WorldWideScience

Sample records for human faecal microbiota

  1. Faecal microbiota transplantation

    DEFF Research Database (Denmark)

    Jørgensen, Simon M D; Hansen, Mette Mejlby; Erikstrup, Christian

    2017-01-01

    BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening, laborat......BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening...

  2. Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures.

    Science.gov (United States)

    Mateos-Aparicio, Inmaculada; Mengíbar, Marian; Heras, Angeles

    2016-02-10

    Chitosan with high number of deacetylated units, its reacetylated derivative and COS obtained through an enzymatic treatment with chitosanase were tested in pH controlled batch cultures to investigate the ability of the human faecal microbiota to utilise them. Chitosan derivatives with high number of deacetylated units decreased the bacterial populations: Bifidobacterium spp., Eubacterium rectale/Clostridium coccoides, C. Histolyticum and Bacteroides/Prevotella. On the other hand, chitosan derivatives with high content of acetylated residues maintained the tested bacterial groups and could increase Lactobacillus/Enterococcus. Regarding short chain fatty acids (SCFA), only low Mw COS increased the production in similar levels than fructo-oligossacharides (FOS). The acetylated chitosans and their COS do not appear as potential prebiotics but did not affect negatively the faecal microbiota, while derivatives with high number of deacetylated units could induce a colonic microbiota imbalance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Integrity of the Human Faecal Microbiota following Long-Term Sample Storage.

    Directory of Open Access Journals (Sweden)

    Elahe Kia

    Full Text Available In studies of the human microbiome, faecal samples are frequently used as a non-invasive proxy for the study of the intestinal microbiota. To obtain reliable insights, the need for bacterial DNA of high quality and integrity following appropriate faecal sample collection and preservation steps is paramount. In a study of dietary mineral balance in the context of type 2 diabetes (T2D, faecal samples were collected from healthy and T2D individuals throughout a 13-day residential trial. These samples were freeze-dried, then stored mostly at -20°C from the trial date in 2000/2001 until the current research in 2014. Given the relative antiquity of these samples (~14 years, we sought to evaluate DNA quality and comparability to freshly collected human faecal samples. Following the extraction of bacterial DNA, gel electrophoresis indicated that our DNA extracts were more sheared than extracts made from freshly collected faecal samples, but still of sufficiently high molecular weight to support amplicon-based studies. Likewise, spectrophotometric assessment of extracts revealed that they were of high quality and quantity. A subset of bacterial 16S rRNA gene amplicons were sequenced using Illumina MiSeq and compared against publicly available sequence data representing a similar cohort analysed by the American Gut Project (AGP. Notably, our bacterial community profiles were highly consistent with those from the AGP data. Our results suggest that when faecal specimens are stored appropriately, the microbial profiles are preserved and robust to extended storage periods.

  4. Use of denaturing gradient gel electrophoresis to detect Actinobacteria associated with the human faecal microbiota.

    Science.gov (United States)

    Hoyles, Lesley; Clear, Jessica A; McCartney, Anne L

    2013-08-01

    With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intensity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota.

    Science.gov (United States)

    Zimmer, J; Lange, B; Frick, J-S; Sauer, H; Zimmermann, K; Schwiertz, A; Rusch, K; Klosterhalfen, S; Enck, P

    2012-01-01

    Consisting of ≈10(14) microbial cells, the intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. However, the influence of regular diets on the microbiota is widely unknown. We examined faecal samples of vegetarians (n=144), vegans (n=105) and an equal number of control subjects consuming ordinary omnivorous diet who were matched for age and gender. We used classical bacteriological isolation, identification and enumeration of the main anaerobic and aerobic bacterial genera and computed absolute and relative numbers that were compared between groups. Total counts of Bacteroides spp., Bifidobacterium spp., Escherichia coli and Enterobacteriaceae spp. were significantly lower (P=0.001, P=0.002, P=0.006 and P=0.008, respectively) in vegan samples than in controls, whereas others (E. coli biovars, Klebsiella spp., Enterobacter spp., other Enterobacteriaceae, Enterococcus spp., Lactobacillus spp., Citrobacter spp. and Clostridium spp.) were not. Subjects on a vegetarian diet ranked between vegans and controls. The total microbial count did not differ between the groups. In addition, subjects on a vegan or vegetarian diet showed significantly (P=0.0001) lower stool pH than did controls, and stool pH and counts of E. coli and Enterobacteriaceae were significantly correlated across all subgroups. Maintaining a strict vegan or vegetarian diet results in a significant shift in the microbiota while total cell numbers remain unaltered.

  6. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.

    Science.gov (United States)

    Mills, Charlotte E; Tzounis, Xenofon; Oruna-Concha, Maria-Jose; Mottram, Don S; Gibson, Glenn R; Spencer, Jeremy P E

    2015-04-28

    Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (Pspp. relative to the control vessel at 10 h after exposure (Pspp. (PEubacterium rectale group (P<0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.

  7. Faecal microbiota in lean and obese dogs.

    Science.gov (United States)

    Handl, Stefanie; German, Alexander J; Holden, Shelley L; Dowd, Scot E; Steiner, Jörg M; Heilmann, Romy M; Grant, Ryan W; Swanson, Kelly S; Suchodolski, Jan S

    2013-05-01

    Previous work has shown obesity to be associated with changes in intestinal microbiota. While obesity is common in dogs, limited information is available about the role of the intestinal microbiota. The aim of this study was to investigate whether alterations in the intestinal microbiota may be associated with canine obesity. Using 16S rRNA gene pyrosequencing and quantitative real-time PCR, we evaluated the composition of the faecal microbiota in 22 lean and 21 obese pet dogs, as well as in five research dogs fed ad libitum and four research dogs serving as lean controls. Firmicutes, Fusobacteria and Actinobacteria were the predominant bacterial phyla. The phylum Actinobacteria and the genus Roseburia were significantly more abundant in the obese pet dogs. The order Clostridiales significantly increased under ad libitum feeding in the research dogs. Canine intestinal microbiota is highly diverse and shows considerable interindividual variation. In the pet dogs, influence on the intestinal microbiota besides body condition, like age, breed, diet or lifestyle, might have masked the effect of obesity. The study population of research dogs was small, and further work is required before the role of the intestinal microbiota in canine obesity is clarified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.

    Science.gov (United States)

    Bazzocco, Sarah; Mattila, Ismo; Guyot, Sylvain; Renard, Catherine M G C; Aura, Anna-Marja

    2008-12-01

    Proanthocyanidins (PAs) in apples are condensed tannins comprised mostly of (-)-epicatechin units with some terminal (+)-catechins. PAs, especially those having a long chain-length, are absorbed in the upper intestine only to a small extent and are passed to the colon. In the colon they are subjected to microbial metabolism by colonic microbiota. In the present article, the ability of human microbiota to ferment apple PAs is studied. Freeze-dried fruit preparations (apple, enzymatically digested apple, isolated cell-walls, isolated PAs or ciders) from two varieties, Marie Ménard and Avrolles, containing PAs of different chain lengths, were compared. Fermentation studies were performed in an in vitro colon model using human faecal microbiota as an inoculum. The maximal extent of conversion to known microbial metabolites, was observed at late time point for Marie Ménard cider, having short PAs. In this case, the initial dose also contributed to the extent of conversion. Long-chain PAs were able to inhibit the in vitro microbial metabolism of PAs shown as low maxima at early time points. Presence of isolated PAs also suppressed SCFA formation from carbohydrates as compared with that from apple cell wall or faecal suspension without substrates. The low maximal extents at early time points suggest that there is a competition between the inhibitory effect of the PAs on microbial activity, and the ability to convert PAs by the microbiota.

  9. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity.

    Directory of Open Access Journals (Sweden)

    Daniel Hand

    Full Text Available Mammalian intestinal microbiota remain poorly understood despite decades of interest and investigation by culture-based and other long-established methodologies. Using high-throughput sequencing technology we now report a detailed analysis of canine faecal microbiota. The study group of animals comprised eleven healthy adult miniature Schnauzer dogs of mixed sex and age, some closely related and all housed in kennel and pen accommodation on the same premises with similar feeding and exercise regimes. DNA was extracted from faecal specimens and subjected to PCR amplification of 16S rDNA, followed by sequencing of the 5' region that included variable regions V1 and V2. Barcoded amplicons were sequenced by Roche-454 FLX high-throughput pyrosequencing. Sequences were assigned to taxa using the Ribosomal Database Project Bayesian classifier and revealed dominance of Fusobacterium and Bacteroidetes phyla. Differences between animals in the proportions of different taxa, among 10,000 reads per animal, were clear and not supportive of the concept of a "core microbiota". Despite this variability in prominent genera, littermates were shown to have a more similar faecal microbial composition than unrelated dogs. Diversity of the microbiota was also assessed by assignment of sequence reads into operational taxonomic units (OTUs at the level of 97% sequence identity. The OTU data were then subjected to rarefaction analysis and determination of Chao1 richness estimates. The data indicated that faecal microbiota comprised possibly as many as 500 to 1500 OTUs.

  10. Pyrosequencing the Canine Faecal Microbiota: Breadth and Depth of Biodiversity

    Science.gov (United States)

    Hand, Daniel; Wallis, Corrin; Colyer, Alison; Penn, Charles W.

    2013-01-01

    Mammalian intestinal microbiota remain poorly understood despite decades of interest and investigation by culture-based and other long-established methodologies. Using high-throughput sequencing technology we now report a detailed analysis of canine faecal microbiota. The study group of animals comprised eleven healthy adult miniature Schnauzer dogs of mixed sex and age, some closely related and all housed in kennel and pen accommodation on the same premises with similar feeding and exercise regimes. DNA was extracted from faecal specimens and subjected to PCR amplification of 16S rDNA, followed by sequencing of the 5′ region that included variable regions V1 and V2. Barcoded amplicons were sequenced by Roche-454 FLX high-throughput pyrosequencing. Sequences were assigned to taxa using the Ribosomal Database Project Bayesian classifier and revealed dominance of Fusobacterium and Bacteroidetes phyla. Differences between animals in the proportions of different taxa, among 10,000 reads per animal, were clear and not supportive of the concept of a “core microbiota”. Despite this variability in prominent genera, littermates were shown to have a more similar faecal microbial composition than unrelated dogs. Diversity of the microbiota was also assessed by assignment of sequence reads into operational taxonomic units (OTUs) at the level of 97% sequence identity. The OTU data were then subjected to rarefaction analysis and determination of Chao1 richness estimates. The data indicated that faecal microbiota comprised possibly as many as 500 to 1500 OTUs. PMID:23382835

  11. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Science.gov (United States)

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  12. Faecal microbiota transplantation: Where did it start? What have studies taught us? Where is it going?

    Directory of Open Access Journals (Sweden)

    Ryan M Chanyi

    2017-05-01

    Full Text Available The composition and activity of microorganisms in the gut, the microbiome, is emerging as an important factor to consider with regard to the treatment of many diseases. Dysbiosis of the normal community has been implicated in inflammatory bowel disease, Crohn’s disease, diabetes and, most notoriously, Clostridium difficile infection. In Canada, the leading treatment strategy for recalcitrant C. difficile infection is to receive faecal material which by nature is filled with microorganisms and their metabolites, from a healthy individual, known as a faecal microbiota transplantation. This influx of bacteria into the gut helps to restore the microbiota to a healthy state, preventing C. difficile from causing further disease. Much of what is known with respect to the microbiota and faecal microbiota transplantation comes from animal studies simulating the human disease. Although these models allow researchers to perform studies that would be difficult in humans, they do not always recapitulate the human microbiome. This makes the translation of these results to humans somewhat questionable. The purpose of this review is to analyse these animal models and discuss the advantages and the disadvantages of them in relation to human translation. By understanding some of the limitation of animal models, we will be better able to design and perform experiments of most relevance to human applications.

  13. Mediterranean diet and faecal microbiota: a transversal study.

    Science.gov (United States)

    Gutiérrez-Díaz, I; Fernández-Navarro, T; Sánchez, B; Margolles, A; González, S

    2016-05-18

    Despite the existing evidence on the impact of olive oil and red wine on the intestinal microbiota, the effect of the global Mediterranean Diet (MD) has not been sufficiently studied. We explored the association between the adherence to a Mediterranean dietary pattern, and its components, with faecal microbiota in a cohort of adults with non-declared pathology. This transversal study involved 31 adults without a previous diagnosis of cancer, autoimmune or digestive diseases. Based on the data obtained by means of an annual food frequency questionnaire (FFQ), and the information existing in the literature, a Mediterranean Diet Score (MDS) was calculated. Dietary fibre was obtained from Marlett et al. tables and Phenol-Explorer Database was used for phenolic compounds intake. Quantification of microbial groups was performed by Ion Torrent 16S rRNA gene-based analysis and quantification of short-chain fatty acids (SCFAs) was performed using gas chromatography-mass spectrometry (MS). MDS was associated with a higher abundance of Bacteroidetes (p = 0.001), Prevotellacea (p = 0.002) and Prevotella (p = 0.003) and a lower concentration of Firmicutes (p = 0.003) and Lachnospiraceae (p = 0.045). Also, in subjects with MDS ≥ 4, higher concentrations of faecal propionate (p = 0.034) and butyrate (p = 0.018) were detected. These results confirm the complexity of the diet-microbiota interrelationship.

  14. Comparative effectiveness of faecal microbiota transplant by route of administration.

    Science.gov (United States)

    Gundacker, N D; Tamhane, A; Walker, J B; Morrow, C D; Rodriguez, J M

    2017-08-01

    The optimal route of delivery for faecal microbiota transplant (FMT) is unknown. This observational single-centre study analysed the two-week cure rates for all patients who received FMT from 2013 to 2016 according to route of delivery. Overall, nasogastric delivery of FMT was less effective than lower endoscopic delivery. When patients were stratified by illness severity, nasogastric delivery achieved similar cure rates in healthier individuals, whereas lower endoscopic delivery was preferred for relatively ill individuals. Nasogastric delivery may be less effective than lower endoscopic delivery; however, when taking the cost, preparation and potential risk into account, this difference may not be clinically significant for patients with mild disease. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population

    Directory of Open Access Journals (Sweden)

    Balamurugan Ramadass

    2017-01-01

    Interpretation & conclusions: Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.

  16. Effects of obesity, energy restriction and neutering on the faecal microbiota of cats.

    Science.gov (United States)

    Fischer, Manuela M; Kessler, Alexandre M; Kieffer, Dorothy A; Knotts, Trina A; Kim, Kyoungmi; Wei, Alfreda; Ramsey, Jon J; Fascetti, Andrea J

    2017-10-01

    Surveys report that 25-57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. Lean neutered cats had a bacterial profile similar to obese rodents and humans, with a greater abundance (Pcats was due to a bloom in Peptostreptococcaceae. Obese cats had an 18 % reduction in fat mass after energy restriction (Pcats. Additional work is needed to understand how neutering, obesity and weight loss are related to changes in feline microbiota and how these microbial shifts affect host physiology.

  17. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population.

    Science.gov (United States)

    Ramadass, Balamurugan; Rani, B Sandya; Pugazhendhi, Srinivasan; John, K R; Ramakrishna, Balakrishnan S

    2017-02-01

    The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.

  18. Long-term monitoring of the human intestinal microbiota composition

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Heilig, G.H.J.; Tims, S.; Zoetendal, E.G.; Vos, de W.M.

    2013-01-01

    The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject-specific microbiota and show that this ecosystem is stable in short-term intervals (¿10 years). The faecal

  19. Integrated community profiling indicates long-term temporal stability of the predominant faecal microbiota in captive cheetahs.

    Directory of Open Access Journals (Sweden)

    Anne A M J Becker

    Full Text Available Understanding the symbiotic relationship between gut microbes and their animal host requires characterization of the core microbiota across populations and in time. Especially in captive populations of endangered wildlife species such as the cheetah (Acinonyx jubatus, this knowledge is a key element to enhance feeding strategies and reduce gastrointestinal disorders. In order to investigate the temporal stability of the intestinal microbiota in cheetahs under human care, we conducted a longitudinal study over a 3-year period with bimonthly faecal sampling of 5 cheetahs housed in two European zoos. For this purpose, an integrated 16S rRNA DGGE-clone library approach was used in combination with a series of real-time PCR assays. Our findings disclosed a stable faecal microbiota, beyond intestinal community variations that were detected between zoo sample sets or between animals. The core of this microbiota was dominated by members of Clostridium clusters I, XI and XIVa, with mean concentrations ranging from 7.5-9.2 log10 CFU/g faeces and with significant positive correlations between these clusters (P<0.05, and by Lactobacillaceae. Moving window analysis of DGGE profiles revealed 23.3-25.6% change between consecutive samples for four of the cheetahs. The fifth animal in the study suffered from intermediate episodes of vomiting and diarrhea during the monitoring period and exhibited remarkably more change (39.4%. This observation may reflect the temporary impact of perturbations such as the animal's compromised health, antibiotic administration or a combination thereof, which temporarily altered the relative proportions of Clostridium clusters I and XIVa. In conclusion, this first long-term monitoring study of the faecal microbiota in feline strict carnivores not only reveals a remarkable compositional stability of this ecosystem, but also shows a qualitative and quantitative similarity in a defined set of faecal bacterial lineages across the five

  20. Integrated Community Profiling Indicates Long-Term Temporal Stability of the Predominant Faecal Microbiota in Captive Cheetahs

    Science.gov (United States)

    Becker, Anne A. M. J.; Janssens, Geert P. J.; Snauwaert, Cindy; Hesta, Myriam; Huys, Geert

    2015-01-01

    Understanding the symbiotic relationship between gut microbes and their animal host requires characterization of the core microbiota across populations and in time. Especially in captive populations of endangered wildlife species such as the cheetah (Acinonyx jubatus), this knowledge is a key element to enhance feeding strategies and reduce gastrointestinal disorders. In order to investigate the temporal stability of the intestinal microbiota in cheetahs under human care, we conducted a longitudinal study over a 3-year period with bimonthly faecal sampling of 5 cheetahs housed in two European zoos. For this purpose, an integrated 16S rRNA DGGE-clone library approach was used in combination with a series of real-time PCR assays. Our findings disclosed a stable faecal microbiota, beyond intestinal community variations that were detected between zoo sample sets or between animals. The core of this microbiota was dominated by members of Clostridium clusters I, XI and XIVa, with mean concentrations ranging from 7.5-9.2 log10 CFU/g faeces and with significant positive correlations between these clusters (Pcheetahs. The fifth animal in the study suffered from intermediate episodes of vomiting and diarrhea during the monitoring period and exhibited remarkably more change (39.4%). This observation may reflect the temporary impact of perturbations such as the animal’s compromised health, antibiotic administration or a combination thereof, which temporarily altered the relative proportions of Clostridium clusters I and XIVa. In conclusion, this first long-term monitoring study of the faecal microbiota in feline strict carnivores not only reveals a remarkable compositional stability of this ecosystem, but also shows a qualitative and quantitative similarity in a defined set of faecal bacterial lineages across the five animals under study that may typify the core phylogenetic microbiome of cheetahs. PMID:25905625

  1. Antimicrobial resistance in the Bacteroides fragilis group in faecal microbiota from healthy Danish children

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Jensen, Betina Hebbelstrup; Petersen, Andreas Munk

    2017-01-01

    The Bacteroides fragilis group constitute a significant portion of the human gut microbiota and comprise a major proportion of anaerobic bacteria isolated in human infections. We established a baseline of antimicrobial susceptibility rates in the B. fragilis group in the intestinal tract of relat......The Bacteroides fragilis group constitute a significant portion of the human gut microbiota and comprise a major proportion of anaerobic bacteria isolated in human infections. We established a baseline of antimicrobial susceptibility rates in the B. fragilis group in the intestinal tract...... of relatively antibiotic-naive healthy Danish children. From 174 faecal samples collected from children attending day care, 359 non-duplicate isolates were screened for antimicrobial susceptibility. Of these, 0.0%, 1.9%, 5.0% and 21.2% of isolates were intermediate-susceptible or resistant to metronidazole......, meropenem, piperacillin/tazobactam and clindamycin, respectively. Eighteen additional studies reporting susceptibility rates in the B. fragilis group bacteria were identified by conducting a literature search. Heterogeneity among results from studies of B. fragilis group antimicrobial susceptibility rates...

  2. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation

    NARCIS (Netherlands)

    Fuentes Enriquez de Salamanca, Susana; Rossen, Noortje G.; Spek, van der Mirjam J.; Hartman, Jorn H.A.; Huuskonen, Laura; Korpela, Katri; Salojärvi, Jarkko; Aalvink, Steven; Vos, de Willem M.; Haens, D' Geert R.; Zoetendal, Erwin G.

    2017-01-01

    Faecal microbiota transplantation (FMT) may contribute towards disease remission in ulcerative colitis (UC), but it is unknown which factors determine long-term effect of treatment. Here, we aimed to identify bacterial signatures associated with sustained remission. To this end, samples from

  3. The potential beneficial role of faecal microbiota transplantation in diseases other than Clostridium difficile infection

    NARCIS (Netherlands)

    Singh, R.; Nieuwdorp, M.; ten Berge, I. J. M.; Bemelman, F. J.; Geerlings, S. E.

    2014-01-01

    This review gives an outline of the indications for faecal microbiota transplantation (FMT) for diseases other than Clostridium difficile (C. difficile) infection. The remarkable efficacy of FMT against C. difficile infection has already been demonstrated. The use of FMT for other diseases, such as

  4. Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection

    NARCIS (Netherlands)

    Jalanka, Jonna; Mattila, Eero; Jouhten, Hanne; Hartman, Jorn; Vos, de Willem M.; Arkkila, Perttu; Satokari, Reetta

    2016-01-01

    Background: Faecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection (rCDI). It restores the disrupted intestinal microbiota and subsequently suppresses C. difficile. The long-term stability of the intestinal microbiota and the recovery of

  5. The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects

    NARCIS (Netherlands)

    Rangel, I.; Sundin, J.; Fuentes Enriquez de Salamanca, S.; Repsilber, D.; Vos, de W.M.; Brummer, R.J.

    2015-01-01

    BACKGROUND: The faecal-associated microbiota is commonly seen as a surrogate of the mucosal-associated microbiota. However, previous studies indicate that they are different. Furthermore, analyses of the mucosal microbiota are commonly done after standard bowel cleansing, affecting the microbial

  6. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...

  7. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants.

    LENUS (Irish Health Repository)

    Hill, Cian J

    2016-05-01

    Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults.

  8. Microbiota and Human Health: characterization techniques and transference.

    Science.gov (United States)

    Del Campo-Moreno, Rosa; Alarcón-Cavero, Teresa; D'Auria, Giuseppe; Delgado-Palacio, Susana; Ferrer-Martínez, Manuel

    2018-04-01

    The human microbiota comprises all the microorganisms of our body, which can also be categorised as commensals, mutualists and pathogens according to their behaviour. Our knowledge of the human microbiota has considerably increased since the introduction of 16S rRNA next generation sequencing (16S rDNA gene). This technological breakthrough has seen a revolution in the knowledge of the microbiota composition and its implications in human health. This article details the different human bacterial ecosystems and the scientific evidence of their involvement in different diseases. The faecal microbiota transplant procedure, particularly used to treat recurrent diarrhoea caused by Clostridium difficile, and the methodological bases of the new molecular techniques used to characterise microbiota are also described. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Hansen, Max; Poulsen, Morten

    2006-01-01

    Background: A study was designed to elucidate effects of selected carbohydrates on composition and activity of the intestinal microbiota. Five groups of eight rats were fed a western type diet containing cornstarch (reference group), sucrose, potato starch, inulin (a long-chained fructan) or olig......Background: A study was designed to elucidate effects of selected carbohydrates on composition and activity of the intestinal microbiota. Five groups of eight rats were fed a western type diet containing cornstarch (reference group), sucrose, potato starch, inulin (a long-chained fructan...... of coliform bacteria in faeces. In the inulin and oligofructose groups, higher levels of butyrate and propionate, respectively, were measured. Principal Component Analysis of profiles of the faecal microbiota obtained by Denaturing Gradient Gel Electrophoresis (DGGE) of PCR amplified bacterial 16S rRNA genes...... and are not expected to reach the large intestine, the DGGE band patterns obtained indicated that these carbohydrates indeed affected the composition of bacteria in the large gut. Also the two fructans resulted in completely different molecular fingerprints of the faecal microbiota, indicating that even though...

  10. Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status

    NARCIS (Netherlands)

    Wacklin, P.; Tuimala, J.; Nikkilä, J.; Tims, S.; Mäkivuokko, H.; Alakulppi, N.; Laine, P.; Rajilic-Stojanovic, M.; Paulin, L.; Vos, de W.M.; Mättö, J.

    2014-01-01

    The human intestine is colonised with highly diverse and individually defined microbiota, which likely has an impact on the host well-being. Drivers of the individual variation in the microbiota compositions are multifactorial and include environmental, host and dietary factors. We studied the

  11. Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers.

    Science.gov (United States)

    Kleessen, Brigitta; Schwarz, Sandra; Boehm, Anke; Fuhrmann, H; Richter, A; Henle, T; Krueger, Monika

    2007-09-01

    A study was conducted to test the effects of Jerusalem artichoke inulin (JA) or chicory inulin (CH) in snack bars on composition of faecal microbiota, concentration of faecal SCFA, bowel habit and gastrointestinal symptoms. Forty-five volunteers participated in a double-blind, randomized, placebo-controlled, parallel-group study. At the end of a 7 d run-in period, subjects were randomly assigned to three groups of fifteen subjects each, consuming either snack bars with CH or JA, or snack bars without fructans (placebo); for 7 d (adaptation period), they ingested one snack bar per day (7.7 g fructan/d) and continued for 14 d with two snack bars per day. The composition of the microbiota was monitored weekly. The consumption of CH or JA increased counts of bifidobacteria (+1.2 log10 in 21 d) and reduced Bacteroides/Prevotella in number and the Clostridium histolyticum/C. lituseburense group in frequency at the end of intervention (P bakery products stimulates the growth of bifidobacteria and may contribute to the suppression of potential pathogenic bacteria.

  12. Deviations in human gut microbiota

    DEFF Research Database (Denmark)

    Casén, C; Vebø, H C; Sekelja, M

    2015-01-01

    microbiome profiling. AIM: To develop and validate a novel diagnostic test using faecal samples to profile the intestinal microbiota and identify and characterise dysbiosis. METHODS: Fifty-four DNA probes targeting ≥300 bacteria on different taxonomic levels were selected based on ability to distinguish......, and potential clinically relevant deviation in the microbiome from normobiosis. This model was tested in different samples from healthy volunteers and IBS and IBD patients (n = 330) to determine the ability to detect dysbiosis. RESULTS: Validation confirms dysbiosis was detected in 73% of IBS patients, 70...

  13. The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study.

    Science.gov (United States)

    Adamberg, K; Kolk, K; Jaagura, M; Vilu, R; Adamberg, S

    2018-01-29

    The metabolic activity of colon microbiota is specifically affected by fibres with various monomer compositions, degree of polymerisation and branching. The supply of a variety of dietary fibres assures the diversity of gut microbial communities considered important for the well-being of the host. The aim of this study was to compare the impact of different oligo- and polysaccharides (galacto- and fructooligosaccharides, resistant starch, levan, inulin, arabinogalactan, xylan, pectin and chitin), and a glycoprotein mucin on the growth and metabolism of faecal microbiota in vitro by using isothermal microcalorimetry (IMC). Faecal samples from healthy donors were incubated in a phosphate-buffered defined medium with or without supplementation of a single substrate. The generation of heat was followed on-line, microbiota composition (V3-V4 region of the 16S rRNA using Illumina MiSeq v2) and concentrations of metabolites (HPLC) were determined at the end of growth. The multiauxic power-time curves obtained were substrate-specific. More than 70% of all substrates except chitin were fermented by faecal microbiota with total heat generation of up to 8 J/ml. The final metabolite patterns were in accordance with the microbiota changes. For arabinogalactan, xylan and levan, the fibre-affected distribution of bacterial taxa showed clear similarities (e.g. increase of Bacteroides ovatus and decrease of Bifidobacterium adolescentis). The formation of propionic acid, an important colon metabolite, was enhanced by arabinogalactan, xylan and mucin but not by galacto- and fructooligosaccharides or inulin. Mucin fermentation resulted in acetate, propionate and butyrate production in ratios previously observed for faecal samples, indicating that mucins may serve as major substrates for colon microbial population. IMC combined with analytical methods was shown to be an effective method for screening the impact of specific dietary fibres on functional changes in faecal microbiota.

  14. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine; Brynskov, J.; Steenholdt, C.

    2012-01-01

    process of the gut mucosa. The aim of this study was to investigate the faecal microbiota in patients either with UC in remission (n=6) or with active disease (n=6), and in healthy controls (n=6). The composition of Gram-negative bacteria and Gram-positive bacteria was examined. Antigenic structures...... of Gram-negative bacteria such as lipopolysaccharides have been related to the inflammatory responses and pathogenesis of inflammatory bowel disease. Dice cluster analysis and principal component analysis of faecal microbiota profiles obtained by denaturing gradient gel electrophoresis and quantitative...... PCR, respectively, revealed that the composition of faecal bacteria from UC patients with active disease differed from the healthy controls and that this difference should be ascribed to Gram-negative bacteria. The analysis did not show any clear grouping of UC patients in remission. Even...

  15. Effect of high contents of dietary animal-derived protein or carbohydrates on canine faecal microbiota

    Directory of Open Access Journals (Sweden)

    Hang Ingrid

    2012-06-01

    Full Text Available Abstract Background Considerable evidence suggests that food impacts both the gastro-intestinal (GI function and the microbial ecology of the canine GI tract. The aim of this study was to evaluate the influence of high-carbohydrate (HC, high-protein (HP and dry commercial (DC diets on the canine colonic microbiota in Beagle dogs. Diets were allocated according to the Graeco-Latin square design. For this purpose, microbial DNA was isolated from faecal samples and separated by density gradient centrifugation, resulting in specific profiling based on the guanine-cytosine content (%G + C. In addition, 16 S rRNA gene amplicons were obtained from the most abundant %G + C peaks and analysed by sequence analysis, producing a total of 720 non-redundant sequences (240 sequences per diet. Results The DC diet sample showed high abundance of representatives of the orders Clostridiales, Lactobacillales, Coriobacteriales and Bacteroidales. Sequence diversity was highest for DC diet samples and included representatives of the orders Lactobacillales and Bacteroidales, which were not detected in samples from the HP and HC diets. These latter two diets also had reduced levels of representatives of the family Lachnospiraceae, specifically Clostridial cluster XIVa. The HC diet favoured representatives of the order Erysipelotrichales, more specifically the Clostridial cluster XVIII, while the HP diet favoured representatives of the order Fusobacteriales. Conclusions This study detected Coriobacteriales in dog faeces, possibly due to the non-selective nature of the %G + C profiling method used in combination with sequencing. Moreover, our work demonstrates that the effect of diet on faecal microbiota can be explained based on the metabolic properties of the detected microbial taxa.

  16. Faecal Microbiota of Forage-Fed Horses in New Zealand and the Population Dynamics of Microbial Communities following Dietary Change

    Science.gov (United States)

    Fernandes, Karlette A.; Kittelmann, Sandra; Rogers, Christopher W.; Gee, Erica K.; Bolwell, Charlotte F.; Bermingham, Emma N.; Thomas, David G.

    2014-01-01

    The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet (“Group A”; n = 6) or pasture (“Group B”; n = 6) for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson’s index of diversity >0.8), with differences between the two groups on Day 0 (Phorses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa) of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change. PMID:25383707

  17. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India.

    Science.gov (United States)

    Kabeerdoss, Jayakanthan; Devi, R Shobana; Mary, R Regina; Ramakrishna, Balakrishnan S

    2012-09-28

    The effect of vegetarian diets on faecal microbiota has been explored largely through culture-based techniques. The present study compared the faecal microbiota of vegetarian and omnivorous young women in southern India. Faecal samples were obtained from thirty-two lacto-vegetarian and twenty-four omnivorous young adult women from a similar social and economic background. Macronutrient intake and anthropometric data were collected. Faecal microbiota of interest was quantified by real-time PCR with SYBR Green using primers targeting 16S rRNA genes of groups, including: Clostridium coccoides group (Clostridium cluster XIVa), Roseburia spp.-Eubacterium rectale, Bacteroides--Prevotella group, Bifidobacterium genus, Lactobacillus group, Clostridium leptum group (Clostridium cluster IV), Faecalibacterium prausnitzii, Ruminococcus productus--C. coccoides, Butyrivibrio, Enterococcus species and Enterobacteriaceae. The groups were matched for age, socio-economic score and anthropometric indices. Intake of energy, complex carbohydrates and Ca were significantly higher in the omnivorous group. The faecal microbiota of the omnivorous group was enriched with Clostridium cluster XIVa bacteria, specifically Roseburia-E. rectale. The relative proportions of other microbial communities were similar in both groups. The butyryl-CoA CoA-transferase gene, associated with microbial butyrate production, was present in greater amounts in the faeces of omnivores, and the levels were highly correlated with Clostridium cluster XIVa and Roseburia-E. rectale abundance and to a lesser extent with Clostridium leptum and F. prausnitzii abundance and with crude fibre intake. Omnivores had an increased relative abundance of Clostridium cluster XIVa bacteria and butyryl-CoA CoA-transferase gene compared with vegetarians, but we were unable to identify the components of the diet responsible for this difference.

  18. A systematic review of studies on the faecal microbiota in anorexia nervosa: future research may need to include microbiota from the small intestine.

    Science.gov (United States)

    Schwensen, Hanna Ferløv; Kan, Carol; Treasure, Janet; Høiby, Niels; Sjögren, Magnus

    2018-03-14

    Anorexia nervosa (AN) is a poorly understood and often chronic condition. Deviations in the gut microbiota have been reported to influence the gut-brain axis in other disorders. Therefore, if present in AN, it may impact on symptoms and illness progression. A review of the gut microbiota studies in AN is presented. A literature search on PubMed yielded 27 articles; 14 were selected and based on relevance, 9 articles were included. The findings were interpreted in the larger context of preclinical research and clinical observations. 8 out of 9 included studies analysed microbiota from faeces samples, while the last analysed a protein in plasma produced by the gut. Two studies were longitudinal and included an intervention (i.e., weight restoration), five were cross-sectional, one was a case report, and the last was a case series consisting of three cases. Deviations in abundance, diversity, and microbial composition of the faecal microbiota in AN were found. There are currently only a few studies on the gut microbiota in AN, all done on faeces samples, and not all describe the microbiota at the species level extensively. The Archaeon Methanobrevibacter smithii was increased in participants with a BMI study and specifically in AN patients in three studies. Methanobrevibacter smithii may, if detected, be a benchmark biomarker for future studies. We propose that microbiota samples could also be collected from the small intestine, where a major exchange of nutrients takes place and where the microbiota may have a biological impact on AN.

  19. In vitro activities of inulin fermentation products to HCT-116 cells enhanced by the cooperation between exogenous strains and adult faecal microbiota.

    Science.gov (United States)

    Yin, Dan-Ting; Fu, Yu; Zhao, Xin-Huai

    2018-01-10

    Inulin was fermented by adult faecal microbiota and 10 exogenous strains for 24 or 48 h. The contents of acetate, propionate, butyrate and lactate were quantified in the fermented products, and the growth-inhibitory and apoptosis-inducing effects on a human colon cell line (HCT-116 cells) were assessed. Most of these strains increased contents of acetate, propionate and butyrate, and promoted lactate conversion. Correlation analysis suggested that butyrate and lactate in the fermentation products were positively and negatively correlated with the measured inhibition ratios (p inulin fermentation products with higher anti-colon cancer activity.

  20. Studies to distinguish between human and animal faecal pollution ...

    African Journals Online (AJOL)

    Human enteric viral infections are considered to be predominantly associated with human wastes, as opposed to animal wastes, and a distinction between these has benefits for water quality control and risk assessment. A variety of techniques have been described to distinguish between human and animal faecal pollution ...

  1. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  2. Cystic fibrosis transmembrane conductance regulator (CFTR allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Serena Schippa

    Full Text Available INTRODUCTION: In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF. CFTR mutations (F508del is the most common lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. METHODS: Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. RESULTS: Patients were classified by two different criteria: 1 presence/absence of F508del mutation; 2 disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum were reduced. CONCLUSIONS: This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.

  3. Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.

    Science.gov (United States)

    Schippa, Serena; Iebba, Valerio; Santangelo, Floriana; Gagliardi, Antonella; De Biase, Riccardo Valerio; Stamato, Antonella; Bertasi, Serenella; Lucarelli, Marco; Conte, Maria Pia; Quattrucci, Serena

    2013-01-01

    In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced. This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.

  4. Sewage reflects the distribution of human faecal Lachnospiraceae

    Science.gov (United States)

    McLellan, Sandra L.; Newton, Ryan J.; Vandewalle, Jessica L.; Shanks, Orin C.; Huse, Susan M.; Eren, A. Murat; Sogin, Mitchell L.

    2014-01-01

    Summary Faecal pollution contains a rich and diverse community of bacteria derived from animals and humans, many of which might serve as alternatives to the traditional enterococci and Escherichia coli faecal indicators. We used massively parallel sequencing (MPS) of the 16S rRNA gene to characterize microbial communities from wastewater treatment plant (WWTP) influent sewage from 12 cities geographically distributed across the USA. We examined members of the Clostridiales, which included the families Clostridiaceae, Lachnospiraceae and Ruminococcaceae for their potential as sewage indicators. Lachnospiraceae was one of the most abundant groups of faecal bacteria in sewage, and several Lachnospiraceae high-abundance sewage pyrotags occurred in at least 46 of 48 human faecal samples. Clone libraries targeting Clostridium coccoides (C. coccoides) in sewage samples demonstrated that Lachnospiraceae-annotated V6 pyrotags encompassed the previously reported C. coccoides group. We used oligotyping to profile the genus Blautia within Lachnospiraceae and found oligotypes comprised of 24 entropy components that showed patterns of host specificity. These findings suggest that indicators based on Blautia might have the capacity to discriminate between different faecal pollution sources. Development of source-specific alternative indicators would enhance water quality assessments, which leads to improved ecosystem health and reduced human health risk due to waterborne disease. PMID:23438335

  5. Faecal D/L lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Camille Mayeur

    Full Text Available Our objective was to understand the functional link between the composition of faecal microbiota and the clinical characteristics of adults with short bowel syndrome (SBS. Sixteen patients suffering from type II SBS were included in the study. They displayed a total oral intake of 2661±1005 Kcal/day with superior sugar absorption (83±12% than protein (42±13% or fat (39±26%. These patients displayed a marked dysbiosis in faecal microbiota, with a predominance of Lactobacillus/Leuconostoc group, while Clostridium and Bacteroides were under-represented. Each patient exhibited a diverse lactic acid bacteria composition (L. delbrueckii subsp. bulgaricus, L. crispatus, L. gasseri, L. johnsonii, L. reuteri, L. mucosae, displaying specific D and L-lactate production profiles in vitro. Of 16 patients, 9/16 (56% accumulated lactates in their faecal samples, from 2 to 110 mM of D-lactate and from 2 to 80 mM of L-lactate. The presence of lactates in faeces (56% patients was used to define the Lactate-accumulator group (LA, while absence of faecal lactates (44% patients defines the Non lactate-accumulator group (NLA. The LA group had a lower plasma HCO3(- concentration (17.1±2.8 mM than the NLA group (22.8±4.6 mM, indicating that LA and NLA groups are clinically relevant sub-types. Two patients, belonging to the LA group and who particularly accumulated faecal D-lactate, were at risk of D-encephalopathic reactions. Furthermore, all patients of the NLA group and those accumulating preferentially L isoform in the LA group had never developed D-acidosis. The D/L faecal lactate ratio seems to be the most relevant index for a higher D-encephalopathy risk, rather than D- and L-lactate faecal concentrations per se. Testing criteria that take into account HCO3(- value, total faecal lactate and the faecal D/L lactate ratio may become useful tools for identifying SBS patients at risk for D-encephalopathy.

  6. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change.

    Science.gov (United States)

    Fernandes, Karlette A; Kittelmann, Sandra; Rogers, Christopher W; Gee, Erica K; Bolwell, Charlotte F; Bermingham, Emma N; Thomas, David G

    2014-01-01

    The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet ("Group A"; n = 6) or pasture ("Group B"; n = 6) for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson's index of diversity > 0.8), with differences between the two groups on Day 0 (P 003), CF231 (family Paraprevotellaceae; P = 0.004), and currently unclassified members within the order Clostridiales (P = 0.003) and within the family Lachnospiraceae (P = 0.006). The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa) of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change.

  7. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change.

    Directory of Open Access Journals (Sweden)

    Karlette A Fernandes

    Full Text Available The effects of abrupt dietary transition on the faecal microbiota of forage-fed horses over a 3-week period were investigated. Yearling Thoroughbred fillies reared as a cohort were exclusively fed on either an ensiled conserved forage-grain diet ("Group A"; n = 6 or pasture ("Group B"; n = 6 for three weeks prior to the study. After the Day 0 faecal samples were collected, horses of Group A were abruptly transitioned to pasture. Both groups continued to graze similar pasture for three weeks, with faecal samples collected at 4-day intervals. DNA was isolated from the faeces and microbial 16S and 18S rRNA gene amplicons were generated and analysed by pyrosequencing. The faecal bacterial communities of both groups of horses were highly diverse (Simpson's index of diversity > 0.8, with differences between the two groups on Day 0 (P < 0.017 adjusted for multiple comparisons. There were differences between Groups A and B in the relative abundances of four genera, BF311 (family Bacteroidaceae; P = 0.003, CF231 (family Paraprevotellaceae; P = 0.004, and currently unclassified members within the order Clostridiales (P = 0.003 and within the family Lachnospiraceae (P = 0.006. The bacterial community of Group A horses became similar to Group B within four days of feeding on pasture, whereas the structure of the archaeal community remained constant pre- and post-dietary change. The community structure of the faecal microbiota (bacteria, archaea and ciliate protozoa of pasture-fed horses was also identified. The initial differences observed appeared to be linked to recent dietary history, with the bacterial community of the forage-fed horses responding rapidly to abrupt dietary change.

  8. Studies to distinguish between human and animal faecal pollution ...

    African Journals Online (AJOL)

    In this study the application of F-RNA coliphages and faecal sterols to distinction between human and animal excreta has .... in a shaking water bath (LABOTEC) at 100 r·min-1. .... calibration standards that were plotted using Microsoft Excel.

  9. The human microbiota associated with overall health.

    Science.gov (United States)

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  10. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort......, with 700 mother-infant pairs. The objectives were to perform a detailed examination of the mothers’ vaginal microbiota, describe the early composition and development of the microbiota in the airways of their infants, and determine whether the infants’ microbiota are affected by that of their mothers...

  11. The effect of enteral supplementation of specific neutral and acidic oligosaccharides on the faecal microbiota and intestinal microenvironment in preterm infants

    NARCIS (Netherlands)

    Westerbeek, E. A. M.; Slump, R. A.; Lafeber, H. N.; Knol, J.; Georgi, G.; Fetter, W. P. F.; van Elburg, R. M.

    2013-01-01

    We aimed to determine the effects of enteral supplementation of a prebiotic mixture of neutral and acidic oligosaccharides (scGOS/lcFOS/pAOS) on the faecal microbiota and microenvironment in preterm infants. Furthermore, we determined the influence of perinatal factors on the development of the

  12. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  13. A systematic review of studies on the faecal microbiota in anorexia nervosa

    DEFF Research Database (Denmark)

    Schwensen, Hanna Ferløv; Kan, Carol; Treasure, Janet

    2018-01-01

    PURPOSE: Anorexia nervosa (AN) is a poorly understood and often chronic condition. Deviations in the gut microbiota have been reported to influence the gut-brain axis in other disorders. Therefore, if present in AN, it may impact on symptoms and illness progression. A review of the gut microbiota...

  14. Detection of Campylobacter in human faecal samples in Fiji.

    Science.gov (United States)

    Devi, Aruna; Wilkinson, Jenny; Mahony, Timothy; Vanniasinkam, Thiru

    2014-01-01

    Data on campylobacteriosis in developed countries are well documented; in contrast, few studies on campylobacteriosis have been conducted in developing countries. This study was undertaken to test for Campylobacter in human faecal samples sent to the two major pathology laboratories in Fiji. A total of 408 diarrhoeal faecal samples were collected from the two major hospital pathology laboratories in Central Fiji (Suva) and Western Fiji (Lautoka) between December 2012 and February 2013 and from June to July 2013. Samples were analysed for the presence of Campylobacter using polymerase chain reaction (PCR) based methods. Campylobacter was detected in 241/408 (59.1%) of samples tested using PCR. Samples from children aged less than five accounted for 21.6% of positive cases. Campylobacter was detected in 59.1% of diarrhoeal samples collected from the two main laboratories in Fiji. A high proportion of children under five years with Campylobacter has been reported in other countries and could be due to parents being more likely to seek medical attention. Further studies are required to confirm the species of Campylobacter that are predominantly associated with gastroenteritis in Fiji.

  15. Effects of feeding polydextrose on faecal characteristics, microbiota and fermentative end products in healthy adult dogs.

    Science.gov (United States)

    Beloshapka, Alison N; Wolff, Amanda K; Swanson, Kelly S

    2012-08-01

    Polydextrose is a potential prebiotic, but has not been well tested in dogs. Thus, the objective of the present study was to determine the effects of polydextrose on faecal characteristics, microbial populations and fermentative end products in healthy adult dogs. A total of eight adult hound dogs (3.5 (sem 0.5) years; 20 (sem 0.5) kg) were randomly allotted to one of four test diets containing the following concentrations of polydextrose: (1) 0 % (control); (2) 0.5 %; (3) 1.0 %; or (4) 1.5 %. A Latin square design was used, with each treatment period lasting 14 d (days 0-10 adaptation; days 11-14 fresh and total faecal collection). All dogs were fed to maintain body weight. Data were evaluated for linear and quadratic effects using SAS software. Although apparent total tract DM digestibility was unaffected, total tract crude protein digestibility tended to decrease (P dogs.

  16. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  17. Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus

    NARCIS (Netherlands)

    Udayappan, S. D.; Hartstra, A. V.; Dallinga-Thie, G. M.; Nieuwdorp, M.

    2014-01-01

    The prevalence of obesity and diabetes mellitus type 2 is increasing rapidly around the globe. Recent insights have generated an entirely new perspective that the intestinal microbiota may play a significant role in the development of these metabolic disorders. Alterations in the intestinal

  18. Influence of fasting during moult on the faecal microbiota of penguins.

    Science.gov (United States)

    Dewar, Meagan L; Arnould, John P Y; Krause, Lutz; Trathan, Phil; Dann, Peter; Smith, Stuart C

    2014-01-01

    Many seabirds including penguins are adapted to long periods of fasting, particularly during parts of the reproductive cycle and during moult. However, the influence of fasting on the gastrointestinal (GI) microbiota has not been investigated in seabirds. Therefore, the present study aimed to examine the microbial composition and diversity of the GI microbiota of fasting little (Eudyptula minor) and king penguins (Aptenodytes patagonicus) penguins during early and late moult. The results from this study indicated that there was little change in the abundance of the major phyla during moult, except for a significant increase in the level of Proteobacteria in king penguins. In king penguins the abundance of Fusobacteria increases from 1.73% during early moult to 33.6% by late moult, whilst the abundance of Proteobacteria (35.7% to 17.2%) and Bacteroidetes (19.5% to 11%) decrease from early to late moult. In little penguins, a decrease in the abundances of Firmicutes (44% to 29%) and an increase in the abundance of Bacteroidetes (11% to 20%) were observed from early to late moult respectively. The results from this study indicate that the microbial composition of both king and little penguins alters during fasting. However, it appears that the microbial composition of king penguins is more affected by fasting than little penguins with the length of fast the most probable cause for this difference.

  19. Influence of fasting during moult on the faecal microbiota of penguins.

    Directory of Open Access Journals (Sweden)

    Meagan L Dewar

    Full Text Available Many seabirds including penguins are adapted to long periods of fasting, particularly during parts of the reproductive cycle and during moult. However, the influence of fasting on the gastrointestinal (GI microbiota has not been investigated in seabirds. Therefore, the present study aimed to examine the microbial composition and diversity of the GI microbiota of fasting little (Eudyptula minor and king penguins (Aptenodytes patagonicus penguins during early and late moult. The results from this study indicated that there was little change in the abundance of the major phyla during moult, except for a significant increase in the level of Proteobacteria in king penguins. In king penguins the abundance of Fusobacteria increases from 1.73% during early moult to 33.6% by late moult, whilst the abundance of Proteobacteria (35.7% to 17.2% and Bacteroidetes (19.5% to 11% decrease from early to late moult. In little penguins, a decrease in the abundances of Firmicutes (44% to 29% and an increase in the abundance of Bacteroidetes (11% to 20% were observed from early to late moult respectively. The results from this study indicate that the microbial composition of both king and little penguins alters during fasting. However, it appears that the microbial composition of king penguins is more affected by fasting than little penguins with the length of fast the most probable cause for this difference.

  20. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  1. Flavanol monomer-induced changes to the human faecal microflora.

    Science.gov (United States)

    Tzounis, Xenofon; Vulevic, Jelena; Kuhnle, Gunter G C; George, Trevor; Leonczak, Jadwiga; Gibson, Glenn R; Kwik-Uribe, Catherine; Spencer, Jeremy P E

    2008-04-01

    We have investigated the bacterial-dependent metabolism of ( - )-epicatechin and (+)-catechin using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal region of the human large intestine. Incubation of ( - )-epicatechin or (+)-catechin (150 mg/l or 1000 mg/l) with faecal bacteria, led to the generation of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, 5-phenyl-gamma-valerolactone and phenylpropionic acid. However, the formation of these metabolites from (+)-catechin required its initial conversion to (+)-epicatechin. The metabolism of both flavanols occurred in the presence of favourable carbon sources, notably sucrose and the prebiotic fructo-oligosaccharides, indicating that bacterial utilisation of flavanols also occurs when preferential energy sources are available. (+)-Catechin incubation affected the growth of select microflora, resulting in a statistically significant increase in the growth of the Clostridium coccoides-Eubacterium rectale group, Bifidobacterium spp. and Escherichia coli, as well as a significant inhibitory effect on the growth of the C. histolyticum group. In contrast, the effect of ( - )-epicatechin was less profound, only significantly increasing the growth of the C. coccoides-Eubacterium rectale group. These potential prebiotic effects for both (+)-catechin and ( - )-epicatechin were most notable at the lower concentration of 150 mg/l. As both ( - )-epicatechin and (+)-catechin were converted to the same metabolites, the more dramatic change in the growth of distinct microfloral populations produced by (+)-catechin incubation may be linked to the bacterial conversion of (+)-catechin to (+)-epicatechin. Together these data suggest that the consumption of flavanol-rich foods may support gut health through their ability to exert prebiotic actions.

  2. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  3. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition.

    Science.gov (United States)

    Beards, Emma; Tuohy, Kieran; Gibson, Glenn

    2010-09-01

    Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22.8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0.00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0.002 and 0.006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45.6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.

  4. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    Science.gov (United States)

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

  5. We Are Never Alone: Living with the Human Microbiota

    OpenAIRE

    da Silva, Gabriela Jorge; Domingues, Sara

    2017-01-01

    The human body is inhabited by millions of tiny living organisms, which, all together, are called the human microbiota. Bacteria are microbes found on the skin, in the nose, mouth, and especially in the gut. We acquire these bacteria during birth and the first years of life, and they live with us throughout our lives. The human microbiota is involved in healthy growth, in protecting the body from invaders, in helping digestion, and in regulating moods. Some changes in the microbiota may occur...

  6. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS and inulin both stimulated bifidobacteria compared to other treatments (p<0.05. Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05. IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05. To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters.

  7. Unexpected persistence of extended-spectrum β-lactamase-producing Enterobacteriaceae in the faecal microbiota of hospitalised patients treated with imipenem.

    Science.gov (United States)

    Grall, N; Lazarevic, V; Gaïa, N; Couffignal, C; Laouénan, C; Ilic-Habensus, E; Wieder, I; Plesiat, P; Angebault, C; Bougnoux, M E; Armand-Lefevre, L; Andremont, A; Duval, X; Schrenzel, J

    2017-07-01

    Imipenem is active against extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) but favours the intestinal emergence of resistance. The effects of imipenem on intestinal microbiota have been studied using culture-based techniques. In this study, the effects were investigated in patients using culture and metagenomic techniques. Seventeen hospitalised adults receiving imipenem were included in a multicentre study (NCT01703299, http://www.clinicaltrials.gov). Most patients had a history of antibiotic use and/or hospitalisation. Stools were collected before, during and after imipenem treatment. Bacterial and fungal colonisation was assessed by culture, and microbiota changes were assessed using metagenomics. Unexpectedly, high colonisation rates by imipenem-susceptible ESBL-E before treatment (70.6%) remained stable over time, suggesting that imipenem intestinal concentrations were very low. Carriage rates of carbapenem-resistant Gram-negative bacilli (0-25.0%) were also stable over time, whereas those of yeasts (64.7% before treatment) peaked at 76.5% during treatment and decreased thereafter. However, these trends were not statistically significant. Yeasts included highly diverse colonising Candida spp. Metagenomics showed no global effect of imipenem on the bacterial taxonomic profiles at the sequencing depth used but demonstrated specific changes in the microbiota not detected with culture, attributed to factors other than imipenem, including sampling site or treatment with other antibiotics. In conclusion, culture and metagenomics were highly complementary in characterising the faecal microbiota of patients. The changes observed during imipenem treatment were unexpectedly limited, possibly because the microbiota was already disturbed by previous antibiotic exposure or hospitalisation. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. [Microbiota and representations of the human body].

    Science.gov (United States)

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body. © 2016 médecine/sciences – Inserm.

  9. Antibiotics and specialized metabolites from the human microbiota.

    Science.gov (United States)

    Mousa, Walaa K; Athar, Bilal; Merwin, Nishanth J; Magarvey, Nathan A

    2017-11-15

    Covering: 2000 to 2017Decades of research on human microbiota have revealed much of their taxonomic diversity and established their direct link to health and disease. However, the breadth of bioactive natural products secreted by our microbial partners remains unknown. Of particular interest are antibiotics produced by our microbiota to ward off invasive pathogens. Members of the human microbiota exclusively produce evolved small molecules with selective antimicrobial activity against human pathogens. Herein, we expand upon the current knowledge concerning antibiotics derived from human microbiota and their distribution across body sites. We analyze, using our in-house chem-bioinformatic tools and natural products database, the encoded antibiotic potential of the human microbiome. This compilation of information may create a foundation for the continued exploration of this intriguing resource of chemical diversity and expose challenges and future perspectives to accelerate the discovery rate of small molecules from the human microbiota.

  10. Process energetics for the hydrothermal carbonisation of human faecal wastes

    International Nuclear Information System (INIS)

    Danso-Boateng, E.; Holdich, R.G.; Martin, S.J.; Shama, G.; Wheatley, A.D.

    2015-01-01

    Highlights: • Impact of variations to scale of operation and feedstock solids content considered. • A framework for estimating energy budget of a waste treatment system is presented. • Combustion of by-product CH_4 renders the process self-sustaining in energy terms. - Abstract: Hydrothermal carbonisation (HTC) has the capability to convert wet biomass such as sewage sludge to a lignite-like renewable solid fuel of high calorific value. However, to date assessment of the energy efficiency of the HTC process has not been fully investigated. In this work, mass and energy balances of semi-continuous HTC of faecal waste conducted at 200 °C and at a reaction time of 30 min are presented. This analysis is based on recovering steam from the process as well as energy from the solid fuel (hydrochar) and methane from digestion of the liquid product. The effect of the feedstock solids content and the quantity of feed on the mass and energy balance were investigated. The heat of reaction was measured at 200 °C for 4 h using wet faecal sludge, and the higher heating value was determined for the hydrochar. The results indicated that preheating the feed to 100 °C using heat recovered from the process would significantly reduce the energy input to the reactor by about 59%, and decreased the heat loss from the reactor by between 50% and 60%. For feedstocks containing 15–25% solids (for all feed rates), after the process is in operation, energy recycled from the flashing off of steam and combustion of the hydrochar and would be sufficient for preheating the feed, operating the reactor and drying the wet hydrochar without the need for any external sources of energy. Alternatively, for a feedstock containing 25% solids for all feed rates, energy recycled from the flashing off of steam and combustion of the methane provides sufficient energy to operate the entire process with an excess energy of about 19–21% which could be used for other purposes.

  11. Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota.

    Science.gov (United States)

    Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre

    2007-11-01

    Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial.

  12. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures.

    Science.gov (United States)

    Thapa, Dinesh; Louis, Petra; Losa, Riccardo; Zweifel, Béatrice; Wallace, R John

    2015-02-01

    A static batch culture system inoculated with human faeces was used to determine the influence of essential oil compounds (EOCs) on mixed faecal microbiota. Bacteria were quantified using quantitative PCR of 16S rRNA genes. Incubation for 24 h of diluted faeces from six individuals caused enrichment of Bifidobacterium spp., but proportions of other major groups were unaffected. Thymol and geraniol at 500 p.p.m. suppressed total bacteria, resulting in minimal fermentation. Thymol at 100 p.p.m. had no effect, nor did eugenol or nerolidol at 100 or 500 p.p.m. except for a slight suppression of Eubacterium hallii. Methyl isoeugenol at 100 or 500 p.p.m. suppressed the growth of total bacteria, accompanied by a large fall in the molar proportion of propionate formed. The relative abundance of Faecalibacterium prausnitzii was unaffected except with thymol at 500 p.p.m. The ability of EOCs to control numbers of the pathogen Clostridium difficile was investigated in a separate experiment, in which the faecal suspensions were amended by the addition of pure culture of C. difficile. Numbers of C. difficile were suppressed by thymol and methyl isoeugenol at 500 p.p.m. and to a lesser extent at 100 p.p.m. Eugenol and geraniol gave rather similar suppression of C. difficile numbers at both 100 and 500 p.p.m. Nerolidol had no significant effect. It was concluded from these and previous pure-culture experiments that thymol and geraniol at around 100 p.p.m. could be effective in suppressing pathogens in the small intestine, with no concern for beneficial commensal colonic bacteria in the distal gut. © 2015 The Authors.

  13. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children

    OpenAIRE

    Smith-Brown, P.; Morrison, M.; Krause, L.; Davies, P. S. W.

    2016-01-01

    The first 1000 days (conception to 24 months) is when gut microbiota composition and eating patterns are established, and a critical period influencing lifelong health. The aim of this study is to examine the associations between food intakes and microbiota composition at the end of this period. Diet was quantified for 37 well-nourished Australian children aged between 2 to 3 years by using a food frequency questionnaire and 24?hr recalls. Both dairy and plant-based (fruit, vegetables, soy, p...

  14. Human Gut Microbiota: Toward an Ecology of Disease

    Directory of Open Access Journals (Sweden)

    Susannah Selber-Hnatiw

    2017-07-01

    Full Text Available Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  15. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  16. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.

    Science.gov (United States)

    Ukhanova, Maria; Wang, Xiaoyu; Baer, David J; Novotny, Janet A; Fredborg, Marlene; Mai, Volker

    2014-06-28

    The modification of microbiota composition to a 'beneficial' one is a promising approach for improving intestinal as well as overall health. Natural fibres and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for the maintenance of healthy and diverse microbiota. The effects of increased consumption of specific nuts, which are rich in fibre as well as various phytonutrients, on human gut microbiota composition have not been investigated to date. The objective of the present study was to determine the effects of almond and pistachio consumption on human gut microbiota composition. We characterised microbiota in faecal samples collected from volunteers in two separate randomised, controlled, cross-over feeding studies (n 18 for the almond feeding study and n 16 for the pistachio feeding study) with 0, 1·5 or 3 servings/d of the respective nuts for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various operational taxonomic units that appeared to be affected by nut consumption. The effect of pistachio consumption on gut microbiota composition was much stronger than that of almond consumption and included an increase in the number of potentially beneficial butyrate-producing bacteria. Although the numbers of bifidobacteria were not affected by the consumption of either nut, pistachio consumption appeared to decrease the number of lactic acid bacteria (Ppistachios appears to be an effective means of modifying gut microbiota composition.

  17. Effect of diet on the human gut microbiota

    DEFF Research Database (Denmark)

    Bahl, Martin Iain

    The gut microbiota plays an important role for humans in both health and disease. It is therefore important to understand how and to what extent choice of diet may influence the microbial community and the effects this has on the host. The variation in the normal human gut microbiota may however...... impede the discovery of correlations between dietary changes and compositional shifts in the microbiota by masking such effects. Although specific functional food ingredients, such as prebiotics, are known to have measurable effects on e.g. abundance of bifidobacteria, it is nevertheless clear...... that induced shifts in gut microbiota show large inter-individual variations. It thus seems plausible that knowing the microbiota composition could facilitate predictions as to how the community will react to dietary interventions thus moving towards some degree of personalised dietary recommendations. During...

  18. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children.

    Science.gov (United States)

    Smith-Brown, P; Morrison, M; Krause, L; Davies, P S W

    2016-10-03

    The first 1000 days (conception to 24 months) is when gut microbiota composition and eating patterns are established, and a critical period influencing lifelong health. The aim of this study is to examine the associations between food intakes and microbiota composition at the end of this period. Diet was quantified for 37 well-nourished Australian children aged between 2 to 3 years by using a food frequency questionnaire and 24 hr recalls. Both dairy and plant-based (fruit, vegetables, soy, pulses and nuts) food intakes were associated with distinct microbiota profiles. Dairy intake was positively associated with the Firmicutes:Bacteroidetes ratio, and in particular Erysipelatoclostridium spp., but negatively associated with species richness and diversity. Vegetable intake was positively associated with the relative abundance of the Lachnospira genus, while soy, pulse and nut intake was positively associated with the relative abundance of bacteria related to Bacteroides xylanisolvens. Fruit intake, especially apples and pears, were negatively associated with the relative abundance of bacteria related to Ruminococcus gnavus. In this cohort of young children dairy and plant based food intakes were found to be associated with altered microbiota composition. Further exploration is needed to elucidate the effect of these dietary and microbial differences on host phenotype.

  19. Systematic Review of the Human Milk Microbiota.

    Science.gov (United States)

    Fitzstevens, John L; Smith, Kelsey C; Hagadorn, James I; Caimano, Melissa J; Matson, Adam P; Brownell, Elizabeth A

    2017-06-01

    Human milk-associated microbes are among the first to colonize the infant gut and may help to shape both short- and long-term infant health outcomes. We performed a systematic review to characterize the microbiota of human milk. Relevant primary studies were identified through a comprehensive search of PubMed (January 1, 1964, to June 31, 2015). Included studies were conducted among healthy mothers, were written in English, identified bacteria in human milk, used culture-independent methods, and reported primary results at the genus level. Twelve studies satisfied inclusion criteria. All varied in geographic location and human milk collection/storage/analytic methods. Streptococcus was identified in human milk samples in 11 studies (91.6%) and Staphylococcus in 10 (83.3%); both were predominant genera in 6 (50%). Eight of the 12 studies used conventional ribosomal RNA (rRNA) polymerase chain reaction (PCR), of which 7 (87.5%) identified Streptococcus and 6 (80%) identified Staphylococcus as present. Of these 8 studies, 2 (25%) identified Streptococcus and Staphylococcus as predominant genera. Four of the 12 studies used next-generation sequencing (NGS), all of which identified Streptococcus and Staphylococcus as present and predominant genera. Relative to conventional rRNA PCR, NGS is a more sensitive method to identify/quantify bacterial genera in human milk, suggesting the predominance of Streptococcus and Staphylococcus may be underestimated in studies using older methods. These genera, Streptococcus and Staphylococcus, may be universally predominant in human milk, regardless of differences in geographic location or analytic methods. Primary studies designed to evaluate the effect of these 2 genera on short- and long-term infant outcomes are warranted.

  20. The State of Human Faecal Matter Managemnt in Wa, Ghana

    African Journals Online (AJOL)

    Accordingly, the TPB contend that human behavioural intention or the behaviour is guided by ... from documented sources such as books and published articles from journals for purposes ...... Royal Beach Hotel, Accra, Ghana, April 2008, pp.

  1. Metaproteomic analysis of human gut microbiota: where are we heading?

    Science.gov (United States)

    Lee, Pey Yee; Chin, Siok-Fong; Neoh, Hui-Min; Jamal, Rahman

    2017-06-12

    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.

  2. Effects of antibiotics on human microbiota and subsequent disease.

    Science.gov (United States)

    Keeney, Kristie M; Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Finlay, B Brett

    2014-01-01

    Although antibiotics have significantly improved human health and life expectancy, their disruption of the existing microbiota has been linked to significant side effects such as antibiotic-associated diarrhea, pseudomembranous colitis, and increased susceptibility to subsequent disease. By using antibiotics to break colonization resistance against Clostridium, Salmonella, and Citrobacter species, researchers are now exploring mechanisms for microbiota-mediated modulation against pathogenic infection, revealing potential roles for different phyla and family members as well as microbiota-liberated sugars, hormones, and short-chain fatty acids in regulating pathogenicity. Furthermore, connections are now being made between microbiota dysbiosis and a variety of different diseases such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, atopy, and obesity. Future advances in the rapidly developing field of microbial bioinformatics will enable researchers to further characterize the mechanisms of microbiota modulation of disease and potentially identify novel therapeutics against disease.

  3. Antibiotic Resistance Escherichia coli isolated from Faecal of Healthy Human

    OpenAIRE

    , S. Budiarti

    2011-01-01

    The objective of this research was to examine antibiotic resistant of Escherechia coli as intestinal normal şora, isolated from healthy human. The samples were collected from faeces of new born children, children under 3 and 5years-old, and human adult. Bacteria were isolated at Eosin Methylen Blue solid media followed by biochemistry reaction for physiological E.coli identiŞcation. Antibiotic resistant test was carried out using Kirby-Bauer method. The result showed that 95 % bacterial strai...

  4. Microbiome changes associated with sustained eradication of Clostridium difficile after single faecal microbiota transplantation in children with and without inflammatory bowel disease.

    Science.gov (United States)

    Hourigan, S K; Chen, L A; Grigoryan, Z; Laroche, G; Weidner, M; Sears, C L; Oliva-Hemker, M

    2015-09-01

    Little data are available regarding the effectiveness and associated microbiome changes of faecal microbiota transplantation (FMT) for Clostridium difficile infection (CDI) in children, especially in those with inflammatory bowel disease (IBD) with presumed underlying dysbiosis. To investigate C. difficile eradication and microbiome changes with FMT in children with and without IBD. Children with a history of recurrent CDI (≥3 recurrences) underwent FMT via colonoscopy. Stool samples were collected pre-FMT and post-FMT at 2-10 weeks, 10-20 weeks and 6 months. The v4 hypervariable region of the 16S rRNA gene was sequenced. C. difficile toxin B gene polymerase chain reaction was performed. Eight children underwent FMT for CDI; five had IBD. All had resolution of CDI symptoms. All tested had eradication of C. difficile at 10-20 weeks and 6 months post-FMT. Pre-FMT patient samples had significantly decreased bacterial richness compared with donors (P = 0.01), in those with IBD (P = 0.02) and without IBD (P = 0.01). Post-FMT, bacterial diversity in patients increased. Six months post-FMT, there was no significant difference between bacterial diversity of donors and patients without IBD; however, bacterial diversity in those with IBD returned to pre-FMT baseline. Microbiome composition at 6 months in IBD-negative patients more closely approximated donor composition compared to IBD-positive patients. FMT gives sustained C. difficile eradication in children with and without IBD. FMT-restored diversity is sustained in children without IBD. In those with IBD, bacterial diversity returns to pre-FMT baseline by 6 months, suggesting IBD host-related mechanisms modify faecal microbiome diversity. © 2015 John Wiley & Sons Ltd.

  5. New Insights into the Evolution of the Human Diet from Faecal Biomarker Analysis in Wild Chimpanzee and Gorilla Faeces.

    Directory of Open Access Journals (Sweden)

    Ainara Sistiaga

    Full Text Available Our understanding of early human diets is based on reconstructed biomechanics of hominin jaws, bone and teeth isotopic data, tooth wear patterns, lithic, taphonomic and zooarchaeological data, which do not provide information about the relative amounts of different types of foods that contributed most to early human diets. Faecal biomarkers are proving to be a valuable tool in identifying relative proportions of plant and animal tissues in Palaeolithic diets. A limiting factor in the application of the faecal biomarker approach is the striking absence of data related to the occurrence of faecal biomarkers in non-human primate faeces. In this study we explored the nature and proportions of sterols and stanols excreted by our closest living relatives. This investigation reports the first faecal biomarker data for wild chimpanzee (Pan troglodytes and mountain gorilla (Gorilla beringei. Our results suggest that the chemometric analysis of faecal biomarkers is a useful tool for distinguishing between NHP and human faecal matter, and hence, it could provide information for palaeodietary research and early human diets.

  6. New Insights into the Evolution of the Human Diet from Faecal Biomarker Analysis in Wild Chimpanzee and Gorilla Faeces.

    Science.gov (United States)

    Sistiaga, Ainara; Wrangham, Richard; Rothman, Jessica M; Summons, Roger E

    2015-01-01

    Our understanding of early human diets is based on reconstructed biomechanics of hominin jaws, bone and teeth isotopic data, tooth wear patterns, lithic, taphonomic and zooarchaeological data, which do not provide information about the relative amounts of different types of foods that contributed most to early human diets. Faecal biomarkers are proving to be a valuable tool in identifying relative proportions of plant and animal tissues in Palaeolithic diets. A limiting factor in the application of the faecal biomarker approach is the striking absence of data related to the occurrence of faecal biomarkers in non-human primate faeces. In this study we explored the nature and proportions of sterols and stanols excreted by our closest living relatives. This investigation reports the first faecal biomarker data for wild chimpanzee (Pan troglodytes) and mountain gorilla (Gorilla beringei). Our results suggest that the chemometric analysis of faecal biomarkers is a useful tool for distinguishing between NHP and human faecal matter, and hence, it could provide information for palaeodietary research and early human diets.

  7. Development of the human infant intestinal microbiota.

    Science.gov (United States)

    Palmer, Chana; Bik, Elisabeth M; DiGiulio, Daniel B; Relman, David A; Brown, Patrick O

    2007-07-01

    Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  8. Development of the human infant intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2007-07-01

    Full Text Available Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  9. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  10. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study.

    Science.gov (United States)

    Eid, Noura; Osmanova, Hristina; Natchez, Cecile; Walton, Gemma; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2015-10-28

    The reported inverse association between the intake of plant-based foods and a reduction in the prevalence of colorectal cancer may be partly mediated by interactions between insoluble fibre and (poly)phenols and the intestinal microbiota. In the present study, we assessed the impact of palm date consumption, rich in both polyphenols and fibre, on the growth of colonic microbiota and markers of colon cancer risk in a randomised, controlled, cross-over human intervention study. A total of twenty-two healthy human volunteers were randomly assigned to either a control group (maltodextrin-dextrose, 37·1 g) or an intervention group (seven dates, approximately 50 g). Each arm was of 21 d duration and was separated by a 14-d washout period in a cross-over manner. Changes in the growth of microbiota were assessed by fluorescence in situ hybridisation analysis, whereas SCFA levels were assessed using HPLC. Further, ammonia concentrations, faecal water genotoxicity and anti-proliferation ability were also assessed using different assays, which included cell work and the Comet assay. Accordingly, dietary intakes, anthropometric measurements and bowel movement assessment were also carried out. Although the consumption of dates did not induce significant changes in the growth of select bacterial groups or SCFA, there were significant increases in bowel movements and stool frequency (Pfruit intake significantly reduced genotoxicity in human faecal water relative to control (Pfruit may reduce colon cancer risk without inducing changes in the microbiota.

  11. The human gut microbiota and virome: Potential therapeutic implications.

    Science.gov (United States)

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial.

    Science.gov (United States)

    Drabińska, Natalia; Jarocka-Cyrta, Elżbieta; Markiewicz, Lidia Hanna; Krupa-Kozak, Urszula

    2018-02-12

    Celiac disease (CD) is associated with intestinal microbiota alterations. The administration of prebiotics could be a promising method of restoring gut homeostasis in CD. The aim of this study was to evaluate the effect of prolonged oligofructose-enriched inulin (Synergy 1) administration on the characteristics and metabolism of intestinal microbiota in CD children following a gluten-free diet (GFD). Thirty-four paediatric CD patients (mean age 10 years; 62% females) on a GFD were randomized into two experimental groups receiving Synergy 1 (10 g/day) or placebo (maltodextrin; 7 g/day) for 3 months. The quantitative gut microbiota characteristics and short-chain fatty acids (SCFAs) concentration were analysed. In addition, side effects were monitored. Generally, the administration of Synergy 1 in a GFD did not cause any side effects. After the intervention period, Bifidobacterium count increased significantly ( p < 0.05) in the Synergy 1 group. Moreover, an increase in faecal acetate and butyrate levels was observed in the prebiotic group. Consequently, total SCFA levels were 31% higher than at the baseline. The presented trial shows that Synergy 1 applied as a supplement of a GFD had a moderate effect on the qualitative characteristics of faecal microbiota, whereas it stimulated the bacterial metabolite production in CD children.

  13. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    Natalia Drabińska

    2018-02-01

    Full Text Available Celiac disease (CD is associated with intestinal microbiota alterations. The administration of prebiotics could be a promising method of restoring gut homeostasis in CD. The aim of this study was to evaluate the effect of prolonged oligofructose-enriched inulin (Synergy 1 administration on the characteristics and metabolism of intestinal microbiota in CD children following a gluten-free diet (GFD. Thirty-four paediatric CD patients (mean age 10 years; 62% females on a GFD were randomized into two experimental groups receiving Synergy 1 (10 g/day or placebo (maltodextrin; 7 g/day for 3 months. The quantitative gut microbiota characteristics and short-chain fatty acids (SCFAs concentration were analysed. In addition, side effects were monitored. Generally, the administration of Synergy 1 in a GFD did not cause any side effects. After the intervention period, Bifidobacterium count increased significantly (p < 0.05 in the Synergy 1 group. Moreover, an increase in faecal acetate and butyrate levels was observed in the prebiotic group. Consequently, total SCFA levels were 31% higher than at the baseline. The presented trial shows that Synergy 1 applied as a supplement of a GFD had a moderate effect on the qualitative characteristics of faecal microbiota, whereas it stimulated the bacterial metabolite production in CD children.

  14. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers.

    Science.gov (United States)

    Kareem, Karwan Yaseen; Loh, Teck Chwen; Foo, Hooi Ling; Akit, Henny; Samsudin, Anjas Asmara

    2016-08-05

    Postbiotics (metabolic products by lactic acid bacteria) and prebiotics have been established as substitute to antibiotics in order to enhance immunity and growth performance in broiler chickens. Nonetheless, insufficient information is available on the effects of postbiotics and prebiotics combination on growth performance, faecal microbiota, pH and volatile fatty acids (VFA), as well as liver insulin like growth factor 1 (IGF1) and growth hormone receptor (GHR) mRNA expressions in broiler chickens. The aim of this experiment was to evaluate the effects of different types of postbiotics with different levels of prebiotic (inulin) on broiler for those parameters. The results showed that birds fed T3: (0.3 % RI11 + 0.8 % Inulin), T4: (0.3 % RI11 + 1.0 % Inulin), and T6: (0.3 % RG14+ 1.0 % Inulin) had higher (p inulin increased (p inulin combinations had beneficial effects on total BW, feed efficiency, mucosa architecture and IGF1 and GHR mRNA expression in broiler chickens.

  15. Impact of Gluten-Friendly Bread on the Metabolism and Function of In Vitro Gut Microbiota in Healthy Human and Coeliac Subjects

    Science.gov (United States)

    Bevilacqua, Antonio; Costabile, Adele; Bergillos-Meca, Triana; Gonzalez, Isidro; Landriscina, Loretta; Ciuffreda, Emanuela; D’Agnello, Paola; Corbo, Maria Rosaria; Sinigaglia, Milena; Lamacchia, Carmela

    2016-01-01

    The main aim of this paper was to assess the in vitro response of healthy and coeliac human faecal microbiota to gluten-friendly bread (GFB). Thus, GFB and control bread (CB) were fermented with faecal microbiota in pH-controlled batch cultures. The effects on the major groups of microbiota were monitored over 48 h incubations by fluorescence in situ hybridisation. Short-chain fatty acids (SCFAs) were measured by high-performance liquid chromatography (HPLC). Furthermore, the death kinetics of Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis, Staphylococcus aureus, and Salmonella Typhimurium in a saline solution supplemented with GFB or CB were also assessed. The experiments in saline solution pinpointed that GFB prolonged the survival of L. acidophilus and exerted an antibacterial effect towards S. aureus and S. Typhimurium. Moreover, GFB modulated the intestinal microbiota in vitro, promoting changes in lactobacilli and bifidobacteria members in coeliac subjects. A final multivariate approach combining both viable counts and metabolites suggested that GFB could beneficially modulate the coeliac gut microbiome; however, human studies are needed to prove its efficacy. PMID:27632361

  16. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  17. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    Science.gov (United States)

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  19. Soy and Gut Microbiota: Interaction and Implication for Human Health.

    Science.gov (United States)

    Huang, Haiqiu; Krishnan, Hari B; Pham, Quynhchi; Yu, Liangli Lucy; Wang, Thomas T Y

    2016-11-23

    Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.

  20. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.

    Science.gov (United States)

    Vandeputte, Doris; Falony, Gwen; Vieira-Silva, Sara; Wang, Jun; Sailer, Manuela; Theis, Stephan; Verbeke, Kristin; Raes, Jeroen

    2017-11-01

    Contrary to the long-standing prerequisite of inducing selective (ie, bifidogenic) effects, recent findings suggest that prebiotic interventions lead to ecosystem-wide microbiota shifts. Yet, a comprehensive characterisation of this process is still lacking. Here, we apply 16S rDNA microbiota profiling and matching (gas chromatography mass spectrometry) metabolomics to assess the consequences of inulin fermentation both on the composition of the colon bacterial ecosystem and faecal metabolites profiles. Faecal samples collected during a double-blind, randomised, cross-over intervention study set up to assess the effect of inulin consumption on stool frequency in healthy adults with mild constipation were analysed. Faecal microbiota composition and metabolite profiles were linked to the study's clinical outcome as well as to quality-of-life measurements recorded. While faecal metabolite profiles were not significantly altered by inulin consumption, our analyses did detect a modest effect on global microbiota composition and specific inulin-induced changes in relative abundances of Anaerostipes , Bilophila and Bifidobacterium were identified. The observed decrease in Bilophila abundances following inulin consumption was associated with both softer stools and a favourable change in constipation-specific quality-of-life measures. Ecosystem-wide analysis of the effect of a dietary intervention with prebiotic inulin-type fructans on the colon microbiota revealed that this effect is specifically associated with three genera, one of which ( Bilophila ) representing a promising novel target for mechanistic research. NCT02548247. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Molecular characterization and antimicrobial resistance of faecal and urinary Escherichia coli isolated from dogs and humans in Italy

    Directory of Open Access Journals (Sweden)

    Clara Tramuta

    2014-03-01

    Full Text Available During this study, 109 faecal Escherichia coli samples isolated from 61 dogs and 48 humans were characterised according to phylogenetic group, extraintestinal virulence factors and antibiotic resistance. The isolates from dogs were predominantly distributed within phylogroup B1 (36%, while the majority of human strains belonged to phylogroup B2 (54%. The prevalence of cnf1, hlyA, papC and sfa virulence genes was significantly associated with the group B2. Canine isolates showed multidrug resistance (MDR more frequently than human strains. Since group B2 contains most of the strains that cause extraintestinal infections, all 46 B2 faecal strains were confronted against an addition population of 57 urinary E. coli strains belonging to the same phylogroup. The comparison shows that there was no significant difference in the occurrence of virulence factors or in the distribution of antibiotic resistance between faecal and urinary E. coli isolates fromd dogs. At the same time, a highly significant association was detected between multiple resistence and the source of the strains and between MDR and E. coli isolated from urine in human. This study highlighted similar features of E. coli isolated across sources and hosts. The data suggest a high prevalence of antibiotic resistance in faecal strains, which may represent a serious health risk since these strains can function as a reservoir for uropathogenic E. coli.

  2. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction.

    Science.gov (United States)

    Firmesse, Olivier; Mogenet, Agnès; Bresson, Jean-Louis; Corthier, Gérard; Furet, Jean-Pierre

    2008-01-01

    The aim of this study was to evaluate the survival of Lactobacillus rhamnosus R11 and Lactobacillus acidophilus R52 in the human digestive tract and their effects on the microbiota homeostasis. We designed an open human trial including 14 healthy volunteers. A 3-week exclusion period of fermented products was followed by a 12-day consumption period of 4 capsules daily containing 2 x 10(9)L. rhamnosus R11 and 1 x 10(8)L. acidophilus R52, and a 12-day wash-out period. The 2 strains and dominant bacterial groups of the microbiota were quantified by real-time polymerase chain reaction. At the end of the capsule consumption period, high levels of L. rhamnosus R11 were detected in faecal samples from all volunteers, reaching a mean value of 7.1 log(10) colony-forming unit (CFU) equivalents/g of stool. L. acidophilus R52 was detected in the stools of only 1 volunteer, reaching a maximum level of 6.1 log(10) CFU equivalents/g of stool. Dilution plating enumerations performed in parallel provided less consistent and generally lower levels. No significant effect of capsule consumption was observed on microbiota homeostasis for the dominant faecal populations. Mean values of 8.8, 9.2, 9.9 and 10.6 log(10) CFU equivalents/g of stool were obtained for the Clostridium coccoides, Bifidobacterium sp., Bacteroides sp. and Clostridium leptum groups, respectively.

  4. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota

    DEFF Research Database (Denmark)

    Wahlström, Annika; Kovatcheva-Datchary, Petia; Ståhlman, Marcus

    2017-01-01

    The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR...... signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum...... and liver. We found that cecal microbiota composition differed between mice colonized with mouse and human microbiota and was stable over time. Human and mouse microbiota reduced total BA levels similarly, but the humanized mice produced less secondary BAs. The human microbiota was able to reduce the levels...

  5. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer.

    Science.gov (United States)

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-06-13

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol.

  6. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    Science.gov (United States)

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  7. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid.

    Science.gov (United States)

    Duncan, Sylvia H; Russell, Wendy R; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Walker, Alan W; Flint, Harry J

    2016-07-01

    Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene-based community analysis that providing amylase-pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to Eubacterium xylanophilum and Butyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5-fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate-producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi-species pathway. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. New Insights into the Evolution of the Human Diet from Faecal Biomarker Analysis in Wild Chimpanzee and Gorilla Faeces

    OpenAIRE

    Sistiaga, Ainara; Wrangham, Richard; Rothman, Jessica M.; Summons, Roger E.

    2015-01-01

    Our understanding of early human diets is based on reconstructed biomechanics of hominin jaws, bone and teeth isotopic data, tooth wear patterns, lithic, taphonomic and zooarchaeological data, which do not provide information about the relative amounts of different types of foods that contributed most to early human diets. Faecal biomarkers are proving to be a valuable tool in identifying relative proportions of plant and animal tissues in Palaeolithic diets. A limiting factor in the applicat...

  9. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  10. Modulation of the human gut microbiota by dietary fibres occurs at the species level.

    Science.gov (United States)

    Chung, Wing Sun Faith; Walker, Alan W; Louis, Petra; Parkhill, Julian; Vermeiren, Joan; Bosscher, Douwina; Duncan, Sylvia H; Flint, Harry J

    2016-01-11

    Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori

  11. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota.

    Science.gov (United States)

    Alqurashi, Randah M; Alarifi, Sehad N; Walton, Gemma E; Costabile, Adele F; Rowland, Ian R; Commane, Daniel M

    2017-11-01

    A considerable proportion of dietary plant-polyphenols reach the colon intact; determining the effects of these compounds on colon-health is of interest. We hypothesise that both fibre and plant polyphenols present in açai (Euterpe oleracea) provide prebiotic and anti-genotoxic benefits in the colon. We investigated this hypothesis using a simulated in vitro gastrointestinal digestion of açai pulp, and a subsequent pH-controlled, anaerobic, batch-culture fermentation model reflective of the distal region of the human large intestine. Following in vitro digestion, 49.8% of the total initial polyphenols were available. In mixed-culture fermentations with faecal inoculate, the digested açai pulp precipitated reductions in the numbers of both the Bacteroides-Prevotella spp. and the Clostridium-histolyticum groups, and increased the short-chain fatty acids produced compared to the negative control. The samples retained significant anti-oxidant and anti-genotoxic potential through digestion and fermentation. Dietary intervention studies are needed to prove that consuming açai is beneficial to gut health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Human vaginal pH and microbiota: an update.

    Science.gov (United States)

    Godha, Keshav; Tucker, Kelly M; Biehl, Colton; Archer, David F; Mirkin, Sebastian

    2018-06-01

    A woman's vaginal pH has many implications on her health and it can be a useful tool in disease diagnosis and prevention. For that reason, the further examination of the relationship between the human vaginal pH and microbiota is imperative. In the past several decades, much has been learned about the physiological mechanisms modulating the vaginal pH, and exogenous/genetic factors that may influence it. A unified, coherent understanding of these concepts is presented to comprehend their interrelationships and their cumulative effect on a woman's health. In this review, we explore research on vaginal pH and microbiota throughout a woman's life, vaginal intermediate cell anaerobic metabolism and net proton secretion by the vaginal epithelial, and the way these factors interact to acidify the vaginal pH. This review provides foundational information about what a microbiota is and its relationship with human physiology and vaginal pH. We then evaluate the influence of physiological mechanisms, demographic factors, and propose ideas for the mechanisms behind their action on the vaginal pH.

  13. Impact of a vegan diet on the human salivary microbiota.

    Science.gov (United States)

    Hansen, Tue H; Kern, Timo; Bak, Emilie G; Kashani, Alireza; Allin, Kristine H; Nielsen, Trine; Hansen, Torben; Pedersen, Oluf

    2018-04-11

    Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composition and functional potential of the salivary microbiota in 160 healthy vegans and omnivores using 16S rRNA gene amplicon sequencing. We further sought to identify bacterial taxa in saliva associated with host inflammatory markers. We show that compositional differences in the salivary microbiota of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential revealed several metabolic pathways differentially abundant in vegans and omnivores indicating possible effects of macro- and micro-nutrient intake. We also show that certain oral bacteria are associated with the systemic inflammatory state of the host.

  14. Short-term effect of antibiotics on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Suchita Panda

    Full Text Available From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002. At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016. Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04. The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  15. Temporal and spatial variation of the human microbiota during pregnancy.

    Science.gov (United States)

    DiGiulio, Daniel B; Callahan, Benjamin J; McMurdie, Paul J; Costello, Elizabeth K; Lyell, Deirdre J; Robaczewska, Anna; Sun, Christine L; Goltsman, Daniela S A; Wong, Ronald J; Shaw, Gary; Stevenson, David K; Holmes, Susan P; Relman, David A

    2015-09-01

    Despite the critical role of the human microbiota in health, our understanding of microbiota compositional dynamics during and after pregnancy is incomplete. We conducted a case-control study of 49 pregnant women, 15 of whom delivered preterm. From 40 of these women, we analyzed bacterial taxonomic composition of 3,767 specimens collected prospectively and weekly during gestation and monthly after delivery from the vagina, distal gut, saliva, and tooth/gum. Linear mixed-effects modeling, medoid-based clustering, and Markov chain modeling were used to analyze community temporal trends, community structure, and vaginal community state transitions. Microbiota community taxonomic composition and diversity remained remarkably stable at all four body sites during pregnancy (P > 0.05 for trends over time). Prevalence of a Lactobacillus-poor vaginal community state type (CST 4) was inversely correlated with gestational age at delivery (P = 0.0039). Risk for preterm birth was more pronounced for subjects with CST 4 accompanied by elevated Gardnerella or Ureaplasma abundances. This finding was validated with a set of 246 vaginal specimens from nine women (four of whom delivered preterm). Most women experienced a postdelivery disturbance in the vaginal community characterized by a decrease in Lactobacillus species and an increase in diverse anaerobes such as Peptoniphilus, Prevotella, and Anaerococcus species. This disturbance was unrelated to gestational age at delivery and persisted for up to 1 y. These findings have important implications for predicting premature labor, a major global health problem, and for understanding the potential impact of a persistent, altered postpartum microbiota on maternal health, including outcomes of pregnancies following short interpregnancy intervals.

  16. The human nasal microbiota and Staphylococcus aureus carriage.

    Directory of Open Access Journals (Sweden)

    Daniel N Frank

    Full Text Available BACKGROUND: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of approximately 50% of healthy adults, whereas approximately 50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization. METHODOLOGY/PRINCIPAL FINDINGS: Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers. Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp., with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp. and Proteobacteria (e.g. Enterobacter spp. In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004. CONCLUSIONS/SIGNIFICANCE: The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

  17. Archaea: Essential inhabitants of the human digestive microbiota

    Directory of Open Access Journals (Sweden)

    Vanessa Demonfort Nkamga

    2017-03-01

    Full Text Available Prokaryotes forming the domain of Archaea, named after their first discovery in extreme environments, are acknowledged but still neglected members of the human digestive tract microbiota. In this microbiota, cultured archaea comprise anaerobic methanogens: Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter massiliense, Methanosphaera stadtmanae, Methanobrevibacter arboriphilus, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis; along with the non-methanogen halophilic Archaea Halopherax massiliense. Metagenomic analyses detected DNA sequences indicative of the presence of additional methanogenic and non-methanogenic halophilic Archaea in the human intestinal tract and oral cavity. Methanogens specifically metabolize hydrogen produced by anaerobic fermentation of carbohydrates into methane; further transforming heavy metals and metalloids into methylated derivatives, such as trimethylbismuth which is toxic for both human and bacterial cells. However, the role of Archaea as pathogens remains to be established. Future researches will aim to increase the repertoire of the human digestive tract Archaea and to understand their possible association with intestinal and extra-intestinal infections and diseases including weight regulation abnormalities. Keywords: Human-associated Archaea, Methanogens, Halophiles, Oral cavity, Intestinal tract

  18. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning.

    Science.gov (United States)

    Staley, Christopher; Kaiser, Thomas; Beura, Lalit K; Hamilton, Matthew J; Weingarden, Alexa R; Bobr, Aleh; Kang, Johnthomas; Masopust, David; Sadowsky, Michael J; Khoruts, Alexander

    2017-08-01

    Human microbiota-associated (HMA) animal models relying on germ-free recipient mice are being used to study the relationship between intestinal microbiota and human disease. However, transfer of microbiota into germ-free animals also triggers global developmental changes in the recipient intestine, which can mask disease-specific attributes of the donor material. Therefore, a simple model of replacing microbiota into a developmentally mature intestinal environment remains highly desirable. Here we report on the development of a sequential, three-course antibiotic conditioning regimen that allows sustained engraftment of intestinal microorganisms following a single oral gavage with human donor microbiota. SourceTracker, a Bayesian, OTU-based algorithm, indicated that 59.3 ± 3.0% of the fecal bacterial communities in treated mice were attributable to the donor source. This overall degree of microbiota engraftment was similar in mice conditioned with antibiotics and germ-free mice. Limited surveys of systemic and mucosal immune sites did not show evidence of immune activation following introduction of human microbiota. The antibiotic treatment protocol described here followed by a single gavage of human microbiota may provide a useful, complimentary HMA model to that established in germ-free facilities. The model has the potential for further in-depth translational investigations of microbiota in a variety of human disease states.

  19. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael

    2013-01-01

    and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism.......New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota...

  20. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael

    2013-01-01

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota...... and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism....

  1. Psyllium husk fibre supplementation to soybean and coconut oil diets of humans: effect on fat digestibility and faecal fatty acid excretion.

    Science.gov (United States)

    Ganji, V; Kies, C V

    1994-08-01

    The effects of psyllium fibre supplementation to polyunsaturated fatty acid rich soybean oil and saturated fatty acid rich coconut oil diets on fat digestibility and faecal fatty acid excretion were investigated in healthy humans. The study consisted of four 7-day experimental periods. Participants consumed soybean oil (SO), soybean oil plus psyllium fibre (20 g/day) (SO+PF), coconut oil (CO) and coconut oil plus psyllium fibre (20 g/day) (CO+PF) diets. Laboratory diet provided 30% calories from fat (20% from test oils and 10% from basal diet), 15% calories from protein and 55% calories from carbohydrate. Fat digestibility was significantly lower and faecal fat excretion was significantly higher with SO+PF diet than SO diet and with CO+PF diet than CO diet. Faecal excretion of myristic and lauric acids was not affected by test diets. Percent faecal palmitic acid excretion was significantly higher during psyllium supplementation periods. Higher faecal linoleic acid excretion was observed with soybean oil diets compared with coconut oil diets. Increased faecal fat loss, decreased fat digestibility and increased faecal palmitic acid excretion with psyllium supplementation may partly explain the hypocholesterolaemic action of psyllium fibre.

  2. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis

    NARCIS (Netherlands)

    Nikkilä, J.; Vos, de W.M.

    2010-01-01

    GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex

  3. Microbiota dysbiosis in select human cancers: Evidence of association and causality.

    Science.gov (United States)

    Chen, Jie; Domingue, Jada C; Sears, Cynthia L

    2017-08-01

    The human microbiota is a complex ecosystem of diverse microorganisms consisting of bacteria, viruses, and fungi residing predominantly in epidermal and mucosal habitats across the body, such as skin, oral cavity, lung, intestine and vagina. These symbiotic communities in health, or dysbiotic communities in disease, display tremendous interaction with the local environment and systemic responses, playing a critical role in the host's nutrition, immunity, metabolism and diseases including cancers. While the profiling of normal microbiota in healthy populations is useful and necessary, more recent studies have focused on the microbiota associated with disease, particularly cancers. In this paper, we review current evidence on the role of the human microbiota in four cancer types (colorectal cancer, head and neck cancer, pancreatic cancer, and lung cancer) proposed as affected by both the oral and gut microbiota, and provide a perspective on current gaps in the knowledge of the microbiota and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of a vegan diet on the human salivary microbiota

    DEFF Research Database (Denmark)

    Hansen, Tue H; Kern, Timo; Bak, Emilie G

    2018-01-01

    Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composi......Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity...... of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas...... endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential...

  5. [Oral microbiota: a promising predictor of human oral and systemic diseases].

    Science.gov (United States)

    Xin, Xu; Junzhi, He; Xuedong, Zhou

    2015-12-01

    A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.

  6. Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands

    Science.gov (United States)

    2010-01-01

    Sorbitol-fermenting Bifidobacteria (SFB) proved to be an excellent indicator of very recent human faecal pollution (hours to days) in the investigated tropical stream and groundwater habitats. SFB were recovered from human faeces and sources potentially contaminated with human excreta. SFB were undetectable in animal faeces and environmental samples not contaminated with human faeces. Microcosm studies demonstrated a rapid die-off rate in groundwater (T90 value 0.6 days) and stream water (T90 value 0.9–1.7 days). Discrimination sensitivity analysis, including E. coli, faecal coliforms, total coliforms and Clostridium perfringens spores, revealed high ability of SFB to distinguish differing levels of faecal pollution especially for streams although high background levels of interfering bacteria can complicate its recovery on the used medium. Due to its faster die-off, as compared to many waterborne pathogens, SFB cannot replace microbiological standard parameters for routine water quality monitoring but it is highly recommendable as a specific and complementary tool when human faecal pollution has to be localized or verified. Because of its exclusive faecal origin and human specificity it seems also worthwhile to include SFB in future risk evaluation studies at tropical water resources in order to evaluate under which situations risks of infection may be indicated. PMID:20375476

  7. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Relationship between Human Gut Microbiota and Interleukin 6 Levels in Overweight and Obese Adults

    Science.gov (United States)

    Background: Gut microbial diversity and abundance can profoundly impact human health. Research has shown that obese individuals are likely to have altered microbiota compared to lean individuals. Obesity is often considered a pro-inflammatory state, however the relationship between microbiota and i...

  9. Equol status and changes in faecal microbiota in menopausal women receiving long-term treatment for menopause symptoms with a soy-isoflavone concentrate

    Directory of Open Access Journals (Sweden)

    Baltasar eMayo

    2015-08-01

    Full Text Available The knowledge regarding the intestinal microbial types involved in isoflavone bioavailabililty and metabolism is still limited. The present work reports the influence of a treatment with isoflavones for six months on the faecal bacterial communities of 16 menopausal women, as determined by culturing and culture-independent microbial techniques. Changes in faecal communities were analysed with respect to the womenʼs equol-producing phenotype. Compared to baseline, at 1 and 3 months the counts for all microbial populations in the faeces of equol-producing women had increased strongly. In contrast, among the non-producers, the counts for all microbial populations at 1 month were similar to those at baseline, and decreased significantly by 3 and 6 months. Following isoflavone intake, major bands in the denaturing gradient gel electrophoresis (DGGE profiles appeared and disappeared, suggesting important changes in majority populations. In some women, increases were seen in the intensity of specific DGGE bands corresponding to microorganisms known to be involved in the metabolism of dietary phytoestrogens (Lactonifactor longoviformis, Faecalibacterium prausnitzii, Bifidobacterium spp., Ruminococcus spp.. Real-Time quantitative PCR revealed that the Clostridium leptum and Clostridium coccoides populations increased in equol producers, while those of bifidobacteria and enterobacteria decreased, and vice versa in the non-producers. Finally, the Atopobium population increased in both groups, but especially in the non-producers at three months. As the main findings of this study, (i variations in the microbial communities over the six-month period of isoflavone supplementation were large; (ii no changes in the faecal microbial populations that were convincingly treatment-specific were seen; and (iii the production of equol did not appear to be associated with the presence of, or increase in the population of, any of the majority bacterial types analysed.

  10. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy.

    Science.gov (United States)

    Wang, Ai-Hua; Li, Ming; Li, Chang-Qing; Kou, Guan-Jun; Zuo, Xiu-Li; Li, Yan-Qing

    2016-02-26

    The human gut microbiota plays a pivotal role in the maintenance of health, but how the microbiota interacts with the host at the colorectal mucosa is poorly understood. We proposed that confocal laser endomicroscopy (CLE) might help to untangle this relationship by providing in vivo physiological information of the mucosa. We used CLE to evaluate the in vivo physiology of human colorectal mucosa, and the mucosal microbiota was quantified using 16 s rDNA pyrosequencing. The human mucosal microbiota agglomerated to three major clusters dominated by Prevotella, Bacteroides and Lactococcus. The mucosal microbiota clusters did not significantly correlate with the disease status or biopsy sites but closely correlated with the mucosal niche physiology, which was non-invasively revealed by CLE. Inflammation tilted two subnetworks within the mucosal microbiota. Infiltration of inflammatory cells significantly correlated with multiple components in the predicted metagenome, such as the VirD2 component of the type IV secretory pathway. Our data suggest that a close correlation exists between the mucosal microbiota and the colorectal mucosal physiology, and CLE is a clinically available tool that can be used to facilitate the study of the in vivo correlation between colorectal mucosal physiology and the mucosal microbiota.

  11. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort.

    Science.gov (United States)

    Lee, Jung Eun; Lee, Sunghee; Lee, Heetae; Song, Yun-Mi; Lee, Kayoung; Han, Min Ji; Sung, Joohon; Ko, GwangPyo

    2013-01-01

    Human papillomavirus (HPV) is the most important causative agent of cervical cancers worldwide. However, our understanding of how the vaginal microbiota might be associated with HPV infection is limited. In addition, the influence of human genetic and physiological factors on the vaginal microbiota is unclear. Studies on twins and their families provide the ideal settings to investigate the complicated nature of human microbiota. This study investigated the vaginal microbiota of 68 HPV-infected or uninfected female twins and their families using 454-pyrosequencing analysis targeting the variable region (V2-V3) of the bacterial 16S rRNA gene. Analysis of the vaginal microbiota from both premenopausal women and HPV-discordant twins indicated that HPV-positive women had significantly higher microbial diversity with a lower proportion of Lactobacillus spp. than HPV-negative women. Fusobacteria, including Sneathia spp., were identified as a possible microbiological marker associated with HPV infection. The vaginal microbiotas of twin pairs were significantly more similar to each other than to those from unrelated individuals. In addition, there were marked significant differences from those of their mother, possibly due to differences in menopausal status. Postmenopausal women had a lower proportion of Lactobacillus spp. and a significantly higher microbiota diversity. This study indicated that HPV infection was associated with the composition of the vaginal microbiota, which is influenced by multiple host factors such as genetics and menopause. The potential biological markers identified in this study could provide insight into HPV pathogenesis and may represent biological targets for diagnostics.

  12. Shotgun metaproteomics of the human distal gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; Jansson, Janet K.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  13. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    Science.gov (United States)

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  14. Time for food: The impact of diet on gut microbiota and human health.

    Science.gov (United States)

    Zhang, Na; Ju, Zhongjie; Zuo, Tao

    There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Quinones are growth factors for the human gut microbiota.

    Science.gov (United States)

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    from the human gut microbiome. These organisms are taxonomically diverse, including members of the genus Faecalibacterium, Bacteroides, Bilophila, Gordonibacter, and Sutterella. This suggests that loss of quinone biosynthesis happened independently in many lineages of the human microbiota. Quinones can be used to improve existing bacterial growth media or modulate the human gut microbiota by encouraging the growth of important symbionts, such as Faecalibacterium species.

  16. Effect of Propionibacterium acidipropionici P169 on the rumen and faecal microbiota of beef cattle fed a maize-based finishing diet.

    Science.gov (United States)

    Azad, E; Narvaez, N; Derakhshani, H; Allazeh, A Y; Wang, Y; McAllister, T A; Khafipour, E

    2017-10-13

    Direct fed microbial supplementation with lactic acid utilising bacteria (i.e. Propionibacterium acidipropionici P169) has been shown to alleviate the severity of subacute ruminal acidosis in high-grain fed beef cattle. This study was carried out to explore the impact of P169 supplementation on modulating rumen and hindgut microbiota of high-grain fed steers. Seven ruminally-canulated high-grain fed steers were randomly assigned to two treatment groups: control diet (n=3) and the same diet supplemented with P169 added at a rate of 1×10 11 cfu/head/d (n=4). Samples were collected every 28 days for a 101 d period (5 time points) and subjected to qPCR quantification of P169 and high-throughput sequencing of bacterial V4 16S rRNA genes. Ruminal abundance of P169 was maintained at elevated levels (P=0.03) both in liquid and solid fractions post supplementation. Concomitant with decreased proportion of amylolytic (such as Prevotella) and key lactate-utilisers (such as Veillonellaceae and Megasphaera), the proportions of cellulolytic bacterial lineages (such as Ruminococcaceae, Lachnospiraceae, Clostridiaceae, and Christensenellaceae) were enriched in the rumen microbiota of P169-supplemented steers. These, coupled with elevated molar proportions of branched-chain fatty acids and increased concentration of ammonia in the rumen content of P169-supplemented steers, indicated an improved state of fibrolytic and proteolytic activity in response to P169 supplementation. Further, exploring the hindgut microbiota of P169-supplemented steers revealed enrichment of major amylolytic bacterial lineages, such as Prevotella, Blautia, and Succinivibrionaceae, which might be indicative of an increased availability of carbohydrates in the hindgut ecosystem following P169 supplementation. Collectively, the present study provides insights into the microbiota dynamics that underlie the P169-associated shifts in the rumen fermentation profile of high-grain fed steers.

  17. Contribution of diet to the composition of the human gut microbiota.

    Science.gov (United States)

    Graf, Daniela; Di Cagno, Raffaella; Fåk, Frida; Flint, Harry J; Nyman, Margareta; Saarela, Maria; Watzl, Bernhard

    2015-01-01

    In the human gut, millions of bacteria contribute to the microbiota, whose composition is specific for every individual. Although we are just at the very beginning of understanding the microbiota concept, we already know that the composition of the microbiota has a profound impact on human health. A key factor in determining gut microbiota composition is diet. Preliminary evidence suggests that dietary patterns are associated with distinct combinations of bacteria in the intestine, also called enterotypes. Western diets result in significantly different microbiota compositions than traditional diets. It is currently unknown which food constituents specifically promote growth and functionality of beneficial bacteria in the intestine. The aim of this review is to summarize the recently published evidence from human in vivo studies on the gut microbiota-modulating effects of diet. It includes sections on dietary patterns (e.g. Western diet), whole foods, food constituents, as wells as food-associated microbes and their influence on the composition of human gut microbiota. The conclusions highlight the problems faced by scientists in this fast-developing field of research, and the need for high-quality, large-scale human dietary intervention studies.

  18. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  19. An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly.

    Science.gov (United States)

    Liu, Yue; Gibson, Glenn R; Walton, Gemma E

    2016-01-01

    The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (pprebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters.

  20. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.

    Science.gov (United States)

    Collado, María Carmen; Engen, Phillip A; Bandín, Cristina; Cabrera-Rubio, Raúl; Voigt, Robin M; Green, Stefan J; Naqib, Ankur; Keshavarzian, Ali; Scheer, Frank A J L; Garaulet, Marta

    2018-04-01

    The composition of the diet (what we eat) has been widely related to the microbiota profile. However, whether the timing of food consumption (when we eat) influences microbiota in humans is unknown. A randomized, crossover study was performed in 10 healthy normal-weight young women to test the effect of the timing of food intake on the human microbiota in the saliva and fecal samples. More specifically, to determine whether eating late alters daily rhythms of human salivary microbiota, we interrogated salivary microbiota in samples obtained at 4 specific time points over 24 h, to achieve a better understanding of the relationship between food timing and metabolic alterations in humans. Results revealed significant diurnal rhythms in salivary diversity and bacterial relative abundance ( i.e., TM7 and Fusobacteria) across both early and late eating conditions. More importantly, meal timing affected diurnal rhythms in diversity of salivary microbiota toward an inverted rhythm between the eating conditions, and eating late increased the number of putative proinflammatory taxa, showing a diurnal rhythm in the saliva. In a randomized, crossover study, we showed for the first time the impact of the timing of food intake on human salivary microbiota. Eating the main meal late inverts the daily rhythm of salivary microbiota diversity which may have a deleterious effect on the metabolism of the host.-Collado, M. C., Engen, P. A., Bandín, C., Cabrera-Rubio, R., Voigt, R. M., Green, S. J., Naqib, A., Keshavarzian, A., Scheer, F. A. J. L., Garaulet, M. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.

  1. Community and genomic analysis of the human small intestine microbiota

    NARCIS (Netherlands)

    Bogert, van den B.

    2013-01-01

    Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine.

  2. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  3. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  4. Microbiota restoration : natural and supplemented recovery of human microbial communities

    NARCIS (Netherlands)

    Reid, Gregor; Younes, Jessica A.; Van der Mei, Henny C.; Gloor, Gregory B.; Knight, Rob; Busscher, Henk J.

    In a healthy host, a balance exists between members of the microbiota, such that potential pathogenic and non-pathogenic organisms can be found in apparent harmony. During infection, this balance can become disturbed, leading to often dramatic changes in the composition of the microbiota. For most

  5. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity...

  6. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria

    DEFF Research Database (Denmark)

    Rettedal, Elizabeth; Gumpert, Heidi; Sommer, Morten

    2014-01-01

    The human gut microbiota is linked to a variety of human health issues and implicated in antibiotic resistance gene dissemination. Most of these associations rely on culture-independent methods, since it is commonly believed that gut microbiota cannot be easily or sufficiently cultured. Here, we...... microbiota. Based on the phenotypic mapping, we tailor antibiotic combinations to specifically select for previously uncultivated bacteria. Utilizing this method we cultivate and sequence the genomes of four isolates, one of which apparently belongs to the genus Oscillibacter; uncultivated Oscillibacter...

  7. Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota

    NARCIS (Netherlands)

    Bogert, van den B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M.

    2014-01-01

    The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains

  8. Resident aerobic microbiota of the adult human nasal cavity

    DEFF Research Database (Denmark)

    Rasmussen, TT; Kirkeby Nielsen, LP; Poulsen, Knud

    2000-01-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine...... the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively...... reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of gram-negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal...

  9. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.

    Science.gov (United States)

    Klinder, Annett; Shen, Qing; Heppel, Susanne; Lovegrove, Julie A; Rowland, Ian; Tuohy, Kieran M

    2016-04-01

    Epidemiological studies have shown protective effects of fruits and vegetables (F&V) in lowering the risk of developing cardiovascular diseases (CVD) and cancers. Plant-derived dietary fibre (non-digestible polysaccharides) and/or flavonoids may mediate the observed protective effects particularly through their interaction with the gut microbiota. The aim of this study was to assess the impact of fruit and vegetable (F&V) intake on gut microbiota, with an emphasis on the role of flavonoids, and further to explore relationships between microbiota and factors associated with CVD risk. In the study, a parallel design with 3 study groups, participants in the two intervention groups representing high-flavonoid (HF) and low flavonoid (LF) intakes were asked to increase their daily F&V intake by 2, 4 and 6 portions for a duration of 6 weeks each, while a third (control) group continued with their habitual diet. Faecal samples were collected at baseline and after each dose from 122 subjects. Faecal bacteria enumeration was performed by fluorescence in situ hybridisation (FISH). Correlations of dietary components, flavonoid intake and markers of CVD with bacterial numbers were also performed. A significant dose X treatment interaction was only found for Clostidium leptum-Ruminococcus bromii/flavefaciens with a significant increase after intake of 6 additional portions in the LF group. Correlation analysis of the data from all 122 subjects independent from dietary intervention indicated an inhibitory role of F&V intake, flavonoid content and sugars against the growth of potentially pathogenic clostridia. Additionally, we observed associations between certain bacterial populations and CVD risk factors including plasma TNF-α, plasma lipids and BMI/waist circumference.

  10. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans

    OpenAIRE

    Cartmell, Alan; Lowe, Elisabeth C.; Basl?, Arnaud; Firbank, Susan J.; Ndeh, Didier A.; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E.; Czjzek, Mirjam; Gilbert, Harry J.; Bolam, David N.

    2017-01-01

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases...

  11. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs.

    Science.gov (United States)

    Fiesel, Anja; Gessner, Denise K; Most, Erika; Eder, Klaus

    2014-09-04

    Feeding polyphenol-rich plant products has been shown to increase the gain:feed ratio in growing pigs. The reason for this finding has not yet been elucidated. In order to find the reasons for an increase of the gain:feed ratio, this study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GSGME) or spent hops (SH), on gut morphology, apparent digestibility of nutrients, microbial composition in faeces and the expression of pro-inflammatory genes in the intestine of pigs. Pigs fed GSGME or SH showed an improved gain:feed ratio in comparison to the control group (P value, lower levels of volatile fatty acids and lower counts of Streptococcus spp. and Clostridium Cluster XIVa in the faecal microbiota (P pro-inflammatory genes in duodenum, ileum and colon than the control group (P present study suggests that dietary plant products rich in polyphenols are able to improve the gain:feed ratio in growing pigs. It is assumed that an alteration in the microbial composition and anti-inflammatory effects of the polyphenol-rich plant products in the intestine might contribute to this effect.

  12. Differential effects of antibiotic therapy on the structure and function of human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Ana Elena Pérez-Cobas

    Full Text Available The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB, are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.

  13. The human gastrointestinal microbiota - An unexplored frontier for pharmaceutical discovery

    NARCIS (Netherlands)

    Roeselers, G.; Bouwman, J.; Venema, K.; Montijn, R.

    2012-01-01

    The mammalian gastrointestinal tract (GIT) harbors microorganisms (the microbiota) of vast phylogentic, genomic, and metabolic diversity, and recent years have seen a rapid development in the techniques for studying these complex microbial ecosystems. It is increasingly apparent that the GIT

  14. [Breaking paradigms. Intestinal microbiota transplantation: Preliminar report].

    Science.gov (United States)

    Zamudio-Tiburcio, Álvaro; Bermúdez-Ruiz, Héctor; Lezama-Guzmán, Hugo Ricardo; Guevara-Ortigoza, María Del Pilar; Islas-Solares, Elena; Sosa-López, Francisco Antonio

    2017-12-01

    In the fourth century, during the Chinese Dong Jin dynasty, the doctor Ge Hong described good results after the oral administration of a suspension prepared from human faeces in patients with severe diarrhoea or food poisoning. Faecal microbiota transplantation has been used for five years in order to treat different diseases in addition to the severe diarrhoea caused by Clostridium difficile 1 . This paper aims to confirm that intestinal microbiota transplantation succeeds in reducing the negative impact of diseases such as severe diarrhoea, irritable bowel syndrome, anxiety, allergies, metabolic syndrome and others and that it is not only indicated for severe diarrhoea caused by C. difficile. This preliminary study included six patients who underwent faecal microbiota transplantation, aged 83, 76, 66, 37 and 36 years (four men and two women). An improvement in symptoms of 70% was observed. The methodology and criteria to be followed with donors are described and the results are listed in three tables. The methodology followed for the microbiota transplant is the same as that reported by other researchers for the treatment of C. difficile diarrhoea and other diseases. The discussion addresses the issues raised in other parts of the world in handling different pathologic entities, as well as genetic advances. The conclusions show encouraging results. Copyright © 2017 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Is the role of human female reproductive tract microbiota underestimated?

    Science.gov (United States)

    Kamińska, D; Gajecka, M

    2017-05-30

    An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.

  16. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  17. Gut microbiota modulate T cell trafficking into human colorectal cancer.

    Science.gov (United States)

    Cremonesi, Eleonora; Governa, Valeria; Garzon, Jesus Francisco Glaus; Mele, Valentina; Amicarella, Francesca; Muraro, Manuele Giuseppe; Trella, Emanuele; Galati-Fournier, Virginie; Oertli, Daniel; Däster, Silvio Raffael; Droeser, Raoul A; Weixler, Benjamin; Bolli, Martin; Rosso, Raffaele; Nitsche, Ulrich; Khanna, Nina; Egli, Adrian; Keck, Simone; Slotta-Huspenina, Julia; Terracciano, Luigi M; Zajac, Paul; Spagnoli, Giulio Cesare; Eppenberger-Castori, Serenella; Janssen, Klaus-Peter; Borsig, Lubor; Iezzi, Giandomenica

    2018-02-06

    Tumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers. Expression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing. CRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival. Gut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. The commensal microbiota and the development of human disease - an introduction

    OpenAIRE

    Marsh, Philip D.

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immun...

  19. The commensal microbiota and the development of human disease - an introduction.

    Science.gov (United States)

    Marsh, Philip D

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This 'dysbiosis' can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  20. The commensal microbiota and the development of human disease – an introduction

    Directory of Open Access Journals (Sweden)

    Philip D. Marsh

    2015-09-01

    Full Text Available Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This ‘dysbiosis’ can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  1. Peptoniphilus catoniae sp. nov., isolated from a human faecal sample from a traditional Peruvian coastal community.

    Science.gov (United States)

    Patel, Nisha B; Tito, Raul Y; Obregón-Tito, Alexandra J; O'Neal, Lindsey; Trujillo-Villaroel, Omar; Marin-Reyes, Luis; Troncoso-Corzo, Luzmila; Guija-Poma, Emilio; Lewis, Cecil M; Lawson, Paul A

    2016-05-01

    A novel Gram-stain-positive, coccus-shaped, obligately anaerobic bacterium was isolated from a faecal sample obtained from an individual in a traditional community located off the southern coast of Peru. Comparative 16S rRNA gene sequence analysis showed the novel bacterium belonged to the genus Peptoniphilus but showed no particular relationship with any species, demonstrating less than 91 % 16S rRNA gene sequence similarity with all members of the genus. The major cellular fatty acids of the novel isolate were determined to be C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 2ω6,9c/anteiso-C18 : 0. The DNA G+C content was 34.4 mol%. End-products of metabolism from peptone-yeast-glucose broth (PYG) were determined to be acetate and butyrate. Based on the phenotypic, chemotaxonomic and phylogenetic results, the organism represents a novel species of the genus Peptoniphilus, for which the name Peptoniphilus catoniae sp. nov. is proposed. The type strain is M6.X2DT ( = DSM 29874T = CCUG 66798T).

  2. In vitro fermentation of prebiotic carbohydrates by intestinal microbiota in the presence of Lactobacillus amylovorus DSM 16998

    NARCIS (Netherlands)

    Cardarelli, H.R.; Martinez, R.C.R.; Albrecht, S.; Schols, H.; Franco, B.D.G.M.; Saad, S.M.I.; Smidt, H.

    2016-01-01

    The aim of this study was to evaluate the assimilation of the prebiotics fructooligosaccharides (FOS), galactooligosaccharides (GOS), and Konjac glucomannan oligosaccharides (KGMO) by three human (H1, H2 and H3) and pig (P1, P2 and P3) faecal microbiotas in the presence of the potentially

  3. Vaginal microbiota in menopause

    OpenAIRE

    Martinus Tarina; Larisa Paramitha; Evita Halim Effendi; Shannaz Nadia Yusharyahya; Hanny Nilasari; Wresti Indriatmi

    2016-01-01

    The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the...

  4. Use of dietary indices to control for diet in human gut microbiota studies.

    Science.gov (United States)

    Bowyer, Ruth C E; Jackson, Matthew A; Pallister, Tess; Skinner, Jane; Spector, Tim D; Welch, Ailsa A; Steves, Claire J

    2018-04-25

    Environmental factors have a large influence on the composition of the human gut microbiota. One of the most influential and well-studied is host diet. To assess and interpret the impact of non-dietary factors on the gut microbiota, we endeavoured to determine the most appropriate method to summarise community variation attributable to dietary effects. Dietary habits are multidimensional with internal correlations. This complexity can be simplified by using dietary indices that quantify dietary variance in a single measure and offer a means of controlling for diet in microbiota studies. However, to date, the applicability of different dietary indices to gut microbiota studies has not been assessed. Here, we use food frequency questionnaire (FFQ) data from members of the TwinsUK cohort to create three different dietary measures applicable in western-diet populations: The Healthy Eating Index (HEI), the Mediterranean Diet Score (MDS) and the Healthy Food Diversity index (HFD-Index). We validate and compare these three indices to determine which best summarises dietary influences on gut microbiota composition. All three indices were independently validated using established measures of health, and all were significantly associated with microbiota measures; the HEI had the highest t values in models of alpha diversity measures, and had the highest number of associations with microbial taxa. Beta diversity analyses showed the HEI explained the greatest variance of microbiota composition. In paired tests between twins discordant for dietary index score, the HEI was associated with the greatest variation of taxa and twin dissimilarity. We find that the HEI explains the most variance in, and has the strongest association with, gut microbiota composition in a western (UK) population, suggesting that it may be the best summary measure to capture gut microbiota variance attributable to habitual diet in comparable populations.

  5. Food additives, contaminants and other minor components: effects on human gut microbiota-a review.

    Science.gov (United States)

    Roca-Saavedra, Paula; Mendez-Vilabrille, Veronica; Miranda, Jose Manuel; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos M; Cepeda, Alberto

    2018-02-01

    Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.

  6. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    Science.gov (United States)

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

    Science.gov (United States)

    Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A

    2018-02-15

    Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a

  8. Human gut microbiota and healthy aging: Recent developments and future prospective.

    Science.gov (United States)

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  9. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  10. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens)

    DEFF Research Database (Denmark)

    Hildebrand, Falk; Ebersbach, Tine; Nielsen, Henrik Bjørn

    2012-01-01

    Background: Guinea pig (Cavia porcellus) is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared th...

  11. The human microbiota: the role of microbial communities in health and disease

    Directory of Open Access Journals (Sweden)

    Luz Elena Botero Palacio

    2016-01-01

    Full Text Available During the last decade, there has been increasing awareness of the massive number of microorganisms, collectively known as the human microbiota, that are associated with humans. This microbiota outnumbers the host cells by approximately a factor of ten and contains a large repertoire of microbial genome-encoded metabolic processes. The diverse human microbiota and its associated metabolic potential can provide the host with novel functions that can influence host health and disease status in ways that still need to be analyzed. The microbiota varies with age, with features that depend on the body site, host lifestyle and health status. The challenge is therefore to identify and characterize these microbial communities and use this information to learn how they function and how they can influence the host in terms of health and well-being. Here we provide an overview of some of the recent studies involving the human microbiota and about how these communities might affect host health and disease. A special emphasis is given to studies related to tuberculosis, a disease that claims over one million lives each year worldwide and still represents a challenge for control in many countries, including Colombia.

  12. In Vitro Culture Conditions for Maintaining a Complex Population of Human Gastrointestinal Tract Microbiota

    Directory of Open Access Journals (Sweden)

    Bong-Soo Kim

    2011-01-01

    Full Text Available A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies using in vitro and in vivo approaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the best in vitro culture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE, pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conduct in vitro studies representative of the human intestinal microbiota.

  13. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    Science.gov (United States)

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  14. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  15. Molecular Characterization of the Human Stomach Microbiota in Gastric Cancer Patients

    Directory of Open Access Journals (Sweden)

    Guoqin Yu

    2017-07-01

    Full Text Available Helicobacter pylori (Hp is the primary cause of gastric cancer but we know little of its relative abundance and other microbes in the stomach, especially at the time of gastric cancer diagnosis. Here we characterized the taxonomic and derived functional profiles of gastric microbiota in two different sets of gastric cancer patients, and compared them with microbial profiles in other body sites. Paired non-malignant and tumor tissues were sampled from 160 gastric cancer patients with 80 from China and 80 from Mexico. The 16S rRNA gene V3–V4 region was sequenced using MiSeq platform for taxonomic profiles. PICRUSt was used to predict functional profiles. Human Microbiome Project was used for comparison. We showed that Hp is the most abundant member of gastric microbiota in both Chinese and Mexican samples (51 and 24%, respectively, followed by oral-associated bacteria. Taxonomic (phylum-level profiles of stomach microbiota resembled oral microbiota, especially when the Helicobacter reads were removed. The functional profiles of stomach microbiota, however, were distinct from those found in other body sites and had higher inter-subject dissimilarity. Gastric microbiota composition did not differ by Hp colonization status or stomach anatomic sites, but did differ between paired non-malignant and tumor tissues in either Chinese or Mexican samples. Our study showed that Hp is the dominant member of the non-malignant gastric tissue microbiota in many gastric cancer patients. Our results provide insights on the gastric microbiota composition and function in gastric cancer patients, which may have important clinical implications.

  16. Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota

    DEFF Research Database (Denmark)

    Newbold, Lindsay K.; Burthe, Sarah J.; Oliver, Anna E.

    2017-01-01

    Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same...... to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth...... infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment...

  17. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  18. The role of gut microbiota in human obesity: recent findings and future perspectives.

    Science.gov (United States)

    Tagliabue, A; Elli, M

    2013-03-01

    In recent years, gut microbiota have gained a growing interest as an environmental factor that may affect the predisposition toward adiposity. In this review, we describe and discuss the research that has focused on the involvement of gut microbiota in human obesity. We also summarize the current knowledge concerning the health effects of the composition of gut microbiota, acquired using the most recent methodological approaches, and the potential influence of gut microbiota on adiposity, as revealed by animal studies. Original research studies that were published in English or French until December 2011 were selected through a computer-assisted literature search. The studies conducted to date show that there are differences in the gut microbiota between obese and normal-weight experimental animals. There is also evidence that a high-fat diet may induce changes in gut microbiota in animal models regardless of the presence of obesity. In humans, obesity has been associated with reduced bacterial diversity and an altered representation of bacterial species, but the identified differences are not homogeneous among the studies. The question remains as to whether changes in the intestinal microbial community are one of the environmental causes of overweight and obesity or if they are a consequence of obesity, specifically of the unbalanced diet that often accompanies the development of excess weight gain. In the future, larger studies on the potential role of intestinal microbiota in human obesity should be conducted at the species level using standardized analytical techniques and taking all of the possible confounding variables into account. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    NARCIS (Netherlands)

    Gigliucci, Federica; von Meijenfeldt, F A Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E|info:eu-repo/dai/nl/304546313; Ahmad, Hamideh M; Raangs, Gerwin C; Friedrich, Alex W; Rossen, John W A; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic

  20. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  2. Impact of diets with a high content of greaves-meal protein or carbohydrates on faecal characteristics, volatile fatty acids and faecal calprotectin concentrations in healthy dogs

    NARCIS (Netherlands)

    Hang, I.; Heilmann, R.M.; Grützner, N.; Suchodolski, J.S.; Steiner, J.M.; Atroshi, F.; Sankari, S.; Kettunen, A.; Vos, de W.M.; Zentek, J.; Spillmann, T.

    2013-01-01

    BACKGROUND: Research suggests that dietary composition influences gastrointestinal function and bacteria-derived metabolic products in the dog colon. We previously reported that dietary composition impacts upon the faecal microbiota of healthy dogs. This study aims at evaluating the dietary

  3. Evaluation of an in vitro faecal degradation method for early assessment of the impact of colonic degradation on colonic absorption in humans.

    Science.gov (United States)

    Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders

    2014-06-16

    The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (pdegradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the

  4. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults

    DEFF Research Database (Denmark)

    Larsen, Nadja; Vogensen, Finn Kvist; van der Berg, Franciscus Winfried J

    2010-01-01

    . Methods and Findings The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag...... = 0.04). Conclusions The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies......Background Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control...

  6. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    Science.gov (United States)

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  7. Suitability of fluorescent whitening compounds (FWCs) as indicators of human faecal contamination from septic tanks in rural catchments.

    Science.gov (United States)

    Dubber, Donata; Gill, Laurence W

    2017-12-15

    Rural river catchments are impacted by diffuse pollution sources from agricultural practices and on-site domestic wastewater treatment systems (DWWTS), mainly septic tanks. Methods that can distinguish between contamination sources will significantly increase water management efficiency as they will allow for the development and application of targeted remediation measures. Fluorescent whitening compounds (FWC), are used as optical brighteners in laundry detergents and enter the environment through the discharge of domestic wastewater effluents. Due to their human specific source and potential simple fluorometric measurement this represents a very attractive method to be used by state monitoring agencies. In this study the suitability of FWCs as chemical indicators for human faecal contamination has been investigated in rural Irish catchments. It was found that no quantitative measurements are possible for FWCs in natural waters when using simple fluorometric methods. Hence a simple presence/absence approach needs to be applied. The detectability of FWCs was quantified and found to decrease with higher organic matter content of the river water which has its own fluorescence. This enabled the establishment of equations to predict detection limits and assess the method's suitability for individual catchments based on organic matter concentrations. Furthermore a modified photodecay method is suggested that increases sensitivity of the technique by up to 59%. Applications at rural study sites found some removal of FWCs in percolation areas of DWWTSs but they were still detectable 40 cm below the infiltration depth. FWCs were also detected as distinguishable peaks in impacted streams where septic tank effluents have a high contribution to the river flow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota.

    Science.gov (United States)

    Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier

    2018-03-01

    Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.

  9. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans

    NARCIS (Netherlands)

    Tannock, G.W.; Munro, K.; Bibiloni, R.; Simon, M.A.; Hargreaves, P.; Gopal, P.; Harmsen, H.J.M.; Welling, Gjalt

    Human subjects consumed biscuits containing either galacto-oligosaccharides or fructo-oligosaccharides in a double-blinded, crossover study. The impact of supplementing the diet with three biscuits per day on the fecal microbiota was evaluated by selective culture of particular bacterial groups,

  10. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study.

    Science.gov (United States)

    Lankelma, Jacqueline M; Cranendonk, Duncan R; Belzer, Clara; de Vos, Alex F; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2017-09-01

    The gut microbiota is essential for the development of the intestinal immune system. Animal models have suggested that the gut microbiota also acts as a major modulator of systemic innate immunity during sepsis. Microbiota disruption by broad-spectrum antibiotics could thus have adverse effects on cellular responsiveness towards invading pathogens. As such, the use of antibiotics may attribute to immunosuppression as seen in sepsis. We aimed to test whether disruption of the gut microbiota affects systemic innate immune responses during endotoxemia in healthy subjects. In this proof-of-principle intervention trial, 16 healthy young men received either no treatment or broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days, after which all were administered lipopolysaccharide intravenously to induce a transient sepsis-like syndrome. At various time points, blood and faeces were sampled. Gut microbiota diversity was significantly lowered by the antibiotic treatment in all subjects. Clinical parameters, neutrophil influx, cytokine production, coagulation activation and endothelial activation during endotoxemia were not different between antibiotic-pretreated and control individuals. Antibiotic treatment had no impact on blood leucocyte responsiveness to various Toll-like receptor ligands and clinically relevant causative agents of sepsis ( Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli ) during endotoxemia. These findings suggest that gut microbiota disruption by broad-spectrum antibiotics does not affect systemic innate immune responses in healthy subjects during endotoxemia in humans, disproving our hypothesis. Further research is needed to test this hypothesis in critically ill patients. These data underline the importance of translating findings in mice to humans. ClinicalTrials.gov (NCT02127749; Pre-results). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  11. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.

    Science.gov (United States)

    Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Marc D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A

    2018-04-01

    Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls before outcome variable collection. Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk) that progressed from 30 to 60 min·d and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

  12. Human gut microbiota plays a role in the metabolism of drugs.

    Science.gov (United States)

    Jourova, Lenka; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-09-01

    The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.

  13. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse.

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T; Morales, Manuel B; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse (Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  14. Changes in behaviour and faecal glucocorticoid levels in response to increased human activities during weekends in the pin-tailed sandgrouse

    Science.gov (United States)

    Casas, Fabián; Benítez-López, Ana; Tarjuelo, Rocío; Barja, Isabel; Viñuela, Javier; García, Jesús T.; Morales, Manuel B.; Mougeot, Francois

    2016-12-01

    Human recreational activities are becoming increasingly widespread and frequent, a fact that may potentially exacerbate their effects on wildlife. These human-related disturbances on animals may induce behavioural and physiological changes that can ultimately affect their fitness, showing a similar anti-predator response that against natural predator or other threats. Here, we combine the use of behavioural and physiological approaches to assess the potential effect of winter human activities on a threatened farmland bird in Europe, the pin-tailed sandgrouse ( Pterocles alchata). We compared before, during and after weekend variations in human activity rates, pin-tailed sandgrouse behaviour (flocking and flying behaviour, interspecific association in mixed flocks and habitat use) and faecal glucocorticoid metabolite concentrations. Human disturbances, in particular those associated with hunting activities, peaked during weekends. Sandgrouse showed significant behavioural changes (increased sandgrouse-only flock sizes, increased proportion of birds flying and changes in habitat use) during weekends and higher faecal glucocorticoid metabolite concentrations after the weekends compared with during or before weekends. Therefore, physiological stress levels could be modulated by behavioural adjustments such as increased flock sizes and changes in habitat use that may allow sandgrouse to cope with increased human disturbance rates during weekends. Nevertheless, temporal and spatial organization of hunting days among groups of estates might be good strategies to buffer these potential adverse effects on wintering pin-tailed sandgrouse and other steppe species of conservation concern, while preserving a socio-economically important activity such as hunting.

  15. Influence of food consumption patterns and Galician lifestyle on human gut microbiota.

    Science.gov (United States)

    Castro-Penalonga, María; Roca-Saavedra, Paula; Miranda, Jose Manuel; Porto-Arias, Jose Julio; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos Manuel; Cepeda, Alberto

    2018-02-01

    The proportion of different microbial populations in the human gut is an important factor that in recent years has been linked to obesity and numerous metabolic diseases. Because there are many factors that can affect the composition of human gut microbiota, it is of interest to have information about what is the composition of the gut microbiota in different populations in order to better understand the possibilities for improving nutritional management. A group of 31 volunteers were selected according to established inclusion and exclusion criteria and were asked about their diet history, lifestyle patterns, and adherence to the Southern European Atlantic Diet. Fecal samples were taken and subsequently analyzed by real-time PCR. The results indicated different dietary patterns for subjects who consumed a higher amount of fruits, vegetables, legumes, and fish and a lower amount of bakery foods and precooked foods and snacks compared to Spanish consumption data. Most participants showed intermediate or high adherence to Southern European Atlantic Diet, and an analysis of gut microbiota showed high numbers of total bacteria and Actinobacteria, as well as high amounts of bacteria belonging to the genera Lactobacillus spp. and Bifidobacterium spp. A subsequent statistical comparison also revealed differences in gut microbiota depending on the subject's body weight, age, or degree of adherence to the Southern European Atlantic Diet.

  16. The human gut microbiota: metabolism and perspective in obesity.

    Science.gov (United States)

    Gomes, Aline Corado; Hoffmann, Christian; Mota, João Felipe

    2018-04-18

    The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.

  17. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study.

    Science.gov (United States)

    Gao, Weijiao; Weng, Jinlong; Gao, Yunong; Chen, Xiaochi

    2013-06-10

    The female genital tract is an important bacterial habitat of the human body, and vaginal microbiota plays a crucial role in vaginal health. The alteration of vaginal microbiota affects millions of women annually, and is associated with numerous adverse health outcomes, including human papillomavirus (HPV) infection. However, previous studies have primarily focused on the association between bacterial vaginosis and HPV infection. Little is known about the composition of vaginal microbial communities involved in HPV acquisition. The present study was performed to investigate whether HPV infection was associated with the diversity and composition of vaginal microbiota. A total of 70 healthy women (32 HPV-negative and 38 HPV-positive) with normal cervical cytology were enrolled in this study. Culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis was used to measure the diversity and composition of vaginal microbiota of all subjects. We found significantly greater biological diversity in the vaginal microbiota of HPV-positive women (p vaginal microbiota from the two groups had different profiles. Our study is the first systematic evaluation of an association between vaginal microbiota and HPV infection, and we have demonstrated that compared with HPV-negative women, the bacterial diversity of HPV-positive women is more complex and the composition of vaginal microbiota is different.

  18. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  19. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon.

    Directory of Open Access Journals (Sweden)

    Laura Harrell

    Full Text Available Past studies of the human intestinal microbiota are potentially confounded by the common practice of using bowel-cleansing preparations. We examined if colonic lavage changes the natural state of enteric mucosal-adherent microbes in healthy human subjects.Twelve healthy individuals were divided into three groups; experimental group, control group one, and control group two. Subjects in the experimental group underwent an un-prepped flexible sigmoidoscopy with biopsies. Within two weeks, subjects were given a standard polyethylene glycol-based bowel cleansing preparation followed by a second flexible sigmoidoscopy. Subjects in control group one underwent two un-prepped flexible sigmoidoscopies within one week. Subjects in the second control group underwent an un-prepped flexible sigmoidoscopy followed by a second flexible sigmoidoscopy after a 24-hour clear liquid diet within one week. The mucosa-associated microbial communities from the two procedures in each subject were compared using 16S rRNA gene based terminal restriction fragment length polymorphism (T-RFLP, and library cloning and sequencing.Clone library sequencing analysis showed that there were changes in the composition of the mucosa-associated microbiota in subjects after colonic lavage. These changes were not observed in our control groups. Standard bowel preparation altered the diversity of mucosa-associated microbiota. Taxonomic classification did not reveal significant changes at the phylum level, but there were differences observed at the genus level.Standard bowel cleansing preparation altered the mucosal-adherent microbiota in all of our subjects, although the degree of change was variable. These findings underscore the importance of considering the confounding effects of bowel preparation when designing experiments exploring the gut microbiota.

  20. The role of gut microbiota in health and disease : In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut

    NARCIS (Netherlands)

    von Martels, Julius Z. H.; Sadabad, Mehdi Sadaghian; Bourgonje, Arno R.; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J. M.

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition.

  1. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  2. Additional oligofructose/inulin does not increase faecal bifidobacteria in critically ill patients receiving enteral nutrition: a randomised controlled trial.

    Science.gov (United States)

    Majid, Hazreen A; Cole, Jayne; Emery, Peter W; Whelan, Kevin

    2014-12-01

    Patients with diarrhoea during enteral nutrition (EN) have been shown to have low faecal bifidobacteria concentrations. Oligofructose/inulin selectively stimulate the growth of bifidobacteria in healthy humans. This study investigates the effect of additional oligofructose/inulin on the gastrointestinal microbiota, short-chain fatty acids (SCFA) and faecal output in patients receiving EN. Adult patients in the intensive care unit (ICU) who were starting EN with a formula containing fibre were randomised to receive 7 g/d of additional oligofructose/inulin or an identically packaged placebo (maltodextrin). A fresh faecal sample was collected at baseline and following at least 7 days of supplementation. Faecal microbiota were analysed using fluorescent in-situ hybridisation and faecal output was monitored daily. Twenty-two patients (mean age 71 years) completed at least 7 days of intervention (mean 12 days). At the end of the intervention, there were no significant differences in the concentrations of bifidobacteria between the groups, after adjusting for baseline values (oligofructose/inulin 6.9 + 1.4, placebo 7.8 + 1.3 log10 cells/g dry faeces, P > 0.05), but there were significantly lower concentrations of Faecalibacterium prausnitzii (7.0 + 1.0 vs. 8.4 + 1.3 log10 cells/g, P = 0.01) and Bacteroides-Prevotella (9.1 + 1.0 vs. 9.9 + 0.9 log10 cells/g, P = 0.05) in patients receiving additional oligofructose/inulin. There were no differences in faecal concentrations of any SCFA, secretory IgA, daily faecal score or incidence of diarrhoea between the two groups. Additional oligofructose/inulin did not increase faecal bifidobacteria in critically ill patients receiving EN, although it did result in lower concentrations of F. prausnitzii and Bacteroides-Prevotella. This trial is registered at http://controlled-trials.com. Identifier: ISRCTN06446184. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All

  3. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    Science.gov (United States)

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. © 2014 British Society for Immunology.

  4. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    Science.gov (United States)

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Pedersen, Helle K; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Costea, Paul Igor; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  5. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  6. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  7. Emerging synbiotics and their effect on the composition and functionality of the human gut microbiota

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina

    Research indicates that the gut microbiota (GM) plays an important role in the health of the host and during recent years the increase in the composition and functionality of the gut microbiota has become of increasing interest. Probiotics, prebiotics or combinations hereof, so-called synbiotics......, may be used to change the composition and activity of the human GM and thereby potentially affect the host health beneficially. In this PhD study it was hypothesized that emerging synbiotics have the potential of modulating the human GM composition as well as the functionality. To gain the beneficial...... substrates. These findings indicate that the selected emerging prebiotics are able to provide a competitive advantage for NCFM and Bl-04. All the emerging synbiotics were able to induce changes in the predominant bacteria, observed as a decrease in the modified ratio of Bacteroidetes/Firmicutes (calculated...

  8. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Hildebrand, Falk ; Nielsen, Trine N.

    2015-01-01

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported1,2. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs...... on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified......, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa3,4. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures...

  9. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.

    Science.gov (United States)

    Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Li, Jennifer; Butcher, James; Deeke, Shelley Ann; Chen, Rui; Chiang, Cheng-Kang; Wen, Ming; Mack, David; Stintzi, Alain; Figeys, Daniel

    2016-06-24

    The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.

  10. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

    DEFF Research Database (Denmark)

    Zoetendal, Erwin G; Raes, Jeroen; van den Bogert, Bartholomeus

    2012-01-01

    in parallel. Comparative functional analysis with fecal metagenomes identified functions that are overrepresented in the small intestine, including simple carbohydrate transport phosphotransferase systems (PTS), central metabolism and biotin production. Moreover, metatranscriptome analysis supported high...... level in-situ expression of PTS and carbohydrate metabolic genes, especially those belonging to Streptococcus sp. Overall, our findings suggest that rapid uptake and fermentation of available carbohydrates contribute to maintaining the microbiota in the human small intestine....

  11. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics

    Directory of Open Access Journals (Sweden)

    Michael R. Gillings

    2015-09-01

    Full Text Available Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.

  12. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics.

    Science.gov (United States)

    Gillings, Michael R; Paulsen, Ian T; Tetu, Sasha G

    2015-09-08

    Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.

  14. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.

    Science.gov (United States)

    Biedermann, Luc; Brülisauer, Karin; Zeitz, Jonas; Frei, Pascal; Scharl, Michael; Vavricka, Stephan R; Fried, Michael; Loessner, Martin J; Rogler, Gerhard; Schuppler, Markus

    2014-09-01

    There has been a dramatic increase in investigations on the potential mechanistic role of the intestinal microbiota in various diseases and factors modulating intestinal microbial composition. We recently reported on intestinal microbial shifts after smoking cessation in humans. In this study, we aimed to conduct further microbial analyses and verify our previous results obtained by pyrosequencing using a direct quantitative microbial approach. Stool samples of healthy smoking human subjects undergoing controlled smoking cessation during a 9-week observational period were analyzed and compared with 2 control groups, ongoing smoking and nonsmoking subjects. Fluorescence in situ hybridization was applied to quantify specific bacterial groups. Intestinal microbiota composition was substantially altered after smoking cessation as characterized by an increase in key representatives from the phyla of Firmicutes (Clostridium coccoides, Eubacterium rectale, and Clostridium leptum subgroup) and Actinobacteria (HGC bacteria and Bifidobacteria) as well as a decrease in Bacteroidetes (Prevotella spp. and Bacteroides spp.) and Proteobacteria (β- and γ-subgroup of Proteobacteria). As determined by fluorescence in situ hybridization, an independent direct quantitative microbial approach, we could confirm that intestinal microbiota composition in humans is influenced by smoking. The characteristics of observed microbial shifts suggest a potential mechanistic association to alterations in body weight subsequent to smoking cessation. More importantly, regarding previously described microbial hallmarks of dysbiosis in inflammatory bowel diseases, a variety of observed microbial alterations after smoking cessation deserve further consideration in view of the divergent effect of smoking on the clinical course of Crohn's disease and ulcerative colitis.

  15. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers

    Directory of Open Access Journals (Sweden)

    Kabeerdoss Jayakanthan

    2011-12-01

    Full Text Available Abstract Background Probiotics are used to provide health benefits. The present study tested the effect of a probiotic yoghurt on faecal output of beta-defensin and immunoglobulin A in a group of young healthy women eating a defined diet. Findings 26 women aged 18-21 (median 19 years residing in a hostel were given 200 ml normal yoghurt every day for a week, followed by probiotic yoghurt containing Bifidobacterium lactis Bb12® (109 in 200 ml for three weeks, followed again by normal yoghurt for four weeks. Stool samples were collected at 0, 4 and 8 weeks and assayed for immunoglobulin A and human beta-defensin-2 by ELISA. All participants tolerated both normal and probiotic yoghurt well. Human beta-defensin-2 levels in faeces were not altered during the course of the study. On the other hand, compared to the basal sample, faecal IgA increased during probiotic feeding (P = 0.0184 and returned to normal after cessation of probiotic yoghurt intake. Conclusions Bifidobacterium lactis Bb12® increased secretory IgA output in faeces. This property may explain the ability of probiotics to prevent gastrointestinal and lower respiratory tract infections.

  16. Faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae among humans in Java, Indonesia, in 2001-2002.

    Science.gov (United States)

    Severin, Juliëtte A; Lestari, Endang Sri; Kloezen, Wendy; Lemmens-den Toom, Nicole; Mertaniasih, Ni Made; Kuntaman, Kuntaman; Purwanta, Marijam; Duerink, D Offra; Hadi, Usman; van Belkum, Alex; Verbrugh, Henri A; Goessens, Wil H

    2012-04-01

    To characterise commensal Escherichia coli and other Enterobacteriaceae with reduced susceptibility to cefotaxime that were collected in a large survey carried out among 3995 patients and healthy persons in two urban regions on Java, Indonesia, in 2001-2002. The putative extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae were analysed using double-disk synergy tests, isoelectric focusing, PCR assays, DNA sequencing, and pulsed-field gel electrophoresis (PFGE). On the day of discharge after five or more days of hospitalisation, at least 95 of 999 (9.5%) patients carried ESBL-positive Enterobacteriaceae as dominant faecal flora. Six patients were simultaneously colonised with E. coli and Klebsiella pneumoniae isolates with ESBL activity. On admission, only 6 of 998 (0.6%) patients were colonised. Faecal carriage of ESBL-producing Enterobacteriaceae among healthy persons or persons visiting a public health centre was not detected. The 107 ESBL-positive strains included 68 E. coli, 35 K. pneumoniae, and four other Enterobacteriaceae. bla(CTX-M-15) was the most prevalent ESBL in both E. coli (47.1%) and K. pneumoniae (45.7%), but the E. coli O25b-ST131 clone was virtually absent. Other ESBL types found were: SHV-2, -2a, -5, -12, CTX-M-3, -9, -14, and TEM-19. PFGE revealed extensive genetic diversity among the isolates. In 2001-2002, faecal carriage of ESBL-producing Enterobacteriaceae as dominant flora in Indonesia was almost exclusively hospital-associated. The presence of various bla(ESBL) genes and the extensive genetic diversity among isolates argue against a single/dominant strain outbreak. © 2012 Blackwell Publishing Ltd.

  17. Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease

    Science.gov (United States)

    Darzi, Youssef; Mongodin, Emmanuel F.; Pan, Chongle; Shah, Manesh; Halfvarson, Jonas; Tysk, Curt; Henrissat, Bernard; Raes, Jeroen; Verberkmoes, Nathan C.; Jansson, Janet K.

    2012-01-01

    Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers. PMID:23209564

  18. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Alison R Erickson

    Full Text Available Crohn's disease (CD is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD or colon (CCD. Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.

  19. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection.

    Science.gov (United States)

    Brotman, Rebecca M; Shardell, Michelle D; Gajer, Pawel; Tracy, J Kathleen; Zenilman, Jonathan M; Ravel, Jacques; Gravitt, Patti E

    2014-12-01

    We sought to describe the temporal relationship between vaginal microbiota and human papillomavirus (HPV) detection. Thirty-two reproductive-age women self-collected midvaginal swabs twice weekly for 16 weeks (937 samples). Vaginal bacterial communities were characterized by pyrosequencing of barcoded 16S rRNA genes and clustered into 6 community state types (CSTs). Each swab was tested for 37 HPV types. The effects of CSTs on the rate of transition between HPV-negative and HPV-positive states were assessed using continuous-time Markov models. Participants had an average of 29 samples, with HPV point prevalence between 58%-77%. CST was associated with changes in HPV status (PVaginal microbiota dominated by L. gasseri was associated with increased clearance of detectable HPV. Frequent longitudinal sampling is necessary for evaluation of the association between HPV detection and dynamic microbiota. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Phoebe Lin

    Full Text Available The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m, compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  1. Diversity of the human gastrointestinal tract microbiota revisited

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Smidt, H.; Vos, de W.M.

    2007-01-01

    Since the early days of microbiology, more than a century ago, representatives of over 400 different microbial species have been isolated and fully characterized from human gastrointestinal samples. However, during the past decade molecular ecological studies based on ribosomal RNA (rRNA) sequences

  2. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures

    Directory of Open Access Journals (Sweden)

    Lucía Vázquez

    2017-06-01

    Full Text Available This work introduces a novel real-time quantitative PCR (qPCR protocol for detecting and quantifying equol-producing bacteria. To this end, two sets of primers targeting the dihydrodaidzein reductase (ddr and tetrahydrodaidzein reductase (tdr genes, which are involved in the synthesis of equol, were designed. The primers showed high specificity and sensitivity when used to examine DNA from control bacteria, such as Slackia isoflavoniconvertens, Slackia equolifaciens, Asaccharobacter celatus, Adlercreutzia equolifaciens, and Enterorhabdus mucosicola. To demonstrate the validity and reliability of the protocol, it was used to detect and quantify equol-producing bacteria in human faecal samples and their derived slurry cultures. These samples were provided by 18 menopausal women under treatment of menopause symptoms with a soy isoflavone concentrate, among whom three were known to be equol-producers given the prior detection of the molecule in their urine. The tdr gene was detected in the faeces of all these equol-producing women at about 4–5 log10 copies per gram of faeces. In contrast, the ddr gene was only amplified in the faecal samples of two of these three women, suggesting the presence in the non-amplified sample of reductase genes unrelated to those known to be involved in equol formation and used for primer design in this study. When tdr and ddr were present in the same sample, similar copy numbers of the two genes were recorded. However, no significant increase in the copy number of equol-related genes along isoflavone treatment was observed. Surprisingly, positive amplification for both tdr and ddr genes was obtained in faecal samples and derived slurry cultures from two non-equol producing women, suggesting the genes could be non-functional or the daidzein metabolized to other compounds in samples from these two women. This novel qPCR tool provides a technique for monitoring gut microbes that produce equol in humans. Monitoring equol

  3. The core faecal bacterial microbiome of Irish Thoroughbred racehorses.

    Science.gov (United States)

    O' Donnell, M M; Harris, H M B; Jeffery, I B; Claesson, M J; Younge, B; O' Toole, P W; Ross, R P

    2013-12-01

    In this study, we characterized the gut microbiota in six healthy Irish thoroughbred racehorses and showed it to be dominated by the phyla Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobia, Actinobacteria, Euryarchaeota, Fibrobacteres and Spirochaetes. Moreover, all the horses harboured Clostridium, Fibrobacter, Faecalibacterium, Ruminococcus, Eubacterium, Oscillospira, Blautia Anaerotruncus, Coprococcus, Treponema and Lactobacillus spp. Notwithstanding the sample size, it was noteworthy that the core microbiota species assignments identified Fibrobacter succinogenes, Eubacterium coprostanoligenes, Eubacterium hallii, Eubacterium ruminantium, Oscillospira guillermondii, Sporobacter termiditis, Lactobacillus equicursoris, Treponema parvum and Treponema porcinum in all the horses. This is the first study of the faecal microbiota in the Irish thoroughbred racehorse, a significant competitor in the global bloodstock industry. The information gathered in this pilot study provides a foundation for veterinarians and other equine health-associated professionals to begin to analyse the microbiome of performance of racehorses. This study and subsequent work may lead to alternate dietary approaches aimed at minimizing the risk of microbiota-related dysbiosis in these performance animals. Although Irish thoroughbreds are used nationally and internationally as performance animals, very little is known about the core faecal microbiota of these animals. This is the first study to characterize the bacterial microbiota present in the Irish thoroughbred racehorse faeces and elucidate a core microbiome irrespective of diet, animal management and geographical location. © 2013 The Society for Applied Microbiology.

  4. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  5. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health.

    Science.gov (United States)

    Wasielewski, Helen; Alcock, Joe; Aktipis, Athena

    2016-05-01

    Diet has been known to play an important role in human health since at least the time period of the ancient Greek physician Hippocrates. In the last decade, research has revealed that microorganisms inhabiting the digestive tract, known as the gut microbiota, are critical factors in human health. This paper draws on concepts of cooperation and conflict from ecology and evolutionary biology to make predictions about host-microbiota interactions involving nutrients. To optimally extract energy from some resources (e.g., fiber), hosts require cooperation from microbes. Other nutrients can be utilized by both hosts and microbes (e.g., simple sugars, iron) in their ingested form, which may lead to greater conflict over these resources. This framework predicts that some negative health effects of foods are driven by the direct effects of these foods on human physiology and by indirect effects resulting from microbiome-host competition and conflict (e.g., increased invasiveness and inflammation). Similarly, beneficial effects of some foods on host health may be enhanced by resource sharing and other cooperative behaviors between host and microbes that may downregulate inflammation and virulence. Given that some foods cultivate cooperation between hosts and microbes while others agitate conflict, host-microbe interactions may be novel targets for interventions aimed at improving nutrition and human health. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  6. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    Science.gov (United States)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  7. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    Science.gov (United States)

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  8. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis.

    Science.gov (United States)

    Kim, Bong-Soo; Kim, Jong Nam; Yoon, Seok-Hwan; Chun, Jongsik; Cerniglia, Carl E

    2012-06-01

    The indigenous human intestinal microbiota could be disrupted by residues of antibiotics in foods as well as therapeutically administered antibiotics to humans. These disruptions may lead to adverse health outcomes. To observe the possible impact of residues of antibiotics at concentrations below therapeutic levels on human intestinal microbiota, we performed studies using in vitro cultures of fecal suspensions from three individuals with 10 different concentrations (0, 0.1, 0.5, 1, 5, 10, 15, 25, 50 and 150 μg/ml) of the fluoroquinolone, enrofloxacin. The bacterial communities of the control and enrofloxacin dosed fecal samples were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. In addition, changes of functional gene expression were analyzed by a pyrosequencing-based random whole-community mRNA sequencing method. Although each individual had a unique microbial composition, the communities of all individuals were affected by enrofloxacin. The proportions of two phyla, namely, Bacteroidetes and Proteobacteria, were significantly reduced with increasing concentrations of enrofloxacin exposure, while the proportion of Firmicutes increased. Principal Coordinate Analysis (PCoA) using the Fast UniFrac indicated that the community structures of intestinal microbiota were shifted by enrofloxacin. Most of the mRNA transcripts and the anti-microbial drug resistance genes increased with increasing concentrations of enrofloxacin. 16S rRNA gene pyrosequencing of control and enrofloxacin treated fecal suspensions provided valuable information of affected bacterial taxa down to the species level, and the community transcriptomic analyses using mRNA revealed the functional gene expression responses of the changed bacterial communities by enrofloxacin. Published by Elsevier Ltd.

  9. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    Science.gov (United States)

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  10. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial

    Science.gov (United States)

    Jarocka-Cyrta, Elżbieta; Markiewicz, Lidia Hanna

    2018-01-01

    Celiac disease (CD) is associated with intestinal microbiota alterations. The administration of prebiotics could be a promising method of restoring gut homeostasis in CD. The aim of this study was to evaluate the effect of prolonged oligofructose-enriched inulin (Synergy 1) administration on the characteristics and metabolism of intestinal microbiota in CD children following a gluten-free diet (GFD). Thirty-four paediatric CD patients (mean age 10 years; 62% females) on a GFD were randomized into two experimental groups receiving Synergy 1 (10 g/day) or placebo (maltodextrin; 7 g/day) for 3 months. The quantitative gut microbiota characteristics and short-chain fatty acids (SCFAs) concentration were analysed. In addition, side effects were monitored. Generally, the administration of Synergy 1 in a GFD did not cause any side effects. After the intervention period, Bifidobacterium count increased significantly (p bacterial metabolite production in CD children. PMID:29439526

  11. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans.

    Directory of Open Access Journals (Sweden)

    Luc Biedermann

    Full Text Available BACKGROUND: The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD. Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. METHODS: During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. RESULTS: Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. CONCLUSIONS: These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.

  12. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    Science.gov (United States)

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  13. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  14. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  15. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Directory of Open Access Journals (Sweden)

    Federica Gigliucci

    2018-02-01

    Full Text Available The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection.

  16. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Science.gov (United States)

    Gigliucci, Federica; von Meijenfeldt, F. A. Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E.; Ahmad, Hamideh M.; Raangs, Gerwin C.; Friedrich, Alex W.; Rossen, John W. A.; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC) infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection. PMID:29468143

  17. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System: A Mini Review.

    Science.gov (United States)

    Toscano, Marco; De Grandi, Roberta; Grossi, Enzo; Drago, Lorenzo

    2017-01-01

    The human milk is fundamental for a correct development of newborns, as it is a source not only of vitamins and nutrients, but also of commensal bacteria. The microbiota associated to the human breast milk contributes to create the "initial" intestinal microbiota of infants, having also a pivotal role in modulating and influencing the newborns' immune system. Indeed, the transient gut microbiota is responsible for the initial change from an intrauterine Th2 prevailing response to a Th1/Th2 balanced one. Bacteria located in both colostrum and mature milk can stimulate the anti-inflammatory response, by stimulating the production of specific cytokines, reducing the risk of developing a broad range of inflammatory diseases and preventing the expression of immune-mediated pathologies, such as asthma and atopic dermatitis. The aim of the present Mini Review is to elucidate the specific immunologic role of the human milk-associated microbiota and its impact on the newborn's health and life, highlighting the importance to properly study the biological interactions in a bacterial population and between the microbiota and the host. The Auto Contractive Map, for instance, is a promising analytical methodology based on artificial neural network that can elucidate the specific role of bacteria contained in the breast milk in modulating the infants' immunological response.

  18. Role of the Human Breast Milk-Associated Microbiota on the Newborns’ Immune System: A Mini Review

    Directory of Open Access Journals (Sweden)

    Marco Toscano

    2017-10-01

    Full Text Available The human milk is fundamental for a correct development of newborns, as it is a source not only of vitamins and nutrients, but also of commensal bacteria. The microbiota associated to the human breast milk contributes to create the “initial” intestinal microbiota of infants, having also a pivotal role in modulating and influencing the newborns’ immune system. Indeed, the transient gut microbiota is responsible for the initial change from an intrauterine Th2 prevailing response to a Th1/Th2 balanced one. Bacteria located in both colostrum and mature milk can stimulate the anti-inflammatory response, by stimulating the production of specific cytokines, reducing the risk of developing a broad range of inflammatory diseases and preventing the expression of immune-mediated pathologies, such as asthma and atopic dermatitis. The aim of the present Mini Review is to elucidate the specific immunologic role of the human milk-associated microbiota and its impact on the newborn’s health and life, highlighting the importance to properly study the biological interactions in a bacterial population and between the microbiota and the host. The Auto Contractive Map, for instance, is a promising analytical methodology based on artificial neural network that can elucidate the specific role of bacteria contained in the breast milk in modulating the infants’ immunological response.

  19. Metabolism of azo dyes by human skin microbiota.

    Science.gov (United States)

    Stingley, Robin L; Zou, Wen; Heinze, Thomas M; Chen, Huizhong; Cerniglia, Carl E

    2010-01-01

    Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74-100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes.

  20. High fat diet drives obesity regardless the composition of gut microbiota in mice

    OpenAIRE

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Deborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurelia; Gerard, Philippe; Siddharth, Jay; Lauber, Christian L.

    2016-01-01

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not...

  1. Evaluation on prebiotic properties of β-glucan and oligo-β-glucan from mushrooms by human fecal microbiota in fecal batch culture

    Directory of Open Access Journals (Sweden)

    Chiraphon Chaikliang

    2015-11-01

    Full Text Available Background: β-glucan is dietary fiber, a structural polysaccharide, β-linked linear chains of D-glucose polymers with variable frequency of branches. β-glucan is isolated from different sources such as cell walls of baker’s yeast (Saccharomyces cerevisiae, cereals (oat and barley and various species of mushrooms. Among 8 mushrooms in the study, Schizophylum commune Fr and Auricularia auricula Judae had the highest in β-glucan contents and the cheapest cost of mushroom per content of β-glucan, respectively. Even the function of β-glucan on immune modulation has been known however no report on interaction between β-glucan and human gut microbiota. Gut microbiota is thought to have health effects by interaction with non-digestible component particular fermentable dietary fiber. It is important to correlate the specific groups of the microbial communities associated with β-glucan fermentation and the consequential SCFA profiles. β-glucan from mushroom may has potential prebiotic function similar to those from commercial yeast (Saccharomyces cerevisiae β-glucan. Objective: To evaluate on prebiotic properties of soluble β-glucans and oligo-β-glucans from Schizophylum commune Fr and Auricularia auricula Judae by fecal fermentation in batch culture. Methods: In vitro fecal fermentation in anaerobic batch cultures under simulated conditions similar to human colon with human faecal samples from three donors were performed. Comparison on 3 β-glucans and 2 oligo-β-glucans have been studied. Sample was taken at 0 h, 24 h and 48 h to analyze the numbers of bacterial changes by fluorescent in situ hybridization (FISH technique. Short chain fatty acids (SCFA were analyzed by HPLC. The prebiotic index (PI was calculated according to the change of 5 specific bacterial genus within 48 h fermentation. Results: Soluble β-glucan from Auricularia auricula Judae increased numbers of bifidobacteria and lactobacillus significantly (P<0.05. The PI of

  2. Challenges in simulating the human gut for understanding the role of the microbiota in obesity.

    Science.gov (United States)

    Aguirre, M; Venema, K

    2017-02-07

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.

  3. Reduced biliary sterol output with no change in total faecal excretion in mice expressing a human apolipoprotein A-I variant.

    Science.gov (United States)

    Parolini, Cinzia; Caligari, Silvia; Gilio, Donatella; Manzini, Stefano; Busnelli, Marco; Montagnani, Marco; Locatelli, Marcello; Diani, Erika; Giavarini, Flavio; Caruso, Donatella; Roda, Enrico; Roda, Aldo; Sirtori, Cesare R; Chiesa, Giulia

    2012-10-01

    Apolipoprotein (apo)A-I(M) (ilano), is a molecular variant of apoA-I(wild-type), associated with dramatically low HDL-cholesterol levels, but no increased risk for cardiovascular disease. In view of the present uncertainties on the role of apoA-I in liver cholesterol removal by way of bile acids and neutral sterols, and of the greater capacity of apoA-I(M) (ilano) to remove arterial cholesterol, biliary sterol metabolism was evaluated in transgenic mice expressing apoA-I(M) (ilano). ApoA-I(M) (ilano) mice were fed a high-cholesterol/high-fat diet, and compared with human apoA-I(wild-type) mice. Plasma lipid levels, hepatic bile flow and composition, hepatic and intestinal cholesterol and bile acid content, and faecal sterol content were measured. Moreover, the expression of hepatic ABCA1, SR-B1 and that of hepatic and intestinal genes involved in bile acid metabolism were evaluated. The dietary treatment led to a strong elevation in HDL-cholesterol levels in A-I(M) (ilano) mice, associated with an increased expression of hepatic ABCA1. ApoA-I(M) (ilano) mice showed lower cholesterol output from the liver compared with apoA-I(wild-type) mice, in the absence of liver sterol accumulation. Faecal excretion of neutral sterols and bile acids was similar in the two mouse lines. In spite of a different response to the dietary challenge, with an increased ABCA1 expression and a lower hepatic cholesterol output in apoA-I(M) (ilano) mice, the net sterol excretion is comparable in the two transgenic lines. © 2012 John Wiley & Sons A/S.

  4. Identification of infectious microbiota from oral cavity environment of various population group patients as a preventive approach to human health risk factors

    OpenAIRE

    Paweł J. Zawadzki; Konrad Perkowski; Bohdan Starościak; Wanda Baltaza; Marcin Padzik; Krzysztof Pionkowski; Lidia Chomicz

    2016-01-01

    Introduction and objective This study presents the results of comparative investigations aimed to determine microbiota that can occur in the oral environment in different human populations. The objective of the research was to identify pathogenic oral microbiota, the potential cause of health complications in patients of different population groups. Material and Methods The study included 95 patients requiring dental or surgical treatment; their oral cavity environment microbiota as...

  5. Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors.

    Science.gov (United States)

    Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M

    2015-11-15

    Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    Directory of Open Access Journals (Sweden)

    Caleigh M. Sawicki

    2017-02-01

    Full Text Available Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1 modulation of colonic microflora; and/or (2 colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%, resistant starch (16%, and chemically synthesized fibers (15%. Short-chain fatty acid concentration (47% and bacterial composition (88% were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  7. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.

    Science.gov (United States)

    Chen, Ligen; Xu, Wei; Chen, Dan; Chen, Guijie; Liu, Junwei; Zeng, Xiaoxiong; Shao, Rong; Zhu, Hongjun

    2018-06-01

    Sulfated polysaccharides from marine algae exhibit various bioactivities with potential benefits for human health and well-being. In this study, the in vitro digestibility and fermentability of polysaccharides from the brown seaweed Ascophyllum nodosum (AnPs) were examined, and the effects of AnPs on gut microbiota were determined using high-throughput sequencing technology. Salivary amylase, artificial gastric juice, and intestinal juice had no effect on AnPs, but the molecular weight of AnPs and reducing sugar decreased significantly after fermentation by gut microbiota. AnPs significantly modulated the composition of the gut microbiota; in particular, they increased the relative abundance of Bacteroidetes and Firmicutes, suggesting the potential for AnPs to decrease the risk of obesity. Furthermore, the total SCFA content after fermentation increased significantly. These results suggest that AnPs have potential uses as functional food components to improve human gut health. Copyright © 2018. Published by Elsevier B.V.

  8. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2015-01-01

    Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. PMID:25431456

  9. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.

    Science.gov (United States)

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2016-01-01

    The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. The potential impact of density dependent fecundity on the use of the faecal egg count reduction test for detecting drug resistance in human hookworms.

    Directory of Open Access Journals (Sweden)

    Andrew C Kotze

    Full Text Available Current efforts to control human soil-transmitted helminth (STH infections involve the periodic mass treatment of people, particularly children, in all endemic areas, using benzimidazole and imidothiazole drugs. Given the fact that high levels of resistance have developed to these same drugs in roundworms of livestock, there is a need to monitor drug efficacy in human STHs. The faecal egg count reduction test (FECRT, in which faecal egg output is measured pre- and post-drug treatment, is presently under examination by WHO as a means of detecting the emergence of resistance. We have examined the potential impact of density dependent fecundity on FECRT data. Recent evidence with the canine hookworm indicates that the density dependent egg production phenomenon shows dynamic properties in response to drug treatment. This will impact on measurements of drug efficacy, and hence drug resistance. It is likely that the female worms that survive a FECRT drug treatment in some human cases will respond to the relaxation of density dependent constraints on egg production by increasing their egg output significantly compared to their pre-treatment levels. These cases will therefore underestimate drug efficacy in the FECRT. The degree of underestimation will depend on the ability of the worms within particular hosts to increase their egg output, which will in turn depend on the extent to which their egg output is constrained prior to the drug treatment. As worms within different human cases will likely be present at quite different densities prior to a proposed FECRT, there is potential for the effects of this phenomenon on drug efficacy measurements to vary considerably within any group of potential FECRT candidates. Measurement of relative drug efficacy may be improved by attempting to ensure a consistent degree of underestimation in groups of people involved in separate FECRTs. This may be partly achieved by omission of cases with the heaviest infections

  11. Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Edda Russo

    2018-01-01

    Full Text Available In this study Next-Generation Sequencing (NGS was used to analyze and compare human microbiota from three different compartments, i.e., saliva, feces, and cancer tissue (CT, of a selected cohort of 10 Italian patients with colorectal cancer (CRC vs. 10 healthy controls (saliva and feces. Furthermore, the Fusobacterium nucleatum abundance in the same body site was investigated through real-time quantitative polymerase chain reaction (qPCR to assess the association with CRC. Differences in bacterial composition, F. nucleatum abundance in healthy controls vs. CRC patients, and the association of F. nucleatum with clinical parameters were observed. Taxonomic analysis based on 16S rRNA gene, revealed the presence of three main bacterial phyla, which includes about 80% of reads: Firmicutes (39.18%, Bacteroidetes (30.36%, and Proteobacteria (10.65%. The results highlighted the presence of different bacterial compositions; in particular, the fecal samples of CRC patients seemed to be enriched with Bacteroidetes, whereas in the fecal samples of healthy controls Firmicutes were one of the major phyla detected though these differences were not statistically significant. The CT samples showed the highest alpha diversity values. These results emphasize a different taxonomic composition of feces from CRC compared to healthy controls. Despite the low number of samples included in the study, these results suggest the importance of microbiota in the CRC progression and could pave the way to the development of therapeutic interventions and novel microbial-related diagnostic tools in CRC patients.

  12. Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s

    NARCIS (Netherlands)

    Verhulst, N.O.; Mukabana, W.R.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae

  13. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    International Nuclear Information System (INIS)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1986-01-01

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. [ 3 H]-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of [ 3 H]-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 d of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP

  14. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans : A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Damink, Steven W. M. Olde; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  15. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Olde Damink, Steven W. M.; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  16. Diversity of bifidobacteria within the infant gut microbiota.

    Directory of Open Access Journals (Sweden)

    Francesca Turroni

    Full Text Available The human gastrointestinal tract (GIT represents one of the most densely populated microbial ecosystems studied to date. Although this microbial consortium has been recognized to have a crucial impact on human health, its precise composition is still subject to intense investigation. Among the GIT microbiota, bifidobacteria represent an important commensal group, being among the first microbial colonizers of the gut. However, the prevalence and diversity of members of the genus Bifidobacterium in the infant intestinal microbiota has not yet been fully characterized, while some inconsistencies exist in literature regarding the abundance of this genus.In the current report, we assessed the complexity of the infant intestinal bifidobacterial population by analysis of pyrosequencing data of PCR amplicons derived from two hypervariable regions of the 16 S rRNA gene. Eleven faecal samples were collected from healthy infants of different geographical origins (Italy, Spain or Ireland, feeding type (breast milk or formula and mode of delivery (vaginal or caesarean delivery, while in four cases, faecal samples of corresponding mothers were also analyzed.In contrast to several previously published culture-independent studies, our analysis revealed a predominance of bifidobacteria in the infant gut as well as a profile of co-occurrence of bifidobacterial species in the infant's intestine.

  17. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota.

    Science.gov (United States)

    Watson, Henry; Mitra, Suparna; Croden, Fiona C; Taylor, Morag; Wood, Henry M; Perry, Sarah L; Spencer, Jade A; Quirke, Phil; Toogood, Giles J; Lawton, Clare L; Dye, Louise; Loadman, Paul M; Hull, Mark A

    2017-09-26

    Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). A randomised, open-label, cross-over trial of 8 weeks' treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week 'washout' period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium , Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure. ISRCTN18662143. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  18. The Influence of Different Apple Based Supplements on the Intestinal Microbiota of Humans

    DEFF Research Database (Denmark)

    Bergström, Anders; Wilcks, Andrea; Ravn-Haren, Gitte

    2010-01-01

    Background and objective: The present project is part of the large ISAFRUIT project, where one of the objectives is to identify effects of apple and apple product on parameters related to gut health. In a previous rat study we observed changes in the intestinal microbiota of rats fed whole apples......, pomace or apple pectin ([1], and we were interested in finding out if the same effect can be observed in humans. Method: The study was conducted as a randomized, controlled 5 x 28 days cross-over study with 24 healthy persons of both genders. The persons were following a pectin- and polyphenol free......-free), 3) cloudy juice (apple juice with pulp), and 4) pomace (press cake from the cloudy juice production process). Fecal samples were taken before and after each diet period. After DNA extraction, Denaturing Gradient Gel Electrophoresis (DGGE) with universal primers and specific primers...

  19. ResistoMap-online visualization of human gut microbiota antibiotic resistome.

    Science.gov (United States)

    Yarygin, Konstantin S; Kovarsky, Boris A; Bibikova, Tatyana S; Melnikov, Damir S; Tyakht, Alexander V; Alexeev, Dmitry G

    2017-07-15

    We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. yarygin@phystech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  20. Characterization of the human predominant fecal microbiota - With special focus on the Clostridial clusters IV and XIVa

    OpenAIRE

    Maukonen, Johanna

    2012-01-01

    The human gut microbiota is considered to be a complex fermentor with a metabolic potential rivaling that of the liver. In addition to its primary function in digestion, it affects the human host in numerous ways: maturation and modulation of the immune system, production of short-chain fatty acids and gases, transformation of bile acids, formation of vitamins, and also potential formation of mutagenic, toxic, and carcinogenic substances. Commensal bacteria are able to modulate the expression...

  1. The threats for human health induced by food pests of Plodia interpunctella as reservoirs of infectious microbiota

    Science.gov (United States)

    Zawadzki, Paweł J.; Starościak, Bohdan; Baltaza, Wanda; Dybicz, Monika; Pionkowski, Krzysztof; Pawłowski, Witold; Kłyś, Małgorzata; Chomicz, Lidia

    World-wide distributed pests of Plodia interpunctella occur with increasing frequency also in Poland, in areas where food is prepared and stored, in dwellings, buildings of public use, hospitals. Larvae damage various products causing economic losses. There were no data about microbiota transmission by pests. The aim of our systematic studies firstly conducted in Poland was to explain a role of pests as reservoirs of microbiota and assess health risk induced by them in human environments. 300 adults and 200 larvae, collected in households and health facilities by traps and directly from products, were examined by light microscopy, in vitro cultivations, molecular techniques; the susceptibility /resistance of microbiota to chemicals was also assessed. Gram+ bacteriae of genera Enterococcus, Micrococcus, Bacillus, Gram-: Klebsiella, Escherichia, mold fungi: Aspergillus, Penicillium and yeast-like fungi were identified, including strains potentially pathogenic for humans. In the European Union countries, the food circulation is audited by the law; chemicals are applied to eliminate P.interpunctella pests causing economic losses. Our successive studies showed that pyralids may generate health problems as food pests and as reservoirs of microbiota. Sources of the pathogenic, drug-resistant strains revealed by us, not identified earlier, may be particularly dangerous for elder persons, with weakened immune system, persons from groups of high risk of infections. The increased awareness of the problem is necessary for more efficacy of preventive measures. A monitoring of consequences of the health risk induced by the pests may supply data useful for adequate practical approach.

  2. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Shaofeng Bai

    Full Text Available Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  3. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  4. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    Science.gov (United States)

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, Matthew C. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Research; Wu, Meng [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology; Rodionov, Dmitry A. [Russian Academy of Sciences (RAS), Moscow (Russian Federation). A.A. Kharkevich Inst. for Information Transmission Problems; Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Li, Xiaoqing [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Cheng, Jiye [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Griffin, Nicholas W. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Barratt, Michael J. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Osterman, Andrei L. [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Gordon, Jeffrey I. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc

    2017-05-17

    Micronutrient deficiencies afflict two billion people. And while the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the developing or adult gut microbiota. Thus, we established a community of 44 cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined, micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A, and manifesting transcriptional changes involving various metabolic pathways. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR functions as a repressor of an adjacent AcrAB-TolC efflux system plus other members of its regulon. Retinol efflux measurements in wild-type, acrR-mutant, and complemented acrR mutant strains, plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity. We associated acute vitamin A deficiency with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies.

  6. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  7. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  8. Mining the human intestinal microbiota for biomarkers associated with metabolic disorders

    NARCIS (Netherlands)

    Hermes, Gerben

    2016-01-01

    After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of microbes, collectively termed the GI microbiota, that develop intimate interactions with our body. Recent evidence indicates that the GI microbiota and its products may contribute to the development of

  9. The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance.

    Science.gov (United States)

    Pettigrew, Melinda M; Johnson, J Kristie; Harris, Anthony D

    2016-05-01

    Hospital-acquired infections are increasing in frequency due to multidrug resistant organisms (MDROs), and the spread of MDROs has eroded our ability to treat infections. Health care professionals cannot rely solely on traditional infection control measures and antimicrobial stewardship to prevent MDRO transmission. We review research on the microbiota as a target for infection control interventions. We performed a literature review of key research findings related to the microbiota as a target for infection control interventions. These data are summarized and used to outline challenges, opportunities, and unanswered questions in the field. The healthy microbiota provides protective functions including colonization resistance, which refers to the microbiota's ability to prevent colonization and/or expansion of pathogens. Antibiotic use and other exposures in hospitalized patients are associated with disruptions of the microbiota that may reduce colonization resistance and select for antibiotic resistance. Novel methods to exploit protective mechanisms provided by an intact microbiota may provide the key to preventing the spread of MDROs in the health care setting. Research on the microbiota as a target for infection control has been limited. Epidemiologic studies will facilitate progress toward the goal of manipulating the microbiota for control of MDROs in the health care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica.

    Science.gov (United States)

    Jin, Jong-Sik; Touyama, Mutsumi; Yamada, Shin; Yamazaki, Takashi; Benno, Yoshimi

    2014-01-01

    The human intestinal microbiota (HIM) settles from birth and continues to change phenotype by some factors (e.g. host's diet) throughout life. However, the effect of extreme life environment on human HIM composition is not well known. To understand HIM fluctuation under extreme life environment in humans, fecal samples were collected from six Japanese men on a long Antarctic expedition. They explored Antarctica for 3 months and collected their fecal samples at once-monthly intervals. Using terminal restriction fragment length polymorphism (T-RFLP) and real time polymerase chain reaction (PCR) analysis, the composition of HIM in six subjects was investigated. Three subjects presented restoration of HIM after the expedition compared versus before and during the expedition. Two thirds samples collected during the expedition belonged to the same cluster in dendrogram. However, all through the expedition, T-RFLP patterns showed interindividual variability. Especially, Bifidobacterium spp. showed a tendency to decrease during and restore after the expedition. A reduction of Bifidobacterium spp. was observed in five subjects the first 1 month of the expedition. Bacteroides thetaiotaomicron, which is thought to proliferate during emotional stress, significantly decreased in one subject, indicating that other factors in addition to emotional stress may affect the composition of HIM in this study. These findings could be helpful to understand the effect of extreme life environment on HIM.

  11. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  12. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Directory of Open Access Journals (Sweden)

    Jay Siddharth

    Full Text Available The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets correlating with formula (vs breast feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  13. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic:a randomised, double-blind, placebo-controlled, cross-over, human intervention study

    OpenAIRE

    Healey, Genelle; Murphy, Rinki; Butts, Chrissie; Brough, Louise; Whelan, Kevin; Coad, Jane

    2018-01-01

    Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-...

  14. Ileal and faecal protein digestibility measurement in humans and other non-ruminants - a comparative species view

    NARCIS (Netherlands)

    Hendriks, W.H.; Baal, van J.; Bosch, G.

    2012-01-01

    A comparative non-ruminant species view of the contribution of the large intestinal metabolism to inaccuracies in nitrogen and amino acid absorption measurements is provided to assess potential implications for the determination of crude protein/amino acid digestibility in adult humans consuming

  15. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation

    Science.gov (United States)

    Tailford, Louise E.; Owen, C. David; Walshaw, John; Crost, Emmanuelle H.; Hardy-Goddard, Jemma; Le Gall, Gwenaelle; de Vos, Willem M.; Taylor, Garry L.; Juge, Nathalie

    2015-07-01

    The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease.

  16. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean...... and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose...

  17. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  18. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study.

    Science.gov (United States)

    Losasso, Carmen; Eckert, Ester M; Mastrorilli, Eleonora; Villiger, Jorg; Mancin, Marzia; Patuzzi, Ilaria; Di Cesare, Andrea; Cibin, Veronica; Barrucci, Federica; Pernthaler, Jakob; Corno, Gianluca; Ricci, Antonia

    2018-01-01

    Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant's dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs) were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  19. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Carmen Losasso

    2018-03-01

    Full Text Available Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant’s dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  20. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota.

    Science.gov (United States)

    Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre

    2017-01-01

    Benzo[ a ]pyrene (B[ a ]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[ a ]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[ a ]P on two distinct human fecal microbiota. B[ a ]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[ a ]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[ a ]P induces a specific deviation in the microbial metabolism.

  1. ‘Lachnoclostridium massiliosenegalense’, a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of ‘Lachnoclostridium massiliosenegalense’ strain mt23T (=CSUR P299 =DSM 102084, a new bacterial species isolated from the gut microbiota of a healthy young girl from Senegal.

  2. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells.

    Science.gov (United States)

    Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2014-08-01

    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.

  3. Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease.

    Science.gov (United States)

    Robinson, Ainsley M; Gondalia, Shakuntla V; Karpe, Avinash V; Eri, Rajaraman; Beale, David J; Morrison, Paul D; Palombo, Enzo A; Nurgali, Kulmira

    2016-12-01

    Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.

  4. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Directory of Open Access Journals (Sweden)

    Julie Reygner

    2016-11-01

    Full Text Available The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil of the pesticide chlorpyrifos (CPF on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract. The last three reactors (representing the colon were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses; (ii the changes are “SHIME®-compartment” specific; and (iii the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.

  5. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Science.gov (United States)

    Reygner, Julie; Joly Condette, Claire; Bruneau, Aurélia; Delanaud, Stéphane; Rhazi, Larbi; Depeint, Flore; Abdennebi-Najar, Latifa; Bach, Veronique; Mayeur, Camille; Khorsi-Cauet, Hafida

    2016-01-01

    The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil) of the pesticide chlorpyrifos (CPF) on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract). The last three reactors (representing the colon) were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts) and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i) CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses); (ii) the changes are “SHIME®-compartment” specific; and (iii) the changes are associated with minor alterations in the production of short-chain fatty acids and lactate. PMID:27827942

  6. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?

    Science.gov (United States)

    Sakwinska, O; Foata, F; Berger, B; Brüssow, H; Combremont, S; Mercenier, A; Dogra, S; Soh, S-E; Yen, J C K; Heong, G Y S; Lee, Y S; Yap, F; Meaney, M J; Chong, Y-S; Godfrey, K M; Holbrook, J D

    2017-10-13

    The acquisition and early maturation of infant microbiota is not well understood despite its likely influence on later health. We investigated the contribution of the maternal microbiota to the microbiota of infant gut and nose in the context of mode of delivery and feeding. Using 16S rRNA sequencing and specific qPCR, we profiled microbiota of 42 mother-infant pairs from the GUSTO birth cohort, at body sites including maternal vagina, rectum and skin; and infant stool and nose. In our study, overlap between maternal vaginal microbiota and infant faecal microbiota was minimal, while the similarity between maternal rectal microbiota and infant microbiota was more pronounced. However, an infant's nasal and gut microbiota were no more similar to that of its own mother, than to that of unrelated mothers. These findings were independent of delivery mode. We conclude that the transfer of maternal vaginal microbes play a minor role in seeding infant stool microbiota. Transfer of maternal rectal microbiota could play a larger role in seeding infant stool microbiota, but approaches other than the generally used analyses of community similarity measures are likely to be needed to quantify bacterial transmission. We confirmed the clear difference between microbiota of infants born by Caesarean section compared to vaginally delivered infants and the impact of feeding mode on infant gut microbiota. Only vaginally delivered, fully breastfed infants had gut microbiota dominated by Bifidobacteria. Our data suggest that reduced transfer of maternal vaginal microbial is not the main mechanism underlying the differential infant microbiota composition associated with Caesarean delivery. The sources of a large proportion of infant microbiota could not be identified in maternal microbiota, and the sources of seeding of infant gut and nasal microbiota remain to be elucidated.

  8. Production of α-galactosylceramide by a prominent member of the human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Laura C Wieland Brown

    2013-07-01

    Full Text Available While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf, which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000 that is the prototypical agonist of CD1d-restricted natural killer T (iNKT cells. We demonstrate that α-GalCer(Bf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.

  9. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx.

    Science.gov (United States)

    Lemon, Katherine P; Klepac-Ceraj, Vanja; Schiffer, Hilary K; Brodie, Eoin L; Lynch, Susan V; Kolter, Roberto

    2010-06-22

    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.

  10. The gut microbiota and host health: a new clinical frontier.

    Science.gov (United States)

    Marchesi, Julian R; Adams, David H; Fava, Francesca; Hermes, Gerben D A; Hirschfield, Gideon M; Hold, Georgina; Quraishi, Mohammed Nabil; Kinross, James; Smidt, Hauke; Tuohy, Kieran M; Thomas, Linda V; Zoetendal, Erwin G; Hart, Ailsa

    2016-02-01

    Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Long Term Development of Gut Microbiota Composition in Atopic Children: Impact of Probiotics

    Science.gov (United States)

    Rutten, N. B. M. M.; Gorissen, D. M. W.; Eck, A.; Niers, L. E. M.; Vlieger, A. M.; Besseling-van der Vaart, I.; Budding, A. E.; Savelkoul, P. H. M.; van der Ent, C. K.; Rijkers, G. T.

    2015-01-01

    Introduction Imbalance of the human gut microbiota in early childhood is suggested as a risk factor for immune-mediated disorders such as allergies. With the objective to modulate the intestinal microbiota, probiotic supplementation during infancy has been used for prevention of allergic diseases in infants, with variable success. However, not much is known about the long-term consequences of neonatal use of probiotics on the microbiota composition. The aim of this study was to assess the composition and microbial diversity in stool samples of infants at high-risk for atopic disease, from birth onwards to six years of age, who were treated with probiotics or placebo during the first year of life. Methods In a double-blind, randomized, placebo-controlled trial, a probiotic mixture consisting of B. bifidum W23, B. lactis W52 and Lc. Lactis W58 (Ecologic® Panda) was administered to pregnant women during the last 6 weeks of pregnancy and to their offspring during the first year of life. During follow-up, faecal samples were collected from 99 children over a 6-year period with the following time points: first week, second week, first month, three months, first year, eighteen months, two years and six years. Bacterial profiling was performed by IS-pro. Differences in bacterial abundance and diversity were assessed by conventional statistics. Results The presence of the supplemented probiotic strains in faecal samples was confirmed, and the probiotic strains had a higher abundance and prevalence in the probiotic group during supplementation. Only minor and short term differences in composition of microbiota were found between the probiotic and placebo group and between children with or without atopy. The diversity of Bacteroidetes was significantly higher after two weeks in the placebo group, and at the age of two years atopic children had a significantly higher Proteobacteria diversity (p < 0.05). Gut microbiota development continued between two and six years, whereby

  12. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next?

    Science.gov (United States)

    Mitra, Anita; MacIntyre, David A; Marchesi, Julian R; Lee, Yun S; Bennett, Phillip R; Kyrgiou, Maria

    2016-11-01

    The vaginal microbiota plays a significant role in health and disease of the female reproductive tract. Next-generation sequencing techniques based upon the analysis of bacterial 16S rRNA genes permit in-depth study of vaginal microbial community structure to a level of detail not possible with standard culture-based microbiological techniques. The human papillomavirus (HPV) causes both cervical intraepithelial neoplasia (CIN) and cervical cancer. Although the virus is highly prevalent, only a small number of women have a persistent HPV infection and subsequently develop clinically significant disease. There is emerging evidence which leads us to conclude that increased diversity of vaginal microbiota combined with reduced relative abundance of Lactobacillus spp. is involved in HPV acquisition and persistence and the development of cervical precancer and cancer. In this review, we summarise the current literature and discuss potential mechanisms for the involvement of vaginal microbiota in the evolution of CIN and cervical cancer. The concept of manipulation of vaginal bacterial communities using pre- and probiotics is also discussed as an exciting prospect for the field of cervical pathology.

  14. Identification of infectious microbiota from oral cavity environment of various population group patients as a preventive approach to human health risk factors.

    Science.gov (United States)

    Zawadzki, Paweł J; Perkowski, Konrad; Starościak, Bohdan; Baltaza, Wanda; Padzik, Marcin; Pionkowski, Krzysztof; Chomicz, Lidia

    2016-12-23

    This study presents the results of comparative investigations aimed to determine microbiota that can occur in the oral environment in different human populations. The objective of the research was to identify pathogenic oral microbiota, the potential cause of health complications in patients of different population groups. The study included 95 patients requiring dental or surgical treatment; their oral cavity environment microbiota as risk factors of local and general infections were assessed. In clinical assessment, differences occurred in oral cavity conditions between patients with malformations of the masticatory system, kidney allograft recipients and individuals without indications for surgical procedures. The presence of various pathogenic and opportunistic bacterial strains in oral cavities were revealed by direct microscopic and in vitro culture techniques. Colonization of oral cavities of patients requiring surgical treatment by the potentially pathogenic bacteria constitutes the threat of their spread, and development of general infections. Assessment of oral cavity infectious microbiota should be performed as a preventive measure against peri-surgical complications.

  15. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease

    Directory of Open Access Journals (Sweden)

    Chuan-Sheng Lin

    2014-10-01

    Full Text Available Recent studies have revealed that the gut microbiota regulates many physiological functions, ranging from energy regulation and cognitive processes to toxin neutralization and immunity against pathogens. Accordingly, alterations in the composition of the gut microbiota have been shown to contribute to the development of various chronic diseases. The main objectives of this review are to present recent breakthroughs in the study of the gut microbiota and show that intestinal bacteria play a critical role in the development of different disease conditions, including obesity, fatty liver disease, and lung infection. We also highlight the potential application of prebiotics and probiotics in maintaining optimal health and treating chronic inflammatory and immunity-related diseases.

  16. Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota.

    Science.gov (United States)

    de Muinck, Eric J; Lundin, Knut E A; Trosvik, Pål

    2017-01-01

    The gastrointestinal (GI) microbiome is a densely populated ecosystem where dynamics are determined by interactions between microbial community members, as well as host factors. The spatial organization of this system is thought to be important in human health, yet this aspect of our resident microbiome is still poorly understood. In this study, we report significant spatial structure of the GI microbiota, and we identify general categories of spatial patterning in the distribution of microbial taxa along a healthy human GI tract. We further estimate the biotic interaction structure in the GI microbiota, both through time series and cooccurrence modeling of microbial community data derived from a large number of sequentially collected fecal samples. Comparison of these two approaches showed that species pairs involved in significant negative interactions had strong positive contemporaneous correlations and vice versa, while for species pairs without significant interactions, contemporaneous correlations were distributed around zero. We observed similar patterns when comparing these models to the spatial correlations between taxa identified in the adherent microbiota. This suggests that colocalization of microbial taxon pairs, and thus the spatial organization of the GI microbiota, is driven, at least in part, by direct or indirect biotic interactions. Thus, our study can provide a basis for an ecological interpretation of the biogeography of the human gut. IMPORTANCE The human gut microbiome is the subject of intense study due to its importance in health and disease. The majority of these studies have been based on the analysis of feces. However, little is known about how the microbial composition in fecal samples relates to the spatial distribution of microbial taxa along the gastrointestinal tract. By characterizing the microbial content both in intestinal tissue samples and in fecal samples obtained daily, we provide a conceptual framework for how the spatial

  17. Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures

    NARCIS (Netherlands)

    Timmerman, Harro M.; Rutten, Nicole B.M.M.; Boekhorst, Jos; Saulnier, Delphine M.; Kortman, Guus A.M.; Contractor, Nikhat; Kullen, Martin; Floris, Esther; Harmsen, Hermie J.M.; Vlieger, Arine M.; Kleerebezem, Michiel; Rijkers, Ger T.

    2017-01-01

    The establishment of the infant gut microbiota is a highly dynamic process dependent on extrinsic and intrinsic factors. We characterized the faecal microbiota of 4 breastfed infants and 4 formula-fed infants at 17 consecutive time points during the first 12 weeks of life. Microbiota composition

  18. Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures

    NARCIS (Netherlands)

    Timmerman, Harro M.; Rutten, Nicole B. M. M.; Boekhorst, Jos; Saulnier, Delphine M.; Kortman, Guus A. M.; Contractor, Nikhat; Kullen, Martin; Floris, Esther; Harmsen, Hermie J. M.; Vlieger, Arine M.; Kleerebezem, Michiel; Rijkers, Ger T.

    2017-01-01

    The establishment of the infant gut microbiota is a highly dynamic process dependent on extrinsic and intrinsic factors. We characterized the faecal microbiota of 4 breastfed infants and 4 formula-fed infants at 17 consecutive time points during the first 12 weeks of life. Microbiota composition was

  19. Vaginal microbiota in menopause

    Directory of Open Access Journals (Sweden)

    Martinus Tarina

    2016-12-01

    Full Text Available The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the colonization of pathogenic microbes. They include changes in child, puberty, reproductive state, menopause, and postmenopause. Estrogen levels change will affect the colonization of pathogenic microbium, leading to genitourinary syndrome of menopause. Vulvovaginal atrophy is often found in postmenopausal women, and dominated by L. iners, Anaerococcus sp, Peptoniphilus sp, Prevotella sp, and Streptococcus sp. The normal vaginal microbiota’s imbalance in menopause will cause diseases such as bacterial vaginosis, and recurrent vulvovaginal candidiasis due to hormonal therapies. Changes in the vaginal microbiota due to bacterial vaginosis are characterized by decrease in H2O2-producing Lactobacillus. They are also caused by the increase in numbers and concentration of Gardnerella vaginalis, Mycoplasma hominis, and other anaerob species such as Peptostreptococci, Prevotella spp, and Mobiluncus spp.

  20. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    Science.gov (United States)

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. “Lachnoclostridium touaregense,” a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of “Lachnoclostridium touaregense” strain Marseille-P2415T (= CSUR P2415 = DSM 102219, a new bacterial species isolated from the gut microbiota of a healthy young girl from Niger.

  2. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    Science.gov (United States)

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  3. "Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans"

    NARCIS (Netherlands)

    Meijnikman, Abraham S.; Gerdes, Victor E.; Nieuwdorp, Max; Herrema, Hilde

    2017-01-01

    The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus (T2DM) is complex and driven by many factors. One of the most recently identified factors in development of these metabolic pathologies is the gut microbiota. The introduction of affordable, high-throughput

  4. Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence

    NARCIS (Netherlands)

    Hartstra, A. V.; Nieuwdorp, M.; Herrema, H.

    2016-01-01

    Background: Alterations in gut microbiota composition and bacterial metabolites have been increasingly recognized to affect host metabolism and are at the basis of metabolic diseases such as obesity and type 2 diabetes (DM2). Intestinal enteroendocrine cells (EEC's) sense gut luminal content and

  5. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    Science.gov (United States)

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  6. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  7. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations

    Directory of Open Access Journals (Sweden)

    Himanshu Kumar

    2016-10-01

    Full Text Available Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland, Africa (South Africa and Asia (China, on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the first month of lactation. Altogether, 80 women (20 from each country participated in the study, with equal number of women who delivered by vaginal or caesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6% observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p=0.002. Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes whereas Chinese women had highest amount of Actinobacteria. Women who had had a caesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p<0.05. Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids were negatively associated with Proteobacteria (r= -0.43, p<0.05, while Lactobacillus genus was associated with monounsaturated fatty acids (r= -0.23, p=0.04. These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery.

  8. Microbiota-induced obesity requires farnesoid X receptor

    DEFF Research Database (Denmark)

    Parséus, Ava; Sommer, Nina; Sommer, Felix

    2017-01-01

    weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased...... microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. RESULTS: The gut microbiota promoted...... steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. CONCLUSIONS: Our results indicate that the gut microbiota promotes diet-induced obesity and associated...

  9. Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human Infants and Host Physiology in Rats.

    Science.gov (United States)

    Liu, Zhenmin; Roy, Nicole C; Guo, Yanhong; Jia, Hongxin; Ryan, Leigh; Samuelsson, Linda; Thomas, Ancy; Plowman, Jeff; Clerens, Stefan; Day, Li; Young, Wayne

    2016-02-01

    In the absence of human breast milk, infant and follow-on formulas can still promote efficient growth and development. However, infant formulas can differ in their nutritional value. The objective of this study was to compare the effects of human milk (HM) and infant formulas in human infants and a weanling rat model. In a 3 wk clinical randomized controlled trial, babies (7- to 90-d-old, male-to-female ratio 1:1) were exclusively breastfed (BF), exclusively fed Synlait Pure Canterbury Stage 1 infant formula (SPCF), or fed assorted standard formulas (SFs) purchased by their parents. We also compared feeding HM or SPCF in weanling male Sprague-Dawley rats for 28 d. We examined the effects of HM and infant formulas on fecal short chain fatty acids (SCFAs) and bacterial composition in human infants, and intestinal SCFAs, the microbiota, and host physiology in weanling rats. Fecal Bifidobacterium concentrations (mean log copy number ± SEM) were higher (P = 0.003) in BF (8.17 ± 0.3) and SPCF-fed infants (8.29 ± 0.3) compared with those fed the SFs (6.94 ± 0.3). Fecal acetic acid (mean ± SEM) was also higher (P = 0.007) in the BF (5.5 ± 0.2 mg/g) and SPCF (5.3 ± 2.4 mg/g) groups compared with SF-fed babies (4.3 ± 0.2 mg/g). Colonic SCFAs did not differ between HM- and SPCF-fed rats. However, cecal acetic acid concentrations were higher (P = 0.001) in rats fed HM (42.6 ± 2.6 mg/g) than in those fed SPCF (30.6 ± 0.8 mg/g). Cecal transcriptome, proteome, and plasma metabolite analyses indicated that the growth and maturation of intestinal tissue was more highly promoted by HM than SPCF. Fecal bacterial composition and SCFA concentrations were similar in babies fed SPCF or HM. However, results from the rat study showed substantial differences in host physiology between rats fed HM and SPCF. This trial was registered at Shanghai Jiào tong University School of Medicine as XHEC-C-2012-024. © 2016 American Society for Nutrition.

  10. Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology

    OpenAIRE

    Bircher, Lea; Schwab, Clarissa; Geirnaert, Annelies; Lacroix, Christophe

    2018-01-01

    Summary Interest in faecal microbiota transplantation (FMT) has increased as therapy for intestinal diseases, but safety issues limit its widespread use. Intestinal fermentation technology (IFT) can produce controlled, diverse and metabolically active ‘artificial’ colonic microbiota as potential alternative to common FMT. However, suitable processing technology to store this artificial microbiota is lacking. In this study, we evaluated the impact of the two cryoprotectives, glycerol (15% v/v)...

  11. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution

    Science.gov (United States)

    Mayer, R.E.; Bofill-Mas, S.; Egle, L.; Reischer, G.H.; Schade, M.; Fernandez-Cassi, X.; Fuchs, W.; Mach, R.L.; Lindner, G.; Kirschner, A.; Gaisbauer, M.; Piringer, H.; Blaschke, A.P.; Girones, R.; Zessner, M.; Sommer, R.; Farnleitner, A.H.

    2016-01-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml−1) and biologically treated wastewater samples (median log10 6.2–6.5 ME 100 ml−1), irrespective of plant size, type and time of the season (n = 53–65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3–3.0) and treated wastewater (s* = 3.7–4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if

  12. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study.

    Science.gov (United States)

    Stewart, Christopher J; Auchtung, Thomas A; Ajami, Nadim J; Velasquez, Kenia; Smith, Daniel P; De La Garza, Richard; Salas, Ramiro; Petrosino, Joseph F

    2018-01-01

    The use of electronic cigarettes (ECs) has increased drastically over the past five years, primarily as an alternative to smoking tobacco cigarettes. However, the adverse effects of acute and long-term use of ECs on the microbiota have not been explored. In this pilot study, we sought to determine if ECs or tobacco smoking alter the oral and gut microbiota in comparison to non-smoking controls. We examined a human cohort consisting of 30 individuals: 10 EC users, 10 tobacco smokers, and 10 controls. We collected cross-sectional fecal, buccal swabs, and saliva samples from each participant. All samples underwent V4 16S rRNA gene sequencing. Tobacco smoking had a significant effect on the bacterial profiles in all sample types when compared to controls, and in feces and buccal swabs when compared to EC users. The most significant associations were found in the gut, with an increased relative abundance of Prevotella ( P = 0.006) and decreased Bacteroides ( P = 0.036) in tobacco smokers. The Shannon diversity was also significantly reduced ( P = 0.009) in fecal samples collected from tobacco smokers compared to controls. No significant difference was found in the alpha diversity, beta-diversity or taxonomic relative abundances between EC users and controls. From a microbial ecology perspective, the current pilot data demonstrate that the use of ECs may represent a safer alternative compared to tobacco smoking. However, validation in larger cohorts and greater understanding of the short and long-term impact of EC use on microbiota composition and function is warranted.

  13. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study

    Directory of Open Access Journals (Sweden)

    Christopher J. Stewart

    2018-04-01

    Full Text Available Background The use of electronic cigarettes (ECs has increased drastically over the past five years, primarily as an alternative to smoking tobacco cigarettes. However, the adverse effects of acute and long-term use of ECs on the microbiota have not been explored. In this pilot study, we sought to determine if ECs or tobacco smoking alter the oral and gut microbiota in comparison to non-smoking controls. Methods We examined a human cohort consisting of 30 individuals: 10 EC users, 10 tobacco smokers, and 10 controls. We collected cross-sectional fecal, buccal swabs, and saliva samples from each participant. All samples underwent V4 16S rRNA gene sequencing. Results Tobacco smoking had a significant effect on the bacterial profiles in all sample types when compared to controls, and in feces and buccal swabs when compared to EC users. The most significant associations were found in the gut, with an increased relative abundance of Prevotella (P = 0.006 and decreased Bacteroides (P = 0.036 in tobacco smokers. The Shannon diversity was also significantly reduced (P = 0.009 in fecal samples collected from tobacco smokers compared to controls. No significant difference was found in the alpha diversity, beta-diversity or taxonomic relative abundances between EC users and controls. Discussion From a microbial ecology perspective, the current pilot data demonstrate that the use of ECs may represent a safer alternative compared to tobacco smoking. However, validation in larger cohorts and greater understanding of the short and long-term impact of EC use on microbiota composition and function is warranted.

  14. Increase of faecal tryptic activity relates to changes in the intestinal microbiome: analysis of Crohn's disease with a multidisciplinary platform.

    Directory of Open Access Journals (Sweden)

    Tore Midtvedt

    Full Text Available To investigate-by molecular, classical and functional methods-the microbiota in biopsies and faeces from patients with active Crohn's disease (CD and controls.The microbiota in biopsies was investigated utilizing a novel molecular method and classical cultivation technology. Faecal samples were investigated by classical technology and four functional methods, reflecting alterations in short chain fatty acids pattern, conversion of cholesterol and bilirubin and inactivation of trypsin.By molecular methods we found more than 92% similarity in the microbiota on the biopsies from the two groups. However, 4.6% of microbes found in controls were lacking in CD patients. Furthermore, NotI representation libraries demonstrate two different clusters representing CD patients and controls, respectively. Utilizing conventional technology, Bacteroides (alt. Parabacteroides was less frequently detected in the biopsies from CD patients than from controls. A similar reduction in the number of Bacteroides was found in faecal samples. Bacteroides is the only group of bacteria known to be able to inactivate pancreatic trypsin. Faecal tryptic activity was high in CD patients, and inversely correlated to the levels of Bacteroides.CD patients have compositional and functional alterations in their intestinal microbiota, in line with the global description hypothesis rather than the candidate microorganism theory. The most striking functional difference was high amount of faecal tryptic activity in CD patients, inversely correlated to the levels of Bacteroides in faeces.

  15. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  16. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota.

    Science.gov (United States)

    Kaczmarek, Jennifer L; Musaad, Salma Ma; Holscher, Hannah D

    2017-11-01

    Background: Preclinical research has shown that the gastrointestinal microbiota exhibits circadian rhythms and that the timing of food consumption can affect the composition and function of gut microbes. However, there is a dearth of knowledge on these relations in humans. Objective: We aimed to determine whether human gastrointestinal microbes and bacterial metabolites were associated with time of day or behavioral factors, including eating frequency, percentage of energy consumed early in the day, and overnight-fast duration. Design: We analyzed 77 fecal samples collected from 28 healthy men and women. Fecal DNA was extracted and sequenced to determine the relative abundances of bacterial operational taxonomic units (OTUs). Gas chromatography-mass spectroscopy was used to assess short-chain fatty acid concentrations. Eating frequency, percentage of energy consumed before 1400, and overnight-fast duration were determined from dietary records. Data were analyzed by linear mixed models or generalized linear mixed models, which controlled for fiber intake, sex, age, body mass index, and repeated sampling within each participant. Each OTU and metabolite were tested as the outcome in a separate model. Results: Acetate, propionate, and butyrate concentrations decreased throughout the day ( P = 0.006, 0.04, and 0.002, respectively). Thirty-five percent of bacterial OTUs were associated with time. In addition, relations were observed between gut microbes and eating behaviors, including eating frequency, early energy consumption, and overnight-fast duration. Conclusions: These results indicate that the human gastrointestinal microbiota composition and function vary throughout the day, which may be related to the circadian biology of the human body, the microbial community itself, or human eating behaviors. Behavioral factors, including timing of eating and overnight-fast duration, were also predictive of bacterial abundances. Longitudinal intervention studies are needed to

  17. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  18. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost Munk; Tvede, Michael

    2013-01-01

    and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism....

  19. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties

  20. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

    Directory of Open Access Journals (Sweden)

    Jutta Zwielehner

    Full Text Available BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037 following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  1. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  2. PHYSIOTHERAPY MANAGEMENT OF FAECAL IMPACTION:

    African Journals Online (AJOL)

    Dr.MrsOdebode

    bowel above the rectum) leading to serious discomfort. This accumulation can also lead to generalized abdominal distention. Faecal impaction is more common in elderly people with limited ability to move (Saddler, 2005). Among the causes are medications like antacids, which have aluminium as an ingredient; calcium ...

  3. Faecal incontinence in myotonic dystrophy

    OpenAIRE

    Abercrombie, J; Rogers, J; Swash, M

    1998-01-01

    Two siblings with myotonic dystrophy presented for treatment of faecal incontinence. The pathophysiology of this functional disorder is described with the results of anorectal manometry, EMG, and biopsy of smooth and striated muscle of the anorectal sphincters. Both medical and surgical management of the incontinence was unsatisfactory in the long term. Involvement of gastrointestinal musculature is a characteristic feature the disease.



  4. Faecal Campylobacter shedding among dogs in animal shelters across Texas.

    Science.gov (United States)

    Leahy, A M; Cummings, K J; Rodriguez-Rivera, L D; Hamer, S A; Lawhon, S D

    2017-12-01

    Epidemiologic studies on faecal Campylobacter shedding among dogs in the United States have been limited, despite evidence that the incidence of human campylobacteriosis has increased over the last decade. Our objectives were to estimate the prevalence of faecal Campylobacter shedding among shelter dogs in Texas, to estimate the specific prevalence of Campylobacter jejuni and Campylobacter coli shedding, and to identify risk factors for Campylobacter-positive status. Using a cross-sectional study design, we collected faecal samples from dogs in six animal shelters across Texas between May and December, 2014. Quantitative PCR protocols were used to detect Campylobacter in samples and to specifically identify C. jejuni and C. coli. The prevalence of faecal Campylobacter shedding among sampled dogs was 75.7% (140/185). Prevalence varied significantly by shelter (p = .03), ranging from 57% to 93%. There was a marginal association (p = .06) between abnormal faecal consistency and positive Campylobacter status, after controlling for shelter as a random effect. However, approximately 70% of Campylobacter-positive dogs had grossly normal faeces. Campylobacter prevalence did not vary significantly by age group or sex. The prevalence of C. jejuni-positive samples was 5.4% (10/185), but C. coli was not detected in any samples. Dogs are a potential source of zoonotic Campylobacter transmission. © 2017 Blackwell Verlag GmbH.

  5. Faecal bacterial composition in dairy cows shedding Mycobacterium avium subsp. paratuberculosis in faeces in comparison with nonshedding cows.

    Science.gov (United States)

    Kaevska, Marija; Videnska, Petra; Sedlar, Karel; Bartejsova, Iva; Kralova, Alena; Slana, Iva

    2016-06-01

    The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne's disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.

  6. In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota.

    Science.gov (United States)

    Chen, Chun; Huang, Qiang; Fu, Xiong; Liu, Rui Hai

    2016-11-09

    This study investigated the in vitro fermentation of polysaccharides from Morus alba L., the contribution of its carbohydrates to the fermentation, and the effect on the composition of gut microbiota. Over 48 h of fermentation, the pH value in the fecal culture decreased from 7.12 to 6.14, and the total short chain fatty acids (SCFA) and acetic, propionic, and butyric acids all significantly increased. After 48 h of fermentation, 45.36 ± 1.36% of the total carbohydrates in the polysaccharide, including 35.72 ± 1.51% of arabinose, 23.1 ± 1.19% of galactose, 41.43 ± 1.52% of glucose, 26.36 ± 1.93% of rhamnose and 65.57 ± 1.07% of galacturic acid, were consumed. The increase in acetic and butyric acids was primarily due to the fermentation of galactose and galacturonic acid in the polysaccharide, while the increase in propionic acid resulted mainly from the fermentation of arabinose and glucose. In addition, the polysaccharide could modulate the gut microbiota composition by increasing the Bacteroidetes population and decreasing the Firmicutes population. The results may facilitate the development of food products known as prebiotics, aimed at improving gastrointestinal health.

  7. Molecular Monitoring of the Fecal Microbiota of Healthy Human Subjects during Administration of Lactulose and Saccharomyces boulardii

    Science.gov (United States)

    Vanhoutte, Tom; De Preter, Vicky; De Brandt, Evie; Verbeke, Kristin; Swings, Jean; Huys, Geert

    2006-01-01

    Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V3 primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S

  8. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  9. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  10. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Uninfected Women.

    Science.gov (United States)

    Reimers, Laura L; Mehta, Supriya D; Massad, L Stewart; Burk, Robert D; Xie, Xianhong; Ravel, Jacques; Cohen, Mardge H; Palefsky, Joel M; Weber, Kathleen M; Xue, Xiaonan; Anastos, Kathryn; Minkoff, Howard; Atrio, Jessica; D'Souza, Gypsyamber; Ye, Qian; Colie, Christine; Zolnik, Christine P; Spear, Gregory T; Strickler, Howard D

    2016-11-01

     Bacterial vaginosis (BV) is characterized by low abundance of Lactobacillus species, high pH, and immune cell infiltration and has been associated with an increased risk of human papillomavirus (HPV) infection. We molecularly assessed the cervicovaginal microbiota over time in human immunodeficiency virus (HIV)-infected and HIV-uninfected women to more comprehensively study the HPV-microbiota relationship, controlling for immune status.  16S ribosomal RNA gene amplicon pyrosequencing and HPV DNA testing were conducted annually in serial cervicovaginal lavage specimens obtained over 8-10 years from African American women from Chicago, of whom 22 were HIV uninfected, 22 were HIV infected with a stable CD4 + T-cell count of > 500 cells/mm 3 , and 20 were HIV infected with progressive immunosuppression. Vaginal pH was serially measured.  The relative abundances of Lactobacillus crispatus and other Lactobacillus species were inversely associated with vaginal pH (all P < .001). High (vs low) L. crispatus relative abundance was associated with decreased HPV detection (odds ratio, 0.48; 95% confidence interval, .24-.96; P trend = .03) after adjustment for repeated observation and multiple covariates, including pH and study group. However, there were no associations between HPV and the relative abundance of Lactobacillus species as a group, nor with Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii individually.  L. crispatus may have a beneficial effect on the burden of HPV in both HIV-infected and HIV-uninfected women (independent of pH). © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Analysis of the intestinal microbiota of oligo-saccharide fed mice exhibiting reduced resistance to Salmonella infection

    DEFF Research Database (Denmark)

    Petersen, Anne; Bergström, Anders; Andersen, Jens Bo

    2010-01-01

    recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining...... the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals...... of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased...

  12. The vaginal microbiota and its association with Human Papillomavirus, Chlamydia trachomatis, Neisseria gonorrhea and Mycoplasma genitalium infections: a systematic review and meta-analysis.

    Science.gov (United States)

    Tamarelle, Jeanne; Thiébaut, Anne C M; de Barbeyrac, Bertille; Bébéar, Cécile; Ravel, Jacques; Delarocque-Astagneau, Elisabeth

    2018-05-02

    The vaginal microbiota may modulate susceptibility to Human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhea and Mycoplasma genitalium infections. The objective of this meta-analysis was to evaluate the association between these infections and the vaginal microbiota. The search (2000-2016) yielded 1054 articles, of which 39 articles meeting the inclusion criteria were analyzed. The vaginal microbiota was dichotomized into high-Lactobacillus vaginal microbiota (HL-VMB) and low-Lactobacillus vaginal microbiota (LL-VMB), using either Nugent score, Amsel's criteria, presence of clue cells or gene sequencing. Measures of association with LL-VMB ranged from 0.6 (95% Confidence Interval 0.3, 1.2) to 2.8 (0.3, 28.0), 0.7 (0.4, 1.2) to 5.2 (1.9, 14.8), 0.8 (0.5, 1.4) to 3.8 (0.4, 36.2), and 0.4 (0.1, 1.5) to 6.1 (2.0, 18.5) for HPV, C. trachomatis, N. gonorrhea and M. genitalium infections respectively. While no clear trend for N. gonorrhea and M. genitalium infections could be detected, our results support a protective role of HL-VMB for HPV and C. trachomatis. Overall, these findings advocate for the use of high-resolution characterization methods for the vaginal microbiota to lay the foundation for its integration in prevention and treatment strategies. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Mycoplasma hominis and Mycoplasma genitalium in the Vaginal Microbiota and Persistent High-Risk Human Papillomavirus Infection

    Directory of Open Access Journals (Sweden)

    Sally N. Adebamowo

    2017-06-01

    Full Text Available BackgroundRecent studies have suggested that the vaginal microenvironment plays a role in persistence of high-risk human papillomavirus (hrHPV infection and thus cervical carcinogenesis. Furthermore, it has been shown that some mycoplasmas are efficient methylators and may facilitate carcinogenesis through methylation of hrHPV and cervical somatic cells. We examined associations between prevalence and persistence of Mycoplasma spp. in the vaginal microbiota, and prevalent as well as persistent hrHPV infections.MethodsWe examined 194 Nigerian women who were tested for hrHPV infection using SPF25/LiPA10 and we identified Mycoplasma genitalium and Mycoplasma hominis in their vaginal microbiota established by sequencing the V3–V4 hypervariable regions of the 16S rRNA gene. We defined the prevalence of M. genitalium, M. hominis, and hrHPV based on positive result of baseline tests, while persistence was defined as positive results from two consecutive tests. We used exact logistic regression models to estimate associations between Mycoplasma spp. and hrHPV infections.ResultsThe mean (SD age of the study participants was 38 (8 years, 71% were HIV positive, 30% M. genitalium positive, 45% M. hominis positive, and 40% hrHPV positive at baseline. At follow-up, 16% of the women remained positive for M. genitalium, 30% for M. hominis, and 31% for hrHPV. There was a significant association between persistent M. hominis and persistent hrHPV (OR 8.78, 95% CI 1.49–51.6, p 0.01. Women who were positive for HIV and had persistent M. hominis had threefold increase in the odds of having persistent hrHPV infection (OR 3.28, 95% CI 1.31–8.74, p 0.008, compared to women who were negative for both.ConclusionWe found significant association between persistent M. hominis in the vaginal microbiota and persistent hrHPV in this study, but we could not rule out reverse causation. Our findings need to be replicated in larger, longitudinal studies and if confirmed

  14. The Gut Microbiota, Food Science, and Human Nutrition: A Timely Marriage.

    Science.gov (United States)

    Barratt, Michael J; Lebrilla, Carlito; Shapiro, Howard-Yana; Gordon, Jeffrey I

    2017-08-09

    Analytic advances are enabling more precise definitions of the molecular composition of key food staples incorporated into contemporary diets and how the nutrient landscapes of these staples vary as a function of cultivar and food processing methods. This knowledge, combined with insights about the interrelationship between consumer microbiota configurations and biotransformation of food ingredients, should have a number of effects on agriculture, food production, and strategies for improving the nutritional value of foods and health status. These effects include decision-making about which cultivars of current or future food staples to incorporate into existing and future food systems, and which components of waste streams from current or future food manufacturing processes have nutritional value that is worth capturing. They can also guide which technologies should be applied, or need to be developed, to produce foods that support efficient microbial biotransformation of their ingredients into metabolic products that sustain health. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fluorescence hyper-spectral imaging to detecting faecal contamination on fresh tomatoes

    Directory of Open Access Journals (Sweden)

    Roberto Romaniello

    2016-03-01

    Full Text Available Faecal contamination of fresh fruits represents a severe danger for human health. Thus some techniques based on microbiological testing were developed to individuate faecal contaminants but those tests do not results efficient because their non-applicability on overall vegetable unity. In this work a methodology based on hyper-spectral fluorescence imaging was developed and tested to detecting faecal contamination on fresh tomatoes. Two image-processing methods were performed to maximise the contrast between the faecal contaminant and tomatoes skin: principal component analysis and band image ratio (BRI. The BRI method allows classifying correctly 70% of contaminated area, with no false-positives in all examined cases. Thus, the developed methodology can be employed for a fast and effective detection of faecal contamination on fresh tomatoes.

  16. SIFAT KIMIA SELAI BUAH NAGA, KOMPOSISI MIKROFLORA DAN PROFIL SCFA FESES RELAWAN [Chemical Properties of Drugon Fruit Jam, Microflora Composition and SCFA Profile of Human Volunteer Faecal

    Directory of Open Access Journals (Sweden)

    Nurhayati

    2015-12-01

    Full Text Available Dragon fruit contains oligosaccharides, Including prebiotic ingredients, that are namely raffinose, stachyose, and fructo-oligosaccharides. The heat treatment process like jam producing can affect the functional properties of a food material. The aim of the research wereto know the effect of jam processing on chemical properties, and their prebiotic properties. Evaluation of the prebiotic properties was conducted by in vivo method i.e. probiotic and enterobacteria population of volunteers faecal (microflora composition, prebiotic index (PI value and Short Chain Fatty Acid (SCFA profile. The result showed that the processing of dragon fruit into jams decreased water content, β-sianin and dissolved particles but increased the Insoluble Indigestible Fraction (IIF. The PI value of dragon fruit jam were 1.70 for white dragon jam and 1.18 for red dragon fruit. The jam processing decreased PI value up to 0.49 (red dragon fruit jam and 0.54 (white dragon fruit jam. The fresh dragon fruit and the jam produced short chain fatty acid (SCFA i.e. acetic and propionic acid. It can be concluded that prebiotic properties of white dragon fruit better than red dragon fruit.

  17. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  18. Modulation of Gut Microbiota in Pathological States

    DEFF Research Database (Denmark)

    Wang, Yulan; Wang, Baohong; Wu, Junfang

    2017-01-01

    The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact...... on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic...... fatty liver disease (NAFLD); obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more...

  19. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  20. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  1. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses.

    Science.gov (United States)

    Feng, Jie; Li, Bing; Jiang, Xiaotao; Yang, Ying; Wells, George F; Zhang, Tong; Li, Xiaoyan

    2018-01-01

    The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10 -7 to 2.72 × 10 -1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation.

    Science.gov (United States)

    Akkerman, Renate; Faas, Marijke M; de Vos, Paul

    2018-01-15

    Human milk (HM) is the golden standard for nutrition of newborn infants. Human milk oligosaccharides (HMOs) are abundantly present in HM and exert multiple beneficial functions, such as support of colonization of the gut microbiota, reduction of pathogenic infections and support of immune development. HMO-composition is during lactation continuously adapted by the mother to accommodate the needs of the neonate. Unfortunately, for many valid reasons not all neonates can be fed with HM and are either totally or partly fed with cow-milk derived infant formulas, which do not contain HMOs. These cow-milk formulas are supplemented with non-digestible carbohydrates (NDCs) that have functional effects similar to that of some HMOs, since production of synthetic HMOs is challenging and still very expensive. However, NDCs cannot substitute all HMO functions. More efficacious NDCs may be developed and customized for specific groups of neonates such as pre-matures and allergy prone infants. Here current knowledge of HMO functions in the neonate in view of possible replacement of HMOs by NDCs in infant formulas is reviewed. Furthermore, methods to expedite identification of suitable NDCs and structure/function relationships are reviewed as in vivo studies in babies are impossible.

  3. Microbial population analysis improves the evidential value of faecal traces in forensic investigations.

    Science.gov (United States)

    Quaak, Frederike C A; de Graaf, Mei-Lan M; Weterings, Rob; Kuiper, Irene

    2017-01-01

    The forensic science community has a growing interest in microbial population analysis, especially the microbial populations found inside and on the human body. Both their high abundance, microbes outnumber human cells by a factor 10, and their diversity, different sites of the human body harbour different microbial communities, make them an interesting tool for forensics. Faecal material is a type of trace evidence which can be found in a variety of criminal cases, but is often being ignored in forensic investigations. Deriving a human short tandem repeat (STR) profile from a faecal sample can be challenging. However, the microbial communities within faecal material can be of additional criminalistic value in linking a faecal trace to the possible donor. We present a microarray technique in which the faecal microbial community is used to differentiate between faecal samples and developed a decision model to predict the possible common origin of questioned samples. The results show that this technique may be a useful additional tool when no or only partial human STR profiles can be generated.

  4. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  5. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Okai, Naoko; Tanaka, Kosei; Nomoto, Ryohei; Fukuda, Itsuko; Yoshida, Ken-Ichi; Kondo, Akihiko; Osawa, Ro

    2017-01-01

    Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects.

  6. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    Science.gov (United States)

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  7. Gut microbiota in health and disease

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease.

  8. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon.

    Science.gov (United States)

    Sundin, Olof H; Mendoza-Ladd, Antonio; Zeng, Mingtao; Diaz-Arévalo, Diana; Morales, Elisa; Fagan, B Matthew; Ordoñez, Javier; Velez, Philip; Antony, Nishaal; McCallum, Richard W

    2017-07-17

    The upper half of the human small intestine, known as the jejunum, is the primary site for absorption of nutrient-derived carbohydrates, amino acids, small peptides, and vitamins. In contrast to the colon, which contains 10 11 -10 12 colony forming units of bacteria per ml (CFU/ml), the normal jejunum generally ranges from 10 3 to 10 5  CFU per ml. Because invasive procedures are required to access the jejunum, much less is known about its bacterial microbiota. Bacteria inhabiting the jejunal lumen have been investigated by classical culture techniques, but not by culture-independent metagenomics. The lumen of the upper jejunum was sampled during enteroscopy of 20 research subjects. Culture on aerobic and anaerobic media gave live bacterial counts ranging from 5.8 × 10 3 CFU/ml to 8.0 × 10 6 CFU/ml. DNA from the same samples was analyzed by 16S rRNA gene-specific quantitative PCR, yielding values from 1.5 × 10 5 to 3.1 × 10 7 bacterial genomes per ml. When calculated for each sample, estimated bacterial viability ranged from effectively 100% to a low of 0.3%. 16S rRNA metagenomic analysis of uncultured bacteria by Illumina MiSeq sequencing gave detailed microbial composition by phylum, genus and species. The genera Streptococcus, Prevotella, Veillonella and Fusobacterium, were especially abundant, as well as non-oral genera including Escherichia, Klebsiella, and Citrobacter. The jejunum was devoid of the genera Alistipes, Ruminococcus, Faecalibacterium, and other extreme anaerobes abundant in the colon. In patients with higher bacterial loads, there was no significant change in microbial species composition. The jejunal lumen contains a distinctive bacterial population consisting primarily of facultative anaerobes and oxygen-tolerant obligate anaerobes similar to those found in the oral cavity. However, the frequent abundance of Enterobacteriaceae represents a major difference from oral microbiota. Although a few genera are shared with the colon, we

  9. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.

    Directory of Open Access Journals (Sweden)

    Fabrice Armougom

    Full Text Available BACKGROUND: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. METHODS AND FINDINGS: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01. We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p=0.0197 or anorexic patients (p=0.0332. The M. smithii concentration was much higher in anorexic patients than in the lean population (p=0.0171. CONCLUSIONS: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population.

  10. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  11. Relationship between the gut microbiota and obesity in children and adolescents

    OpenAIRE

    Vankerckhoven, Vanessa; Bervoets, Liene; Van Hoorenbeeck, Kim; Lammens, Christine; Chapelle, Sabine; Vael, Carl; Desager, Kristine; Goossens, Herman

    2011-01-01

    Objectives Obesity is considered as one of the most important public health problems of our times. The last few decades the prevalence of obesity, especially among children and adolescents, has increased dramatically worldwide. The aim of our study was to determine whether the composition of the gut microbiota is related to obesity in childhood. Methods A cross-sectional study was set-up to examine the gut microbiota using faecal samples from 22 obese children and 33 non-obese chil...

  12. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans.

    Science.gov (United States)

    Rahat-Rozenbloom, S; Fernandes, J; Gloor, G B; Wolever, T M S

    2014-12-01

    Short-chain fatty acids (SCFA) are produced by colonic microbiota from dietary carbohydrates and proteins that reach the colon. It has been suggested that SCFA may promote obesity via increased colonic energy availability. Recent studies suggest obese humans have higher faecal SCFA than lean, but it is unclear whether this difference is due to increased SCFA production or reduced absorption. To compare rectal SCFA absorption, dietary intake and faecal microbial profile in lean (LN) versus overweight and obese (OWO) individuals. Eleven LN and eleven OWO individuals completed a 3-day diet record, provided a fresh faecal sample and had SCFA absorption measured using the rectal dialysis bag method. The procedures were repeated after 2 weeks. Age-adjusted faecal SCFA concentration was significantly higher in OWO than LN individuals (81.3±7.4 vs 64.1±10.4 mmol kg(-1), P=0.023). SCFA absorption (24.4±0.8% vs 24.7±1.2%, respectively, P=0.787) and dietary intakes were similar between the groups, except for a higher fat intake in OWO individuals. However, fat intake did not correlate with SCFAs or bacterial abundance. OWO individuals had higher relative Firmicutes abundance (83.1±4.1 vs 69.5±5.8%, respectively, P=0.008) and a higher Firmicutes:Bacteriodetes ratio (P=0.023) than LN individuals. There was a positive correlation between Firmicutes and faecal SCFA within the whole group (r=0.507, P=0.044), with a stronger correlation after adjusting for available carbohydrate (r=0.615, P=0.005). The higher faecal SCFA in OWO individuals is not because of differences in SCFA absorption or diet. Our results are consistent with the hypothesis that OWO individuals produce more colonic SCFA than LN individuals because of differences in colonic microbiota. However, further studies are needed to prove this.

  13. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study.

    Science.gov (United States)

    Healey, Genelle; Murphy, Rinki; Butts, Christine; Brough, Louise; Whelan, Kevin; Coad, Jane

    2018-01-01

    Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-type fructan prebiotic. In this randomised, double-blind, placebo-controlled, cross-over study, thirty-four healthy participants were classified as LDF or HDF consumers. Gut microbiota composition (16S rRNA bacterial gene sequencing) and SCFA concentrations were assessed following 3 weeks of daily prebiotic supplementation (Orafti® Synergy 1; 16 g/d) or placebo (Glucidex® 29 Premium; 16 g/d), as well as after 3 weeks of the alternative intervention, following a 3-week washout period. In the LDF group, the prebiotic intervention led to an increase in Bifidobacterium (P=0·001). In the HDF group, the prebiotic intervention led to an increase in Bifidobacterium (Pgut microbiota response and are therefore more likely to benefit from an inulin-type fructan prebiotic than those with LDF intakes. Future studies aiming to modulate the gut microbiota and improve host health, using an inulin-type fructan prebiotic, should take habitual dietary fibre intake into account.

  14. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

    NARCIS (Netherlands)

    Verhulst, N.O.; Mbadi, P.A.; Bukovinszkine-Kiss, G.; Mukabana, W.R.; Loon, van J.J.A.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Background - Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In

  15. Analyzing the functionality of the human intestinal microbiota by stable isotope probing

    NARCIS (Netherlands)

    Kovatcheva, P.P.

    2010-01-01

    Key words: gut bacteria, dietary carbohydrates, digestion, RNA-SIP, TIM-2, HITChip, human trial

    The human gastro-intestinal (GI) tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages, with

  16. Metagenomics Study on the Polymorphism of Gut Microbiota and Their Function on Human Health

    DEFF Research Database (Denmark)

    Feng, Qiang

    diversity and functional complexity of the gut microbiome. Facilitated by the Next Generation Sequencing (NGS) technologies and the progress of bioinformatics in the past decade, we have acquired substantial achievements in metagenomic studies on human gut microbiome and established the fundamentals of our...... understanding of the interactions between gut microbes and human body, and also the importance of this interaction on human health. As one of the milestones, the first integrated gene catalog in the human gut microbiome was constructed in 2010 in the scheme of the Metagenomics of Human Intestinal Tract (Meta......’ are shared in the population. These microorganisms participate in various metabolic pathways and activities of the immune system and the nervous system of our bodies,and have fundamental impacts on our health. For example, an association study between gut microbiome and type 2 diabetes (T2D) highlighted...

  17. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    Science.gov (United States)

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2008-12-01

    Full Text Available Abstract Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. Results The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Conclusion Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  19. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    Science.gov (United States)

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  20. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome.

    Science.gov (United States)

    De Filippis, Francesca; Pellegrini, Nicoletta; Vannini, Lucia; Jeffery, Ian B; La Storia, Antonietta; Laghi, Luca; Serrazanetti, Diana I; Di Cagno, Raffaella; Ferrocino, Ilario; Lazzi, Camilla; Turroni, Silvia; Cocolin, Luca; Brigidi, Patrizia; Neviani, Erasmo; Gobbetti, Marco; O'Toole, Paul W; Ercolini, Danilo

    2016-11-01

    Habitual diet plays a major role in shaping the composition of the gut microbiota, and also determines the repertoire of microbial metabolites that can influence the host. The typical Western diet corresponds to that of an omnivore; however, the Mediterranean diet (MD), common in the Western Mediterranean culture, is to date a nutritionally recommended dietary pattern that includes high-level consumption of cereals, fruit, vegetables and legumes. To investigate the potential benefits of the MD in this cross-sectional survey, we assessed the gut microbiota and metabolome in a cohort of Italian individuals in relation to their habitual diets. We retrieved daily dietary information and assessed gut microbiota and metabolome in 153 individuals habitually following omnivore, vegetarian or vegan diets. The majority of vegan and vegetarian subjects and 30% of omnivore subjects had a high adherence to the MD. We were able to stratify individuals according to both diet type and adherence to the MD on the basis of their dietary patterns and associated microbiota. We detected significant associations between consumption of vegetable-based diets and increased levels of faecal short-chain fatty acids, Prevotella and some fibre-degrading Firmicutes, whose role in human gut warrants further research. Conversely, we detected higher urinary trimethylamine oxide levels in individuals with lower adherence to the MD. High-level consumption of plant foodstuffs consistent with an MD is associated with beneficial microbiome-related metabolomic profiles in subjects ostensibly consuming a Western diet. This study was registered at clinical trials.gov as NCT02118857. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. The relation between Blastocystis and the intestinal microbiota in Swedish travellers.

    Science.gov (United States)

    Forsell, Joakim; Bengtsson-Palme, Johan; Angelin, Martin; Johansson, Anders; Evengård, Birgitta; Granlund, Margareta

    2017-12-11

    Blastocystis sp. is a unicellular eukaryote that is commonly found in the human intestine. Its ability to cause disease is debated and a subject for ongoing research. In this study, faecal samples from 35 Swedish university students were examined through shotgun metagenomics before and after travel to the Indian peninsula or Central Africa. We aimed at assessing the impact of travel on Blastocystis carriage and seek associations between Blastocystis and the bacterial microbiota. We found a prevalence of Blastocystis of 16/35 (46%) before travel and 15/35 (43%) after travel. The two most commonly Blastocystis subtypes (STs) found were ST3 and ST4, accounting for 20 of the 31 samples positive for Blastocystis. No mixed subtype carriage was detected. All ten individuals with a typable ST before and after travel maintained their initial ST. The composition of the gut bacterial community was not significantly different between Blastocystis-carriers and non-carriers. Interestingly, the presence of Blastocystis was accompanied with higher abundances of the bacterial genera Sporolactobacillus and Candidatus Carsonella. Blastocystis carriage was positively associated with high bacterial genus richness, and negatively correlated to the Bacteroides-driven enterotype. These associations were both largely dependent on ST4 - a subtype commonly described from Europe - while the globally prevalent ST3 did not show such significant relationships. The high rate of Blastocystis subtype persistence found during travel indicates that long-term carriage of Blastocystis is common. The associations between Blastocystis and the bacterial microbiota found in this study could imply a link between Blastocystis and a healthy microbiota as well as with diets high in vegetables. Whether the associations between Blastocystis and the microbiota are resulting from the presence of Blastocystis, or are a prerequisite for colonization with Blastocystis, are interesting questions for further studies.

  2. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota

    Science.gov (United States)

    Nunn, Kenetta L.; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S.; Ma, Bing; Cone, Richard; Ravel, Jacques

    2015-01-01

    ABSTRACT Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. PMID:26443453

  3. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    Science.gov (United States)

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Vaginal Microbiota.

    Science.gov (United States)

    Mendling, Werner

    2016-01-01

    The knowledge about the normal and abnormal vaginal microbiome has changed over the last years. Culturing techniques are not suitable any more for determination of a normal or abnormal vaginal microbiota. Non culture-based modern technologies revealed a complex and dynamic system mainly dominated by lactobacilli.The normal and the abnormal vaginal microbiota are complex ecosystems of more than 200 bacterial species influenced by genes, ethnic background and environmental and behavioral factors. Several species of lactobacilli per individuum dominate the healthy vagina. They support a defense system together with antibacterial substances, cytokines, defensins and others against dysbiosis, infections and care for an normal pregnancy without preterm birth.The numbers of Lactobacillus (L.) iners increase in the case of dysbiosis.Bacterial vaginosis (BV) - associated bacteria (BVAB), Atopobium vaginae and Clostridiales and one or two of four Gardnerella vaginalis - strains develop in different mixtures and numbers polymicrobial biofilms on the vaginal epithelium, which are not dissolved by antibiotic therapies according to guidelines and, thus, provoke recurrences.Aerobic vaginitis seems to be an immunological disorder of the vagina with influence on the microbiota, which is here dominated by aerobic bacteria (Streptococcus agalactiae, Escherichia coli). Their role in AV is unknown.Vaginal or oral application of lactobacilli is obviously able to improve therapeutic results of BV and dysbiosis.

  5. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling.

    Science.gov (United States)

    Videvall, Elin; Strandh, Maria; Engelbrecht, Anel; Cloete, Schalk; Cornwallis, Charlie K

    2018-05-01

    The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high-throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies. © 2017 John Wiley & Sons Ltd.

  6. Omics approaches to study host-microbiota interactions

    NARCIS (Netherlands)

    Baarlen, van P.; Kleerebezem, M.; Wells, J.

    2013-01-01

    The intestinal microbiota has profound effects on our physiology and immune system and disturbances in the equilibrium between microbiota and host have been observed in many disorders. Here we discuss the possibilities to further our understanding of how microbiota impacts on human health and

  7. Molecular biological methods for studying the gut microbiota : the EU human gut flora project

    NARCIS (Netherlands)

    Blaut, M; Collins, MD; Welling, GW; Dore, J; van Loo, J; de Vos, W

    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to

  8. Challenges in simulating the human gut for understanding the role of the microbiota in obesity

    NARCIS (Netherlands)

    Aguirre, M.; Venema, K.

    2017-01-01

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to

  9. The human gut microbiota as a reservoir for antimicrobial resistance genes

    NARCIS (Netherlands)

    Bülow, E.

    2015-01-01

    In the last decades, the emergence and spread of resistant opportunistic pathogens is compromising the effectiveness of antimicrobial therapies. Understanding the emergence and global spread of drug-resistant microorganisms is thus crucial to combat antimicrobial resistance. The human gut harbors a

  10. Gut Microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics and postbiotics on human health

    Science.gov (United States)

    Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...

  11. Fungal Diversity of Human Gut Microbiota Among Eutrophic, Overweight, and Obese Individuals Based on Aerobic Culture-Dependent Approach.

    Science.gov (United States)

    Borges, Francis M; de Paula, Thaís O; Sarmiento, Marjorie R A; de Oliveira, Maycon G; Pereira, Maria L M; Toledo, Isabela V; Nascimento, Thiago C; Ferreira-Machado, Alessandra B; Silva, Vânia L; Diniz, Cláudio G

    2018-06-01

    Fungi have a complex role in the intestinal tract, influencing health and disease, with dysbiosis contributing to obesity. Our objectives were to investigate fungal diversity in human gut microbiota among eutrophic, overweight, and obese. Epidemiological and nutritional information were collected from adult individuals, as well as stool samples processed for selective fungi isolation and identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (yeasts) or microculture (filamentous fungi). Further 18S rDNA sequencing was performed to confirm identification. The mean count of fungi was 241 CFU/g of feces. Differences in the population level of the filamentous fungi were observed within eutrophic and obese groups. Overall, 34 genera were identified. The predominant phylum was Ascomycota with 20 different genera, followed by Basidiomycota and Zygomycota. As for Ascomycota, the most prevalent species were Paecilomyces sp., Penicillium sp., Candida sp., Aspergillus sp., Fonsecaea sp., and Geotrichum sp. (76.39, 65.28, 59.72, 58.33, 12.50, and 9.72%, respectively). As for Basidiomycota, Trichosporon sp. and Rhodotorula sp. were the most prevalent (30.56 and 15.28%, respectively), and for Zygomycota, Rhizopus sp. and Mucor sp. were the most numerous (15.28 and 9.72%, respectively). As expected there is a mycobiota shift towards obesity, with slightly higher diversity associated to eutrophic individuals. This mycobiota shift seems also to be related to the nutritional behavior of the individuals, as observed that the macronutrients intake may be positively related to the different fungi occurrences. Other studies are needed to better understand relationships between mycobiota and obesity, which could be used in future obesity treatments.

  12. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota.

    Science.gov (United States)

    Verhulst, Niels O; Mbadi, Phoebe A; Kiss, Gabriella Bukovinszkiné; Mukabana, Wolfgang R; van Loon, Joop J A; Takken, Willem; Smallegange, Renate C

    2011-02-08

    Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined. The host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast. The olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%. Identification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas.

  13. Contamination of faecal coliforms in ice cubes sampled from food outlets in Kubang Kerian, Kelantan.

    Science.gov (United States)

    Noor Izani, N J; Zulaikha, A R; Mohamad Noor, M R; Amri, M A; Mahat, N A

    2012-03-01

    The use of ice cubes in beverages is common among patrons of food outlets in Malaysia although its safety for human consumption remains unclear. Hence, this study was designed to determine the presence of faecal coliforms and several useful water physicochemical parameters viz. free residual chlorine concentration, turbidity and pH in ice cubes from 30 randomly selected food outlets in Kubang Kerian, Kelantan. Faecal coliforms were found in ice cubes in 16 (53%) food outlets ranging between 1 CFU/100mL to >50 CFU/ 100mL, while in the remaining 14 (47%) food outlets, in samples of tap water as well as in commercially bottled drinking water, faecal coliforms were not detected. The highest faecal coliform counts of >50 CFU/100mL were observed in 3 (10%) food outlets followed by 11-50 CFU/100mL and 1-10 CFU/100mL in 7 (23%) and 6 (20%) food outlets, respectively. All samples recorded low free residual chlorine concentration (contamination by faecal coliforms was not detected in 47% of the samples, tap water and commercially bottled drinking water, it was concluded that (1) contamination by faecal coliforms may occur due to improper handling of ice cubes at the food outlets or (2) they may not be the water sources used for making ice cubes. Since low free residual chlorine concentrations were observed (food outlets, including that of ice cube is crucial in ensuring better food and water for human consumption.

  14. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    Science.gov (United States)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  16. Interplay between gut microbiota and antibiotics

    NARCIS (Netherlands)

    Jesus Bello Gonzalez, de Teresita

    2016-01-01

    The human body is colonized by a vast number of microorganisms collectively defined as the microbiota. In the gut, the microbiota has important roles in health and disease, and can serve as a host of antibiotic resistance genes. Disturbances in the ecological balance, e.g. by antibiotics, can

  17. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  18. Monitoring bacterial faecal contamination in waters using multiplex ...

    African Journals Online (AJOL)

    Monitoring of sanitary quality or faecal pollution in water is currently based on quantifying some bacterial indicators such as Escherichia coli and faecal enterococci. Using a multiplex real-time PCR assay for faecal enterococci and Bacteroides spp., the detection of faecal contamination in non-treated water can be done in a ...

  19. Effect of almond and pistachio consumption on gut microbiota composition in a randomized cross-over human feeding study

    DEFF Research Database (Denmark)

    Ukhanova, M; Wang, X; Baer, D J

    2014-01-01

    for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various...

  20. Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections.

    Science.gov (United States)

    Zawadzki, Paweł J; Perkowski, Konrad; Padzik, Marcin; Mierzwińska-Nastalska, Elżbieta; Szaflik, Jacek P; Conn, David Bruce; Chomicz, Lidia

    2017-01-01

    The oral cavity environment may be colonized by polymicrobial communities with complex, poorly known interrelations. The aim of this study was to determine oral microbiota diversity in order to prevent the spread of infectious microorganisms that are risk factors for human health complications in patients requiring treatment due to various disabilities. The study examined Polish adults aged between 40 and 70 years; parasitological, microbiological, and mycological data collected before treatment were analyzed. The diversity of oral microbiota, including relatively high prevalences of some opportunistic, potentially pathogenic strains of bacteria, protozoans, and fungi detected in the patients analyzed, may result in increasing risk of disseminated infections from the oral cavity to neighboring structures and other organs. Increasing ageing of human populations is noted in recent decades in many countries, including Poland. The growing number of older adults with different oral health disabilities, who are more prone to development of oral and systemic pathology, is an increasing medical problem. Results of this retrospective study showed the urgent need to pay more attention to the pretreatment examination of components of the oral microbiome, especially to the strains, which are etiological agents of human opportunistic infections and are particularly dangerous for older adults.

  1. Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections

    Directory of Open Access Journals (Sweden)

    Paweł J. Zawadzki

    2017-01-01

    Full Text Available The oral cavity environment may be colonized by polymicrobial communities with complex, poorly known interrelations. The aim of this study was to determine oral microbiota diversity in order to prevent the spread of infectious microorganisms that are risk factors for human health complications in patients requiring treatment due to various disabilities. The study examined Polish adults aged between 40 and 70 years; parasitological, microbiological, and mycological data collected before treatment were analyzed. The diversity of oral microbiota, including relatively high prevalences of some opportunistic, potentially pathogenic strains of bacteria, protozoans, and fungi detected in the patients analyzed, may result in increasing risk of disseminated infections from the oral cavity to neighboring structures and other organs. Increasing ageing of human populations is noted in recent decades in many countries, including Poland. The growing number of older adults with different oral health disabilities, who are more prone to development of oral and systemic pathology, is an increasing medical problem. Results of this retrospective study showed the urgent need to pay more attention to the pretreatment examination of components of the oral microbiome, especially to the strains, which are etiological agents of human opportunistic infections and are particularly dangerous for older adults.

  2. Bioautography to assess antibacterial activity of Ottonia martiana Miq. (Piperaceae on the human oral microbiota

    Directory of Open Access Journals (Sweden)

    Miriam Machado Cunico

    2012-12-01

    Full Text Available Ottonia martiana Miq. (Piperaceae, a plant known popularly in southern Brazil as “anestésia” and used in the treatment of odontalgia for its anesthetic action on the oral mucosa, was investigated for antibacterial activity by paper disc agar diffusion and bioautographic methods, against microorganisms present in the human oral cavity [Streptococcus mutans (ATCC 25175, Streptococcus mitis (ATCC 49456, Streptococcus pyogenes (ATCC 19615, Streptococcus salivarius (ATCC 25975, Escherichia coli (ATCC 11229 and 25922, Pseudomonas aeruginosa (ATCC 27853 and Enterobacter aerogenes(ATCC 27853.The crude extract of O. martiana (32.9 mg mL-1 had antibacterial potential against all Gram-positive bacteria tested. Analysis of the bioautograms led to the detection of bioactive substances, among which it was possible to identify piperovatine (Rf 0.35, piperlonguminine (Rf 0.52 and isopiperlonguminine (Rf 0.52. The piperovatine and isopiperlonguminine were isolated from the roots of O. martiana, guided by a bioautographic antibacterial bioassay.

  3. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  4. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  5. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  6. The Gut Microbiota in Host Metabolism and Pathogen Challenges

    DEFF Research Database (Denmark)

    Holm, Jacob Bak

    The human microbiota consists of a complex community of microbial cells that live on and inside each person in a close relationship with their host. The majority of the microbial cells are harboured by the gastro intestinal tract where 10-100 trillion bacteria reside. The microbiota is a dynamic...... community where both composition and function can be affected by changes in the local environment. With the microbiota containing ~150 times more genes than the human host, the microbiota provides a large modifiable “secondary genome” (metagenome). Within the last decade, changes in the gut microbiota...... composition has indeed been established as a factor contributing to the health of the host. Therefore, being able to understand, control and modify the gut microbiota is a promising way of improving health. The following thesis is based on four different projects investigating the murine gut microbiota...

  7. Modulation of Gut Microbiota in Pathological States

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2017-02-01

    Full Text Available The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT. Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD; obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

  8. The microbiota revolution: Excitement and caution.

    Science.gov (United States)

    Rescigno, Maria

    2017-09-01

    Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The role of the intestinal microbiota in pneumonia and sepsis

    NARCIS (Netherlands)

    Lankelma, J.M.

    2017-01-01

    Humans carry with them trillions of bacteria, viruses and fungi that are collectively called the human microbiota. The intestinal microbiota fulfills essential functions in human physiology and has recently been suggested as a potential therapeutic target for several diseases. This thesis focuses on

  10. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  11. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'

    DEFF Research Database (Denmark)

    Rieger, Martin A.; Parlesak, Alexandr; Pool-Zobel, Beatrice

    1999-01-01

    To determine the effects of different diets on the genotoxicity of human faecal water, a diet rich in fat, meat and sugar but poor in vegetables and free of wholemeal products (diet 1) was consumed by seven healthy volunteers over a period of 12 days. One week after the end of this period......, the volunteers started to consume a diet enriched with vegetables and wholemeal products but poor in fat and meat (diet 2) over a second period of 12 days. The genotoxic effect of faecal waters obtained after both diets was assessed with the single cell gel electrophoresis (Comet assay) using the human colon...... and purine bases revealed no differences after pretreatment with both types of faecal water. The results indicate that diets high in fat and meat but low in dietary fibre increase the genotoxicity of faecal water to colonic cells and may contribute to an enhanced risk of colorectal cancer....

  12. The gut microbiota and obesity: from correlation to causality.

    Science.gov (United States)

    Zhao, Liping

    2013-09-01

    The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.

  13. Fecal microbiota transplant

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007703.htm Fecal microbiota transplant To use the sharing features on this page, please enable JavaScript. Fecal microbiota transplantation (FMT) helps to replace some of the " ...

  14. Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model.

    Directory of Open Access Journals (Sweden)

    Ke Wen

    Full Text Available This study aims to establish a human gut microbiota (HGM transplanted gnotobiotic (Gn pig model of human rotavirus (HRV infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-γ producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG feeding (14 doses, up to 109 colony-forming-unit [CFU]/dose effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota.

  15. Occurrence and analysis of irp2 virulence gene in isolates of Klebsiella pneumoniae and Enterobacter spp. from microbiota and hospital and community-acquired infections.

    Science.gov (United States)

    Souza Lopes, Ana Catarina; Rodrigues, Juliana Falcão; Cabral, Adriane Borges; da Silva, Maíra Espíndola; Leal, Nilma Cintra; da Silveira, Vera Magalhães; de Morais Júnior, Marcos Antônio

    2016-07-01

    Eighty-five isolates of Klebsiella pneumoniae and Enterobacter spp., originating from hospital- and community-acquired infections and from oropharyngeal and faecal microbiota from patients in Recife-PE, Brazil, were analyzed regarding the presence of irp2 gene. This is a Yersinia typical gene involved in the synthesis of siderophore yersiniabactin. DNA sequencing confirmed the identity of irp2 gene in five K. pneumoniae, five Enterobacter aerogenes and one Enterobacter amnigenus isolates. To our knowledge in the current literature, this is the first report of the irp2 gene in E. amnigenus, a species considered an unusual human pathogen, and in K. pneumoniae and E. aerogenes isolates from the normal microbiota and from community infections, respectively. Additionally, the analyses of nucleotide and amino acid sequences suggest the irp2 genes derived from isolates used in this study are more closely related to that of Yersinia pestis P.CE882 than to that of Yersinia enterocolitica 8081. These data demonstrated that K. pneumoniae and Enterobacter spp. from normal microbiota and from community- and hospital-acquired infections possess virulence factors important for the establishment of extra-intestinal infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment.

    Science.gov (United States)

    Guerrero-Preston, Rafael; Godoy-Vitorino, Filipa; Jedlicka, Anne; Rodríguez-Hilario, Arnold; González, Herminio; Bondy, Jessica; Lawson, Fahcina; Folawiyo, Oluwasina; Michailidi, Christina; Dziedzic, Amanda; Thangavel, Rajagowthamee; Hadar, Tal; Noordhuis, Maartje G; Westra, William; Koch, Wayne; Sidransky, David

    2016-08-09

    Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from Oropharyngeal (OPSCC), Oral Cavity Squamous Cell Carcinoma (OCSCC) patients and normal epithelium controls, to characterize the HNSCC saliva microbiota and examine their abundance before and after surgical resection.The analyses identified a predominance of Firmicutes, Proteobacteria and Bacteroidetes, with less frequent presence of Actinobacteria and Fusobacteria before surgery. At lower taxonomic levels, the most abundant genera were Streptococcus, Prevotella, Haemophilus, Lactobacillus and Veillonella, with lower numbers of Citrobacter and Neisseraceae genus Kingella. HNSCC patients had a significant loss in richness and diversity of microbiota species (p<0.05) compared to the controls. Overall, the Operational Taxonomic Units network shows that the relative abundance of OTU's within genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor from control samples (p<0.05). Tumor samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophillus (Firmicutes) and Leptotrichia (Fusobacteria). Paired taxa within family Enterobacteriaceae, together with genus Oribacterium, distinguish OCSCC samples from OPSCC and normal samples (p<0.05). Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc (p<0.05). Longitudinal analyses of samples taken before and after surgery, revealed a reduction in the alpha diversity measure after surgery, together with an increase of this measure in patients that recurred (p<0.05). These results suggest that microbiota may be used as HNSCC diagnostic and prognostic biomonitors.

  17. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  18. The Neanderthal meal: a new perspective using faecal biomarkers.

    Directory of Open Access Journals (Sweden)

    Ainara Sistiaga

    Full Text Available Neanderthal dietary reconstructions have, to date, been based on indirect evidence and may underestimate the significance of plants as a food source. While zooarchaeological and stable isotope data have conveyed an image of Neanderthals as largely carnivorous, studies on dental calculus and scattered palaeobotanical evidence suggest some degree of contribution of plants to their diet. However, both views remain plausible and there is no categorical indication of an omnivorous diet. Here we present direct evidence of Neanderthal diet using faecal biomarkers, a valuable analytical tool for identifying dietary provenance. Our gas chromatography-mass spectrometry results from El Salt (Spain, a Middle Palaeolithic site dating to ca. 50,000 yr. BP, represents the oldest positive identification of human faecal matter. We show that Neanderthals, like anatomically modern humans, have a high rate of conversion of cholesterol to coprostanol related to the presence of required bacteria in their guts. Analysis of five sediment samples from different occupation floors suggests that Neanderthals predominantly consumed meat, as indicated by high coprostanol proportions, but also had significant plant intake, as shown by the presence of 5β-stigmastanol. This study highlights the applicability of the biomarker approach in Pleistocene contexts as a provider of direct palaeodietary information and supports the opportunity for further research into cholesterol metabolism throughout human evolution.

  19. Gut microbiota and the development of obesity.

    Science.gov (United States)

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  20. Using faecal profiling to assess the effects of different management ...

    African Journals Online (AJOL)

    We used faecal profiling to assess diet quality of animals under three different management types in a semi-arid savanna, northwest of Kimberley, Northern Cape, South Africa. The levels of faecal crude protein (FCP) and faecal phosphorus (FP) of freeranging springbok (Antidorcas marsupialis) and blue wildebeest ...

  1. The nasal cavity microbiota of healthy adults

    OpenAIRE

    Bassis, Christine M; Tang, Alice L; Young, Vincent B; Pynnonen, Melissa A

    2014-01-01

    Background The microbiota of the nares has been widely studied. However, relatively few studies have investigated the microbiota of the nasal cavity posterior to the nares. This distinct environment has the potential to contain a distinct microbiota and play an important role in health. Results We obtained 35,142 high-quality bacterial 16S rRNA-encoding gene sequence reads from the nasal cavity and oral cavity (the dorsum of the tongue and the buccal mucosa) of 12 healthy adult humans and dep...

  2. Correlation of bowel symptoms with colonic transit, length, and faecal load in functional faecal retention

    DEFF Research Database (Denmark)

    Raahave, Dennis; Christensen, Elsebeth; Loud, Franck B.

    2009-01-01

    INTRODUCTION: Abdominal pain, bloating, and defecation disturbances are common complaints in gastrointestinal functional disorders. This study explores whether bowel symptoms are correlated to colon transit time (CTT), faecal loading (coprostasis), and colon length; and whether prokinetic interve...

  3. Nocturnal faecal soiling and anal masturbation.

    Science.gov (United States)

    Clark, A F; Tayler, P J; Bhate, S R

    1990-01-01

    Two cases of late onset faecal soiling as a result of anal masturbation in children who were neither mentally handicapped nor psychotic were studied. The role of soiling in aiding the young person and his family to avoid separating and maturing is highlighted. We suggest that the association of anal masturbation and resistant nocturnal soiling may be unrecognised. PMID:2270946

  4. Uncertainty on faecal analysis on dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Juliao, Ligia M.Q.C.; Melo, Dunstana R.; Sousa, Wanderson de O.; Santos, Maristela S.; Fernandes, Paulo Cesar P. [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Av. Salvador Allende s/n. Via 9, Recreio, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2007-07-01

    Monitoring programmes for internal dose assessment may need to have a combination of bioassay techniques, e.g. urine and faecal analysis, especially in workplaces where compounds of different solubilities are handled and also in cases of accidental intakes. Faecal analysis may be an important data for assessment of committed effective dose due to exposure to insoluble compounds, since the activity excreted by urine may not be detectable, unless a very sensitive measurement system is available. This paper discusses the variability of the daily faecal excretion based on data from just one daily collection; collection during three consecutive days: samples analysed individually and samples analysed as a pool. The results suggest that just 1 d collection is not appropriate for dose assessment, since the 24 h uranium excretion may vary by a factor of 40. On the basis of this analysis, the recommendation should be faecal collection during three consecutive days, and samples analysed as a pool, it is more economic and faster. (authors)

  5. Faecal Waste Disposal and Environmental Health Status in a Nigerian Coastal Settlement of Oron

    Directory of Open Access Journals (Sweden)

    Edet E. Ikurekong

    2008-10-01

    Full Text Available AIM/BACKGROUND: This research investigated the relationship between faecal waste disposal and the environmental health status of the inhabitants of Oron LGA, of Akwa Ibom State, Nigeria. The objectives were to identify the methods of faecal disposal; identify the incidence of faecal waste related diseases and the pattern and types of diseases occurrence in the study area. METHOD: 400 households were randomly selected for interview from 17 villages of the study area. Ground and surface water samples were spatially collected and analysed to determine their quality. These include streams, boreholes pipe-borne, and rain and river water from the 17 villages. RESULTS: The result shows that both the qualitative and quantitative aspect of the major sources of drinking water supply are at variance with the established national and international standards. The stepwise multiple regression models applied proved the validity of population demographic characteristics, unhygienic environment and poor quality of water supply as factors that enhance the incidence and vulnerability of the population to faecal waste related disease occurrence. CONCLUSION: The study recommends sustainable strategies towards the management of human faecal waste and related diseases in the study area. [TAF Prev Med Bull 2008; 7(5.000: 363-368

  6. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities.

    Science.gov (United States)

    Brunkwall, Louise; Orho-Melander, Marju

    2017-06-01

    The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics

  7. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  8. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome.

    Directory of Open Access Journals (Sweden)

    Nathan P McNulty

    Full Text Available The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These

  9. Generic Modelling of Faecal Indicator Organism Concentrations in the UK

    Directory of Open Access Journals (Sweden)

    Carl M. Stapleton

    2011-06-01

    Full Text Available To meet European Water Framework Directive requirements, data are needed on faecal indicator organism (FIO concentrations in rivers to enable the more heavily polluted to be targeted for remedial action. Due to the paucity of FIO data for the UK, especially under high-flow hydrograph event conditions, there is an urgent need by the policy community for generic models that can accurately predict FIO concentrations, thus informing integrated catchment management programmes. This paper reports the development of regression models to predict base- and high-flow faecal coliform (FC and enterococci (EN concentrations for 153 monitoring points across 14 UK catchments, using land cover, population (human and livestock density and other variables that may affect FIO source strength, transport and die-off. Statistically significant models were developed for both FC and EN, with greater explained variance achieved in the high-flow models. Both land cover and, in particular, population variables are significant predictors of FIO concentrations, with r2 maxima for EN of 0.571 and 0.624, respectively. It is argued that the resulting models can be applied, with confidence, to other UK catchments, both to predict FIO concentrations in unmonitored watercourses and evaluate the likely impact of different land use/stocking level and human population change scenarios.

  10. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia.

    Science.gov (United States)

    Schuijt, Tim J; Lankelma, Jacqueline M; Scicluna, Brendon P; de Sousa e Melo, Felipe; Roelofs, Joris J T H; de Boer, J Daan; Hoogendijk, Arjan J; de Beer, Regina; de Vos, Alex; Belzer, Clara; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2016-04-01

    Pneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections. We depleted the gut microbiota in C57BL/6 mice and subsequently infected them intranasally with S. pneumoniae. We then performed survival and faecal microbiota transplantation (FMT) experiments and measured parameters of inflammation and alveolar macrophage whole-genome responses. We found that the gut microbiota protects the host during pneumococcal pneumonia, as reflected by increased bacterial dissemination, inflammation, organ damage and mortality in microbiota-depleted mice compared with controls. FMT in gut microbiota-depleted mice led to a normalisation of pulmonary bacterial counts and tumour necrosis factor-α and interleukin-10 levels 6 h after pneumococcal infection. Whole-genome mapping of alveolar macrophages showed upregulation of metabolic pathways in the absence of a healthy gut microbiota. This upregulation correlated with an altered cellular responsiveness, reflected by a reduced responsiveness to lipopolysaccharide and lipoteichoic acid. Compared with controls, alveolar macrophages derived from gut microbiota-depleted mice showed a diminished capacity to phagocytose S. pneumoniae. This study identifies the intestinal microbiota as a protective mediator during pneumococcal pneumonia. The gut microbiota enhances primary alveolar macrophage function. Novel therapeutic strategies could exploit the gut-lung axis in bacterial infections. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. The Oral Microbiota.

    Science.gov (United States)

    Arweiler, Nicole B; Netuschil, Lutz

    2016-01-01

    The oral microbiota represents an important part of the human microbiota, and includes several hundred to several thousand diverse species. It is a normal part of the oral cavity and has an important function to protect against colonization of extrinsic bacteria which could affect systemic health. On the other hand, the most common oral diseases caries, gingivitis and periodontitis are based on microorganisms. While (medical) research focused on the planktonic phase of bacteria over the last 100 years, it is nowadays generally known, that oral microorganisms are organised as biofilms. On any non-shedding surfaces of the oral cavity dental plaque starts to form, which meets all criteria for a microbial biofilm and is subject to the so-called succession. When the sensitive ecosystem turns out of balance - either by overload or weak immune system - it becomes a challenge for local or systemic health. Therefore, the most common strategy and the golden standard for the prevention of caries, gingivitis and periodontitis is the mechanical removal of this biofilms from teeth, restorations or dental prosthesis by regular toothbrushing.

  12. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers.

    Science.gov (United States)

    Ticinesi, Andrea; Milani, Christian; Guerra, Angela; Allegri, Franca; Lauretani, Fulvio; Nouvenne, Antonio; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Turroni, Francesca; Duranti, Sabrina; Mangifesta, Marta; Viappiani, Alice; Ferrario, Chiara; Dodi, Rossella; Dall'Asta, Margherita; Del Rio, Daniele; Ventura, Marco; Meschi, Tiziana

    2018-04-28

    The involvement of the gut microbiota in the pathogenesis of calcium nephrolithiasis has been hypothesised since the discovery of the oxalate-degrading activity of Oxalobacter formigenes , but never comprehensively studied with metagenomics. The aim of this case-control study was to compare the faecal microbiota composition and functionality between recurrent idiopathic calcium stone formers (SFs) and controls. Faecal samples were collected from 52 SFs and 48 controls (mean age 48±11). The microbiota composition was analysed through 16S rRNA microbial profiling approach. Ten samples (five SFs, five controls) were also analysed with deep shotgun metagenomics sequencing, with focus on oxalate-degrading microbial metabolic pathways. Dietary habits, assessed through a food-frequency questionnaire, and 24-hour urinary excretion of prolithogenic and antilithogenic factors, including calcium and oxalate, were compared between SFs and controls, and considered as covariates in the comparison of microbiota profiles. SFs exhibited lower faecal microbial diversity than controls (Chao1 index 1460±363vs 1658±297, fully adjusted p=0.02 with stepwise backward regression analysis). At multivariate analyses, three taxa ( Faecalibacterium , Enterobacter , Dorea ) were significantly less represented in faecal samples of SFs. The Oxalobacter abundance was not different between groups. Faecal samples from SFs exhibited a significantly lower bacterial representation of genes involved in oxalate degradation, with inverse correlation with 24-hour oxalate excretion (r=-0.87, p=0.002). The oxalate-degrading genes were represented in several bacterial species, whose cumulative abundance was inversely correlated with oxaluria (r=-0.85, p=0.02). Idiopathic calcium SFs exhibited altered gut microbiota composition and functionality that could contribute to nephrolithiasis physiopathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All

  13. The Influence of Social Conditions Across the Life Course on the Human Gut Microbiota: A Pilot Project With the Wisconsin Longitudinal Study.

    Science.gov (United States)

    Herd, Pamela; Schaeffer, Nora Cate; DiLoreto, Kerryann; Jacques, Karen; Stevenson, John; Rey, Federico; Roan, Carol

    2017-12-15

    To test the feasibility of collecting and integrating data on the gut microbiome into one of the most comprehensive longitudinal studies of aging and health, the Wisconsin Longitudinal Study (WLS). The long-term goal of this integration is to clarify the contribution of social conditions in shaping the composition of the gut microbiota late in life. Research on the microbiome, which is considered to be of parallel importance to human health as the human genome, has been hindered by human studies with nonrandomly selected samples and with limited data on social conditions over the life course. No existing population-based longitudinal study had collected fecal specimens. Consequently, we created an in-person protocol to collect stool specimens from a subgroup of WLS participants. We collected 429 stool specimens, yielding a 74% response rate and one of the largest human samples to date. The addition of data on the gut microbiome to the WLS-and to other population based longitudinal studies of aging-is feasible, under the right conditions, and can generate innovative research on the relationship between social conditions and the gut microbiome. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  15. A synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V increases faecal Bifidobacterium in healthy young children.

    Science.gov (United States)

    Kosuwon, P; Lao-Araya, M; Uthaisangsook, S; Lay, C; Bindels, J; Knol, J; Chatchatee, P

    2018-04-10

    Little is known about the impact of nutrition on toddler gut microbiota. The plasticity of the toddler gut microbiota indicates that nutritional modulation beyond infancy could potentially impact its maturation. The objective of this study was to determine the effect of consuming Young Child Formula (YCF) supplemented with short chain galactooligosaccharides and long chain fructooligosaccharides (scGOS/lcFOS, ratio 9:1) and Bifidobacterium breve M-16V on the development of the faecal microbiota in healthy toddlers. A cohort of 129 Thai children aged 1-3 years were included in a randomised controlled clinical study. The children were assigned to receive either YCF with 0.95 g/100 ml of scGOS/lcFOS and 1.8×10 7 cfu/g of B. breve M-16V (Active-YCF) or Control-YCF for 12 weeks. The composition and metabolic activity of the faecal microbiota, and the level of secretory immunoglobulin A were determined in the stool samples. The consumption of Active-YCF increased the proportion of Bifidobacterium (mean 27.3% at baseline to 33.3%, at week 12, P=0.012) with a difference in change from baseline at week 12 between the Active and Control of 7.48% (P=0.030). The consumption of Active-YCF was accompanied with a more acidic intestinal milieu compared to the Control-YCF. The pH value decreased statistically significantly in the Active-YCF group from a median of 7.05 at baseline to 6.79 at week 12 (Pbreve M-16V positively influences the development of the faecal microbiota in healthy toddlers by supporting higher levels of Bifidobacterium. The synbiotic supplementation is also accompanied with a more acidic intestinal milieu and softer stools.

  16. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    Science.gov (United States)

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  17. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation

    DEFF Research Database (Denmark)

    Holck, Jesper; Hjernø, K.; Lorentzen, A.

    2011-01-01

    Sugar beet pectin was degraded enzymatically and separated by ion exchange chromatography into series of highly purified homogalacturonides and rhamnogalacturonides. MALDI-TOF/TOF mass-spectrometry was used to determine sizes and structural features. The methodology was based on the sequential us....... This indicates that pectic oligosaccharides with only slightly different structures have significantly different biological effects. This is the first report of pectic oligosaccharide activity on gut bacterial populations related to the metabolic syndrome associated with obesity....

  18. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  19. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    OpenAIRE

    Lise Madsen; Lise Madsen; Lise Madsen; Lene S. Myrmel; Even Fjære; Bjørn Liaset; Karsten Kristiansen; Karsten Kristiansen

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  20. Links between dietary protein sources, the gut microbiota, and obesity

    OpenAIRE

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  1. Interactions between the microbiota and pathogenic bacteria in the gut

    OpenAIRE

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, thes...

  2. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease.

    Science.gov (United States)

    Barbara, Giovanni; Scaioli, Eleonora; Barbaro, Maria Raffaella; Biagi, Elena; Laghi, Luca; Cremon, Cesare; Marasco, Giovanni; Colecchia, Antonio; Picone, Gianfranco; Salfi, Nunzio; Capozzi, Francesco; Brigidi, Patrizia; Festi, Davide

    2017-07-01

    The engagement of the gut microbiota in the development of symptoms and complications of diverticular disease has been frequently hypothesised. Our aim was to explore colonic immunocytes, gut microbiota and the metabolome in patients with diverticular disease in a descriptive, cross-sectional, pilot study. Following colonoscopy with biopsy and questionnaire phenotyping, patients were classified into diverticulosis or symptomatic uncomplicated diverticular disease; asymptomatic subjects served as controls. Mucosal immunocytes, in the diverticular region and in unaffected sites, were quantified with immunohistochemistry. Mucosa and faecal microbiota were analysed by the phylogenetic platform high taxonomic fingerprint (HTF)-Microbi.Array, while the metabolome was assessed by 1 H nuclear magnetic resonance. Compared with controls, patients with diverticula, regardless of symptoms, had a >70% increase in colonic macrophages. Their faecal microbiota showed depletion of Clostridium cluster IV. Clostridium cluster IX, Fusobacterium and Lactobacillaceae were reduced in symptomatic versus asymptomatic patients. A negative correlation was found between macrophages and mucosal Clostridium cluster IV and Akkermansia . Urinary and faecal metabolome changes in diverticular disease involved the hippurate and kynurenine pathways. Six urinary molecules allowed to discriminate diverticular disease and control groups with >95% accuracy. Patients with colonic diverticular disease show depletion of microbiota members with anti-inflammatory activity associated with mucosal macrophage infiltration. Metabolome profiles were linked to inflammatory pathways and gut neuromotor dysfunction and showed the ability to discriminate diverticular subgroups and controls. These data pave the way for further large-scale studies specifically aimed at identifying microbiota signatures with a potential diagnostic value in patients with diverticular disease. Published by the BMJ Publishing Group Limited

  3. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    Science.gov (United States)

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  4. The Gut Microbiota of Marine Fish

    Science.gov (United States)

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  5. Faecal soiling: pathophysiology of postdefaecatory incontinence.

    Science.gov (United States)

    Pucciani, F

    2013-08-01

    Passive postdefaecatory incontinence is poorly understood and yet is an important clinical problem. The aim of this study was to characterize the pathophysiology of postdefaecatory incontinence in patients affected by faecal soiling. Seventy-two patients (30 women, age range 49-79 years; 42 men, age range, 53-75 years) affected by faecal passive incontinence with faecal soiling were included in the study. Two patient groups were identified: Group 1 comprised 42 patients with postdefaecatory incontinence and Group 2 had 30 patients without incontinence after bowel movements. After a preliminary clinical evaluation, including the Faecal Incontinence Severity Index (FISI) score and the obstructed defaecation syndrome (ODS) score, all patients of Groups 1 and 2 were studied by means of endoanal ultrasound and anorectal manometry. The results were compared with those from 20 healthy control subjects. A significantly higher ODS score was found in Group 1 (P IAS) in Group 2 (P IAS atrophy and the FISI score (ρs 0.78; P < 0.03). Anal resting pressure (Pmax and Pm ) was significantly lower in Group 2 (P < 0.04). The straining test was considered positive in 30 (71.4%) patients in Group 1, significantly greater than in Group 2 (P < 0.01). A significantly higher conscious rectal sensitivity threshold (CRST) was found in Group 1 patients (P < 0.01). The ODS score, a positive straining test and high CRST values suggest that postdefaecatory incontinence is secondary to impaired defaecation. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  6. [Gut microbiota in health and disease].

    Science.gov (United States)

    Icaza-Chávez, M E

    2013-01-01

    Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  7. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  8. The developing hypopharyngeal microbiota in early life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen; Brejnrod, Asker Daniel; Roggenbuck, Michael

    2016-01-01

    BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand the establi......BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand...... the establishment of the airway microbiota within the first 3 months of life. We investigated the hypopharyngeal microbiota in the unselected COPSAC2010 cohort of 700 infants, using 16S rRNA gene sequencing of hypopharyngeal aspirates from 1 week, 1 month, and 3 months of age. RESULTS: Our analysis shows...... that majority of the hypopharyngeal microbiota of healthy infants belong to each individual's core microbiota and we demonstrate five distinct community pneumotypes. Four of these pneumotypes are dominated by the genera Staphylococcus, Streptococcus, Moraxella, and Corynebacterium, respectively. Furthermore, we...

  9. Nutrition meets the microbiome: micronutrients and the microbiota.

    Science.gov (United States)

    Biesalski, Hans K

    2016-05-01

    There is increasing evidence that food is an important factor that influences and shapes the composition and configuration of the gut microbiota. Most studies have focused on macronutrients (fat, carbohydrate, protein) in particular and their effects on the gut microbiota. Although the microbiota can synthesize different water-soluble vitamins, the effects of vitamins synthesized within the microbiota on systemic vitamin status are unclear. Few studies exist on the shuttling of vitamins between the microbiota and intestine and the impact of luminal vitamins on the microbiota. Studying the interactions between vitamins and the microbiota may help to understand the effects of vitamins on the barrier function and immune system of the intestinal tract. Furthermore, understanding the impact of malnutrition, particularly low micronutrient supply, on microbiota development, composition, and metabolism may help in implementing new strategies to overcome the deleterious effects of malnutrition on child development. This article reviews data on the synthesis of different micronutrients and their effects on the human microbiota, and further discusses the consequences of malnutrition on microbiota composition. © 2016 New York Academy of Sciences.

  10. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects.

    Science.gov (United States)

    Costabile, Adele; Kolida, Sofia; Klinder, Annett; Gietl, Eva; Bäuerlein, Michael; Frohberg, Claus; Landschütze, Volker; Gibson, Glenn R

    2010-10-01

    There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels of Atopobium group significantly increased, while Bacteroides-Prevotella numbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed by in vitro gas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.

  11. Neuropeptides, Microbiota, and Behavior.

    Science.gov (United States)

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.

  12. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  13. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  14. Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption.

    Science.gov (United States)

    Firmesse, Olivier; Alvaro, Elise; Mogenet, Agnès; Bresson, Jean-Louis; Lemée, Riwanon; Le Ruyet, Pascale; Bonhomme, Cécile; Lambert, Denis; Andrieux, Claude; Doré, Joël; Corthier, Gérard; Furet, Jean-Pierre; Rigottier-Gois, Lionel

    2008-07-15

    The objective of this study was to determine i) if Camembert cheese micro-organisms could be detected in fecal samples after regular consumption by human subjects and ii) the consequence of this consumption on global metabolic activities of the host colonic microbiota. An open human protocol was designed where 12 healthy volunteers were included: a 2-week period of fermented products exclusion followed by a 4-weeks Camembert ingestion period where 2x40 g/day of Camembert cheese was consumed. Stools were collected from the volunteers before consumption, twice during the ingestion period (2nd and 4th week) and once after a wash out period of 2 weeks. During the consumption of Camembert cheese, high levels of Lactococcus lactis and Leuconostoc mesenteroides were measured in fecal samples using real-time quantitative PCR, reaching median values of 8.2 and 7.5 Log(10) genome equivalents/g of stool. For Ln. mesenteroides, persistence was observed 15 days after the end of Camembert consumption. The survival of Geotrichum candidum was also assessed and the fecal concentration reached a median level of 7.1 Log(10) CFU/g in stools. Except a decreasing trend of the nitrate reductase activity, no significant modification was shown in the metabolic activities during this study.

  15. Steroid Biomarkers Revisited - Improved Source Identification of Faecal Remains in Archaeological Soil Material.

    Directory of Open Access Journals (Sweden)

    Katharina Prost

    Full Text Available Steroids are used as faecal markers in environmental and in archaeological studies, because they provide insights into ancient agricultural practices and the former presence of animals. Up to now, steroid analyses could only identify and distinguish between herbivore, pig, and human faecal matter and their residues in soils and sediments. We hypothesized that a finer differentiation between faeces of different livestock animals could be achieved when the analyses of several steroids is combined (Δ5-sterols, 5α-stanols, 5β-stanols, epi-5β-stanols, stanones, and bile acids. We therefore reviewed the existing literature on various faecal steroids from livestock and humans and analysed faeces from old livestock breed (cattle, horse, donkey, sheep, goat, goose, and pig and humans. Additionally, we performed steroid analyses on soil material of four different archaeological periods (sites located in the Lower Rhine Basin, Western Germany, dating to the Linearbandkeramik, Urnfield Period / Bronze Age, Iron Age, Roman Age with known or supposed faecal inputs. By means of already established and newly applied steroid ratios of the analysed faeces together with results from the literature, all considered livestock faeces, except sheep and cattle, could be distinguished on the basis of their steroid signatures. Most remarkably was the identification of horse faeces (via the ratio: epi-5β-stigmastanol: 5β-stigmastanol + epicoprostanol: coprostanol; together with the presence of chenodeoxycholic acid and a successful differentiation between goat (with chenodeoxycholic acid and sheep/cattle faeces (without chenodeoxycholic acid. The steroid analysis of archaeological soil material confirmed the supposed faecal inputs, even if these inputs had occurred several thousand years ago.

  16. Effect of diet on the intestinal microbiota and its activity

    NARCIS (Netherlands)

    Zoetendal, E.G.; Vos, de W.M.

    2014-01-01

    AB Purpose of review: To summarize and discuss recent findings concerning diet-microbiota-health relations. Recent findings: Mouse and other model animal studies have provided detailed insight into host-microbiota interactions, but cannot be extrapolated easily to humans that have different dietary

  17. Microbiome/microbiota and allergies.

    Science.gov (United States)

    Inoue, Yuzaburo; Shimojo, Naoki

    2015-01-01

    Allergies are characterized by a hypersensitive immune reaction to originally harmless antigens. In recent decades, the incidence of allergic diseases has markedly increased, especially in developed countries. The increase in the frequency of allergic diseases is thought to be primarily due to environmental changes related to a westernized lifestyle, which affects the commensal microbes in the human body. The human gut is the largest organ colonized by bacteria and contains more than 1000 bacterial species, called the "gut microbiota." The recent development of sequencing technology has enabled researchers to genetically investigate and clarify the diversity of all species of commensal microbes. The collective genomes of commensal microbes are together called the "microbiome." Although the detailed mechanisms remain unclear, it has been proposed that the microbiota/microbiome, especially that in the gut, impacts the systemic immunity and metabolism, thus affecting the development of various immunological diseases, including allergies. In this review, we summarize the recent findings regarding the importance of the microbiome/microbiota in the development of allergic diseases and also the results of interventional studies using probiotics or prebiotics to prevent allergies.

  18. INTESTINAL MICROBIOTA IN DIGESTIVE DISEASES

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Friche PASSOS

    2017-07-01

    Full Text Available ABSTRACT BACKGROUND In recent years, especially after the development of sophisticated metagenomic studies, research on the intestinal microbiota has increased, radically transforming our knowledge about the microbiome and its association with health maintenance and disease development in humans. Increasing evidence has shown that a permanent alteration in microbiota composition or function (dysbiosis can alter immune responses, metabolism, intestinal permeability, and digestive motility, thereby promoting a proinflammatory state. Such alterations can mainly impair the host’s immune and metabolic functions, thus favoring the onset of diseases such as diabetes, obesity, digestive, neurological, autoimmune, and neoplastic diseases. This comprehensive review is a compilation of the available literature on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, non-alcoholic steatohepatitis, irritable bowel syndrome, inflammatory bowel disease, celiac disease, and digestive neoplasms. CONCLUSION: Alterations in the composition and function of the gastrointestinal microbiota (dysbiosis have a direct impact on human health and seem to have an important role in the pathogenesis of several gastrointestinal diseases, whether inflammatory, metabolic, or neoplastic ones.

  19. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  20. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background - Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  1. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, Niels O.; Beijleveld, Hans; Knols, Bart Gj; Takken, Willem; Schraa, Gosse; Bouwmeester, Harro J.; Smallegange, Renate C.

    2009-01-01

    Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours.

  2. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background: Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  3. The role of microbiota in retinal disease

    Science.gov (United States)

    The ten years since the first publications on the human microbiome project have brought enormous attention and insight into the role of the human microbiome in health and disease. Connections between populations of microbiota and ocular disease are now being established, and increased accessibility ...

  4. Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet.

    Science.gov (United States)

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida

    2017-01-01

    Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa.

  5. Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-01-01

    Full Text Available Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa.

  6. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study

    DEFF Research Database (Denmark)

    Hald, Stine; Schioldan, Anne Grethe; Moore, Mary E

    2016-01-01

    with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch......Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched...... and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet...

  7. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    Science.gov (United States)

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six

  8. Sleep quality and the treatment of intestinal microbiota imbalance in Chronic Fatigue Syndrome: A pilot study

    Directory of Open Access Journals (Sweden)

    Melinda L. Jackson

    2015-11-01

    Full Text Available Chronic Fatigue Syndrome (CFS is a multisystem illness, which may be associated with imbalances in gut microbiota. This study builds on recent evidence that sleep may be influenced by gut microbiota, by assessing whether changes to microbiota in a clinical population known to have both poor sleep and high rates of colonization with gram-positive faecal Streptococcus, can improve sleep. Twenty-one CFS participants completed a 22- day open label trial. Faecal microbiota analysis was performed at baseline and at the end of the trial. Participants were administered erythromycin 400 mg b.d. for 6 days. Actigraphy and questionnaires were used to monitor sleep, symptoms and mood. Changes in patients who showed a clinically significant change in faecal Streptococcus after treatment (responders; defined as post-therapy distribution<6% were compared to participants who did not respond to treatment. In the seven responders, there was a significant increase in actigraphic total sleep time (p=0.028 from baseline to follow up, compared with non-responders. Improved vigour scores were associated with a lower Streptococcus count (ρ=−0.90, p=0.037. For both the responders and the whole group, poorer mood was associated with higher Lactobacillus. Short term antibiotic treatment appears to be insufficient to effect sustainable changes in the gut ecosystem in most CFS participants. Some improvement in objective sleep parameters and mood were found in participants with reduced levels of gram-positive gut microbiota after antibiotic treatment, which is encouraging. Further study of possible links between gut microorganisms and sleep and mood disturbances is warranted.

  9. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    Science.gov (United States)

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  10. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Science.gov (United States)

    Di Luccia, Blanda; Crescenzo, Raffaella; Mazzoli, Arianna; Cigliano, Luisa; Venditti, Paola; Walser, Jean-Claude; Widmer, Alex; Baccigalupi, Loredana; Ricca, Ezio; Iossa, Susanna

    2015-01-01

    A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  11. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity.

    Directory of Open Access Journals (Sweden)

    Blanda Di Luccia

    Full Text Available A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.

  12. Assessment of helminth load in faecal samples of free range ...

    African Journals Online (AJOL)

    Helminths load in faecal sample of free range indigenous chicken in Port Harcourt Metropolis was examined. Faecal samples were collected from 224 birds in 15 homesteads and 4 major markets - Mile 3, Mile 1, Borokiri and Eneka Village market where poultry birds are gathered for sale. 0.2-0.5g of feacal sample was ...

  13. Diet, faecal pH and colorectal cancer

    NARCIS (Netherlands)

    Dokkum, W. van; Boer, B.C.J. de; Faassen, A. van; Pikaar, N.A.; Hermus, R.J.J.

    1983-01-01

    We suggest that a lower faecal pH may be correlated with a lower mortality of large-bowel cancer and that faecal pH should always be considered in epidemiological studies on the role of diet in colon carcinogenesis.

  14. Bacterial indicators of faecal pollution of water supplies and public ...

    African Journals Online (AJOL)

    Bacterial indicators of faecal pollution of water supplies and their significance to public health are reviewed in this paper, to highlight their levels of general acceptability and suitability as safeguards against health hazards associated with water supplies. Regular bacteriological analysis with the sole aim of detecting faecal ...

  15. Spontaneous scrotal faecal fistula in a Nigerian adult: review of ...

    African Journals Online (AJOL)

    We report a 28-year-old Nigerian who presented with four days history of spontaneous scrotal ulceration and faecal discharge. This symptom was preceded by features of intestinal obstruction which got relieved after the faecal discharge from the scrotum. He was resuscitated and had segmental resection and anastomosis ...

  16. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium.

    Science.gov (United States)

    Bang, Seo-Hyeon; Hyun, Yang-Jin; Shim, Juwon; Hong, Sung-Woon; Kim, Dong-Hyun

    2015-01-01

    To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-Lrhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni(2+)-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 μmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1-->6) bonds than (1-->2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

  17. In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepaten® Formulation

    Directory of Open Access Journals (Sweden)

    Daniil N. Olennikov

    2015-10-01

    Full Text Available Chebulic ellagitannins (ChET are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%–97.04%, with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%–26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%–55.35% for the same groups in the non-dialyzed part of the intestinal media. Investigation of human gut microbiota metabolites of Padma Hepaten and pure ChETs (chebulinic, chebulagic acids established the formation of bioactive urolithins (A, B, C, D, M5. The fact of urolithin formation during microbial transformation from ChETs and ChET-containing plant material was revealed for the first time. Evaluation of the protective effect of ChETs colonic metabolites and urolithins on tert-butyl hydroperoxide (t-BHP-induced oxidative injury in cultured rat primary hepatocytes demonstrated their significant reversion of the t-BHP-induced cell cytotoxicity, malonic dialdehyde production and lactate dehydrogenase leakage. The most potent compound was urolithin C with close values of hepatoprotection to gallic acid. The data obtained indicate that in the case of Padma Hepaten, we speculate that urolithins have the potential to play a role in the hepatic prevention against oxidative damage.

  18. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    OpenAIRE

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-pat...

  19. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yao-Jong Yang

    2016-02-01

    Full Text Available As a barrier, gut commensal microbiota can protect against potential pathogenic microbes in the gastrointestinal tract. Crosstalk between gut microbes and immune cells promotes human intestinal homeostasis. Dysbiosis of gut microbiota has been implicated in the development of many human metabolic disorders like obesity, hepatic steatohepatitis, and insulin resistance in type 2 diabetes (T2D. Certain microbes, such as butyrate-producing bacteria, are lower in T2D patients. The transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, but the exact pathogenesis remains unclear. H. pylori in the human stomach cause chronic gastritis, peptic ulcers, and gastric cancers. H. pylori infection also induces insulin resistance and has been defined as a predisposing factor to T2D development. Gastric and fecal microbiota may have been changed in H. pylori-infected persons and mice to promote gastric inflammation and specific diseases. However, the interaction of H. pylori and gut microbiota in regulating host metabolism also remains unknown. Further studies aim to identify the H. pylori-microbiota-host metabolism axis and to test if H. pylori eradication or modification of gut microbiota can improve the control of human metabolic disorders.

  20. Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three.

    Science.gov (United States)

    Gaya, Pilar; Sánchez-Jiménez, Abel; Peirotén, Ángela; Medina, Margarita; Landete, José Maria

    2018-05-01

    Phytoestrogens are plant-derived polyphenols with structural and functional similarities to mammalian oestrogens. The aim of this work was to study the metabolism of phytoestrogens by children's intestinal microbiota and to compare it with previous results in adults. Faecal samples of 24 healthy children were subjected to phytoestrogen fermentation assay. Only one child produced equol, while O-desmethylangolensin was found in all. Urolithin production was detected in 14 children and enterolactone in 10. Further comparison with the metabolism of phytoestrogens by adult intestinal microbiota reflected that glycitein, dihydrogenistein, urolithins D and E, enterolactone, secoisolariciresinol and arctigenin were the most important metabolites differentiating between adult and child microbial gut metabolism. Although the child intestinal microbiota showed the ability to metabolise isoflavones, ellagitannins and lignans to a certain extent, it generally showed a reduced metabolism of phytoestrogens, with a lack of 5-hydroxy equol and enterodiol, and less urolithins and enterolactone producers.

  1. Identification of the origin of faecal contamination in estuarine oysters using Bacteroidales and F-specific RNA bacteriophage markers.

    Science.gov (United States)

    Mieszkin, S; Caprais, M P; Le Mennec, C; Le Goff, M; Edge, T A; Gourmelon, M

    2013-09-01

    The aim of this study was to identify the origin of faecal pollution impacting the Elorn estuary (Brittany, France) by applying microbial source tracking (MST) markers in both oysters and estuarine waters. The MST markers used were as follows: (i) human-, ruminant- and pig-associated Bacteroidales markers by real-time PCR and (ii) human genogroup II and animal genogroup I of F-specific RNA bacteriophages (FRNAPH) by culture/genotyping and by direct real-time reverse-transcriptase PCR. The higher occurrence of the human genogroup II of F-specific RNA bacteriophages using a culture/genotyping method, and human-associated Bacteroidales marker by real-time PCR, allowed the identification of human faecal contamination as the predominant source of contamination in oysters (total of 18 oyster batches tested) and waters (total of 24 water samples tested). The importance of using the intravalvular liquids instead of digestive tissues, when applying host-associated Bacteroidales markers in oysters, was also revealed. This study has shown that the application of a MST toolbox of diverse bacterial and viral methods can provide multiple lines of evidence to identify the predominant source of faecal contamination in shellfish from an estuarine environment. Application of this MST toolbox is a useful approach to understand the origin of faecal contamination in shellfish harvesting areas in an estuarine setting. © 2013 The Society for Applied Microbiology.

  2. The gut microbiota, environment and diseases of modern society.

    Science.gov (United States)

    Kelsen, Judith R; Wu, Gary D

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.

  3. Influence of the diet on the microbial diversity of faecal and gastrointestinal contents in gilthead sea bream (Sparus aurata) and intestinal contents in goldfish (Carassius auratus).

    Science.gov (United States)

    Silva, Flávia Cristina de Paula; Nicoli, Jacques Robert; Zambonino-Infante, José Luiz; Kaushik, Sadasivam; Gatesoupe, François-Joël

    2011-11-01

    Fish intestinal microbiota changes with the diet and this effect is of particular interest considering the increasing substitution of fish meal by plant protein sources. The objective of this work was to study the effects of partial substitution of fish meal with lupin and rapeseed meals on gut microbiota of the gilthead sea bream (Sparus aurata) and in goldfish (Carassius auratus). Faecal, gastrointestinal and intestinal contents were characterized using culture-based and molecular methods. Vibrionaceae was high in faeces and in the intestine of sea bream, while a more diverse microbiota was retrieved from the stomach, where Bacillales and Flavobacteriaceae appeared to be influenced by the diet. PCR-denaturing gradient gel electrophoresis profiles revealed a high diversity of the microbiota transiting in the sea bream digestive tract, with a shift between gastric and intestinal communities, especially in the group fed with lupin meal. The goldfish was different, with a predominance of Aeromonas spp., Shewanella putrefaciens and Staphylococcus spp. among the aerotolerant-cultivable bacteria. The culture-independent methods revealed the presence of anaerobes like Cetobacterium somerae, and that of Vibrio spp., likely in a viable, but noncultivable state. There was a trend towards decreasing diversity in goldfish microbiota with the partial substitution by lupin, which seemed to inhibit some taxa. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. The gut microbiota and host health

    NARCIS (Netherlands)

    Marchesi, Julian R.; Adams, David H.; Fava, Francesca; Hermes, Gerben D.A.; Hirschfield, Gideon M.; Hold, Georgina; Quraishi, Mohammed N.; Kinross, James; Smidt, Hauke; Tuohy, Kieran M.; Thomas, Linda V.; Zoetendal, Erwin G.; Hart, Ailsa

    2016-01-01

    Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial

  5. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  6. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  7. Cultivating Healthy Growth and Nutrition through the Gut Microbiota

    Science.gov (United States)

    Subramanian, Sathish; Blanton, Laura; Frese, Steven A.; Charbonneau, Mark; Mills, David A.; Gordon, Jeffrey I.

    2015-01-01

    Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition. PMID:25815983

  8. Cryopreservation of artificial gut microbiota produced with in vitro fermentation technology.

    Science.gov (United States)

    Bircher, Lea; Schwab, Clarissa; Geirnaert, Annelies; Lacroix, Christophe

    2018-01-01

    Interest in faecal microbiota transplantation (FMT) has increased as therapy for intestinal diseases, but safety issues limit its widespread use. Intestinal fermentation technology (IFT) can produce controlled, diverse and metabolically active 'artificial' colonic microbiota as potential alternative to common FMT. However, suitable processing technology to store this artificial microbiota is lacking. In this study, we evaluated the impact of the two cryoprotectives, glycerol (15% v/v) and inulin (5% w/v) alone and in combination, in preserving short-chain fatty acid formation and recovery of major butyrate-producing bacteria in three artificial microbiota during cryopreservation for 3 months at -80°C. After 24 h anaerobic fermentation of the preserved microbiota, butyrate and propionate production were maintained when glycerol was used as cryoprotectant, while acetate and butyrate were formed more rapidly with glycerol in combination with inulin. Glycerol supported cryopreservation of the Roseburia spp./Eubacterium rectale group, while inulin improved the recovery of Faecalibacterium prausnitzii. Eubacterium hallii growth was affected minimally by cryopreservation. Our data indicate that butyrate producers, which are key organisms for gut health, can be well preserved with glycerol and inulin during frozen storage. This is of high importance if artificially produced colonic microbiota is considered for therapeutic purposes. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. The role of skin microbiota in the attractiveness of humans to the malaria mosquito Anopheles gambiae Giles

    NARCIS (Netherlands)

    Verhulst, N.O.

    2010-01-01

    Malaria is one of the most serious infectious diseases in the world. The African mosquito Anopheles gambiae sensu stricto (henceforth termed An. gambiae) is highly competent for malaria parasites and preferably feeds on humans inside houses, which make it one of the most effective vectors of the

  10. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Science.gov (United States)

    Raguideau, Sébastien; Plancade, Sandra; Pons, Nicolas; Leclerc, Marion; Laroche, Béatrice

    2016-12-01

    Whole Genome Shotgun (WGS) metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs) accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF) problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other metabolic processes in

  11. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Raguideau

    2016-12-01

    Full Text Available Whole Genome Shotgun (WGS metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other

  12. Impact of Periodontal Therapy on the Subgingival Microbiota of Severe Periodontitis: Comparison between Good Responders and “Refractory” Subjects by the Human Oral Microbe Identification Microarray (HOMIM)

    Science.gov (United States)

    Colombo, Ana Paula V.; Bennet, Susan; Cotton, Sean L.; Goodson, J. Max; Kent, Ralph; Haffajee, Anne D.; Socransky, Sigmund S.; Hasturk, Hatice; Van Dyke, Thomas E.; Dewhirst, Floyd E.; Paster, Bruce J.

    2014-01-01

    Aim This study compared the changes on the subgingival microbiota of subjects with “refractory” periodontitis (RP) or treatable periodontitis (GR) before and after periodontal therapy by using the Human Oral Microbe Identification Microarray (HOMIM). Methods Individuals with chronic periodontitis were classified as RP (n=17) based on mean attachment loss (AL) and/or >3 sites with AL ≥2.5 mm after scaling and root planing, surgery and systemically administered amoxicillin and metronidazole or as GR (n=30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Subgingival plaque samples were taken at baseline and 15 months after treatment and analyzed for the presence of 300 species by HOMIM analysis. Significant differences in taxa before and after therapy were sought using the Wilcoxon test. Results The majority of species evaluated decreased in prevalence in both groups after treatment; however, only a small subset of organisms was significantly affected. Species that increased or persisted in high frequency in RP but were significantly reduced in GR included Bacteroidetes sp., Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella spp., Tannerella forsythia, Dialister spp., Selenomonas spp., Catonella morbi, Eubacterium spp., Filifactor alocis, Parvimonas micra, Peptostreptococcus sp. OT113, Fusobacterium sp. OT203, Pseudoramibacter alactolyticus, Streptococcus intermedius or Streptococcus constellatus and Shuttlesworthia satelles. In contrast, Capnocytophaga sputigena, Cardiobacterium hominis, Gemella haemolysans, Haemophilus parainfluenzae, Kingella oralis, Lautropia mirabilis, Neisseria elongata, Rothia dentocariosa, Streptococcus australis and Veillonella spp. were more associated with therapeutic success. Conclusion Persistence of putative and novel periodontal pathogens, as well as low prevalence of beneficial species was associated with chronic “refractory” periodontitis. PMID:22324467

  13. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray.

    Science.gov (United States)

    Colombo, Ana Paula V; Bennet, Susan; Cotton, Sean L; Goodson, J Max; Kent, Ralph; Haffajee, Anne D; Socransky, Sigmund S; Hasturk, Hatice; Van Dyke, Thomas E; Dewhirst, Floyd E; Paster, Bruce J

    2012-10-01

    This study compares the changes to the subgingival microbiota of individuals with "refractory" periodontitis (RP) or treatable periodontitis (good responders [GR]) before and after periodontal therapy by using the Human Oral Microbe Identification Microarray (HOMIM) analysis. Individuals with chronic periodontitis were classified as RP (n = 17) based on mean attachment loss (AL) and/or >3 sites with AL ≥2.5 mm after scaling and root planing, surgery, and systemically administered amoxicillin and metronidazole or as GR (n = 30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Subgingival plaque samples were taken at baseline and 15 months after treatment and analyzed for the presence of 300 species by HOMIM analysis. Significant differences in taxa before and post-therapy were sought using the Wilcoxon test. The majority of species evaluated decreased in prevalence in both groups after treatment; however, only a small subset of organisms was significantly affected. Species that increased or persisted in high frequency in RP but were significantly reduced in GR included Bacteroidetes sp., Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella spp., Tannerella forsythia, Dialister spp., Selenomonas spp., Catonella morbi, Eubacterium spp., Filifactor alocis, Parvimonas micra, Peptostreptococcus sp. OT113, Fusobacterium sp. OT203, Pseudoramibacter alactolyticus, Streptococcus intermedius or Streptococcus constellatus, and Shuttlesworthia satelles. In contrast, Capnocytophaga sputigena, Cardiobacterium hominis, Gemella haemolysans, Haemophilus parainfluenzae, Kingella oralis, Lautropia mirabilis, Neisseria elongata, Rothia dentocariosa, Streptococcus australis, and Veillonella spp. were more associated with therapeutic success. Persistence of putative and novel periodontal pathogens, as well as low prevalence of beneficial species was associated with chronic refractory periodontitis.

  14. Rectal swabs for analysis of the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Andries E Budding

    Full Text Available The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.

  15. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  16. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome