the delivery of human milk fat from an enteral pump. It is hypothesized that the addition of lecithin would decrease the fat loss during human milk delivery. Six mothers at a mature stage of lactation (>4 weeks of lactation) donated human milk. The human milk samples were stored separately at -20 degrees C before analysis and evaluated individually. The fat content of the milk samples was estimated by the creamatocrit method, in which the samples were centrifuged in a standard hematocrit tube and the fat layer read with vernier calipers and expressed as a percentage of the length of the milk column to the nearest 0.5%. The accuracy of this method is 92%. The Kangaroo 324 Feeding Pump (Sherwood Medical, St. Louis, MO) was used as the continuous pump system. The human milk samples were divided into either control samples without lecithin or with lecithin (1 or 0.5 g soy lecithin dissolved in 50 mL milk). All samples were pumped at 10 to 50 mL/h for at least 4 hours. The pumped milk was collected in an iced container, and creamatocrits were determined in duplicate. There was significant fat loss in the control milk samples compared with the milk samples with added lecithin. The average fat loss was 58% +/- 13% for control samples and 55% +/- 26% for the milk with 0.5 g soy lecithin. Milk with 1 g soy lecithin averaged 2% +/- 2% fat loss. The pumping rate had no effect on fat loss. The greatest fat loss (70% +/- 6%)occurred during the first 4 hours of pumping. The addition of 1 g soy lecithin per 50 mL milk decreased the human milk fat loss during intermittent pumping and may

  9. Brown Fat Expresses Adiponectin in Humans

    Directory of Open Access Journals (Sweden)

    Gianluca Iacobellis

    2013-01-01

    Full Text Available The presence of brown adipose tissue (BAT in humans is unclear. Pheochromocytomas (PHEO are rare tumors of neuroectodermal origin which occur in 0.1-0.2% of patients with hypertension. We sought to evaluate the presence and activity of BAT surrounding adrenal PHEO in a well-studied sample of 11 patients who were diagnosed with PHEO and then underwent adrenalectomy. Areas of white fat (WAT and BAT surrounding PHEO were obtained by Laser Capture Microdissection for analysis of uncoupling protein (UCP-1 and adiponectin mRNA expression. Adiponectin and UCP-1 mRNA levels were significantly higher in BAT than in WAT (0.62 versus 0.15 and 362.4 versus 22.1, resp., for both. Adiponectin mRNA levels significantly correlated with urinary metanephrines (, , vanilly mandelic acid (VMA (, , and serum adiponectin levels (, . Serum adiponectin levels significantly decreased ( μg/mL versus  μg/mL, after adrenalectomy in PHEO subjects. This study provides the following findings: (1 BAT surrounding PHEO expresses adiponectin and UCP-1 mRNA, (2 expression of adiponectin mRNA is significantly higher in BAT than in WAT surrounding PHEO, and (3 catecholamines and serum adiponectin levels significantly correlate with BAT UCP-1 and adiponectin mRNA.

  10. Effects of Four Week Body Building Training on Under Skin Fat Percent if Non-Athlete Female Students

    Directory of Open Access Journals (Sweden)

    Amineh Sahranavard Gargari

    2011-09-01

    Full Text Available The aim of this study is to study the effect of a training program using weight on under skin fat percent in various body parts of female students of Islamic Azad university of Shabestar. Among 70 students, 40 who had physical education 1,2 course aging 18 to 25 were selected. They were all physically healthy. Using Caliper Under skin fat thickness in areas triceps, Abdomen, femur was measured and categorized using age based woman fat percent estimation table. Average of three times measuring before and after training program was calculated as fat percent using "Raven". Training program by weight consisted of 4 week each containing 3 sessions of 45 min. Results revealed that although most of samples had Lost weight, under skin fat percent before and after program showed significant difference of p<10% yet training program by weight for weight control has been more effective than weight loss.

  11. Human Extensive Head Skin Myiasis

    Directory of Open Access Journals (Sweden)

    M Soleimani Ahmadi

    2009-03-01

    Full Text Available "nChrysomya bezziana Villeneuve is the most important fly, which produces myiasis, exists as an obligate ectoparasite in the ani­mals, and afflicts human. Poor hygiene and working in contaminated areas particularly during warm seasons provide a situa­tion to infest by this parasite. Infestation in human and livestock are often observed in wounds, normal body orifices such as eyes, ears, nose, and mouth. The manifestations include pruritus, pain, inflammation, redness, eosinophilia, and secon­dary bacterial infections and rarely death. A 5-year-old boy with severe headache and agitation symptoms was fol­lowed up. After physical examination and endoscopy, larvae of third instar fly were obtained from his scalp. Our precise identifica­tion indicated that the flies were the C. bezziana. This is the second report of the human scalp myiasis caused by C. bezziana in Iran. This study confirmed that the old world screwworm fly was distributed in the southern of Iran and proba­bly could be one of the most important agents of myiasis in this area.

  12. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    OpenAIRE

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Skalko-Basnet, Natasa

    2016-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skinmodels to evaluate skin drug penetration. The isolated perfused human skin flap remainsmetabolically active tissue for up to 6 h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence ...

  13. Histological study of subcutaneous fat at NIR laser treatment of the rat skin in vivo

    Science.gov (United States)

    Yanina, I. Y.; Svenskaya, Yu. I.; Navolokin, N. A.; Matveeva, O. V.; Bucharskaya, A. B.; Maslyakova, G. N.; Gorin, D. A.; Sukhorukov, G. B.; Tuchin, V. V.

    2015-07-01

    The goal of this work is to quantify impact of in vivo photochemical treatment using indocyanine green (ICG) or encapsulated ICG and NIR laser irradiation through skin of rat with obesity by the follow up tissue sampling and histochemistry. After 1 hour elapsed since 1-min light exposure samples of rat skin with subcutaneous tissue of thickness of 1.5-2.5 mm were taken by surgery from rats within marked 4-zones of the skin site. For hematoxylin-eosin histological examination of excised tissue samples, fixation was carried out by 10%-formaldehyde solution. For ICG and encapsulated ICG subcutaneous injection and subsequent 1-min diode laser irradiation with power density of 8 W/cm2, different necrotic regions with lipolysis of subcutaneous fat were observed. The obtained data can be used for safe layer-by-layer laser treatment of obesity and cellulite.

  14. Fingerprint recovery from human skin surfaces.

    Science.gov (United States)

    Trapecar, Matej; Balazic, Joze

    2007-11-01

    A study was conducted to investigate whether certain dactyloscopic powders and reagents can recover latent fingerprints on human skin surfaces. Four fingerprint powders, Magnetic Jet Black, Magnetic Silver, Silver Special, Swedish Black, and two other methods, cyanoacrylate fuming (CA) and Ruthenium tetroxide (RTX), were used. Having examined skin surfaces with a forensic light source, we observed that the fingerprint impressions remained visible up to 15 min after intentionally placing them on the skin surface of living subjects and dead bodies. Finger marks were recovered and positive results were achieved with Magnetic Black and Swedish Black powder on living subjects. On dead bodies finger marks treated with cyanoacrylate were visible but those treated with RTX, Swedish Black and Magnetic Jet Black powder were useful for potential comparison. On dead bodies best results were obtained with RTX method.

  15. Modest Visceral Fat Gain Causes Endothelial Dysfunction In Healthy Humans

    Science.gov (United States)

    Romero-Corral, Abel; Sert-Kuniyoshi, Fatima H.; Sierra-Johnson, Justo; Orban, Marek; Gami, Apoor; Davison, Diane; Singh, Prachi; Pusalavidyasagar, Snigdha; Huyber, Christine; Votruba, Susanne; Lopez-Jimenez, Francisco; Jensen, Michael D.; Somers, Virend K.

    2014-01-01

    Objective This study sought to determine the impact of fat gain and its distribution on endothelial function in lean healthy humans. Background Endothelial dysfunction has been identified as an independent predictor of cardiovascular events. Whether fat gain impairs endothelial function is unknown. Methods A randomized controlled study to assess the effects of fat gain on endothelial function. We recruited 43 normal weight healthy volunteers (mean age 29 years; 18 women). Subjects were assigned to gain weight (approximately 4 kg) (n=35) or to maintain weight (n=8). Endothelial function (brachial artery flow mediated dilation -FMD) was measured at baseline, after fat gain (8 weeks) and after weight loss (16 weeks) for fat-gainers and at baseline and follow-up (8 weeks) for weight-maintainers. Body composition was measured by DXA and abdominal CT scans. Results After an average weight gain of 4.1 kg, fat-gainers significantly increased their total, visceral and subcutaneous fat. Blood pressure and overnight polysomnography did not change after fat gain or loss. FMD remained unchanged in weight-maintainers. FMD decreased in fat-gainers (9.1 ± 3% vs. 7.8 ± 3.2%, p =0.003), but recovered to baseline when subjects shed the gained weight. There was a significant correlation between the decrease in FMD and the increase in visceral fat gain (rho = −0.42, p=0.004), but not with subcutaneous fat gain (rho = −0.22, p=0.15). Conclusions In normal weight healthy young subjects, modest fat gain results in impaired endothelial function, even in the absence of changes in blood pressure. Endothelial function recovers after weight loss. Increased visceral rather than subcutaneous fat predicts endothelial dysfunction. PMID:20705223

  16. The impact of skin colour on human photobiological responses

    OpenAIRE

    Fajuyigbe, Damilola; Young, Antony R.

    2016-01-01

    Terrestrial solar ultraviolet radiation (UVR) exerts both beneficial and adverse effects on human skin. Epidemiological studies show a lower incidence of skin cancer in people with pigmented skins compared to fair skins. This is attributed to photoprotection by epidermal melanin, as is the poorer vitamin D status of those with darker skins. We summarize a wide range of photobiological responses across different skin colours including DNA damage and immunosuppression. Some studies show the gen...

  17. Method of analysis for the determination of tetracycline rsidues in meat, kidney, fat, skin, fish, egg and milk : procedure and validation

    NARCIS (Netherlands)

    Keukens, H.J.

    1994-01-01

    The aim of this study was to validate the RIKILT-DLO method tor the determination of tetracycline in liver, kidney, fat or skin with adhering fat for from chickens, cows and skin with adhering fat from pigs. The method was originally validated for meat of different animals, eggs milk, fish, liver an

  18. Influence of layered skin structure on the distribution of radiofrequency currents in dermis and subcutaneous fat

    Science.gov (United States)

    Kruglikov, Ilja L.

    2015-12-01

    The layered structure of skin with multiple interfaces separating the skin layers having very different electrical characteristics significantly modifies the spatial distribution of radiofrequency (RF) current in the skin compared to that in a homogeneous medium. In this study we present the analytical solutions of Laplace's equation describing the current densities for a two-layer skin model with homogeneous single layers for the monopolar and bipolar configurations of RF electrodes. Then we analyze analytically and numerically the optimal distances between the RF electrodes providing the maximal current concentration in a given depth or in a given depths' interval under the skin surface. It is demonstrated that two main parameters which significantly define the optimization condition are the thickness of the dermis and the reflection coefficient of the current at the dermis/subcutis interface. According to this model, under physiological conditions, the surface under RF electrode collecting 50% of the current entering subcutis is 184 times larger than in homogeneous medium. Such redistribution of RF current will significantly reduce the local density of the current entering the fat tissue reducing the effect of its selective heating.

  19. Formulation and evaluation of exotic fat based cosmeceuticals for skin repair

    Directory of Open Access Journals (Sweden)

    Mandawgade S

    2008-01-01

    Full Text Available Mango butter was explored as a functional, natural supplement and active skin ingredient in skin care formulations. A foot care cream was developed with mango butter to evaluate its medicinal value and protective function in skin repair. Qualitative comparison and clinical case studies of the product were carried out. Wound healing potential of foot care cream was investigated on the rat excision and incision wound models. Results of the clinical studies demonstrated complete repair of worn and cracked skin in all the human volunteers. Furthermore, foot care cream exhibited significant healing response in both the wound models. The project work could be concluded as establishment of high potential for mango butter to yield excellent emolliency for better skin protection. Improving the product features and medicinal functionality further validate mango butter as a specialty excipient in development of cosmeceuticals and has an immense value for its commercialization.

  20. Skin friction: a novel approach to measuring in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into

  1. Regular-fat dairy and human health

    DEFF Research Database (Denmark)

    Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas;

    2016-01-01

    to disseminate, explore and discuss the state of the science on the relationship between regular fat dairy products and health, symposia were programmed by dairy industry organizations in Europe and North America at The Eurofed Lipids Congress (2014) in France, The Dairy Nutrition Annual Symposium (2014...

  2. Effects of type and amount of dietary fat on mouse skin tumor promotion.

    Science.gov (United States)

    Lo, H H; Locniskar, M F; Bechtel, D; Fischer, S M

    1994-01-01

    In a previous study (Cancer Res 51, 907, 1991) in which we found an inverse relationship between quantity of dietary corn oil and saturated fat, in a constant 15% fat diet, on the tumor promotion stage of skin carcinogenesis, it was not clear whether one or both types of fat played a modulatory role. The purpose of the present study therefore was to compare the effect of 1) increasing corn oil in corn oil-only diets and 2) increasing saturated fat, with a constant level of 5% corn oil, on tumor promotion. In the first study, the effects of five levels of dietary corn oil (5%, 10%, 15%, 20%, and 25%) on the incidence and rat of papilloma and carcinoma development were determined in female Sencar mice fed these diets one week after initiation with 7,12-dimethylbenz[a]anthracene and three weeks before the start of promotion with 12-O-tetradecanoylphorbol-13-acetate. A papilloma incidence of 100% was reached first in the 5% corn oil group, at 10 weeks, followed by the 10% group at 13 weeks and the 15% and 20% group at 16 weeks. The highest corn oil group achieved a 90% incidence. There were marked differences in latency of carcinoma development among the diet groups. At Week 29, the cumulative carcinoma incidence was 56% and 32%, respectively, in the 5% and 10% corn oil groups, whereas the incidence in the two highest corn oil (20% and 25%) groups was only 8% and 4%, respectively. In the second study, the effects of diets containing 5% corn oil and increasing levels of coconut oil (5%, 10%, 15%, and 20%) on the incidence and rat of papilloma and carcinoma development were determined, as described above. No significant difference in latency or incidence of papillomas or carcinomas was noted among these saturated fat diet groups. It thus appears that higher levels of dietary corn oil are associated with a reduced cancer incidence in this model system.

  3. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration.

  4. Preparation of Inactivated Human Skin Using High Hydrostatic Pressurization for Full-Thickness Skin Reconstruction.

    Directory of Open Access Journals (Sweden)

    Pham Hieu Liem

    Full Text Available We have reported that high-hydrostatic-pressure (HHP technology is safe and useful for producing various kinds of decellularized tissue. However, the preparation of decellularized or inactivated skin using HHP has not been reported. The objective of this study was thus to prepare inactivated skin from human skin using HHP, and to explore the appropriate conditions of pressurization to inactivate skin that can be used for skin reconstruction. Human skin samples of 8 mm in diameter were packed in bags filled with normal saline solution (NSS or distilled water (DW, and then pressurized at 0, 100, 150, 200 and 1000 MPa for 10 minutes. The viability of skin after HHP was evaluated using WST-8 assay. Outgrowth cells from pressurized skin and the viability of pressurized skin after cultivation for 14 days were also evaluated. The pressurized skin was subjected to histological evaluation using hematoxylin and eosin staining, scanning electron microscopy (SEM, immunohistochemical staining of type IV collagen for the basement membrane of epidermis and capillaries, and immunohistochemical staining of von Willebrand factor (vWF for capillaries. Then, human cultured epidermis (CE was applied on the pressurized skin and implanted into the subcutis of nude mice; specimens were subsequently obtained 14 days after implantation. Skin samples pressurized at more than 200 MPa were inactivated in both NSS and DW. The basement membrane and capillaries remained intact in all groups according to histological and immunohistological evaluations, and collagen fibers showed no apparent damage by SEM. CE took on skin pressurized at 150 and 200 MPa after implantation, whereas it did not take on skin pressurized at 1000 MPa. These results indicate that human skin could be inactivated after pressurization at more than 200 MPa, but skin pressurized at 1000 MPa had some damage to the dermis that prevented the taking of CE. Therefore, pressurization at 200 MPa is optimal for

  5. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  6. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging.

    Science.gov (United States)

    Kong, Rong; Bhargava, Rohit

    2011-06-07

    Porcine skin is often considered a substitute for human skin based on morphological and functional data, for example, for transdermal drug diffusion studies. A chemical, structural and temporal characterization of porcine skin in comparison to human skin is not available but will likely improve our understanding of this porcine skin model. Here, we employ Fourier transform infrared (FT-IR) spectroscopic imaging to holistically measure chemical species as well as spatial structure as a function of time to characterize porcine skin as a model for human skin. Porcine skin was found to resemble human skin spectroscopically and differences are elucidated. Cryo-prepared fresh porcine skin samples for spectroscopic imaging were found to be stable over time and small variations are observed. Hence, we extended characterization to the use of this model for dynamic processes. In particular, the capacity and stability of this model in transdermal diffusion is examined. The results indicate that porcine skin is likely to be an attractive tool for studying diffusion dynamics of materials in human skin.

  7. Human Dark Skin and Equatorial Africa: Toward a Critique

    OpenAIRE

    Sylvain K. Cibangu

    2015-01-01

    While skin color represents one of the most common markers of humans, the theories that explain it remain largely unknown both in academia and industry. Meanwhile, fraught with theoretical shortcomings about skin color, as clear from its body of knowledge, racial studies has not addressed skin color with needed attention. Consequently, misconceptions about human skin color have proliferated. This paper discusses anew Gloger’s theory and its widespread impact in the social sciences and general...

  8. Relating friction on the human skin to the hydration and temperature of the skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, E. van der

    2013-01-01

    The human skin is constantly in interaction with materials and products. Therefore, skin friction is relevant to all people. In the literature, the frictional properties of the skin have been linked to a large variety of variables, like age, gender and hydration. The present study compares the data

  9. Relating friction on the human skin to the hydration and temperature of the skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    The human skin is constantly in interaction with materials and products. Therefore, skin friction is relevant to all people. In the literature, the frictional properties of the skin have been linked to a large variety of variables, like age, gender and hydration. The present study compares the data

  10. Natural and sun-induced aging of human skin.

    Science.gov (United States)

    Rittié, Laure; Fisher, Gary J

    2015-01-05

    With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vital thermoregulation function of eccrine sweat glands is also altered with age. The dermal collagenous extracellular matrix, which comprises the bulk of skin and confers strength and resiliency, undergoes gradual fragmentation, which deleteriously impacts skin mechanical properties and dermal cell functions. Aging also affects wound repair, pigmentation, innervation, immunity, vasculature, and subcutaneous fat homeostasis. Altogether, age-related alterations of skin lead to age-related skin fragility and diseases.

  11. Epidermal melanin absorption in human skin

    Science.gov (United States)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  12. Structure and function of the human skin microbiome.

    Science.gov (United States)

    Schommer, Nina N; Gallo, Richard L

    2013-12-01

    An abundant and diverse collection of bacteria, fungi, and viruses inhabits the human skin. These microorganisms vary between individuals and between different sites on the skin. The factors responsible for the unique variability of the skin microbiome are only partly understood, but results suggest that host genetic and environmental influences play a major role. Today, the steady accumulation of data describing the skin microbiome, combined with experiments designed to test the biological functions of surface microbes, has provided new insights into links between human physiology and skin microbiota. This review describes some of the current information regarding the skin microbiome and its impact on human health. Specifically, we summarize the present understanding of the function of microbe-host interactions on the skin and highlight some unique features that distinguish skin commensal organisms from pathogenic microbes.

  13. Pumpless microfluidic platform for drug testing on human skin equivalents

    OpenAIRE

    Abaci, Hasan Erbil; Gledhill, Karl; Guo, Zongyou; Christiano, Angela M.; Shuler, Michael L.

    2015-01-01

    Advances in bio-mimetic in vitro human skin models increase the efficiency of drug screening studies. In this study, we designed and developed a microfluidic platform that allows for long-term maintenance of full thickness human skin equivalents (HSE) which are comprised of both the epidermal and dermal compartments. The design is based on the physiologically relevant blood residence times in human skin tissue and allows for the establishment of an air-epidermal interface which is crucial for...

  14. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  15. First genomic survey of human skin fungal diversity

    Science.gov (United States)

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  16. Mycobacterium Abscessus Skin Infection Following Mesotherapy for Fat Reduction: A Case Report

    Directory of Open Access Journals (Sweden)

    Thanawan Iamphonrat

    2016-07-01

    Full Text Available Mesotherapy is referred to as a minimally invasive technique by using intradermal or subcutaneous injection with liquid containing a mixture of compounds for the treatment of varying medical and cosmetic conditions. Although noninvasive cosmetic procedures gain increasing popularity, mesotherapy remains a controversial treatment according to lack of scientific standpoint, standard formulas, and treatment protocol. In addition, a wide variety of side effects from mesotherapy have been reported. We reported a case of a 30-year-old Thai male, immunocompetent patient, who underwent mesotherapy for facial fat reduction at a private clinic and developed erythematous nodules on both cheeks 3 weeks after injection. The skin biopsy was then performed and histopathology showed mixed cell granuloma in deep dermis. Tissue culture was positive for Mycobacterium abscessus. He received a combination of clarithromycin and ciprofloxacin for six months with very good response. The nodules were healed with atrophic scar and post inflammatory hyperpigmentation without recurrence until eight months follow up.

  17. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  18. Skeletal muscle fat metabolism after exercise in humans: influence of fat availability.

    Science.gov (United States)

    Kimber, Nicholas E; Cameron-Smith, David; McGee, Sean L; Hargreaves, Mark

    2013-06-01

    The mechanisms facilitating increased skeletal muscle fat oxidation following prolonged, strenuous exercise remain poorly defined. The aim of this study was to examine the influence of plasma free fatty acid (FFA) availability on intramuscular malonyl-CoA concentration and the regulation of whole-body fat metabolism during a 6-h postexercise recovery period. Eight endurance-trained men performed three trials, consisting of 1.5 h high-intensity and exhaustive exercise, followed by infusion of saline, saline + nicotinic acid (NA; low FFA), or Intralipid and heparin [high FFA (HFA)]. Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Ingestion of NA suppressed the postexercise plasma FFA concentration throughout recovery (P increase in whole-body fat oxidation during the 6-h period for HFA (52.2 ± 4.8 g) relative to NA (38.4 ± 3.1 g; P muscle malonyl-CoA and acetyl-CoA carboxylase (ACC)β phosphorylation, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity may have a role in regulating fat metabolism in human skeletal muscle during postexercise recovery. Despite marked changes in plasma FFA availability, no significant changes in intramuscular triglyceride concentrations were detected. These data suggest that the regulation of postexercise skeletal muscle fat oxidation in humans involves factors other than the 5'AMP-activated protein kinase-ACCβ-malonyl-CoA signaling pathway, although malonyl-CoA-mediated regulation cannot be excluded completely in the acute recovery period.

  19. Enhancement of Fat Oxidation by Licorice Flavonoid Oil in Healthy Humans during Light Exercise.

    Science.gov (United States)

    Mori, Noriyuki; Nakanishi, Saki; Shiomi, Seiko; Kiyokawa, Shoko; Kakimoto, Sachie; Nakagawa, Kaku; Hosoe, Kazunori; Minami, Kazuhiro; Nadamoto, Tomonori

    2015-01-01

    Licorice flavonoid oil (LFO) is a new functional food ingredient consisting of hydrophobic licorice polyphenols in medium-chain triglycerides. Recent studies reported that LFO prevented and ameliorated diet-induced obesity via the regulation of lipid metabolism-related gene expression in the livers of mice and rats, while it reduced body weight in overweight human subjects by reducing total body fat. However, the direct effects of LFO on energy metabolism have not been studied in human subjects. Therefore, we investigated the effects of ingestion of LFO on energy metabolism, including fat oxidation, by measuring body surface temperature under resting conditions and respiratory gas analysis under exercise conditions in healthy humans. We showed that ingestion of a single 600 mg dose of LFO elevated body trunk skin temperature when measured in a slightly cooled air-conditioned room, and increased oxygen consumption and decreased the respiratory exchange ratio as measured by respiratory gas analysis during 40% Vo2max exercise with a cycle ergometer. Furthermore, repeated ingestion of 300 mg of LFO for 8 d decreased respiratory exchange during the recovery period following 40 min of 30% Vo2max exercise on a treadmill. These results suggest that LFO enhances fat oxidation in humans during light exercise.

  20. Structure and function of the human skin microbiome

    OpenAIRE

    Schommer, Nina N.; Gallo, Richard L.

    2013-01-01

    An abundant and diverse collection of bacteria, fungi and viruses inhabit the human skin. These microorganisms have been reported to vary between individuals and between different sites on the skin. The factors responsible for the unique variability of the skin microbiome are only partially understood, but results suggest host genetic and environmental influences play a major role. Today, the steady accumulation of data describing the skin microbiome, combined with experiments designed to tes...

  1. Diversity of the Human Skin Microbiome Early in Life

    OpenAIRE

    Capone, Kimberly A; Scot E Dowd; Georgios N. Stamatas; Nikolovski, Janeta

    2011-01-01

    Within days after birth, rapid surface colonization of infant skin coincides with significant functional changes. Gradual maturation of skin function, structure, and composition continues throughout the first years of life. Recent reports have revealed topographical and temporal variations in the adult skin microbiome. Here we address the question of how the human skin microbiome develops early in life. We show that the composition of cutaneous microbial communities evolves over the first yea...

  2. Variables influencing the frictional behaviour of in vivo human skin.

    Science.gov (United States)

    Veijgen, N K; Masen, M A; van der Heide, E

    2013-12-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on the human skin, subject characteristics and environmental conditions on skin friction. The data are obtained on 50 subjects (34 males and 16 females). Friction measurements represent the friction between in vivo human skin and an aluminium sample, assessed on three anatomical locations. The coefficient of friction increased significantly (pskin and the height of the subject. Other outcome variables in this study were the hydration of the skin and the skin temperature.

  3. [The clinical use of cryopreserved human skin allografts for transplantation].

    Science.gov (United States)

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  4. Fatness

    DEFF Research Database (Denmark)

    Hansen, Anne Katrine Kleberg

    In 1727, the English physician Thomas Short wrote: “I believe no Age did ever afford more instances of Corpulency than our own.” Even in the 18th century, fatness was addressed as an issue of special contemporary concern. This thesis probes concepts and perceptions of fatness in Western European...... Medicine c. 1700–1900. It has been written with particular attention to whether and how fatness has been regarded as a disease during that period in history. One purpose of the thesis is to investigate the immediate period before fatness allegedly became problematized. Another purpose has been to grasp...

  5. Interleukin-6 stimulates lipolysis and fat oxidation in humans

    DEFF Research Database (Denmark)

    van Hall, Gerrit; Steensberg, Adam; Sacchetti, Massimo

    2003-01-01

    Although IL-6 is a key modulator of immune function, it also plays a role in regulating substrate metabolism. To determine whether IL-6 affects lipid metabolism, 18 healthy men were infused for 3 h with saline (Con; n = 6) or a high dose (High-rhIL6; n = 6) or a low dose (Low-rhIL6; n = 6) of rec...... in adrenaline, insulin, or glucagon, and no adverse side effects were observed. In conclusion, the data identify IL-6 as a potent modulator of fat metabolism in humans, increasing fat oxidation and FA reesterification without causing hypertriacylglyceridemia. Comment in...

  6. Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data

    Science.gov (United States)

    Labouta, Hagar I.; Thude, Sibylle; Schneider, Marc

    2013-06-01

    Owing to the limited source of human skin (HS) and the ethical restrictions of using animals in experiments, in vitro skin equivalents are a possible alternative for conducting particle penetration experiments. The conditions for conducting penetration experiments with model particles, 15-nm gold nanoparticles (AuNP), through nonsealed skin equivalents are described for the first time. These conditions include experimental setup, sterility conditions, effective applied dose determination, skin sectioning, and skin integrity check. Penetration at different exposure times (two and 24 h) and after tissue fixation (fixed versus unfixed skin) are examined to establish a benchmark in comparison to HS in an attempt to get similar results to HS experiments presented earlier. Multiphoton microscopy is used to detect gold luminescence in skin sections. λex=800 nm is used for excitation of AuNP and skin samples, allowing us to determine a relative index for particle penetration. Despite the observed overpredictability of penetration into skin equivalents, they could serve as a first fast screen for testing the behavior of nanoparticles and extrapolate their penetration behavior into HS. Further investigations are required to test a wide range of particles of different physicochemical properties to validate the skin equivalent-human skin particle penetration relationship.

  7. Transdermal Delivery of Water Soluble Molecules into Human Skin

    OpenAIRE

    Steinsland, Synne

    2012-01-01

    The skin is the largest organ of the human body and it constitutes a great protective barrier against entry of harmful microbial species and foreign materials into the body. The barrier function is a result of the highly hydrophobic nature and compact structure of the outermost skin layer, which makes transdermal delivery of drugs difficult. The aim of this study was to investigate diffusion of hydrophilic fish gelatin peptides and alginate oligomers (G-blocks) into human skin, and to evaluat...

  8. A HYBRID APPROACH TO HUMAN SKIN REGION DETECTION

    Directory of Open Access Journals (Sweden)

    R. Vijayanandh

    2011-02-01

    Full Text Available Face recognition is important in research areas like machine vision and complex security systems. Skin region detection is a vital factor for processing in such systems. Hence the proposed paper focuses on isolating the regions of an image corresponding to human skin region through the hybrid method. This paper intends to combine the skin region detected from RGB and YCbCr color spaces image by the explicit skin color conditions and the skin label cluster identified from CIEL*a*b color space image, which is clustered by Hillclimbing segmentation with K-Means clustering algorithm. Then the resultant image is dilated by arbitrary shape and filtered by the median filter, in order to enhance the skin region and to avoid the noise respectively. The proposed method has been tested on various real images, which contain one or more human beings and the performance of skin region detection is found to be quite satisfactory.

  9. Molecular cartography of the human skin surface in 3D.

    Science.gov (United States)

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.

  10. Microbiome dynamics of human epidermis following skin barrier disruption

    NARCIS (Netherlands)

    Zeeuwen, P.L.; Boekhorst, te J.; Bogaard, van den E.H.; Koning, de H.D.; Kerkhof, van de P.M.; Saulnier, D.M.; Swam, van I.I.; Hijum, van S.A.F.T.; Kleerebezem, M.; Schalkwijk, J.; Timmerman, H.M.

    2012-01-01

    Background - Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb th

  11. Microbiome dynamics of human epidermis following skin barrier disruption

    NARCIS (Netherlands)

    Zeeuwen, P.L.; Boekhorst, te J.; Bogaard, van den E.H.; Koning, de H.D.; Kerkhof, van de P.M.; Saulnier, D.M.; Swam, van I.I.; Hijum, van S.A.F.T.; Kleerebezem, M.; Schalkwijk, J.; Timmerman, H.M.

    2012-01-01

    Background - Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb

  12. Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers.

    Science.gov (United States)

    Alves, Larissa Aparecida Agostinho Dos Santos; Lorenzo, José Manuel; Gonçalves, Carlos Antonio Alvarenga; Santos, Bibiana Alves Dos; Heck, Rosane Teresinha; Cichoski, Alexandre José; Campagnol, Paulo Cezar Bastianello

    2016-11-01

    The effect of pork skin (PS) and green banana flour (GBF) on the physicochemical, technological, microbiological, and sensory properties of Bologna-type sausages was assessed. For this propose, six batches were manufactured: control (formulated with 20% fat) and five treatments replacing 20%, 40%, 60%, 80%, and 100% of pork-fat by a mixture of PS, water, and GBF (1:2:2). Fat contents significantly (P0.05) on color (L*, a*, b*, and whiteness), texture parameters, and sensory acceptability. Therefore, healthier Bologna type sausages could be produced by replacing up to 60% of the fat with a mixture of PS, water, and GBF without depreciating product's quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Infant Formula Fat Analogs and Human Milk Fat: New Focus on Infant Developmental Needs.

    Science.gov (United States)

    Zou, Long; Pande, Garima; Akoh, Casimir C

    2016-01-01

    Human breast milk is generally and universally recognized as the optimal choice for nutrition during the first year of life. In certain cases in which it is not feasible to breast-feed the infant or the breast milk is not sufficient, especially in the case of preterm infants, infant formula is the next best alternative to provide nutrition to nurture the infant. Therefore, it is highly important that the nutrient composition of the infant formula is as close to breast milk as possible for proper growth and development of the infant. However, human milk is a complex dynamic matrix, and therefore significant research has been done and is still ongoing to fully understand and mimic human breast milk, particularly its fat composition. Lipids play a critical role in infant nutrition. A number of advances have been made in infant formula lipid content and composition so that formula can better simulate or mimic the nutritional functions of human maternal milk.

  14. [Natriuretic peptides: a new lipolytic pathway in human fat cells].

    Science.gov (United States)

    Sengenes, Coralie; Moro, Cédric; Galitzky, Jean; Berlan, Michel; Lafontan, Max

    2005-12-01

    Human fat cell lipolysis was considered until recently to be an exclusive cAMP/protein-kinase A (PKA)-regulated metabolic pathway under the control of catecholamines and insulin. Moreover, exercise-induced lipid mobilization in humans was considered to mainly depend on catecholamine action and interplay between fat cell beta- and alpha2-adrenergic receptors controlling adenylyl cyclase activity and cAMP production. We have recently demonstrated that natriuretic peptides stimulate lipolysis and contribute to the regulation of lipid mobilization in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) stimulate lipolysis in human isolated fat cells. Activation of the adipocyte plasma membrane type A guanylyl cyclase receptor (NPR-A), increase in intracellular guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels and activation of hormone-sensitive lipase mediate the action of ANP. ANP does not modulate cAMP production and PKA activity. Increment of cGMP induces the phosphorylation of hormone-sensitive lipase and perilipin A via the activation of a cGMP dependent protein kinase-I (cGK-I). Plasma concentrations of glycerol and nonesterified fatty acids are increased by i.v. infusion of ANP in humans. Physiological relevance of the ANP-dependent pathway was demonstrated in young subjects performing physical exercise. ANP plays a role in conjunction with catecholamines in the control of exercise-induced lipid mobilization. This pathway becomes of major importance when subjects are submitted to chronic treatment with a beta-blocker. Oral beta-adrenoceptor blockade suppresses the beta-adrenergic component of catecholamine action in fat cells and potentiates exercise-induced ANP release by the heart. These findings may have several implications whenever natriuretic peptide secretion is altered such as in subjects with left ventricular dysfunction, congestive heart failure and obesity.

  15. Morphine metabolism in human skin microsomes.

    Science.gov (United States)

    Heilmann, S; Küchler, S; Schäfer-Korting, M

    2012-01-01

    For patients with severe skin wounds, topically applied morphine is an option to induce efficient analgesia due to the presence of opioid receptors in the skin. However, for topical administration it is important to know whether the substance is biotransformed in the skin as this can eventually reduce the concentration of the active agent considerably. We use skin microsomes to elucidate the impact of skin metabolism on the activity of topically applied morphine. We are able to demonstrate that morphine is only glucuronidated in traces, indicating that the biotransformation in the skin can be neglected when morphine is applied topically. Hence, there is no need to take biotransformation into account when setting up the treatment regimen.

  16. Skin Conditions in Patients with Human Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Yoan Bernárdez Cruz

    2015-12-01

    Full Text Available Background: patients with human immunodeficiency virus frequently develop skin conditions that affect their quality of life and modify their prognosis. Objective: to describe the most common skin conditions in patients with human immunodeficiency virus. Methods: a case-series study of patients with human immunodeficiency virus was conducted in the province of Cienfuegos. It included all patients diagnosed until February 2008 attending the internal medicine consultation for their follow-up. Forty-seven deceased patients, 12 patients not living in the province and 2 inmates were excluded from the study. Variables analyzed were: age, sex, skin color, self-reported skin conditions and diagnosed skin diseases. Results: Thirty-eight percent of patients were aged 25 to 34 years. Fifty-seven were white-skinned and 75% were male. Approximately half of the patients had AIDS and were under antiretroviral therapy. The skin infection of viral origin most commonly found was herpes simplex (30.0%; of fungal origin, onychomycosis (44 %; and of bacterial origin, folliculitis (43 %. Among papulosquamous disorders, seborrheic dermatitis (74 % predominated and among other skin disorders, lipodystrophy (23.6 %. Xerosis and pruritus shared equal percentage (16.3 %. Conclusions: viral and fungal skin infections predominated. An important number of these skin conditions were diagnosed during the study, particularly in AIDS patients.

  17. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...

  18. Mathematical description of human body constitution and fatness.

    Science.gov (United States)

    Sheikh-Zade, Yu R; Galenko-Yaroshevskii, P A; Cherednik, I L

    2014-02-01

    Using mathematical modeling of human body, we demonstrated logical drawbacks of body mass index (BMI1 = M/H(2); A. Quetelet, 1832) and proposed more precise body mass index (BMI2 = M/H(3)) as well as body constitution index (BCI = (M/H(3))(1/2)) and fatness index (FI = M/HC(2)), where M, H, and C are body weight, height, and wrist circumference of the individual.

  19. Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin

    Science.gov (United States)

    Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan

    2015-06-01

    Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.

  20. Digital Dermatoscopy Method for Human Skin Roughness Analysis

    Directory of Open Access Journals (Sweden)

    Suprijanto

    2011-04-01

    Full Text Available In this study we propose a digital dermatoscopy method to measure the human skin roughness. By using this method we eliminate the use of silicon replica. Digital dermatoscopy consists of handheld digital microscope, image processing and information extraction of skin roughness level. To reduce the noise due to the variation of reflection factor on the skin we use median filter. Hence, by Fourier transform the skin texture is imaged in terms of 2D frequency-spatial distribution. Skin roughness is determined from its entropy, where the roughness level is proportional to the entropy. Three types of experiment have been performed by evaluating: (i the skin replicas; (ii young and elderly skin; and (iii seven volunteers treated by anti wrinkle cosmetic in three weeks period. We find that for the first and second experiment that our system did manage to quantify the roughness, while on the third experiment, six of seven volunteers, the roughness are succeeded to identify.

  1. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model.

    Science.gov (United States)

    Dennerlein, Kathrin; Kiesewetter, Franklin; Kilo, Sonja; Jäger, Thomas; Göen, Thomas; Korinth, Gintautas; Drexler, Hans

    2016-04-25

    The wide industrial use of hydrofluoric acid (HF) poses a high risk for accidental dermal exposure. Despite local and systemic hazards associated with HF, information on percutaneous penetration and tissue damage is rare. In the present ex vivo study, the dermal absorption of HF (detected in terms of fluoride ions) was quantified and the skin damaging potential as a function of concentration and exposure duration was assessed. Percutaneous penetration of HF (c=5, 30, and 50%) at 3 exposure durations (3, 5, and 10 min) was investigated in a static diffusion cell model using freshly excised human skin. Alterations of skin were histologically evaluated. HF rapidly penetrated through skin under formation of a considerable intradermal reservoir (∼ 13-67% of total absorbed fluoride). Histologically, epidermal alterations were detected already after exposure to 5% HF for 3 min. The degree of skin damage increased with rising concentration and exposure duration leading to coagulation necrosis. For HF concentrations of ≥ 30%, skin damage progressed into deeper skin layers. Topically applied HF concentration was the principal parameter determining HF induced skin effects. The intradermal HF retention capacity associated with progression and prolongation of HF induced skin effects must be considered in the review of skin decontamination procedures.

  2. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.

    Science.gov (United States)

    Park, Jonghwa; Lee, Youngoh; Hong, Jaehyung; Lee, Youngsu; Ha, Minjeong; Jung, Youngdo; Lim, Hyuneui; Kim, Sung Youb; Ko, Hyunhyub

    2014-12-23

    Stretchable electronic skins with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. Inspired by the interlocked microstructures found in epidermal-dermal ridges in human skin, piezoresistive interlocked microdome arrays are employed for stress-direction-sensitive, stretchable electronic skins. Here we show that these arrays possess highly sensitive detection capability of various mechanical stimuli including normal, shear, stretching, bending, and twisting forces. Furthermore, the unique geometry of interlocked microdome arrays enables the differentiation of various mechanical stimuli because the arrays exhibit different levels of deformation depending on the direction of applied forces, thus providing different sensory output patterns. In addition, we show that the electronic skins attached on human skin in the arm and wrist areas are able to distinguish various mechanical stimuli applied in different directions and can selectively monitor different intensities and directions of air flows and vibrations.

  3. Human Dark Skin and Equatorial Africa: Toward a Critique

    Directory of Open Access Journals (Sweden)

    Sylvain K. Cibangu

    2015-07-01

    Full Text Available While skin color represents one of the most common markers of humans, the theories that explain it remain largely unknown both in academia and industry. Meanwhile, fraught with theoretical shortcomings about skin color, as clear from its body of knowledge, racial studies has not addressed skin color with needed attention. Consequently, misconceptions about human skin color have proliferated. This paper discusses anew Gloger’s theory and its widespread impact in the social sciences and general public. Gloger explained dark skin by heat. Not surprisingly, dark skin is believed to be the product of and response to ultra violet radiation in Equatorial Africa. One reason might be the fixation of the debate on the white-black binary. Another reason might be the commonplace belief about the African heat. The present paper calls into question the Equator-Africa presentation of black skin. To this end, the paper situates the debate in the broader spectrum of social science disciplines, and investigates the ways in which black skin is presented. The paper advocates for the consideration of skin complexity and of minorities in the field of skin color. The goal is to work toward a deeper understanding of others and their traits, with a view to raise awareness among policy makers, the general public, and social science experts. The paper takes an encyclopedic approach to best cater to these audiences.

  4. Multiphoton STED and FRET in human skin: Resolving the skin barrier

    DEFF Research Database (Denmark)

    Antonescu, Irina; Dreier, Jes; Brewer, Jonathan R.

    Understanding the penetration properties of substances across biological bar- riers and membranes is vital for many areas of research. In the case of human skin, the barrier is primarily found in the stratum corneum and consists of protein-enriched cells surrounded by a lipid membrane -enriched...... excited STED and Forster Resonance Energy Transfer (FRET) microscopy to probe the structure of human skin. Super resolution optical microscopy enables resolving structures in the skin below to 60 nm allowing visualization of the stratum corneum intercellular lipid matrix and individual proteins...

  5. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, van der E.

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on t

  6. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, E. van der

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables.This study has used a large dataset to identify the effect of variables on the

  7. An Automatic Identification System of Human Skin Irritation

    Directory of Open Access Journals (Sweden)

    Abdul Fadlil

    2010-12-01

    Full Text Available Quantitative characterization of human skin irritation is an important but difficult task. Recently, identification of human skin is still doing manually. Furthermore, manual identification of the human skin irritation sample can be very subjective. The skin irritation analysis could conducted using biochemical test, but not simple. In this research, a new approach an automatic human skin identification system base on image recognition have been developed. Skin image processed using pattern recognition methods to obtain decision of skin sample test is skin irritation or not. System design is implementation of Gray Level Histogram (GLH feature or texture Gray Level Co-occurrence Matrices (GLCM features using classifier distance metric: Manhattan distance and Euclidean distance, or Learning Vector Quantization (LVQ neural network. Combination between feature extrator and classifier methods proposed to evaluate of performance system. The experimental results show that the best accuracy namely 83.33% obtained when design system is implementation of GLH or GLCM features using LVQ neural network classifier.

  8. Human skin penetration of silver nanoparticles through intact and damaged skin.

    Science.gov (United States)

    Larese, Francesca Filon; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Renzi, Nadia; Bovenzi, Massimo; Maina, Giovanni

    2009-01-01

    There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 microg/cm2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm(-2) (range skin (eight cells) and on damaged skin (eight cells), respectively. Twenty-four hours silver flux permeation in damaged skin was 0.62+/-0.2 ng cm(-2) with a lag time <1h. Our experimental data showed that silver nanoparticles absorption through intact and damaged skin was very low but detectable, and that in case of damaged skin it was possible an increasing permeation of silver applied as nanoparticles. Moreover, silver nanoparticles could be detected in the stratum corneum and the outermost surface of the epidermis by electron microscopy. We demonstrated for the first time that silver applied as nanoparticles coated with polyvinylpirrolidone is able to permeate the damaged skin in an in vitro diffusion cell system.

  9. Utilization of reconstructed cultured human skin models as an alternative skin for permeation studies of chemical compounds

    OpenAIRE

    Kano, Satoshi; 藤堂, 浩明; 杉江, 謙一; 藤本, 英哲; 中田, 圭一; 徳留, 嘉寛; 橋本, フミ惠; 杉林, 堅次

    2010-01-01

    Two reconstructed human skin models, EpiskinSM and EpiDermTM, have been approved as alternative membranes for skin corrosive/irritation experiments due to their close correlation with animal skin. Such reconstructed human skin models were evaluated as alternative membranes for skin permeation experiments. Seven drugs with different lipophilicities and almost the same molecular weight were used as test penetrants. Relationships were investigated between permeability coefficients (P values) of ...

  10. Human milk fat substitute from butterfat: production by enzymatic interesterification and evaluation of oxidative stability

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Xu, Xuebing; Zhang, Long;

    2010-01-01

    Recent data have suggested that the fatty acid composition and molecular structure of fats in infant formulas should be as similar to human milk fat as possible to obtain optimal fat and calcium absorption from the infant formula. This work investigated the possibilities of using enzyme technology...... and butterfat as a material to produce a fat similar to human milk fat with respect to the above parameters. Moreover, the oxidative stability of the enzyme modified human milk fat substitute (HMFS) was compared to the fat blend used for the production of HMFS. Using a combination of enzyme technology......, fractionation and batch deodorization and with butterfat in combination with soybean oil and rapeseed oil as raw materials it was possible to produce HMFS with a molecular structure and fatty acid composition that was very similar to that of human milk fat. The oxidative stability of the HMFS oil was lower than...

  11. Simultaneous determination of toltrazuril and its metabolites in chicken and pig skin+fat by UPLC-UV method.

    Science.gov (United States)

    Zheng, Wenli; Jiang, Zhaoling; Zhang, Lifang; Zhang, Chong; Zhang, Xiao; Fei, Chenzhong; Zhang, Keyu; Wang, Xiaoyang; Wang, Mi; Li, Tao; Xiao, Sui; Wang, Chunmei; Xue, Feiqun

    2014-12-01

    A reliable method for the simultaneous determination of toltrazuril and its main metabolites (toltrazuril sulphone and toltrazuril sulphoxide) in chicken and pig skin+fat was developed and validated. Analytes were extracted from skin+fat with acetonitrile. The crude extracts were subjected to liquid-liquid extraction with n-hexane, and then further cleaned using primary secondary amine and Oasis™ MAX solid phase extraction cartridges. Chromatographic separation by UPLC-UV was performed on a C18+ reversed-phase column with gradient elution. Relative recovery from the spiked samples ranged from 84.8% to 109.1%. Limits of detection and quantification for the analytes were within 25-37.5μgkg(-1) and 50-75μgkg(-1), respectively. The developed method has been successfully applied to the depletion study of toltrazuril drug residues in chicken skin+fat. The recommended withdrawal period with oral administration based on our research is 24.18 days.

  12. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate miRNA...... expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  13. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate miRNA...... expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  14. Memory regulatory T cells reside in human skin.

    Science.gov (United States)

    Sanchez Rodriguez, Robert; Pauli, Mariela L; Neuhaus, Isaac M; Yu, Siegrid S; Arron, Sarah T; Harris, Hobart W; Yang, Sara Hsin-Yi; Anthony, Bryan A; Sverdrup, Francis M; Krow-Lucal, Elisabeth; MacKenzie, Tippi C; Johnson, David S; Meyer, Everett H; Löhr, Andrea; Hsu, Andro; Koo, John; Liao, Wilson; Gupta, Rishu; Debbaneh, Maya G; Butler, Daniel; Huynh, Monica; Levin, Ethan C; Leon, Argentina; Hoffman, William Y; McGrath, Mary H; Alvarado, Michael D; Ludwig, Connor H; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2014-03-01

    Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

  15. Multifaceted pathways protect human skin from UV radiation.

    Science.gov (United States)

    Natarajan, Vivek T; Ganju, Parul; Ramkumar, Amrita; Grover, Ritika; Gokhale, Rajesh S

    2014-07-01

    The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.

  16. Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile

    2016-01-01

    This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to

  17. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  18. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Science.gov (United States)

    Sharma, Rakesh

    2010-07-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  19. Terahertz spectroscopy of human skin constituents in suspension

    Science.gov (United States)

    Joseph, Cecil; Yaroslavsky, Anna; Al-Arashi, Munir; Gatesman, Andrew; Goyette, Thomas; Giles, Robert

    2008-03-01

    Continuous wave terahertz imaging has the potential to offer a non-invasive medical imaging modality for detecting different types of human cancers. The aim of this study was to identify frequencies of interest for continuous wave terahertz imaging of skin cancer. The absorption characteristics of water, collagen, and elastin were studied in the range between 20 and 100cm-1. In addition, we have recorded and analyzed the teraherz absorption spectra of several substances that are present in human skin (i.e. tryptophan, tyrosine, melanin, urocanic acid, keratin) and their water suspensions with the goal of using them as biomarkers for skin cancer detection.

  20. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  1. Human skin penetration of cobalt nanoparticles through intact and damaged skin.

    Science.gov (United States)

    Larese Filon, Francesca; Crosera, Matteo; Timeus, Elisa; Adami, Gianpiero; Bovenzi, Massimo; Ponti, Jessica; Maina, Giovanni

    2013-02-01

    Cobalt nanoparticles (CoNPs) are produced for several industrial and biomedical applications but there is a lack of data on human cutaneous absorption. Cobalt is also a skin sensitizer that can cause allergic contact dermatitis. Co applied as NPs, due to their small size and high surface, can penetrate into the skin in higher amount that bulk material. The aim of this study was to evaluate the absorption of Co applied as NPs in both intact and damaged skin. Experiments were performed using Franz cells and 1.0 mg cm(-2) of CoNPs was applied as donor phase for 24h. Mean Co content of 8.5 ± 1.2 ng cm(-2) and 1.87 ± 0.86 μg cm(-2) were found in the receiving solutions of Franz cells when the CoNPs suspension was applied on intact skin and on damaged skin, respectively. Twenty-four hours Co flux permeation was 76 ± 49 ng cm(-2)h(-1) in damaged skin with a lag time of 2.8 ± 2.1h. This study suggests that Co applied as NPs is able to penetrate the human skin in an in vitro diffusion cell system.

  2. Detecting Fat Content of Food from a Distance: Olfactory-Based Fat Discrimination in Humans

    NARCIS (Netherlands)

    Boesveldt, S.; Lundstrom, J.N.

    2014-01-01

    The desire to consume high volumes of fat is thought to originate from an evolutionary pressure to hoard calories, and fat is among the few energy sources that we can store over a longer time period. From an ecological perspective, however, it would be beneficial to detect fat from a distance, befor

  3. From frog integument to human skin: dermatological perspectives from frog skin biology.

    Science.gov (United States)

    Haslam, Iain S; Roubos, Eric W; Mangoni, Maria Luisa; Yoshizato, Katsutoshi; Vaudry, Hubert; Kloepper, Jennifer E; Pattwell, David M; Maderson, Paul F A; Paus, Ralf

    2014-08-01

    For over a century, frogs have been studied across various scientific fields, including physiology, embryology, neuroscience, (neuro)endocrinology, ecology, genetics, behavioural science, evolution, drug development, and conservation biology. In some cases, frog skin has proven very successful as a research model, for example aiding in the study of ion transport through tight epithelia, where it has served as a model for the vertebrate distal renal tubule and mammalian epithelia. However, it has rarely been considered in comparative studies involving human skin. Yet, despite certain notable adaptations that have enabled frogs to survive in both aquatic and terrestrial environments, frog skin has many features in common with human skin. Here we present a comprehensive overview of frog (and toad) skin ontogeny, anatomy, cytology, neuroendocrinology and immunology, with special attention to its unique adaptations as well as to its similarities with the mammalian integument, including human skin. We hope to provide a valuable reference point and a source of inspiration for both amphibian investigators and mammalian researchers studying the structural and functional properties of the largest organ of the vertebrate body.

  4. Human skin penetration of gold nanoparticles through intact and damaged skin.

    Science.gov (United States)

    Filon, Francesca Larese; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Rossi, Federica; Maina, Giovanni

    2011-12-01

    Gold nanoparticles (AuNPs) are produced for many applications but there is a lack of available data on their skin absorption. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. A physiological solution was used as receiving phase and 0.5 mL (1st exp) and 1.5 mL (2nd exp) of a solution containing 100 mg L⁻¹ of AuNPs (15 and 45 μg cm⁻², respectively) was applied as donor phase to the outer surface of the skin for 24 h. Skin absorption was dose dependent. Mean gold content of 214.0 ± 43.7 ng cm⁻² and 187.7 ± 50.2 ng cm⁻² were found in the receiving solutions of cells where the AuNPs solution was applied in higher concentration on intact skin (8 Franz cells) and on damaged skin (8 Franz cells), respectively. Twenty-four hours gold flux permeation was 7.8 ± 2.0 ng cm⁻² h⁻¹ and 7.1 ± 2.5 ng cm⁻² h⁻¹ in intact and damaged skin, respectively, with a lag time less than 1 hour. Transmission Electron Microscope analysis on skin samples and chemical analysis using Inductively Coupled Plasma-Mass Spectrometry demonstrated the presence of AuNPs into epidermis and dermis. This study showed that AuNPs are able to penetrate the human skin in an in vitro diffusion cell system.

  5. Cohabitation--relationships of corynebacteria and staphylococci on human skin.

    Science.gov (United States)

    Kwaszewska, Anna; Sobiś-Glinkowska, Maria; Szewczyk, Eligia M

    2014-11-01

    Skin microbiome main cultivable aerobes in human are coagulase-negative staphylococci and lipophilic corynebacteria. Staphylococcus strains (155) belonging to 10 species and 105 strains of Corynebacterium belonging to nine species from the skin swabs of healthy male volunteers were investigated to determine their enzymatic activity to main metabolic substrates: carbohydrates, proteins, lipids, and response to factors present on the skin such as osmotic pressure, pH, and organic acids. The results showed that lipophilic corynebacteria have different capacity for adaptation on the skin than staphylococci. Most of Corynebacterium spp. expressed lack of proteinase, phospholipase, and saccharolytic enzymes activity. Corynebacteria were also more sensitive than Staphylococcus spp. to antimicrobial agents existing on human skin, especially to low pH. These characters can explain domination of Staphylococcus genera on healthy human skin. It can be suggested that within these two bacterial genus, there exists conceivable cooperation and reciprocal protection which results in their quantitative ratio. Such behavior must be considered as crucial for the stability of the population on healthy skin.

  6. Identification of skin immune cells in non-human primates.

    Science.gov (United States)

    Adam, Lucille; Rosenbaum, Pierre; Cosma, Antonio; Le Grand, Roger; Martinon, Frédéric

    2015-11-01

    The skin is a valuable target for vaccine delivery because it contains many immune cell populations, notably antigen presenting cells. Skin immune cells have been extensively described in mice and humans but not in non-human primates, which are pertinent models for immunological research in vaccination. The aim of this work was to describe immune cell populations in the epidermis, dermis and skin draining lymph nodes in cynomolgus macaques by a single 12-parameter flow cytometry protocol. Given that skin cells share several markers, we defined a gating strategy to identify accurately immune cells and to limit contamination of one immune cell population by another. The epidermis contained CD1a(+)CD1c(-) Langerhans cells (LCs), CD3(+) T cells and putative NK cells. The dermis contained CD1a(+)CD1c(-) cells, which were similar to LCs, CD1a(+)CD1c(+) dermal dendritic cells (DDCs), CD163(high)CD11b(+) resident macrophages, CD3(+) T cells and putative NK cells. The skin also contained CD66(+) polymorphonuclear cells in some animals. Thus, immune cell populations in the macaque are similar to those in humans despite some differences in phenotype. In skin draining lymph nodes, we identified migratory LCs, CD1a(+)CD1c(+) DDCs and macrophages. The simultaneous identification of these different immune cells with one panel of markers avoids the use of large amounts of precious sample and may improve the understanding of immune mechanisms in the skin after treatment or vaccination.

  7. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  8. In-vitro percutaneous absorption of losartan potassium in human skin and prediction of human skin permeability

    Directory of Open Access Journals (Sweden)

    Petkar K.C.

    2007-05-01

    Full Text Available This study describes the feasibility of transdermal controlled administration of Losartan potassium (LP across human cadaver skin. Study also defines the influence of capsaicin, sex and site of application on permeation characteristics and determined an appropriate animal model for human skin permeability. The permeation of LP of various formulations was studied using Keshary-Chein diffusion cell. Optimized controlled formulation (without capsaicin released 42.17% (±1.85 of LP in 12 hr whereas treatment formulation (with capsaicin 0.028 % w/v released 48.94% (±1.71 of LP with significant difference on null hypothesis. Influence of sex showed statistically significant difference for permeation of LP through male and female rats, as well as male and female mice across both the abdominal and dorsal sides of the skin (p<0.05. Similarly statistically significant differences were noted for permeation of LP across male and female mice abdomen-dorsal, but not for male rat abdomen-dorsal and female rat abdomen-dorsal. Furthermore, in-vitro permeation of LP across human skin was compared with the permeation across rat and mice skins. Male rat and male mice dorsal skin was found to have closer permeability characteristics to human than other skin membranes, but the Factor of Difference values were < 3 for all membranes which were used suggesting the membranes are good models for human skin permeability. In conclusion simple transdermal adhesive patches formulations incorporating high molecular weight of LP can deliver a dose in-vivo and proposed model skin membranes can be utilized for future pharmacokineic and toxicokinetic studies as well as metabolism studies of LP

  9. Increasing Dietary Fat Elicits Similar Changes in Fat Oxidation and Markers of Muscle Oxidative Capacity in Lean and Obese Humans

    Science.gov (United States)

    Bergouignan, Audrey; Gozansky, Wendolyn S.; Barry, Daniel W.; Leitner, Wayne; MacLean, Paul S.; Hill, James O.; Draznin, Boris; Melanson, Edward L.

    2012-01-01

    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m2, age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m2, 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity. PMID:22253914

  10. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans.

    Science.gov (United States)

    Bergouignan, Audrey; Gozansky, Wendolyn S; Barry, Daniel W; Leitner, Wayne; MacLean, Paul S; Hill, James O; Draznin, Boris; Melanson, Edward L

    2012-01-01

    In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m², age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m², 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity.

  11. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans.

    Directory of Open Access Journals (Sweden)

    Audrey Bergouignan

    Full Text Available In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN and obese (OB adults exposed to a 2-day high-fat (HF diet. Ten LN (BMI = 22.5±2.5 kg/m², age = 30±8 yrs and nine OB (BMI = 35.9±4.93 kg/m², 38±5 yrs, Mean±SD were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy and HF (50% of energy diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01 during LF, and similarly decreased during HF in LN (0.86±0.01 and OB (0.85±0.01. The expression of pyruvate dehydrogenase kinase 4 (PDK4 and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity.

  12. Immunoarchitectural characterization of a human skin model reconstructed in vitro

    Directory of Open Access Journals (Sweden)

    Luís Ricardo Martinhão Souto

    Full Text Available CONTEXT AND OBJECTIVE: Over the last few years, different models for human skin equivalent reconstructed in vitro (HSERIV have been reported for clinical usage and applications in research for the pharmaceutical industry. Before release for routine use as human skin replacements, HSERIV models need to be tested regarding their similarity with in vivo skin, using morphological (architectural and immunohistochemical (functional analyses. A model for HSERIV has been developed in our hospital, and our aim here was to further characterize its immunoarchitectural features by comparing them with human skin, before it can be tested for clinical use, e.g. for severe burns or wounds, whenever ancillary methods are not indicated. DESIGN AND SETTING: Experimental laboratory study, in the Skin Cell Culture Laboratory, School of Medical Sciences, Universidade Estadual de Campinas. METHODS: Histological sections were stained with hematoxylin-eosin, Masson's trichrome for collagen fibers, periodic acid-Schiff reagent for basement membrane and glycogen, Weigert-Van Gieson for elastic fibers and Fontana-Masson for melanocytes. Immunohistochemistry was used to localize cytokeratins (broad spectrum of molecular weight, AE1/AE3, high molecular weight cytokeratins (34βE12, low molecular weight cytokeratins (35βH11, cytokeratins 7 and 20, vimentin, S-100 protein (for melanocytic and dendritic cells, CD68 (KP1, histiocytes and CD34 (QBend, endothelium. RESULTS: Histology revealed satisfactory similarity between HSERIV and in vivo skin. Immunohistochemical analysis on HSERIV demonstrated that the marker pattern was similar to what is generally present in human skin in vivo. CONCLUSION: HSERIV is morphologically and functionally compatible with human skin observed in vivo.

  13. Applications of human skin in vitro

    OpenAIRE

    Lönnqvist, Susanna

    2016-01-01

    Chronic wounds are a substantial problem in today’s health care and place significant strains on the patient. Successful modelling of the wound healing process is pivotal for the advancement of wound treatment research. Wound healing is a dynamic and multifactorial process involving all constituents of the skin. The progression from haemostasis and inflammation to proliferation of epidermal  keratinocytes and dermal fibroblasts, and final scar maturation can be halted and result in a chronic ...

  14. Human Skin Penetration of Cobalt Nanoparticles Through Intact and Damaged Skin

    OpenAIRE

    LARESE FILON Francesca; Crosera, Matteo; TIMEUS Elena; Adami, Gianpiero; Bovenzi, Massimo; Ponti, Jessica; Maina, Giovanni

    2011-01-01

    Cobalt nanoparticles (CoNPs) are produced for many applications but there is a lack of data on human absorption. The aim of our study was to evaluate the CoNPs skin absorption. Experiments were performed using Franz cells with human skin. Physiological solution was used as receiving phase and 1.0 mg cm-2 of CoNPs was applied as donor phase for 24 h. Mean Co content of 8.3 ± 1.5 ng cm-2 and 1.87 ± 0.86 ug cm-2 were found in the receiving solutions of cells where the CoNPs suspension was app...

  15. Age-related changes in male forearm skin-to-fat tissue dielectric constant at 300 MHz.

    Science.gov (United States)

    Mayrovitz, Harvey N; Grammenos, Alexandra; Corbitt, Kelly; Bartos, Simona

    2017-03-01

    Prior research suggests that tissue dielectric constant (TDC) values are useful to assess localized skin water in females for early diagnosing breast cancer treatment-related lymphoedema and TDC values in young adults have shown gender differences. However, no TDC data are available for older males nor have ageing effects been studied despite known shifts in water state and other skin age-related changes. Thus our goals were to (i) characterize TDC values at various skin depths in young and older males, (ii) determine the dependence of these values on body composition parameters and (iii) establish inter-arm TDC ratios for use as normal male reference values. TDC measurements were made to depths of 0·5, 1·5, 2·5 and 5·0 mm bilaterally on volar forearm skin in 60 males in three groups of 20 that had mean ages ± SD of 24·0 ± 0·9, 40·0 ± 12·9 and 71·0 ± 8·0 years. Total body fat and water percentages were determined via bioimpedance at 50 KHz. Results showed that (i) for all age groups TDC values decreased with increasing depth, (ii) TDC values were not statistically different among age groups except at a depth of 0·5 mm, (iii) TDC values were highly negatively correlated with total body fat and (iv) inter-arm ratios varied little among age groups and depths. It is concluded that (i) age-related larger TDC values at only the shallowest depth is consistent with skin water shifting state from bound to more mobile in the oldest group and (ii) inter-arm ratios at any depth provide a basis to test for unilateral oedema.

  16. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    Science.gov (United States)

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  17. Diversity of the human skin microbiome early in life.

    Science.gov (United States)

    Capone, Kimberly A; Dowd, Scot E; Stamatas, Georgios N; Nikolovski, Janeta

    2011-10-01

    Within days after birth, rapid surface colonization of infant skin coincides with significant functional changes. Gradual maturation of skin function, structure, and composition continues throughout the first years of life. Recent reports have revealed topographical and temporal variations in the adult skin microbiome. Here we address the question of how the human skin microbiome develops early in life. We show that the composition of cutaneous microbial communities evolves over the first year of life, showing increasing diversity with age. Although early colonization is dominated by Staphylococci, their significant decline contributes to increased population evenness by the end of the first year. Similar to what has been shown in adults, the composition of infant skin microflora appears to be site specific. In contrast to adults, we find that Firmicutes predominate on infant skin. Timely and proper establishment of healthy skin microbiome during this early period might have a pivotal role in denying access to potentially infectious microbes and could affect microbiome composition and stability extending into adulthood. Bacterial communities contribute to the establishment of cutaneous homeostasis and modulate inflammatory responses. Early microbial colonization is therefore expected to critically affect the development of the skin immune function.

  18. Calendula extract: effects on mechanical parameters of human skin.

    Science.gov (United States)

    Akhtar, Naveed; Zaman, Shahiq Uz; Khan, Barkat Ali; Amir, Muhammad Naeem; Ebrahimzadeh, Muhammad Ali

    2011-01-01

    The aim of this study was to evaluate the effects of newly formulated topical cream of Calendula officinalis extract on the mechanical parameters of the skin by using the cutometer. The Cutometer 580 MPA is a device that is designed to measure the mechanical properties of the skin in response to the application of negative pressure. This non-invasive method can be useful for objective and quantitative investigation of age related changes in skin, skin elasticity, skin fatigue, skin hydration, and evaluation of the effects of cosmetic and antiaging topical products. Two creams (base and formulation) were prepared for the study. Both the creams were applied to the cheeks of 21 healthy human volunteers for a period of eight weeks. Every individual was asked to come on week 1, 2, 3, 4, 5, 6, 7, and 8 and measurements were taken by using Cutometer MPA 580 every week. Different mechanical parameters of the skin measured by the cutometer were; R0, R1, R2, R5, R6, R7, and R8. These were then evaluated statistically to measure the effects produced by these creams. Using ANOVA, and t-test it was found that R0, and R6 were significant (p 0.05). The instrumental measurements produced by formulation reflected significant improvements in hydration and firmness of skin.

  19. Friction of Human Skin against Different Fabrics for Medical Use

    Directory of Open Access Journals (Sweden)

    Luís Vilhena

    2016-03-01

    Full Text Available Knowledge of the tribology of human skin is essential to improve and optimize surfaces and materials in contact with the skin. Besides that, friction between the human skin and textiles is a critical factor in the formation of skin injuries, which are caused if the loads and shear forces are high enough and/or over long periods of time. This factor is of particular importance in bedridden patients, since they are not moving about or are confined to wheelchairs. Decubitus ulcers are one of the most frequently-reported iatrogenic injuries in developed countries. The risk of developing decubitus ulcers can be predicted by using the “Braden Scale for Predicting Pressure Ulcer Risk” that was developed in 1987 and contains six areas of risk (cognitive-perceptual, immobility, inactivity, moisture, nutrition, friction/shear, although there are limitations to the use of such tools. The coefficient of friction of textiles against skin is mainly influenced by: the nature of the textile, skin moisture content and ambient humidity. This study will investigate how skin friction (different anatomical regions varies, rubbing against different types of contacting materials (i.e., fabrics for medical use under different contact conditions and their relationship in the formation and prevention of decubitus ulcers.

  20. Salt Promotes Passive Overconsumption of Dietary Fat in Humans.

    Science.gov (United States)

    Bolhuis, Dieuwerke P; Costanzo, Andrew; Newman, Lisa P; Keast, Russell Sj

    2016-04-01

    Excess fat consumption has been linked to the development of obesity. Fat and salt are a common and appetitive combination in food; however, the effect of either on food intake is unclear. Fat taste sensitivity has been negatively associated with dietary fat intake, but how fat taste sensitivity influences the intake of fat within a meal has, to our knowledge, not yet been investigated. Our objectives were, first, to investigate the effects of both fat and salt on ad libitum food intake and, second, to investigate the effects of fat taste sensitivity on satiation responses to fat and whether this was affected by salt. Forty-eight healthy adults [16 men and 32 women, aged 18-54 y, body mass index (kg/m(2)): 17.8-34.4] were recruited and their fat taste sensitivity was measured by determination of the detection threshold of oleic acid (18:1n-6). In a randomized 2 × 2 crossover design, participants attended 4 lunchtime sessions after a standardized breakfast. Meals consisted of elbow macaroni (56%) with sauce (44%); sauces were manipulated to be1) low-fat (0.02% fat, wt:wt)/low-salt (0.06% NaCl, wt:wt),2) low-fat/high-salt (0.5% NaCl, wt:wt),3) high-fat (34% fat, wt:/wt)/low-salt, or4) high-fat/high-salt. Ad libitum intake (primary outcome) and eating rate, pleasantness, and subjective ratings of hunger and fullness (secondary outcomes) were measured. Salt increased food and energy intakes by 11%, independent of fat concentration (P= 0.022). There was no effect of fat on food intake (P= 0.6), but high-fat meals increased energy intake by 60% (Pintake of high-fat meals but only in the presence of low salt (fat taste × salt interaction on delta intake of high-fat - low-fat meals;P= 0.012). The results suggest that salt promotes passive overconsumption of energy in adults and that salt may override fat-mediated satiation in individuals who are sensitive to the taste of fat. This trial was registered at the Australian New Zealand Clinical Trials Registry (www

  1. Electrical properties of human skin as aging biomarkers.

    Science.gov (United States)

    Simić-Krstić, Jovana B; Kalauzi, Aleksandar J; Ribar, Srdjan N; Matija, Lidija R; Misevic, Gradimir N

    2014-09-01

    A non-invasive bioimpedance spectroscopy (BIS) and Cole-Cole impedance model parameters (R0, R∞, τ and α) were used to analyze electrical properties of intact and stripped human skin for both gender subjects divided into younger and older age groups. R0, R∞ and τ significantly increased while α significantly decreased with age in stripped skin for both genders (pCole-Cole parameters were age dependent with specific differences observed for genders and intact and stripped skin layers. Therefore, Cole-Cole parameters, obtained by non-invasive BIS measurements, are a new type of age dependent biomarkers.

  2. Skin blood perfusion and oxygenation colour affect perceived human health.

    Directory of Open Access Journals (Sweden)

    Ian D Stephen

    Full Text Available Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice.

  3. Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling.

    Science.gov (United States)

    Alexander, Vinay V; Ke, Kevin; Xu, Zhao; Islam, Mohammed N; Freeman, Michael J; Pitt, Bertram; Welsh, Michael J; Orringer, Jeffrey S

    2011-08-01

    Wavelengths near ∼1,720 nm are of interest for targeting fat/lipid-rich tissues due to the high absorption coefficient of human fat and low water scattering and absorption. In this study, a 1,708 nm laser was built and shown to selectively target fat/lipid adjacent to porcine heart and dermis and then used to damage dermal sebaceous glands in human skin. STUDY DESIGN AND MATERIALS: An all-fiber 1,708 nm laser with ∼4 W maximum power was designed and built. Selectivity for targeting fat/lipid was studied by exposing porcine heart and skin tissue cross-sections to the 1,708 nm laser. Human skin treatments to damage sebaceous glands were performed both with and without cold window cooling. Histochemical evaluation on the frozen sections was performed using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Histochemical analysis of porcine tissue cross-sections showed that 1,708 nm laser can selectively damage pericardial fat(heart) and subcutaneous fat(skin) with little to no damage to the myocardium and the dermis, respectively. In human skin, histochemical evaluation without contact cooling showed damage to both epidermis and dermis. With cooling, epidermis was spared and damage was observed in dermis extending ∼0.4-1.65 mm from the skin surface at an average laser fluence of ∼80 J/cm(2). Selective damage of sebaceous glands was suggested but not definitively demonstrated. We have developed an all-fiber 1,708 nm laser capable of damaging majority of the sebaceous glands in the dermis and thus may have potential applications in the treatment of conditions such as acne vulgaris whose pathophysiology involves disorders of sebaceous glands. Copyright © 2011 Wiley-Liss, Inc.

  4. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  5. Loss of the tumour suppressor gene AIP mediates the browning of human brown fat tumours.

    Science.gov (United States)

    Magnusson, Linda; Hansen, Nils; Saba, Karim H; Nilsson, Jenny; Fioretos, Thoas; Rissler, Pehr; Nord, Karolin H

    2017-10-01

    Human brown fat tumours (hibernomas) show concomitant loss of the tumour suppressor genes MEN1 and AIP. We hypothesized that the brown fat phenotype is attributable to these mutations. Accordingly, in this study, we demonstrate that silencing of AIP in human brown preadipocytic and white fat cell lines results in the induction of the brown fat marker UCP1. In human adipocytic tumours, loss of MEN1 was found both in white (one of 51 lipomas) and in brown fat tumours. In contrast, concurrent loss of AIP was always accompanied by a brown fat morphology. We conclude that this white-to-brown phenotype switch in brown fat tumours is mediated by the loss of AIP. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion

    Science.gov (United States)

    Mandalari, Giuseppina; Vardakou, Maria; Faulks, Richard; Bisignano, Carlo; Martorana, Maria; Smeriglio, Antonella; Trombetta, Domenico

    2016-01-01

    The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT) from natural (NS) and blanched (BS) almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT) or incorporated into home-made biscuits (HB), crisp-bread (CB) and full-fat milk (FM). Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS). WT increased the release of flavan-3-ols (p antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption. PMID:27649239

  7. Novel approach to assess the emissivity of the human skin.

    Science.gov (United States)

    Sanchez-Marin, Francisco J; Calixto-Carrera, Sergio; Villaseñor-Mora, Carlos

    2009-01-01

    To study the radiation emitted by the human skin, the emissivity of its surface must be known. We present a new approach to measure the emissivity of the human skin in vivo. Our method is based on the calculation of the difference of two infrared images: one acquired before projecting a CO(2) laser beam on the surface of the skin and the other after such projection. The difference image contains the radiation reflected by the skin, which is used to calculate the emissivity, making use of Kirchhoff's law and the Helmholtz reciprocity relation. With our method, noncontact measurements are achieved, and the determination of the skin temperature is not needed, which has been an inconvenience for other methods. We show that it is possible to make determinations of the emissivity at specific wavelengths. Last, our results confirm that the human skin obeys Lambert's law of diffuse reflection and that it behaves almost like a blackbody at a wavelength of 10.6 microm.

  8. Human skin hypoxia modulates cerebrovascular and autonomic functions.

    Directory of Open Access Journals (Sweden)

    Olivia Pucci

    Full Text Available Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the experiment such as to induce skin hypoxia (with pure nitrogen or skin normoxia (with air. The subjects performed a test of hypoxic ventilatory drive during each condition of the experiment. We found no differences in the hypoxic ventilatory drive tests. However, ANS function and cerebral blood flow velocities were modulated by skin hypoxia and the effect was significantly greater on the left than right middle cerebral arteries. We conclude that skin hypoxia modulates ANS function and cerebral blood flow velocities and this might impact life styles and tolerance to ambient hypoxia at altitude. Thus the skin in normal humans, in addition to its numerous other functions, is also an oxygen sensor.

  9. Human skin permeation of emerging mycotoxins (beauvericin and enniatins).

    Science.gov (United States)

    Taevernier, Lien; Veryser, Lieselotte; Roche, Nathalie; Peremans, Kathelijne; Burvenich, Christian; Delesalle, Catherine; De Spiegeleer, Bart

    2016-01-01

    Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.

  10. ELASTIC LIPOSOME: DRUG DELIVERY ACROSS HUMAN SKIN

    Directory of Open Access Journals (Sweden)

    Vardhan Harsh

    2012-04-01

    Full Text Available Transdermal drug delivery is hardly an old technology, since 1800’s and the technology is no longer just adhesive patches. Due to recent advances in technology and the ability to apply the drug to the site of action without rupturing the skin membrane, transdermal route is becoming a widely accepted route of drug administration. Recently, various strategies have been used to augment the transdermal delivery of bioactives. Mainly, they include iontophoresis, electrophoresis, sonophoresis, chemical permeation enhancers, micro needles, and vesicular system. Among these strategies elastic liposomes appear promising. Elastic liposomes possess an infrastructure consisting of hydrophobic and hydrophilic moieties together and as a result can accommodate drug molecules with wide range of solubility. It is an ultra deformable vesicle, elastic in nature which can squeeze itself through a pore which is many times smaller than its size owing to its elasticity. They can deform and pass through narrow constriction (from 5 to 10 times less than their own diameter without measurable loss. This high deformability gives better penetration of intact vesicles. This system is much more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. The article speaks specifically on various phenomenon associated with the properties of these vesicles and their transport mechanisms. It also throws light on the effectiveness of conventional and deformable vesicles as drug delivery systems as well as their possible mode of action as transdermal drug carriers.

  11. Formulation and Evaluation of Exotic Fat Based Cosmeceuticals for Skin Repair

    OpenAIRE

    Mandawgade S; Patravale Vandana

    2008-01-01

    Mango butter was explored as a functional, natural supplement and active skin ingredient in skin care formulations. A foot care cream was developed with mango butter to evaluate its medicinal value and protective function in skin repair. Qualitative comparison and clinical case studies of the product were carried out. Wound healing potential of foot care cream was investigated on the rat excision and incision wound models. Results of the clinical studies demonstrated complete repair of worn a...

  12. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  13. Digital Dermatoscopy Method for Human Skin Roughness Analysis

    Directory of Open Access Journals (Sweden)

    Suprijanto Suprijanto

    2013-09-01

    Full Text Available In this study we  propose a digital dermatoscopy  method to measure the human skin roughness. By using this method we eliminate the use of silicon replica.  Digital  dermatoscopy  consists  of  handheld  digital  microscope,  image processing  and  information  extraction  of  skin  roughness  level.  To  reduce  the noise due to the variation of reflection factor on the skin we use  median filter. Hence, by Fourier transform the skin texture is imaged in terms of 2D frequencyspatial  distribution.  Skin  roughness  is  determined  from  its  entropy,  where  the roughness level is proportional to the entropy.  Three types of experiment have been performed by evaluating: (i the skin replicas; (ii  young and elderly skin; and (iii seven volunteers treated by anti wrinkle cosmetic in three weeks period. We find that for the first and second experiment that our system did manage to quantify the roughness, while on the third experiment, six of seven volunteers, the roughness are succeeded to identify.

  14. Cortisol extraction through human skin by reverse iontophoresis.

    Science.gov (United States)

    Ventura, Stephanie A; Heikenfeld, Jason; Brooks, Tiffany; Esfandiari, Leyla; Boyce, Steven; Park, Yoonjee; Kasting, Gerald B

    2017-04-01

    Continuous monitoring of cortisol at the surface of the skin would advance the diagnosis and treatment of cortisol-related diseases, or of elevated cortisol levels related to stress in otherwise healthy populations. Reliable and accurate detection of cortisol at the skin surface remains a limiting factor in real-time monitoring of cortisol. To address this limitation, cortisol extraction through excised human skin by reverse iontophoresis was studied in vitro in side-by-side diffusion cells using a radiolabeled probe. The skin was subjected to four direct current regimens (0, 28, 56, 113μAcm(-2)) with the anode in the donor chamber and the cumulative cortisol concentrations recorded in the receiver chamber. The 56 and 113μAcm(-2) regimens significantly increased transport of (3)H-cortisol through the skin, and current density correlated directly with transcutaneous transport of (3)H-cortisol. The threshold of detection of electroosmotic versus passive diffusion of cortisol through the skin was between 28 and 56μAcm(-2). The results of this study are significant in examining how lipophilic analytes found in the bloodstream respond to reverse iontophoresis across the skin. In addition, a device integration technique is presented which illustrates how continuous cortisol extraction and sensing could potentially be achieved in a conventional wearable format.

  15. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  16. A new alternative method for testing skin irritation using a human skin model: a pilot study.

    Science.gov (United States)

    Miles, A; Berthet, A; Hopf, N B; Gilliet, M; Raffoul, W; Vernez, D; Spring, P

    2014-03-01

    Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting the simu......Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...

  18. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    Science.gov (United States)

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes.

  19. Current concepts of active vasodilation in human skin

    Science.gov (United States)

    Wong, Brett J.; Hollowed, Casey G.

    2017-01-01

    ABSTRACT In humans, an increase in internal core temperature elicits large increases in skin blood flow and sweating. The increase in skin blood flow serves to transfer heat via convection from the body core to the skin surface while sweating results in evaporative cooling of the skin. Cutaneous vasodilation and sudomotor activity are controlled by a sympathetic cholinergic active vasodilator system that is hypothesized to operate through a co-transmission mechanism. To date, mechanisms of cutaneous active vasodilation remain equivocal despite many years of research by several productive laboratory groups. The purpose of this review is to highlight recent advancements in the field of cutaneous active vasodilation framed in the context of some of the historical findings that laid the groundwork for our current understanding of cutaneous active vasodilation.

  20. Using skin to assess iron accumulation in human metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Guinote, I. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Fleming, R. [Imunohaemotherapy Department, Hospital de St. Maria, Lisbon (Portugal); Silva, R. [Dermatology Department, Hospital de St. Maria, Lisbon (Portugal); Filipe, P. [Dermatology Department, Hospital de St. Maria, Lisbon (Portugal); Silva, J.N. [Dermatology Department, Hospital de St. Maria, Lisbon (Portugal); Verissimo, A. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Napoleao, P. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Centro de Fisica Nuclear, Universidade de Lisbon (Portugal); Alves, L.C. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Centro de Fisica Nuclear, Universidade de Lisbon (Portugal); Pinheiro, T. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal) and Centro de Fisica Nuclear, Universidade de Lisbon (Portugal)]. E-mail: murmur@itn.pt

    2006-08-15

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p < 0.004), serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  1. Using skin to assess iron accumulation in human metabolic disorders

    Science.gov (United States)

    Guinote, I.; Fleming, R.; Silva, R.; Filipe, P.; Silva, J. N.; Veríssimo, A.; Napoleão, P.; Alves, L. C.; Pinheiro, T.

    2006-08-01

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  2. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  3. Deep sequencing extends the diversity of human papillomaviruses in human skin.

    OpenAIRE

    Bzhalava, Davit; Mühr, Laila Sara Arroyo; Lagheden, Camilla; Ekström, Johanna; Forslund, Ola; Dillner, Joakim; Hultin, Emilie

    2014-01-01

    Most viruses in human skin are known to be human papillomaviruses (HPVs). Previous sequencing of skin samples has identified 273 different cutaneous HPV types, including 47 previously unknown types. In the present study, we wished to extend prior studies using deeper sequencing. This deeper sequencing without prior PCR of a pool of 142 whole genome amplified skin lesions identified 23 known HPV types, 3 novel putative HPV types and 4 non-HPV viruses. The complete sequence was obtained for one...

  4. Proteome profile and biological activity of caprine, bovine and human milk fat globules.

    Science.gov (United States)

    Spertino, Stefano; Cipriani, Valentina; De Angelis, Chiara; Giuffrida, Maria Gabriella; Marsano, Francesco; Cavaletto, Maria

    2012-04-01

    Upon combining bidimensional electrophoresis with monodimensional separation, a more comprehensive analysis of the milk fat globule membrane has been obtained. The proteomic profile of caprine milk fat globules revealed the presence of butyrophilin, lactadherin and perilipin as the major proteins, they were also associated to bovine and human milk fat globule membranes. Xanthine dehydrogenase/oxidase has been detected only in monodimensional gels. Biological activity of milk fat globules has been evaluated in Caco2-cells, as a representative model of the intestinal barrier. The increase of cell viability was indicative of a potential nutraceutical role for the whole milk fat globule, suggesting a possible employment in milk formula preparation.

  5. Measurements and Characterizations of Mechanical Properties of Human Skins

    Science.gov (United States)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  6. Metabolic regulation and the anti-obesity perspectives of human brown fat

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren

    2017-01-01

    , white fat tissue transformation into beige has been observed in patients with pheochromocytoma, a norepinephrine-producing tumor. Interestingly, human beige fat is predominantly induced in regions that were BAT during early childhood, possibly reflecting that a presence of human beige progenitors...

  7. Three-dimensional human skin models to understand Staphylococcus aureus skin colonization and infection

    Directory of Open Access Journals (Sweden)

    Lauren ePopov

    2014-02-01

    Full Text Available Staphylococcus aureus is both a major bacterial pathogen as well as a common member of the human skin microbiota. Due to its widespread prevalence as an asymptomatic skin colonizer and its importance as a source of skin and soft tissue infections, an improved understanding of how S. aureus attaches to, grows within, and breaches the stratified layers of the epidermis is of critical importance. Three-dimensional organotypic human skin culture models are informative and tractable experimental systems for future investigations of the interactions between S. aureus and the multifaceted skin tissue. We propose that S. aureus virulence factors, primarily appreciated for their role in pathogenesis of invasive infections, play alternative roles in promoting asymptomatic bacterial growth within the skin. Experimental manipulations of these cultures will provide insight into the many poorly understood molecular interactions occurring at the interface between S. aureus and stratified human skin tissue.

  8. Human skin transcriptome during superficial cutaneous wound healing.

    Science.gov (United States)

    Nuutila, Kristo; Siltanen, Antti; Peura, Matti; Bizik, Jozef; Kaartinen, Ilkka; Kuokkanen, Hannu; Nieminen, Tapio; Harjula, Ari; Aarnio, Pertti; Vuola, Jyrki; Kankuri, Esko

    2012-01-01

    Healing of the epidermis is a crucial process for maintaining the skin's defense integrity and its resistance to environmental threats. Compromised wound healing renders the individual readily vulnerable to infections and loss of body homeostasis. To clarify the human response of reepithelialization, we biopsied split-thickness skin graft donor site wounds immediately before and after harvesting, as well as during the healing process 3 and 7 days thereafter. In all, 25 biopsies from eight patients qualified for the study. All samples were analyzed by genome-wide microarrays. Here, we identified the genes associated with normal skin reepithelialization over time and organized them by similarities according to their induction or suppression patterns during wound healing. Our results provide the first elaborate insight into the transcriptome during normal human epidermal wound healing. The data not only reveal novel genes associated with epidermal wound healing but also provide a fundamental basis for the translational interpretation of data acquired from experimental models.

  9. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    Science.gov (United States)

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available.

  10. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats.

    Science.gov (United States)

    Aloui, Faten; Charradi, Kamel; Hichami, Aziz; Subramaniam, Selvakumar; Khan, Naim Akhtar; Limam, Ferid; Aouani, Ezzedine

    2016-12-01

    Obesity is related to an elevated risk of diabetes and the mechanisms whereby fat adversely affects the pancreas are poorly understood. We studied the effect of a high fat diet (HFD) on pancreas steatosis, oxidative stress and inflammation as well as the putative protection afforded by grape seed and skin extract (GSSE). HFD induced body weight gain, without affecting insulinemia, nor glycemia and dropped adiponectemia. HFD also provoked the ectopic deposition of cholesterol and triglyceride, and an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of antioxidant enzyme activities such as CAT, GPx and SOD, depletion of zinc and a concomitant increase in calcium and H2O2. HFD induced pro-inflammatory chemokines mRNA as RANTES and MCP1 as well as cytokines expression as TNFα, IL6 and IL1β. Importantly GSSE counteracted all the deleterious effects of HFD on pancreas in vivo i-e lipotoxicity, oxidative stress and inflammation. In conclusion, GSSE could find potential applications in fat-induced pancreas lipotoxicity and dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization

    Science.gov (United States)

    Miyamoto, Mayumi; Matsuzaki, Kentaro; Katakura, Masanori; Hara, Toshiko; Tanabe, Yoko; Shido, Osamu

    2015-10-01

    The present study investigated the impact of a single oral ingestion of ginger on thermoregulatory function and fat oxidation in humans. Morning and afternoon oral intake of 1.0 g dried ginger root powder did not alter rectal temperature, skin blood flow, O2 consumption, CO2 production, and thermal sensation and comfort, or induce sweating at an ambient temperature of 28 °C. Ginger ingestion had no effect on threshold temperatures for skin blood flow or thermal sweating. Serum levels of free fatty acids were significantly elevated at 120 min after ginger ingestion in both the morning and afternoon. Morning ginger intake significantly reduced respiratory exchange ratios and elevated fat oxidation by 13.5 % at 120 min after ingestion. This was not the case in the afternoon. These results suggest that the effect of a single oral ginger administration on the peripheral and central thermoregulatory function is miniscule, but does facilitate fat utilization although the timing of the administration may be relevant.

  12. A novel infant milk formula concept: Mimicking the human milk fat globule structure.

    Science.gov (United States)

    Gallier, Sophie; Vocking, Karin; Post, Jan Andries; Van De Heijning, Bert; Acton, Dennis; Van Der Beek, Eline M; Van Baalen, Ton

    2015-12-01

    Human milk (HM) provides all nutrients to support an optimal growth and development of the neonate. The composition and structure of HM lipids, the most important energy provider, have an impact on the digestion, uptake and metabolism of lipids. In HM, the lipids are present in the form of dispersed fat globules: large fat droplets enveloped by a phospholipid membrane. Currently, infant milk formula (Control IMF) contains small fat droplets primarily coated by proteins. Recently, a novel IMF concept (Concept IMF) was developed with a different lipid architecture, Nuturis(®), comprising large fat droplets with a phospholipid coating. Confocal laser scanning microscopy (CLSM), with appropriate fluorescent probes, and transmission electron microscopy were used to determine and compare the interfacial composition and structure of HM fat globules, Concept IMF fat droplets and Control IMF fat droplets. The presence of a trilayer-structured HM fat globule membrane, composed of phospholipids, proteins, glycoproteins and cholesterol, was confirmed; in addition exosome-like vesicles are observed within cytoplasmic crescents. The Control IMF fat droplets had a thick protein-only interface. The Concept IMF fat droplets showed a very thin interface composed of a mixture of phospholipids, proteins and cholesterol. Furthermore, the Concept IMF contained fragments of milk fat globule membrane, which has been suggested to have potential biological functions in infants. By mimicking more closely the structure and composition of HM fat globules, this novel IMF concept with Nuturis(®) may have metabolic and digestive properties that are more similar to HM compared to Control IMF.

  13. Human skin Langerhans cells are targets of dengue virus infection

    NARCIS (Netherlands)

    Wu, SJL; Grouard-Vogel, G; Mascola, [No Value; Brachtel, E; Putvatana, R; Louder, MK; Filgueira, L; Marovich, MA; Wong, HK; Blauvelt, A; Murphy, GS; Robb, ML; Innes, BL; Birx, DL; Hayes, CG; Frankel, SS

    2000-01-01

    Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine(1,2). Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosqui

  14. Raman measurement of carotenoid composition in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  15. [Measurement of human body fat by means of gravimetry. Application of Archimedes' principle].

    Science.gov (United States)

    Dettwiler, W; Ribordy, M; Donath, A; Scherrer, J R

    1978-12-02

    The weighing of the human body under water is an application of Archimedes' law. Fat being lighter than water or than the structures of lean body mass, body fat can be measured by determining the specific gravity of the human body; that is, by underwater weighing. Body fat has been determined in an "ideal" sample of 14 men and 23 women, all aged 20 years. Testing against a reference measure of body fat makes it possible to test the validity of some anthropometric measurements and of some indices of obesity. These indices offer no advantages over anthropometric measurements.

  16. Fat tissue histological study at NIR laser treatment of the skin in vivo

    Science.gov (United States)

    Yanina, Irina Y.; Tuchin, Valery V.; Navolokin, Nikita A.; Matveeva, Olga V.; Bucharskaya, Alla B.; Maslyakova, Galina N.

    2011-07-01

    Histological slices of skin samples with the subcutaneous adipose tissue after laser irradiation at different doses are analyzed. These data may be used at carrying out of the analysis of histological slices of skin samples with the subcutaneous adipose tissue after photodynamic therapy. The obtained data are important for safe layer-by-layer dosimetry of laser irradiation used in the treatment of obesity and cellulite.

  17. The Skin Deformation of a 3D Virtual Human

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jing Zhou; Zheng-Xu Zhao

    2009-01-01

    This paper presents a skin deformation algorithm for creating 3D characters or virtual human models. The algorithm can be applied to rigid deformation, joint dependent localized deformation, skeleton driven deformation, cross contour deformation, and free-form deformation (FFD). These deformations are computed and demonstrated with examples and the algorithm is applied to overcome the difficulties in mechanically simulating the motion of the human body by club-shape models. The techniques described in this article enables the reconstruction of dynamic human models that can be used in defining and representing the geometrical and kinematical characteristics of human motion.

  18. Pumpless microfluidic platform for drug testing on human skin equivalents.

    Science.gov (United States)

    Abaci, Hasan Erbil; Gledhill, Karl; Guo, Zongyou; Christiano, Angela M; Shuler, Michael L

    2015-02-07

    Advances in bio-mimetic in vitro human skin models increase the efficiency of drug screening studies. In this study, we designed and developed a microfluidic platform that allows for long-term maintenance of full thickness human skin equivalents (HSE) which are comprised of both the epidermal and dermal compartments. The design is based on the physiologically relevant blood residence times in human skin tissue and allows for the establishment of an air-epidermal interface which is crucial for maturation and terminal differentiation of HSEs. The small scale of the design reduces the amount of culture medium and the number of cells required by 36 fold compared to conventional transwell cultures. Our HSE-on-a-chip platform has the capability to recirculate the medium at desired flow rates without the need for pump or external tube connections. We demonstrate that the platform can be used to maintain HSEs for three weeks with proliferating keratinocytes similar to conventional HSE cultures. Immunohistochemistry analyses show that the differentiation and localization of keratinocytes was successfully achieved, establishing all sub-layers of the epidermis after one week. Basal keratinocytes located at the epidermal-dermal interface remain in a proliferative state for three weeks. We use a transdermal transport model to show that the skin barrier function is maintained for three weeks. We also validate the capability of the HSE-on-a-chip platform to be used for drug testing purposes by examining the toxic effects of doxorubucin on skin cells and structure. Overall, the HSE-on-a-chip is a user-friendly and cost-effective in vitro platform for drug testing of candidate molecules for skin disorders.

  19. Optoelectronic set for measuring reflectance spectrum of living human skin

    Science.gov (United States)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian; Kulesza, Ewa

    2015-09-01

    In the paper the authors present the developed optoelectronic set for measuring spectral reflectance of living human skin. The basic elements of the set are: the illuminator consists of the LED illuminator emitting a uniform distribution of spectral irradiance in the exposed field, the semispherical measuring chamber and the spectrometer which measures spectrum of reflected radiation. Measured radiation is from spectral range of tissue optical window (from 600 nm to 1000 nm). Knowledge about the reflectance spectrum of the patient skin allows adjusting spectral and energetic parameters of the radiation used in biostimulation treatment. The developed set also enables the repeatable exposures of patients in the Low Level Laser Therapy procedures.

  20. Raman spectroscopy of Chinese human skin in vivo

    Institute of Scientific and Technical Information of China (English)

    Yongzeng Li; Rong Chen; Haishan Zeng; Zhiwei Huang; Shangyuan Feng; Shusen Xie

    2007-01-01

    A novel and compact near-infrared (NIR) Raman system is developed using 785-nm diode laser, volumephase technology (VPT) holographic system, and NIR intensified charge-coupled device (CCD). Signal-tonoise ratio (SNR) and resolution are improved compared with ordinary acquisition method by a specially designed optical fiber detector and the spectrograph image aberration correction with a parabolic-line fiber array. In 1-5 s, Raman spectra of different parts of Chinese human skin are acquired. Autofluorescence is subtracted from the raw spectrum by polynomial fitting and skin Raman spectrum is then smoothed for further analysis.

  1. Human skin equivalent as an alternative to animal testing.

    Science.gov (United States)

    Mertsching, Heike; Weimer, Michaela; Kersen, Silke; Brunner, Herwig

    2008-03-11

    The 3-D skin equivalent can be viewed as physiologically comparable to the natural skin and therefore is a suitable alternative for animal testing. This highly differentiated in vitro human skin equivalent is used to assess the efficacy and mode of action of novel agents. This model is generated from primary human keratinocytes on a collagen substrate containing human dermal fibroblasts. It is grown at the air-liquid interface which allows full epidermal stratification and epidermal-dermal interactions to occur. Future emphasis is the establishment of different test systems to investigate wound healing, melanoma research and infection biology. Key features of this skin model are that it can be used as an alternative for in vivo studies, donor tissue can be tailored to the needs of the study and multiple analyses can be carried out at mRNA and protein level. Driven by both ethical and economical incentives, this has already resulted in a shift of the test strategies used by the Pharmaceutical Industry in the early drug development process as reflected by the increased demand for application of cell based assays. It is also a suitable model for testing a wide variety of endpoints including cell viability, the release of proinflammatory mediators, permeation rate, proliferation and biochemical changes.

  2. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  3. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells.

    Science.gov (United States)

    O'Shea, M; Devery, R; Lawless, F; Murphy, J; Stanton, C

    The relationship between growth and the antioxidant enzyme defence system in human MCF-7 (breast) cancer cells treated with bovine milk fat enriched with conjugated linoleic acid (CLA) was studied. Milk enriched in CLA was obtained from cows on pasture supplemented with full fat rapeseeds and full fat soyabeans (1). Cell number decreased up to 90% (p milk fat yielding CLA concentrations between 16.9 and 22.6 ppm. Growth suppression and prooxidant effects of milk fat CLA were independent of the variable composition of the milk fat samples, suggesting that CLA was the active ingredient in milk fat responsible for the cytotoxic effect. Mixtures containing isomers of CLA (c9, t11-, t10, c12-, c11, t13- and minor amounts of other isomers) and linoleic acid (LA) at similar concentrations to the milk fat samples were as effective at inhibiting growth and stimulating peroxidation of MCF-7 cells as the milk fatty acids. Incubation of the cells with the c9, t11 CLA isomer (20 ppm) or the mixture of CLA isomers (20 ppm) for 8 days resulted in a 60% decrease (p milk fat than the c9, t11 synthetic CLA isomer. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities were induced in MCF-7 cells exposed to milk fat (containing 16.9-22.6 ppm CLA) over 8 days. The data indicate that milk fat triglyceride-bound CLA, consisting primarily of the c9, t11 isomer, was cytotoxic towards MCF-7 cells.

  4. Near infrared laser penetration and absorption in human skin

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  5. Ultrasonic homogenization of expressed human milk to prevent fat loss during tube feeding.

    Science.gov (United States)

    Martinez, F E; Desai, I D; Davidson, A G; Nakai, S; Radcliffe, A

    1987-01-01

    Effective use of expressed human milk in infant feeding requires proper handling, processing, storage, and administration in order to maintain its unique nutritional properties. One of the problems with expressed human milk is the separation of fat during processing, storage, and administration to the infant. Administration by continuous nasogastric infusion, either by intermittent gravity flow or by continuous mechanical pump, resulted in significant loss of fat and variation in the constitution of the milk delivered. Homogenization by ultrasonic treatment prevented changes in fat concentration during infusion and essentially eliminated loss of this nutrient during administration. The conditions necessary to achieve fat dispersion and stabilization of fat particles in human milk by ultrasonic treatment are described.

  6. New human milk fat substitutes from butterfat to improve fat absorption

    DEFF Research Database (Denmark)

    Li, Yanqi; Mu, Huiling; Andersen, Jens Enevold Thaulov

    2010-01-01

    , or (3) the reference oil without LCPUFA. The apparent fat absorption after intake of butterfat-based HMFS (95.9% +/- 1.8%) was significantly higher than the other two groups, indicating that much less calcium soap was formed after feeding butterfat-based HMFS. Calcium contents in urines and faeces from...

  7. Data Mining Based Skin Pixel Detection Applied On Human Images: A Study Paper

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2014-07-01

    Full Text Available Skin segmentation is the process of the identifying the skin pixels in a image in a particular color model and dividing the images into skin and non-skin pixels. It is the process of find the particular skin of the image or video in a color model. Finding the regions of the images in human images to say these pixel regions are part of the image or videos is typically a preprocessing step in skin detection in computer vision, face detection or multi-view face detection. Skin pixel detection model converts the images into appropriate format in a color space and then classification process is being used for labeling of the skin and non-skin pixels. A skin classifier identifies the boundary of the skin image in a skin color model based on the training dataset. Here in this paper, we present the survey of the skin pixel segmentation using the learning algorithms.

  8. Visible skin condition and perception of human facial appearance.

    Science.gov (United States)

    Samson, N; Fink, B; Matts, P J

    2010-06-01

    Evolutionary psychology suggests that certain human beauty standards have evolved to provide reliable cues of fertility and health. Hence, preferences for some physical characteristics of the face and body are thought to reflect adaptations for the promotion of mate choice. Studies that have investigated facial attractiveness have concentrated mainly on features such as symmetry, averageness and sex-typical traits, which are developed under the influence of sex steroids. Few studies, however, have addressed the effect of human skin condition on perception of facial appearance in this context, and possible implications for sexual selection. There is now accumulating evidence that skin pigmentation and skin surface topography cues, particularly in women, have a significant influence on attractiveness judgements, as they seem primarily to signal aspects of age and health. This article (i) reviews briefly some of the main determinants of visible skin condition, (ii) presents recent evidence on its signalling value in face perception and (iii) suggests areas for future research with reference to an evolutionary psychology framework.

  9. Laser printing of skin cells and human stem cells.

    Science.gov (United States)

    Koch, Lothar; Kuhn, Stefanie; Sorg, Heiko; Gruene, Martin; Schlie, Sabrina; Gaebel, Ralf; Polchow, Bianca; Reimers, Kerstin; Stoelting, Stephanie; Ma, Nan; Vogt, Peter M; Steinhoff, Gustav; Chichkov, Boris

    2010-10-01

    Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days. The cells survived the transfer procedure with a rate of 98%  +/- 1% standard error of the mean (skin cells) and 90%  +/- 10% (hMSC), respectively. All used cell types maintain their ability to proliferate after LIFT. Further, skin cells and hMSC did not show an increase of apoptosis or DNA fragmentation. In addition, the hMSC keep their phenotype as proven by fluorescence activated cell sorting (FACS) analysis. This study demonstrates LIFT as a suitable technique for unharmed computer-controlled positioning of different cell types and a promising tool for future applications in the ex vivo generation of tissue replacements.

  10. Noncontacting diffuse VIS-NIR spectroscopy of human skin for evaluation of skin type and time-dependent microcirculation

    Science.gov (United States)

    Schmidt, Wolf-Dieter; Fassler, Dieter; Zimmermann, Gabi; Liebold, Kristin; Wollina, Uwe

    2000-11-01

    Spectroscopic investigations of the VIS-NIR range allow the objective determination of pigmentation, blood microcirculation and water content of human skin. Non- contacting in vivo measurements of the human skin of 50 volunteers reflect the clinical skin type well. Our correlation analysis yields that the red/infrared spectral range can be used for a determination of skin type. The observed strong spectral variations within the same group of skin type are likely based on the high biological variability of human skin and subjective clinically observed skin type. Therefore it can be useful to measure the full spectral range and to calculate a non-observed skin score with multivariate spectral methods. By multivariate analysis a correct classification of remittance spectra can be obtained. Time- depending spectral variations of dermal microcirculation can be measured at defined locations of the body, for instance the dynamics of oxygenation or blood volume in the skin of the fingertip. The cardial, pulmonal and vasomotoric waves of the micro- and macrocirculation are clearly visible at different wavelengths. The spectroscopic informations are important as an objective measure for the skin type evaluation, the penetration behavior of pharmaca, laser surgery, and therapy.

  11. Does human leukocyte elastase degrade intact skin elastin?

    Science.gov (United States)

    Schmelzer, Christian E H; Jung, Michael C; Wohlrab, Johannes; Neubert, Reinhard H H; Heinz, Andrea

    2012-11-01

    This study aimed to investigate the susceptibility of intact fibrillar human elastin to human leukocyte elastase and cathepsin G. Elastin is a vital protein of the extracellular matrix of vertebrates, and provides exceptional properties including elasticity and tensile strength to many tissues and organs, including the aorta, lung, cartilage, elastic ligaments and skin, and is thus critical for their long-term function. Mature elastin is an insoluble and extremely durable protein that undergoes very little turnover, but sustained exposure to proteases may lead to irreversible and severe damage, and thus to functional loss of the elastic fiber network. Hence, it is a key issue to understand which enzymes actually initiate elastolysis under certain pathological conditions or during intrinsic aging. In this paper, we provide a complete workflow for isolation of pure and intact elastin from very small tissue samples to test enzymes for their elastolytic potential. This workflow was applied to skin samples from variously aged individuals, and it was found that strong differences exist in the degradability of the elastins investigated. In summary, human leukocyte elastase was unable to degrade intact elastin fibers but hydrolyzed elastin derived from the skin of old people. However, cathepsin G cleaved all elastin samples, even those derived from younger individuals. These results indicate that human leukocyte elastase is not a driving force for elastolysis, but may nevertheless promote further breakdown of elastic fibers after the action of other enzymes such as cathepsin G. © 2012 The Authors Journal compilation © 2012 FEBS.

  12. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  13. 脂肪注射移植后皮肤质地改善的研究%Study on the Improvement of skin quality after fat tissue grafting: a animal studying

    Institute of Scientific and Technical Information of China (English)

    祝顺武; 宋广滨; 徐学武; 刘国锋

    2012-01-01

    Objective To investigate the histologic modifications of the skin after fat tissue grafting. Methods Thirty nude mice.divided into three groups randomly.were used in the experiment.AII 30 mice received human fat tissue on left side.On the opposite side, 10 mice received silicone gel, 10 mice received only subcutaneous tunneling.and the remaining 10 mice received nothing (negative control group). Eight weeks later, biopsies of the skin and ubcutaneous tissue were performed and specimens were analyzed by hematoxylin -phloxin -saffron and Masson' staining. Dermis thickness was measured. Results Fat tissue was found in all animals. Macroscopically.fat tissue presented normal aspects.with abundant peripheral neovascularization.Histologic examination showed abundant extracellular matrix around the injected human fat tissue. Dermal thickness after fat grafting was significantly greater and collagen also increased significantly. Conclusions This study shows that fat tissue grafting stimulates a neosynthesis of collagen fibers at the recipient site and makes the dermis thicker. The effect it presented at the grafted area was not just volume-increasing but skin quality improvement.%目的:通过皮下脂肪注射移植,探索移植脂肪对皮肤质地的改善作用.方法:取30只裸鼠,随 机分成三组,所有鼠左侧皮下移植人脂肪细胞,在另一侧10只注射硅凝胶,10仅行皮下穿刺,剩下10只无任何处置,8周取皮肤组织做HE、Masson'染色观察皮肤真皮层厚度及真皮层内胶原蛋白的含量.结果:取材时,所有裸鼠上都能看到所移植的脂肪,但体积较 术前有较明显缩小.肉眼看,脂肪呈正常外观,有较多新生血管生成.组织学检测,移植脂肪外周有大量细胞外基质形成,实验 侧真皮层较对照侧明显增厚,真皮内胶原含量增多.结论:移植的脂肪组织不仅仅是一种填充物,在改善轮廓的同时,还有真皮增 厚、胶原含量增加等皮肤改善的效应.

  14. Freeze-drying as a preserving preparation technique for in vitro testing of human skin.

    Science.gov (United States)

    Franzen, Lutz; Vidlářová, Lucie; Kostka, Karl-Heinz; Schaefer, Ulrich F; Windbergs, Maike

    2013-01-01

    In vitro testing of drugs with excised human skin is a valuable prerequisite for clinical studies. However, the analysis of excised human skin presents several obstacles. Ongoing drug diffusion, microbial growth and changes in hydration state influence the results of drug penetration studies. In this work, we evaluate freeze-drying as a preserving preparation method for skin samples to overcome these obstacles. We analyse excised human skin before and after freeze-drying and compare these results with human skin in vivo. Based on comprehensive thermal and spectroscopic analysis, we demonstrate comparability to in vivo conditions and exclude significant changes within the skin samples due to freeze-drying. Furthermore, we show that freeze-drying after skin incubation with drugs prevents growth of drug crystals on the skin surface due to drying effects. In conclusion, we introduce freeze-drying as a preserving preparation technique for in vitro testing of human skin.

  15. Attenuated noradrenergic sensitivity during local cooling in aged human skin

    Science.gov (United States)

    Thompson, Caitlin S; Holowatz, Lacy A; Kenney, W. Larry

    2005-01-01

    Reflex-mediated cutaneous vasoconstriction (VC) is impaired in older humans; however, it is unclear whether this blunted VC also occurs during local cooling, which mediates VC through different mechanisms. We tested the hypothesis that the sensitization of cutaneous vessels to noradrenaline (NA) during direct skin cooling seen in young skin is blunted in aged skin. In 11 young (18–30 years) and 11 older (62–76 years) men and women, skin blood flow was monitored at two forearm sites with laser Doppler (LD) flowmetry while local skin temperature was cooled and clamped at 24°C. Cutaneous vascular conductance (CVC; LD flux/mean arterial pressure) was expressed as percentage change from baseline (%ΔCVCbase). At one site, five doses of NA (10−10–10−2m) were sequentially infused via intradermal microdialysis during cooling while the other 24°C site served as control (Ringer solution + cooling). At control sites, VC due to cooling alone was similar in young versus older (−54 ± 5 versus −56 ± 3%ΔCVCbase, P= 0.46). In young, NA infusions induced additional dose-dependent VC (10−8, 10−6, 10−4 and 10−2m: −70 ± 2, −72 ± 3, −78 ± 3 and −79 ± 4%ΔCVCbase; P older skin does not display enhanced VC capacity until treated with saturating doses of NA, possibly due to age-associated decrements in Ca2+ availability or α2C-adrenoceptor function. PMID:15705648

  16. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  17. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  18. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  19. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review.

    Science.gov (United States)

    Barbero, Ana M; Frasch, H Frederick

    2009-02-01

    Both human and animal skin in vitro models are used to predict percutaneous penetration in humans. The objective of this review is a quantitative comparison of permeability and lag time measurements between human and animal skin, including an evaluation of the intra and inter species variability. We limit our focus to domestic pig and rodent guinea pig skin as surrogates for human skin, and consider only studies in which both animal and human penetration of a given chemical were measured jointly in the same lab. When the in vitro permeability of pig and human skin were compared, the Pearson product moment correlation coefficient (r) was 0.88 (Pskin permeability of 21% for pig and 35% for human, and an inter species average coefficient of variation of 37% for the set of studied compounds (n=41). The lag times of pig skin and human skin did not correlate (r=0.35, P=0.26). When the in vitro permeability of guinea pig and human skin were compared, r=0.96 (Phuman, and an inter species coefficient of variation of permeability of 41% for the set of studied compounds (n=15). Lag times of guinea pig and human skin correlated (r=0.90, Phuman skin was calculated for pig skin (n=50) and guinea pig skin (n=25). For pig skin, 80% of measurements fell within the range 0.3skin, 65% fell within that range. Both pig and guinea pig are good models for human skin permeability and have less variability than the human skin model. The skin model of choice will depend on the final purpose of the study and the compound under investigation.

  20. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  1. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    Science.gov (United States)

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism.

  2. Noninvasive topographical investigation of functional parameters in the human skin

    Science.gov (United States)

    Kessler, Manfred D.; Krug, Alfons; Hoeper, Jens

    1996-04-01

    A rapid micro-lightguide spectrometer (EMPHO II) coupled to an automatic three axis positioning system enables very precise and fast 2D-scans at the surface of human skin. The positioning accuracy amounts to 1 micrometer. This allows measurements with excellent spatial reproducibility. With this system examinations of local distribution of HbO2 and Hb have been performed in human skin. For this purpose at the back of the hand areas of 5 by 5 mm to 5 by 10 mm were scanned in defined steps of 100 micrometers. Functional images of local hemoglobin concentration and hemoglobin oxygenation of microscopical structures have been resolved by use of 250 micrometer lightguide sensors. Two-dimensional-images of local oxygen supply parameters corresponding directly to morphological structures of human skin have been gained. The local pattern matches the distribution of the papillas of the corium. In the papillas the capillary loops supplying the lower part of the epidermis are situated. The measured parameters describe very exactly the local oxygen supply situation of the area under investigation.

  3. Distribution of bioactive lipid mediators in human skin.

    Science.gov (United States)

    Kendall, Alexandra C; Pilkington, Suzanne M; Massey, Karen A; Sassano, Gary; Rhodes, Lesley E; Nicolaou, Anna

    2015-06-01

    The skin produces bioactive lipids that participate in physiological and pathological states, including homeostasis, induction, propagation, and resolution of inflammation. However, comprehension of the cutaneous lipid complement, and contribution to differing roles of the epidermal and dermal compartments, remains incomplete. We assessed the profiles of eicosanoids, endocannabinoids, N-acyl ethanolamides, and sphingolipids, in human dermis, epidermis, and suction blister fluid. We identified 18 prostanoids, 12 hydroxy-fatty acids, 9 endocannabinoids and N-acyl ethanolamides, and 21 non-hydroxylated ceramides and sphingoid bases, several demonstrating significantly different expression in the tissues assayed. The array of dermal and epidermal fatty acids was reflected in the lipid mediators produced, whereas similarities between lipid profiles in blister fluid and epidermis indicated a primarily epidermal origin of suction blister fluid. Supplementation with omega-3 fatty acids ex vivo showed that their action is mediated through perturbation of existing species and formation of other anti-inflammatory lipids. These findings demonstrate the diversity of lipid mediators involved in maintaining tissue homeostasis in resting skin and hint at their contribution to signaling, cross-support, and functions of different skin compartments. Profiling lipid mediators in biopsies and suction blister fluid can support studies investigating cutaneous inflammatory responses, dietary manipulation, and skin diseases lacking biomarkers and therapeutic targets.

  4. Permeation Studies of Captopril Transdermal Films Through Human Cadaver Skin.

    Science.gov (United States)

    Nair, Rajesh Sreedharan; Nair, Sujith

    2015-01-01

    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.

  5. The safety of donor skin preserved with glycerol - Evaluating the Euro Skin Bank preservation procedures of human donor skin against the prEN 12442 standard

    NARCIS (Netherlands)

    Geertsma RE; Wassenaar C; LGM

    2000-01-01

    The procedures for preservation of human donor skin with glycerol, as applied by the Euro Skin Bank (ESB), were evaluated against the prEN 12442 standard: animal tissues and their derivatives used in the manufacture of medical devices. The focus chosen for this review is on risks related to the tran

  6. The representation of oral fat texture in the human somatosensory cortex.

    Science.gov (United States)

    Grabenhorst, Fabian; Rolls, Edmund T

    2014-06-01

    How fat is sensed in the mouth and represented in the brain is important in relation to the pleasantness of food, appetite control, and the design of foods that reproduce the mouthfeel of fat yet have low energy content. We show that the human somatosensory cortex (SSC) is involved in oral fat processing via functional coupling to the orbitofrontal cortex (OFC), where the pleasantness of fat texture is represented. Using functional MRI, we found that activity in SSC was more strongly correlated with the OFC during the consumption of a high fat food with a pleasant (vanilla) flavor compared to a low fat food with the same flavor. This effect was not found in control analyses using high fat foods with a less pleasant flavor or pleasant-flavored low fat foods. SSC activity correlated with subjective ratings of fattiness, but not of texture pleasantness or flavor pleasantness, indicating a representation that is not involved in hedonic processing per se. Across subjects, the magnitude of OFC-SSC coupling explained inter-individual variation in texture pleasantness evaluations. These findings extend known SSC functions to a specific role in the processing of pleasant-flavored oral fat, and identify a neural mechanism potentially important in appetite, overeating, and obesity.

  7. Human skin image analysis using coherent focused beam scattering

    Science.gov (United States)

    Zimnyakov, Dmitry A.; Tuchin, Valery V.; Utz, Sergei R.; Mishin, Alexey A.

    1995-02-01

    The analysis of statistical and correlation properties of speckle patterns formed during different skin tissue scanning by the sharply focused probing laser beam has been carried out. The influences of the biotissues' structural features on the speckle patterns formation under Gaussian beam illumination have been investigated. The relationships between the structural characteristics of the sample under study, Rayleigh range of the probing beam and normalized statistical moments of the speckle intensity (contrast and asymmetry coefficient) are discussed for the different scatterer models. A phenomenological model of speckle pattern formation for the large-scale scatterers allows us to explain the dependence of speckle contrast and the coefficient of asymmetry on the generalized structure parameters and illumination conditions for the samples under study. The experimental investigations of the human skin structure features have been carried out using two types of the tissue samples by means of coherent scanning microscopy (CSM). Firstly, D-SQUAME discs (CuDerm Corporation, Texas, USA) have been used for the evaluation of skin dryness level. Secondly, the samples under study were the thin layers of normal and psoriatic epidermis (skin strippings). The dependencies of contrast and coefficient of asymmetry on the beam defocusing parameter and 2D correlation functions of speckle pattern intensity have been analyzed for different zones on the biotissue's surface. Particularly, promising results in skin dryness studies (using D-SQUAME discs) have been obtained. Our results and conventional 5-pattern kit scale are in good agreement. So, the presented method is accurate and objective and may be useful in novel cosmetic research and development.

  8. In vivo human-skin electrical conduction and pain sensations

    Energy Technology Data Exchange (ETDEWEB)

    Voegelin, M. R. [Florence, Univ. (Italy). Div. di Fisica Medica. Dipt. di Fisiopatologia; Paoli, G.; Zoppi, M. [Florence, Univ. (Italy). Istituto della I Clinica Medica

    1997-06-01

    In vivo human skin is stimulated by direct current the intensity of which ranges from 1 {mu}A to 1 mA. They have detected the voltage/current plot and the temporal trend of potential difference between two electrodes placed in a suitable cutaneous region of stimulation, in a group of healthy subjects. They have elaborated a non-linear functional equivalent model to describe the system behaviour. The electrical stimulation can induce painful sensation, over a critical value of the current intensity, and they believe that this sensation is due to thermal dissipation into the inner layers of the skin. In fact, subjects begin to feel pain when the electric power dissipated in the stimulated region for unit time is within the range of 235-260 mcal/cm{sup 2}{center_dot}s, that corresponds to the thermal threshold required to evoke pain.

  9. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... collagen synthesis can be directly and robustly measured using stable isotope methodology....

  10. Lipase-catalyzed modification of lard to produce human milk fat substitutes

    DEFF Research Database (Denmark)

    Yang, Tiankui; Xu, Xuebing; He, C.

    2003-01-01

    The objective of the present work was to modify lard into human milk fat substitutes (HMFS) by Lipozyme RM IM-catalyzed acidolysis. Lard and soybean fatty acids were esterified in a solvent-free system. The reaction substrates for HMFS production were specially chosen to mimic human milk fats...... were carried out to confirm the feasibility of enzymatic modification for the production of HMFS. The characteristics of the product, produced in the scale-up acidolysis under selected conditions (temperature 61 degreesC, water content 3.5%, lard:fatty acids 1/2.4 (mol/mol), Lipozyme RM IM load 13.......7%, and time 1.0 h), were similar to the fat in Chinese mothers' milk. The results showed that it was possible to produce human milk fat substitutes from lard through enzymatic acidolysis with soybean fatty acids....

  11. Stearic acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans

    Directory of Open Access Journals (Sweden)

    Karupaiah Tilakavati

    2007-01-01

    Full Text Available Abstract Background Dietary trans-rich and interesterified fats were compared to an unmodified saturated fat for their relative impact on blood lipids and plasma glucose. Each fat had melting characteristics, plasticity and solids fat content suitable for use as hardstock in margarine and other solid fat formulations. Methods Thirty human volunteers were fed complete, whole food diets during 4 wk periods, where total fat (~31% daily energy, >70% from the test fats and fatty acid composition were tightly controlled. A crossover design was used with 3 randomly-assigned diet rotations and repeated-measures analysis. One test fat rotation was based on palm olein (POL and provided 12.0 percent of energy (%en as palmitic acid (16:0; a second contained trans-rich partially hydrogenated soybean oil (PHSO and provided 3.2 %en as trans fatty acids plus 6.5 %en as 16:0, while the third used an interesterified fat (IE and provided 12.5 %en as stearic acid (18:0. After 4 wk the plasma lipoproteins, fatty acid profile, as well as fasting glucose and insulin were assessed. In addition, after 2 wk into each period an 8 h postprandial challenge was initiated in a subset of 19 subjects who consumed a meal containing 53 g of test fat. Results After 4 wk, both PHSO and IE fats significantly elevated both the LDL/HDL ratio and fasting blood glucose, the latter almost 20% in the IE group relative to POL. Fasting 4 wk insulin was 10% lower after PHSO (p > 0.05 and 22% lower after IE (p Conclusion Both PHSO and IE fats altered the metabolism of lipoproteins and glucose relative to an unmodified saturated fat when fed to humans under identical circumstances.

  12. Brown adipose tissue quantification in human neonates using water-fat separated MRI.

    Directory of Open Access Journals (Sweden)

    Jerod M Rasmussen

    Full Text Available There is a major resurgence of interest in brown adipose tissue (BAT biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction were calculated. Neonatal scans (n = 22 were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38 %, p<10(-4. Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99. BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93 and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93. This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot volume and fat

  13. Human skin equivalents for atopic dermatitis : investigating the role of filaggrin in the skin barrier

    NARCIS (Netherlands)

    Drongelen, Vincent van

    2014-01-01

    Atopic Dermatitis (AD) is a frequent occurring inflammatory skin disease causing physical discomfort, social embarrassment and stress. This skin disease is characterized by decreased skin barrier function and various other epidermal changes, as well as immunological changes. A decreased skin barrier

  14. TSLP is differentially regulated by vitamin D3 and cytokines in human skin

    OpenAIRE

    Landheer, Janneke; Giovannone, Barbara; Sadekova, Svetlana; Tjabringa, Sandra; Hofstra, Claudia; Dechering, Koen; Bruijnzeel-Koomen, Carla; Chang, Charlie; Ying, Yu; de Waal Malefyt, Rene; Hijnen, DirkJan; Knol, Edward

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases and is highly expressed in keratinocytes in human lesional atopic dermatitis (AD) skin. In nonlesional AD skin TSLP expression can be induced by applying house dust mite allergen onto the skin in the atopy patch test. Several studies have demonstrated that the induction of TSLP expression in mouse skin does not only lead to AD-like inflammation of the skin, but also predisposes to severe inflammation of the airwa...

  15. Effects of aging on basal fat oxidation in obese humans

    DEFF Research Database (Denmark)

    Solomon, Thomas; Marchetti, Christine M; Krishnan, Raj K

    2008-01-01

    Basal fat oxidation decreases with age. In obesity, it is not known whether this age-related process occurs independently of changes in body composition and insulin sensitivity. Therefore, body composition, resting energy expenditure, basal substrate oxidation, and maximal oxygen consumption (VO(2......)max) were measured in 10 older (age, 60 +/- 4 years; mean +/- SEM) and 10 younger (age, 35 +/- 4 years) body mass index-matched, obese, normal glucose-tolerant individuals. Fasting blood samples were also collected. Older subjects had slightly elevated fat mass (32.2 +/- 7.1 vs 36.5 +/- 6.7 kg, P...... = .16); however, waist circumference was not different between groups (104.3 +/- 10.3 vs 102.1 +/- 12.6 cm, P = .65). Basal fat oxidation was 22% lower (1.42 +/- 0.14 vs 1.17 +/- 0.22 mg/kg fat-free mass per minute, P = .03) in older subjects. The VO(2)max was also decreased in older individuals (44...

  16. A literature review of the mechanical behavior of the stratum corneum, the living epidermis and the subcutaneous fat tissue

    OpenAIRE

    2006-01-01

    After a description of the structure and function of human skin, including the underlying fat layer, both in vitro and in vivo studies on the mechanical properties of separate skin layers are discussed: e.g. those of stratum corneum, living epidermis and the subcutaneous fat layer. Since the properties of the dermis are already widely known, this skin layer is left out of consideration. In addition, models on the mechanical behavior of human skin are considered.

  17. Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans

    NARCIS (Netherlands)

    Bisschop, PH; Bandsma, RHJ; Stellaard, F; Meijer, AJ; Sauerwein, HP; Kuipers, F; Romijn, JA

    2004-01-01

    Background: Dietary fat content influences bile salt metabolism, but quantitative data from controlled studies in humans are scarce. Objective: The objective of the study was to establish the effect of dietary fat content on the metabolism of primary bile salts. Design: The effects of eucaloric extr

  18. Real Time Detection and Tracking of Human Face using Skin Color Segmentation and Region Properties

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar G.

    2014-07-01

    Full Text Available Real time faces detection and face tracking is one of the challenging problems in application like computer human interaction, video surveillance, biometrics etc. In this paper we are presenting an algorithm for real time face detection and tracking using skin color segmentation and region properties. First segmentation of skin regions from an image is done by using different color models. Skin regions are separated from the image by using thresholding. Then to decide whether these regions contain human face or not we used face features. Our procedure is based on skin color segmentation and human face features (knowledge-based approach. We have used RGB, YCbCr, and HSV color models for skin color segmentation. These color models with thresholds, help to remove non skin like pixel from an image. Each segmented skin regions are tested to know whether region is human face or not, by using human face features based on knowledge of geometrical properties of human face.

  19. Changes in fat concentration of human milk during delivery by intermittent bolus and continuous mechanical pump infusion.

    Science.gov (United States)

    Greer, F R; McCormick, A; Loker, J

    1984-11-01

    The changes in fat concentration and cumulative fat losses that occur during the delivery of human milk using two different continuous infusion systems were compared with the changes in fat concentration during simulated intermittent gavage or bolus feedings. With both mechanical pumps the largest cumulative fat losses and the greatest decreases in fat concentrations occurred at the slowest infusion rates. State of homogenization of the milk generally made little difference in the changes in fat concentration using the syringe pump, whereas homogenizing the milk increased the fat concentration significantly with the roller pump. With the syringe pump the positioning of the syringe tip (horizontal or vertical) made no difference in fat concentration at an infusion rate of 1 ml/hr, whereas at 4 and 7 ml/hr the fat concentration was increased significantly by keeping the syringe tip vertical. With either mechanical pump a large fat bolus was delivered during the eighth and final hour of infusion if the milk remaining in the tubing was recovered by using air infusion at the same infusion rate. Intermittent bolus delivery of human milk resulted in no significant loss of human milk fat, no changes in fat concentration, and no terminal delivery of a large fat load. Thus intermittent bolus feedings are preferred over continuous mechanical pump infusion systems for the delivery of human milk to low-birth-weight infants.

  20. Electrical characteristics of female and male human skin

    Directory of Open Access Journals (Sweden)

    Kalauzi A.

    2012-01-01

    Full Text Available Bioimpedance spectroscopy (BIS is a popular method for characterizing the electrical properties of biological tissues. In this study, BIS measurement data of female and male human skin were analyzed and compared. The electrical characteristics of tissue were followed according to four-parameters of the Cole-Cole model: low frequency resistance R0; high frequency resistance R∞; relaxation time t and parameter a. Individual electrical characteristics of human skin were determined for 30 women and 30 men. The distribution and one-way analysis of variance (one-way ANOVA of the Cole-Cole parameters R0, R∞, t, a within the human population indicated their different dependence on gender. Parameter a, which is higher in the female subjects (a =0.83±0.03 than in the male subjects (a=0.7±0.05, is strongly dependent on gender (p=0. Parameter R∞ also significantly depends on gender (p=0.002, while t and R0 seem to be slightly related to gender (p>0.05. [Acknowledgments - This work was supported by the Ministry of Education and Science of the Republic of Serbia (41006.

  1. Recovery of latent fingerprints and DNA on human skin.

    Science.gov (United States)

    Färber, Doris; Seul, Andrea; Weisser, Hans-Joachim; Bohnert, Michael

    2010-11-01

    The project "Latent Fingerprints and DNA on Human Skin" was the first systematic research in Europe dealing with detection of fingerprints and DNA left by offenders on the skin of corpses. One thousand samples gave results that allow general statements on the materials and methods used. The tests were carried out according to a uniform trial structure. Fingerprints were deposited by natural donors on corpses. The latent fingerprints were treated with magnetic powder or black fingerprint powder. Afterward, they were lifted with silicone casting material (Isomark(®)) or gelatine foil. All lifts were swabbed to recover DNA. It was possible to visualize comparable and identifiable fingerprints on the skin of corpses (16%). In the same categories, magnetic powder (18.4%) yielded better results than black fingerprint powder (13.6%). The number of comparable and identifiable fingerprints decreased on the lifts (12.7%). Isomark(®) (14.9%) was the better lifting material in comparison with gelatine foil (10.1%). In one-third of the samples, DNA could be extracted from the powdered and lifted latents. Black fingerprint powder delivered the better result with a rate of 2.2% for full DNA profiles and profiles useful for exclusion in comparison with 1.8% for the magnetic powder traces. Isomark(®) (3.1%) yielded better results than gelatine foil (0.6%).

  2. Simulation of fluorescent measurements in the human skin

    Science.gov (United States)

    Meglinski, Igor V.; Sinichkin, Yurii P.; Utz, Sergei R.; Pilipenko, Helena A.

    1995-05-01

    Reflectance and fluorescence spectroscopy are successfully used for skin disease diagnostics. Human skin optical parameters are defined by its turbid, scattering properties with nonuniform absorption and fluorescence chromophores distribution, its multilayered structure, and variability under different physiological and pathological conditions. Theoretical modeling of light propagation in skin could improve the understanding of these condition and may be useful in the interpretation of in vivo reflectance and autofluorescence (AF) spectra. Laser application in medical optical tomography, tissue spectroscopy, and phototherapy stimulates the development of optical and mathematical light-tissue interaction models allowing to account the specific features of laser beam and tissue inhomogeneities. This paper presents the version of a Monte Carlo method for simulating of optical radiation propagation in biotissue and highly scattering media, allowing for 3D geometry of a medium. The simulation is based on use of Green's function of medium response to single external pulse. The process of radiation propagation is studied in the area with given boundary conditions, taking into account the processes of reflection and refraction at the boundaries of layers inside the medium under study. Results of Monte Carlo simulation were compared with experimental investigations and demonstrated good agreement.

  3. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  4. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.

    Science.gov (United States)

    Balázs, Boglárka; Vizserálek, Gábor; Berkó, Szilvia; Budai-Szűcs, Mária; Kelemen, András; Sinkó, Bálint; Takács-Novák, Krisztina; Szabó-Révész, Piroska; Csányi, Erzsébet

    2016-03-01

    The aim of this study was to investigate the behavior of promising penetration enhancers through the use of 2 different skin test systems. Hydrogel-based transdermal formulations were developed with ibuprofen as a nonsteroidal anti-inflammatory drug. Transcutol and sucrose esters were used as biocompatible penetration enhancers. The permeability measurements were performed with ex vivo Franz diffusion cell methods and a newly developed Skin Parallel Artificial Membrane Permeability Assays (PAMPA) model. Franz diffusion measurement is commonly used as a research tool in studies of diffusion through synthetic membranes in vitro or penetration through ex vivo human skin, whereas Skin PAMPA involves recently published artificial membrane-based technology for the fast prediction of skin penetration. It is a 96-well plate-based model with optimized artificial membrane structure containing free fatty acid, cholesterol, and synthetic ceramide analog compounds to mimic the stratum corneum barrier function. Transdermal preparations containing 2.64% of different sucrose esters and/or Transcutol and a constant (5%) of ibuprofen were investigated to determine the effects of these penetration enhancers. The study demonstrated the good correlation of the permeability data obtained through use of human skin membrane and the in vitro Skin PAMPA system. The Skin PAMPA artificial membrane serves as quick and relatively deep tool in the early stages of transdermal delivery systems, through which the enhancing efficacy of excipients can be screened so as to facilitate the choice of effective penetration components.

  5. Detection of hypercholesterolemia using hyperspectral imaging of human skin

    Science.gov (United States)

    Milanic, Matija; Bjorgan, Asgeir; Larsson, Marcus; Strömberg, Tomas; Randeberg, Lise L.

    2015-07-01

    Hypercholesterolemia is characterized by high blood levels of cholesterol and is associated with increased risk of atherosclerosis and cardiovascular disease. Xanthelasma is a subcutaneous lesion appearing in the skin around the eyes. Xanthelasma is related to hypercholesterolemia. Identifying micro-xanthelasma can thereforeprovide a mean for early detection of hypercholesterolemia and prevent onset and progress of disease. The goal of this study was to investigate spectral and spatial characteristics of hypercholesterolemia in facial skin. Optical techniques like hyperspectral imaging (HSI) might be a suitable tool for such characterization as it simultaneously provides high resolution spatial and spectral information. In this study a 3D Monte Carlo model of lipid inclusions in human skin was developed to create hyperspectral images in the spectral range 400-1090 nm. Four lesions with diameters 0.12-1.0 mm were simulated for three different skin types. The simulations were analyzed using three algorithms: the Tissue Indices (TI), the two layer Diffusion Approximation (DA), and the Minimum Noise Fraction transform (MNF). The simulated lesions were detected by all methods, but the best performance was obtained by the MNF algorithm. The results were verified using data from 11 volunteers with known cholesterol levels. The face of the volunteers was imaged by a LCTF system (400- 720 nm), and the images were analyzed using the previously mentioned algorithms. The identified features were then compared to the known cholesterol levels of the subjects. Significant correlation was obtained for the MNF algorithm only. This study demonstrates that HSI can be a promising, rapid modality for detection of hypercholesterolemia.

  6. Detection of human papillomavirus in nonmelanoma skin cancer lesions and healthy perilesional skin in kidney transplant recipients and immunocompetent patients.

    Science.gov (United States)

    Bernat-García, J; Morales Suárez-Varela, M; Vilata-Corell, J J; Marquina-Vila, A

    2014-04-01

    The influence of human papillomavirus (HPV) on the development of nonmelanoma skin cancer (NMSC) is a topic of debate. HPV types from the beta genus (HPV-β) have been most frequently associated with the development of skin cancer. To analyze the prevalence and range of HPV types in NMSC lesions and healthy perilesional skin in immunodepressed and immunocompetent patients and to evaluate the influence of various clinical factors on the prevalence of HPV in skin cancer. Nested polymerase chain reaction and sequencing were used to detect HPV in 120 NMSC samples obtained by biopsy from 30 kidney transplant recipients and 30 immunocompetent patients. In all cases, a sample was taken from the tumor site and the surrounding healthy skin. Potential confounders were assessed and the data analyzed by multivariate logistic regression. HPV DNA was detected in 44 (73.3%) of the 60 samples from immunodepressed patients and in 32 (53.3%) of the 60 samples from immunocompetent patients (adjusted odds ratio, 3.4; 95% CI, 1.2-9.6). In both groups of patients, HPV was more common in healthy perilesional skin than in lesional skin. HPV-β was the most common type isolated. We found a wide range of HPV types (mostly HPV-β) in the skin of kidney transplant recipients and immunocompetent patients with skin cancer. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  7. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion

    Directory of Open Access Journals (Sweden)

    Giuseppina Mandalari

    2016-09-01

    Full Text Available The goal of the present study was to quantify the rate and extent of polyphenols released in the gastrointestinal tract (GIT from natural (NS and blanched (BS almond skins. A dynamic gastric model of digestion which provides a realistic simulation of the human stomach was used. In order to establish the effect of a food matrix on polyphenols bioaccessibility, NS and BS were either digested in water (WT or incorporated into home-made biscuits (HB, crisp-bread (CB and full-fat milk (FM. Phenolic acids were the most bioaccessible class (68.5% release from NS and 64.7% from BS. WT increased the release of flavan-3-ols (p < 0.05 and flavonols (p < 0.05 from NS after gastric plus duodenal digestion, whereas CB and HB were better vehicles for BS. FM lowered the % recovery of polyphenols, the free total phenols and the antioxidant status in the digestion medium, indicating that phenolic compounds could bind protein present in the food matrix. The release of bioactives from almond skins could explain the beneficial effects associated with almond consumption.

  8. Multiple-reflection model of human skin and estimation of pigment concentrations

    Science.gov (United States)

    Ohtsuki, Rie; Tominaga, Shoji; Tanno, Osamu

    2012-07-01

    We describe a new method for estimating the concentrations of pigments in the human skin using surface spectral reflectance. We derive an equation that expresses the surface spectral reflectance of the human skin. First, we propose an optical model of the human skin that accounts for the stratum corneum. We also consider the difference between the scattering coefficient of the epidermis and that of the dermis. We then derive an equation by applying the Kubelka-Munk theory to an optical model of the human skin. Unlike a model developed in a recent study, the present equation considers pigments as well as multiple reflections and the thicknesses of the skin layers as factors that affect the color of the human skin. In two experiments, we estimate the pigment concentrations using the measured surface spectral reflectances. Finally, we confirm the feasibility of the concentrations estimated by the proposed method by evaluating the estimated pigment concentrations in the skin.

  9. Chicken skin virome analyzed by high-throughput sequencing shows a composition highly different from human skin.

    Science.gov (United States)

    Denesvre, Caroline; Dumarest, Marine; Rémy, Sylvie; Gourichon, David; Eloit, Marc

    2015-10-01

    Recent studies show that human skin at homeostasis is a complex ecosystem whose virome include circular DNA viruses, especially papillomaviruses and polyomaviruses. To determine the chicken skin virome in comparison with human skin virome, a chicken swabs pool sample from fifteen indoor healthy chickens of five genetic backgrounds was examined for the presence of DNA viruses by high-throughput sequencing (HTS). The results indicate a predominance of herpesviruses from the Mardivirus genus, coming from either vaccinal origin or presumably asymptomatic infection. Despite the high sensitivity of the HTS method used herein to detect small circular DNA viruses, we did not detect any papillomaviruses, polyomaviruses, or circoviruses, indicating that these viruses may not be resident of the chicken skin. The results suggest that the turkey herpesvirus is a resident of chicken skin in vaccinated chickens. This study indicates major differences between the skin viromes of chickens and humans. The origin of this difference remains to be further studied in relation with skin physiology, environment, or virus population dynamics.

  10. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sang Hoon; Kim, Jae Hwan; Yi, Sang Min [Laboratory of Cell Signaling and Nanomedicine, Department of Dermatology and Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine, Seoul (Korea, Republic of); Lee, Jung Pyo; Kim, Jin Ho; Sohn, Kyung Hee; Park, Kui Lea [National Institute of Toxicological Research, Seoul (Korea, Republic of); Kim, Meyoung-Kon [Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of); Son, Sang Wook, E-mail: skin4u@korea.ac.kr [Laboratory of Cell Signaling and Nanomedicine, Department of Dermatology and Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine, Seoul (Korea, Republic of)

    2010-04-09

    Quantum dots (QDs) are rapidly emerging as an important class of nanoparticles (NPs) with potential applications in medicine. However, little is known about penetration of QDs through human skin. This study investigated skin penetration of QDs in both in vivo and in vitro human skin. Using the tape stripping method, this study demonstrates for the first time that QDs can actually penetrate through the stratum corneum (SC) of human skin. Transmission electron microscope (TEM) and energy diverse X-ray (EDX) analysis showed accumulation of QDs in the SC of a human skin equivalent model (HSEM) after dermal exposure to QDs. These findings suggest possible transdermal absorption of QDs after dermal exposure over a relatively long period of time.

  11. In Vitro Desensitization of Human Skin Mast Cells

    Science.gov (United States)

    Zhao, Wei; Gomez, Gregorio; Macey, Matthew; Kepley, Christopher L.

    2013-01-01

    Desensitization is a clinical procedure whereby incremental doses of a drug are administered over several hours to a sensitive patient until a therapeutic dose and clinical tolerance are achieved. Clinical tolerance may occur in part by attenuating the mast cell response. In the present study, primary human skin mast cells were used to establish and characterize an in vitro model of desensitization. Mast cells in culture were armed with allergen-specific (4-hydroxy-3-nitro-phenylacety and Der p2) and non-specific IgE antibodies, and then desensitized by incremental exposures to 4-hydroxy-3-nitrophenylacety-BSA. This desensitization procedure abrogated the subsequent degranulation response to the desensitizing allergen, to an unrelated allergen, and to IgG anti-FcεRI, but not to C5a, substance P, compound 48/80, and calcium ionophore. Desensitized cells regained their FcεRI-dependent degranulation capability by 24–48 h after free allergen had been removed. Therefore, sensitized human skin mast cells are reversibly desensitized in vitro by exposure to incremental doses of that allergen, which also cross-desensitizes them to an unrelated allergen. PMID:22009002

  12. Permeability of the reconstructed human epidermis model Episkin in comparison to various human skin preparations.

    Science.gov (United States)

    Netzlaff, Frank; Kaca, Monika; Bock, Udo; Haltner-Ukomadu, Eleonore; Meiers, Peter; Lehr, Claus-Michael; Schaefer, Ulrich F

    2007-04-01

    The objective of this work was to compare the barrier function of the small diameter reconstructed human epidermis model Episkin (d=12 mm) to human skin in vitro. For that purpose a modification for the Franz diffusion cell (d=15mm) had to be developed so as to allow direct comparison with the following human skin preparations: Full thickness skin (FTS), split thickness skin (STS), heat-separated epidermis (HSE), and trypsin isolated stratum corneum (TISC). Among the tested preparations, HSE appeared to be the most preferable due to its clear morphological structure and ease of preparation. The lipid profile of HSE and Episkin was analyzed and showed significant differences in terms of cholesterol, ceramides and triglycerides contents, whereas cholesterol esters and fatty acids were not different. Permeation data with HSE and Episkin were then gathered using caffeine and testosterone. Both test compounds permeated much faster through Episkin than through HSE. Moreover, opposed to Episkin, HSE differentiated between the two test compounds. In spite of the remarkable progress in developing RHEs in the past years at this time Episkin can obviously not yet fully replace human skin for in vitro permeability experiments.

  13. THE PENETRATION OF VESICANT VAPORS INTO HUMAN SKIN.

    Science.gov (United States)

    Nagy, S M; Golumbic, C; Stein, W H; Fruton, J S; Bergmann, M

    1946-07-20

    Analytical methods which are accurate to about 1 per cent have been developed for the determination of small amounts (ca. 500 gamma) of bis(beta-chloroethyl)-sulfide (H), ethyl-bis(beta-chloroethyl)amine (EBA), tris(beta-chloroethyl)amine (TBA), beta-chloroethyl-benzylsulfide (benzyl-H), and beta-chloroethyl-ethylsulfide (ethyl-H). The determinations are made by micro titration of the HCl liberated upon complete hydrolysis of the vesicants. A description is given of an apparatus suitable for applying vapors of vesicants to unit areas of skin. A very precise and reproducible micropipetting technique is described for the introduction of the vesicants into the penetration apparatus. By means of this penetration apparatus studies have been made of several factors which may influence the rate at which vesicant vapors penetrate into skin. Model experiments have been performed in which H was allowed to vaporize and the vapor was absorbed on a surface such as that of diethylene glycol or vaseline. It has been found that if the surface of liquid H is increased by spreading the agent on filter paper, the rate of evaporation is markedly increased. Furthermore, if the vapor is agitated by means of a magnetically driven fan, the rate of absorption by diethylene glycol is greatly accelerated. With vaseline as the absorbing surface it has been found that the area of the absorbing surface has an effect on the rate of absorption of H vapor. More H is absorbed by vaseline spread on filter paper to give a rough surface than is absorbed by a smooth film of vaseline. Measurements of the rate of penetration into human skin of H, EBA, TBA, benzyl-H, and ethyl-H vapors have been performed at 21-23 degrees C. and 30-31 degrees C. by means of the penetration apparatus described in this paper. The measurements were carred out on human volunteers under conditions of controlled temperature and humidity. When human skin is exposed to air saturated with H vapor, the H penetrates the skin of the

  14. Laser system for optical biopsy and in-vivo study of the human skin

    Science.gov (United States)

    Borisova, Ekaterina G.; Avramov, Lachezar A.

    2001-04-01

    The aim of this study was to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced autofluorescence spectroscopy (LIAFS) for human skin in vivo. The autofluorescence characterization of tissue relies on different spectral properties of tissue. It was demonstrated a differentiation between normal skin and skin with vitaligo. In our experimental investigation of the autofluorescence spectrum of human skin in vivo a nitrogen laser with excitation wavelength 337 nm was used. Two fluorescence bands were observed at 440 and 490 nm, these were attributed to reduced nicotinamide adenine dinucleotide (NADH) and collagen. The intensity of the NADH emission band was markedly reduced in the skin with vitaligo compared with the normal skin, which could indicate different redox conditions in skin with vitaligo. The autofluorescence spectrum of human skin depends on the main internal absorbers, which are blood and melanin. In this study was described the effect caused by melanin content on the shape of the autofluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. The goal of this work is optimization of detection and diagnosis of hollow organs and skin.

  15. Combined Subcision, Autologous Fat Grafting and Microskin Grafting for an Unsightly Facial Scar in Fitzpatrick Skin Type V: A Case Report.

    Directory of Open Access Journals (Sweden)

    Souvik Adhikari

    2013-02-01

    Full Text Available Unsightly scars pose a challenge to the plastic surgeon because apart from their appearance, they might be adhered to the underlying structures. This situation is complicated when the scar becomes hypopigmented and is found in individuals with Fitzpatrick Type V skin types. Autologous fat transfer following subcision has been depicted as an important modality in the management of unsightly scars that are additionally depressed. Microskin grafting can alter hypopigmented areas if applied judiciously. Taken in combination, these methods of scar revision can be important tools in the armamentarium of the plastic surgeon. We hereby portray a case of an unsightly facial scar adherent to the underlying structures in a woman with Fitzpatrick skin type V, who was successfully managed with a combination of subcision, autologous fat transfer and microskin grafting. [Arch Clin Exp Surg 2013; 2(1.000: 59-62

  16. Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study.

    Science.gov (United States)

    Schäfer-Korting, Monika; Bock, Udo; Gamer, Armin; Haberland, Annekathrin; Haltner-Ukomadu, Eleonore; Kaca, Monika; Kamp, Hennicke; Kietzmann, Manfred; Korting, Hans Christian; Krächter, Hans-Udo; Lehr, Claus-Michael; Liebsch, Manfred; Mehling, Annette; Netzlaff, Frank; Niedorf, Frank; Rübbelke, Maria K; Schäfer, Ulrich; Schmidt, Elisabeth; Schreiber, Sylvia; Schröder, Klaus-Rudolf; Spielmann, Horst; Vuia, Alexander

    2006-06-01

    Exposure to chemicals absorbed by the skin can threaten human health. In order to standardise the predictive testing of percutaneous absorption for regulatory purposes, the OECD adopted guideline 428, which describes methods for assessing absorption by using human and animal skin. In this study, a protocol based on the OECD principles was developed and prevalidated by using reconstructed human epidermis (RHE). The permeation of the OECD standard compounds, caffeine and testosterone, through commercially available RHE models was compared to that of human epidermis and animal skin. In comparison to human epidermis, the permeation of the chemicals was overestimated when using RHE. The following ranking of the permeation coefficients for testosterone was obtained: SkinEthic > EpiDerm, EPISKIN > human epidermis, bovine udder skin, pig skin. The ranking for caffeine was: SkinEthic, EPISKIN > bovine udder skin, EpiDerm, pig skin, human epidermis. The inter-laboratory and intra-laboratory reproducibility was good. Long and variable lag times, which are a matter of concern when using human and pig skin, did not occur with RHE. Due to the successful transfer of the protocol, it is now in the validation process.

  17. Light microscopic, electron microscopic, and immunohistochemical comparison of Bama minipig (Sus scrofa domestica) and human skin.

    Science.gov (United States)

    Liu, Yu; Chen, Jun-ying; Shang, Hai-tao; Liu, Chang-e; Wang, Yong; Niu, Rong; Wu, Jun; Wei, Hong

    2010-04-01

    Here we sought to evaluate the possibility of using Chinese Bama miniature pig skin as a suitable animal model for human skin. Morphologic features of the skin of Bama miniature pigs resemble those of human skin, including skin layer thickness, development of a superficial vascular system, structure of the dermal-epidermal interface, and extracellular matrix. The characteristics and densities of Langerhans cells, fibroblasts, vascular endothelial cells, and mast cells were similar between Bama pig and human skin. Immunohistochemistry showed that miniature pigs and humans have the same antigenic determinants of human laminin, fibronectin, filaggrin, collagen I, collagen III, collagen IV, and keratin but not CD34, ICAM1, or S100. In addition, collagen type I from Bama miniature pig skin exhibited physicochemical characteristics resembling those of human skin, in regard to HPLC chromatography, UV spectroscopy, amino-acid composition, and SDS-PAGE analysis. Given these results, we concluded that Bama miniature pigs have great potential as a human skin model and for developing dermal substitute materials in wound repair. However, we also observed some disparities between the skin of Bama miniature pigs and humans, including pigment cell distribution, sweat gland types, and others. Therefore, further studies are needed to completely evaluate the effects of these interspecies differences on the actual application of the model.

  18. Comparison of human skin irritation patch test data with in vitro skin irritation assays and animal data.

    Science.gov (United States)

    Jírová, Dagmar; Basketter, David; Liebsch, Manfred; Bendová, Hana; Kejlová, Kristina; Marriott, Marie; Kandárová, Helena

    2010-02-01

    Efforts to replace the rabbit skin irritation test have been underway for many years, encouraged by the EU Cosmetics Directive and REACH. Recently various in vitro tests have been developed, evaluated and validated. A key difficulty in confirming the validity of in vitro methods is that animal data are scarce and of limited utility for prediction of human effects, which adversely impacts their acceptance. This study examines whether in vivo or in vitro data most accurately predicted human effects. Using the 4-hr human patch test (HPT) we examined a number of chemicals whose EU classification of skin irritancy is known to be borderline, or where in vitro methods provided conflicting results. Of the 16 chemicals classified as irritants in the rabbit, only five substances were found to be significantly irritating to human skin. Concordance of the rabbit test with the 4-hr HPT was only 56%, whereas concordance of human epidermis models with human data was 76% (EpiDerm) and 70% (EPISKIN). The results confirm observations that rabbits overpredict skin effects in humans. Therefore, when validating in vitro methods, all available information, including human data, should be taken into account before making conclusions about their predictive capacity.

  19. The effect of hyperbaric oxygenation on the viability of human fat injected into nude mice.

    Science.gov (United States)

    Shoshani, O; Shupak, A; Ullmann, Y; Ramon, Y; Gilhar, A; Kehat, I; Peled, I J

    2000-11-01

    Autologous free-fat injection for the correction of soft-tissue defects has become a common procedure in plastic surgery. The main shortcoming of this method for achieving permanent soft-tissue augmentation is the partial absorption of the injected fat, an occurrence that leads to the need for both overcorrection and repeated fat reinjection. Improving the oxygenation of the injected fat has been suggested as a means of helping to overcome the initial critical phase that occurs postinjection (when the fat cells are nourished by osmosis), increasing phagocyte activity, accelerating fibroblast activity and collagen formation, and enhancing angiogenesis. In addition, the hyperbaric oxygen-mediated decrement in endothelial leukocyte adhesion will decrease cytokine release, thereby reducing edema and inflammatory responses. The purpose of the present study was to examine the effect of hyperbaric oxygenation on improving the viability of injected fat. Adipose tissue obtained from human breasts by suction-assisted lipectomy was injected into the subcuticular nuchal region in nude mice. The mice were then exposed to daily hyperbaric oxygen treatments, breathing 100% oxygen at 2 atmospheres absolute (ATA) for 90 minutes. The duration of the administered hyperbaric oxygen therapy was 5, 10, or 15 days, according to the study group. Mice exposed to normobaric air alone served as the control group, and each group included 10 animals. The rats were killed 15 weeks after fat injection. The grafts were dissected out, weight and volume were measured, and histologic evaluation was performed. In all of the study groups, at least part of the injected fat survived, giving the desired clinical outcome. No significant differences could be found between the groups regarding fat weight and volume. Histopathologic examination of the dissected grafts demonstrated a significantly better integrity of the fat tissue in the group that received hyperbaric oxygen for 5 days (p = 0.047). This

  20. In situ depletion of CD4(+) T cells in human skin by Zanolimumab

    DEFF Research Database (Denmark)

    Villadsen, L.S.; Skov, L.; Dam, T.N.

    2007-01-01

    -driving T cells in situ may therefore be a useful approach in the treatment of inflammatory and malignant skin diseases. Depletion of CD4(+) T cells in intact inflamed human skin tissue by Zanolimumab, a fully human therapeutic monoclonal antibody (IgG1, kappa) against CD4, was studied in a human psoriasis...

  1. TSLP is differentially regulated by vitamin D3 and cytokines in human skin

    NARCIS (Netherlands)

    Landheer, Janneke; Giovannone, Barbara; Sadekova, Svetlana; Tjabringa, Sandra; Hofstra, Claudia; Dechering, Koen; Bruijnzeel-Koomen, Carla; Chang, Charlie; Ying, Yu; de Waal Malefyt, Rene; Hijnen, DirkJan; Knol, Edward

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases and is highly expressed in keratinocytes in human lesional atopic dermatitis (AD) skin. In nonlesional AD skin TSLP expression can be induced by applying house dust mite allergen onto the skin in the atopy patch test. S

  2. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo.

    NARCIS (Netherlands)

    Moeskops, B.W.M.; Steeghs, M.M.L.; Swam, K. van; Cristescu, S.M.; Scheepers, P.T.J.; Harren, F.J.M.

    2006-01-01

    Trace gases emitted by human skin in vivo are monitored non-invasively and in real time using laser-based photoacoustic detection and proton-transfer reaction mass spectrometry. A small quartz cuvette is placed on the skin to create a headspace from which a carrier gas transports the skin emissions

  3. TSLP is differentially regulated by vitamin D3 and cytokines in human skin

    NARCIS (Netherlands)

    Landheer, Janneke; Giovannone, Barbara; Sadekova, Svetlana; Tjabringa, Sandra; Hofstra, Claudia; Dechering, Koen; Bruijnzeel-Koomen, Carla; Chang, Charlie; Ying, Yu; de Waal Malefyt, Rene; Hijnen, DirkJan; Knol, Edward

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) plays an important role in allergic diseases and is highly expressed in keratinocytes in human lesional atopic dermatitis (AD) skin. In nonlesional AD skin TSLP expression can be induced by applying house dust mite allergen onto the skin in the atopy patch test.

  4. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo.

    NARCIS (Netherlands)

    Moeskops, B.W.M.; Steeghs, M.M.L.; Swam, K. van; Cristescu, S.M.; Scheepers, P.T.J.; Harren, F.J.M.

    2006-01-01

    Trace gases emitted by human skin in vivo are monitored non-invasively and in real time using laser-based photoacoustic detection and proton-transfer reaction mass spectrometry. A small quartz cuvette is placed on the skin to create a headspace from which a carrier gas transports the skin emissions

  5. Cholesterol-lowering potential in human subjects of fat from pigs fed rapeseed oil.

    Science.gov (United States)

    Sandström, B; Bügel, S; Lauridsen, C; Nielsen, F; Jensen, C; Skibsted, L H

    2000-08-01

    The possibility of achieving blood-lipid-lowering characteristics of pig fat by increasing the content of unsaturated fat in pig feed was evaluated. Three pig feeding regimens were applied: basal feed (no added fat or vitamin E), basal feed + rapeseed oil (60 g/kg feed), and basal feed + rapeseed oil (60 g/kg) + vitamin E (200 mg/kg). Meat and meat products from the three pig groups were incorporated into diets providing 86 g pig fat/10 MJ. The diets were served to twelve healthy human male subjects for 3 weeks each in a randomised crossover design. The diets prepared from pigs fed rapeseed oil had a lower content of saturated fatty acids (approximately 9 v. 11% of energy) and a higher content of polyunsaturated fatty acids (approximately 6 v. 4% of energy) than the diet prepared from pigs fed the basal feed. Diets based on fat from pigs fed the rapeseed oil resulted in significantly lower (approximately 4%, P = 0.019) total serum cholesterol concentration compared with the diet from pigs fed the basal feed. No differences were observed in LDL-, HDL- or VLDL-cholesterol, or in triacylglycerol or VLDL-triacylglycerol concentrations. Addition of vitamin E to the pig feed resulted in only a minor increase in vitamin E content in the human subjects' diet and the vitamin E content was low in all three pig diets. Plasma vitamin E concentration in the human subjects at the end of the period with diets from pigs fed rapeseed oil without vitamin E was significantly lower (P = 0.04) than in the other two diet periods. In conclusion, an increased content of rapeseed oil in pig feed changes the fatty acid composition of the pig fat in a way that has a potential to reduce blood cholesterol concentrations in human subjects. However, intake of pig fat with a higher content of unsaturated fatty acids needs to be matched by a higher dietary intake of vitamin E.

  6. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    Science.gov (United States)

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  7. Appreciating the image of God in all humanity: Towards a pastoral response to skin lightening as image enhancement to exit dark skin

    Directory of Open Access Journals (Sweden)

    Noah K. Tenai

    2016-03-01

    Full Text Available The practice of skin lightening is prevalent amongst dark-skinned people globally. Various current studies that map this practice and that seek motivations behind the practice are examined. It is observed that through shrewd marketing, dark-skinned people are offered a promise of a better quality of life, obtained by a lighter skin, through the use of skin lighteners. In spite of the severe health risks involved, the promise is ostensibly irresistible to some dark-skinned persons. A pastoral response is offered that affirms the full personhood and complete humanity of dark-skinned people as fully human and whole in their dark skins.Keywords: Skin lightening, Dark skin, Image of God

  8. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro.

    Science.gov (United States)

    Krishnan, Gayathri; Edwards, Jeffrey; Chen, Yan; Benson, Heather A E

    2010-06-01

    The aim of the present study was to evaluate the skin permeation of naltrexone (NTX) under the influence of a pulsed electromagnetic field (PEMF). The permeation of NTX across human epidermis and a silicone membrane in vitro was monitored during and after application of the PEMF and compared to passive application. Enhancement ratios of NTX human epidermis permeation by PEMF over passive diffusion, calculated based on the AUC of cumulative NTX permeation to the receptor compartment verses time for 0-4 h, 4-8 h, and over the entire experiment (0-8 h) were 6.52, 5.25, and 5.66, respectively. Observation of the curve indicated an initial enhancement of NTX permeation compared to passive delivery whilst the PEMF was active (0-4 h). This was followed by a secondary phase after termination of PEMF energy (4-8 h) in which there was a steady increase in NTX permeation. No significant enhancement of NTX penetration across silicone membrane occurred with PEMF application in comparison to passively applied NTX. In a preliminary experiment PEMF enhanced the penetration of 10 nm gold nanoparticles through the stratum corneum as visualized by multiphoton microscopy. This suggests that the channels through which the nanoparticles move must be larger than the 10 nm diameter of these rigid particles.

  9. Flagellin delivery by Pseudomonas aeruginosa rhamnolipids induces the antimicrobial protein psoriasin in human skin.

    Directory of Open Access Journals (Sweden)

    Ulf Meyer-Hoffert

    Full Text Available The opportunistic pathogen Pseudomonas aeruginosa can cause severe infections in patients suffering from disruption or disorder of the skin barrier as in burns, chronic wounds, and after surgery. On healthy skin P. aeruginosa causes rarely infections. To gain insight into the interaction of the ubiquitous bacterium P. aeruginosa and healthy human skin, the induction of the antimicrobial protein psoriasin by P. aeruginosa grown on an ex vivo skin model was analyzed. We show that presence of the P. aeruginosa derived biosurfactant rhamnolipid was indispensable for flagellin-induced psoriasin expression in human skin, contrary to in vitro conditions. The importance of the bacterial virulence factor flagellin as the major inducing factor of psoriasin expression in skin was demonstrated by use of a flagellin-deficient mutant. Rhamnolipid mediated shuttle across the outer skin barrier was not restricted to flagellin since rhamnolipids enable psoriasin expression by the cytokines IL-17 and IL-22 after topical application on human skin. Rhamnolipid production was detected for several clinical strains and the formation of vesicles was observed under skin physiological conditions. In conclusion we demonstrate herein that rhamnolipids enable the induction of the antimicrobial protein psoriasin by flagellin in human skin without direct contact of bacteria and responding cells. Hereby, human skin might control the microflora to prevent colonization of unwanted microbes in the earliest steps before potential pathogens can develop strategies to subvert the immune response.

  10. Respiratory activity and growth of human skin derma fibroblasts.

    Science.gov (United States)

    Papa, F; Scacco, S; Vergari, R; Bucaria, V; Dioguardi, D; Papa, S

    1998-09-01

    A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

  11. Advanced UV Absorbers for the Protection of Human Skin.

    Science.gov (United States)

    Hüglin, Dietmar

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far.

  12. Evaporation of volatile organic compounds from human skin in vitro.

    Science.gov (United States)

    Gajjar, Rachna M; Miller, Matthew A; Kasting, Gerald B

    2013-08-01

    The specific evaporation rates of 21 volatile organic compounds (VOCs) from either human skin or a glass substrate mounted in modified Franz diffusion cells were determined gravimetrically. The diffusion cells were positioned either on a laboratory bench top or in a controlled position in a fume hood, simulating indoor and outdoor environments, respectively. A data set of 54 observations (34 skin and 20 glass) was assembled and subjected to a correlation analysis employing 5 evaporative mass transfer relationships drawn from the literature. Models developed by Nielsen et al. (Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments: a theoretical approach based on laminar boundary layer theory. Ann Occup Hyg 1995;39:497-511.) and the U.S. Environmental Protection Agency (Peress, Estimate evaporative losses from spills. Chem Eng Prog 2003; April: 32-34.) were found to be the most effective at correlating observed and calculated evaporation rates under the various conditions. The U.S. EPA model was selected for further use based on its simplicity. This is a turbulent flow model based only on vapor pressure and molecular weight of the VOC and the effective air flow rate u. Optimum values of u for the two laboratory environments studied were 0.23 m s(-1) (bench top) and 0.92 m s(-1) (fume hood).

  13. 3D bioprinting of functional human skin: production and in vivo analysis.

    Science.gov (United States)

    Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L

    2016-12-05

    Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm(2), a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.

  14. Transmission of phototherapy through human skin: dosimetry adjustment for effects of skin color, body composition, wavelength, and light coupling to skin

    Science.gov (United States)

    Nussbaum, Ethne L.; Van Zuylen, Jeff

    2006-02-01

    Purpose: To examine factors that affect penetration of phototherapy. Methods: Age, sex, height, and weight were recorded; skin color, skinfold thickness, and light transmission through a skinfold were measured over biceps and triceps muscles, and at the anterior waistline. Light was generated using two 23-diode LED arrays at 840 nm and 660 nm with surface area of 7 cm2. Photon irradiation was measured using an Optical Power Meter consisting of a 1x1-cm2 light detector placed in the centre of the illuminated 7 cm2 spot. Transmission was measured using three skin-diode coupling conditions. Results: Penetration of LED irradiation increased when diodes were coupled to skin with pressure. Red light attenuated more rapidly than infrared light and the attenuation of red light increased as skin color darkened. Penetration of red and infrared light decreased as the amount of subcutaneous fat increased. There were gender effects on penetration of infrared light at normal and low BMI values. Conclusions: When using divergent light sources for phototherapy, radiant exposure should take into account individual physical characteristics, irradiation wavelength and diode configuration of the laser therapy system.

  15. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    Science.gov (United States)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  16. Skin blood flow changes in anaesthetized humans: comparison between skin thermal clearance and finger pulse amplitude measurement.

    Science.gov (United States)

    Saumet, J L; Leftheriotis, G; Dittmar, A; Delhomme, G; Degoute, C S

    1986-01-01

    The effect of general anaesthesia on skin blood flow in the left hand, measured by a new non-invasive probe using the thermal clearance method was examined. A mercury silastic gauge was placed around the third left finger and the plethysmographic wave amplitude was recorded to measure changes in finger pulse amplitude. Heart rate (HR), mean arterial blood pressure (MABP) and skin temperature were also recorded. General anaesthesia was induced by droperidol and phenoperidine injection and propanidid infusion in eight female patients. Skin thermal clearance, plethysmographic wave amplitude, HR, MABP and skin temperature were 0.40 +/- 0.02 w X m-1 degree C-1, 9 +/- 1 mm, 98 +/- 5 beats X min-1, 12.50 +/- 0.93 kPa and 33.3 +/- 3.4 degrees C respectively. The minimal value of MABP was 9.58 +/- 1.06 kPa, whereas skin thermal clearance, plethysmographic wave amplitude, HR and skin temperature increased to 0.45 +/- 0.02 w X m-1 degree C-1, 29 +/- 3 mm, 110 +/- 4 beats X min-1 and 34.4 +/- 0.4 degrees C. Changes in skin thermal clearance correlated well with plethysmographic wave amplitude. Statistically significant changes in these two parameters occurred before significant change in HR, MABP or skin temperature. The results show that the new non-invasive probe using the thermal clearance method appears to be a useful device for measuring cutaneous microcirculation in anaesthetized humans, and responds more quickly than change in skin temperature, which is a delayed effect of skin blood flow change. Our results also show that the intensity of cutaneous vasodilatation induced by general anaesthesia did not relate to the vascular tone before anaesthesia.

  17. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    OpenAIRE

    Quan, Taihao; Fisher, Gary J.

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin d...

  18. The Protective Role of Melanin Against UV Damage in Human Skin

    OpenAIRE

    Brenner, Michaela; Hearing, Vincent J.

    2008-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin...

  19. Survival of the fattest: fat babies were the key to evolution of the large human brain.

    Science.gov (United States)

    Cunnane, Stephen C; Crawford, Michael A

    2003-09-01

    In the past 2 million years, the hominid lineage leading to modern humans evolved significantly larger and more sophisticated brains than other primates. We propose that the modern human brain was a product of having first evolved fat babies. Hence, the fattest (infants) became, mentally, the fittest adults. Human babies have brains and body fat each contributing to 11-14% of body weight, a situation which appears to be unique amongst terrestrial animals. Body fat in human babies provides three forms of insurance for brain development that are not available to other land-based species: (1) a large fuel store in the form of fatty acids in triglycerides; (2) the fatty acid precursors to ketone bodies which are key substrates for brain lipid synthesis; and (3) a store of long chain polyunsaturated fatty acids, particularly docosahexaenoic acid, needed for normal brain development. The triple combination of high fuel demands, inability to import cholesterol or saturated fatty acids, and dependence on docosahexaenoic acid puts the mammalian brain in a uniquely difficult situation compared with other organs and makes its expansion in early humans all the more remarkable. We believe that fresh- and salt-water shorelines provided a uniquely rich, abundant and accessible food supply, and the only viable environment for evolving both body fat and larger brains in human infants.

  20. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations.

    Science.gov (United States)

    Wu, Y; Nieuwenhoff, M D; Huygen, F J P M; van der Helm, F C T; Niehof, S; Schouten, A C

    2017-05-01

    Small nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to quantitatively characterize the control mechanism of small nerve fibers in regulating skin blood flow in response to local thermal perturbation. The skin of healthy subjects' hand dorsum (n=8) was heated to 42°C with an infrared lamp, and then naturally cooled down. The distance between the lamp and the hand was set to three different levels in order to change the irradiation intensity on the skin and implement three different skin temperature rise rates (0.03°C/s, 0.02°C/s and 0.01°C/s). A laser Doppler imager (LDI) and a thermographic video camera recorded the temporal profile of the skin blood flow and the skin temperature, respectively. The relationship between the skin blood flow and the skin temperature was characterized by a vasomotor response model. The model fitted the skin blood flow response well with a variance accounted for (VAF) between 78% and 99%. The model parameters suggested a similar mechanism for the skin blood flow regulation with the thermal perturbations at 0.03°C/s and 0.02°C/s. But there was an accelerated skin vasoconstriction after a slow heating (0.01°C/s) (p-value<0.05). An attenuation of the skin vasodilation was also observed in four out of the seven subjects during the slow heating (0.01°C/s). Our method provides a promising way to quantitatively assess the function of small nerve fibers non-invasively and non-contact.

  1. Characterising the variations in ethnic skin colours: a new calibrated data base for human skin.

    Science.gov (United States)

    Xiao, K; Yates, J M; Zardawi, F; Sueeprasan, S; Liao, N; Gill, L; Li, C; Wuerger, S

    2017-02-01

    Accurate skin colour measurements are important for numerous medical applications including the diagnosis and treatment of cutaneous disorders and the provision of maxillofacial soft tissue prostheses. In this study, we obtained accurate skin colour measurements from four different ethnic groups (Caucasian, Chinese, Kurdish, Thai) and at four different body locations (Forehead, cheek, inner arm, back of hand) with a view of establishing a new skin colour database for medical and cosmetic applications. Skin colours are measured using a spectrophotometer and converted to a device-independent standard colour appearance space (CIELAB) where skin colour is expressed as values along the three dimensions: Lightness L*, Redness a* and Yellowness b*. Skin colour differences and variation are then evaluated as a function of ethnicity and body location. We report three main results: (1) When plotted in a standard colour appearance space (CIELAB), skin colour distributions for the four ethnic groups overlap significantly, although there are systematic mean differences. Between ethnicities, the most significant skin colour differences occur along the yellowness dimension, with Thai skin exhibiting the highest yellowness (b*) value and Caucasian skin the lowest value. Facial redness (a*) is invariant across the four ethnic groups. (2) Between different body locations, there are significant variations in redness (a*), with the forehead showing the highest redness value and the inner arm the lowest. (3) The colour gamut is smallest in the Chinese sample and largest in the Caucasian sample, with the Chinese gamut lying entirely the Caucasian gamut. Similarly, the largest variability in skin tones is found in the Caucasian group, and the smallest in the Chinese group. Broadly speaking, skin colour variation can be explained by two main factors: individual differences in lightness and yellowness are mostly due to ethnicity, whereas differences in redness are primarily due to

  2. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model.

    Science.gov (United States)

    Lee, Jeong-Hyun; Kim, Hye-Lee; Lee, Mi Hee; You, Kyung Eun; Kwon, Byeong-Ju; Seo, Hyok Jin; Park, Jong-Chul

    2012-10-15

    Wound healing proceeds through a complex collaborative process involving many types of cells. Keratinocytes and fibroblasts of epidermal and dermal layers of the skin play prominent roles in this process. Asiaticoside, an active component of Centella asiatica, is known for beneficial effects on keloid and hypertrophic scar. However, the effects of this compound on normal human skin cells are not well known. Using in vitro systems, we observed the effects of asiaticoside on normal human skin cell behaviors related to healing. In a wound closure seeding model, asiaticoside increased migration rates of skin cells. By observing the numbers of cells attached and the area occupied by the cells, we concluded that asiaticoside also enhanced the initial skin cell adhesion. In cell proliferation assays, asiaticoside induced an increase in the number of normal human dermal fibroblasts. In conclusion, asiaticoside promotes skin cell behaviors involved in wound healing; and as a bioactive component of an artificial skin, may have therapeutic value.

  3. In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin

    Science.gov (United States)

    dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.

    2016-03-01

    In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.

  4. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...... in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein...

  5. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...... in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein...

  6. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes.

    Science.gov (United States)

    Bartesaghi, Stefano; Hallen, Stefan; Huang, Li; Svensson, Per-Arne; Momo, Remi A; Wallin, Simonetta; Carlsson, Eva K; Forslöw, Anna; Seale, Patrick; Peng, Xiao-Rong

    2015-01-01

    Heat-producing beige/brite (brown-in-white) adipocytes in white adipose tissue have the potential to suppress metabolic disease in mice and hold great promise for the treatment of obesity and type 2 diabetes in humans. Here, we demonstrate that human adipose-derived stromal/progenitor cells (hASCs) from subcutaneous white adipose tissue can be efficiently converted into beige adipocytes. Upon pharmacological activation of peroxisome proliferator-activated receptor-γ, hASC-derived adipocytes activated beige fat-selective genes and a brown/beige fat-selective electron transport chain gene program. Importantly, hASC-derived beige fat cells displayed the bioenergetic characteristics of genuine brown fat cells, including a capacity for increased respiratory uncoupling in response to β-adrenergic agonists. Furthermore, knock-down experiments reveal that the thermogenic capacity of human beige fat cells was entirely dependent on the presence of Uncoupling protein 1. In summary, this study reveals that hASCs can be readily differentiated into beige adipocytes that, upon activation, undergo uncoupling protein 1-dependent thermogenesis.

  7. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... method of taking an abdominal wall fat pad biopsy . The health care provider cleans the skin on ...

  8. Expression of human skin-specific genes defined by transcriptomics and antibody-based profiling.

    Science.gov (United States)

    Edqvist, Per-Henrik D; Fagerberg, Linn; Hallström, Björn M; Danielsson, Angelika; Edlund, Karolina; Uhlén, Mathias; Pontén, Fredrik

    2015-02-01

    To increase our understanding of skin, it is important to define the molecular constituents of the cell types and epidermal layers that signify normal skin. We have combined a genome-wide transcriptomics analysis, using deep sequencing of mRNA from skin biopsies, with immunohistochemistry-based protein profiling to characterize the landscape of gene and protein expression in normal human skin. The transcriptomics and protein expression data of skin were compared to 26 (RNA) and 44 (protein) other normal tissue types. All 20,050 putative protein-coding genes were classified into categories based on patterns of expression. We found that 417 genes showed elevated expression in skin, with 106 genes expressed at least five-fold higher than that in other tissues. The 106 genes categorized as skin enriched encoded for well-known proteins involved in epidermal differentiation and proteins with unknown functions and expression patterns in skin, including the C1orf68 protein, which showed the highest relative enrichment in skin. In conclusion, we have applied a genome-wide analysis to identify the human skin-specific proteome and map the precise localization of the corresponding proteins in different compartments of the skin, to facilitate further functional studies to explore the molecular repertoire of normal skin and to identify biomarkers related to various skin diseases.

  9. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  10. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    Science.gov (United States)

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  11. Diet-induced thermogenesis and satiety in humans after full-fat and reduced-fat meals.

    NARCIS (Netherlands)

    Westerterp-Plantenga, M.S.; Wijckmans-Duijsens, N.E.; Verboeket-van de Venne, W.P.; Graaf, de K.; Weststrate, J.A.; Hof, van het K.H.

    1997-01-01

    Diet-induced thermogenesis was measured during and after a full-fat lunch, an identical but reduced-fat, reduced-energy lunch, and an iso-energetic reduced-fat lunch in 32 normal-weight men and women, age 35-55. Hunger and satiety were scored during and after the lunches, and their relationship to d

  12. Assessment of the skin irritation potential of chemicals by using the SkinEthic reconstructed human epidermal model and the common skin irritation protocol evaluated in the ECVAM skin irritation validation study.

    Science.gov (United States)

    Kandárová, Helena; Liebsch, Manfred; Schmidt, Elisabeth; Genschow, Elke; Traue, Dieter; Spielmann, Horst; Meyer, Kirstin; Steinhoff, Claudia; Tornier, Carine; De Wever, Bart; Rosdy, Martin

    2006-08-01

    Currently, two reconstructed human skin models, EpiDerm and EPISKIN are being evaluated in an ECVAM skin irritation validation study. A common skin irritation protocol has been developed, differing only in minor technical details for the two models. A small-scale study, applying this common skin irritation protocol to the SkinEthic reconstructed human epidermis (RHE), was performed at ZEBET at the BfR, Berlin, Germany, to consider whether this protocol could be successfully transferred to another epidermal model. Twenty substances from Phase III of the ECVAM prevalidation study on skin irritation were tested with the SkinEthic RHE. After minor, model-specific adaptations for the SkinEthic RHE, almost identical results to those obtained with the EpiDerm and EPISKIN models were achieved. The overall accuracy of the method was more than 80%, indicating a reliable prediction of the skin irritation potential of the tested chemicals when compared to in vivo rabbit data. As a next step, inter laboratory reproducibility was assessed in a study conducted between ZEBET and the Department of Experimental Toxicology, Schering AG, Berlin, Germany. Six coded substances were tested in both laboratories, with three different batches of the SkinEthic model. The assay results showed good reproducibility and correct predictions of the skin irritation potential for all six test chemicals. The results obtained with the SkinEthic RHE and the common protocol were reproducible in both phases, and the overall outcome is very similar to that of earlier studies with the EPISKIN and EpiDerm models. Therefore, the SkinEthic skin irritation assay test protocol can now be evaluated in a formal "catch-up" validation study.

  13. Characterising the variations in ethnic skin colours: a new calibrated data base for human skin

    OpenAIRE

    Xiao, K.; Yates, JM; Zardawi, F; Sueeprasan, S.; Liao, N; Gill, L.; Li, C; Wuerger, S

    2017-01-01

    Background: Accurate skin colour measurements are important for numerous medical applications including the diagnosis and treatment of cutaneous disorders and the provision of maxillofacial soft tissue prostheses. Methods: In this study, we obtained accurate skin colour measurements from four different ethnic groups (Caucasian, Chinese, Kurdish, Thai) and at four different body locations (Forehead, cheek, inner arm, back of hand) with a view of establishing a new skin colour database for medi...

  14. Basal level of autophagy is increased in aging human skin fibroblasts in vitro, but not in old skin.

    Science.gov (United States)

    Demirovic, Dino; Nizard, Carine; Rattan, Suresh I S

    2015-01-01

    Intracellular autophagy (AP) is a stress response that is enhanced under conditions of limitation of amino acids, growth factors and other nutrients, and also when macromolecules become damaged, aggregated and fibrillated. Aging is generally accompanied by an increase in intracellular stress due to all the above factors. Therefore, we have compared the basal levels of AP in serially passaged human facial skin fibroblasts undergoing aging and replicative senescence in vitro, and ex vivo in the skin biopsies from the photo-protected and photo-exposed area of the arms of 20 healthy persons of young and old ages. Immunofluorescence microscopy, employing antibodies against a specific intracellular microtubule-associated protein-1 light chain-3 (LC3) as a well established marker of AP, showed a 5-fold increase in the basal level of LC3 in near senescent human skin fibroblasts. However, no such age-related increase in LC3 fluorescence and AP could be detected in full thickness skin sections from the biopsies obtained from 10 healthy young (age 25 to 30 yr) and 10 old (age 60 to 65 yr) donors. Furthermore, there was no difference in the basal level of LC3 in the skin sections from photo-protected and photo-exposed areas of the arm. Thus, in normal conditions, the aging phenotype of the skin cells in culture and in the body appears to be different in the case of AP.

  15. Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium and phosphorous.

    Science.gov (United States)

    Rogers, Stefanie P; Hicks, Penni D; Hamzo, Maria; Veit, Lauren E; Abrams, Steven A

    2010-03-01

    Substantial losses of nutrients may occur during tube (gavage) feeding of fortified human milk. Our objective was to compare the losses of key macronutrients and minerals based on method of fortification and gavage feeding method. We used clinically available gavage feeding systems and measured pre- and post-feeding (end-point) nutrient content of calcium (Ca), phosphorus (Phos), protein, and fat. Comparisons were made between continuous, gravity bolus, and 30-minute infusion pump feeding systems, as well as human milk fortified with donor human milk-based and bovine milk-based human milk fortifier using an in vitro model. Feeding method was significantly associated with fat and Ca losses, with increased losses in continuous feeds. Fat losses in continuous feeds were substantial, with 40 ± 3 % of initial fat lost during the feeding process. After correction for feeding method, human milk fortified with donor milk-based fortifier was associated with significantly less loss of Ca (8 ± 4% vs. 28 ± 4%, pmilk fortified with a bovine milk-based fortifier (Mean ± SEM).

  16. Comparative Study of Statistical Skin Detection Algorithms for Sub-Continental Human Images

    CERN Document Server

    Tabassum, Mirza Rehenuma; Kamal, Md Mostafa; Muctadir, Hossain Muhammad; Ibrahim, Muhammad; Shakir, Asif Khan; Imran, Asif; Islamm, Saiful; Rabbani, Md Golam; Khaled, Shah Mostafa; Islam, Md Saiful; Begum, Zerina; 10.3923/itj.2010.811.817

    2010-01-01

    Object detection has been a focus of research in human-computer interaction. Skin area detection has been a key to different recognitions like face recognition, human motion detection, pornographic and nude image prediction, etc. Most of the research done in the fields of skin detection has been trained and tested on human images of African, Mongolian and Anglo-Saxon ethnic origins. Although there are several intensity invariant approaches to skin detection, the skin color of Indian sub-continentals have not been focused separately. The approach of this research is to make a comparative study between three image segmentation approaches using Indian sub-continental human images, to optimize the detection criteria, and to find some efficient parameters to detect the skin area from these images. The experiments observed that HSV color model based approach to Indian sub-continental skin detection is more suitable with considerable success rate of 91.1% true positives and 88.1% true negatives.

  17. Skin Aging

    Science.gov (United States)

    Your skin changes as you age. You might notice wrinkles, age spots and dryness. Your skin also becomes thinner and loses fat, making it ... heal, too. Sunlight is a major cause of skin aging. You can protect yourself by staying out ...

  18. Measurement of interstitial cetirizine concentrations in human skin

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Church, M K; Rihoux, J P

    1999-01-01

    cetirizine levels increased within 30 min to reach peak values of 315+/-10 and 786+/-45 ng/ml 90-120 min after administration of 10 and 20 mg of cetirizine. This was followed by a slow decline. In the skin, dialysate cetirizine levels (non-protein-bound fraction only) peaked at 1.6+/-0.1 and 2.4+/-0.3 ng...... profile of cetirizine in skin dialysate paralleled the inhibition of skin reactions, but no significant correlations were found between individual cetirizine levels in skin or plasma with wheal and flare reactions. CONCLUSIONS: Cetirizine concentrations in the skin could be monitored by the microdialysis...

  19. Unraveling barrier properties of three different in-house human skin equivalents.

    Science.gov (United States)

    Thakoersing, Varsha S; Gooris, Gerrit S; Mulder, Aat; Rietveld, Marion; El Ghalbzouri, Abdoelwaheb; Bouwstra, Joke A

    2012-01-01

    Human skin equivalents (HSEs) are three-dimensional culture models that are used as a model for native human skin. In this study the barrier properties of two novel HSEs, the fibroblast-derived matrix model (FDM) and the Leiden epidermal model (LEM), were compared with the full-thickness collagen model (FTM) and human skin. Since the main skin barrier is located in the lipid regions of the upper layer of the skin, the stratum corneum (SC), we investigated the epidermal morphology, expression of differentiation markers, SC permeability, lipid composition, and lipid organization of all HSEs and native human skin. Our results demonstrate that the barrier function of the FDM and LEM improved compared with that of the FTM, but all HSEs are more permeable than human skin. Further, the FDM and LEM have a relatively lower free fatty acid content than the FTM and human skin. Several similarities between the FDM, LEM and FTM were observed: (1) the morphology and the expression of the investigated differentiation markers were similar to those observed in native human skin, except for the observed expression of keratin 16 and premature expression of involucrin that were detected in all HSEs, (2) the lipids in the SC of all HSEs were arranged in lipid lamellae, similar to human skin, but show an increase in the number of lipid lamellae in the intercellular regions and (3) the SC lipids of all HSEs show a less densely packed lateral lipid organization compared with human SC. These findings indicate that the HSEs mimic many aspects of native human skin, but differ in their barrier properties.

  20. Persistent Organic Pollutants in Serum and Several Different Fat Compartments in Humans

    Directory of Open Access Journals (Sweden)

    George W. Yu

    2011-01-01

    Full Text Available Background. Chemicals that store in lipid-rich compartments have the potential for long-term disruption of metabolic and endocrine processes. Given the evidence that persistent organic pollutants (POPs also alter systemic metabolic, endocrine, and immune system functions, it follows that elevated chemical concentrations in intra-abdominal fat may alter function, through local chemical signaling, of visceral organs. Despite this potential, there has been little study defining POP concentrations in live human intra-abdominal fat. It is at present uncertain whether POPs distribute equally to all fat compartments, including fat in serum. Methods. Seven human subjects scheduled for elective surgery for benign lesions or cancer provided consent for removal of samples of subcutaneous and intra-abdominal fat and/or cancerous tissue. These samples were analyzed for 22 chlorinated pesticides and 10 polychlorinated biphenyl (PCB congeners by GC/ECD plus GC/MS. Results. In only two subjects were the patterns and relative concentrations of PCBs and pesticides about the same in all fat compartments. In the other subjects, there were major differences in levels in subcutaneous as compared to other compartments, but with some higher and some lower. While the pattern of PCBs in the various compartments matched that of the pesticides in some, it was opposite in others. Interpretation. These results demonstrate a complicated distribution of PCB congeners and pesticides in various lipid compartments. The difference may reflect various Kows, different rates of metabolism, and/or different lengths of exposure. But the results suggest that contaminant levels in serum or even subcutaneous fat do not necessarily indicate concentrations and patterns in other kinds of adipose tissue.

  1. In vitro absorption of metal powders through intact and damaged human skin.

    Science.gov (United States)

    Filon, Francesca Larese; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Maina, Giovanni

    2009-06-01

    The bioavailability of metals, which are known as important contact allergens, is decisive for the development and the maintenance of contact dermatitis. The aim of this study was to evaluate the percutaneous penetration of metal powders of cobalt (Co), nickel (Ni) and chromium (Cr) and the effect of skin lesions on skin absorption. In vitro permeation experiments were performed using the Franz diffusion cells with intact and damaged human skin. Physiological solution was used as receiving phase and metal powders (Co, Ni and Cr) dispersed in synthetic sweat at pH 4.5 were applied as donor phase to the outer surface of the skin for 24h. The amount of each metal permeating the skin was analysed by electro-thermal atomic absorption spectroscopy (ETAAS). Donor solution analysis demonstrated that metals were present as ions. Measurements of metals skin content were also exploited. Median Co and Ni concentrations found in the receiving phase were significantly higher when Co and Ni powders were applied on the abraded skin than after application on the intact skin (3566 and 2631ngcm(-2) vs. 8.4 and 31ngcm(-2), respectively). No significant difference was found in Cr permeation through intact and damaged skin. The measurement of metals skin content showed that Co, Ni and Cr concentrations were significantly higher in the damaged skin than in the intact skin. Co and Ni ions concentrations increased significantly when the donor solutions were applied on the damaged skin, while Cr ions concentrations did not increase. This study demonstrated that Co and Ni powders can permeate through damaged skin more easily than Cr powder, which has probably a stronger skin proteins binding capacity. Therefore, our results suggest that is necessary to prevent skin contamination when using toxic substances because a small injury to the skin barrier can significantly increase skin absorption.

  2. Bioavailability of natural carotenoids in human skin compared to blood.

    Science.gov (United States)

    Meinke, Martina C; Darvin, Maxim E; Vollert, Henning; Lademann, Jürgen

    2010-10-01

    Skin functions and structure are significantly influenced by nutrients. Antioxidants protect the supportive layer of the skin against any damaging irradiation effects and the action of free radicals. A lack of suitable methods means that the pharmacokinetic properties of systemically applied carotenoids transferred into the skin remain poorly understood. In this study, a natural kale extract or placebo oil were given orally to 22 healthy volunteers for 4 weeks. Carotenoid bioaccessibility was evaluated using non-invasive resonance Raman spectroscopy on the palm and forehead skin. For the analysis of the blood serum, the standard HPLC method was used. The blood and skin levels of the carotenoids increased significantly during the study but compared to the blood serum values, increases in skin were delayed and depended on the dermal area as well as on the carotenoid. Lycopene, measured as being low in the extract, increases more in the skin compared to the blood indicating that the natural mixture of the extract stabilizes the antioxidative network in the skin. After supplementation had ended, the carotenoids decreased much faster in the blood than in the skin. The delayed decrease in the skin may indicate a peripheral buffer function of the skin for carotenoids.

  3. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans.

    Science.gov (United States)

    Venables, Michelle C; Hulston, Carl J; Cox, Hannah R; Jeukendrup, Asker E

    2008-03-01

    Green tea consumption is reportedly associated with various health-promoting properties. For example, it has been shown to promote fat oxidation in humans at rest and to prevent obesity and improve insulin sensitivity in mice. We investigated the effects of acute ingestion of green tea extract (GTE) on glucose tolerance and fat oxidation during moderate-intensity exercise in humans. Two studies were performed, both with a counter-balanced crossover design. In study A, 12 healthy men performed a 30-min cycling exercise at 60% of maximal oxygen consumption (VO2max) before and after supplementation. In study B, 11 healthy men took an oral-glucose-tolerance test before and after supplementation. In the 24-h period before the experimental trials, participants ingested 3 capsules containing either GTE (total: 890 +/- 13 mg polyphenols and 366 +/- 5 mg EGCG) or a corn-flour placebo (total: 1729 +/- 22 mg). Average fat oxidation rates were 17% higher after ingestion of GTE than after ingestion of placebo (0.41 +/- 0.03 and 0.35 +/- 0.03 g/min, respectively; P fat oxidation to total energy expenditure was also significantly higher, by a similar percentage, after GTE supplementation. The insulin area under the curve decreased in both the GTE and placebo trials (3612 +/- 301 and 4280 +/- 309 microIU/dL . 120 min, respectively; P fat oxidation during moderate-intensity exercise and can improve insulin sensitivity and glucose tolerance in healthy young men.

  4. FAT AND CARBOHYDRATE METABOLISM IN HUMANS-A Study of Nutritional and Hormonal Effects.

    Science.gov (United States)

    Brown, J

    1960-09-01

    As an index to the rate of fat utilization in human subjects, the recovery of all radioactive carbon dioxide in the expired air was measured for one hour following intravenous injection of palmitate-1-C(14). In the normal fasted subject, about 10 per cent of the injected dose was recovered, and the proportion was lowered to about 5 per cent by administration of glucose. With prolonged fasting, the recovery of radioactive carbon dioxide did not change, despite a rising concentration of fatty acids in the serum. This was interpreted as due to the development of a balance between increasing mobilization and oxidation and was thought to indicate increasing fatty acid oxidation. In chronic undernutrition and diabetes mellitus there was increased fatty acid oxidation due presumably to adaptation to a chronic increase in fat utilization for energy. Administration of human growth hormone did not increase fat oxidation but prevented the usual inhibition produced by glucose. This was interpreted to mean that growth hormone increases fat utilization only indirectly by inhibiting the usual preferential utilization of glucose over fat.

  5. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, Ruth M [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge (United Kingdom); Cole, Bryan E [TeraView Limited, 302/304 Cambridge Science Park, Milton Road, Cambridge (United Kingdom); Wallace, Vincent P [TeraView Limited, 302/304 Cambridge Science Park, Milton Road, Cambridge (United Kingdom); Pye, Richard J [Department of Dermatology, Addenbrooke' s Hospital, Cambridge (United Kingdom); Arnone, Donald D [TeraView Limited, 302/304 Cambridge Science Park, Milton Road, Cambridge (United Kingdom); Linfield, Edmund H [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge (United Kingdom); Pepper, Michael [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge (United Kingdom)

    2002-11-07

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo.

  6. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  7. Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin.

    Science.gov (United States)

    Gerstel, D; Jacques-Jamin, C; Schepky, A; Cubberley, R; Eilstein, J; Grégoire, S; Hewitt, N; Klaric, M; Rothe, H; Duplan, H

    2016-08-01

    The Cosmetics Europe Skin Bioavailability and Metabolism Task Force aims to improve the measurement and prediction of the bioavailability of topically-exposed compounds for risk assessment. Key parameters of the experimental design of the skin penetration studies were compared. Penetration studies with frozen human and pig skin were conducted in two laboratories, according to the SCCS and OECD 428 guidelines. The disposition in skin was measured 24h after finite topical doses of caffeine, resorcinol and 7-ethoxycoumarin. The bioavailability distribution in skin layers of cold and radiolabelled chemicals were comparable. Furthermore, the distribution of each chemical was comparable in human and pig skin. The protocol was reproducible across the two laboratories. There were small differences in the amount of chemical detected in the skin layers, which were attributed to differences in washing procedures and anatomical sites of the skin used. In conclusion, these studies support the use of pig skin as an alternative source of skin should the availability of human skin become a limiting factor. If radiolabelled chemicals are not available, cold chemicals can be used, provided that the influence of chemical stability, reactivity or metabolism on the experimental design and the relevance of the data obtained is considered.

  8. Skin-specific Deletion of Stearoyl-CoA Desaturase-1 Alters Skin Lipid Composition and Protects Mice from High Fat Diet-induced Obesity

    National Research Council Canada - National Science Library

    Harini Sampath; Matthew T. Flowers; Xueqing Liu; Chad M. Paton; Ruth Sullivan; Kiki Chu; Minghui Zhao; James M. Ntambi

    2009-01-01

    .... In addition, SKO mice have significantly increased energy expenditure and are protected from high fat diet-induced obesity, thereby recapitulating the hypermetabolic phenotype of global SCD1 deficiency...

  9. Barrier Ëunction in Reconstructed Epidermis and Its Resembiance to Native Human Skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; GPilgram, G.; BoeIsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisitesforthe use of human skin equivalents for scientific and screening purposes is that their barrierfunction is similar to that of native skin. Using human epidermis reconstructed en de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier in v

  10. Barrier function in reconstructed epidermis and its resemblance to native human skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; Pilgram, G.; Boelsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisites for the use of human skin equivalents for scientific and screening purposes is that their barrier function is similar to that of native skin. Using human epidermis reconstructed on de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier i

  11. Fourier polarimetry of human skin in the tasks of differentiation of benign and malignant formations.

    Science.gov (United States)

    Ushenko, A G; Dubolazov, O V; Ushenko, V A; Novakovskaya, O Yu; Olar, O V

    2016-04-20

    The optical model of polycrystalline networks of human tissue has been proposed. The values of statistical parameters (statistical moments of the first to fourth order) characterizing the polarization-inhomogeneous images of skin surface in the Fourier domain have been measured. The diagnostic criteria of pathological processes in human skin and the differentiation of its severity degree have been determined.

  12. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria

    NARCIS (Netherlands)

    Verhulst, N.O.; Andriessen, R.; Groenhagen, U.; Bukovinszkine-Kiss, G.; Schulz, S.; Takken, W.; Loon, van J.J.A.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of

  13. Barrier function in reconstructed epidermis and its resemblance to native human skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; Pilgram, G.; Boelsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisites for the use of human skin equivalents for scientific and screening purposes is that their barrier function is similar to that of native skin. Using human epidermis reconstructed on de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier

  14. Barrier Ëunction in Reconstructed Epidermis and Its Resembiance to Native Human Skin

    NARCIS (Netherlands)

    Ponec, M.; Gibbs, S.; GPilgram, G.; BoeIsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M.

    2001-01-01

    One of the prerequisitesforthe use of human skin equivalents for scientific and screening purposes is that their barrierfunction is similar to that of native skin. Using human epidermis reconstructed en de-epidermized dermis we demonstrated that the formation of the stratum corneum (SC) barrier in

  15. Appearance analysis of human skin with cosmetic foundation

    Science.gov (United States)

    Ohtsuki, Rie; Tominaga, Shoji; Hikima, Rie

    2012-01-01

    We describe a method of analyzing the appearance of cosmetic foundation applied to the human face. In particular, we focus on the "oily-shine" appearance, which is caused by sebum. A multi-band camera system with six spectral channels is used for the analysis of the oily-shine appearance. As a basic analysis, we examine the optical features of oily-shine by using two artificial skins looking like make-up skin with oily-shine and without oily-shine. We show that oily-shine can be defined as the standard dichromatic reflection model. On the basis of the above findings, we propose a method for detecting oily-shine area. This method involves (1) the extraction candidate areas, and (2) the evaluation of appearance with oily-shine. First, we capture the CIE XYZ tri-stimulus image of an original make-up face by using the multi-band camera and after a few hours later, capture the same face as a test facial image. Second, the candidate areas with oily-shine are extracted by applying the Laplacian operator to luminance Y component of the test facial image. Third, the principal component analysis is performed on the set of luminance and chromaticity (Y, x, y) of each candidate area. Light reflection of oil-shine is regarded as the specular component of the dichromatic reflection. Finally, we determine the existence of oily-shine by comparing specular clusters between the original image and the test image. The proposed method is tested in experiments with subjective assessment for various real make-up facial images.

  16. Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells.

    Science.gov (United States)

    Moro, Cedric; Galitzky, Jean; Sengenes, Coralie; Crampes, François; Lafontan, Max; Berlan, Michel

    2004-03-01

    A lipolytic pathway involving natriuretic peptides has recently been discovered in human fat cells. Its functional characteristics and the interactions of the atrial natriuretic peptide (ANP)-induced effects with adrenergic and insulin pathways were studied. Characterization of the action of ANP antagonists, i.e., A71915, anantin, S-28-Y (Ser-28-Tyr, a synthesized peptide), and HS-142-1 (a microbial polysaccharide), was performed. Lipolytic assays and intracellular cGMP and cAMP determinations were performed on isolated fat cells. Cell membranes were used for binding studies. At low concentrations ANP and isoproterenol [beta-adrenergic receptor (beta-AR) agonist] exerted additive lipolytic effects. The alpha(2)-AR pathway did not interfere with that of ANP. Lipolytic effects of ANP were unaltered by a 2-h pretreatment of fat cells with insulin, whereas beta-AR-induced lipolysis was reduced. Homologous desensitization occurred for ANP-dependent lipolytic pathways. Dendroapsis natriuretic peptide exhibited a similar maximal effect but a 10-fold higher lipolytic potency than ANP and mini-ANP (the shortest form of ANP). The antagonist A71915 exhibited competitive antagonistic properties with a pA(2) value of 7.51. Anantin displayed noncompetitive antagonism and exerted an inhibitory action on basal and beta-adrenergic receptor-induced lipolytic response. S-28-Y exhibited antagonist potencies toward ANP-induced lipolysis and behaved as a partial lipolytic agonist with a lower pD(2) value (7.4 +/- 0.2) than ANP (9.4 +/- 0.3). HS-142-1 exerted the weakest antagonistic effects. The results demonstrate that ANP-dependent effects do not interfere with beta- and alpha(2)-adrenergic pathways in human fat cells. They are unaffected by insulin pretreatments of fat cells but undergo desensitization. In the search of potent and specific natriuretic peptide receptor-A antagonist, in the human fat cell, A71915 was the only reliable one found.

  17. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design.

    Science.gov (United States)

    Teunissen, M B M; Haniffa, M; Collin, M P

    2012-01-01

    Dendritic cells (DC) are the key initiators and regulators of any immune response which determine the outcome of CD4(+) and CD8(+) T-cell responses. Multiple distinct DC subsets can be distinguished by location, phenotype, and function in the homeostatic and inflamed human skin. The function of steady-state cutaneous DCs or recruited inflammatory DCs is influenced by the surrounding cellular and extracellular skin microenvironment. The skin is an attractive site for vaccination given the extended local network of DCs and the easy access to the skin-draining lymph nodes to generate effector T cells and immunoglobulin-producing B cells for long-term protective immunity. In the context of intradermal vaccination we describe in this review the skin-associated immune system, the characteristics of the different skin DC subsets, the mechanism of antigen uptake and presentation, and how the properties of DCs can be manipulated. This knowledge is critical for the development of intradermal vaccine strategies and supports the concept of intradermal vaccination as a superior route to the conventional intramuscular or subcutaneous methods.

  18. Under Persistent Assault: Understanding the Factors that Deteriorate Human Skin and Clinical Efficacy of Topical Antioxidants in Treating Aging Skin

    Directory of Open Access Journals (Sweden)

    Patricia K. Farris

    2015-11-01

    Full Text Available Recent studies contend that the skin is subject to far more damage than just ultraviolet (UV light, with infrared radiation and pollution now clearly demonstrated to degrade cutaneous tissue. While consumers continue to strive for new ways to augment the aesthetic appeal and improve the health of their skin, awareness regarding environmental insults and effective ways to protect the skin remains low. New advances in dermatologic science have exponentially increased the available information on the underlying mechanism of cutaneous damage and potential of topical antioxidants to treat aging skin. Combining antioxidants that can work through multiple pathways holds great potential for a cumulative and synergistic way to treat aging skin. Our goal is to provide a comprehensive review on environmental factors that damage human skin, discuss scientifically proven benefits of topical antioxidants, understand challenges of formulating and administering topical antioxidants, evaluate novel mechanisms of antioxidant activity, and suggest practical ways of integrating topical antioxidants with aesthetic procedures to complement clinical outcomes.

  19. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  20. Divergent effects of central melanocortin signalling on fat and sucrose preference in humans

    Science.gov (United States)

    van der Klaauw, Agatha A.; Keogh, Julia M.; Henning, Elana; Stephenson, Cheryl; Kelway, Sarah; Trowse, Victoria M.; Subramanian, Naresh; O'Rahilly, Stephen; Fletcher, Paul C.; Farooqi, I. Sadaf

    2016-01-01

    Melanocortin-4-receptor (MC4R)-expressing neurons modulate food intake and preference in rodents but their role in human food preference is unknown. Here we show that compared with lean and weight-matched controls, MC4R deficient individuals exhibited a markedly increased preference for high fat, but a significantly reduced preference for high sucrose food. These effects mirror those in Mc4r null rodents and provide evidence for a central molecular circuit influencing human macronutrient preference. PMID:27701398

  1. A literature review of the mechanical behavior of the stratum corneum, the living epidermis and the subcutaneous fat tissue

    NARCIS (Netherlands)

    Geerligs, M.

    2006-01-01

    After a description of the structure and function of human skin, including the underlying fat layer, both in vitro and in vivo studies on the mechanical properties of separate skin layers are discussed: e.g. those of stratum corneum, living epidermis and the subcutaneous fat layer. Since the propert

  2. A literature review of the mechanical behavior of the stratum corneum, the living epidermis and the subcutaneous fat tissue

    NARCIS (Netherlands)

    Geerligs, M.

    2006-01-01

    After a description of the structure and function of human skin, including the underlying fat layer, both in vitro and in vivo studies on the mechanical properties of separate skin layers are discussed: e.g. those of stratum corneum, living epidermis and the subcutaneous fat layer. Since the

  3. A micromechanical comparison of human and porcine skin before and after preservation by freezing for medical device development

    Science.gov (United States)

    Ranamukhaarachchi, S. A.; Lehnert, S.; Ranamukhaarachchi, S. L.; Sprenger, L.; Schneider, T.; Mansoor, I.; Rai, K.; Häfeli, U. O.; Stoeber, B.

    2016-08-01

    Collecting human skin samples for medical research, including developing microneedle-based medical devices, is challenging and time-consuming. Researchers rely on human skin substitutes and skin preservation techniques, such as freezing, to overcome the lack of skin availability. Porcine skin is considered the best substitute to human skin, but their mechanical resemblance has not been fully validated. We provide a direct mechanical comparison between human and porcine skin samples using a conventional mechano-analytical technique (microindentation) and a medical application (microneedle insertion), at 35% and 100% relative humidity. Human and porcine skin samples were tested immediately after surgical excision from subjects, and after one freeze-thaw cycle at ‑80 °C to assess the impact of freezing on their mechanical properties. The mechanical properties of fresh human and porcine skin (especially of the stratum corneum) were found to be different for bulk measurements using microindentation; and both types of skin were mechanically affected by freezing. Localized in-plane mechanical properties of skin during microneedle insertion appeared to be more comparable between human and porcine skin samples than their bulk out-of-plane mechanical properties. The results from this study serve as a reference for future mechanical tests conducted with frozen human skin and/or porcine skin as a human skin substitute.

  4. Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model.

    Science.gov (United States)

    Pang, Shao-Chen; Wang, Hou-Peng; Li, Kuo-Yu; Zhu, Zuo-Yan; Kang, Jing X; Sun, Yong-Hua

    2014-10-01

    Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.

  5. Changes of Dietary Fat and Carbohydrate Content Alter Central and Peripheral Clock in Humans.

    Science.gov (United States)

    Pivovarova, Olga; Jürchott, Karsten; Rudovich, Natalia; Hornemann, Silke; Ye, Lu; Möckel, Simona; Murahovschi, Veronica; Kessler, Katharina; Seltmann, Anne-Cathrin; Maser-Gluth, Christiane; Mazuch, Jeannine; Kruse, Michael; Busjahn, Andreas; Kramer, Achim; Pfeiffer, Andreas F H

    2015-06-01

    The circadian clock coordinates numerous metabolic processes with light-dark and feeding regimens. However, in humans it is unknown whether dietary patterns influence circadian rhythms. We examined the effects of switching from a high-carbohydrate, low-fat diet to a low-carbohydrate, high fat (LC/HFD) isocaloric diet on the central and peripheral circadian clocks in humans. Diurnal patterns of salivary cortisol and gene expression were analyzed in blood monocytes of 29 nonobese healthy subjects before and 1 and 6 weeks after the dietary switch. For this, we established a method of rhythm prediction by 3-time point data. The centrally driven cortisol rhythm showed a phase delay 1 and 6 weeks after the dietary switch to a LC/HFD as well as an amplitude increase. The dietary switch altered diurnal oscillations of core clock genes (PER1, PER2, PER3, and TEF) and inflammatory genes (CD14, CD180, NFKBIA, and IL1B). The LC/HFD also affected the expression of nonoscillating genes contributing to energy metabolism (SIRT1) and fat metabolism (ACOX3 and IDH3A). Expression of clock genes but not of salivary cortisol in monocytes tightly correlated with levels of blood lipids and with expression of metabolic and inflammatory genes. Our results suggest that the modulation of the dietary fat and carbohydrate content alters the function of the central and peripheral circadian clocks in humans.

  6. Type of homogenization and fat loss during continuous infusion of human milk.

    Science.gov (United States)

    García-Lara, Nadia Raquel; Escuder-Vieco, Diana; Alonso Díaz, Clara; Vázquez Román, Sara; De la Cruz-Bértolo, Javier; Pallás-Alonso, Carmen Rosa

    2014-11-01

    Substantial fat loss may occur during continuous feeding of human milk (HM). A decrease of fat loss has been described following homogenization. Well-established methods of homogenization of HM for routine use in the neonatal intensive care unit (NICU) would be desirable. We compared the loss of fat based on the use of 3 different methods for homogenizing thawed HM during continuous feeding. Sixteen frozen donor HM samples were thawed, homogenized with ultrasound and separated into 3 aliquots ("baseline agitation," "hourly agitation," and "ultrasound"), and then frozen for 48 hours. Aliquots were thawed again and a baseline agitation was applied. Subsequently, aliquots baseline agitation and hourly agitation were drawn into a syringe, while ultrasound was applied to aliquot ultrasound before it was drawn into a syringe. The syringes were loaded into a pump (2 mL/h; 4 hours). At hourly intervals the hourly agitation infusion was stopped, the syringe was disconnected and gently shaken. During infusion, samples from the 3 groups were collected hourly for analysis of fat and caloric content. The 3 groups of homogenization showed similar fat content at the beginning of the infusion. For fat, mean (SD) hourly changes of -0.03 (0.01), -0.09 (0.01), and -0.09 (0.01) g/dL were observed for the hourly agitation, baseline agitation, and ultrasound groups, respectively. The decrease was smaller for the hourly agitation group (P fat loss is observed when syringes are agitated hourly versus when ultrasound or a baseline homogenization is used. © The Author(s) 2014.

  7. Modelling and verification of melanin concentration on human skin type

    CSIR Research Space (South Africa)

    Karsten, AE

    2012-03-01

    Full Text Available -brown colour) and pheomelanin (yellow-reddish 11 colour) (3,4). Melanin is synthesized within melanosomes inside melanocytes located in the 12 basal layer of the epidermis and the mature melanosomes get transferred via dendrites to the 13 keratinocytes... in die epidermis where they are responsible for skin photoprotection (3). 14 It is well documented that the absorption and scattering of light through skin tissue 15 depends on the skin?s optical properties (see for example studies by Tuchin (5...

  8. From frog integument to human skin: dermatological perspectives from frog skin biology

    NARCIS (Netherlands)

    Haslam, I.S.; Roubos, E.; Mangoni, M.L.; Yoshizato, K.; Vaudry, H.; Kloepper, J.E.; Pattwell, D.M.; Maderson, P.F.A.; Paus, R.

    2014-01-01

    For over a century, frogs have been studied across various scientific fields, including physiology, embryology, neuroscience, (neuro)endocrinology, ecology, genetics, behavioural science, evolution, drug development, and conservation biology. In some cases, frog skin has proven very successful as a

  9. From frog integument to human skin: dermatological perspectives from frog skin biology

    NARCIS (Netherlands)

    Haslam, I.S.; Roubos, E.; Mangoni, M.L.; Yoshizato, K.; Vaudry, H.; Kloepper, J.E.; Pattwell, D.M.; Maderson, P.F.A.; Paus, R.

    2014-01-01

    For over a century, frogs have been studied across various scientific fields, including physiology, embryology, neuroscience, (neuro)endocrinology, ecology, genetics, behavioural science, evolution, drug development, and conservation biology. In some cases, frog skin has proven very successful as a

  10. [Assessment of ultraviolet radiation penetration into human skin. I. Theoretical analysis].

    Science.gov (United States)

    Cader, A; Jankowski, J

    1995-01-01

    This is one of the two articles under the same title "Assessment of ultraviolet radiation penetrating into human skin" which are aimed at presenting a part of broader studies in this area. They drive at identifying biophysical aspects of the effects of ultraviolet radiation on human skin. In order to characterise such parameters as UV reflectance from the skin surface of UV absorption and dispersion coefficients, it is necessary to develop appropriate methods. In Part I--"Theoretical analysis", theoretical principles for interpreting measurements of radiation dispersed in different geometrical configurations are presented. They can serve as a basis for estimating the values of UV linear absorption and dispersion coefficients in skin tissues.

  11. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier

    DEFF Research Database (Denmark)

    Dreier, Jes; Sørensen, Jens A; Brewer, Jonathan R

    2016-01-01

    In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS) to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human...... skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED) images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm...

  12. Studies on percutaneous penetration of chemicals - Impact of storage conditions for excised human skin.

    Science.gov (United States)

    Dennerlein, Kathrin; Schneider, Désirée; Göen, Thomas; Schaller, Karl Heinz; Drexler, Hans; Korinth, Gintautas

    2013-03-01

    According to international guidelines skin penetration experiments can be carried out using freshly excised or frozen stored skin. However, this recommendation refers to data obtained in experiments with human cadaver skin. In our study, the percutaneous penetration of the occupationally relevant chemicals anisole, cyclohexanone and 1,4-dioxane was investigated for freshly excised as well as for 4 and 30 days at -20°C stored human skin using the diffusion cell technique. As indicator for the impairment of skin barrier by freezing cholesterol dissolution was determined in the solvents in exposure chambers of diffusion cells. Considering the percutaneously penetrated amounts, the following ranking was determined: 1,4-dioxane>anisole>cyclohexanone (decline to a factor of 5.9). The differences of fluxes between freshly excised and frozen stored skin (4 and 30 days) were not significant (p>0.05). Cholesterol dissolved from the skin indicates no significant differences between freshly excised and frozen stored skin. This study shows that freezing of human skin for up to 30 days does not alter the skin barrier function and the permeability of chemicals.

  13. Bilayer Hydrogel with Autologous Stem Cells Derived from Debrided Human Burn Skin for Improved Skin Regeneration

    Science.gov (United States)

    2013-02-01

    to assess tis- sue viability and burn depth, and an abdominoplasty procedure skin sample was used as a control. The granulated skin tissue from the...BD Bioscience, San Jose, CA), or platelet -derived growth factor receptor beta (PDGFRβ; 50 μg/ml; BD Bioscience, San Jose, CA). The slides were...bilayer hydrogels alone showed an increase in granulation tissue formation by day 8 (Figure 6E; serrated line across wound bed and Figure 6F) and by

  14. Regular-Fat Dairy and Human Health: A Synopsis of Symposia Presented in Europe and North America (2014–2015)

    Science.gov (United States)

    Astrup, Arne; Rice Bradley, Beth H.; Brenna, J. Thomas; Delplanque, Bernadette; Ferry, Monique; Torres-Gonzalez, Moises

    2016-01-01

    In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to disseminate, explore and discuss the state of the science on the relationship between regular fat dairy products and health, symposia were programmed by dairy industry organizations in Europe and North America at The Eurofed Lipids Congress (2014) in France, The Dairy Nutrition Annual Symposium (2014) in Canada, The American Society for Nutrition Annual Meeting held in conjunction with Experimental Biology (2015) in the United States, and The Federation of European Nutrition Societies (2015) in Germany. This synopsis of these symposia describes the complexity of dairy fat and the effects regular-fat dairy foods have on human health. The emerging scientific evidence indicates that the consumption of regular fat dairy foods is not associated with an increased risk of cardiovascular disease and inversely associated with weight gain and the risk of obesity. Dairy foods, including regular-fat milk, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted. PMID:27483308

  15. Regular-Fat Dairy and Human Health: A Synopsis of Symposia Presented in Europe and North America (2014-2015).

    Science.gov (United States)

    Astrup, Arne; Rice Bradley, Beth H; Brenna, J Thomas; Delplanque, Bernadette; Ferry, Monique; Torres-Gonzalez, Moises

    2016-07-29

    In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to disseminate, explore and discuss the state of the science on the relationship between regular fat dairy products and health, symposia were programmed by dairy industry organizations in Europe and North America at The Eurofed Lipids Congress (2014) in France, The Dairy Nutrition Annual Symposium (2014) in Canada, The American Society for Nutrition Annual Meeting held in conjunction with Experimental Biology (2015) in the United States, and The Federation of European Nutrition Societies (2015) in Germany. This synopsis of these symposia describes the complexity of dairy fat and the effects regular-fat dairy foods have on human health. The emerging scientific evidence indicates that the consumption of regular fat dairy foods is not associated with an increased risk of cardiovascular disease and inversely associated with weight gain and the risk of obesity. Dairy foods, including regular-fat milk, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted.

  16. A limit on the energy transfer rate from the human fat store in hypophagia.

    Science.gov (United States)

    Alpert, Seymour S

    2005-03-07

    A limit on the maximum energy transfer rate from the human fat store in hypophagia is deduced from experimental data of underfed subjects maintaining moderate activity levels and is found to have a value of (290+/-25) kJ/kgd. A dietary restriction which exceeds the limited capability of the fat store to compensate for the energy deficiency results in an immediate decrease in the fat free mass (FFM). In cases of a less severe dietary deficiency, the FFM will not be depleted. The transition between these two dietary regions is developed and a criterion to distinguish the regions is defined. An exact mathematical solution for the decrease of the FFM is derived for the case where the fat mass (FM) is in its limited energy transfer mode. The solution shows a steady-state term which is in agreement with conventional ideas, a term indicating a slow decrease of much of the FFM moderated by the limited energy transferred from the fat store, and a final term showing an unprotected rapid decrease of the remaining part of the FFM. The average resting metabolic rate of subjects undergoing hypophagia is shown to decrease linearly as a function of the FFM with a slope of (249+/-25) kJ/kgd. This value disagrees with the results of other observers who have measured metabolic rates of diverse groups. The disagreement is explained in terms of individual metabolic properties as opposed to those of the larger population.

  17. Dietary fat induces sustained reward response in the human brain without primary taste cortex discrimination

    Directory of Open Access Journals (Sweden)

    Hélène eTzieropoulos

    2013-02-01

    Full Text Available To disentangle taste from reward responses in the human gustatory cortex, we combined high density electro-encephalography with a gustometer delivering tastant puffs to the tip of the tongue. Stimuli were pure tastants (salt solutions at two concentrations, caloric emulsions of identical taste (two milk preparations differing in fat content and a mixture of high fat milk with the lowest salt concentration. Early event-related potentials showed a dose-response effect for increased taste intensity, with higher amplitude and shorter latency for high compared to low salt concentration, but not for increased fat content. However, the amplitude and distribution of late potentials were modulated by fat content independently of reported intensity and discrimination. Neural source estimation revealed a sustained activation of reward areas to the two high-fat stimuli. The results suggest calorie detection through specific sensors on the tongue independent of perceived taste. Finally, amplitude variation of the first peak in the event-related potential to the different stimuli correlated with papilla density, suggesting a higher discrimination power for subjects with more fungiform papillae.

  18. Impact of AQP3 inducer treatment on cultured human keratinocytes, ex vivo human skin and volunteers.

    Science.gov (United States)

    Garcia, N; Gondran, C; Menon, G; Mur, L; Oberto, G; Guerif, Y; Dal Farra, C; Domloge, N

    2011-10-01

    One of the main functions of the skin is to protect the organism against environmental threats, such as thermal stress. Aquaporin-3 (AQP3) facilitates water and glycerol transport across cell membranes and therefore regulates osmotic balance in different situations of stress. This mechanism seems to be particularly important for the resistance of different organisms to cold stress. Consequently, we were interested in investigating the effect of cold and osmotic stress on AQP3 expression in normal human keratinocytes. We developed a new active ingredient to stimulate aquaporins in skin and demonstrated the partial restoration of AQP3 expression in keratinocytes transfected with AQP3 siRNA. Moreover, we examined the effect of cold stress on cell morphology and the impact of a pre-treatment with the active ingredient. Our results indicated that induction of AQP3 helped maintain a correct organization of the actin cytoskeleton, preserving cell morphology and preventing cells from rounding. Immunofluorescent staining revealed cytoplasmic localization of AQP3 and its translocation to the cell membrane following osmotic stress. Histological ex vivo studies of skin under different conditions, such as cold environment and tape-stripping, indicated that increase in AQP3 expression appears to be involved in skin protection and showed that the pattern of AQP3 expression was more enhanced in the active ingredient-treated samples. In vivo confocal microscopy by Vivascope showed a generally healthier appearance of the skin in the treated areas. These results attest to the potential value of the active ingredient in optimizing environmental stress resistance and protecting the skin from stratum corneum damage.

  19. Quantitative model of cellulite: three-dimensional skin surface topography, biophysical characterization, and relationship to human perception.

    Science.gov (United States)

    Smalls, Lola K; Lee, Caroline Y; Whitestone, Jennifer; Kitzmiller, W John; Wickett, R Randall; Visscher, Marty O

    2005-01-01

    Gynoid lipodystrophy (cellulite) is the irregular, dimpled skin surface of the thighs, abdomen, and buttocks in 85% of post-adolescent women. The distinctive surface morphology is believed to result when subcutaneous adipose tissue protrudes into the lower reticular dermis, thereby creating irregularities at the surface. The biomechanical properties of epidermal and dermal tissue may also influence severity. Cellulite-affected thigh sites were measured in 51 females with varying degrees of cellulite, in 11 non-cellulite controls, and in 10 male controls. A non-contact high-resolution three-dimensional laser surface scanner was used to quantify the skin surface morphology and determine specific roughness values. The scans were evaluated by experts and naive judges (n=62). Body composition was evaluated via dual-energy x-ray absorptiometry; dermal thickness and the dermal-subcutaneous junction were evaluated via high-resolution 3D ultrasound and surface photography under compression. Biomechanical properties were also measured. The roughness parameters Svm (mean depth of the lowest valleys) and Sdr (ratio between the roughness surface area and the area of the xy plane) were highly correlated to the expert image grades and, therefore, designated as the quantitative measures of cellulite severity. The strength of the correlations among naive grades, expert grades, and roughness values confirmed that the data quantitatively evaluate the human perception of cellulite. Cellulite severity was correlated to BMI, thigh circumference, percent thigh fat, architecture of the dermal-subcutaneous border (ultrasound surface area, red-band SD from compressed images), compliance, and stiffness (negative correlation). Cellulite severity was predicted by the percent fat and the area of the dermal-subcutaneous border. The biomechanical properties did not significantly contribute to the prediction. Comparison of the parameters for females and males further suggest that percent thigh fat

  20. Machine Learning Approaches for Predicting Human Skin Sensitization Hazard

    Science.gov (United States)

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary for a substance to elicit a skin sensitization reaction suggests that no single in chemico, in vit...

  1. Machine Learning Approaches for Predicting Human Skin Sensitization Hazard

    Science.gov (United States)

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary for a substance to elicit a skin sensitization reaction suggests that no single in chemico, in vit...

  2. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  3. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    Science.gov (United States)

    Quan, Taihao; Fisher, Gary J

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin diseases, such as delayed wound healing and skin cancer development. This review describes cellular mechanisms that give rise to self-perpetuating, collagen fibril fragmentation that creates an age-associated dermal microenvironment (AADM), which contributes to decline of human skin function. PMID:25660807

  4. Features of human skin in HSV color space and new recognition parameter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Features of human skin in HSV color space are widely applied in the area of image retrieval based on content. H is selected as the basic recognition parameter because its value has a narrow range for the skin color and can keep stable while the illumination intensity or the curvature of skin surface is changing. Rules of parameters with the change of illumination in HSV color space are studied. It is firstly found that the mean of saturation and value (S+V)/2 can keep stable when the illumination intensity is changed or the skin surface is inflected, and (S+V)/2 changes with skin color, but the tendency of change is contrary to that of H. Therefore, (S+V)/H can be used as a new recognition parameter which can enhance HSV ability to recognize human skin.

  5. Cutaneous in vivo metabolism of topical lidocaine formulation in human skin

    DEFF Research Database (Denmark)

    Rolsted, K; Benfeldt, E; Kissmeyer, A-M

    2009-01-01

    , the enzymes involved are also expressed in the skin. Hence, the aim of the current study was to investigate the extent of the cutaneous in vivo metabolism of topically applied lidocaine in human volunteers. A dose of 5 mg/cm(2) of Xylocaine(R) (5% lidocaine) ointment was applied onto the buttock skin...... of the volunteers. After 2 h, residual formulation was removed, and two 4-mm punch biopsies were taken from each volunteer. The quantity of lidocaine extracted from the skin samples (epidermis + dermis) was 109 +/- 43 ng/mm(2) skin. One metabolite (monoethylglycine xylidide, MEGX) was detected in skin from 7......Little is known about the metabolising capacity of the human skin in relation to topically applied drugs and formulations. We chose lidocaine as a model compound since the metabolic pathways are well known from studies concerning hepatic metabolism following systemic drug administration. However...

  6. In vivo non-invasive multiphoton tomography of human skin

    Science.gov (United States)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  7. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance.

    Science.gov (United States)

    Błachnio-Zabielska, Agnieszka U; Baranowski, Marcin; Hirnle, Tomasz; Zabielski, Piotr; Lewczuk, Anna; Dmitruk, Iwona; Górski, Jan

    2012-12-01

    Obesity is a risk factor for metabolic diseases. Intramuscular lipid accumulation of ceramides, diacylglycerols, and long chain acyl-CoA is responsible for the induction of insulin resistance. These lipids are probably implicated in obesity-associated insulin resistance not only in skeletal muscle but also in fat tissue. Only few data are available about ceramide content in human subcutaneous adipose tissue. However, there are no data on DAG and LCACoA content in adipose tissue. The aim of our study was to measure the lipids content in human SAT and epicardial adipose tissue we sought to determine the bioactive lipids content by LC/MS/MS in fat tissue from lean non-diabetic, obese non-diabetic, and obese diabetic subjects and test whether the lipids correlate with HOMA-IR. We found, that total content of measured lipids was markedly higher in OND and OD subjects in both types of fat tissue (for all p fat tissue and the particular lipids content positively correlates with HOMA-IR.

  8. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  9. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Directory of Open Access Journals (Sweden)

    Yong Li

    Full Text Available Exposure of human skin to solar ultraviolet (UV irradiation induces matrix metalloproteinase-1 (MMP-1 activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis. Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  10. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available BACKGROUND: Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. RESULTS: Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. CONCLUSIONS: The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  11. “Review on Human Face Detection based on Skin Color and Edge Information”

    Directory of Open Access Journals (Sweden)

    Divyesh S. Gondaliya

    2015-01-01

    Full Text Available Human face detection system is gradually used for the tracking a human face. Face detection system is mainly used in face reorganization system for detecting human face. Here in this review paper we have describe how face detection system works and where it is useful in real world environment. We have describes different technique like template matching, skin color and edge information based on face detection from skin region, symmetry based face detection and etc.

  12. On the binding ratio of α-cyclodextrin to dietary fat in humans

    Directory of Open Access Journals (Sweden)

    Jen KLC

    2013-07-01

    Full Text Available KL Catherine Jen,1,2 George Grunberger,3 Joseph D Artiss2,4 1Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA; 2ArtJen Complexus Inc, Windsor, ON, Canada; 3The Grunberger Diabetes Institute, Bloomfield Hills, MI, USA; 4Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA Abstract: α-Cyclodextrin (α-CD, a soluble dietary fiber, has been shown to bind and eliminate nine times of its own weight in dietary fat. Studies with different animal models have reported that α-CD preferentially binds saturated fatty acids, reducing saturated and trans fatty acid levels in blood. A clinical trial demonstrated that α-CD prevented weight gain in obese diabetic patients. The present study was designed to examine whether α-CD also shows a preference in binding saturated fatty acids in humans and to confirm the 1:9 binding ratio in humans. Sixty-six obese diabetic patients were recruited at the beginning of this 3-month, double-blind, and placebo-controlled study. Patients were randomly assigned to the Active or Placebo group. Blood samples and 3-day dietary records were collected at baseline and at the end of months 1, 2, and 3. A bottle of 180 tablets of active or placebo tablets was dispensed to each participant at the beginning of each month. Dietary records were analyzed using The Food Processor software. It was observed that α-CD has a higher affinity towards saturated fats than to unsaturated fats. Participants with higher intakes of total and saturated fat lost more weight than those with lower intakes (P < 0.05 and < 0.01, respectively. These data support the earlier observation in both in vitro and animal studies that α-CD binds with dietary fat in a 1:9 ratio and further demonstrate the efficacy of α-CD in binding to and eliminating dietary fat, especially saturated fats. α-CD may play a significant role in reducing blood cholesterol and triglyceride levels as well as stopping

  13. First donation of human skin obtained from corpse; Primera donacion de piel humana obtenida de cadaver

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M.L.; Luna Z, D. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The first donation of human skin coming from a cadaverous donor was obtained in the State of Mexico. The skin was obtained of a 34 year-old multi organic donor, the extraction of the same was carried out in an operating theatre by medical personnel, supported by personal of the Radio sterilized Tissue Bank (BTR) of the ININ. The skin was transported to the BTR for it processing. (Author)

  14. Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans.

    Science.gov (United States)

    Rönn, Monika; Lind, Lars; Örberg, Jan; Kullberg, Joel; Söderberg, Stefan; Larsson, Anders; Johansson, Lars; Ahlström, Håkan; Lind, P Monica

    2014-10-01

    Since bisphenol A (BPA) has been shown to induce obesity in experimental studies, we explored the associations between BPA and fat mass, fat distribution and circulating levels of adiponectin, leptin and ghrelin in humans. In the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), fat mass and fat distribution were determined in 70-year-old men and women (n=890) by dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) (n=287). Serum levels of BPA were analyzed using isotope liquid chromatography/tandem mass spectrometer (API4000LC-MS/MS). Hormone levels were analyzed with radioimmunoassays (RIA) or enzyme-linked immunosorbent assay (ELISA). Imaging was performed approximately two years following collection of other data. Serum concentrations of BPA were not related to adipose tissue measurements by DXA or MRI. BPA associated positively with adiponectin and leptin, but negatively with ghrelin, following adjustments for sex, height, fat mass, lean mass, smoking, alcohol consumption, physical activity, energy intake, and educational levels (p<0.001, p=0.009, p<0.001, respectively). The relationship between BPA and ghrelin was stronger in women than in men. Although no relationships between BPA levels and measures of fat mass were seen, BPA associated strongly with the adipokines adiponectin and leptin and with the gut-hormone ghrelin suggesting that BPA may interfere with hormonal control of hunger and satiety. Copyright © 2014. Published by Elsevier Ltd.

  15. Ultraviolet B Light Emitting Diodes (LEDs) Are More Efficient and Effective in Producing Vitamin D3 in Human Skin Compared to Natural Sunlight.

    Science.gov (United States)

    Kalajian, T A; Aldoukhi, A; Veronikis, A J; Persons, K; Holick, M F

    2017-09-13

    Vitamin D, the sunshine vitamin is important for health. Those with fat malabsorption disorders malabsorb vitamin D and thus must rely on cutaneous production of vitamin D3. Vitamin D3 is generated secondary to exposure to ultraviolet B (UVB) radiation (whether from the sun or from an artificial source). Light emitting diodes (LEDs) have been developed to emit ultraviolet radiation. Little is known about the efficiency of UVB emitting LEDs tuned to different wavelengths for producing vitamin D3 in human skin. Ampoules containing 7-dehydrocholesterol were exposed to a LED that emitted a peak wavelength at 293, 295, 298 or 305 nm to determine their efficiency to produce previtamin D3. The 293 nm LED was best suited for evaluating its effectiveness for producing vitamin D in human skin due to the shorter exposure time. This LED was found to be 2.4 times more efficient in producing vitamin D3 in human skin than the sun in less than 1/60(th) the time. This has significant health implications for medical device development in the future that can be used for providing vitamin D supplementation to patients with fat malabsorption syndromes as well as patients with other metabolic abnormalities including patients with chronic kidney disease.

  16. Visualization studies of human skin in vitro/in vivo under the influence of an electrical field

    NARCIS (Netherlands)

    Fatouros, N.E.; Groenink, H.W.M.; Graaff, de A.M.; Aelst, van A.C.; Koerten, H.K.; Bouwstra, J.A.

    2006-01-01

    The aim of this study was to investigate the local changes in the ultrastructure of human skin after iontophoresis, using cryo-scanning, transmission and freeze fracture electron microscopy in human skin in vitro and in vivo. Human dermatomed skin was subjected to passive diffusion for 6 hours

  17. Visualization studies of human skin in vitro/in vivo under the influence of an electrical field

    NARCIS (Netherlands)

    Fatouros, N.E.; Groenink, H.W.M.; Graaff, de A.M.; Aelst, van A.C.; Koerten, H.K.; Bouwstra, J.A.

    2006-01-01

    The aim of this study was to investigate the local changes in the ultrastructure of human skin after iontophoresis, using cryo-scanning, transmission and freeze fracture electron microscopy in human skin in vitro and in vivo. Human dermatomed skin was subjected to passive diffusion for 6 hours follo

  18. In vitro study of ethosome penetration in human skin and hypertrophic scar tissue.

    Science.gov (United States)

    Zhang, Zhen; Wo, Yan; Zhang, Yixin; Wang, Danru; He, Rong; Chen, Huijin; Cui, Daxiang

    2012-08-01

    The purpose of this study is to characterize a novel transdermal delivery carrier, ethosomes containing 5-fluorouracil. The delivery of drugs from ethosomes in human hypertrophic scar (HS) and the mechanisms of action of ethosomes in human HS were investigated. Percutaneous ethosome permeation was evaluated in vitro in human HS and skin using a Franz's cell. The amount of 5-fluorouracil that permeated HS and skin after 24 hours was most abundant in ethosomes via HS (E-Scar), followed by hydroethanolic solution via HS (H-Scar), ethosomes via skin (E-Skin), and hydroethanolic solution via skin (H-Skin). The penetration of ethosomes in HS and skin was analyzed by ethosomes fluorescently labeled with rhodamine 6GO using confocal laser scanning microscopy. The fluorescence intensity after application for 24 hours was highest in E-Scar, followed by E-Skin, H-Scar, and H-Skin, which indicates the penetration of ethosomes in HS was greatest. In conclusion, we consider that ethosomes are a highly efficient carrier in HS.

  19. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    Science.gov (United States)

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  20. Histamine is not released in acute thermal injury in human skin in vivo: a microdialysis study

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Pedersen, Juri Lindy; Skov, Per Stahl

    2009-01-01

    BACKGROUND: Animal models have shown histamine to be released from the skin during the acute phase of a burn injury. The role of histamine during the early phase of thermal injuries in humans remains unclear. PURPOSE: The objectives of this trial were to study histamine release in human skin during...... the acute phase of a standardized thermal injury in healthy volunteers. METHODS: Histamine concentrations in human skin were measured by skin microdialysis technique. Microdialysis fibers were inserted into the dermis in the lower leg in male healthy volunteers. A standardized superficial thermal injury...... was elicited by a heating thermode (49 degrees C) applied to the skin for 5 min. Histamine in dialysate was analyzed for up to 2 h after the injury using two different analytical methods. RESULTS: Spectrofluorometric assay of histamine showed no histamine release in separate studies using 2-min samples over 20...

  1. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    Science.gov (United States)

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Evidence for a physiological role of intracellularly occurring photolabile nitrogen oxides in human skin fibroblasts.

    Science.gov (United States)

    Opländer, Christian; Wetzel, Wiebke; Cortese, Miriam M; Pallua, Norbert; Suschek, Christoph V

    2008-05-01

    Nitric oxide (NO) plays a pivotal role in human skin biology. Cutaneous NO can be produced enzymatically by NO synthases (NOS) as well as enzyme independently via photodecomposition of photolabile nitrogen oxides (PNOs) such as nitrite or nitroso compounds, both found in human skin tissue in comparably high concentrations. Although the physiological role of NOS-produced NO in human skin is well defined, nothing is known about the biological relevance or the chemical origin of intracellularly occurring PNOs. We here, for the first time, give evidence that in human skin fibroblasts (FB) PNOs represent the oxidation products of NOS-produced NO and that in human skin fibroblasts intracellularly occurring PNOs effectively protect against the injurious effects of UVA radiation by a NO-dependent mechanism. In contrast, in PNO-depleted FB cultures an increased susceptibility to UVA-induced lipid peroxidation and cell death is observed, whereas supplementation of PNO-depleted FB cultures with physiological nitrite concentrations (10 microM) or with exogenously applied NO completely restores UVA-increased injuries. Thus, intracellular PNOs are biologically relevant and represent an important initial shield functioning in human skin physiology against UVA radiation. Consequently, nonphysiological low PNO concentrations might promote known UVA-related skin injuries such as premature aging and carcinogenesis.

  3. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age

    Science.gov (United States)

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  4. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral feat

  5. Proteomic allergen-peptide/protein interaction assay for the identification of human skin sensitizers

    NARCIS (Netherlands)

    Dietz, L.; Kinzebach, S.; Ohnesorge, S.; Franke, B.; Goette, I.; Koenig-Gressel, D.; Thierse, H.J.

    2013-01-01

    Modification of proteins by skin sensitizers is a pivotal step in T cell mediated allergic contact dermatitis (ACD). In this process small reactive chemicals interact covalently or non-covalently with cellular or extracellular skin self-proteins or self-peptides to become recognized by the human imm

  6. Modeling and simulation of heat distribution in human skin caused by laser irradiation

    NARCIS (Netherlands)

    Luan, Y.; Dams, S.D.

    2009-01-01

    Study of light-based skin rejuvenation needs prospective insights of mechanism of laser tissue interaction. A well-built model plays a key role in predicting temperature distribution in human skin exposed to laser irradiation. Therefore, it not only provides guidance for in vitro experiment, but

  7. Human skin condition and its associations with nutrient concentrations in serum and diet

    NARCIS (Netherlands)

    Boelsma, E.; Vijver, L.P.L. van de; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.A.; Hendriks, H.F.J.; Roza, L.

    2003-01-01

    Background: Nutritional factors exert promising actions on the skin, but only scant information is available on the modulating effects of physiologic concentrations of nutrients on the skin condition of humans. Objective: The objective was to evaluate whether nutrient concentrations in serum and die

  8. Modeling and simulation of heat distribution in human skin caused by laser irradiation

    NARCIS (Netherlands)

    Luan, Y.; Dams, S.D.

    2009-01-01

    Study of light-based skin rejuvenation needs prospective insights of mechanism of laser tissue interaction. A well-built model plays a key role in predicting temperature distribution in human skin exposed to laser irradiation. Therefore, it not only provides guidance for in vitro experiment, but als

  9. Human skin condition and its associations with nutrient concentrations in serum and diet

    NARCIS (Netherlands)

    Boelsma, E.; Vijver, L.P.L. van de; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.A.; Hendriks, H.F.J.; Roza, L.

    2003-01-01

    Background: Nutritional factors exert promising actions on the skin, but only scant information is available on the modulating effects of physiologic concentrations of nutrients on the skin condition of humans. Objective: The objective was to evaluate whether nutrient concentrations in serum and

  10. Comparison of rat epidermal keratinocyte organotypic culture (ROC) with intact human skin

    DEFF Research Database (Denmark)

    Pappinen, Sari; Hermansson, Martin; Kuntsche, Judith

    2008-01-01

    The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the presen...

  11. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  12. Accumulation of sunscreen in human skin after daily applications

    DEFF Research Database (Denmark)

    Bodekær, Mette; Akerström, Ulf; Wulf, Hans Christian

    2012-01-01

    Sunscreen applied to the skin provides a considerable sun protection factor (SPF) even after 8 h. Sunscreen use for consecutive days may therefore result in an accumulation of the product. This study investigated the consequences of accumulation for SPF....

  13. Human skin auto-fluorescence decay as a function of irradiance and skin type

    Science.gov (United States)

    Debreczeny, Martin P.; Bates, Rebecca; Fitch, Rick M.; Galen, Karen P.; Ge, Jiajia; Dorshow, Richard B.

    2011-03-01

    The aim of this work was to establish measurement conditions under which endogenous skin fluorescence ("auto-fluorescence") is relatively invariant, so that changes in exogenous agents can be accurately determined. Fluorescence emission was measured on the volar forearm of 36 subjects, chosen to be equally representative of all 6 Fitzpatrick skin types. All subjects were exposed to approximately 40 minutes of optical excitation at 450 and 500 nm with 4 irradiances between 0.3 and 9 mW/cm2. Both non-optically-induced (e.g. tissue settling and fluctuation) and optically-induced variations were observed in the measured fluorescence and mechanisms explaining these effects are proposed. The optically-induced auto-fluorescence decay was independent of skin type when excited at 450 nm, but significantly dependent on skin type when excited at 500 nm. Further, the extent of decay over time was linearly related to irradiance at 500 nm, but at 450 nm was non-linear, with the extent of decay rolling off between 2 and 9 mW/cm2. In order to maintain the auto-fluorescence signal within 95% of its original value over a 30 minute period, the excitation at 450 nm would need to be limited to 1.5 mW/cm2, while excitation at 500 nm should be limited to 5 mW/cm2.

  14. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations

    NARCIS (Netherlands)

    Wu, Y.; M.D. Nieuwenhoff (Mariska D.); F.J.P.M. Huygen (Frank); F.C.T. van der Helm (Frans C.); S.P. Niehof (Sjoerd); A.C. Schouten (A.)

    2017-01-01

    textabstractSmall nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to

  15. Natural and Sun-Induced Aging of Human Skin

    OpenAIRE

    Rittié, Laure; Fisher, Gary J.

    2015-01-01

    With worldwide expansion of the aging population, research on age-related pathologies is receiving growing interest. In this review, we discuss current knowledge regarding the decline of skin structure and function induced by the passage of time (chronological aging) and chronic exposure to solar UV irradiation (photoaging). Nearly every aspect of skin biology is affected by aging. The self-renewing capability of the epidermis, which provides vital barrier function, is diminished with age. Vi...

  16. Migration of human antigen-presenting cells in a human skin graft onto nude mice model after contact sensitization

    NARCIS (Netherlands)

    Hoefakker, S.; Balk, H.P.; Boersma, W.J.A.; Joost, T. van; Notten, W.R.F.; Claassen, E.

    1995-01-01

    Fluorescent contact chemical allergens provoke sensitization after application on both syngeneic and allogeneic skin grafts in mice. We attempted to determine whether the functional activity in a contact sensitization response of human skin graft was affected at the level of antigen uptake and

  17. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders. PMID:27992514

  18. Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin.

    Science.gov (United States)

    Waldera Lupa, Daniel M; Kalfalah, Faiza; Safferling, Kai; Boukamp, Petra; Poschmann, Gereon; Volpi, Elena; Götz-Rösch, Christine; Bernerd, Francoise; Haag, Laura; Huebenthal, Ulrike; Fritsche, Ellen; Boege, Fritz; Grabe, Niels; Tigges, Julia; Stühler, Kai; Krutmann, Jean

    2015-08-01

    Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.

  19. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  20. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Karl Gledhill

    Full Text Available The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  1. The use of reconstructed human epidermis for skin absorption testing: Results of the validation study.

    Science.gov (United States)

    Schäfer-Korting, Monika; Bock, Udo; Diembeck, Walter; Düsing, Hans-Jürgen; Gamer, Armin; Haltner-Ukomadu, Eleonore; Hoffmann, Christine; Kaca, Monika; Kamp, Hennicke; Kersen, Silke; Kietzmann, Manfred; Korting, Hans Christian; Krächter, Hans-Udo; Lehr, Claus-Michael; Liebsch, Manfred; Mehling, Annette; Müller-Goymann, Christel; Netzlaff, Frank; Niedorf, Frank; Rübbelke, Maria K; Schäfer, Ulrich; Schmidt, Elisabeth; Schreiber, Sylvia; Spielmann, Horst; Vuia, Alexander; Weimer, Michaela

    2008-05-01

    A formal validation study was performed, in order to investigate whether the commercially-available reconstructed human epidermis (RHE) models, EPISKIN, EpiDerm and SkinEthic, are suitable for in vitro skin absorption testing. The skin types currently recommended in the OECD Test Guideline 428, namely, ex vivo human epidermis and pig skin, were used as references. Based on the promising outcome of the prevalidation study, the panel of test substances was enlarged to nine substances, covering a wider spectrum of physicochemical properties. The substances were tested under both infinite-dose and finite-dose conditions, in ten laboratories, under strictly controlled conditions. The data were subjected to independent statistical analyses. Intra-laboratory and inter-laboratory variability contributed almost equally to the total variability, which was in the same range as that in preceding studies. In general, permeation of the RHE models exceeded that of human epidermis and pig skin (the SkinEthic RHE was found to be the most permeable), yet the ranking of substance permeation through the three tested RHE models and the pig skin reflected the permeation through human epidermis. In addition, both infinite-dose and finite-dose experiments are feasible with RHE models. The RHE models did not show the expected significantly better reproducibility, as compared to excised skin, despite a tendency toward lower variability of the data. Importantly, however, the permeation data showed a sufficient correlation between all the preparations examined. Thus, the RHE models, EPISKIN, EpiDerm and SkinEthic, are appropriate alternatives to human and pig skin, for the in vitro assessment of the permeation and penetration of substances when applied as aqueous solutions.

  2. The use of ex vivo human skin tissue for genotoxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Reus, Astrid A.; Usta, Mustafa [TNO Triskelion BV, Utrechtseweg 48, 3704 HE, Zeist (Netherlands); Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl [TNO, Utrechtseweg 48, 3704 HE Zeist (Netherlands)

    2012-06-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  3. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin.

    Science.gov (United States)

    Do, Nhung; Weindl, Günther; Grohmann, Lisa; Salwiczek, Mario; Koksch, Beate; Korting, Hans Christian; Schäfer-Korting, Monika

    2014-05-01

    Cationic antimicrobial peptides are ancient natural broad-spectrum antibiotics, and several compounds also exhibit anticancer activity. However, most applications pertain to bacterial infections, and treatment for skin cancer is less frequently considered. The cytotoxicity of melittin, cecropin A, protegrin-1 and histatin 5 against squamous skin cancer cell lines and normal human keratinocytes was evaluated and compared to established drugs. The results show that melittin clearly outperforms 5-fluorouracil regarding antitumor activity. Importantly, combined melittin and 5-fluorouracil enhanced cytotoxic effects on cancer cells and reduced toxicity on normal keratinocytes. Additionally, minimum inhibitory concentrations indicate that melittin also shows superior activity against clinical and laboratory strains of Candida albicans compared to amphotericin B. To evaluate its potential for topical applications, human skin penetration of melittin was investigated ex vivo and compared to two non-toxic cell-penetrating peptides (CPPs), low molecular weight protamine (LMWP) and penetratin. The stratum corneum prevents penetration into viable epidermis over 6 h; however, the peptides gain access to the viable skin after 24 h. Inhibition of digestive enzymes during skin penetration significantly enhances the availability of intact peptide. In conclusion, melittin may represent an innovative agent for non-melanoma skin cancer and infectious skin diseases. In order to develop a drug candidate, skin absorption and proteolytic digestion by skin enzymes need to be addressed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Dermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration

    Science.gov (United States)

    Jeremias, Talita da Silva; Machado, Rafaela Grecco; Visoni, Silvia Beatriz Coutinho; Pereima, Maurício José; Leonardi, Dilmar Francisco; Trentin, Andrea Gonçalves

    2014-01-01

    New strategies for skin regeneration are needed in order to provide effective treatment for cutaneous wounds and disease. Mesenchymal stem cells (MSCs) are an attractive source of cells for tissue engineering because of their prolonged self-renewal capacity, multipotentiality, and ability to release active molecules important for tissue repair. In this paper, we show that human skin-derived mesenchymal stromal cells (SD-MSCs) display similar characteristics to the multipotent MSCs. We also evaluate their growth in a three-dimensional (3D) culture system with dermal substitutes (Integra and Pelnac). When cultured in monolayers, SD-MSCs expressed mesenchymal markers, such as CD105, Fibronectin, and α-SMA; and neural markers, such as Nestin and βIII-Tubulin; at transcriptional and/or protein level. Integra and Pelnac equally supported the adhesion, spread and growth of human SD-MSCs in 3D culture, maintaining the MSC characteristics and the expression of multilineage markers. Therefore, dermal substitutes support the growth of mesenchymal stromal cells from human skin, promising an effective tool for tissue engineering and regenerative technology. PMID:24586857

  5. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...... chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...

  6. Instrumentation for the measurement of autofluorescence in human skin

    Science.gov (United States)

    Graaff, Reindert; Meerwaldt, Robbert; Lutgers, Helen L.; Baptist, Rene; de Jong, Ed D.; Zijp, Jaap R.; Links, Thera P.; Smit, Andries J.; Rakhorst, Gerhard

    2005-04-01

    A setup to measure skin autofluorescence was developed to assess accumulation of advanced glycation endproducts (AGE) in patients noninvasively. The method applies direct blacklight tube illumination of the skin of the lower arm, and spectrometry. The setup displays skin autofluorescence (AF) as a ratio of mean intensities detected from the skin between 420-600 nm and 300-420 nm, respectively. In an early clinical application in 46 and control subjects matched for age and gender, AF was significantly increased in the patients (p = 0.015), and highly correlated with skin AGE's that were determined from skin biopsies in both groups. A large follow-up study on type 2 diabetes mellitus, ongoing since 2001 with more than 1000 subjects, aims to assess the value of the instrument in predicting chronic complications of diabetes. At baseline, a relation with age, glycemic status and with complications present was found. In a study in patients with end stage renal disease on dialysis AF was a strong and independent predictor of total and cardiovascular mortality. A commercial version of this AGE-reader is now under development and becomes available early 2005 (DiagnOptics B.V., Groningen, The Netherlands). One of the remaining questions, that will be answered by measuring so-called Exciation-Emission Matrices (EEM's) of the skin tissue in vivo, is whether a more selective choice of wavelengths is more strongly related to clinical characteristics. An experimental instrument to measure these EEM's was, therefore, developed as well. Clinical measurements are underway of EEM's in patient groups with diabetes mellitus and in healthy volunteers.

  7. In vitro dermal absorption of decabromodiphenyl ethane in rat and human skin

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro dermal absorption of decabromodiphenyl ethane in rat and human skin. This dataset is associated with the following publication: Knudsen, G., J.M. Sanders,...

  8. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    Science.gov (United States)

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products.

  9. A Square Wave Based Electrical Method for Human Skin Moisture Assessment

    Institute of Scientific and Technical Information of China (English)

    Guolin Zhou; Yonggui Dong

    2006-01-01

    The moisture content measurement of human skin is a significant way to assess skin conditions and diagnose diseases that influence skin function. The necessity of evaluating the efficacy of a cosmetic product makes it important to improve the accuracy and reproducibility of the measurement. A pair of interdigitated gold electrodes was fabricated on the printed circuit board (PCB) substrate and utilized directly in contact with the measured skin. A square-wave voltage at a single frequency was applied to the electrodes and the corresponding response current was measured to get the equivalent impedance of human skin. Since it's easy to generate and control a square-wave signal by digital electric circuits, this method is suitable to be used in the portable application. The experimental results indicate that good repeatability and satisfied accuracy can be obtained by this method.

  10. Novel Inhibitory Effect of N-(2-Hydroxycyclohexylvaliolamine on Melanin Production in a Human Skin Model

    Directory of Open Access Journals (Sweden)

    Bum-Ho Bin

    2014-07-01

    Full Text Available Hyper-pigmentation causes skin darkness and medical disorders, such as post-inflammatory melanoderma and melasma. Therefore, the development of anti-melanogenic agents is important for treating these conditions and for cosmetic production. In our previous paper, we demonstrated that the anti-diabetic drug voglibose, a valiolamine derivative, is a potent anti-melanogenic agent. In addition, we proposed an alternative screening strategy to identify valiolamine derivatives with high skin permeability that act as anti-melanogenic agents when applied topically. In this study, we synthesized several valiolamine derivatives with enhanced lipophilicity and examined their inhibitory effects in a human skin model. N-(2-hydroxycyclohexylvaliolamine (HV possesses a stronger inhibitory effect on melanin production than voglibose in a human skin model, suggesting that HV is a more potent anti-melanogenic agent for the skin.

  11. Characterization of the Frictional Response of Squamata Shed Skin in Comparison to Human skin

    CERN Document Server

    Abdel-Aal, H A

    2010-01-01

    Deterministic surfaces are constructs of which profile, topography and textures are integral to the function of the system they enclose. They are designed to yield a predetermined rubbing response. Developing such entities relies on controlling the structure of the rubbing interface so that, not only the surface is of optimized topography, but also is able to self-adjust its behavior according to the evolution of sliding conditions. Inspirations for such designs are frequently encountered in natural species. In particular, and from a tribological point of view, Squamate Reptiles, offer diverse examples where surface texturing, submicron and nano-scale features, achieves frictional regulation. In this paper, we study the frictional response of shed skin obtained from a Python regius snake. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional re...

  12. Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease

    OpenAIRE

    2014-01-01

    Keratinocyte differentiation is essential for skin development and the formation of the skin permeability barrier. This process involves an orchestrated remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by β-glucocerebrosidase, sphingomyelinase, phospholipases and sterol sulfatase generates ceramides, non-esterified fatty acids and cholesterol for the lipid-containing extracellular matrix, the lamellar membranes in the stratum corneum. The importance of triacylglycer...

  13. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    OpenAIRE

    Boer, Magdalena; Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-01-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transep...

  14. Development of a dielectric equivalent gel for better impedance matching for human skin.

    Science.gov (United States)

    Sunaga, Takahiro; Ikehira, Hiroo; Furukawa, Shigeo; Tamura, Mitsuru; Yoshitome, Eiji; Obata, Takayuki; Shinkai, Hiroshi; Tanada, Shuji; Murata, Hajime; Sasaki, Yasuhito

    2003-04-01

    It would be useful to develop a tissue equivalent gel to improve the uniformity of the electromagnetic field in the human body, and for making a tissue equivalent dielectric human phantom. In this study, solid type, water based gelatin-honey gels were developed which have the electrical characteristics of skin tissue. It was demonstrated that a stable and homogeneous gel, with a relative dielectric constant epsilon ' chosen from desired ranges found in skin, can be made for 200-400 MHz.

  15. Mechanical properties of an artificial vascularized human skin

    Science.gov (United States)

    Passot, A.; Cabodevila, G.

    2011-05-01

    In order to make blood sample tests an artificial skin similar to that of the baby's heel is modeled and realized. The most superficial bloodstream and the two main layers of the skin -epidermis and dermis- have to be recreated. Studies and capillaroscopies of the baby's heel give characteristics of these layers and the bloodstream. The skin is viscohyperelastic, but the choice of materials that will be used is based on the Young's modulus. The epidermis layer is based on a stronger less adhesive silicon rubber Elastosil. The dermis layer is composed of a mixture based on a very soft sticky silicon rubber Silgel and Sylgard. The mixture of Silgel with 5% Sylgard has an elastic modulus of 48 kPa which is similar to that of the dermis. The artificial skin is an assembly of several layers including a layer of Sylgard that is structured by a mold representing the capillary network and adapted to manufacturing processes in a clean room. Each layer is deposited by spin coating and is combined with the other through adhesion. Mechanical tests such as tension are performed to verify the mechanical properties of the artificial skin.

  16. Human Skin as Arrays of Helical Antennas in the Millimeter and Submillimeter Wave Range

    Science.gov (United States)

    Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Agranat, Aharon J.

    2008-03-01

    Recent studies of the minute morphology of the skin by optical coherence tomography showed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. A computer simulation study of these structures in millimeter and submillimeter wave bands show that the human skin functions as an array of low-Q helical antennas. Experimental evidence is presented that the spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure.

  17. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function.

    Science.gov (United States)

    Boer, Magdalena; Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-02-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part - stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  18. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  19. Lymphoid neogenesis in skin of human hand, nonhuman primate, and rat vascularized composite allografts.

    Science.gov (United States)

    Hautz, Theresa; Zelger, Bettina G; Nasr, Isam W; Mundinger, Gerhard S; Barth, Rolf N; Rodriguez, Eduardo D; Brandacher, Gerald; Weissenbacher, Annemarie; Zelger, Bernhard; Cavadas, Pedro; Margreiter, Raimund; Lee, W P Andrew; Pratschke, Johann; Lakkis, Fadi G; Schneeberger, Stefan

    2014-09-01

    The mechanisms of skin rejection in vascularized composite allotransplantation (VCA) remain incompletely understood. The formation of tertiary lymphoid organs (TLO) in hand transplantation has been recently described. We assess this phenomenon in experimental and clinical VCA rejection. Skin biopsies of human (n = 187), nonhuman primate (n = 11), and rat (n = 15) VCAs were analyzed for presence of TLO. A comprehensive immunohistochemical assessment (characterization of the cell infiltrate, expression of adhesion molecules) including staining for peripheral node addressin (PNAd) was performed and correlated with rejection and time post-transplantation. TLO were identified in human, nonhuman primate, and rat skin samples. Expression of PNAd was increased in the endothelium of vessels upon rejection in human skin (P = 0.003) and correlated with B- and T-lymphocyte numbers and LFA-1 expression. PNAd expression was observed at all time-points after transplantation and increased significantly after year 5. In nonhuman primate skin, PNAd expression was found during inflammatory conditions early and late after transplantation. In rat skin, PNAd expression was strongly associated with acute rejection and time post-transplantation. Lymphoid neogenesis and TLO formation can be uniformly found in experimental and human VCA. PNAd expression in vascular endothelium correlates with skin rejection and T- and B-cell infiltration.

  20. CONSUMPTION OF SATURATED ANIMAL FATS IN THE DIET OF HUMANS MAY DECREASE THE RATE OF HEART DISEASE IN THE FUTURE

    OpenAIRE

    Soroush Niknamian; Mehrandokht Nekavand

    2017-01-01

    Fats, as part of the human dietary regime are a concentrated source of energy. Animals contain saturated and plants contain unsaturated type of fatty acids. In this prospective research, the role of animal saturated fatty acids is highlighted and is proven to be a rational dietary source for the human diet. Saturated fats consumption is a wise choice in order to reduce the coronary heart disease risk, although it is believed in an opposite way. Researching through the healthiest tribes and kn...

  1. An elastic second skin

    Science.gov (United States)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  2. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts

    NARCIS (Netherlands)

    C.M.A. Reijnders; A. van Lier; S. Roffel; D. Kramer; R.J. Scheper; S. Gibbs

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  3. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    NARCIS (Netherlands)

    Reijnders, Christianne M. A.; van Lier, Amanda; Roffel, Sanne; Kramer, Duco; Scheper, Rik J.; Gibbs, Susan

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve th

  4. In vivo multiphoton microscopy associated to 3D image processing for human skin characterization

    Science.gov (United States)

    Baldeweck, T.; Tancrède, E.; Dokladal, P.; Koudoro, S.; Morard, V.; Meyer, F.; Decencière, E.; Pena, A.-M.

    2012-03-01

    Multiphoton microscopy has emerged in the past decade as a promising non-invasive skin imaging technique. The aim of this study was to assess whether multiphoton microscopy coupled to specific 3D image processing tools could provide new insights into the organization of different skin components and their age-related changes. For that purpose, we performed a clinical trial on 15 young and 15 aged human female volunteers on the ventral and dorsal side of the forearm using the DermaInspectR medical imaging device. We visualized the skin by taking advantage of intrinsic multiphoton signals from cells, elastic and collagen fibers. We also developed 3D image processing algorithms adapted to in vivo multiphoton images of human skin in order to extract quantitative parameters in each layer of the skin (epidermis and superficial dermis). The results show that in vivo multiphoton microscopy is able to evidence several skin alterations due to skin aging: morphological changes in the epidermis and modifications in the quantity and organization of the collagen and elastic fibers network. In conclusion, the association of multiphoton microscopy with specific image processing allows the three-dimensional organization of skin components to be visualized and quantified thus providing a powerful tool for cosmetic and dermatological investigations.

  5. Effectiveness of hand washing on the removal of iron oxide nanoparticles from human skin ex vivo.

    Science.gov (United States)

    Lewinski, Nastassja A; Berthet, Aurélie; Maurizi, Lionel; Eisenbeis, Antoine; Hopf, Nancy B

    2017-08-01

    In this study, the effectiveness of washing with soap and water in removing nanoparticles from exposed skin was investigated. Dry, nanoscale hematite (α-Fe2O3) or maghemite (γ-Fe2O3) powder, with primary particle diameters between 20-30 nm, were applied to two samples each of fresh and frozen ex vivo human skin in two independent experiments. The permeation of nanoparticles through skin, and the removal of nanoparticles after washing with soap and water were investigated. Bare iron oxide nanoparticles remained primarily on the surface of the skin, without penetrating beyond the stratum corneum. Skin exposed to iron oxide nanoparticles for 1 and 20 hr resulted in removal of 85% and 90%, respectively, of the original dose after washing. In the event of dermal exposure to chemicals, removal is essential to avoid potential local irritation or permeation across skin. Although manufactured at an industrial scale and used extensively in laboratory experiments, limited data are available on the removal of engineered nanoparticles after skin contact. Our finding raises questions about the potential consequences of nanoparticles remaining on the skin and whether alternative washing methods should be proposed. Further studies on skin decontamination beyond use of soap and water are needed to improve the understanding of the potential health consequences of dermal exposure to nanoparticles.

  6. Tactile spatial acuity is reduced by skin stretch at the human wrist.

    Science.gov (United States)

    Cody, Frederick W J; Idrees, Raheel; Spilioti, Diamantina X; Poliakoff, Ellen

    2010-10-22

    The skin is an elastic organ that is continuously distorted as our limbs move. The hypothesis that the precision of human tactile localisation is reduced when the skin is stretched, with concurrent expansion of receptive fields (RFs) was tested. Locognosic acuity over the dorsal wrist area was quantified during application of background stretch by (a) Wrist-Bend (skin stretch combined with non-cutaneous proprioceptor activation) and (b) Skin-Pull (skin stretch alone). Participants identified the perceived direction (distal or proximal) of brief test stimuli, applied along a 7-point linear array, relative to a central reference locus. Performance was significantly reduced during the large amplitude compared to the small amplitude of tonic skin stretch, but there was no effect of stretch mode (Wrist-Bend, Skin-Pull), nor was the effect of stretch amplitude modulated by the mode of stretch. Locognosic acuity was poorer than baseline accuracy for the large amplitude skin stretches, for both application modes, but did not differ significantly from baseline for either of the small amplitude stretches. We interpret these observations as corroborating the long-held assumption that tactile localisation is primarily dependent upon the RF dimensions, and associated innervation densities, of regional touch units. The finding that performance was reduced to a similar extent under Skin-Pull and Wrist-Bend conditions suggests that non-cutaneous proprioceptors had rather little tonic modulatory effect.

  7. Predicting human epidermal melanin concentrations for different skin tones

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2011-07-01

    Full Text Available In the past 50 years lasers has found numerous applications in medicine. One of their advantages is their use for minimalistic or non-invasive diagnosis and treatment. Often that means light penetration through skin and the correct dose required...

  8. Brugia malayi infective larvae fail to activate Langerhans cells and dermal dendritic cells in human skin.

    Science.gov (United States)

    Cotton, R N; McDonald-Fleming, R; Boyd, A; Spates, K; Nutman, T B; Tolouei Semnani, R

    2015-02-01

    Filarial infection in humans is initiated when a mosquito deposits third-stage parasite larvae (L3) in the skin. Langerhans cells (LCs) and dermal dendritic cells (DDCs) are the first cells that the parasite encounters, and L3s must evade these highly effective antigen-presenting cells to establish infection. To assess LC and DDC responses to L3 in human skin, we employed three models of increasing physiologic relevance: in vitro-generated LCs, epidermal blister explants and full-thickness human skin sections. In vitro-generated LCs expressed TLR1-10 and robustly produced IL-6 and TNF-α in response to PolyI:C, but pre-exposure to L3s did not alter inflammatory cytokine production or TLR expression. L3s did not modulate expression of LC markers CDH1, CD207, or CD1a, or the regulatory products TSLP or IDO in epidermal explants or in vitro-generated LC. LC, CD14+ DDC, CD1c+ DC and CD141+ DC from human skin sections were analysed by flow cytometry. While PolyI:C potently induced CCL22 production in LC, CD1c+ DC, and CD141+ DC, and IL-10 production in LC, L3s did not modulate the numbers of or cytokine production by any skin DC subset. L3s broadly failed to activate or modulate LCs or DDCs, suggesting filarial larvae expertly evade APC detection in human skin.

  9. Chlamydia-Like Organisms (CLOs in Finnish Ixodes ricinus Ticks and Human Skin

    Directory of Open Access Journals (Sweden)

    Kati Hokynar

    2016-08-01

    Full Text Available Ticks carry several human pathogenic microbes including Borreliae and Flavivirus causing tick-born encephalitis. Ticks can also carry DNA of Chlamydia-like organisms (CLOs. The purpose of this study was to investigate the occurrence of CLOs in ticks and skin biopsies taken from individuals with suspected tick bite. DNA from CLOs was detected by pan-Chlamydiales-PCR in 40% of adult ticks from southwestern Finland. The estimated minimal infection rate for nymphs and larvae (studied in pools was 6% and 2%, respectively. For the first time, we show CLO DNA also in human skin as 68% of all skin biopsies studied contained CLO DNA as determined through pan-Chlamydiales-PCR. Sequence analyses based on the 16S rRNA gene fragment indicated that the sequences detected in ticks were heterogeneous, representing various CLO families; whereas the majority of the sequences from human skin remained “unclassified Chlamydiales” and might represent a new family-level lineage. CLO sequences detected in four skin biopsies were most closely related to “uncultured Chlamydial bacterium clones from Ixodes ricinus ticks” and two of them were very similar to CLO sequences from Finnish ticks. These results suggest that CLO DNA is present in human skin; ticks carry CLOs and could potentially transmit CLOs to humans.

  10. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  11. Impact of chemical peeling combined with negative pressure on human skin.

    Science.gov (United States)

    Kim, S J; Kang, I J; Shin, M K; Jeong, K H; Baek, J H; Koh, J S; Lee, S J

    2016-10-01

    In vivo changes in skin barrier function after chemical peeling with alpha hydroxyacids (AHAs) have been previously reported. However, the additional effects of physical treatment with chemical agents on skin barrier function have not been adequately studied. This study measured the degree of acute skin damage and the time required for skin barrier repair using non-invasive bioengineering methods in vivo with human skin to investigate the additional effect of a 4% AHA chemical jet accelerated at supersonic velocities. Thirteen female subjects (average age: 29.54 ± 4.86 years) participated in this study. The faces of the subjects were divided into half according to the block randomization design and were then assigned to receive AHA peeling alone or AHA peeling combined with pneumatic pressure on each side of the face. Transepidermal water loss (TEWL), skin colour and skin blood flow were evaluated at baseline and at 30 min, 2, 5 and 7 days after treatment. The TEWL and skin blood flow were significantly increased after 30 min in chemodermabrasion compared with chemical peeling alone (P skin blood flow recovered to baseline after 2 days, and TEWL was significantly decreased at 7 days compared with chemical peeling alone (P skin barriers, but it is estimated that it can enhance the skin barrier function after 7 days compared to the use of a chemical agent alone. In addition, chemodermabrasion has a more effective impact in the dermis and relatively preserves the skin barrier. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment

    National Research Council Canada - National Science Library

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-01-01

    .... The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured...

  13. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Muya Shu

    Full Text Available Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes, a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA. We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health.

  14. Long-term maintenance of skin immune system in a NOD-Scid IL2rγ(null) mouse model transplanted with human skin.

    Science.gov (United States)

    Soria, Angèle; Boccara, David; Chonco, Louis; Yahia, Nora; Dufossée, Mélody; Cardinaud, Sylvain; Moris, Arnaud; Liard, Christelle; Joulin-Giet, Alix; Julithe, Marion; Mimoun, Maurice; Combadière, Béhazine; Perrin, Hélène

    2014-11-01

    We developed a NOD-Scid IL2rγ(null) mouse model transplanted with human skin that brings fundamental insight on in vivo cellular mechanisms of intradermal immunization and antigen presentation by dermal dendritic and epidermal Langerhans cells for skin T-cell immunity. Indeed, T-cell immunity is a crucial checkpoint for the induction of in vivo rapid control of skin infection. With the long-term preservation of a complete human skin immune system, this model offers the unique opportunity not only to better understand mechanisms of skin immune response but also to test new compounds and devices for cutaneous routes of vaccination, as well as new therapeutics approach for skin diseases, allergies or infections.

  15. Parabens inhibit human skin estrogen sulfotransferase activity: possible link to paraben estrogenic effects.

    Science.gov (United States)

    Prusakiewicz, Jeffery J; Harville, Heather M; Zhang, Yanhua; Ackermann, Chrisita; Voorman, Richard L

    2007-04-11

    Parabens (p-hydroxybenzoate esters) are a group of widely used preservatives in topically applied cosmetic and pharmaceutical products. Parabens display weak associations with the estrogen receptors in vitro or in cell based models, but do exhibit estrogenic effects in animal models. It is our hypothesis that parabens exert their estrogenic effects, in part, by elevating levels of estrogens through inhibition of estrogen sulfotransferases (SULTs) in skin. We report here the results of a structure-activity-relationship of parabens as inhibitors of estrogen sulfation in human skin cytosolic fractions and normal human epidermal keratinocytes. Similar to reports of paraben estrogenicity and estrogen receptor affinity, the potency of SULT inhibition increased as the paraben ester chain length increased. Butylparaben was found to be the most potent of the parabens in skin cytosol, yielding an IC(50) value of 37+/-5 microM. Butylparaben blocked the skin cytosol sulfation of estradiol and estrone, but not the androgen dehydroepiandrosterone. The parabens were also tested as inhibitors of SULT activity in a cellular system, with normal human epidermal keratinocytes. The potency of butylparaben increased three-fold in these cells relative to the IC(50) value from skin cytosol. Overall, these results suggest chronic topical application of parabens may lead to prolonged estrogenic effects in skin as a result of inhibition of estrogen sulfotransferase activity. Accordingly, the skin anti-aging benefits of many topical cosmetics and pharmaceuticals could be derived, in part, from the estrogenicity of parabens.

  16. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...

  17. Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo

    Science.gov (United States)

    Yanina, Irina Yu.; Tuchin, Valery V.; Navolokin, Nikita A.; Matveeva, Olga V.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Altshuler, Gregory B.

    2012-05-01

    Histological slices of skin samples with the subcutaneous adipose tissue after photothermal/photodynamic treatment are analyzed. In the case of subcutaneous indocyanine green injection and 808-nm diode laser exposure of the rat skin site in vivo, the greatest changes in tissue condition were observed. Processes were characterized by dystrophy, necrosis, and desquamation of the epithelial cells, swelling and necrosis of the connective tissue, and widespread necrosis of the subcutaneous adipose tissue. The obtained data are useful for safe layer-by-layer dosimetry of laser illumination of ICG-stained adipose tissue for treatment of obesity and cellulite.

  18. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-05-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with (/sup 3/H)yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells.

  19. Impact of extracorporeal shock waves on the human skin with cellulite: A case study of an unique instance

    Directory of Open Access Journals (Sweden)

    Christoph Kuhn

    2008-03-01

    Full Text Available Christoph Kuhn1, Fiorenzo Angehrn1, Ortrud Sonnabend2, Axel Voss31Klinik Piano, Biel, Switzerland; 2Pathodiagnostics, Herisau, Switzerland; 3SwiTech Medical AG, Kreuzlingen, SwitzerlandAbstract: In this case study of an unique instance, effects of medium-energy, high-focused extracorporeal generated shock waves (ESW onto the skin and the underlying fat tissue of acellulite afflicted, 50-year-old woman were investigated. The treatment consisted of four ESW applications within 21 days. Diagnostic high-resolution ultrasound (Collagenoson was performed before and after treatment. Directly after the last ESW application, skin samples were taken for histopathological analysis from the treated and from the contra-lateral untreated area of skin with cellulite. No damage to the treated skin tissue, in particular no mechanical destruction to the subcutaneous fat, could be demonstrated by histopathological analysis. However an astounding induction of neocollageno- and neoelastino-genesis within the scaffolding fabric of the dermis and subcutis was observed. The dermis increased in thickness as well as the scaffolding within the subcutaneous fat-tissue. Optimization of critical application parameters may turn ESW into a noninvasive cellulite therapy.Keywords: cellulite, extracellular matrix, fat tissue, high-resolution ultrasound of skin, extracorporeal shock wave, histopathology, scaffolding of subcutaneous connective tissue

  20. Absorption of human skin and its detecting platform in the process of laser cosmetology

    Science.gov (United States)

    Zhang, Yong-Lin; Ouyang, Li; Wang, Yang

    2000-10-01

    Because of the melanin, hemoglobin and water molecules, etc. contained, light absorption of human skin tissue changes with wavelength of light. This is the principle used in laser cosmetology for treating pigment diseases and vascular lesion diseases as well as skin decoration such as body tattooing, eyebrow tattooing, etc. The parameters of treatment used in laser cosmetology principally come from the research of the skin tissue optical characteristics of whites, and it is not suitable for the Oriental. The absorption spectrum of yellow race alive skin has been researched. The detecting platform for use in the measuring of vivi-tissue absorption spectrum has been developed which using opto-electronic nondestructive testing and virtual instrument techniques. The degree of pathological changes of skin can be detected by this platform also, thus the shortcoming of dosage selection in laser clinical treatments which have been decided only by naked eye observation and past experience of doctors can be solved.

  1. Ultrathin conformal devices for precise and continuous thermal characterization of human skin

    Science.gov (United States)

    Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.

    2013-10-01

    Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.

  2. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    Science.gov (United States)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  3. On-line diffusion profile of a lipophilic model dye in different depths of a hair follicle in human scalp skin.

    Science.gov (United States)

    Grams, Ylva Y; Whitehead, Lynne; Lamers, Gerda; Sturmann, Nico; Bouwstra, Joke A

    2005-10-01

    In skin and hair research, drug targeting to the hair follicle is of great interest in the treatment of skin diseases. The aim of this study is to visualize on-line the diffusion processes of a model fluorophore into the hair follicle at different depths using fresh human scalp skin and confocal laser scanning microscopy. Up to a depth of 500 microm in the skin, a fast increase of fluorescence is observed in the gap followed by accumulation of the dye in the hair cuticle. Penetration was also observed via the stratum corneum and the epidermis. Little label reached depths greater than 2000 microm. Fat cells accumulated the label fastest, followed by the cuticular area and the outer root sheath of the hair follicle. Sweat glands revealed very low staining, whereas the bulb at a depth of 4000 microm was visualized only by autofluorescence. From this study, we conclude that on-line visualization is a promising technique to access diffusion processes in deep skin layers even on a cellular level. Furthermore, we conclude that the gap and the cuticle play an important role in the initial diffusion period with the label in the cuticle originating from the gap.

  4. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  5. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin.

    Science.gov (United States)

    Hwang, Eunson; Park, Sang-Yong; Yin, Chang Shik; Kim, Hee-Taek; Kim, Yong Min; Yi, Tae Hoo

    2017-01-01

    Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.

  6. Essential role of RAB27A in determining constitutive human skin color.

    Directory of Open Access Journals (Sweden)

    Yasuko Yoshida-Amano

    Full Text Available Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (

  7. Optical coherence tomography applied to tests of skin care products in humans--a case study.

    Science.gov (United States)

    Vasquez-Pinto, L M C; Maldonado, E P; Raele, M P; Amaral, M M; de Freitas, A Z

    2015-02-01

    When evaluating skin care products for human skin, quantitative test methods need to be simple, precise and reliable. Optical coherence tomography (OCT), provides high-resolution sectional images of translucent materials to a depth of a few millimeters, a technique usually applied to medical measurements in ophthalmology and dermatology. This study aimed to demonstrate the application of OCT as the main technique for monitoring changes in skin topography during tests of a wrinkle-reduction product in humans. We used a commercial OCT apparatus to perform clinical examinations of skin roughness in treated and non-treated sites in the periorbital region of thirty human voluntaries who were using an anti-aging product commercially available: Natura Chronos® Flavonóides de Passiflora 45+ FPS15, from Natura Cosméticos, Brazil. Measurements were performed days 0, 7, 14 and 28 of treatment. Equipment and software allowed real-time recording of skin roughness parameters and wrinkle depths. The OCT measurements have allowed the monitoring of changes in skin roughness, which have shown reduction in treated sites around 10%. The obtained depth distributions also indicate reduction in the occurrence of wrinkles deeper than 170 μm. The verified results are consistent with those typically obtained after successful treatment with modern anti-aging products. By using the OCT technique, it was possible to quantify changes in skin roughness and in the distribution of depths of skin wrinkles, with adequate sensitivity. OCT imaging allows the direct visualization of the skin topography with resolution of micrometers, a reliable and interactive tool for clinical use. Therefore, for the first time, we demonstrated the use of OCT technique to verify the efficacy of cosmetic products in real time. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Permeation of platinum and rhodium nanoparticles through intact and damaged human skin

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Marcella [University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical Sciences (Italy); Crosera, Matteo; Bianco, Carlotta; Adami, Gianpiero; Montini, Tiziano; Fornasiero, Paolo [University of Trieste, Department of Chemical and Pharmaceutical Sciences (Italy); Jaganjac, Morana [Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Department of Molecular Medicine (Croatia); Bovenzi, Massimo; Filon, Francesca Larese, E-mail: larese@units.it [University of Trieste, Clinical Unit of Occupational Medicine, Department of Medical Sciences (Italy)

    2015-06-15

    The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na{sub 2}PtC{sub l6} and RhCl{sub 3}·3H{sub 2}O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm{sup −2} h{sup −1} and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration.

  9. French Maritime Pine Bark Extract (Pycnogenol®) Effects on Human Skin: Clinical and Molecular Evidence.

    Science.gov (United States)

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2016-01-01

    Nutritional strategies to benefit skin health are of growing importance. Current approaches mainly involve nutritional supplements containing antioxidants which were initially designed to protect human skin against ultraviolet radiation-induced damage. Within recent years, however, a growing number of studies suggests that the beneficial effects of these products clearly extend beyond photoprotection. In this review we take the nutritional supplement Pycnogenol®, which is based on an extract prepared from French marine pine bark extract, as an example to illustrate this development. Accordingly, the existing data provide compelling evidence that Pycnogenol® intake does not only provide photoprotection, but may be used to (i) reduce hyperpigmentation of human skin and (ii) improve skin barrier function and extracellular matrix homeostasis.

  10. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  11. Biohydrogels for the In Vitro Re-construction and In Situ Regeneration of Human Skin

    Science.gov (United States)

    Korkina, Liudmila; Kostyuk, Vladimir; Guerra, Liliana

    Natural and synthetic biohydrogels are of great interest for the development of innovative medicinal and cosmetic products feasible for the treatment of numerous skin diseases and age-related changes in skin structure and function. Here, the characteristics of bio-resorbable hydrogels as scaffolds for the in vitro re-construction of temporary skin substitutes or full skin equivalents for further transplantation are reviewed. Another fast developing area of regenerative medicine is the in situ regeneration of human skin. The approach is mainly applicable to activate and facilitate the skin regeneration process and angiogenesis in chronic wounds with impaired healing. In this case, extracellular matrix resembling polymers are used to stimulate cell growth, adhesion, and movement. Better results could be achieved by activation of biocompatible hydrogels either with proteins (growth factors, adhesion molecules or/and cytokines) or with allogenic skin cells producing and releasing these molecules. Hydrogels are widely applied as carriers of low molecular weight substances with antioxidant, anti-inflammatory, anti-ageing, and wound healing action. Incorporation of these substances into hydrogels enhances their penetration through the skin barrier and prevents their destruction by oxidation. Potential roles of hydrogel-based products for modern dermatology and cosmetology are also discussed.

  12. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier.

    Directory of Open Access Journals (Sweden)

    Jes Dreier

    Full Text Available In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers that transport their cargo directly through the skin barrier, but mainly burst and fuse with the outer lipid layers of the stratum corneum. It was also found that the flexible liposomes showed a greater delivery of the fluorophore into the stratum corneum, indicating that they functioned as chemical permeability enhancers.

  13. Automated epidermis segmentation in histopathological images of human skin stained with hematoxylin and eosin

    Science.gov (United States)

    Kłeczek, Paweł; Dyduch, Grzegorz; Jaworek-Korjakowska, Joanna; Tadeusiewicz, Ryszard

    2017-03-01

    Background: Epidermis area is an important observation area for the diagnosis of inflammatory skin diseases and skin cancers. Therefore, in order to develop a computer-aided diagnosis system, segmentation of the epidermis area is usually an essential, initial step. This study presents an automated and robust method for epidermis segmentation in whole slide histopathological images of human skin, stained with hematoxylin and eosin. Methods: The proposed method performs epidermis segmentation based on the information about shape and distribution of transparent regions in a slide image and information about distribution and concentration of hematoxylin and eosin stains. It utilizes domain-specific knowledge of morphometric and biochemical properties of skin tissue elements to segment the relevant histopathological structures in human skin. Results: Experimental results on 88 skin histopathological images from three different sources show that the proposed method segments the epidermis with a mean sensitivity of 87 %, a mean specificity of 95% and a mean precision of 57%. It is robust to inter- and intra-image variations in both staining and illumination, and makes no assumptions about the type of skin disorder. The proposed method provides a superior performance compared to the existing techniques.

  14. OCT-based label-free in vivo lymphangiography within human skin and areola

    Science.gov (United States)

    Baran, Utku; Qin, Wan; Qi, Xiaoli; Kalkan, Goknur; Wang, Ruikang K.

    2016-02-01

    Due to the limitations of current imaging techniques, visualization of lymphatic capillaries within tissue in vivo has been challenging. Here, we present a label-free high resolution optical coherence tomography (OCT) based lymphangiography (OLAG) within human skin in vivo. OLAG enables rapid (~seconds) mapping of lymphatic networks, along with blood vessel networks, over 8 mm x 8 mm of human skin and 5 mm x 5 mm of human areola. Moreover, lymphatic system’s response to inflammation within human skin is monitored throughout an acne lesion development over 7 days. The demonstrated results promise OLAG as a revolutionary tool in the clinical research and treatment of patients with pathologic conditions such as cancer, diabetes, and autoimmune diseases.

  15. Acoustic absorption measurement of human hair and skin within the audible frequency range.

    Science.gov (United States)

    Katz, B F

    2000-11-01

    Utilizing the two-microphone impedance tube method, the acoustic absorption of human skin and hair is measured in the frequency range 1-6 kHz. Various locations on a number of human subjects are measured to determine if the presence of bone or an air pocket affects the acoustic absorption of human skin. The absorption coefficient of human hair is also measured. Additional techniques are utilized to minimize errors due to sample mounting methods. Techniques are employed to minimize potential errors in sensor and sample locations. The results of these measurements are compared to relevant historical papers on similar investigations. Results for skin measurements compare well with previous work. Measured hair absorption data do not agree with previous work in the area but do coincide with expected trends, which previous works do not.

  16. Spectral characteristics of two-photon autofluorescence and second harmonic generation from human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; König, Karsten

    2011-03-01

    We performed multiphoton imaging of human skin and recorded in combination the complete spectral content of the signals in vivo. The spectra represent the integration of multiphoton signals over the investigated regions of the epidermis and dermis. They are used to study depth-resolved in vivo emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, collagen and elastin. The identification of the specific fluorophores is supported by analysis of additional in vivo fluorescence lifetime imaging. Furthermore, as a potential application of spectrally selective imaging the possibility to investigate the penetration of nanoparticles from sunscreen lotion into skin in vivo is discussed.

  17. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin.

    Science.gov (United States)

    Fereidouni, Farzad; Bader, Arjen N; Colonna, Anne; Gerritsen, Hans C

    2014-08-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited autofluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral features. Various structures in the skin could be distinguished, including Stratum Corneum, epidermal cells and dermis. The spectral phasor analysis allowed investigation of their fluorescence composition and identification of signals from NADH, keratin, FAD, melanin, collagen and elastin. Interestingly, two populations of epidermal cells could be distinguished with different melanin content.

  18. Fluorescence dynamics of human epidermis (ex vivo) and skin (in vivo)

    Science.gov (United States)

    Salomatina, Elena V.; Pravdin, Alexander B.

    2003-10-01

    The temporal behavior of autofluorescence of human skin and epidermis under continuous UV-irradiation has been studied. Fluorescence spectra and kinetic curves of fluorescence intensity have been obtained. The fluorescence intensity recovery after dark period also has been examined. The vitiligo skin and epidermis were used for comparing their spectra with reflectance and fluorescence spectra of healthy skin. The epidermal samples were prepared using surface epidermis stripping technique. It has been concluded that fluorophores being undergone the UVA photobleaching are actually present in epidermal layer, and immediate pigment darkening does contribute, no less than a half of magnitude, to the autofluorescence decrease under continuous UVA irradiation.

  19. Evaluation of the suitability of chromatographic systems to predict human skin permeation of neutral compounds.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2013-12-18

    Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Excitation-wavelength dependence of multiphoton excitation of fluorophores of human skin in vivo

    Science.gov (United States)

    Breunig, Hans Georg; Studier, Hauke; König, Karsten

    2010-02-01

    We present in vivo measurements of the excitation-wavelength dependence of the autofluorescence of major endogenous fluorophores of human skin with a multiphoton tomograph. For the investigation high-resolution multiphoton images at different depths inside the skin were recorded and the main fluorophores identified. In particular, for the autofluorescence of the fluorophores keratin, NAD(P)H, elastin and for the second-harmonic-generation light induced by collagen fibers clear trends are shown.

  1. Design and fabrication of human skin by three-dimensional bioprinting.

    Science.gov (United States)

    Lee, Vivian; Singh, Gurtej; Trasatti, John P; Bjornsson, Chris; Xu, Xiawei; Tran, Thanh Nga; Yoo, Seung-Schik; Dai, Guohao; Karande, Pankaj

    2014-06-01

    Three-dimensional (3D) bioprinting, a flexible automated on-demand platform for the free-form fabrication of complex living architectures, is a novel approach for the design and engineering of human organs and tissues. Here, we demonstrate the potential of 3D bioprinting for tissue engineering using human skin as a prototypical example. Keratinocytes and fibroblasts were used as constituent cells to represent the epidermis and dermis, and collagen was used to represent the dermal matrix of the skin. Preliminary studies were conducted to optimize printing parameters for maximum cell viability as well as for the optimization of cell densities in the epidermis and dermis to mimic physiologically relevant attributes of human skin. Printed 3D constructs were cultured in submerged media conditions followed by exposure of the epidermal layer to the air-liquid interface to promote maturation and stratification. Histology and immunofluorescence characterization demonstrated that 3D printed skin tissue was morphologically and biologically representative of in vivo human skin tissue. In comparison with traditional methods for skin engineering, 3D bioprinting offers several advantages in terms of shape- and form retention, flexibility, reproducibility, and high culture throughput. It has a broad range of applications in transdermal and topical formulation discovery, dermal toxicity studies, and in designing autologous grafts for wound healing. The proof-of-concept studies presented here can be further extended for enhancing the complexity of the skin model via the incorporation of secondary and adnexal structures or the inclusion of diseased cells to serve as a model for studying the pathophysiology of skin diseases.

  2. Role of Receptor-Interacting Protein 140 in human fat cells

    Directory of Open Access Journals (Sweden)

    Stenson Britta M

    2010-01-01

    Full Text Available Abstract Background Mice lacking Receptor-interacting protein 140 (RIP140 have reduced body fat which at least partly is mediated through increased lipid and glucose metabolism in adipose tissue. In humans, RIP140 is lower expressed in visceral white adipose tissue (WAT of obese versus lean subjects. We investigated the role of RIP140 in human subcutaneous WAT, which is the major fat depot of the body. Methods Messenger RNA levels of RIP140 were measured in samples of subcutaneous WAT from women with a wide variation in BMI and in different human WAT preparations. RIP140 mRNA was knocked down with siRNA in in vitro differentiated adipocytes and the impact on glucose transport and mRNA levels of target genes determined. Results RIP140 mRNA levels in subcutaneous WAT were decreased among obese compared to lean women and increased by weight-loss, but did not associate with mitochondrial DNA copy number. RIP140 expression increased during adipocyte differentiation in vitro and was higher in isolated adipocytes compared to corresponding pieces of WAT. Knock down of RIP140 increased basal glucose transport and mRNA levels of glucose transporter 4 and uncoupling protein-1. Conclusions Human RIP140 inhibits glucose uptake and the expression of genes promoting energy expenditure in the same fashion as the murine orthologue. Increased levels of human RIP140 in subcutaneous WAT of lean subjects may contribute to economize on energy stores. By contrast, the function and expression pattern does not support that RIP140 regulate human obesity.

  3. Draft Genome Sequence of Herpotrichiellaceae sp. UM 238 Isolated from Human Skin Scraping.

    Science.gov (United States)

    Ng, Kee Peng; Yew, Su Mei; Chan, Chai Ling; Tan, Ruixin; Soo-Hoo, Tuck Soon; Na, Shiang Ling; Hassan, Hamimah; Ngeow, Yun Fong; Hoh, Chee-Choong; Lee, Kok Wei; Yee, Wai-Yan

    2013-01-01

    Herpotrichiellaceae spp. are known to be opportunistic human pathogens. Here, we report the ~28.46-Mb draft genome of Herpotrichiellaceae sp. UM 238, isolated from human skin scraping. The UM 238 genome was found to contain many classes of protective genes that are responsible for fungal adaptation under adverse environmental conditions.

  4. Draft Genome Sequence of Ochroconis constricta UM 578, Isolated from Human Skin Scraping.

    Science.gov (United States)

    Chan, Chai Ling; Yew, Su Mei; Na, Shiang Ling; Tan, Yung-Chie; Lee, Kok Wei; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-04-17

    Ochroconis constricta is a soilborne dematiaceous fungus that has never been reported to be associated with human infection. Here we report the first draft genome sequence of strain UM 578, isolated from human skin scraping. The genomic information revealed will contribute to a better understanding of this species.

  5. Transdermal iontophoresis of the dopamine agonist 5-OH-DPAT in human skin in vitro

    NARCIS (Netherlands)

    Nugroho, AK; Li, L; Dijkstra, D; Wikstrom, H; Danhof, M; Bouwstra, JA

    2005-01-01

    The feasibility of transdermal iontophoretic delivery of a potent dopamine agonist 5-OH-DPAT was studied in vitro in side by side diffusion cells across human stratum corneum (HSC) and dermatomed human skin (DHS) according to the following protocol: 6 h of passive diffusion, 9 h of iontophoresis and

  6. Design and fabrication of a sensor integrated MEMS/NANO-skin system for human physiological response measurement

    Science.gov (United States)

    Leng, Hongjie; Lin, Yingzi

    2010-04-01

    Human state in human-machine systems highly affects the system performance, and should be monitored. Physiological cues are more suitable for monitoring the human state in human-machine system. This study was focused on developing a new sensing system, i.e. NANO-Skin, to non-intrusively measure physiological cues from human-machine contact surfaces for human state recognition. The first part was to analyze the relation between human state and physiological cues. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography have close relation with human state, and can be measured from human skin. The second part was to compare common sensors, MEMS sensors, and NANO sensors. It was found that MEMS sensors and NANO sensors can offer unique contributions to the development of NANO-Skin. The third part was to discuss the design and manufacture of NANO-Skin. The NANO-Skin involves five components, the flexible substrate, sensors, special integrated circuit, interconnection between sensors and special integrated circuit, and protection layer. Experiments were performed to verify the measurement accuracy of NANO-Skin. It is feasible to use NANO-Skins to non-intrusively measure physiological cues from human-machine contact surfaces for human state recognition.

  7. Influence of cleansing on stratum corneum tryptic enzyme in human skin.

    Science.gov (United States)

    Schepky, A G; Holtzmann, U; Siegner, R; Zirpins, S; Schmucker, R; Wenck, H; Wittern, K P; Biel, S S

    2004-10-01

    Desquamation in human skin is a well-balanced process of de novo production of corneocytes and their shedding from the skin surface. The proteolysis of corneodesmosomes is an important step in the final desquamation process. In the degradation of these adhesion molecules, the stratum corneum tryptic enzyme (SCTE) plays a key role. In initial studies with extracts of porcine epidermis, SCTE was shown to be inactivated by low concentrations of sodium lauryl ether sulphate (SLES). These in vitro findings were supported by in situ results obtained by measuring the release of fluorescent dyes coupled to trypsin-specific substrates incubated on human skin cross-sections. Moreover, in further studies, it could be demonstrated that the SCTE activity in the human horny layer decreases after in vivo application of cleansing products containing SLES. After repeated washing of human volunteers with tap water, a standard market cleansing product (SLES/betaine system) or a new improved cleansing product (SLES/betaine/disodium cocoyl glutamate system), the specific SCTE activity was determined in extracts from the uppermost layers of the stratum corneum. It could be shown that after application of the new formula the remaining SCTE activity was significantly higher than after use of the standard market formula. This ex vivo approach has proven to be very helpful for measuring surfactant effects on human skin enzymes. Using this assay, we developed an improved shower gel formula, which leads to a significantly higher skin enzyme activity after application, compared to a standard market formula.

  8. Transcriptome Analysis Identifies the Dysregulation of Ultraviolet Target Genes in Human Skin Cancers.

    Science.gov (United States)

    Shen, Yao; Kim, Arianna L; Du, Rong; Liu, Liang

    2016-01-01

    Exposure to ultraviolet radiation (UVR) is a major risk factor for both melanoma and non-melanoma skin cancers. In addition to its mutagenic effect, UVR can also induce substantial transcriptional instability in skin cells affecting thousands of genes, including many cancer genes, suggesting that transcriptional instability may be another important etiological factor in skin photocarcinogenesis. In this study, we performed detailed transcriptomic profiling studies to characterize the kinetic changes in global gene expression in human keratinocytes exposed to different UVR conditions. We identified a subset of UV-responsive genes as UV signature genes (UVSGs) based on 1) conserved UV-responsiveness of this subset of genes among different keratinocyte lines; and 2) UV-induced persistent changes in their mRNA levels long after exposure. Interestingly, 11 of the UVSGs were shown to be critical to skin cancer cell proliferation and survival. Through computational Gene Set Enrichment Analysis, we demonstrated that a significant portion of the UVSGs were dysregulated in human skin squamous cell carcinomas, but not in other human malignancies. This highlights the potential and specificity of the UVSGs in clinical diagnosis of UV damage and stratification of skin cancer risk.

  9. Two-wavelength Raman detector for noninvasive measurements of carotenes and lycopene in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2005-04-01

    Carotenoids are an important part of the antioxidant system in human skin. Carotenoid molecules, provided by fruits and vegetables, are potent free radical quenchers that accumulate in the body. If not balanced by carotenoids and other antioxidants, free radicals may cause premature skin aging, oxidative cell damage, and even skin cancers. As carotenoids depletion may predispose a person to cancer or other disease, rapid and noninvasive measurement of carotenoid level in skin may be of preventive or diagnostic help. At the very least, such measurement can be used to obtain a biomarker for healthy levels of fruit and vegetable consumption. Recently we have developed noninvasive optical technique based on Raman spectroscopy. In this paper we describe compact optical detector for clinical applications that utilizes two-wavelength excitation. It selectively measures the two most prominent skin carotenoids found in the human skin, lycopene and carotenes. According to the medical literature, these two compounds may play different roles in the human body and be part of different tissue defense mechanisms. Dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects.

  10. Melanin and blood concentration in a human skin model studied by multiple regression analysis: assessment by Monte Carlo simulation

    Science.gov (United States)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Measurement of melanin and blood concentration in human skin is needed in the medical and the cosmetic fields because human skin colour is mainly determined by the colours of melanin and blood. It is difficult to measure these concentrations in human skin because skin has a multi-layered structure and scatters light strongly throughout the visible spectrum. The Monte Carlo simulation currently used for the analysis of skin colour requires long calculation times and knowledge of the specific optical properties of each skin layer. A regression analysis based on the modified Beer-Lambert law is presented as a method of measuring melanin and blood concentration in human skin in a shorter period of time and with fewer calculations. The accuracy of this method is assessed using Monte Carlo simulations.

  11. Ultra-pure soft water ameliorates atopic skin disease by preventing metallic soap deposition in NC/Tnd mice and reduces skin dryness in humans.

    Science.gov (United States)

    Tanaka, Akane; Matsuda, Akira; Jung, Kyungsook; Jang, Hyosun; Ahn, Ginnae; Ishizaka, Saori; Amagai, Yosuke; Oida, Kumiko; Arkwright, Peter D; Matsuda, Hiroshi

    2015-09-01

    Mineral ions in tap water react with fatty acids in soap, leading to the formation of insoluble precipitate (metallic soap) on skin during washing. We hypothesised that metallic soap might negatively alter skin conditions. Application of metallic soap onto the skin of NC/Tnd mice with allergic dermatitis further induced inflammation with elevation of plasma immunoglobulin E and proinflammatory cytokine expression. Pruritus and dryness were ameliorated when the back of mice was washed with soap in Ca2+- and Mg2+-free ultra-pure soft water (UPSW). Washing in UPSW, but not tap water, also protected the skin of healthy volunteers from the soap deposition. Furthermore, 4 weeks of showering with UPSW reduced dryness and pruritus of human subjects with dry skin. Washing with UPSW may be therapeutically beneficial in patients with skin troubles.

  12. Purple Tea and Its Extract Suppress Diet-induced Fat Accumulation in Mice and Human Subjects by Inhibiting Fat Absorption and Enhancing Hepatic Carnitine Palmitoyltransferase Expression.

    Science.gov (United States)

    Shimoda, Hiroshi; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi

    2015-06-01

    A number of clinical trials have been completed using green tea and black tea to investigate their effect in controlling weight in overweight adults. The results of these investigations, however, have often been contradictory, with some trials reporting positive effects of tea supplementation and some trials reporting no effect. As a result, the use of these teas for weight loss is controversial. Purple tea is a variety of green tea developed in Kenya (called TRFK306), which in addition to certain tea constituents found in green tea, also contains anthocyanins. The major constituents in the leaves of purple tea are caffeine, theobromine, epigallocatechin (ECG), epigallocatechin gallate (EGCG) and 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-β-D-glucose (GHG). We investigated the efficacy of purple tea extract (PTE) on diet-induced fat accumulation in mice. PTE administration (200 mg/kg) significantly suppressed body weight gain, liver weight, abdominal fat and triglycerides in serum and liver. Protein expression of carnitine palmitoyltransferase (CPT) 1A was also enhanced. In olive oil loaded mice, PTE (100 mg/kg) and caffeine (25 mg/kg) suppressed fat absorption. PTE (10 μg/mL) and GHG (10 μg/mL) also enhanced protein expression of CPT1A in HepG2 hepatoma. Moreover, 4-week daily consumption of purple tea drink in humans improved obesity parameters compared to baseline, including body weight (79.9 ± 3.1 kg vs 80.8 ± 3.2, pweight gain by suppression of fat absorption and enhancement of hepatic fat metabolism.

  13. Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation.

    Science.gov (United States)

    Manevski, Nenad; Swart, Piet; Balavenkatraman, Kamal Kumar; Bertschi, Barbara; Camenisch, Gian; Kretz, Olivier; Schiller, Hilmar; Walles, Markus; Ling, Barbara; Wettstein, Reto; Schaefer, Dirk J; Itin, Peter; Ashton-Chess, Joanna; Pognan, Francois; Wolf, Armin; Litherland, Karine

    2015-01-01

    Although skin is the largest organ of the human body, cutaneous drug metabolism is often overlooked, and existing experimental models are insufficiently validated. This proof-of-concept study investigated phase II biotransformation of 11 test substrates in fresh full-thickness human skin explants, a model containing all skin cell types. Results show that skin explants have significant capacity for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Novel skin metabolites were identified, including acyl glucuronides of indomethacin and diclofenac, glucuronides of 17β-estradiol, N-acetylprocainamide, and methoxy derivatives of 4-nitrocatechol and 2,3-dihydroxynaphthalene. Measured activities for 10 μM substrate incubations spanned a 1000-fold: from the highest 4.758 pmol·mg skin(-1)·h(-1) for p-toluidine N-acetylation to the lowest 0.006 pmol·mg skin(-1)·h(-1) for 17β-estradiol 17-glucuronidation. Interindividual variability was 1.4- to 13.0-fold, the highest being 4-methylumbelliferone and diclofenac glucuronidation. Reaction rates were generally linear up to 4 hours, although 24-hour incubations enabled detection of metabolites in trace amounts. All reactions were unaffected by the inclusion of cosubstrates, and freezing of the fresh skin led to loss of glucuronidation activity. The predicted whole-skin intrinsic metabolic clearances were significantly lower compared with corresponding whole-liver intrinsic clearances, suggesting a relatively limited contribution of the skin to the body's total systemic phase II enzyme-mediated metabolic clearance. Nevertheless, the fresh full-thickness skin explants represent a suitable model to study cutaneous phase II metabolism not only in drug elimination but also in toxicity, as formation of acyl glucuronides and sulfate conjugates could play a role in skin adverse reactions.

  14. In vivo multimodality video microscopy of human skin in the vertical plane (Conference Presentation)

    Science.gov (United States)

    Wu, Zhenguo; Tian, Yunxian; Zhao, Jianhua; Lui, Harvey; McLean, David I.; Zeng, Haishan

    2016-02-01

    Reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) are non-invasive methods of acquiring morphological images of the skin in vivo. Most research in this area focuses on instruments that are configured for two-dimensional imaging in a horizontal plane parallel to the skin surface. In contrast, conventional histopathologic evaluation of the skin is based on vertical tissue sections that show microscopic features and their interrelationships according to their depth within the skin. The ability to similarly depict the skin in the vertical plane during in vivo microscopic imaging poses several significant challenges with respect to imaging speed, resolution and extractable information. Aiming to address above challenges, we developed a laser scanning multimodal microscopy system which combines RCM and MPM, and has the ability to do fast xz scanning to achieve high resolution vertical "optical sectioning" of in vivo human skin at video rates. RCM and MPM images are obtained simultaneously and co-registered thereby providing complementary morphological information. To validate the performance of this system vertical section RCM and MPM microscopic images of normal human skin in vivo were obtained at half video rates (15 frames/s). Using our system it is possible to discern the following structures: all layers of the epidermis including the stratum lucidum, the dermal-epidermal junction, and the papillary dermis. Blood flow is also visible as evidenced by blood cell movement within vessels. The effective imaging depth is about 200 micrometers. This system provides a means of interrogating human skin noninvasively at an orientation analogous to conventional histological sectioning.

  15. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    Science.gov (United States)

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin.

  16. Assessing localized skin-to-fat water in arms of women with breast cancer via tissue dielectric constant measurements in pre- and post-surgery patients.

    Science.gov (United States)

    Mayrovitz, Harvey N; Weingrad, Daniel N; Lopez, Lidice

    2015-05-01

    Skin-to-fat tissue dielectric constant (TDC) values at 300 MHz largely depend on tissue water and provide a rapid way to assess skin water by touching skin with a probe for approximately 10 s. This method has been used to investigate lymphedema features accompanying breast cancer (BC), but relationships between TDC and nodes removed or symptoms is unclear. Our goals were: (1) to compare TDC values in BC patients prior to surgery (group A) and in patients who had BC-related surgery (group B) to determine if TDC of group B were related to nodes removed and reported symptoms and (2) to develop tentative lymphedema-detection thresholds. Arm volumes and TDC values of at-risk and contralateral forearms and biceps were determined in 103 women awaiting surgery for BC and 104 women who had BC-related surgery 26.3 ± 17.5 months prior to evaluation. Inter-arm ratios (at-risk/contralateral) were determined and patients answered questions about lymphedema-related symptoms. Inter-arm TDC ratios for group A forearm and biceps were respectively 1.003 ± 0.096 and 1.012 ± 0.143. Group B forearm ratios were significantly greater, and among group B patients who reported at least one symptom there was a significant correlation between TDC ratios and symptom burden and nodes removed. Inter-arm TDC ratios are significantly related to symptoms and nodes removed. Ratios increase with increasing symptom score and might be used to detect pre-clinical unilateral lymphedema using TDC ratio thresholds of 1.30 for forearm and 1.45 for biceps. Threshold confirmation awaits targeted prospective studies but can serve as guideposts to provide quantitative and easily done tracking assessments during follow-up visits.

  17. Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo scanning electron microscopy

    NARCIS (Netherlands)

    Caussin, J.; Groenink, H.W.W.; Graaff, de A.M.; Gooris, G.S.; Wiechers, J.W.; Aelst, van A.C.; Bouwstra, J.A.

    2007-01-01

    To study the mode of action of moisturizers on human skin, hydrophilic moisturizers in water and neat lipophilic moisturizers were applied on excised skin for 24 h at 32°C. Samples of the treated skin were subsequently visualized in a cryoscanning electron microscope. The stratum corneum (SC)

  18. Use of reflectance spectrophotometry in the human corticosteroid skin blanching assay.

    Science.gov (United States)

    Conner, D P; Zamani, K; Almirez, R G; Millora, E; Nix, D; Shah, V P

    1993-08-01

    A reflectance spectrophotometric method for evaluation of the skin blanching response to topical corticosteroids was evaluated. This blanching response is used, for drug development and regulatory purposes, to assess potency and bioequivalence of topical corticosteroid products. The common method involves the use of a human rater to measure blanching response in the skin. This study evaluated an instrumental alternative to the human rater and used this method to measure the differences between a number of brand name and generic topical corticosteroid products (six creams and six ointments). Products were applied to the forearms of normal volunteers and the blanching responses were assessed after 6 and 16 hours in both occluded and non-occluded skin sites. Only the fluocinolone acetonide generic and brand name preparations were different from each other. The spectrophotometric method proved to be equivalent but not superior to the standard human observer method.

  19. The vasorelaxant effect of adrenomedullin, proadrenomedullin N-terminal 20 peptide and amylin in human skin

    DEFF Research Database (Denmark)

    Hasbak, Philip; Eskesen, Karen; Lind, Peter Henrik

    2006-01-01

    In this study we aimed to assess in vivo, the vasodilator effects of adrenomedullin, proadrenomedullin N-terminal 20 peptide (PAMP) and amylin in human skin vasculature and compare the responses to the effects mediated by the endogenous neuropeptides calcitonin gene-related peptide (CGRP......) and substance P and to examine the mRNA expression of calcitonin receptor-like receptor (CL-R) and receptor-activity modifying proteins, RAMP1, RAMP 2 and RAMP3 in human subcutaneous arteries. Changes in skin blood flow of the forearm were measured using a Laser Doppler Imager after intradermal injection...... of CGRP, adrenomedullin and amylin induces long lasting dilatation of human skin vasculature by activation of CGRP1 receptors. PAMP induces transient vasodilatation. PAMP but not CGRP, adrenomedullin and amylin causes itch sensation and local erythema. The transient effect on vasodilatation as response...

  20. Quantifying the mechanical properties of human skin to optimise future microneedle device design.

    Science.gov (United States)

    Groves, R B; Coulman, S A; Birchall, J C; Evans, S L

    2012-01-01

    Microneedle devices are a promising minimally invasive means of delivering drugs/vaccines across or into the skin. However, there is currently a diversity of microneedle designs and application methods that have, primarily, been intuitively developed by the research community. To enable the rational design of optimised microneedle devices, a greater understanding of human skin biomechanics under small deformations is required. This study aims to develop a representative stratified model of human skin, informed by in vivo data. A multilayer finite element model incorporating the epidermis, dermis and hypodermis was established. This was correlated with a series of in-vivo indentation measurements, and the Ogden material coefficients were optimised using a material parameter extraction algorithm. The finite element simulation was subsequently used to model microneedle application to human skin before penetration and was validated by comparing these predictions with the in-vivo measurements. Our model has provided an excellent tool to predict micron-scale human skin deformation in vivo and is currently being used to inform optimised microneedle designs.

  1. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, Brian [Regional Medical Physics Department, Newcastle General Hospital, Newcastle NE4 6BE (United Kingdom)

    2004-01-07

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population. (topical review)

  2. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour.

  3. Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria

    Science.gov (United States)

    Verhulst, Niels O.; Andriessen, Rob; Groenhagen, Ulrike; Bukovinszkiné Kiss, Gabriella; Schulz, Stefan; Takken, Willem; van Loon, Joop J. A.; Schraa, Gosse; Smallegange, Renate C.

    2010-01-01

    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour. PMID:21209854

  4. A new model for preclinical testing of dermal substitutes for human skin reconstruction.

    Science.gov (United States)

    Hartmann-Fritsch, Fabienne; Biedermann, Thomas; Braziulis, Erik; Meuli, Martin; Reichmann, Ernst

    2013-05-01

    Currently, acellular dermal substitutes used for skin reconstruction are usually covered with split-thickness skin grafts. The goal of this study was to develop an animal model in which such dermal substitutes can be tested under standardized conditions using a bioengineered dermo-epidermal skin graft for coverage. Bioengineered grafts consisting of collagen type I hydrogels with incorporated human fibroblasts and human keratinocytes seeded on these gels were produced. Two different dermal substitutes, namely Matriderm(®), and an acellular collagen type I hydrogel, were applied onto full-thickness skin wounds created on the back of immuno-incompetent rats. As control, no dermal substitute was used. As coverage for the dermal substitutes either the bioengineered grafts were used, or, as controls, human split-thickness skin or neonatal rat epidermis were used. Grafts were excised 21 days post-transplantation. Histology and immunofluorescence was performed to investigate survival, epidermis formation, and vascularization of the grafts. The bioengineered grafts survived on all tested dermal substitutes. Epidermis formation and vascularization were comparable to the controls. We could successfully use human bioengineered grafts to test different dermal substitutes. This novel model can be used to investigate newly designed dermal substitutes in detail and in a standardized way.

  5. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin.

    Science.gov (United States)

    Diffey, Brian

    2004-01-07

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population.

  6. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Science.gov (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm(2)) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt.

  7. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    Science.gov (United States)

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs.

  8. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans.

    Science.gov (United States)

    Liu, Zhibin; Lin, Xiuchun; Huang, Guangwei; Zhang, Wen; Rao, Pingfan; Ni, Li

    2014-04-01

    Almonds and almond skins are rich in fiber and other components that have potential prebiotic properties. In this study we investigated the prebiotic effects of almond and almond skin intake in healthy humans. A total of 48 healthy adult volunteers consumed a daily dose of roasted almonds (56 g), almond skins (10 g), or commercial fructooligosaccharides (8 g) (as positive control) for 6 weeks. Fecal samples were collected at defined time points and analyzed for microbiota composition and selected indicators of microbial activity. Different strains of intestinal bacteria had varying degrees of growth sensitivity to almonds or almond skins. Significant increases in the populations of Bifidobacterium spp. and Lactobacillus spp. were observed in fecal samples as a consequence of almond or almond skin supplementation. However, the populations of Escherichia coli did not change significantly, while the growth of the pathogen Clostridum perfringens was significantly repressed. Modification of the intestinal microbiota composition induced changes in bacterial enzyme activities, specifically a significant increase in fecal β-galactosidase activity and decreases in fecal β-glucuronidase, nitroreductase and azoreductase activities. Our observations suggest that almond and almond skin ingestion may lead to an improvement in the intestinal microbiota profile and a modification of the intestinal bacterial activities, which would induce the promotion of health beneficial factors and the inhibition of harmful factors. Thus we believe that almonds and almond skins possess potential prebiotic properties.

  9. Diffusion profile of macromolecules within and between human skin layers for (trans)dermal drug delivery.

    Science.gov (United States)

    Römgens, Anne M; Bader, Dan L; Bouwstra, Joke A; Baaijens, Frank P T; Oomens, Cees W J

    2015-10-01

    Delivering a drug into and through the skin is of interest as the skin can act as an alternative drug administration route for oral delivery. The development of new delivery methods, such as microneedles, makes it possible to not only deliver small molecules into the skin, which are able to pass the outer layer of the skin in therapeutic amounts, but also macromolecules. To provide insight into the administration of these molecules into the skin, the aim of this study was to assess the transport of macromolecules within and between its various layers. The diffusion coefficients in the epidermis and several locations in the papillary and reticular dermis were determined for fluorescein dextran of 40 and 500 kDa using a combination of fluorescent recovery after photobleaching experiments and finite element analysis. The diffusion coefficient was significantly higher for 40 kDa than 500 kDa dextran, with median values of 23 and 9 µm(2)/s in the dermis, respectively. The values only marginally varied within and between papillary and reticular dermis. For the 40 kDa dextran, the diffusion coefficient in the epidermis was twice as low as in the dermis layers. The adopted method may be used for other macromolecules, which are of interest for dermal and transdermal drug delivery. The knowledge about diffusion in the skin is useful to optimize (trans)dermal drug delivery systems to target specific layers or cells in the human skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Reconstituted 3-dimensional human skin as a novel in vitro model for studies of carcinogenesis.

    Science.gov (United States)

    Zhao, J F; Zhang, Y J; Kubilus, J; Jin, X H; Santella, R M; Athar, M; Wang, Z Y; Bickers, D R

    1999-01-08

    EpiDerm (MatTek Co., MA) is a reconstituted human skin equivalent which exhibits morphological and growth characteristics similar to human skin. This model has previously been utilized to evaluate the cytotoxicity and irritant potential of various cosmetic and household products. In this study, we show for the first time that EpiDerm can be used successfully to evaluate the genotoxicity of different types of known carcinogenic agents such as benzo[a]pyrene (BaP), ultraviolet B radiation (UVB), ultraviolet A radiation (UVA), and psoralen-ultraviolet A radiation (PUVA) at the molecular level. The topical application of 50 microg/cm2 BaP to EpiDerm resulted in the accumulation of BaP-DNA adducts and c-fos and p53 proteins as evidenced by immunohistochemical localization. Similarly, exposure to UVB (50 mJ/cm2) and UVA (2.5 J/cm2) enhanced the epidermal expression of c-fos and p53 proteins in the human skin equivalent. PUVA treatment of EpiDerm, however, resulted in the formation of both DNA-8-MOP adducts and augmented expression of c-fos and p53 proteins. Most of these changes reached a peak 8 h after the treatments except in the case of UVA where maximum changes in the expression of c-fos and p53 proteins were observed 24 h after treatment. These results are similar to those previously reported in human and murine skin following exposure to BaP, UVB, UVA, or PUVA indicating that human skin equivalents can be used as a convenient and cost-effective alternative to animal testing for assessing the genotoxicity and mechanism of action of mutagens/carcinogens in human skin. Copyright 1999 Academic Press.

  11. Heritable components of the human fecal microbiome are associated with visceral fat.

    Science.gov (United States)

    Beaumont, Michelle; Goodrich, Julia K; Jackson, Matthew A; Yet, Idil; Davenport, Emily R; Vieira-Silva, Sara; Debelius, Justine; Pallister, Tess; Mangino, Massimo; Raes, Jeroen; Knight, Rob; Clark, Andrew G; Ley, Ruth E; Spector, Tim D; Bell, Jordana T

    2016-09-26

    Variation in the human fecal microbiota has previously been associated with body mass index (BMI). Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort, comparing fecal 16S rRNA diversity profiles with six adiposity measures. We profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort. Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal microbiome

  12. Transdermal kinetics of a mercurous chloride beauty cream: an in vitro human skin analysis.

    Science.gov (United States)

    Palmer, R B; Godwin, D A; McKinney, P E

    2000-01-01

    Crema de Belleza-Manning is a popular mercurous chloride-containing beauty cream used to smooth and lighten the complexion and treat acne. Hundreds of people in the Southwestern US border states have been identified with elevated (>20 microg/L) urine mercury levels believed to be secondary to using this cream. The kinetic characteristics of percutaneous mercury absorption are incompletely defined. The objective of this study was to determine the transdermal kinetics of two formulations of mercurous chloride from a beauty cream in an in vitro human skin model. A proprietary formulation and an aqueous formulation of the beauty cream were studied using modified Franz diffusion cells. Mercury content in the skin samples and the underlying diffusion buffer was determined using atomic absorption spectrophotometry. A rapid initial increase in mercury content both in the skin and the buffer was noted for both formulations. Mercury concentrations in the aqueous samples were significantly (p < 0.05) higher in both the skin and the diffusion buffer compared to parallel samples containing glycerol. Mercury was readily absorbed through the skin in this in vitro human skin model. The aqueous preparation had a markedly increased rate and extent of mercury absorption relative to the proprietary formulation.

  13. Dynamic in vivo mapping of model moisturiser ingress into human skin by GARfield MRI.

    Science.gov (United States)

    Ciampi, Elisabetta; van Ginkel, Michael; McDonald, Peter J; Pitts, Simon; Bonnist, Eleanor Y M; Singleton, Scott; Williamson, Ann-Marie

    2011-02-01

    We describe the development of in vivo one-dimensional MRI (profiling) using a GARField (Gradient At Right angles to Field) magnet for the characterisation of side-of-hand human skin. For the first time and in vivo, we report measurements of the NMR longitudinal and transverse relaxation parameters and self-diffusivity of the upper layers of human skin with a nominal spatial resolution better than 10 µm. The results are correlated with in vivo confocal Raman spectroscopy measurements of water concentration and natural moisturiser factors, and discussed in terms of known skin biology and microstructure of the stratum corneum and viable epidermis. The application of model moisturiser solutions to the skin is followed and their dynamics of ingress are characterised using the MRI methodology developed. Selected hydrophilic and lipophilic formulations are studied. The results are corroborated by standard in vivo measurements of transepidermal water loss and hydration status. A further insight into moisturisation mechanisms is gained. The effect of two different penetration enhancers on a commonly used skin care oil is also discussed, and different timescales of oil penetration into the skin are reported depending on the type of enhancer.

  14. Mapping of macrophage elastase cleavage sites in insoluble human skin elastin.

    Science.gov (United States)

    Taddese, Samuel; Weiss, Anthony S; Neubert, Reinhard H H; Schmelzer, Christian E H

    2008-06-01

    Macrophage elastase (MMP-12) is a member of the family of matrix metalloproteinases (MMPs) and is active against multiple extracellular protein substrates such as elastin. Its effect on elastin is central to emphysema in the lung and photoaging of skin. Its expression in the skin increases on photodamaged skin and upon aging. Detecting and characterizing peptides cleaved in elastin, therefore, helps to understand such degradative disease processes in the skin and is also needed to assist in the rational design of agents that specifically inhibit the degradation. In this study, cleavage sites of MMP-12 in human skin elastin were extensively investigated. The peptides formed as a result of cleavages by this enzyme in the human skin elastin were characterized using mass spectrometry. A total of 41 peptides ranging from 4 to 41 amino acids were identified and 36 cleavage sites were determined. Amino acids encoded by exons 5, 6, 26, 28-31 were particularly susceptible to cleavages by MMP-12 and none or very few cleavages were detected from domains encoded by the remaining exons. The amino acid preferences of the different subsites on the catalytic domain of MMP-12 were analyzed.

  15. Pistacia lentiscus fruit oil reduces oxidative stress in human skin explants caused by hydrogen peroxide.

    Science.gov (United States)

    Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T

    2016-10-01

    We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H2O2). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H2O2. We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H2O2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H2O2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.

  16. Implantation of human bot fly larvae in host skin.

    Science.gov (United States)

    Leite, A C R; Nascimento, M F A; Serafim, L R

    2010-01-01

    Adult males of Mus musculus each infested with four first-instar (L1) larvae of Dermatobia hominis (Linneaus, Jr.) were used as donors of larvae to other mice (recipients). Larvae at four (L1), six (early L2), 12 (L2), or 20 (L3) days postinfestation (dpi), were implanted into the skin of each recipient. Only two of 38 mice (5.3%) were refractory to implants and three died after implantation. Developmental times (pre- plus postimplantation) of implanted larvae were of similar duration to those in larvae that completed their development in the original mice. The L3 that emerged from implanted hosts developed to pupae and fertile adult specimens, whose L1 descendants were used to maintain the D. hominis life cycle in our laboratory. The model described here has several potential applications, including studies of the host relationship with specific instars and the development of management and control measures to combat this Neotropical myiasis.

  17. Vascular effects of leukotriene D4 in human skin

    DEFF Research Database (Denmark)

    Bisgaard, H

    1987-01-01

    the increase in blood flow rate, but did not abolish the response to LTD4. Local nerve block inhibited the axon reflex-mediated flare component of the LTD4-induced blood flow rate, leaving a local red reaction. This local red reaction was not affected by H1 and H2 antagonists. These results indicate histamine...... as a mediator of the axon reflex, and show that LTD4 causes a direct vasodilatory effect that is not mediated via histamine or cyclooxygenase products. The laser-Doppler flowmeter was applied for dynamic studies of the vasopressor response in the skin during a Valsalva maneuver, and the relative changes...... in blood flow were confirmed by control estimates of the blood flow rate by a 133xenon washout method. The pressor response to a Valsalva maneuver was reversed by local nerve block, but not affected by LTD4. Therefore LTD4 did not interfere with the sympathetic activity on the cutaneous vessels...

  18. Release of Propolis Phenolic Acids from Semisolid Formulations and Their Penetration into the Human Skin In Vitro

    OpenAIRE

    2013-01-01

    Antioxidant and free radical scavenging effects are attributed to phenolic compounds present in propolis, and when delivered to the skin surface and following penetration into epidermis and dermis, they can contribute to skin protection from damaging action of free radicals that are formed under UV and premature skin aging. This study was designed to determine the penetration of phenolic acids and vanillin into the human skin in vitro from experimentally designed vehicles. Results of the stud...

  19. Development of a Bioengineered Skin-Humanized Mouse Model for Psoriasis : Dissecting Epidermal-Lymphocyte Interacting Pathways

    OpenAIRE

    Guerrero-Aspizua, Sara; García, Marta; Murillas, Rodolfo; Retamosa, Luisa; Illera, Nuria; Duarte, Blanca; Holguín, Almudena; Puig, Susana; Hernández, Maria Isabel; Meana, Alvaro; Jorcano, Jose Luis; Larcher, Fernando; Carretero, Marta; del Río, Marcela

    2010-01-01

    Over the past few years, whole skin xenotransplantation models that mimic different aspects of psoriasis have become available. However, these models are strongly constrained by the lack of skin donor availability and homogeneity. We present in this study a bioengineering-based skin-humanized mouse model for psoriasis, either in an autologous version using samples derived from psoriatic patients or, more importantly, in an allogeneic context, starting from skin biopsies and blood samples from...

  20. Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells.

    Science.gov (United States)

    Ansel, Jean-Luc; Lupo, Elise; Mijouin, Lily; Guillot, Samuel; Butaud, Jean-François; Ho, Raimana; Lecellier, Gaël; Raharivelomanana, Phila; Pichon, Chantal

    2016-07-01

    Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells.

  1. Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system.

    Science.gov (United States)

    Berneburg, M; Gattermann, N; Stege, H; Grewe, M; Vogelsang, K; Ruzicka, T; Krutmann, J

    1997-08-01

    Normal ageing processes are associated with an accumulation of mutations within the mitochondrial (mt) DNA. The most frequent mutation is a 4977 base pair (bp) deletion known as common deletion. In order to test the hypothesis that chronically sun-exposed skin is characterized by an increased mutation frequency of mtDNA, the mutation frequency of the common deletion between skin and another replicating tissue (the hematopoietic system) and chronically sun-exposed versus sun-protected skin was compared in the same individuals. This was done by comparing the amount of mutated mtDNA molecules with the whole mitochondrial genome in the same specimen with a semiquantitative polymerase chain reaction method, thus allowing direct comparison of different tissues. In all skin specimens the common deletion could be observed. In contrast only 3 of 10 blood samples revealed detectable amounts of the common deletion. Comparison of sun-exposed versus sun-protected skin exhibited a higher content of the common deletion in sun-exposed skin in 7 of 10 individuals. Additionally, a hitherto undescribed mtDNA mutation was detected exclusively in human skin. These studies indicate that exposure of human skin to solar radiation leads to an accumulation of mtDNA mutations, possibly via oxidative damage, which may play an important role in photoageing.

  2. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling.

    Science.gov (United States)

    Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette

    2014-06-01

    The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function.

  3. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids

    Directory of Open Access Journals (Sweden)

    Contri RV

    2014-02-01

    Full Text Available Renata V Contri,1 Luiza A Frank,2 Moacir Kaiser,1 Adriana R Pohlmann,1,3 Silvia S Guterres1,2 1Programa de Pós-Graduação em Ciências Farmacêuticas, 2Faculdade de Farmácia, 3Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil Abstract: Capsaicin, a topical analgesic used in the treatment of chronic pain, has irritant properties that frequently interrupt its use. In this work, the effect of nanoencapsulation of the main capsaicinoids (capsaicin and dihydrocapsaicin on skin irritation was tested in humans. Skin tolerance of a novel vehicle composed of chitosan hydrogel containing nonloaded nanocapsules (CH-NC was also evaluated. The chitosan hydrogel containing nanoencapsulated capsaicinoids (CH-NC-CP did not cause skin irritation, as measured by an erythema probe and on a visual scale, while a formulation containing free capsaicinoids (chitosan gel with hydroalcoholic solution [CH-ET-CP] and a commercially available capsaicinoids formulation caused skin irritation. Thirty-one percent of volunteers reported slight irritation one hour after application of CH-NC-CP, while moderate (46% [CH-ET-CP] and 23% [commercial product] and severe (8% [CH-ET-CP] and 69% [commercial product] irritation were described for the formulations containing free capsaicinoids. When CH-NC was applied to the skin, erythema was not observed and only 8% of volunteers felt slight irritation, which demonstrates the utility of the novel vehicle. A complementary in vitro skin permeation study showed that permeation of capsaicinoids through an epidermal human membrane was reduced but not prevented by nanoencapsulation. Keywords: chitosan, nanocapsules, capsaicinoids, skin irritation, skin permeation

  4. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  5. Comparison of gravimetric, creamatocrit and esterified fatty acid methods for determination of total fat content in human milk.

    Science.gov (United States)

    Du, Jian; Gay, Melvin C L; Lai, Ching Tat; Trengove, Robert D; Hartmann, Peter E; Geddes, Donna T

    2017-02-15

    The gravimetric method is considered the gold standard for measuring the fat content of human milk. However, it is labor intensive and requires large volumes of human milk. Other methods, such as creamatocrit and esterified fatty acid assay (EFA), have also been used widely in fat analysis. However, these methods have not been compared concurrently with the gravimetric method. Comparison of the three methods was conducted with human milk of varying fat content. Correlations between these methods were high (r(2)=0.99). Statistical differences (Pmilk) using the three methods. Overall, stronger correlation with lower mean (4.73g/L) and percentage differences (5.16%) was observed with the creamatocrit than the EFA method when compared to the gravimetric method. Furthermore, the ease of operation and real-time analysis make the creamatocrit method preferable. Copyright © 2016. Published by Elsevier Ltd.

  6. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers.

    Science.gov (United States)

    Paolino, Donatella; Lucania, Giuseppe; Mardente, Domenico; Alhaique, Franco; Fresta, Massimo

    2005-08-18

    The aim of this work was the evaluation of various ethosomal suspensions made up of water, phospholipids and ethanol at various concentrations for their potential application in dermal administration of ammonium glycyrrhizinate, a useful drug for the treatment of various inflammatory-based skin diseases. Physicochemical characterization of ethosomes was carried out by photon correlation spectroscopy and freeze fracture electron microscopy. The percutaneous permeation of ammonium glycyrrhizinate/ethosomes was evaluated in vitro through human stratum corneum and epidermis membranes by using Franz's cells and compared with the permeation profiles of drug solutions either in water or in a water-ethanol mixture. Reflectance spectrophotometry was used as a non-invasive technique to evaluate the carrier toxicity, the drug permeation and the anti-inflammatory activity of ammonium glycyrrhizinate in a model of skin erythema in vivo on human volunteers. Ethosomal suspensions had mean sizes ranging from 350 nm to 100 nm as a function of ethanol and lecithin quantities, i.e., high amounts of ethanol and a low lecithin concentration provided ethosome suspensions with a mean size of approximately 100 nm and a narrow size distribution. In vitro and in vivo experiments were carried out by using an ethosome formulation made up of ethanol 45% (v/v) and lecithin 2% (w/v). The ethosome suspension showed a very good skin tolerability in human volunteers, also when applied for a long period (48 h). Ethosomes elicited an increase of the in vitro percutaneous permeation of both methylnicotinate and ammonium glycyrrhizinate. Ethosomes were able to significantly enhance the anti-inflammatory activity of ammonium glycyrrhizinate compared to the ethanolic or aqueous solutions of this drug. Some in vivo experiments also showed the ability of ethosome to ensure a skin accumulation and a sustained release of the ammonium glycyrrhizinate.

  7. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer.

    Science.gov (United States)

    O'Neill, Ann Marie; Burrington, Christine M; Gillaspie, Erin A; Lynch, Darin T; Horsman, Melissa J; Greene, Michael W

    2016-12-01

    Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1(tm1Mom) mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Halberg, Nils; Hillig, Thore

    2005-01-01

    that a decrease in the concentration of malonyl-CoA, secondary to a2-AMPK activation and ACC inhibition (by phosphorylation), contributes to the increase in fat oxidation observed at the onset of exercise regardless of muscle glycogen levels. They also suggest that, with high muscle glycogen, the availability......Intracellular mechanisms regulating fat oxidation were investigated in human skeletal muscle during exercise. Eight young, healthy, moderately trained men performed bicycle exercise (60 min, 65% peak O2 consumption) on two occasions, where they ingested either 1) a high-carbohydrate diet (H......-CHO) or 2) a low-carbohydrate diet (L-CHO) before exercise to alter muscle glycogen content as well as to induce, respectively, low and high rates of fat oxidation. Leg fat oxidation was 122% higher during exercise in L-CHO than in H-CHO (P

  9. Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro.

    Science.gov (United States)

    Platzek, T; Lang, C; Grohmann, G; Gi, U S; Baltes, W

    1999-09-01

    Azo dyes represent the major class of dyestuffs. They are metabolised to the corresponding amines by liver enzymes and the intestinal microflora following incorporation by both experimental animals and humans. For safety evaluation of the dermal exposure of consumers to azo dyes from wearing coloured textiles, a possible cleavage of azo dyes by the skin microflora should be considered since, in contrast to many dyes, aromatic amines are easily absorbed by the skin. A method for measuring the ability of human skin flora to reduce azo dyes was established. In a standard experiment, 3x10(11) cells of a culture of Staphylococcus aureus were incubated in synthetic sweat (pH 6.8, final volume 20 mL) at 28 degrees C for 24 h with Direct Blue 14 (C.I. 23850, DB 14). The reaction products were extracted and analysed using HPLC. The reduction product o-tolidine (3,3'-dimethylbenzidine, OT) could indeed be detected showing that the strain used was able to metabolise DB 14 to the corresponding aromatic amine. In addition to OT, two further metabolites of DB 14 were detected. Using mass spectrometry they were identified as 3,3'-dimethyl-4-amino-4'-hydroxybiphenyl and 3, 3'-dimethyl-4-aminobiphenyl. The ability to cleave azo dyes seems to be widely distributed among human skin bacteria, as, under these in vitro conditions, bacteria isolated from healthy human skin and human skin bacteria from strain collections also exhibited azo reductase activity. Further studies are in progress in order to include additional azo dyes and coloured textiles. At the moment, the meaning of the results with regard to consumer health cannot be finally assessed.

  10. Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin

    Science.gov (United States)

    Kita, Ryosuke; Fraser, Hunter B.

    2016-01-01

    Sun-exposure is a key environmental variable in the study of human evolution. Several skin-pigmentation genes serve as classical examples of positive selection, suggesting that sun-exposure has significantly shaped worldwide genomic variation. Here we investigate the interaction between genetic variation and sun-exposure, and how this impacts gene expression regulation. Using RNA-Seq data from 607 human skin samples, we identified thousands of transcripts that are differentially expressed between sun-exposed skin and non-sun-exposed skin. We then tested whether genetic variants may influence each individual’s gene expression response to sun-exposure. Our analysis revealed 10 sun-exposure-dependent gene expression quantitative trait loci (se-eQTLs), including genes involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the magnitude of solar radiation experienced by these populations, suggesting local adaptation to varying levels of sunlight. These results provide the first examples of sun-exposure-dependent regulatory variation and suggest that this variation has contributed to recent human adaptation. PMID:27760139

  11. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    Science.gov (United States)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  12. Skin Biomes.

    Science.gov (United States)

    Fyhrquist, N; Salava, A; Auvinen, P; Lauerma, A

    2016-05-01

    The cutaneous microbiome has been investigated broadly in recent years and some traditional perspectives are beginning to change. A diverse microbiome exists on human skin and has a potential to influence pathogenic microbes and modulate the course of skin disorders, e.g. atopic dermatitis. In addition to the known dysfunctions in barrier function of the skin and immunologic disturbances, evidence is rising that frequent skin disorders, e.g. atopic dermatitis, might be connected to a dysbiosis of the microbial community and changes in the skin microbiome. As a future perspective, examining the skin microbiome could be seen as a potential new diagnostic and therapeutic target in inflammatory skin disorders.

  13. Direct visualization of lipid domains in human skin stratum corneum's lipid membranes

    DEFF Research Database (Denmark)

    Plasencia, I; Norlen, Lars; Bagatolli, Luis

    2007-01-01

    ; and iii), whether pH has a direct effect on the lipid matrix phase behavior. In this work the lateral structure of membranes composed of lipids extracted from human skin stratum corneum was studied in a broad temperature range (10 degrees C-90 degrees C) using different techniques such as differential......The main function of skin is to serve as a physical barrier between the body and the environment. This barrier capacity is in turn a function of the physical state and structural organization of the stratum corneum extracellular lipid matrix. This lipid matrix is essentially composed of very long...... scanning calorimetry, fluorescence spectroscopy, and two-photon excitation and laser scanning confocal fluorescence microscopy. Here we show that hydrated bilayers of human skin stratum corneum lipids express a giant sponge-like morphology with dimensions corresponding to the global three...

  14. Chronological age affects the permeation of fentanyl through human skin in vitro

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Sorensen, J A

    2013-01-01

    AIM: To study the influence of chronological age on fentanyl permeation through human skin in vitro using static diffusion cells. Elderly individuals are known to be more sensitive to opioids and obtain higher plasma concentrations following dermal application of fentanyl compared to younger...... individuals. The influence of age - as an isolated pharmacokinetic term - on the absorption of fentanyl has not been previously studied. METHOD: Human skin from 30 female donors was mounted in static diffusion cells, and samples were collected during 48 h. Donors were divided into three age groups: ... and old age groups: 5,922 and 4,050 ng, respectively). Furthermore, the lag time and absorption rate were different between the three groups, with a significantly higher rate in the young participants versus the oldest participants. CONCLUSION: We demonstrate that fentanyl permeates the skin of young...

  15. Surfactant-induced dermatitis: comparison of corneosurfametry with predictive testing on human and reconstructed skin.

    Science.gov (United States)

    Piérard, G E; Goffin, V; Hermanns-Lê, T; Arrese, J E; Piérard-Franchimont, C

    1995-09-01

    Surfactants elicit alterations in the stratum corneum. Predictive tests that avoid animal experimentation are needed. This study compares three methods of rating and predicting shampoo-induced irritation. Corneosurfametry entails collection of stratum corneum followed by brief contact with diluted surfactants and measurement of variations in staining of samples. Corneosurfametry appears to correlate well with in vivo testing in volunteers with sensitive skin. However, corneosurfametry presents less interindividual variability than in vivo testing and allows better discrimination among mild products. Morphologic information about surfactant-induced loosening of corneocytes may be increased by testing surfactants on human skin equivalent. Results are similar to those provided by specimens used for corneosurfametry. The corneosurfametric prediction of surfactant irritancy correlates with in vivo testing and with in vitro evaluation on human skin equivalent.

  16. Permeability of commercial solvents through living human skin

    DEFF Research Database (Denmark)

    Ursin, C; Hansen, C M; Van Dyk, J W;

    1995-01-01

    rate. For other solvents this was not necessary, so the un-normalized data were used. High [3H]water permeation rate also was used as a criterion for "defective" skin samples that gave erroneous permeability rates, especially for solvents having slow permeability. The linearity of the steady state data...... was characterized by calculation of the "percent error of the slope." The following permeability rates (g/m2h) of single solvents were measured: dimethyl sulfoxide (DMSO), 176; N-methyl-2-pyrrolidone, 171; dimethyl acetamide, 107; methyl ethyl ketone, 53; methylene chloride, 24; [3H]water, 14.8; ethanol, 11.......3; butyl acetate, 1.6; gamma-butyrolactone, 1.1; toluene, 0.8; propylene carbonate, 0.7; and sulfolane, 0.2. The effect of [3H]water saturation on the shape of the presteady state portion of the permeation curve was determined and found to be very dependent on the solvent. The permeability of mixtures...

  17. Role of transepidermal and transfollicular routes in percutaneous absorption of steroids: in vitro studies on human skin.

    Science.gov (United States)

    Hueber, F; Schaefer, H; Wepierre, J

    1994-01-01

    Percutaneous absorption theoretically comprises two components: the transepidermal and the transfollicular routes. The aim of the present work was to confirm this hypothesis in the human skin by comparing the in vitro percutaneous absorption of four steroids through scar skin without hair follicles and sebaceous glands and through normal adjacent skin from abdominal or mammary plasties. In all cases, the absorption of the four steroids was significantly higher in normal skin than in scar skin. The cumulative percentages of progesterone and testosterone after 8 h of application were, respectively, 3.1- and 2.4-fold higher in normal skin than in scar skin. After 24 h of application, the cumulative percentages of estradiol and hydrocortisone were 1.7- and 2.4-fold higher in normal skin than in scar skin. At the end of the experiments, the quantities of drugs remaining in the skin after 8 or 24 h of application were the same in normal skin and in scar skin except for progesterone for which they were 2-fold greater in normal than in scar skin. In each case, a histological characterization of the scar skin was made in comparison with the normal adjacent skin. The main modifications observed on scar skin were the following: absence of hair follicles and sebaceous glands, thinning of the collagenous fibers with parallel orientation to the dermoepidermal junction and decrease in the number or disappearance of the elastic fibers. These experiments confirmed that human skin appendages, hair follicles and sebaceous glands, constitute a route of penetration for steroids and thus probably for other chemicals of similar molecular weight and properties.

  18. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  19. Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green

    Science.gov (United States)

    Yanina, Irina Yu.; Navolokin, Nikita A.; Svenskaya, Yulia I.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Gorin, Dmitry A.; Sukhorukov, Gleb B.; Tuchin, Valery V.

    2017-05-01

    The goal of this study is to quantify the impact of the in vivo photochemical treatment of rats with obesity using indocyanine green (ICG) dissolved in saline or dispersed in an encapsulated form at NIR laser irradiation, which was monitored by tissue sampling and histochemistry. The subcutaneous injection of the ICG solution or ICG encapsulated into polyelectrolyte microcapsules, followed by diode laser irradiation (808 nm, 8 W/cm2, 1 min), resulted in substantial differences in lipolysis of subcutaneous fat. Most of the morphology alterations occurred in response to the laser irradiation if a free-ICG solution had been injected. In such conditions, membrane disruption, stretching, and even delamination in some cases were observed for a number of cells. The encapsulated ICG aroused similar morphology changes but with weakly expressed adipocyte destruction under the laser irradiation. The Cochran Q test rendered the difference between the treatment alternatives statistically significant. By this means, laser treatment using the encapsulated form of ICG seems more promising and could be used for safe layerwise laser treatment of obesity and cellulite.

  20. THE USE OF FAT EMULSIONS FOR INTRAVENOUS ALIMENTATION AND THEIR PHYSIOLOGIC EFFECT IN HUMANS

    Science.gov (United States)

    BIOCHEMISTRY, *COLLOIDS, *FATS, *PARENTERAL INFUSIONS, ANEMIAS, BLOOD PLASMA, BLOOD PLATELETS, CANCER , CHROMATOGRAPHIC ANALYSIS, ERYTHROCYTES, FATTY ACIDS, HEMORRHAGE, PHOSPHOLIPIDS, PHYSIOLOGY, VENOMS

  1. Preservation of human skin structure and function in organ culture

    OpenAIRE

    Varani, J.

    1998-01-01

    Human keratinocytes can be maintained in monolayer culture under serum-free conditions for an extended period of time. Under low ca2+ conditions (e.g., 0.05-0.15 mM), an undifferentiated state is maintained and the cells proliferate optimally. When the ca2+ concentration is raised to approximately 1.0 mM, differentiation occurs and growth slows. Human dermal fibroblasts can also be maintained in monolayer culture under serum-free conditions, but in contrast to ...

  2. Human Skin-Derived Stem Cells as a Novel Cell Source for In Vitro Hepatotoxicity Screening of Pharmaceuticals

    OpenAIRE

    Rodrigues, Robim M.; De Kock, Joery; Branson, Steven; Vinken, Mathieu; Meganathan, Kesavan; Chaudhari, Umesh; Sachinidis, Agapios; Govaere, Olivier; Roskams, Tania; De Boe, Veerle; Vanhaecke, Tamara; Rogiers, Vera

    2014-01-01

    Human skin-derived precursors (hSKP) are postnatal stem cells with neural crest properties that reside in the dermis of human skin. These cells can be easily isolated from small (fore) skin segments and have the capacity to differentiate into multiple cell types. In this study, we show that upon exposure to hepatogenic growth factors and cytokines, hSKP acquire sufficient hepatic features that could make these cells suitable in vitro tools for hepatotoxicity screening of new chemical entities...

  3. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase

    Science.gov (United States)

    Johnson, Karin; Ross, Leah; Miller, Rita; Xiao, Xunjun; Lowe, Mark E.

    2013-01-01

    INTRODUCTION Dietary fats must be digested into fatty acids and monoacylglycerols prior to absorption. In adults, colipase-dependent pancreatic triglyceride lipase (PTL) contributes significantly to fat digestion. In newborn rodents and humans, the pancreas expresses low levels of PTL. In rodents, a homologue of PTL, pancreatic lipase related protein 2 (PLRP2) and carboxyl ester lipase (CEL) compensate for the lack of PTL. In human newborns, the role for PLRP2 in dietary fat digestion is unclear. To clarify the potential of human PLRP2 to influence dietary fat digestion in newborns, we determined PLRP2 activity against human milk and infant formula. METHODS The activity of purified recombinant PLRP2, gastric lipase and CEL against fats in human milk and formula was measured with each lipase alone and in combination with a standard pH-stat assay. RESULTS Colipase added to human milk stimulated fat digestion. PLRP2 and CEL had activity against human milk and formula. Pre-digestion with gastric lipase increased PLRP2 activity against both substrates. Together, CEL and PLRP2 activity was additive with formula and synergistic with human milk. CONCLUSIONS PLRP2 can digest fats in human milk and formula. PLRP2 acts in concert with CEL and gastric lipase to digest fats in human milk in vitro. PMID:23732775

  4. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model

    Science.gov (United States)

    Kim, Eun Sung; Park, So Jung; Bae, Il-Hong; Jo, Yoon Kyung; Jeong, In Young; Kim, Hyoung-June; Lee, Youngjin; Park, Hea Chul; Jeon, Hong Bae; Kim, Ki Woo; Lee, Tae Ryong; Cho, Dong-Hyung

    2016-01-01

    The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling. PMID:27941997

  5. Body Site Is a More Determinant Factor than Human Population Diversity in the Healthy Skin Microbiome

    Science.gov (United States)

    Perez Perez, Guillermo I.; Gao, Zhan; Jourdain, Roland; Ramirez, Julia; Gany, Francesca; Clavaud, Cecile; Demaude, Julien

    2016-01-01

    We studied skin microbiota present in three skin sites (forearm, axilla, scalp) in men from six ethnic groups living in New York City. Methods. Samples were obtained at baseline and after four days following use of neutral soap and stopping regular hygiene products, including shampoos and deodorants. DNA was extracted using the MoBio Power Lyzer kit and 16S rRNA gene sequences determined on the IIlumina MiSeq platform, using QIIME for analysis. Results. Our analysis confirmed skin swabbing as a useful method for sampling different areas of the skin because DNA concentrations and number of sequences obtained across subject libraries were similar. We confirmed that skin location was the main factor determining the composition of bacterial communities. Alpha diversity, expressed as number of species observed, was greater in arm than on scalp or axilla in all studied groups. We observed an unexpected increase in α-diversity on arm, with similar tendency on scalp, in the South Asian group after subjects stopped using their regular shampoos and deodorants. Significant differences at phylum and genus levels were observed between subjects of the different ethnic origins at all skin sites. Conclusions. We conclude that ethnicity and particular soap and shampoo practices are secondary factors compared to the ecological zone of the human body in determining cutaneous microbiota composition. PMID:27088867

  6. Differences in thermal optical response between intact diabetic and nondiabetic human skin

    Science.gov (United States)

    Yeh, Shu-Jen; Hanna, Charles F.; Kantor, Stan; Hohs, Ronald; Khalil, Omar S.

    2003-07-01

    We observed a difference in the thermal response of localized reflectance signal of human skin between type-2 diabetic and non-diabetic volunteers. We investigated the use of this thermo-optical behavior as a basis for a non-invasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin, each of these areas is subjected to a different thermal perturbation. The response of skin localized reflectance to temperature was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetics or non-diabetics. In a prediction set of 24 non-invasive tests collected from 6 diabetics and 6 non-diabetics, the sensitivity ranged between 73% and 100%, and the specificity ranged between 75% and 100%, depending on the thermal conditions and probe-skin contact time. The difference in thermo-optical response of the skin of the two groups may be explained in terms of difference in response of cutaneous microcirculation to temperature, which is manifested as a difference in the near infrared light absorption and scattering. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by non-enzymatic glycation of skin protein fibers, and/or by the difference in blood cell aggregation.

  7. Body Site Is a More Determinant Factor than Human Population Diversity in the Healthy Skin Microbiome.

    Directory of Open Access Journals (Sweden)

    Guillermo I Perez Perez

    Full Text Available We studied skin microbiota present in three skin sites (forearm, axilla, scalp in men from six ethnic groups living in New York City.Samples were obtained at baseline and after four days following use of neutral soap and stopping regular hygiene products, including shampoos and deodorants. DNA was extracted using the MoBio Power Lyzer kit and 16S rRNA gene sequences determined on the IIlumina MiSeq platform, using QIIME for analysis.Our analysis confirmed skin swabbing as a useful method for sampling different areas of the skin because DNA concentrations and number of sequences obtained across subject libraries were similar. We confirmed that skin location was the main factor determining the composition of bacterial communities. Alpha diversity, expressed as number of species observed, was greater in arm than on scalp or axilla in all studied groups. We observed an unexpected increase in α-diversity on arm, with similar tendency on scalp, in the South Asian group after subjects stopped using their regular shampoos and deodorants. Significant differences at phylum and genus levels were observed between subjects of the different ethnic origins at all skin sites.We conclude that ethnicity and particular soap and shampoo practices are secondary factors compared to the ecological zone of the human body in determining cutaneous microbiota composition.

  8. Quantitative Phosphoproteomics Identifies Filaggrin and other Targets of Ionizing Radiation in a Human Skin Model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Waters, Katrina M.; Webb-Robertson, Bobbie-Jo M.; Sowa, Marianne B.; Freiin von Neubeck, Claere H.; Aldrich, Joshua T.; Markillie, Lye Meng; Wirgau, Rachel M.; Gristenko, Marina A.; Zhao, Rui; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2012-04-17

    Our objective here was to perform a quantitative phosphoproteomic study on a reconstituted human skin tissue to identify low and high dose ionizing radiation dependent signaling in a complex 3-dimensional setting. Application of an isobaric labeling strategy using sham and 3 radiation doses (3, 10, 200 cGy) resulted in the identification of 1113 unique phosphopeptides. Statistical analyses identified 151 phosphopeptides showing significant changes in response to radiation and radiation dose. Proteins responsible for maintaining skin structural integrity including keratins and desmosomal proteins (desmoglein, desmoplakin, plakophilin 1 and 2,) had altered phosphorylation levels following exposure to both low and high doses of radiation. A phosphorylation site present in multiple copies in the linker regions of human profilaggrin underwent the largest fold change. Increased phosphorylation of these sites coincided with altered profilaggrin processing suggesting a role for linker phosphorylation in human profilaggrin regulation. These studies demonstrate that the reconstituted human skin system undergoes a coordinated response to ionizing radiation involving multiple layers of the stratified epithelium that serve to maintain skin barrier functions and minimize the damaging consequences of radiation exposure.

  9. Differential effects of chemical irritants in rabbit and human skin organ cultures

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Rutten, A.A.J.J.L.

    1995-01-01

    The toxicity of well known irritants was investigated in rabbit and human skin organ cultures. Test chemicals were selected from various categories of irritants and included both water-soluble and water-insoluble compounds. Using a highly standardized protocol, test chemicals were applied topically

  10. Differential effects of chemical irritants in rabbit and human skin organ cultures

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Rutten, A.A.J.J.L.

    1995-01-01

    The toxicity of well known irritants was investigated in rabbit and human skin organ cultures. Test chemicals were selected from various categories of irritants and included both water-soluble and water-insoluble compounds. Using a highly standardized protocol, test chemicals were applied topically

  11. Host Plasminogen Activator Inhibitor-1 Promotes Human Skin Carcinoma Progression in a Stage-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Catherine Maillard

    2005-01-01

    Full Text Available Angiogenesis and tumor expansion are associated with extracellular matrix remodeling and involve various proteases such as the plasminogen (Pig/plasminogen activator (PA system. Recently, several experimental data have implicated the plasminogen activator inhibitor-1 (PAI-1 in tumor angiogenesis in murine systems. However, little is known about PAI-1 functions in human skin carcinoma progression. By generating immunodeficient mice (in Rag-1-/- or nude background deleted for PAI-1 gene (PAI-1-/- , we have evaluated the impact of host PAI-1 deficiency on the tumorigenicity of two malignant human skin keratinocyte cell lines HaCaT II-4 and HaCaT A5-RT3 forming low-grade and high-grade carcinomas, respectively. When using the surface transplantation model, angiogenesis and tumor invasion of these two cell lines are strongly reduced in PAI-1-deficient mice as compared to the wild-type control animals. After subcutaneous injection in PAI-1-/- mice, the tumor incidence is reduced for HaCaT II-4 cells, but not for those formed by HaCaT A5-RT3 cells. These data indicate that PAI-1 produced by host cells is an important contributor to earlier stages of human skin carcinoma progression. It exerts its tumor-promoting effect in a tumor stage-dependent manner, but PAI-1 deficiency is not sufficient to prevent neoplastic growth of aggressive tumors of the human skin.

  12. ADHESION AND SPREADING OF HUMAN SKIN FIBROBLASTS ON PHYSICOCHEMICALLY CHARACTERIZED GRADIENT SURFACES

    NARCIS (Netherlands)

    RUARDY, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1995-01-01

    In this study, adhesion and spreading of human skin fibroblasts on gradient surfaces of dichlorodimethylsilane (DDS) coupled to glass was investigated. Gradient surfaces were prepared by the diffusion technique and characterized by the Wilhelmy plate technique for their wettability and by scanning x

  13. Dermal uptake of Tetrabromobisphenol A TBBPA by female Wistar Han rat and human skin

    Science.gov (United States)

    TBBPA, a brominated analog of Bisphenol A, is the highest production volume brominated flame retardant in production and human exposure is ubiquitous. Although the major route of exposure to TBBPA is oral uptake, skin penetration is possible. In the studies presented here, the de...

  14. The "Human Colour" Crayon: Investigating the Attitudes and Perceptions of Learners Regarding Race and Skin Colour

    Science.gov (United States)

    Alexander, Neeske; Costandius, Elmarie

    2017-01-01

    Some coloured and black learners in South Africa use a light orange or pink crayon to represent themselves in art. Many learners name this colour "human colour" or "skin colour". This is troublesome, because it could reflect exclusionary ways of representing race in images and language. This case study, conducted with two…

  15. Immunochemical detection of sulfur mustard adducts with keratins in the stratum corneum of human skin

    NARCIS (Netherlands)

    Schans, G.P. van der; Noort, D.; Mars-Groenendijk, R.H.; Fidder, A.; Chau, L.F.; Jong, L.P.A. de; Benschop, H.P.

    2002-01-01

    As part of a program to develop methods for diagnosis of exposure to chemical warfare agents, we developed immunochemical methods for detection of adducts of sulfur mustard to keratin in human skin. Three partial sequences of keratins containing glutamine or asparagine adducted with a

  16. Depth of penetration of an 850nm wavelength low level laser in human skin.

    Science.gov (United States)

    Esnouf, Alan; Wright, Philip A; Moore, Joan C; Ahmed, Salim

    2007-01-01

    Low Level Laser Therapy is used for a wide variety of conditions including superficial skin sores, musculoskeletal and joint problems, and dentistry. Knowledge of the penetration depth of laser radiation in human skin is an essential prerequisite to identifying its method of action. Mathematical simulations and estimates from the literature suggest that the depth of penetration of laser radiation using wavelengths from 630nm up to 1100nm may be up to 50mm. The aim of this study is to directly measure the penetration depth of a Low Level Laser in human tissue. Human abdominal skin samples up to 0.784mm thickness were harvested by dermatome following abdominoplasty procedures. These samples were irradiated by a Gallium Aluminium Arsenide Laser (Wavelength 850nm near infra-red invisible light, 100mW, 24kHz, 0.28mm diameter probe) and the transmitted radiation measured with an Ophir Optronics 'Nova' external energy meter. The intensity of laser radiation reduced by 66% after being transmitted through a 0.784mm sample of human abdominal tissue. In this study most laser radiation was absorbed within the first 1mm of skin.

  17. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    Science.gov (United States)

    Seet, Wan Tai; Manira, Maarof; Maarof, Manira; Khairul Anuar, Khairoji; Chua, Kien-Hui; Ahmad Irfan, Abdul Wahab; Ng, Min Hwei; Aminuddin, Bin Sa