WorldWideScience

Sample records for human factors engineering

  1. Introduction to human factors engineering

    International Nuclear Information System (INIS)

    Derfuss, Ch.

    2010-01-01

    Some of the main aspects of human factors engineering are discussed. The following topics are considered: Integration into the design process; Identification and application of human-centered design requirements; Design of error-tolerant systems; Iterative process consisting of evaluations and feedback loops; Participation of operators/users; Utilization of an interdisciplinary design/ evaluation team; Documentation of the complete HFE-process: traceability

  2. Human Factors Engineering Guidelines for Overhead Cranes

    Science.gov (United States)

    Chandler, Faith; Delgado, H. (Technical Monitor)

    2001-01-01

    This guideline provides standards for overhead crane cabs that can be applied to the design and modification of crane cabs to reduce the potential for human error due to design. This guideline serves as an aid during the development of a specification for purchases of cranes or for an engineering support request for crane design modification. It aids human factors engineers in evaluating existing cranes during accident investigations or safety reviews.

  3. Validation of human factor engineering integrated system

    International Nuclear Information System (INIS)

    Fang Zhou

    2013-01-01

    Apart from hundreds of thousands of human-machine interface resources, the control room of a nuclear power plant is a complex system integrated with many factors such as procedures, operators, environment, organization and management. In the design stage, these factors are considered by different organizations separately. However, whether above factors could corporate with each other well in operation and whether they have good human factors engineering (HFE) design to avoid human error, should be answered in validation of the HFE integrated system before delivery of the plant. This paper addresses the research and implementation of the ISV technology based on case study. After introduction of the background, process and methodology of ISV, the results of the test are discussed. At last, lessons learned from this research are summarized. (authors)

  4. Human Modeling for Ground Processing Human Factors Engineering Analysis

    Science.gov (United States)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  5. Human factors engineering in nuclear plant rehabilitations

    International Nuclear Information System (INIS)

    Bernston, K.; Remisz, M.; Malcolm, S.

    2001-01-01

    There are several unique considerations when creating and maintaining a human factors program for a plant refurbishment. These consideration arise from a variety of sources, including budget and time constraints on life extension projects, working to existing plant protocols and current acceptable HFE practices, and issues relating to function and task analysis. This results in a need to streamline and carefully time HFE practices from project start up to completion. In order to perform this task adequately, a comprehensive Human Factors Engineering Program Plan should be designed and tailored to the project. Systems of planning and prioritization are essential, and the required HFE designer training needs to be established. HFE specialists need to be aware of the existing plant constraints, and he prepared to work within them when providing support. The current paper discusses these aspects in the context of major refurbishment work at CANDU stations. (author)

  6. Applications of human factors engineering in the digital HMI

    International Nuclear Information System (INIS)

    Zhou Bingjian

    2014-01-01

    In order to prevent and minimize human errors in the digital main control room, the principles of human factors engineering must be complied strictly in the design process of digital human-machine interface. This paper briefly describes the basic human factors engineering principles of designing main control room, introduces the main steps to implement the human factors engineering verification and validation of main control room, including HSI task support verification, human factors engineering design verification and integrated system validation. Meanwhile, according to the new digital human-machine interface characteristics, the development models of human error are analyzed. (author)

  7. Improving Safety through Human Factors Engineering.

    Science.gov (United States)

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  8. Human factors engineering program review model

    International Nuclear Information System (INIS)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element

  9. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    Science.gov (United States)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  10. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.

    2007-01-01

    Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. Such a plan should state: -) Activities to be performed, and -) Creation of a Human Factor Engineering team adequately qualified. The Human Factor Engineering team is an integral part of the design team and is strongly linked to the engineering organizations but simultaneously has independence to act and is free to evaluate designs and propose changes in order to enhance human behavior. TECNATOM S.A. (a Spanish company) has been a part of the Design and Human Factor Engineering Team and has collaborated in the design of an advanced Nuclear Power Plant, developing methodologies and further implementing those methodologies in the design of the plant systems through the development of the plant systems operational analysis and of the man-machine interface design. The methodologies developed are made up of the following plans: -) Human Factor Engineering implementation in the Man-Machine Interface design; -) Plant System Functional Requirement Analysis; -) Allocation of Functions to man/machine; -) Task Analysis; -) Human-System Interface design; -) Control Room Verification and -) Validation

  11. Research on the NPP human factors engineering operating experience review

    International Nuclear Information System (INIS)

    Ren Xiangchen; Miao Hongxing; Ning Zhonghe

    2006-01-01

    This paper addresses the importance of the human factors engineering (HFE) for the design of nuclear power plant (NPP), especially for the design of human-machine interface in the NPP. It also summarizes the scope and content of the NPP HFE. The function, scope, content and process of the NPP human factors engineering operating experience review (OER) are mainly focused on, and significantly discussed. Finally, it briefly introduces the situation of the studies on the OER in China. (authors)

  12. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  13. Development of human factors engineering guide for nuclear power project

    International Nuclear Information System (INIS)

    Wu Dangshi; Sheng Jufang

    1997-01-01

    'THE PRACTICAL GUIDE FOR APPLICATION OF HUMAN FACTORS ENGINEERING TO NUCLEAR POWER PROJECT (First Draft, in Chinese)', which was developed under a research program sponsored by National Nuclear Safety Administration (NNSA) is described briefly. It is hoped that more conscious, more systematical and more comprehensive application of Human Factors Engineering to the nuclear power projects from the preliminary feasibility studies up to the commercial operation will benefit the safe, efficient and economical operations of nuclear power plants in China

  14. Ergonomics in nuclear and human factors engineering

    International Nuclear Information System (INIS)

    Muench, E.; Schultheiss, G.F.

    1988-01-01

    The work situation including man-machine-relationships in nuclear power plants is described. The overview gives only a compact summary of some important ergonomic parameters, i.e. human body dimension, human load, human characteristics and human knowledge. (DG)

  15. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  16. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Clefton, Gordon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by various resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.

  17. Patient safety - the role of human factors and systems engineering.

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  18. Patient Safety: The Role of Human Factors and Systems Engineering

    Science.gov (United States)

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  19. Human factors engineering evaluation of the UTR-10 Reactor

    International Nuclear Information System (INIS)

    Lahti, D.; Nilius, D.; Heithoff, D.; Roche, G.; Sage, S.

    1982-01-01

    This paper is a description of a student design team's review and evaluation of Iowa State University's University Test Reactor (UTR-10). The review was based on how well the control room of the UTR-10 measured up to selected portions of NUREG-0800, chapter 18, Human Factor Engineering/Standard Review Plan Development. The review was conducted by inspecting the reactor and interviewing reactor operators. The control room workspace, instrumentation controls and other equipment were evaluated from a human factors engineering point of view that takes into account both system demands and operator capabilities. Identification, assessment, and suggestion for control room design modifications that correct inadequate or unsuitable items was made

  20. Status of human factors engineering system design in Europe

    International Nuclear Information System (INIS)

    Ives, G.

    1990-01-01

    A review of the European status of human factors engineering has been carried out covering a wide scope of activities which includes psychology, cognitive science, ergonomics, design, training, procedure writing, operating, artificial intelligence and expert systems. There is an increasing awareness of the part that human factors play in major nuclear power plant accidents. The emphasis of attention in human factors is changing. In some areas there are encouraging signs of progress and development, but in other areas there is still scope for improvement

  1. Human factors engineering report for the cold vacuum drying facility

    Energy Technology Data Exchange (ETDEWEB)

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  2. Human factors engineering report for the cold vacuum drying facility

    International Nuclear Information System (INIS)

    IMKER, F.W.

    1999-01-01

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF

  3. Human Factors Engineering: Current Practices and Development Needs in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Savioja, Paula; Norros, Leena; Liinasuo, Marja; Laarni, Jari [VTT Technical Research Centre of Finland, Finland (Finland)

    2011-08-15

    This paper describes initial findings from a study concerning the practices and development needs of Human Factors Engineering (HFE) in Finland. HFE is increasing in importance as the Radiation and Nuclear Safety Authority Finland (STUK) is renewing the regulatory guidelines and the intention is to include requirements concerning HFE. The motivation for the paper is to discover how HFE is conducted currently in order to envision what should be aimed at when modifying requirements for design practices. In an interview with STUK it was discovered that current HFE practices encompass mainly activities related to control room modifications and as such namely verification and validation of new designs. The adoption of the entire HFE process in design and modification projects requires changes that include better integration of technical and Human Factors Engineering approaches. Boundary objects that mediate between different design disciplines are needed in order to enforce the stronger integration. Concept of operations (CONOPS) is suggested as a such boundary object.

  4. The Human Factors Engineering in Process Design Modifications CNAT

    International Nuclear Information System (INIS)

    Foronda Delgado, A.; Almeida Parra, P.; Bote Moreno, J.

    2013-01-01

    This contribution presents the process followed at the Almaraz and Trillo Nuclear Power Plants in order to integrate Human Factors Engineering (HFE) in the Design Modifications. This includes the applicable rules and regulations, the classification criteria used to categorize the modification, the activities that are to be carried out in each case, as well as recent examples where the full HFE program model was applied at Almaraz (Alternate Shutdown Panel) and Trillo (Primary Bleed and Feed).

  5. Rapid Prototyping and the Human Factors Engineering Process

    Science.gov (United States)

    2016-08-29

    conventional systems development techniques. It is not clear, however, exactly how rapid prototyping could be used in relation to conventional human...factors engineering analyses. Therefore, an investigation of the use of the V APS virtual prototyping system was carried out in five organizations. The...results show that a variety of task analysis approaches can be used to initiate rapid prototyping . Overall, it appears that rapid prototyping

  6. Human factors engineering plan for reviewing nuclear plant modernization programs

    International Nuclear Information System (INIS)

    O'Hara, John; Higgins, James

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation

  7. Human factors engineering plan for reviewing nuclear plant modernization programs

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, John; Higgins, James [Brookhaven National Laboratory, Upton, NY (United States)

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation.

  8. Human Factors Engineering: Current and Emerging Dual-Use Applications

    Science.gov (United States)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  9. Human factors engineering checklists for application in the SAR process

    Energy Technology Data Exchange (ETDEWEB)

    Overlin, T.K.; Romero, H.A.; Ryan, T.G.

    1995-03-01

    This technical report was produced to assist the preparers and reviewers of the human factors portions of the SAR in completing their assigned tasks regarding analysis and/or review of completed analyses. The checklists, which are the main body of the report, and the subsequent tables, were developed to assist analysts in generating the needed analysis data to complete the human engineering analysis for the SAR. The technical report provides a series of 19 human factors engineering (HFE) checklists which support the safety analyses of the US Department of Energy`s (DOE) reactor and nonreactor facilities and activities. The results generated using these checklists and in the preparation of the concluding analyses provide the technical basis for preparing the human factors chapter, and subsequent inputs to other chapters, required by DOE as a part of the safety analysis reports (SARs). This document is divided into four main sections. The first part explains the origin of the checklists, the sources utilized, and other information pertaining to the purpose and scope of the report. The second part, subdivided into 19 sections, is the checklists themselves. The third section is the glossary which defines terms that could either be unfamiliar or have specific meanings within the context of these checklists. The final section is the subject index in which the glossary terms are referenced back to the specific checklist and page the term is encountered.

  10. Human factors engineering checklists for application in the SAR process

    International Nuclear Information System (INIS)

    Overlin, T.K.; Romero, H.A.; Ryan, T.G.

    1995-03-01

    This technical report was produced to assist the preparers and reviewers of the human factors portions of the SAR in completing their assigned tasks regarding analysis and/or review of completed analyses. The checklists, which are the main body of the report, and the subsequent tables, were developed to assist analysts in generating the needed analysis data to complete the human engineering analysis for the SAR. The technical report provides a series of 19 human factors engineering (HFE) checklists which support the safety analyses of the US Department of Energy's (DOE) reactor and nonreactor facilities and activities. The results generated using these checklists and in the preparation of the concluding analyses provide the technical basis for preparing the human factors chapter, and subsequent inputs to other chapters, required by DOE as a part of the safety analysis reports (SARs). This document is divided into four main sections. The first part explains the origin of the checklists, the sources utilized, and other information pertaining to the purpose and scope of the report. The second part, subdivided into 19 sections, is the checklists themselves. The third section is the glossary which defines terms that could either be unfamiliar or have specific meanings within the context of these checklists. The final section is the subject index in which the glossary terms are referenced back to the specific checklist and page the term is encountered

  11. Human and organization factors: engineering operating safety into offshore structures

    International Nuclear Information System (INIS)

    Bea, Robert G.

    1998-01-01

    History indicates clearly that the safety of offshore structures is determined primarily by the humans and organizations responsible for these structures during their design, construction, operation, maintenance, and decommissioning. If the safety of offshore structures is to be preserved and improved, then attention of engineers should focus on to how to improve the reliability of the offshore structure 'system,' including the people that come into contact with the structure during its life-cycle. This article reviews and discusss concepts and engineering approaches that can be used in such efforts. Two specific human factor issues are addressed: (1) real-time management of safety during operations, and (2) development of a Safety Management Assessment System to help improve the safety of offshore structures

  12. Human Factors Engineering Review Model for advanced nuclear power reactors

    International Nuclear Information System (INIS)

    O'Hara, J.; Higgins, J.; Goodman, C.; Galletti, G.: Eckenrode, R.

    1993-01-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model's rationale, scope, objectives, development, general characteristics. and application

  13. Human factors in remote control engineering development activities

    International Nuclear Information System (INIS)

    Clarke, M.M.; Hamel, W.R.; Draper, J.V.

    1983-01-01

    Human factors engineering, which is an integral part of the advanced remote control development activities at the Oak Ridge National Laboratory, is described. First, work at the Remote Systems Development Facility (RSDF) has shown that operators can perform a wide variety of tasks, some of which were not specifically designed for remote systems, with a dextrous electronic force-reflecting servomanipulator and good television remote viewing capabilities. Second, the data collected during mock-up remote maintenance experiments at the RSDF have been analyzed to provide guidelines for the design of human interfaces with an integrated advanced remote maintenance system currently under development. Guidelines have been provided for task allocation between operators, remote viewing systems, and operator controls. 6 references, 5 figures, 2 tables

  14. 2015 Space Human Factors Engineering Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 2 - 3, 2015. The SRP reviewed the updated research plans for the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), the Risk of Inadequate Human-Computer Interaction (HCI Risk), and the Risk of Inadequate Mission, Process and Task Design (MPTask Risk). The SRP also received a status update on the Risk of Incompatible Vehicle/Habitat Design (Hab Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP is pleased with the progress and responsiveness of the SHFE team. The presentations were much improved this year. The SRP is also pleased with the human-centered design approach. Below are some of the more extensive comments from the SRP. We have also made comments in each section concerning gaps/tasks in each. The comments below reflect more significant changes that impact more than just one particular section.

  15. Automating the Human Factors Engineering and Evaluation Processes

    International Nuclear Information System (INIS)

    Mastromonico, C.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) has developed a software tool for automating the Human Factors Engineering (HFE) design review, analysis, and evaluation processes. The tool provides a consistent, cost effective, graded, user-friendly approach for evaluating process control system Human System Interface (HSI) specifications, designs, and existing implementations. The initial set of HFE design guidelines, used in the tool, was obtained from NUREG- 0700. Each guideline was analyzed and classified according to its significance (general concept vs. supporting detail), the HSI technology (computer based vs. non-computer based), and the HSI safety function (safety vs. non-safety). Approximately 10 percent of the guidelines were determined to be redundant or obsolete and were discarded. The remaining guidelines were arranged in a Microsoft Access relational database, and a Microsoft Visual Basic user interface was provided to facilitate the HFE design review. The tool also provides the capability to add new criteria to accommodate advances in HSI technology and incorporate lessons learned. Summary reports produced by the tool can be easily ported to Microsoft Word and other popular PC office applications. An IBM compatible PC with Microsoft Windows 95 or higher is required to run the application

  16. Preventing healthcare-associated infections through human factors engineering.

    Science.gov (United States)

    Jacob, Jesse T; Herwaldt, Loreen A; Durso, Francis T

    2018-05-24

    Human factors engineering (HFE) approaches are increasingly being used in healthcare, but have been applied in relatively limited ways to infection prevention and control (IPC). Previous studies have focused on using selected HFE tools, but newer literature supports a system-based HFE approach to IPC. Cross-contamination and the existence of workarounds suggest that healthcare workers need better support to reduce and simplify steps in delivering care. Simplifying workflow can lead to better understanding of why a process fails and allow for improvements to reduce errors and increase efficiency. Hand hygiene can be improved using visual cues and nudges based on room layout. Using personal protective equipment appropriately appears simple, but exists in a complex interaction with workload, behavior, emotion, and environmental variables including product placement. HFE can help prevent the pathogen transmission through improving environmental cleaning and appropriate use of medical devices. Emerging evidence suggests that HFE can be applied in IPC to reduce healthcare-associated infections. HFE and IPC collaboration can help improve many of the basic best practices including use of hand hygiene and personal protective equipment by healthcare workers during patient care.

  17. Human engineering

    International Nuclear Information System (INIS)

    Yang, Seong Hwan; Park, Bum; Gang, Yeong Sik; Gal, Won Mo; Baek, Seung Ryeol; Choe, Jeong Hwa; Kim, Dae Sung

    2006-07-01

    This book mentions human engineering, which deals with introduction of human engineering, Man-Machine system like system design, and analysis and evaluation of Man-Machine system, data processing and data input, display, system control of man, human mistake and reliability, human measurement and design of working place, human working, hand tool and manual material handling, condition of working circumstance, working management, working analysis, motion analysis working measurement, and working improvement and design in human engineering.

  18. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    Science.gov (United States)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  19. Electronic cigarettes: incorporating human factors engineering into risk assessments

    OpenAIRE

    Yang, Ling; Rudy, Susan F; Cheng, James M; Durmowicz, Elizabeth L

    2014-01-01

    Objective A systematic review was conducted to evaluate the impact of human factors (HF) on the risks associated with electronic cigarettes (e-cigarettes) and to identify research gaps. HF is the evaluation of human interactions with products and includes the analysis of user, environment and product complexity. Consideration of HF may mitigate known and potential hazards from the use and misuse of a consumer product, including e-cigarettes. Methods Five databases were searched through Januar...

  20. Discussion on verification criterion and method of human factors engineering for nuclear power plant controller

    International Nuclear Information System (INIS)

    Yang Hualong; Liu Yanzi; Jia Ming; Huang Weijun

    2014-01-01

    In order to prevent or reduce human error and ensure the safe operation of nuclear power plants, control device should be verified from the perspective of human factors engineering (HFE). The domestic and international human factors engineering guidelines about nuclear power plant controller were considered, the verification criterion and method of human factors engineering for nuclear power plant controller were discussed and the application examples were provided for reference in this paper. The results show that the appropriate verification criterion and method should be selected to ensure the objectivity and accuracy of the conclusion. (authors)

  1. A Virtual Campus Based on Human Factor Engineering

    Science.gov (United States)

    Yang, Yuting; Kang, Houliang

    2014-01-01

    Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…

  2. Human factors engineering review for CRT screen design

    International Nuclear Information System (INIS)

    Yi, S. M.; Joo, C. Y.; Ra, J. C.

    1999-01-01

    The information interface between man and machine may be more important than hardware and workplace layout considerations. Transmitting and receiving data through this information interface can be characterized as a communication or interface problem. Management of man-machine interface is essential for the enhancement of the information processing and decision-making capability of computer users working in real time, demanding task. The design of human-computer interface is not a rigid and static procedure. The content and context of each interface varies according to the specific application. So, the purpose of this study is to review the human factor design process for interfaces, to make human factor guidelines for CRT screen and to apply these to CRT screen design. (author)

  3. Human factors engineering in the design of colour-graphic displays

    International Nuclear Information System (INIS)

    Fenton, E.F.

    1985-01-01

    The operator interface for Ontario Hydro's Darlington Nuclear Generating Station will rely extensively on the use of coloured graphic display formats. These are used for the presentation of both control and monitoring information. The displays are organized in a hierarchical relationship and a simple interactive selection method using light pens has been implemented. The application of human factors engineering principles has been a major factor in all aspects of the design. This paper describes the system and the human factors engineering function

  4. Human factor engineering analysis for computerized human machine interface design issues

    International Nuclear Information System (INIS)

    Wang Zhifang; Gu Pengfei; Zhang Jianbo

    2010-01-01

    The application of digital I and C technology in nuclear power plants is a significant improvement in terms of functional performances and flexibility, and it also poses a challenge to operation safety. Most of the new NPPs under construction are adopting advanced control room design which utilizes the computerized human machine interface (HMI) as the main operating means. Thus, it greatly changes the way the operators interact with the plant. This paper introduces the main challenges brought out by computerized technology on the human factor engineering aspect and addresses the main issues to be dealt with in the computerized HMI design process. Based on a operator task-resources-cognitive model, it states that the root cause of human errors is the mismatch between resources demand and their supply. And a task-oriented HMI design principle is discussed. (authors)

  5. Experiences in the application of human factors engineering to human-system interface modernization

    International Nuclear Information System (INIS)

    Trueba Alonso, Pedro; Illobre, Luis Fernandez; Ortega Pascual, Fernando

    2014-01-01

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user. (authors)

  6. Experiences in the application of human factors engineering to human-system interface modernization

    International Nuclear Information System (INIS)

    Trueba Alonso, Pedro; Fernandez Illobre, Luis; Ortega Pascual, Fernando

    2015-01-01

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user.

  7. Experiences in the application of human factors engineering to human-system interface modernization

    Energy Technology Data Exchange (ETDEWEB)

    Trueba Alonso, Pedro; Fernandez Illobre, Luis; Ortega Pascual, Fernando [Tecnatom S.A., San Sebastian de los Reyes (Spain). Simulation and Control Rooms Div.

    2015-07-15

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user.

  8. Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report

    International Nuclear Information System (INIS)

    Peterson, L.R.; Preston-Smith, J.; Savage, J.W.; Rousseau, W.F.

    1981-01-01

    A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment

  9. Analysis on nuclear power plant control room system design and improvement based on human factor engineering

    International Nuclear Information System (INIS)

    Gao Feng; Liu Yanzi; Sun Yongbin

    2014-01-01

    The design of nuclear power plant control room system is a process of improvement with the implementation of human factor engineering theory and guidance. The method of implementation human factor engineering principles into the nuclear power plant control room system design and improvement was discussed in this paper. It is recommended that comprehensive address should be done from control room system function, human machine interface, digital procedure, control room layout and environment design based on the human factor engineering theory and experience. The main issues which should be paid more attention during the control room system design and improvement also were addressed in this paper, and then advices and notices for the design and improvement of the nuclear power plant control room system were afforded. (authors)

  10. Using human factors engineering to improve the effectiveness of infection prevention and control.

    Science.gov (United States)

    Anderson, Judith; Gosbee, Laura Lin; Bessesen, Mary; Williams, Linda

    2010-08-01

    Human factors engineering is a discipline that studies the capabilities and limitations of humans and the design of devices and systems for improved performance. The principles of human factors engineering can be applied to infection prevention and control to study the interaction between the healthcare worker and the system that he or she is working with, including the use of devices, the built environment, and the demands and complexities of patient care. Some key challenges in infection prevention, such as delayed feedback to healthcare workers, high cognitive workload, and poor ergonomic design, are explained, as is how human factors engineering can be used for improvement and increased compliance with practices to prevent hospital-acquired infections.

  11. Human factors and systems engineering approach to patient safety for radiotherapy.

    Science.gov (United States)

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  12. Human Factors and Systems Engineering Approach to Patient Safety for Radiotherapy

    International Nuclear Information System (INIS)

    Rivera, A. Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety

  13. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Joe, J.; Boring, R.

    2017-05-01

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to support migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.

  14. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    Science.gov (United States)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  15. Pengalokasian Tenaga Kerja dengan Human Factor Engineering di PT. Pelindo I

    Directory of Open Access Journals (Sweden)

    Yusnawati Yusnawati

    2017-05-01

    Full Text Available Indonesia Port Corporation I (PT Pelabuhan Indonesia I (Persero or PT. Pelindo I is one of the Indonesian state-owned enterprises which manages port services in western Indonesia. Shipyard unit (Unit Galangan Kapal (UGK is a branch of PT. Pelindo I. At present, a problem arises if more than 2 ships are being repaired at once in the unit, UGK scheduling overlaps the repairing activities. In order to solve the problem, study of human factor is important. Human factor is the study of the limitations, capabilities, and human behavior, as well as its interaction with the product, environment, equipment and the establishment of tasks and activities. One part of the human factor is the human factor in system design. In order to improve the effectiveness of the system, the human factor must be involved in each phase of the design process in the system design. This includes a number of activities to obtain input specification work, therefore the working methods and the optimal amount of labor can be determined. Human factors engineering is the application of science that utilizes research on the human factor and use the basic knowledge to design, to repair and to install the system. This research method is causal, searching for the causes which led to delays in the completion of ship repairing. Through human factor engineering approach to the allocation of labor increased by 12.23 per cent of the actual conditions, so that the delay of ship repair were not found during normal conditions.

  16. A system engineer's Perspective on Human Errors For a more Effective Management of Human Factors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong-Hee; Jang, Tong-Il; Lee, Soo-Kil

    2007-01-01

    The management of human factors in nuclear power plants (NPPs) has become one of the burden factors during their operating period after the design and construction period. Almost every study on the major accidents emphasizes the prominent importance of the human errors. Regardless of the regulatory requirements such as Periodic Safety Review, the management of human factors would be a main issue to reduce the human errors and to enhance the performance of plants. However, it is not easy to find out a more effective perspective on human errors to establish the engineering implementation plan for preventing them. This paper describes a system engineer's perspectives on human errors and discusses its application to the recent study on the human error events in Korean NPPs

  17. Engineering human factors into the Westinghouse advanced control room

    International Nuclear Information System (INIS)

    Easter, J.R.

    1987-01-01

    By coupling the work of the Riso Laboratory in Denmark on human behaviour with new digital computation and display technology, Westinghouse has developed a totally new control room design. This design features a separate, co-ordinated work station to support the systems management role in decision making, as well as robust alarm and display systems. This coupling of the functional and physical data presentation is now being implemented in test facilities. (author)

  18. Safety review for human factors engineering and control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Yang Mengzhuo

    1998-01-01

    Safety review for human factors engineering and control rooms of nuclear power plants (NPP) is in a forward position of science and technology, which began at American TMI severe accident and had been implemented in China. The importance and the significance of the safety review are expounded, the requirements of its scope and profundity are explained in detail. In addition, the situation of the technical document system for nuclear safety regulation on human factors engineering and control rooms of NPP in China is introduced briefly, on which the safety review is based

  19. Draft audit report, human factors engineering control room design review: Saint Lucie Nuclear Power Plant, Unit No. 2

    International Nuclear Information System (INIS)

    Peterson, L.R.; Lappa, D.A.; Moore, J.W.

    1981-01-01

    A human factors engineering preliminary design review of the Saint Lucie Unit 2 control room was performed at the site on August 3 through August 7, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The review team included human factors consultants from BioTechnology, Inc., Falls Church, Virginia, and from Lawrence Livermore National Laboratory (University of California), Livermore, California

  20. Human Research Program Space Human Factors Engineering (SHFE) Standing Review Panel (SRP)

    Science.gov (United States)

    Wichansky, Anna; Badler, Norman; Butler, Keith; Cummings, Mary; DeLucia, Patricia; Endsley, Mica; Scholtz, Jean

    2009-01-01

    The Space Human Factors Engineering (SHFE) Standing Review Panel (SRP) evaluated 22 gaps and 39 tasks in the three risk areas assigned to the SHFE Project. The area where tasks were best designed to close the gaps and the fewest gaps were left out was the Risk of Reduced Safety and Efficiency dire to Inadequate Design of Vehicle, Environment, Tools or Equipment. The areas where there were more issues with gaps and tasks, including poor or inadequate fit of tasks to gaps and missing gaps, were Risk of Errors due to Poor Task Design and Risk of Error due to Inadequate Information. One risk, the Risk of Errors due to Inappropriate Levels of Trust in Automation, should be added. If astronauts trust automation too much in areas where it should not be trusted, but rather tempered with human judgment and decision making, they will incur errors. Conversely, if they do not trust automation when it should be trusted, as in cases where it can sense aspects of the environment such as radiation levels or distances in space, they will also incur errors. This will be a larger risk when astronauts are less able to rely on human mission control experts and are out of touch, far away, and on their own. The SRP also identified 11 new gaps and five new tasks. Although the SRP had an extremely large quantity of reading material prior to and during the meeting, we still did not feel we had an overview of the activities and tasks the astronauts would be performing in exploration missions. Without a detailed task analysis and taxonomy of activities the humans would be engaged in, we felt it was impossible to know whether the gaps and tasks were really sufficient to insure human safety, performance, and comfort in the exploration missions. The SRP had difficulty evaluating many of the gaps and tasks that were not as quantitative as those related to concrete physical danger such as excessive noise and vibration. Often the research tasks for cognitive risks that accompany poor task or

  1. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  2. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  3. Identification of advanced human factors engineering analysis, design and evaluation methods

    International Nuclear Information System (INIS)

    Plott, C.; Ronan, A. M.; Laux, L.; Bzostek, J.; Milanski, J.; Scheff, S.

    2006-01-01

    NUREG-0711 Rev.2, 'Human Factors Engineering Program Review Model,' provides comprehensive guidance to the Nuclear Regulatory Commission (NRC) in assessing the human factors practices employed by license applicants for Nuclear Power Plant control room designs. As software based human-system interface (HSI) technologies supplant traditional hardware-based technologies, the NRC may encounter new HSI technologies or seemingly unconventional approaches to human factors design, analysis, and evaluation methods which NUREG-0711 does not anticipate. A comprehensive survey was performed to identify advanced human factors engineering analysis, design and evaluation methods, tools, and technologies that the NRC may encounter in near term future licensee applications. A review was conducted to identify human factors methods, tools, and technologies relevant to each review element of NUREG-0711. Additionally emerging trends in technology which have the potential to impact review elements, such as Augmented Cognition, and various wireless tools and technologies were identified. The purpose of this paper is to provide an overview of the survey results and to highlight issues that could be revised or adapted to meet with emerging trends. (authors)

  4. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB) Results and Findings

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L.J.

    1999-09-20

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553. Annex A, Chaptex A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  5. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB) Results and Findings

    International Nuclear Information System (INIS)

    GARVIN, L.J.

    1999-01-01

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report. Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553, Annex A, Chapter A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports

  6. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB): Results and Findings

    International Nuclear Information System (INIS)

    GARVIN, L.J.

    1999-01-01

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553. Annex A, Chaptex A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports

  7. Work, Productivity, and Human Performance: Practical Case Studies in Ergonomics, Human Factors and Human Engineering.

    Science.gov (United States)

    Fraser, T. M.; Pityn, P. J.

    This book contains 12 case histories, each based on a real-life problem, that show how a manager can use common sense, knowledge, and interpersonal skills to solve problems in human performance at work. Each case study describes a worker's problem and provides background information and an assignment; solutions are suggested. The following cases…

  8. Survey of control-room design practices with respect to human factors engineering

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1980-01-01

    Human factors engineering is an interdisciplinary speciality concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. This emphasis has been applied to most military and space systems in the past 30 y. A review of five nuclear power-plant control rooms, reported in the November-December 1977 issue of Nuclear Safety, revealed that human factors principles of design have generally not been incorporated in present-generation control rooms. This article summarizes the findings of a survey of 20 control-board designers from a mix of nuclear steam-supply system and architect-engineering firms. The interviews with these designers probed design methods currently used in developing control rooms. From these data it was concluded that there is currently no consistent, formal, uniform concern for the human factors aspects of control-room design on the part of the design organizations, the utilities, or the Nuclear Regulatory Commission. Although all the parties involved are concerned with human factors issues, this responsibility is not focused, and human factors yardsticks, or design standards, specific to power plants have not been evolved and applied in the development and verification of control-room designs from the standpoint of the man-machine interface

  9. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    Science.gov (United States)

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  10. Human factors engineering applications to the cask design activities of the Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Lake, W.H.; Peck, M. III

    1993-01-01

    The use of human factors engineering (HFE) in the design and use of spent fuel casks being developed for the Department of Energy's Civilian Radioactive Waste Management Program is addressed. The safety functions of cask systems are presented as background for HFE considerations. Because spent fuel casks are passive safety devices they could be subject to latent system failures due to human error. It is concluded that HFE should focus on operations and verifications tests, but should begin, to the extent possible, at the beginning of cask design. Use of HFE during design could serve to eliminate or preclude opportunity for human error

  11. Human Factors Engineering Incorporated into the Carolina Power and Light company's nuclear power plant control panel modifications

    International Nuclear Information System (INIS)

    Beith, D.M.; Shoemaker, E.M.; Horn, K.; Boush, D.

    1988-01-01

    Maintaining human factors conventions/practices that were established during the Detailed Control Design Review (DCRDR), is difficult if Human Factors Engineering (HFE) is not incorporated into the plant modification process. This paper presents the approach used at Carolina Power and Light's nuclear power plants that has successfully incorporated human factors engineering into their plant modification process. An HFE Design Guide or HFE Specification was developed which is used by the design engineers or plant engineering support groups in the preparation of plant modifications

  12. Human factors engineering design review acceptance criteria for the safety parameter display

    International Nuclear Information System (INIS)

    McGevna, V.; Peterson, L.R.

    1981-01-01

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established

  13. EDF EPR project: operating principles validation and human factor engineering program

    International Nuclear Information System (INIS)

    Lefebvre, B.; Berard, E.; Arpino, J.-M.

    2005-01-01

    This article describes the specificities of the operating principles chosen by EDF for the EPR project as a result of an extensive Human Factor Engineering program successfully implemented in an industrial project context. The design process and its achievements benefit of the EDF experience feedback not only in term of NPP operation - including the fully computerized control room of the N4-serie - but also in term of NPP designer. The elements exposed hereafter correspond to the basic design phase of EPR HMI which has been completed and successfully validated by the end of 2003. The article aims to remind the context of the project which basically consists in designing a modern and efficient HMI taking into account the operating needs while relying on proven and reliable technologies. The Human Factor Engineering program implemented merges these both aspects by : 1) being fully integrated within the project activities and scheduling; 2) efficiently taking into account the users needs as well as the feasibility constraints by relying on a multidisciplinary design team including HF specialists, I and C specialists, Process specialists and experienced operator representatives. The resulting design process makes a wide use of experience feedback and experienced operator knowledge to complete largely the existing standards for providing a fully useable and successful design method in an industrial context. The article underlines the design process highlights that largely contribute to the successful implementation of a Human Factor Engineering program for EPR. (authors)

  14. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    International Nuclear Information System (INIS)

    Ma, R.; Jones, J. M.

    2006-01-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE in NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)

  15. Tools for Developing a Quality Management Program: Human Factors and Systems Engineering Tools

    International Nuclear Information System (INIS)

    Caldwell, Barrett S.

    2008-01-01

    During the past 10 years, there has been growing acceptance and encouragement of partnerships between medical teams and engineers. Using human factors and systems engineering descriptions of process flows and operational sequences, the author's research laboratory has helped highlight opportunities for reducing adverse events and improving performance in health care and other high-consequence environments. This research emphasized studying human behavior that enhances system performance and a range of factors affecting adverse events, rather than a sole emphasis on human error causation. Developing a balanced evaluation requires novel approaches to causal analyses of adverse events and, more importantly, methods of recovery from adverse conditions. Recent work by the author's laboratory in collaboration with the Regenstrief Center for Healthcare Engineering has started to address possible improvements in taxonomies describing health care tasks. One major finding includes enhanced understanding of events and how event dynamics influence provider tasks and constraints. Another element of this research examines team coordination tasks that strongly affect patient care and quality management, but may be undervalued as 'indirect patient care' activities

  16. Applications of human factors engineering to LNG release prevention and control

    Energy Technology Data Exchange (ETDEWEB)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  17. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1998-01-01

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a)

  18. Human factors engineering applied to Control Centre Design of a research nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Larissa P. de; Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R., E-mail: larissapfarias@ymail.com [Instituto de Engenharia Nuclear (DENN/SEESC/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab, de Usabilidade e Confiabilidade Humana; Monteiro, Beany G. [Universidade Federal do Rio Janeiro (UFRJ), Rio Janeiro, RJ (Brazil). Departamento de Desenho Industrial

    2017-07-01

    The Human Factors Engineering (HFE) program is an essential aspect for the design of nuclear installations. The overall aim of the HFE program is the improvement of the operational reliability and safety of plant operation. The HFE program main purpose is to ensure that human factor practices are incorporated into the plant design, emphasizing man-machine interface issues and design improvement of the nuclear reactor Control Centre. The Control Centre of nuclear reactor is a combination of control rooms, control suites and local control stations, which are functionally connected and located on the reactor site. The objective of this paper is to present a design approach for the Control Centre of a nuclear reactor used to produce radioisotopes and for nuclear research, including human factor issues. The design approach is based on participatory design principles, using human factor standards, ergonomic guidelines, and the participation of a multidisciplinary team during all design phases. Using the information gathered, an initial sketch 3D of the Control Centre was developed. (author)

  19. Human factors engineering applied to Control Centre Design of a research nuclear reactor

    International Nuclear Information System (INIS)

    Farias, Larissa P. de; Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R.; Monteiro, Beany G.

    2017-01-01

    The Human Factors Engineering (HFE) program is an essential aspect for the design of nuclear installations. The overall aim of the HFE program is the improvement of the operational reliability and safety of plant operation. The HFE program main purpose is to ensure that human factor practices are incorporated into the plant design, emphasizing man-machine interface issues and design improvement of the nuclear reactor Control Centre. The Control Centre of nuclear reactor is a combination of control rooms, control suites and local control stations, which are functionally connected and located on the reactor site. The objective of this paper is to present a design approach for the Control Centre of a nuclear reactor used to produce radioisotopes and for nuclear research, including human factor issues. The design approach is based on participatory design principles, using human factor standards, ergonomic guidelines, and the participation of a multidisciplinary team during all design phases. Using the information gathered, an initial sketch 3D of the Control Centre was developed. (author)

  20. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  1. Introduction of Human Factors Engineering Program Plan of a Research Reactor

    International Nuclear Information System (INIS)

    Jang, Tong Il; Lee, Hyun Chul

    2011-01-01

    KAERI (Korea Atomic Energy Research Institute) has a contract with Jordan to export a research and training reactor. KAERI is performing the project as an SD (System Design) and the design work has been performing by 8 design teams which include an Instrumentation and Control (I and C). A design of the MCR (Main Control Room) and the SCR (Supplementary Control Room) is being developed by the HFE design team which is a part of the I and C team. For the control room design considering the human factors principles, the HFE design team developed an HFEPP (Human Factors Engineering Program Plan) which should be established to meet regulatory requirements. In this study, the HFEPP for the JRTR (Jordan Research and Training Reactor) is introduced and the details are described

  2. THE DEVELOPMENT OF DETAILED HUMAN FACTORS ENGINEERING GUIDELINES FOR DIGITAL CONTROL ROOM UPGRADES

    International Nuclear Information System (INIS)

    BROWN, W.; O'HARA, J.M.

    2004-01-01

    As part of the Department of Energy and Electric Power Research Institute's hybrid control room project, detailed human factors engineering guidance was developed for designing human-system interfaces that may be affected by introduction of additional digital technology during modernization of nuclear power plants. The guidance addresses several aspects of human-system interaction: information display, interface management, soft controls, alarms, computer-based procedures, computerized operator support systems, communications, and workstation/workplace design. In this paper, the ways in which digital upgrades might affect users' interaction with systems in each of these contexts are briefly described, and the contents of the guidance developed for each of the topics is also described

  3. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    International Nuclear Information System (INIS)

    Higgins, J.; Nasta, K.

    1997-01-01

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs

  4. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    International Nuclear Information System (INIS)

    OHara, J.M.; Higgins, J.C.

    2012-01-01

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

  5. DEVELOPMENT OF HUMAN FACTORS ENGINEERING GUIDANCE FOR SAFETY EVALUATIONS OF ADVANCED REACTORS

    International Nuclear Information System (INIS)

    O'HARA, J.; PERSENSKY, J.; SZABO, A.

    2006-01-01

    Advanced reactors are expected to be based on a concept of operations that is different from what is currently used in today's reactors. Therefore, regulatory staff may need new tools, developed from the best available technical bases, to support licensing evaluations. The areas in which new review guidance may be needed and the efforts underway to address the needs will be discussed. Our preliminary results focus on some of the technical issues to be addressed in three areas for which new guidance may be developed: automation and control, operations under degraded conditions, and new human factors engineering methods and tools

  6. Human factors engineering applications in the testing of the legal weight truck cask transportation system

    International Nuclear Information System (INIS)

    Smith, T.C.; Peck, M. III; Sealock, R.A.

    1994-01-01

    The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) will collect performance data to be used in limited human factors engineering analysis of the light weight tractor as a component of the legal weight truck cask transport system. The Management and Operating contractor will provide an analysis and comparison of limited data on driver behavior and subjective driver evaluations of the light weight tractor performance versus that of a heavier baseline tractor. A significant difference in performance data would suggest that given tractor configurations affect driver behavior differently

  7. Human factors engineering control-room-design review/audit report: Palo Verde Nuclear Generating Station, Arizona Public Service Company

    International Nuclear Information System (INIS)

    Savage, J.W.; Lappa, D.A.

    1981-01-01

    A human factors engineering design review of the Palo Verde control room simulator was performed at the site on September 15 through September 17, 1981. Observed human factors design discrepancies were given priority ratings. This report summarizes the team's observations of the control room design and layout and of the control room operators' interface with the control room environment. A list of the human factors strengths observed in the Palo Verde control room simulator is given

  8. Human-factors engineering control-room design review/audit report: Byron Generating Station, Commonwealth Edison Company

    International Nuclear Information System (INIS)

    Savage, J.W.

    1983-01-01

    A human factors engineering design review/audit of the Byron Unit 1 control room was performed at the site on November 17 through November 19, 1981. This review was accomplished using the Unit 2 control room appropriately mocked-up to reflect design changes already committed to be incorporated in Unit 1. The report was prepared on the basis of the HFEB's audit of the applicant's Preliminary Design Assessment report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from BioTechnology, Inc. (Falls Church, Virginia), and from Lawrence Livermore National Laboratory (University of California), Livermore, California

  9. A software prototype development of human system interfaces for human factors engineering validation tests of SMART MCR

    International Nuclear Information System (INIS)

    Lim, Jong Tae; Han, Kwan Ho; Yang, Seung Won

    2011-02-01

    An integrated system validation test bed used for human factors engineering validation test is being developed. This study has a goal to develop a software prototype for HFE validation of SMART MCR design. To achieve these, first, some prototype specifications of the software was developed. Then software prototypes of alarm reduction logic system, Plant Protection System, ESF-CCS, Elastic Tile Alarm Indication, and EID-based HSIs were implemented as codes. Test procedures for the software prototypes were established to verify the completeness of the codes implemented. The careful software test has been done according to these test procedures, and the result were documented

  10. Integrating Human Factors Engineering and Information Processing Approaches to Facilitate Evaluations in Criminal Justice Technology Research.

    Science.gov (United States)

    Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy

    2015-06-01

    Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.

  11. Reducing the Cost and Time to Perform a Human Factors Engineering Evaluation

    International Nuclear Information System (INIS)

    Geary, L.C. Dr.

    2003-01-01

    The Westinghouse Savannah River Company, a contractor to the Department of Energy, has developed a new software tool for automating the Human Factors Engineering design review, analysis, and evaluation processes. The set of design guidelines, used in the tool, was obtained from the United States Nuclear Regulatory Commission Nuclear Regulatory Guide, NUREG- 0700 - Human System Interface Design Review Guideline. This tool has been described at a previous IEEE Conference on Human Factors and Power Plants. The original software tool in NUREG- 0700 was used to evaluate a facility and a separate independent evaluation was performed using the new tool for the same facility. A comparison was made between the two different tools; both in results obtained and cost and time to complete the evaluation. The results demonstrate a five to ten fold reduction in time and cost to complete the evaluation using the newly developed tool while maintaining consistent evaluation results. The time to per form the review was measured in weeks using the new software tool rather than months using the existing NUREG-0700 tool. The new tool has been so successful that it was applied to two additional facilities with the same reduced time and cost savings. Plans have been made to use the new tool at other facilities in order to provide the same savings

  12. Technical issues related to NUREG 0800, Chapter 18: Human Factors Engineering/Standard Review Plan

    International Nuclear Information System (INIS)

    Savage, J.W.

    1982-01-01

    The revision of Chapter 18 of NUREG 0800, Human Factors Engineering Standard Review Plan (SRP) will be based on SECY 82-111 and guidance contained in NUREG 0700, NUREG 0801 and NUREG 0835, plus other references. In conducting field reviews of control rooms, the NRC has identified technical issues which can be used to enhance the development of the revised version of NUREG 0800, and to establish priorities among the list of possible Branch Technical Positions (BTP) in NUREG 0800, Rev. 0, Table 18.0-2. This report is a compilation of comments and suggestions from the people who used NUREG 0700 in the Control Room field reviews. This information was used to establish possible BTP topic priorities so that the most important BTPs could be issued first. The comments and suggestions are included for HFEB review in conjunction with the table of priorities

  13. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES

    International Nuclear Information System (INIS)

    O'HARA, J.M.; BROWN, W.

    2004-01-01

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics

  14. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Higgins, J.; Fleger, Stephen

    2011-01-01

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  15. Three-dimensional computer-aided human factors engineering analysis of a grafting robot.

    Science.gov (United States)

    Chiu, Y C; Chen, S; Wu, G J; Lin, Y H

    2012-07-01

    The objective of this research was to conduct a human factors engineering analysis of a grafting robot design using computer-aided 3D simulation technology. A prototype tubing-type grafting robot for fruits and vegetables was the subject of a series of case studies. To facilitate the incorporation of human models into the operating environment of the grafting robot, I-DEAS graphic software was applied to establish individual models of the grafting robot in line with Jack ergonomic analysis. Six human models (95th percentile, 50th percentile, and 5th percentile by height for both males and females) were employed to simulate the operating conditions and working postures in a real operating environment. The lower back and upper limb stresses of the operators were analyzed using the lower back analysis (LBA) and rapid upper limb assessment (RULA) functions in Jack. The experimental results showed that if a leg space is introduced under the robot, the operator can sit closer to the robot, which reduces the operator's level of lower back and upper limbs stress. The proper environmental layout for Taiwanese operators for minimum levels of lower back and upper limb stress are to set the grafting operation at 23.2 cm away from the operator at a height of 85 cm and with 45 cm between the rootstock and scion units.

  16. Human Factors Engineering in Designing the Passengers' Cockpit of the Malaysian Commercial Suborbital Spaceplane

    Science.gov (United States)

    Ridzuan Zakaria, Norul; Mettauer, Adrian; Abu, Jalaluddin; Hassan, Mohd Roshdi; Ismail, Anwar Taufeek; Othman, Jamaluddin; Shaari, Che Zhuhaida; Nasron, Nasri

    2010-09-01

    The design of the passengers’ cabin or cockpit of commercial suborbital spaceplane is a new and exciting frontier in human factors engineering, which emphasizes on comfort and safety. There is a program to develop small piloted 3 seats commercial suborbital spaceplane by a group of Malaysians with their foreign partners, and being relatively small and due to its design philosophy, the spaceplane does not require a cabin, but only a cockpit for its 2 passengers. In designing the cockpit, human factors engineering and safety principles are given priority. The cockpit is designed with the intention to provide comfort and satisfaction to the passengers without compromising the safety, in such a way that there are passenger-view wide angled video camera to observe the passengers at all time in flight, “rear-view”, “under-the-floor-view” and “fuselage-view” video cameras for the passengers, personalized gauges and LCDs on the dashboard to provide vital and useful information during the flight to the passengers, and biomedical engineered products which not only entertain the passengers, but also provide important information on the passengers to the ground crews who are responsible in the comfort and safety of the passengers. The passenger-view video-camera, which record the passengers with Earth visible through the glass canopy as the background, not only provides live visual of the passengers for safety reason, but also provide the most preferred memorable video collection for the passengers, while other video cameras provide the opportunity to view at various angles from unique positions to both the passengers and the ground observers. The gauges and LCDs on the dashboard provide access to the passengers to information such as the gravity, orientation, rate of climb and flight profile of the spaceplane, graphical presentation of the spaceplane in flight, and live video from the onboard video cameras. There is also a control stick for each passenger to

  17. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Brown, W.S.; Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  18. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J. [Carlow International Inc., Falls Church, VA (United States)

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  19. Human-factors engineering control-room design review/audit: Waterford 3 SES Generating Station, Louisiana Power and Light Company

    International Nuclear Information System (INIS)

    Savage, J.W.

    1983-01-01

    A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California

  20. A human factors engineering evaluation of the Multi-Function Waste Tank Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo, D.T. [Pacific Northwest Lab., Richland, WA (United States); Sarver, T.L. [ARES Corp., San Francisco, CA (United States)

    1995-06-05

    This report documents the methods and results of a human factors engineering (HFE) review conducted on the Multi-Function Waste Tank Facility (MWTF), Westinghouse Hanford Company (WHC) Project 236A, to be constructed at the U.S. Department of Energy (DOE) facility at Hanford, Washington. This HFE analysis of the MWTF was initiated by WHC to assess how well the current facility and equipment design satisfies the needs of its operations and maintenance staff and other potential occupants, and to identify areas of the design that could benefit from improving the human interfaces at the facility. Safe and effective operations, including maintenance, is a primary goal for the MWTF. Realization of this goal requires that the MWTF facility, equipment, and operations be designed in a manner that is consistent with the abilities and limitations of its operating personnel. As a consequence, HFE principles should be applied to the MWTF design, construction, its operating procedures, and its training. The HFE review was focused on the 200-West Area facility as the design is further along than that of the 200-East Area. The review captured, to the greatest extent feasible at this stage of design, all aspects of the facility activities and included the major topics generally associated with HFE (e.g., communication, working environment). Lessons learned from the review of the 200 West facility will be extrapolated to the 200-East Area, as well as generalized to the Hanford Site.

  1. A human factors engineering evaluation of the Multi-Function Waste Tank Facility. Final report

    International Nuclear Information System (INIS)

    Donohoo, D.T.; Sarver, T.L.

    1995-01-01

    This report documents the methods and results of a human factors engineering (HFE) review conducted on the Multi-Function Waste Tank Facility (MWTF), Westinghouse Hanford Company (WHC) Project 236A, to be constructed at the U.S. Department of Energy (DOE) facility at Hanford, Washington. This HFE analysis of the MWTF was initiated by WHC to assess how well the current facility and equipment design satisfies the needs of its operations and maintenance staff and other potential occupants, and to identify areas of the design that could benefit from improving the human interfaces at the facility. Safe and effective operations, including maintenance, is a primary goal for the MWTF. Realization of this goal requires that the MWTF facility, equipment, and operations be designed in a manner that is consistent with the abilities and limitations of its operating personnel. As a consequence, HFE principles should be applied to the MWTF design, construction, its operating procedures, and its training. The HFE review was focused on the 200-West Area facility as the design is further along than that of the 200-East Area. The review captured, to the greatest extent feasible at this stage of design, all aspects of the facility activities and included the major topics generally associated with HFE (e.g., communication, working environment). Lessons learned from the review of the 200 West facility will be extrapolated to the 200-East Area, as well as generalized to the Hanford Site

  2. Model for impact assessment in human factors engineering project of PWR plants with digital control

    International Nuclear Information System (INIS)

    Roedel, Frederico G.; Schirru, Roberto

    2017-01-01

    New nuclear power plants are being designed with the digital Instrumentation and Control (I and C) as the backbone for the functions of protection, control, monitoring and display and with digital Human-System Interface (HSI). In this new environment, rather than play physical control actions, the operators begin to act as decision makers and, within this context, the Human Factors Engineering (HFE) has become an integral part of the projects. As the operational experience with the use of digital I and C systems and HSI is limited since, besides the small number of applications, it is proprietary, the objective of this work is to carry out an assessment in order to identify the most relevant aspects of a digital HSI project. The proposed model is based on concepts of fuzzy logic, uses MATLAB for data processing, defines criteria for evaluation and quantification of impacts in the project and has been applied to the General Principles and the Guidelines presented in the NUREG-0700. The assessment indicated that the Guidelines for User-Interface Interaction and Management, for Information Display and for Computer-Based Procedures System should be carefully evaluated in the design of a digital HSI considering the new Users Tasks Demand, the Organization of HSI Elements and the Work Environment. (author)

  3. Model for impact assessment in human factors engineering project of PWR plants with digital control

    Energy Technology Data Exchange (ETDEWEB)

    Roedel, Frederico G.; Schirru, Roberto, E-mail: froedel@nuclear.ufrj.br, E-mail: schirru@lmp.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    New nuclear power plants are being designed with the digital Instrumentation and Control (I and C) as the backbone for the functions of protection, control, monitoring and display and with digital Human-System Interface (HSI). In this new environment, rather than play physical control actions, the operators begin to act as decision makers and, within this context, the Human Factors Engineering (HFE) has become an integral part of the projects. As the operational experience with the use of digital I and C systems and HSI is limited since, besides the small number of applications, it is proprietary, the objective of this work is to carry out an assessment in order to identify the most relevant aspects of a digital HSI project. The proposed model is based on concepts of fuzzy logic, uses MATLAB for data processing, defines criteria for evaluation and quantification of impacts in the project and has been applied to the General Principles and the Guidelines presented in the NUREG-0700. The assessment indicated that the Guidelines for User-Interface Interaction and Management, for Information Display and for Computer-Based Procedures System should be carefully evaluated in the design of a digital HSI considering the new Users Tasks Demand, the Organization of HSI Elements and the Work Environment. (author)

  4. Human Factors engineering criteria and design for the Hanford Waste Vitrification Plant preliminary safety analysis report

    International Nuclear Information System (INIS)

    Wise, J.A.; Schur, A.; Stitzel, J.C.L.

    1993-09-01

    This report provides a rationale and systematic methodology for bringing Human Factors into the safety design and operations of the Hanford Waste Vitrification Plant (HWVP). Human Factors focuses on how people perform work with tools and machine systems in designed settings. When the design of machine systems and settings take into account the capabilities and limitations of the individuals who use them, human performance can be enhanced while protecting against susceptibility to human error. The inclusion of Human Factors in the safety design of the HWVP is an essential ingredient to safe operation of the facility. The HWVP is a new construction, nonreactor nuclear facility designed to process radioactive wastes held in underground storage tanks into glass logs for permanent disposal. Its design and mission offer new opposites for implementing Human Factors while requiring some means for ensuring that the Human Factors assessments are sound, comprehensive, and appropriately directed

  5. Implementation Pilot Project in Human Factors Engineering ENUSA; Proyecto Piloto Implantacion de Facores Humanos en Ingenieria de ENUSA

    Energy Technology Data Exchange (ETDEWEB)

    Choithramani Becerra, S.

    2013-07-01

    In this paper the analysis of an engineering project of the Technology and Commercial Fuel ENUSA called Designing a 5PWR reload from the point of view of Human Factors described. The study was conducted by analyzing error precursors and barriers, observation techniques, interviews and the methodology for risk analysis. Similarly, the tools applied and the results obtained are described in this paper.

  6. How system designers think: a study of design thinking in human factors engineering.

    Science.gov (United States)

    Papantonopoulos, Sotiris

    2004-11-01

    The paper presents a descriptive study of design thinking in human factors engineering. The objective of the study is to analyse the role of interpretation in design thinking and the role of design practice in guiding interpretation. The study involved 10 system designers undertaking the allocation of cognitive functions in three production planning and control task scenarios. Allocation decisions were recorded and verbal protocols of the design process were collected to elicit the subjects' thought processes. Verbal protocol analysis showed that subjects carried out the design of cognitive task allocation as a problem of applying a selected automation technology from their initial design deliberations. This design strategy stands in contrast to the predominant view of system design that stipulates that user requirements should be thoroughly analysed prior to making any decisions about technology. Theoretical frameworks from design research and ontological design showed that the system design process may be better understood by recognizing the role of design hypotheses in system design, as well as the diverse interactions between interpretation and practice, means and ends, and design practice and the designer's pre-understanding which shape the design process. Ways to balance the bias exerted on the design process were discussed.

  7. Human factors engineering and design validation for the redesigned follitropin alfa pen injection device.

    Science.gov (United States)

    Mahony, Mary C; Patterson, Patricia; Hayward, Brooke; North, Robert; Green, Dawne

    2015-05-01

    To demonstrate, using human factors engineering (HFE), that a redesigned, pre-filled, ready-to-use, pre-asembled follitropin alfa pen can be used to administer prescribed follitropin alfa doses safely and accurately. A failure modes and effects analysis identified hazards and harms potentially caused by use errors; risk-control measures were implemented to ensure acceptable device use risk management. Participants were women with infertility, their significant others, and fertility nurse (FN) professionals. Preliminary testing included 'Instructions for Use' (IFU) and pre-validation studies. Validation studies used simulated injections in a representative use environment; participants received prior training on pen use. User performance in preliminary testing led to IFU revisions and a change to outer needle cap design to mitigate needle stick potential. In the first validation study (49 users, 343 simulated injections), in the FN group, one observed critical use error resulted in a device design modification and another in an IFU change. A second validation study tested the mitigation strategies; previously reported use errors were not repeated. Through an iterative process involving a series of studies, modifications were made to the pen design and IFU. Simulated-use testing demonstrated that the redesigned pen can be used to administer follitropin alfa effectively and safely.

  8. Integrated System Validation of Barakah Nuclear Power Plant in UAE for The Human Factor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    APR1400 simulator has been developed based on the state-of-the-art object-oriented simulation technology of TH(Thermo-Hydraulic) and Reactor Core model, which is applied for the first time in the our country and for the exportation, to well simulate characteristics of APR1400. Barakah unit 1,2 simulator are constructed and supplied with this type simulator model. Integrated system validation was performed using a simulator to verify the HFE(Human Factor Engineering) design of the MCR(Maim Control Room) for instrumentation and control system validation of the UAE nuclear power plant. APR1400 for the Barakah unit 1,2 has many specific features such as digital I and C, and digitalized main control room (MCR) design. From January 2016 to February, during six weeks, the tests carried out three times repeatedly and the various proposals for ergonomical satisfactation were derived. However, the HFE errors that cause significant change of validation target for APR1400 MCR design safety fidelity wasn't found. This has resulted in the conclusion to prove the stability of the basic design of APR1400 MCR. In the future, using the simulator derives the HFE requirements of the MCR systems and continually improve the simulator will be built in close to real high-fidelity power plant. These Integrated system validations are likely to be a great help in operating safety and preventing human errors by operators. Therefore successful completion of the Integrated System Validation for BNPP simulation will be effective to promotion the distinction of our simulator and APR1400 NPP.

  9. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    Science.gov (United States)

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Engineering the substrate and inhibitor specificities of human coagulation Factor VIIa

    DEFF Research Database (Denmark)

    Larsen, Katrine S; Østergaard, Henrik; Bjelke, Jais R

    2007-01-01

    The remarkably high specificity of the coagulation proteases towards macromolecular substrates is provided by numerous interactions involving the catalytic groove and remote exosites. For FVIIa [activated FVII (Factor VII)], the principal initiator of coagulation via the extrinsic pathway, several...... for FVIIa by marked changes in primary substrate specificity and decreased rates of antithrombin III inhibition. Interestingly, these changes do not necessarily coincide with an altered ability to activate Factor X, demonstrating that inhibitor and macromolecular substrate selectivity may be engineered...

  11. Exploring Barriers to Medication Safety in an Ethiopian Hospital Emergency Department: A Human Factors Engineering Approach

    Directory of Open Access Journals (Sweden)

    Ephrem Abebe

    2018-02-01

    Full Text Available Objective: To describe challenges associated with the medication use process and potential medication safety hazards in an Ethiopian hospital emergency department using a human factors approach. Methods: We conducted a qualitative study employing observations and semi-structured interviews guided by the Systems Engineering Initiative for Patient Safety model of work system as an analytical framework. The study was conducted in the emergency department of a teaching hospital in Ethiopia. Study participants included resident doctors, nurses, and pharmacists. We performed content analysis of the qualitative data using accepted procedures. Results: Organizational barriers included communication failures, limited supervision and support for junior staff contributing to role ambiguity and conflict. Compliance with documentation policy was minimal. Task related barriers included frequent interruptions and work-related stress resulting from job requirements to continuously prioritize the needs of large numbers of patients and family members. Person related barriers included limited training and work experience. Work-related fatigue due to long working hours interfered with staff’s ability to document and review medication orders. Equipment breakdowns were common as were non-calibrated or poorly maintained medical devices contributing to erroneous readings. Key environment related barriers included overcrowding and frequent interruption of staff’s work. Cluttering of the work space compounded the problem by impeding efforts to locate medications, medical supplies or medical charts. Conclusions: Applying a systems based approach allows a context specific understanding of medication safety hazards in EDs from low-income countries. When developing interventions to improve medication and overall patient safety, health leaders should consider the interactions of the different factors. Conflict of Interest We declare no conflicts of interest or

  12. A Review on the Regulatory Strategy of Human Factors Engineering Consideration in Pakistan Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sohail, Sabir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Seong Nam [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the legal and regulatory infrastructure available in Pakistan for HFE requirements is assessed, and the methodology for strengthening of legal infrastructure is presented. The regulatory strategy on evaluation of HFE consideration should provide reviewers with guidance on review process. Therefore, the suggested methodology is based on preparation of guidance documents such as checklist, working procedures, S and Gs etc.; incorporation of PRM elements in regulatory system; and finally the development of PRM implementation criteria. Altogether, the scheme provide the enhancement in regulatory infrastructure and also the effective and efficient review process. The Three Mile Island (TMI) accident brought the general consensus among the nuclear community on the integration of human factors engineering (HFE) principles in all phases of nuclear power. This notion has further strengthened after the recent Fukushima nuclear accident. Much effort has been put over to incorporate the lesson learned and continuous technical evolution on HFE to device different standards. The total of 174 ergonomics standards are alone identified by Dul et al. (2004) published by International Organization for Standardization (ISO) and the European Committee for Standardization (CEN) and number of standards and HFE guidelines (S and Gs) are also published by organizations like Institute for Electrical and Electronics Engineering (IEEE), International Electrotechnical Commission (IEC), International Atomic Energy Agency (IAEA), United States Nuclear Regulatory Commission (USNRC), etc. The ambition of effective review on HFE integration in nuclear facility might be accomplished through the development of methodology for systematic implementation of S and Gs. Such kind of methodology would also be beneficial for strengthening the regulatory framework and practices for countries new in the nuclear arena and with small scale nuclear program. The objective of paper is to review the

  13. Human factors engineering evaluation of the Advanced Test Reactor Control Room

    International Nuclear Information System (INIS)

    Boone, M.P.; Banks, W.W.

    1980-12-01

    The information presented here represents preliminary findings related to an ongoing human engineering evaluation of the Advanced Test Reactor (ATR) Control Room. Although many of the problems examined in this report have been previously noted by ATR operations personnel, the systematic approach used in this investigation produced many new insights. While many violations of Human Engineering military standards (MIL-STD) are noted, and numerous recommendations made, the recommendations should be examined cautiously. The reason for our suggested caution lies in the fact that many ATR operators have well over 10-years experience in operating the controls, meters, etc. Hence, it is assumed adaptation to the existing system is quite developed and the introduction of hardware/control changes, even though the changes enhance the system, may cause short-term (or long-term, depending upon the amount of operator experience and training) adjustment problems for operators adapting to the new controls/meters and physical layout

  14. Human factors science and safety engineering : can the STAMP model serve in establishing a common language?

    NARCIS (Netherlands)

    Karanikas, Nektarios; Schwarz, M; Harfmann, J

    2017-01-01

    A symbiotic relationship between human factors and safety scientists is needed to ensure the provision of holistic solutions for problems emerging in modern socio-technical systems. System Theoretic Accident Model and Processes (STAMP) tackles both interactions and individual failures of human and

  15. Implications of the new Food and Drug Administration draft guidance on human factors engineering for diabetes device manufacturers.

    Science.gov (United States)

    Wilcox, Stephen B; Drucker, Daniel

    2012-03-01

    This article discusses the implications of the new Food and Drug Administration's draft guidance on human factors and usability engineering for the development of diabetes-related devices. Important considerations include the challenge of identifying users, when the user population is so dramatically broad, and the challenge of identifying use environments when the same can be said for use environments. Another important consideration is that diabetes-related devices, unlike many other medical devices, are used constantly as part of the user's lifestyle--adding complexity to the focus on human factors and ease of use emphasized by the draft guidance. © 2012 Diabetes Technology Society.

  16. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    Science.gov (United States)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  17. Meta-Analysis of Human Factors Engineering Studies Comparing Individual Differences, Practice Effects and Equipment Design Variations.

    Science.gov (United States)

    1985-02-21

    Approvoid foT public 90Ieleol, 2* . tJni7nited " - . - o . - ’--. * . -... . 1 UNCLASSIFIED S, E CURITY CLASSIFICATION OF THIS PAGE-" REPORT DOCUMENTATION...ACCESSION NO. 11. TITLE (Include Security Classification) . Veta -Analysis of Human Factors Engineering Studies Comparing Individual Differences, Practice...Background C Opportunity D Significance E History III. PHASE I FINAL REPORT A Literature Review B Formal Analysis C Results D Implications for Phase II IV

  18. Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct

    Directory of Open Access Journals (Sweden)

    Erh-Hsuin Lim

    2013-11-01

    Full Text Available BackgroundTo overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF into an electrospun poly(L-lactide scaffold.MethodsThe electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats.ResultsChemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen.ConclusionsWe have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.

  19. Modern Human Engineering

    International Nuclear Information System (INIS)

    Jeong, Byeong Yong; Lee Dong Kyeong

    2005-08-01

    These are the titles of each chapter. They are as in the following; design of human-centerdness, human machine system, information processing process, sense of human, user interface, elements of human body, vital dynamics, measurement of reaction of human body, estimation and management of working environment, mental characteristic of human, human error, group, organization and leadership, safety supervision, process analysis, time studying, work sampling, work factor and methods time measurement, introduction of muscular skeletal disease and program of preventive management.

  20. Modern Human Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Byeong Yong; Lee Dong Kyeong

    2005-08-15

    These are the titles of each chapter. They are as in the following; design of human-centerdness, human machine system, information processing process, sense of human, user interface, elements of human body, vital dynamics, measurement of reaction of human body, estimation and management of working environment, mental characteristic of human, human error, group, organization and leadership, safety supervision, process analysis, time studying, work sampling, work factor and methods time measurement, introduction of muscular skeletal disease and program of preventive management.

  1. A Human Factors Study on an Information Visualization System for Nuclear Power Plants Decommissioning Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chih Wei; Yang, Li Chen [Institute of Nuclear Energy Research, Atomic Energy Council, Longtan (China)

    2014-08-15

    Most nuclear power plants (NPPs) in the world have an operating life of up to 40 years. The utility should prepare a comprehensive decommissioning plan with purpose to document and to display how decommissioning activities can be safely performed. In the past, most studies related to NPPs decommissioning planning put emphasis on technical issues, little attention have been given to human factors in decommissioning activities. In fact, human factors are a critical factor to successful NPPs decommissioning. NPPs decommissioning will face potential risks. These risks include not only dismantling and moving large equipment but also treating with the radioactive materials. Using information visualization system, such as virtual reality (VR) technology, for staff training can improve decommissioning work safety and economy. Therefore, this study presents a study using VR to solve real world problems in the nuclear plant decommissioning. Then appropriate cases for introducing VR systems are summarized and future prospects are given. This study assesses availability and performance of the work training system by using heuristic evaluation and actual experiment. In the result, block type of radiation visibility was found relatively better both in performance and person's preference than other types. The results presented in this paper illustrate the VR applications a NPP decommissioning perspective.

  2. A Human Factors Study on an Information Visualization System for Nuclear Power Plants Decommissioning Engineering

    International Nuclear Information System (INIS)

    Yang, Chih Wei; Yang, Li Chen

    2014-01-01

    Most nuclear power plants (NPPs) in the world have an operating life of up to 40 years. The utility should prepare a comprehensive decommissioning plan with purpose to document and to display how decommissioning activities can be safely performed. In the past, most studies related to NPPs decommissioning planning put emphasis on technical issues, little attention have been given to human factors in decommissioning activities. In fact, human factors are a critical factor to successful NPPs decommissioning. NPPs decommissioning will face potential risks. These risks include not only dismantling and moving large equipment but also treating with the radioactive materials. Using information visualization system, such as virtual reality (VR) technology, for staff training can improve decommissioning work safety and economy. Therefore, this study presents a study using VR to solve real world problems in the nuclear plant decommissioning. Then appropriate cases for introducing VR systems are summarized and future prospects are given. This study assesses availability and performance of the work training system by using heuristic evaluation and actual experiment. In the result, block type of radiation visibility was found relatively better both in performance and person's preference than other types. The results presented in this paper illustrate the VR applications a NPP decommissioning perspective

  3. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L.; Eliasson, Pernilla

    2015-01-01

    OBJECTIVE: Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We...... investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. DESIGN: Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission...... electron microscopy) were determined at 7, 10, 14, 21 and 28 days. RESULTS: IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development...

  4. Human Engineering Procedures Guide

    Science.gov (United States)

    1981-09-01

    Research Laboratory AFETR Air Force Eastern Test Range AFFTC Air Force Flight Test Center AFHRL Air Force Human Resources Laboratory AFR Air Force...performance requirements through the most effective use of man’s performance capability. 13 Human Engineering is one of five elements in the Human...applied judiciously and tailored to fit * the program or program phase and the acquisition strategy to achieve cost effective acquisition and life cycle

  5. The human factors engineering approach to biomedical informatics projects: state of the art, results, benefits and challenges.

    Science.gov (United States)

    Beuscart-Zéphir, M-C; Elkin, Peter; Pelayo, Sylvia; Beuscart, Regis

    2007-01-01

    The objective of this paper is to define a comprehensible overview of the Human Factors approach to biomedical informatics applications for healthcare. The overview starts with a presentation of the necessity of a proper management of Human factors for Healthcare IT projects to avoid unusable products and unsafe work situations. The first section is dedicated to definitions of the Human Factors Engineering (HFE) main concepts. The second section describes a functional model of an HFE lifecycle adapted for healthcare work situations. The third section provides an overview of existing HF and usability methods for healthcare products and presents a selection of interesting results. The last section discusses the benefits and limitations of the HFE approach. Literature review based on Pubmed and conference proceedings in the field of Medical Informatics coupled with a review of other databases and conference proceedings in the field of Ergonomics focused on papers addressing healthcare work and system design. Usability studies performed on healthcare applications have uncovered unacceptable usability flaws that make the systems error prone, thus endangering the patient safety. Moreover, in many cases, the procurement and the implementation process simply forget about human factors: following only technological considerations, they issue potentially dangerous and always unpleasant work situations. But when properly applied to IT projects, the HFE approach proves efficient when seeking to improve patient safety, users' satisfaction and adoption of the products. We recommend that the HFE methodology should be applied to most informatics and systems development projects, and the usability of the products should be systematically checked before permitting their release and implementation. This requires the development of Centers specialized in Human Factors for Healthcare and Patient safety in each Country/Region.

  6. Human factors engineering guidance for the review of advanced alarm systems

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Brown, W.S.; Higgins, J.C.; Stubler, W.F.

    1994-09-01

    This report provides guidance to support the review of the human factors aspects of advanced alarm system designs in nuclear power plants. The report is organized into three major sections. The first section describes the methodology and criteria that were used to develop the design review guidelines. Also included is a description of the scope, organization, and format of the guidelines. The second section provides a systematic review procedure in which important characteristics of the alarm system are identified, described, and evaluated. The third section provides the detailed review guidelines. The review guidelines are organized according to important characteristics of the alarm system including: alarm definition; alarm processing and reduction; alarm prioritization and availability; display; control; automated; dynamic, and modifiable characteristics; reliability, test, maintenance, and failure indication; alarm response procedures; and control-display integration and layout

  7. Human factors engineering guidance for the review of advanced alarm systems

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.; Brown, W.S.; Higgins, J.C.; Stubler, W.F. [Brookhaven National Lab., Upton, NY (United States)

    1994-09-01

    This report provides guidance to support the review of the human factors aspects of advanced alarm system designs in nuclear power plants. The report is organized into three major sections. The first section describes the methodology and criteria that were used to develop the design review guidelines. Also included is a description of the scope, organization, and format of the guidelines. The second section provides a systematic review procedure in which important characteristics of the alarm system are identified, described, and evaluated. The third section provides the detailed review guidelines. The review guidelines are organized according to important characteristics of the alarm system including: alarm definition; alarm processing and reduction; alarm prioritization and availability; display; control; automated; dynamic, and modifiable characteristics; reliability, test, maintenance, and failure indication; alarm response procedures; and control-display integration and layout.

  8. Human-factors engineering for smart transport: Decision support for car drivers and train traffic controllers

    NARCIS (Netherlands)

    Lenior, D.; Janssen, W.H.; Neerincx, M.A.; Schreibers, K.

    2006-01-01

    The theme Smart Transport can be described as adequate human-system symbiosis to realize effective, efficient and human-friendly transport of goods and information. This paper addresses how to attune automation to human (cognitive) capacities (e.g. to take care of information uncertainty, operator

  9. The proposed human factors engineering program plan for man-machine interface system design of the next generation NPP in Korea

    International Nuclear Information System (INIS)

    Oh, I.S.; Lee, H.C.; Seo, S.M.; Cheon, S.W.; Park, K.O.; Lee, J.W.; Sim, B.S.

    1994-01-01

    Human factors application to nuclear power plant (NPP) design, especially, to man-machine interface system (MMIS) design becomes an important issue among the licensing requirements. Recently, the nuclear regulatory bodies require the evidence of systematic human factors application to the MMIS design. Human Factors Engineering Program Plan (HFEPP), as a basis and central one among the human factors application by the MMIS designers. This paper describes the framework of HFEPP for the MMIS design of next generation NPP (NG-NPP) in Korea. This framework provides an integral plan and some bases of the systematic application of human factors to the MMIS design, and consists of purpose and scope, codes and standards, human factors organization, human factors tasks, engineering control methodology, human factors documentations, and milestones. The proposed HFEPP is a top level document to define and describe human factors tasks, based on each step of MMIS design process, in view point of how, what, when and by whom to be performed. (author). 11 refs, 1 fig

  10. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    Science.gov (United States)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  11. Human factors, system safety, and systems engineering in the transportation of U.S. high-level waste

    International Nuclear Information System (INIS)

    Price, D.L.; Chu, S.C.

    1993-01-01

    The U.S. Nuclear Waste Technical Review Board is an independent agency charged with evaluating the technical and scientific validity of the U.S. Department of Energy's program to manage the disposal of spent fuel and defense high-level waste. The Board has continued to emphasize the importance of using a true system approach in designing the waste management system. The Board has recommended the application of basic design disciplines such as human factors, system safety, and systems engineering. A top-level system study needs to be undertaken that focuses on minimizing handling. The analysis must be well done, in a timely manner, and without the inclusion in the analysis of arbitrary and artificial constraints. (author)

  12. Applying human factors engineering program to the modernization project of NPP Control Room in accordance with U.S.NRC and KTA regulations

    International Nuclear Information System (INIS)

    Avellar, Renato Koga de; Schirru, Roberto

    2017-01-01

    Application of Human Factors Engineering (HFE) in the design and implementation of such a project is essential to ensure that the new man-machine interface outcoming from the modernization does not have any negative impacts on human performance and plant safety. This paper analyzes the applicability of the Human Factors Engineering Program in the licensing and certification of Konvoi Nucleoelectric Power Plant Control Room Modernization Project using digital instrumentation and control in accordance with U.S.NRC and KTA regulations. The results of the analyses show that although regulatory bodies adopt different methodology in the process of licensing the modernization of control rooms, the engineering aspects are being developed based on the principles of engineering. (author)

  13. Applying human factors engineering program to the modernization project of NPP Control Room in accordance with U.S.NRC and KTA regulations

    Energy Technology Data Exchange (ETDEWEB)

    Avellar, Renato Koga de, E-mail: rkoga@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Assessoria de Licenciamento Nuclear e Ambiental; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Application of Human Factors Engineering (HFE) in the design and implementation of such a project is essential to ensure that the new man-machine interface outcoming from the modernization does not have any negative impacts on human performance and plant safety. This paper analyzes the applicability of the Human Factors Engineering Program in the licensing and certification of Konvoi Nucleoelectric Power Plant Control Room Modernization Project using digital instrumentation and control in accordance with U.S.NRC and KTA regulations. The results of the analyses show that although regulatory bodies adopt different methodology in the process of licensing the modernization of control rooms, the engineering aspects are being developed based on the principles of engineering. (author)

  14. Beyond the VAD: Human Factors Engineering for Mechanically Assisted Circulation in the 21st Century.

    Science.gov (United States)

    Throckmorton, Amy L; Patel-Raman, Sonna M; Fox, Carson S; Bass, Ellen J

    2016-06-01

    Thousands of ventricular assist devices (VADs) currently provide circulatory support to patients worldwide, and dozens of heart pump designs for adults and pediatric patients are under various stages of development in preparation for translation to clinical use. The successful bench-to-bedside development of a VAD involves a structured evaluation of possible system states, including human interaction with the device and auxiliary component usage in the hospital or home environment. In this study, we review the literature and present the current landscape of preclinical design and assessment, decision support tools and procedures, and patient-centered therapy. Gaps of knowledge are identified. The study findings support the need for more attention to user-centered design approaches for medical devices, such as mechanical circulatory assist systems, that specifically involve detailed qualitative and quantitative assessments of human-device interaction to mitigate risk and failure. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Human factoring administrative procedures

    International Nuclear Information System (INIS)

    Grider, D.A.; Sturdivant, M.H.

    1991-01-01

    In nonnuclear business, administrative procedures bring to mind such mundane topics as filing correspondence and scheduling vacation time. In the nuclear industry, on the other hand, administrative procedures play a vital role in assuring the safe operation of a facility. For some time now, industry focus has been on improving technical procedures. Significant efforts are under way to produce technical procedure requires that a validated technical, regulatory, and administrative basis be developed and that the technical process be established for each procedure. Producing usable technical procedures requires that procedure presentation be engineered to the same human factors principles used in control room design. The vital safety role of administrative procedures requires that they be just as sound, just a rigorously formulated, and documented as technical procedures. Procedure programs at the Tennessee Valley Authority and at Boston Edison's Pilgrim Station demonstrate that human factors engineering techniques can be applied effectively to technical procedures. With a few modifications, those same techniques can be used to produce more effective administrative procedures. Efforts are under way at the US Department of Energy Nuclear Weapons Complex and at some utilities (Boston Edison, for instance) to apply human factors engineering to administrative procedures: The techniques being adapted include the following

  16. Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering

    Science.gov (United States)

    Bolton, Matthew L.; Bass, Ellen J.

    2009-01-01

    Both the human factors engineering (HFE) and formal methods communities are concerned with finding and eliminating problems with safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to use model checking with HFE practices to perform formal verification of a human-interactive system. Despite the use of a seemingly simple target system, a patient controlled analgesia pump, the initial model proved to be difficult for the model checker to verify in a reasonable amount of time. This resulted in a number of model revisions that affected the HFE architectural, representativeness, and understandability goals of the effort. If formal methods are to meet the needs of the HFE community, additional modeling tools and technological developments are necessary.

  17. Human Factors for Nursing: From In-Situ Testing to Mobile Usability Engineering.

    Science.gov (United States)

    Kushniruk, Andre W; Borycki, Elizabeth M; Solvoll, Terje; Hullin, Carola

    2016-01-01

    The tutorial goal is to familiarize participants with human aspects of health informatics and human-centered approaches to the design, evaluation and deployment of both usable and safe healthcare information systems. The focus will be on demonstrating and teaching practical and low-cost methods for evaluating mobile applications in nursing. Basic background to testing methods will be provided, followed by live demonstration of the methods. Then the audience will break into small groups to explore the application of the methods to applications of interest (there will be a number of possible applications that will be available for applications in areas such as electronic health records and decision support, however, if the groups have applications of specific interest to them that will be possible). The challenges of conducting usability testing, and in particular mobile usability testing will be discussed along with practical solutions. The target audience includes practicing nurses and nurse researchers, nursing informatics specialists, nursing students, nursing managers and health informatics professionals interested in improving the usability and safety of healthcare applications.

  18. Scientific, Engineering, and Financial Factors of the 1989 Human-Triggered Newcastle Earthquake in Australia

    Science.gov (United States)

    Klose, C. D.

    2006-12-01

    This presentation emphasizes the dualism of natural resources exploitation and economic growth versus geomechanical pollution and risks of human-triggered earthquakes. Large-scale geoengineering activities, e.g., mining, reservoir impoundment, oil/gas production, water exploitation or fluid injection, alter pre-existing lithostatic stress states in the earth's crust and are anticipated to trigger earthquakes. Such processes of in- situ stress alteration are termed geomechanical pollution. Moreover, since the 19th century more than 200 earthquakes have been documented worldwide with a seismic moment magnitude of 4.5losses of triggered earthquakes. An hazard assessment, based on a geomechanical crust model, shows that only four deep coal mines were responsible for triggering this severe earthquake. A small-scale economic risk assessment identifies that the financial loss due to earthquake damage has reduced mining profits that have been re-invested in the Newcastle region for over two centuries beginning in 1801. Furthermore, large-scale economic risk assessment reveals that the financial loss is equivalent to 26% of the Australian Gross Domestic Product (GDP) growth in 1988/89. These costs account for 13% of the total costs of all natural disasters (e.g., flooding, drought, wild fires) and 94% of the costs of all earthquakes recorded in Australia between 1967 and 1999. In conclusion, the increasing number and size of geoengineering activities, such as coal mining near Newcastle or planned carbon dioxide Geosequestration initiatives, represent a growing hazard potential, which can negatively affect socio-economic growth and sustainable development. Finally, hazard and risk degrees, based on geomechanical-mathematical models, can be forecasted in space and over time for urban planning in order to prevent economic losses of human-triggered earthquakes in the future.

  19. Example of a Human Factors Engineering approach to a medication administration work system: potential impact on patient safety.

    Science.gov (United States)

    Beuscart-Zéphir, Marie-Catherine; Pelayo, Sylvia; Bernonville, Stéphanie

    2010-04-01

    The objectives of this paper are: In this approach, the implementation of such a complex IT solution is considered a major redesign of the work system. The paper describes the Human Factor (HF) tasks embedded in the project lifecycle: (1) analysis and modelling of the current work system and usability assessment of the medication CPOE solution; (2) HF recommendations for work re-design and usability recommendations for IT system re-engineering both aiming at a safer and more efficient work situation. Standard ethnographic methods were used to support the analysis of the current work system and work situations, coupled with cognitive task analysis methods and documents review. Usability inspection (heuristic evaluation) and both in-lab (simulated tasks) and on-site (real tasks) usability tests were performed for the evaluation of the CPOE candidate. Adapted software engineering models were used in combination with usual textual descriptions, tasks models and mock-ups to support the recommendations for work and product re-design. The analysis of the work situations identified different work organisations and procedures across the hospital's departments. The most important differences concerned the doctor-nurse communications and cooperation modes and the procedures for preparing and administering the medications. The assessment of the medication CPOE functions uncovered a number of usability problems including severe ones leading to impossible to detect or to catch errors. Models of the actual and possible distribution of tasks and roles were used to support decision making in the work design process. The results of the usability assessment were translated into requirements to support the necessary re-engineering of the IT application. The HFE approach to medication CPOE efficiently identifies and distinguishes currently unsafe or uncomfortable work situations that could obviously benefit from an IT solution from other work situations incorporating efficient work

  20. Medical devices and human engineering

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Medical Devices and Human Engineering, the second volume of the handbook, presents material from respected scientists with diverse backgrounds in biomedical sensors, medical instrumentation and devices, human performance engineering, rehabilitation engineering, and clinical engineering.More than three doze

  1. Design, Analysis, and Interpretation of Screening Studies for Human Factors Engineering Research. Revision.

    Science.gov (United States)

    1978-06-01

    Ill-C 1 B1 .ANO SPACES "EPREIEN’r ZERO PERCENTj -ALL FACTORS PFE4 A T14jU61 F’ INCLuSIvj SPACES WITH4 ZEROES RHW*(tNT SOME PERCENT WLLjEp Tj EIMA2 THIS...4 so). l : b1 04 at m 0 aa 004 11 4 12 u t3 0. Ub 14 NSI33. ;. .* ** . U Z, L f0 Il 4NU A4. 1,41Jw 0 uMA WMA UN444<. H 43~IW a a. 1 A l13 93 .*L...Education Research Information Center Monash University Processing & Reference Facility Clayton, Victoria 3168 4833 Rugby Ave., Suite 303 Australia

  2. Human factors

    International Nuclear Information System (INIS)

    Brown, G.J.

    1991-01-01

    Recent reactor accidents have spurred the major review, described here, of the contribution of operator personnel to safety in Scottish Nuclear Power Stations. The review aims to identify factors leading to the Chernobyl accident and take preventative measures to avoid possible recurrence. Scottish Nuclear power stations aim to remove the operator from a position where failure to take correct action could lead to a safety hazard. Instead operators concentrate on routine and breakdown maintenance and measures are taken to minimize the probability of operator error. The review concluded that most safety procedures were satisfactory but safety analysis supported by good design practices may offer a significant reduction in the risk of operator error. (UK)

  3. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    Science.gov (United States)

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  4. Effects of Human Factors in Engineering and Design for Teaching Mathematics: A Comparison Study of Online and Face-to-Face at a Technical College

    Science.gov (United States)

    Mativo, John M.; Hill, Roger B.; Godfrey, Paul W.

    2013-01-01

    The focus of this study was to examine four characteristics for successful and unsuccessful students enrolled in basic mathematics courses at a technical college. The characteristics, considered to be in part effects of human factors in engineering and design, examined the preferred learning styles, computer information systems competency,…

  5. Human Factors Review Plan

    International Nuclear Information System (INIS)

    Paramore, B.; Peterson, L.R.

    1985-12-01

    ''Human Factors'' is concerned with the incorporation of human user considerations into a system in order to maximize human reliability and reduce errors. This Review Plan is intended to assist in the assessment of human factors conditions in existing DOE facilities. In addition to specifying assessment methodologies, the plan describes techniques for improving conditions which are found to not adequately support reliable human performance. The following topics are addressed: (1) selection of areas for review describes techniques for needs assessment to assist in selecting and prioritizing areas for review; (2) human factors engineering review is concerned with optimizing the interfaces between people and equipment and people and their work environment; (3) procedures review evaluates completeness and accuracy of procedures, as well as their usability and management; (4) organizational interface review is concerned with communication and coordination between all levels of an organization; and (5) training review evaluates training program criteria such as those involving: trainee selection, qualification of training staff, content and conduct of training, requalification training, and program management

  6. Human Factors Review Plan

    Energy Technology Data Exchange (ETDEWEB)

    Paramore, B.; Peterson, L.R. (eds.)

    1985-12-01

    ''Human Factors'' is concerned with the incorporation of human user considerations into a system in order to maximize human reliability and reduce errors. This Review Plan is intended to assist in the assessment of human factors conditions in existing DOE facilities. In addition to specifying assessment methodologies, the plan describes techniques for improving conditions which are found to not adequately support reliable human performance. The following topics are addressed: (1) selection of areas for review describes techniques for needs assessment to assist in selecting and prioritizing areas for review; (2) human factors engineering review is concerned with optimizing the interfaces between people and equipment and people and their work environment; (3) procedures review evaluates completeness and accuracy of procedures, as well as their usability and management; (4) organizational interface review is concerned with communication and coordination between all levels of an organization; and (5) training review evaluates training program criteria such as those involving: trainee selection, qualification of training staff, content and conduct of training, requalification training, and program management.

  7. Human factors engineering measures taken by nuclear power plant owners/operators for optimisation of the man-machine interface

    International Nuclear Information System (INIS)

    Eisgruber, H.

    1996-01-01

    Both operating results and human factors studies show that man is able to meet the requirements in this working environment. Hence the degree of human reliability required by the design basis of nuclear power plants is ensured. This means: - Nuclear technology for electricity generation is justifiable from the human factors point of view. - The chief opponent is not right in saying that man is not able to cope with the risks and challenges brought about by nuclear technology applications. The human factors concept for optimisation or configuration of the man-machine systems represents an additional endeavor on the part of nuclear power plant operators within the framework of their responsibilities. Human factors analyses meet with good response by the personnel, as analysis results and clarification of causes of accident scenarios contribute to relieve the personnel (exoneration) and find ways for remedial action. (orig./DG) [de

  8. Color-coding and human factors engineering to improve patient safety characteristics of paper-based emergency department clinical documentation.

    Science.gov (United States)

    Kobayashi, Leo; Boss, Robert M; Gibbs, Frantz J; Goldlust, Eric; Hennedy, Michelle M; Monti, James E; Siegel, Nathan A

    2011-01-01

    Investigators studied an emergency department (ED) physical chart system and identified inconsistent, small font labeling; a single-color scheme; and an absence of human factors engineering (HFE) cues. A case study and description of the methodology with which surrogate measures of chart-related patient safety were studied and subsequently used to reduce latent hazards are presented. Medical records present a challenge to patient safety in EDs. Application of HFE can improve specific aspects of existing medical chart organization systems as they pertain to patient safety in acute care environments. During 10 random audits over 5 consecutive days (573 data points), 56 (9.8%) chart binders (range 0.0-23%) were found to be either misplaced or improperly positioned relative to other chart binders; 12 (21%) were in the critical care area. HFE principles were applied to develop an experimental chart binder system with alternating color-based chart groupings, simple and prominent identifiers, and embedded visual cues. Post-intervention audits revealed significant reductions in chart binder location problems overall (p < 0.01), for Urgent Care A and B pods (6.4% to 1.2%; p < 0.05), Fast Track C pod (19.3% to 0.0%; p < 0.05) and Behavioral/Substance Abuse D pod (15.7% to 0.0%; p < 0.05) areas of the ED. The critical care room area did not display an improvement (11.4% to 13.2%; p = 0.40). Application of HFE methods may aid the development, assessment, and modification of acute care clinical environments through evidence-based design methodologies and contribute to safe patient care delivery.

  9. Human factors in training

    International Nuclear Information System (INIS)

    Dutton, J.W.; Brown, W.R.

    1981-01-01

    The Human Factors concept is a focused effort directed at those activities which require human involvement. Training is, by its nature, an activity totally dependent on the Human Factor. This paper identifies several concerns significant to training situations and discusses how Human Factor awareness can increase the quality of learning. Psychology in the training arena is applied Human Factors. Training is a method of communication represented by sender, medium, and receiver. Two-thirds of this communications model involves the human element directly

  10. Human factor reliability program

    International Nuclear Information System (INIS)

    Knoblochova, L.

    2017-01-01

    The human factor's reliability program was at Slovenske elektrarne, a.s. (SE) nuclear power plants. introduced as one of the components Initiatives of Excellent Performance in 2011. The initiative's goal was to increase the reliability of both people and facilities, in response to 3 major areas of improvement - Need for improvement of the results, Troubleshooting support, Supporting the achievement of the company's goals. The human agent's reliability program is in practice included: - Tools to prevent human error; - Managerial observation and coaching; - Human factor analysis; -Quick information about the event with a human agent; -Human reliability timeline and performance indicators; - Basic, periodic and extraordinary training in human factor reliability(authors)

  11. Software Engineering for Human Spaceflight

    Science.gov (United States)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  12. Work System Assessment to Facilitate the Dissemination of a Quality Improvement Program for Optimizing Blood Culture Use: A Case Study Using a Human Factors Engineering Approach.

    Science.gov (United States)

    Xie, Anping; Woods-Hill, Charlotte Z; King, Anne F; Enos-Graves, Heather; Ascenzi, Judy; Gurses, Ayse P; Klaus, Sybil A; Fackler, James C; Milstone, Aaron M

    2017-11-20

    Work system assessments can facilitate successful implementation of quality improvement programs. Using a human factors engineering approach, we conducted a work system assessment to facilitate the dissemination of a quality improvement program for optimizing blood culture use in pediatric intensive care units at 2 hospitals. Semistructured face-to-face interviews were conducted with clinicians from Johns Hopkins All Children's Hospital and University of Virginia Medical Center. Interview data were analyzed using qualitative content analysis. Blood culture-ordering practices are influenced by various work system factors, including people, tasks, tools and technologies, the physical environment, organizational conditions, and the external environment. A clinical decision-support tool could facilitate implementation by (1) standardizing blood culture-ordering practices, (2) ensuring that prescribing clinicians review the patient's condition before ordering a blood culture, (3) facilitating critical thinking, and (4) empowering nurses to communicate with physicians and advocate for adherence to blood culture-ordering guidelines. The success of interventions for optimizing blood culture use relies heavily on the local context. A work system analysis using a human factors engineering approach can identify key areas to be addressed for the successful dissemination of quality improvement interventions. © The Author 2017. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. [Human factors in medicine].

    Science.gov (United States)

    Lazarovici, M; Trentzsch, H; Prückner, S

    2017-01-01

    The concept of human factors is commonly used in the context of patient safety and medical errors, all too often ambiguously. In actual fact, the term comprises a wide range of meanings from human-machine interfaces through human performance and limitations up to the point of working process design; however, human factors prevail as a substantial cause of error in complex systems. This article presents the full range of the term human factors from the (emergency) medical perspective. Based on the so-called Swiss cheese model by Reason, we explain the different types of error, what promotes their emergence and on which level of the model error prevention can be initiated.

  14. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  15. Effects on Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells Engineered to Express Neurotrophic Factors

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotential cells with capability to form colonies in vitro and differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs. Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs. Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG. The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy.

  16. Human Factors Evaluation Mentor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To obtain valid and reliable data, Human Factors Engineering (HFE) evaluations are currently conducted by people with specialized training and experience in HF. HFE...

  17. A qualitative, interprofessional analysis of barriers to and facilitators of implementation of the Department of Veterans Affairs' Clostridium difficile prevention bundle using a human factors engineering approach.

    Science.gov (United States)

    Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2018-03-01

    Clostridium difficile infection (CDI) is increasingly prevalent, severe, and costly. Adherence to infection prevention practices remains suboptimal. More effective strategies to implement guidelines and evidence are needed. Interprofessional focus groups consisting of physicians, resident physicians, nurses, and health technicians were conducted for a quality improvement project evaluating adherence to the Department of Veterans Affairs' (VA) nationally mandated C difficile prevention bundle. Qualitative analysis with a visual matrix display identified barrier and facilitator themes guided by the Systems Engineering Initiative for Patient Safety model, a human factors engineering approach. Several themes, encompassing both barriers and facilitators to bundle adherence, emerged. Rapid turnaround time of C difficile polymerase chain reaction testing was a facilitator of timely diagnosis. Too few, poorly located, and cluttered sinks were barriers to appropriate hand hygiene. Patient care workload and the time-consuming process of contact isolation precautions were also barriers to adherence. Multiple work system components serve as barriers to and facilitators of adherence to the VA CDI prevention bundle among an interprofessional group of health care workers. Organizational factors appear to significantly influence bundle adherence. Interprofessional perspectives are needed to identify barriers to and facilitators of bundle implementation, which is a necessary first step to address adherence to bundled infection prevention practices. Published by Elsevier Inc.

  18. Human factors in aviation

    National Research Council Canada - National Science Library

    Salas, Eduardo; Maurino, Daniel E

    2010-01-01

    .... HFA offers a comprehensive overview of the topic, taking readers from the general to the specific, first covering broad issues, then the more specific topics of pilot performance, human factors...

  19. Human Factors Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The purpose of the Human Factors Laboratory is to further the understanding of highway user needs so that those needs can be incorporated in roadway design,...

  20. Introduction to human factors

    International Nuclear Information System (INIS)

    Winters, J.M.

    1988-03-01

    Some background is given on the field of human factors. The nature of problems with current human/computer interfaces is discussed, some costs are identified, ideal attributes of graceful system interfaces are outlined, and some reasons are indicated why it's not easy to fix the problems

  1. Human factors information system

    International Nuclear Information System (INIS)

    Goodman, P.C.; DiPalo, C.A.

    1991-01-01

    Nuclear power plant safety is dependent upon human performance related to plant operations. To provide improvements in human performance, data collection and assessment play key roles. This paper reports on the Human factors Information System (HFIS) which is designed to meet the needs of the human factors specialists of the United States Nuclear Regulatory Commission. These specialists identify personnel errors and provide guidance designed to prevent such errors. HFIS is a simple and modular system designed for use on a personal computer. It is designed to contain four separate modules that provide information indicative of program or function effectiveness as well as safety-related human performance based on programmatic and performance data. These modules include the Human Factors Status module; the Regulatory Programs module; the Licensee Event Report module; and the Operator Requalification Performance module. Information form these modules can either be used separately or can be combined due to the integrated nature of the system. HFIS has the capability, therefore, to provide insights into those areas of human factors that can reduce the probability of events caused by personnel error at nuclear power plants and promote the health and safety of the public. This information system concept can be applied to other industries as well as the nuclear industry

  2. Human factors in RBNK plants

    International Nuclear Information System (INIS)

    Demitrack, T.

    1995-01-01

    The Safety of RBMK nuclear power plants in the Russian Federation, The Ukraine and Lithuanian is a topic of concern to the European Union and other Western European countries. The European Commission, Sweden, Finland and Canada financed the project Safety Design Solutions and Operation of NPP with RBMK Reactors. The project examined nine issues and recommended safety improvements which will form the basis of future European Commission spending on these power plants. During its year of work, the project examined these issues: 1. Systems Engineering and progression of accidents 2. Protection System 3. Core Physics 4. External Events 5. Engineering Quality 6. Operating Experience 7. Human Factors 8. Regulatory Interface 9. Probabilistic Safety analysis Empresarios Agrupados, in collaboration with other western European firms, the Russian Federation and Lithuanian took part in two of these groups, Human Factors and Probabilistic Safety Analysis. This presentation gives a brief description of the most important aspects of human factors in RBMK plants, focusing on operations organization, training and education

  3. "The Invisible Staff": A Qualitative Analysis of Environmental Service Workers' Perceptions of the VA Clostridium difficile Prevention Bundle Using a Human Factors Engineering Approach.

    Science.gov (United States)

    Yanke, Eric; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia

    2018-06-11

    Using a novel human factors engineering approach, the Systems Engineering Initiative for Patient Safety model, we evaluated environmental service workers' (ESWs) perceptions of barriers and facilitators influencing adherence to the nationally mandated Department of Veterans Affairs Clostridium difficile infection (CDI) prevention bundle. A focus group of ESWs was conducted. Qualitative analysis was performed employing a visual matrix display to identify barrier/facilitator themes related to Department of Veterans Affairs CDI bundle adherence using the Systems Engineering Initiative for Patient Safety work system as a framework. Environmental service workers reported adequate cleaning supplies/equipment and displayed excellent knowledge of CDI hand hygiene requirements. Environmental service workers described current supervisory practices as providing an acceptable amount of time to clean CDI rooms, although other healthcare workers often pressured ESWs to clean rooms more quickly. Environmental service workers reported significant concern for CDI patients' family members as well as suggesting uncertainty regarding the need for family members to follow infection prevention practices. Small and cluttered patient rooms made cleaning tasks more difficult, and ESW cleaning tasks were often interrupted by other healthcare workers. Environmental service workers did not feel comfortable asking physicians for more time to finish cleaning a room nor did ESWs feel comfortable pointing out lapses in physician hand hygiene. Multiple work system components serve as barriers to and facilitators of ESW adherence to the nationally mandated Department of Veterans Affairs CDI bundle. Environmental service workers may represent an underappreciated resource for hospital infection prevention, and further efforts should be made to engage ESWs as members of the health care team.

  4. Human factors guides

    International Nuclear Information System (INIS)

    Penington, J.

    1995-10-01

    This document presents human factors guides, which have been developed in order to provide licensees of the AECB with advice as to how to address human factors issues within the design and assessment process. This documents presents the results of a three part study undertaken to develop three guides which are enclosed in this document as Parts B, C and D. As part of the study human factors standards, guidelines, handbooks and other texts were researched, to define those which would be most useful to the users of the guides and for the production of the guides themselves. Detailed specifications were then produced to outline the proposed contents and format of the three guides. (author). 100 refs., 3 tabs., 11 figs

  5. Human factors guides

    Energy Technology Data Exchange (ETDEWEB)

    Penington, J [PHF Services Inc., (Canada)

    1995-10-01

    This document presents human factors guides, which have been developed in order to provide licensees of the AECB with advice as to how to address human factors issues within the design and assessment process. This documents presents the results of a three part study undertaken to develop three guides which are enclosed in this document as Parts B, C and D. As part of the study human factors standards, guidelines, handbooks and other texts were researched, to define those which would be most useful to the users of the guides and for the production of the guides themselves. Detailed specifications were then produced to outline the proposed contents and format of the three guides. (author). 100 refs., 3 tabs., 11 figs.

  6. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  7. Human Factors and Medical Devices

    International Nuclear Information System (INIS)

    Dick Sawyer

    1998-01-01

    Medical device hardware- and software-driven user interfaces should be designed to minimize the likelihood of use-related errors and their consequences. The role of design-induced errors in medical device incidents is attracting widespread attention. The U.S. Food and Drug Administration (FDA) is fully cognizant that human factors engineering is critical to the design of safe medical devices, and user interface design is receiving substantial attention by the agency. Companies are paying more attention to the impact of device design, including user instructions, upon the performance of those health professionals and lay users who operate medical devices. Concurrently, the FDA is monitoring human factors issues in its site inspections, premarket device approvals, and postmarket incident evaluations. Overall, the outlook for improved designs and safer device operation is bright

  8. Human factors methods in DOE nuclear facilities

    International Nuclear Information System (INIS)

    Bennett, C.T.; Banks, W.W.; Waters, R.J.

    1993-01-01

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle

  9. Factors of airplane engine performance

    Science.gov (United States)

    Gage, Victor R

    1921-01-01

    This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.

  10. Human and Organizational Factors

    International Nuclear Information System (INIS)

    Eshiett, P.B.S.

    2016-01-01

    The Human and Organizational Factors Approach to Industrial Safety (HOFS) consists of identifying and putting in place conditions which encourage a positive contribution from operators (individually and in a team) with regards to industrial safety. The knowledge offered by the HOFS approach makes it possible better to understand what conditions human activity and to act on the design of occupational situations and the organization, in the aim of creating the conditions for safe work. Efforts made in this area can also lead to an improvement in results in terms of the quality of production or occupational safety (incidence and seriousness rates) (Daniellou, F., et al., 2011). Research on industrial accidents shows that they rarely happen as a result of a single event, but rather emerge from the accumulation of several, often seemingly trivial, malfunctions, misunderstandings, incorrect assumptions and other issues. The nuclear community has established rigorous international safety standards and concepts to ensure the protection of people and the environment from harmful effects of ionizing radiation (IAEA, 2014). A review of major human induced disasters in a number of countries and in different industries yields insights into several of the human and organizational factors involved in their occurrence. Some of these factors relate to failures in: • Design or technology; • Training; • Decision making; • Communication; • Preparation for the unexpected; • Understanding of organizational interdependencies

  11. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  12. Human Factors and Robotics: Current Status and Future Prospects.

    Science.gov (United States)

    Parsons, H. McIlvaine; Kearsley, Greg P.

    The principal human factors engineering issue in robotics is the division of labor between automation (robots) and human beings. This issue reflects a prime human factors engineering consideration in systems design--what equipment should do and what operators and maintainers should do. Understanding of capabilities and limitations of robots and…

  13. Human factors in network security

    OpenAIRE

    Jones, Francis B.

    1991-01-01

    Human factors, such as ethics and education, are important factors in network information security. This thesis determines which human factors have significant influence on network security. Those factors are examined in relation to current security devices and procedures. Methods are introduced to evaluate security effectiveness by incorporating the appropriate human factors into network security controls

  14. Accidents and human factors

    International Nuclear Information System (INIS)

    Nishiwaki, Y.; Kawai, H.; Morishima, H.; Terano, T.; Sugeno, M.

    1984-01-01

    When the TMI accident occurred it was 4 a.m., an hour when the error potential of the operators would have been very high. The frequency of car and train accidents in Japan is also highest between 4 a.m. and 6 a.m. The error potential may be classified into five phases corresponding to the electroencephalogramic pattern (EEG). At phase 0, when the delta wave appears, a person is unconscious and in deep sleep; at phase I, when the theta wave appears, he is very tired, sleepy and subnormal; at phase II, when the alpha wave appears, he is normal, relaxed and passive; at phase III, when the beta wave appears, he is normal, clear-minded and active; at phase IV, when the strong beta or epileptic wave appears, he is hypernormal, excited and incapable of normal judgement. Should an accident occur at phase II, the brain condition may jump to phase IV. At this phase the error or accident potential is maximum. The response of the human brain to different types of noises and signals may vary somewhat for different individuals and for different groups of people. Therefore, the possibility that such differences in brain functions may influence the mental structure would be worthy of consideration in human factors and in the design of man-machine systems. Human reliability and performance would be affected by many factors: medical, physiological and psychological, etc. The uncertainty involved in human factors may not necessarily be probabilistic, but fuzzy. Therefore, it would be important to develop a theory by which both non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. From the mathematical point of view, probabilistic measure is considered a special case of fuzzy measure. Therefore, fuzzy set theory seems to be an effective tool for analysing man-machine systems. To minimize human error and the possibility of accidents, new safety systems should not only back up man and make up for his

  15. Human Factors Engineering. Student Supplement,

    Science.gov (United States)

    1981-08-01

    123.0 154.2 154.8 143.7 4 CHEST ( NIPPLE ) HEIGHT* 117.9 120.8 109.3 136.5 138.5 1273 5 ELBOW (RADIALE) HEIGHT 101.0 104.8 94. 117.3 120.0 110.7 6...HEIGHT 52.6 52.5 4B.4 60.7 60.9 56.6 4 CHEST ( NIPPLE ) HEIGHT * 464 47.5 430 53.7 54.5 50.3 5 ELBOW IRADIALE) HEIGHT 39.3 41.3 37A 464 47.2 43. 6...Escape Movtes NM W a DIMMIIS clearnes" Force Require- Deen/Usch Men - luesgNIcy ilt Comtri/Oiiplay got~ ad dle Attuntion RealuWaes Ratio Torque Sauces

  16. Human Flesh Search Engine and Online Privacy.

    Science.gov (United States)

    Zhang, Yang; Gao, Hong

    2016-04-01

    Human flesh search engine can be a double-edged sword, bringing convenience on the one hand and leading to infringement of personal privacy on the other hand. This paper discusses the ethical problems brought about by the human flesh search engine, as well as possible solutions.

  17. Motivational factors, gender and engineering education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  18. The role of environmental factors in regulating the development of cartilaginous grafts engineered using osteoarthritic human infrapatellar fat pad-derived stem cells.

    Science.gov (United States)

    Liu, Yurong; Buckley, Conor T; Downey, Richard; Mulhall, Kevin J; Kelly, Daniel J

    2012-08-01

    Engineering functional cartilaginous grafts using stem cells isolated from osteoarthritic human tissue is of fundamental importance if autologous tissue engineering strategies are to be used in the treatment of diseased articular cartilage. It has previously been demonstrated that human infrapatellar fat pad (IFP)-derived stem cells undergo chondrogenesis in pellet culture; however, the ability of such cells to generate functional cartilaginous grafts has not been adequately addressed. The objective of this study was to explore how environmental conditions regulate the functional development of cartilaginous constructs engineered using diseased human IFP-derived stem cells (FPSCs). FPSCs were observed to display a diminished chondrogenic potential upon encapsulation in a three-dimensional hydrogel compared with pellet culture, synthesizing significantly lower levels of glycosaminoglycan and collagen on a per cell basis. To engineer more functional cartilaginous grafts, we next explored whether additional biochemical and biophysical stimulations would enhance chondrogenesis within the hydrogels. Serum stimulation was observed to partially recover the diminished chondrogenic potential within hydrogel culture. Over 42 days, stem cells that had first been expanded in a low-oxygen environment proliferated extensively on the outer surface of the hydrogel in response to serum stimulation, assembling a dense type II collagen-positive cartilaginous tissue resembling that formed in pellet culture. The application of hydrostatic pressure did not further enhance extracellular matrix synthesis within the hydrogels, but did appear to alter the spatial accumulation of extracellular matrix leading to the formation of a more compact tissue with superior mechanically functionality. Further work is required in order to recapitulate the environmental conditions present during pellet culture within scaffolds or hydrogels in order to engineer more functional cartilaginous grafts using

  19. Procurement engineering - the productivity factor

    Energy Technology Data Exchange (ETDEWEB)

    Bargerstock, S.B. (TENERA, L.P., Chattanooga, TN (United States))

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment. Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.

  20. Procurement engineering - the productivity factor

    International Nuclear Information System (INIS)

    Bargerstock, S.B.

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O ampersand M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment. Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O ampersand M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station

  1. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, J. (Vattenfall Ringhals AB, Stockholm (Sweden))

    2010-12-15

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  2. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  3. Organizational root causes for human factor accidents

    International Nuclear Information System (INIS)

    Dougherty, D.T.

    1997-01-01

    Accident prevention techniques and technologies have evolved significantly throughout this century from the earliest establishment of standards and procedures to the safety engineering improvements the fruits of which we enjoy today. Most of the recent prevention efforts focused on humans and defining human factor causes of accidents. This paper builds upon the remarkable successes of the past by looking beyond the human's action in accident causation to the organizational factors that put the human in the position to cause the accident. This organizational approach crosses all functions and all career fields

  4. Human Factor on Gravelines Nuclear Power Plants

    International Nuclear Information System (INIS)

    Duboc, Gerard

    1998-01-01

    In a first part, the documents describes the commitments by EDF nuclear power plan operations to demands made by the Safety Authority regarding actions in the field of human factors (concerns expressed by the Authority, in-depth analysis, positions on different points raised by the Authority). In a second part, it presents the various actions undertaken in the Gravelines nuclear power station regarding human factors: creation of an 'operator club' (mission and objectives, methods and means, first meetings, tracking file), development of risk analysis strategy, setting up of a human factor engineering mission and example of action in case of a significant event

  5. Overview of EPRI's human factors research program

    International Nuclear Information System (INIS)

    O'Brien, J.F.; Parris, H.L.

    1981-01-01

    The human factors engineering program in the Nuclear Power Division, EPRI is dedicated to the resolution of man-machine interface problems specific to the nuclear power industry. Particularly emphasis is placed on the capabilities and limitations of the people who operate and maintain the system, the tasks they must perform, and what they need to accomplish those tasks. Six human factors R and D projects are being conducted at the present time. In addition, technical consultation is being furnished to a study area, operator aids, being funded by another program area outside the human factors program area. All of these activities are summarized

  6. Human factors review of power plant maintainability

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.; Schmidt, W.J.; Gonzalez, W.R.; Dove, L.E.

    1980-10-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a checklist guided observation system, structured interviews with maintenance personnel, direct observations of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach be adopted to ensure that future power plants are human engineered to the needs of maintenance personnel

  7. Motivational Factors, Gender and Engineering Education

    Science.gov (United States)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Holgaard, Jette Egelund

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students reasons for choosing a career in engineering. We find that women are significantly more influenced by…

  8. Study of Effectiveness of Human Factors Engineering Interference in Cumulative Trauma Disorders Rate Decreasing in the Tehran South Health Center 2005-2006

    Directory of Open Access Journals (Sweden)

    M. Noorisepehr

    2012-04-01

    Full Text Available Introduction: Up to now accomplished many investigations about cumulative trauma disorders (CTD accession. For the most part sitting pattern and unsuitable task posture has been specified reason of these complications. In the publicized stats from a foreign source ambit of 44 percent of people who worked with computer has been afflict to the CTD's. The aim of this paper is to find and measurement of CTD and ergonomic intervention and investigation rate of this intervention's effect in the Tehran south health center. This center use paperless system. Methods: In this research Nordic questionnaire distribute between 68 persons of the center to determine CTD's. By technical expert inspection specified reason of complications. Observantly to state methods reason which create more severity and frequency CTD's has been recognized and interference with human factors engineering. For the more efficiency of interference Anthropometry has been used for all of Work stations and for any person designed a significant posture. Results: results that obtained before interference indicate that were CTD's complications at more of employees which 90 percent of them suffered of up spine pain. Also 27.4 percent of them had shoulder pain and 20.4 percent had neck pain. After the interference these measures decreased. And complaint of employee decreased 40.8 percent to up spine pain. Also for the shoulder pain it reached to 22 and neck pain 17.6 percent. With state test identified that there are significant difference between CTD after and before of intervention (p<0.005. Conclusion: Being unsuitable task posture is main cause of CTD's in the Work stations. We can prevent to increasing these complications in the work place by simple approach like adjustment in the desk and chair height, correct performance working training and doing simple exercise.

  9. Human factors in nuclear safety oversight

    International Nuclear Information System (INIS)

    Taylor, K.

    1989-01-01

    The mission of the nuclear safety oversight function at the Savannah River Plant is to enhance the process and nuclear safety of site facilities. One of the major goals surrounding this mission is the reduction of human error. It is for this reason that several human factors engineers are assigned to the Operations assessment Group of the Facility Safety Evaluation Section (FSES). The initial task of the human factors contingent was the design and implementation of a site wide root cause analysis program. The intent of this system is to determine the most prevalent sources of human error in facility operations and to assist in determining where the limited human factors resources should be focused. In this paper the strategy used to educate the organization about the field of human factors is described. Creating an awareness of the importance of human factors engineering in all facets of design, operation, and maintenance is considered to be an important step in reducing the rate of human error

  10. Motivational factors, gender and engineering education

    DEFF Research Database (Denmark)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne Schioldann

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find...... that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering......; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education....

  11. Some remarks about engineering factor determination

    International Nuclear Information System (INIS)

    Svarny, J.

    2010-01-01

    The problem of the power distribution uncertainties is in general a multidimensional problem of random vector and problem of multidimensional Probability Density Function. The standard methodology of derivation WWER engineering factors is based on representation of analyzed power peaking in the linear form of random factors and on presumption about their normal Probability Density Function. In this paper is presented the derivation of locally defined engineering factors and for mechanical factors has been performed their reformulation. Final formulation of engineering factors as a statistics of relative deviations involves new parameter-mean. Engineering factors definition from so called endpoints of uncertainty tolerance interval is recommended. Approach (95%/95%) for normal Probability Density Function is discussed in detail, the relation to present standard uncertainty methodology of power distribution is found and problem of optimality in tolerance factor finding including limitation of sample size is discussed. On the bases of statistically based uncertainty kinf analysis for linear model has been shown that multivariate outputs vector of power peaking has nearly normal Probability Density Function independently on the Probability Density Function character of input multivariate vector from under its small dimension (lower than number of fuel assemblies in 1/6 core symmetry). Finally the development of the methodological part of the engineering factors for WWER-1000 design macrocode MOBY-DICK is described and their calculation direct on the bases of self-powered detector experimental data of Temelin NPP and Volgodonsk NPP has been performed with inclusion the variability of detector (self-powered detector). (Author)

  12. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  13. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  14. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    genetic engineering to reconstruct the life of the human person. Negatively .... height, beauty or intelligence. Apart from ... cloning and stem-cell researches, artificial insemination. ..... form of manufacturing children involving their quality control.

  15. Development of human factors design review guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul [Korea Atomic Energy Research Institute, Taejon (Korea)

    1997-10-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: 25. Human Factors Engineering Program Review Model and 26. Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation, which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents of NUREG-0711. We also computerized the Korean version of NUREG-0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm systems. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994. (author). 12 refs., 5 figs., 2 tabs.

  16. Human Factors in Training

    Science.gov (United States)

    Barshi, Immanuel; Byrne, Vicky; Arsintescu, Lucia; Connell, Erin

    2010-01-01

    Future space missions will be significantly longer than current shuttle missions and new systems will be more complex than current systems. Increasing communication delays between crews and Earth-based support means that astronauts need to be prepared to handle the unexpected on their own. As crews become more autonomous, their potential span of control and required expertise must grow to match their autonomy. It is not possible to train for every eventuality ahead of time on the ground, or to maintain trained skills across long intervals of disuse. To adequately prepare NASA personnel for these challenges, new training approaches, methodologies, and tools are required. This research project aims at developing these training capabilities. By researching established training principles, examining future needs, and by using current practices in space flight training as test beds, both in Flight Controller and Crew Medical domains, this research project is mitigating program risks and generating templates and requirements to meet future training needs. Training efforts in Fiscal Year 09 (FY09) strongly focused on crew medical training, but also began exploring how Space Flight Resource Management training for Mission Operations Directorate (MOD) Flight Controllers could be integrated with systems training for optimal Mission Control Center (MCC) operations. The Training Task addresses Program risks that lie at the intersection of the following three risks identified by the Project: 1) Risk associated with poor task design; 2) Risk of error due to inadequate information; and 3) Risk associated with reduced safety and efficiency due to poor human factors design.

  17. Human factors in design modifications: panel alternative stop in Almaraz

    International Nuclear Information System (INIS)

    Roman, Y.; Bote, J.

    2015-01-01

    Human Factors Engineering has acquired a crucial role in the development of any design modification (DM), where every aspect relative to any interaction with the human user has to be taken into account at any stage thereof. Considering this, during the last years, Almaraz Nuclear Powe Plants has developed a program of Human Factors Engineering in order to reach the internationally recognized standards or systematic collected on NUREG 0711 Human Factors Engineering Program Review Model (NRC). One of the most important projects of this program at Almaraz Nuclear Power Plant has been the implementation of the Alternative Stop Panel and their corresponding Transfer Panels. (Author)

  18. Development of human factors design review guidelines

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul

    1997-10-01

    The Objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25, Human factors engineering program review model' and '26, Review criteria for human actors aspects of advanced controls and instrumentation', which are related to the development of human factors safety regulation guides be ing performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents of NUREG-0711. We also computerized the Korean version of NUREG-0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm systems. Then we well update the guidelines by reviewing the literature related to alarm design published after 1994

  19. Human Factors in Marine Casualties

    Directory of Open Access Journals (Sweden)

    Jelenko Švetak

    2002-05-01

    Full Text Available Human factors play an important role in the origin of accidents,and it is commonly claimed that between seventy andninety-five percent of industrial and transport accidents involvehuman factors, see Figure 1.Some authorities, however, claim that ultimately, all accidentsinvolve human factors.

  20. The role of engineering judgement, safety culture, and organizational factors in risk assessment

    International Nuclear Information System (INIS)

    Muzumdar, Ajit; Professor, Visiting

    1996-01-01

    This paper reviews the role of engineering judgement, safety culture, and organizational factors in risk assessment by examining the reasons for human-based error. The need for more emphasis on producing engineers with good engineering judgement is described. The progress in quantifying the role of safety culture and organizational factors in risk assessment studies is summarized

  1. The Systems Engineering Process for Human Support Technology Development

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  2. Waste - the human factor

    International Nuclear Information System (INIS)

    McLaren, D.J.

    1993-01-01

    Waste is a human concept, referring to things that have no use to human beings and arising entirely from human activities. It is the useless residue of any human process that affects the economy or environment. The changes brought about by the industrial revolution are enormous; fossil fuels, not just photosynthesis, now provide energy and wastes at rates far exceeding the capacity of the ecosystem to absorb or recycle. Three major problems face the Planet: accelerated population growth, accelerated use of resources for energy and industry, and the disproportionate use of resources and waste between the northern and southern parts of the Planet. Knowledge and science are in a position to provide both human creativity and the directed technology to take remedial action and rediscover harmony between nature and mankind. Only social and political will is lacking

  3. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 1: The Nordic Point of View - A user needs analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.; Boring, R.L.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research (NKS) council project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. This project is intended to work across (and hopefully diminish) the borders that exist between human reliability analysis (HRA) and human-system interaction, human performance, human factors, and probabilistic risk assessment at Nordic nuclear power plants. This project consists of two major phases, where the initial phase (phase 1) is a study of current practices in the Nordic region, which is presented in this report. Even though the project covers the synergies between HRA and all other relevant fields, the main focus for the phase is to bridge HRA and design. Interviews with 26 Swedish and Finnish plant experts are summarized the present report, and 10 principles to improve the utilization of HRA at plants are presented. A second study, which is not documented in this preliminary report, will chronicle insights into how the US nuclear industry works with HRA. To gain this knowledge the author will conduct interviews with the US regulator, research laboratories, and utilities. (Author)

  4. Human Factors Principles in Information Dashboard Design

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques V.; St. Germain, Shawn

    2016-06-01

    When planning for control room upgrades, nuclear power plants have to deal with a multitude of engineering and operational impacts. This will inevitably include several human factors considerations, including physical ergonomics of workstations, viewing angles, lighting, seating, new communication requirements, and new concepts of operation. In helping nuclear power utilities to deal with these challenges, the Idaho National Laboratory (INL) has developed effective methods to manage the various phases of the upgrade life cycle. These methods focus on integrating human factors engineering processes with the plant’s systems engineering process, a large part of which is the development of end-state concepts for control room modernization. Such an end-state concept is a description of a set of required conditions that define the achievement of the plant’s objectives for the upgrade. Typically, the end-state concept describes the transition of a conventional control room, over time, to a facility that employs advanced digital automation technologies in a way that significantly improves system reliability, reduces human and control room-related hazards, reduces system and component obsolescence, and significantly improves operator performance. To make the various upgrade phases as concrete and as visible as possible, an end-state concept would include a set of visual representations of the control room before and after various upgrade phases to provide the context and a framework within which to consider the various options in the upgrade. This includes the various control systems, human-system interfaces to be replaced, and possible changes to operator workstations. This paper describes how this framework helps to ensure an integrated and cohesive outcome that is consistent with human factors engineering principles and also provide substantial improvement in operator performance. The paper further describes the application of this integrated approach in the

  5. Human factors influencing decision making

    OpenAIRE

    Jacobs, Patricia A.

    1998-01-01

    This report supplies references and comments on literature that identifies human factors influencing decision making, particularly military decision making. The literature has been classified as follows (the classes are not mutually exclusive): features of human information processing; decision making models which are not mathematical models but rather are descriptive; non- personality factors influencing decision making; national characteristics influencing decision makin...

  6. Human factors in agile manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, C.

    1995-03-01

    As industries position themselves for the competitive markets of today, and the increasingly competitive global markets of the 21st century, agility, or the ability to rapidly develop and produce new products, represents a common trend. Agility manifests itself in many different forms, with the agile manufacturing paradigm proposed by the Iacocca Institute offering a generally accepted, long-term vision. In its many forms, common elements of agility or agile manufacturing include: changes in business, engineering and production practices, seamless information flow from design through production, integration of computer and information technologies into all facets of the product development and production process, application of communications technologies to enable collaborative work between geographically dispersed product development team members and introduction of flexible automation of production processes. Industry has rarely experienced as dramatic an infusion of new technologies or as extensive a change in culture and work practices. Human factors will not only play a vital role in accomplishing the technical and social objectives of agile manufacturing. but has an opportunity to participate in shaping the evolution of industry paradigms for the 21st century.

  7. Human engineering in mobile radwaste systems

    International Nuclear Information System (INIS)

    Jones, D.; McMahon, J.; Motl, G.

    1988-01-01

    To a large degree, mobile radwaste systems are replacing installed plant systems at US nuclear plants due to regulatory obsolescence, high capital and maintenance costs, and increased radiation exposure. Well over half the power plants in the United States now use some sort of mobile system similar to those offered by LN Technologies Corporation. Human engineering is reflected in mobile radwaste system design due to concerns about safety, efficiency, and cost. The radwaste services business is so competitive that vendors must reflect human engineering in several areas of equipment design in order to compete. The paper discusses radiation exposure control, contamination control, compact components, maintainability, operation, and transportability

  8. Human Research Program: Space Human Factors and Habitability Element

    Science.gov (United States)

    Russo, Dane M.

    2007-01-01

    The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.

  9. HUMAN FACTORS GUIDANCE FOR CONTROL ROOM EVALUATION

    International Nuclear Information System (INIS)

    OHARA, J.; BROWN, W.; STUBLER, W.; HIGGINS, J.; WACHTEL, J.; PERSENSKY, J.J.

    2000-01-01

    The Human-System Interface Design Review Guideline (NUREG-0700, Revision 1) was developed by the US Nuclear Regulatory Commission (NRC) to provide human factors guidance as a basis for the review of advanced human-system interface technologies. The guidance consists of three components: design review procedures, human factors engineering guidelines, and a software application to provide design review support called the ''Design Review Guideline.'' Since it was published in June 1996, Rev. 1 to NUREG-0700 has been used successfully by NRC staff, contractors and nuclear industry organizations, as well as by interested organizations outside the nuclear industry. The NRC has committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool in the face of emerging and rapidly changing technology. This paper addresses the current research to update of NUREG-0700 based on the substantial work that has taken place since the publication of Revision 1

  10. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  11. Development of a Field Management Standard for Improving Human Factors

    International Nuclear Information System (INIS)

    Yun, Young Su; Son, Il Moon; Son, Byung Chang; Kwak, Hyo Yean

    2009-07-01

    This project is to develop a management guideline for improving human performances as a part of the Human Factors Management System of Kori unit 1 which is managing all of human factors items such as man-machine system interfaces, work procedures, work environments, and human reliabilities in nuclear power plants. Human factors engineering includes an human factors suitability analysis and improvement of human works, an analysis of accidents by human error, an improvement of work environment, an establishment of human factors management rules and a development of human resources to manage and perform those things consistently. For assisting these human factors engineering tasks, we developed human factors management guidelines, checklists and work procedures to be used in staffing, qualification, training, and human information requirements and workload. We also provided a software tool for managing the above items. Additionally, contents and an item pool for a human factors qualifying examination and training programs were developed. A procedures improvement and a human factors V and V on the Kori unit 1 have been completed as a part of this project, too

  12. Effectiveness of human factors simulator

    International Nuclear Information System (INIS)

    Moragas, F.

    2015-01-01

    En 2011, ANAV started the exploitation of the Human Factors Simulator installed in TECNATOM Training Center located in L'Hospital de L'Infant Tarragona. AVAN's Strategic Plan includes the Action Plan for the improvement of human behavior. The plan includes improving the efficiency of the efficiency of the human factors simulator. It is proposed to improve the efficiency into two different terms: winning effectiveness in modeling behaviors, and interweaving the activities in the simulator with the actual strategy of promoting Safety culture and human behaviour. (Author)

  13. Human Factors in the Management of Production

    DEFF Research Database (Denmark)

    Jensen, Per Langå; Alting, Leo

    2006-01-01

    The ‘Human factor’ is a major issue when optimizing manufacturing systems. The development in recommendations on how to handle this factor in the management of production reflects the change in dominating challenges faced by production in society. Presently, industrial societies are meeting new...... challenges. Qualitative interviews with Danish stakeholders in the education of engineers (BA & MA) confirm the picture given in international literature. Therefore, the didactics concerning the ‘human factor’ in the curriculum on production management has to reflect these changes. This paper concludes...

  14. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  15. Human factors in resuscitation teaching.

    Science.gov (United States)

    Norris, Elizabeth M; Lockey, Andrew S

    2012-04-01

    There is an increasing interest in human factors within the healthcare environment reflecting the understanding of their impact on safety. The aim of this paper is to explore how human factors might be taught on resuscitation courses, and improve course outcomes in terms of improved mortality and morbidity for patients. The delivery of human factors training is important and this review explores the work that has been delivered already and areas for future research and teaching. Medline was searched using MESH terms Resuscitation as a Major concept and Patient or Leadership as core terms. The abstracts were read and 25 full length articles reviewed. Critical incident reporting has shown four recurring problems: lack of organisation at an arrest, lack of equipment, non functioning equipment, and obstructions preventing good care. Of these, the first relates directly to the concept of human factors. Team dynamics for both team membership and leadership, management of stress, conflict and the role of debriefing are highlighted. Possible strategies for teaching them are discussed. Four strategies for improving human factors training are discussed: team dynamics (including team membership and leadership behaviour), the influence of stress, debriefing, and conflict within teams. This review illustrates how human factor training might be integrated further into life support training without jeopardising the core content and lengthening the courses. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Research on disaster prevention by human factor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Kang, Sun Duck; Jo, Young Do [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Mining, by its very nature, requires workers and technology to function in an unpredictable environment that can not easily be engineered to accommodate human factors. Miners' physical and cognitive capabilities are sometimes stretched to the point that 'human error' in performance result. Mine safety researchers estimate that 50-85% of all mining injuries are due, in large part, to human error. Further research suggests that the primary causes of these errors in performance lie outside the individual and can be minimized by improvements in equipment design, work environments, work procedures and training. The human factors research is providing the science needed to determine which aspects of the mining environment can be made more worker-friendly and how miners can work more safely in environments that can not be improved. Underground mines have long been recognized as an innately hazardous and physically demanding work environment. Recently, mining is becoming a more complicated process as more sophisticated technologies are introduced. The more complicated or difficult the tasks to be performed, the more critical it is to have a systematic understanding of the humans, the technology, the environments, and how they interact. Human factors is a key component in solving most of today's mine safety and health problems. Human factors research primarily centered around solving problems in the following four areas: 1) How mining methods and equipment affect safety, 2) Evaluating the fit between miner's physical capabilities and the demands of their job, 3) Improving miner's ability to perceive and react to hazards, 4) Understanding how organizational and managerial variables influence safety. Human factor research was begun during the World war II. National Coal Board (British Coal) of Great Britain commenced ergonomics in 1969, and Bureau of Mine of United States started human factor researches in same year. Japan has very short history

  17. Human factors estimation methods using physiological informations

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Nakasa, Hiroyasu

    1984-01-01

    To enhance the operational safety in the nuclear power plant, it is necessary to decrease abnormal phenomena due to human errors. Especially, it is essential to basically understand human behaviors under the work environment for plant maintenance workers, inspectors, and operators. On the above stand point, this paper presents the results of literature survey on the present status of human factors engineering technology applicable to the nuclear power plant and also discussed the following items: (1) Application fields where the ergonomical evaluation is needed for workers safety. (2) Basic methodology for investigating the human performance. (3) Features of the physiological information analysis among various types of ergonomical techniques. (4) Necessary conditions for the application of in-situ physiological measurement to the nuclear power plant. (5) Availability of the physiological information analysis. (6) Effectiveness of the human factors engineering methodology, especially physiological information analysis in the case of application to the nuclear power plant. The above discussions lead to the demonstration of high applicability of the physiological information analysis to nuclear power plant, in order to improve the work performance. (author)

  18. A human factors needs assessment and planning study

    International Nuclear Information System (INIS)

    Price, H.E.; Van Cott, H.P.

    1982-06-01

    A study was done to assess the need for human factors research, development, and regulatory action in the Atomic Energy Control Board. Further study or development in nine human factors areas is proposed. The urgency, schedule, and resources judged to be necessary for the proposed efforts are estimated. Special emphasis is placed on the need for task analysis information, for the evaluation of control room and maintenance human engineering, and for the development of an improved human error reporting system

  19. Software Re-Engineering of the Human Factors Analysis and Classification System - (Maintenance Extension) Using Object Oriented Methods in a Microsoft Environment

    Science.gov (United States)

    2001-09-01

    replication) -- all from Visual Basic and VBA . In fact, we found that the SQL Server engine actually had a plethora of options, most formidable of...2002, the new SQL Server 2000 database engine, and Microsoft Visual Basic.NET. This thesis describes our use of the Spiral Development Model to...versions of Microsoft products? Specifically, the pending release of Microsoft Office 2002, the new SQL Server 2000 database engine, and Microsoft

  20. Tissue engineering and surgery: from translational studies to human trials

    Directory of Open Access Journals (Sweden)

    Vranckx Jan Jeroen

    2017-06-01

    Full Text Available Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.

  1. Radioimmunoassay of human Hageman factor (factor XII)

    International Nuclear Information System (INIS)

    Saito, H.; Ratnoff, O.D.; Pensky, J.

    1976-01-01

    A specific, sensitive, and reproducible radioimmunoassay for human Hageman factor (HF, factor XII) has been developed with purified human HF and monospecific rabbit antibody. Precise measurements of HF antigen were possible for concentrations as low as 0.1 percent of that in normal pooled plasma. A good correlation (correlation coefficient = 0.82) existed between the titers of HF measured by clot-promoting assays and radioimmunoassays among 42 normal adults. Confirming earlier studies, HF antigen was absent in Hageman trait plasma, but other congenital deficient plasmas, including those of individuals with Fletcher trait and Fitzgerald trait, contained normal amounts of HF antigen. HF antigen was reduced in the plasmas of patients with disseminated intravascular coagulation or advanced liver cirrhosis, but it was normal in those of patients with chronic renal failure or patients under treatment with warfarin. HF antigen was detected by this assay in plasmas of primates, but not detectable in plasmas of 11 nonprimate mammalian and one avian species

  2. A framework for human factors

    International Nuclear Information System (INIS)

    Webb, R.D.G.

    As the complexity of industrial systems increases, the need for efficient integration of human beings into the systems that they design and operate grows more important. Human factors, or ergonomics, is concerned with the application of life science knowledge about human characteristics to maximise performance and well-being in any context. The most complex problem is to identify job demands in terms of different human dimensions and to apply established life science knowledge to determine optimum solutions. This requires the cooperation of many specialists

  3. Human Factors evaluation of LCS 254 and 255

    International Nuclear Information System (INIS)

    Goffe, L.; Held, J.E.

    1993-01-01

    This report includes the results of the Human Factors evaluation of the local control stations (LCS) 254 and 255 performed by Savannah River Technology Center (SRTC) Human Factors. Recommendations are included in order that the panel designs will be upgraded to comply with human engineering design guidelines. Figures 1 and 2 are included as examples of recommended changes. Also, consideration was given to including the proposed engineering changes which are currently on-going for LCS 255. Appendix A identifies the human engineering requirements from NUREG-0700 which were used in the evaluation process, and the areas of the design which do not comply with the guidelines. Those areas of the panel design which fail to comply with the human engineering guidelines are label location, label content, location aids, panel layout, and control display integration. Each of these design deficiencies and proposed corrections are described in this report

  4. The application of human engineering in control room of HFETR

    International Nuclear Information System (INIS)

    Yang Shuchun; Shan Songlin

    2003-01-01

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  5. The application of human engineering in control room of HFETR

    Energy Technology Data Exchange (ETDEWEB)

    Shuchun, Yang; Songlin, Shan [Nuclear Power Inst. of China, Chengdu (China)

    2003-07-01

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  6. UNC Nuclear Industries' human-factored approach to the operating or maintenance procedure

    International Nuclear Information System (INIS)

    Nelson, A.A.; Clark, J.E.

    1982-01-01

    The development of Human Factors Engineering (HFE) and UNC Nuclear Industries' (UNC) commitment to minimizing the potential for human error in the performance of operating or maintenance procedures have lead to a procedure upgrade program. Human-factored procedures were developed using information from many sources including, but not limited to, operators, a human factors specialist, engineers and supervisors. This has resulted in the Job Performance Aid (JPA). This paper presents UNC's approach to providing human-factored operating and maintenance procedures

  7. Draft revision of human factors guideline HF-010

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Yong Hee; Oh, In Seok; Lee, Jung Woon; Cha, Woo Chang; Lee, Dhong Ha

    2003-05-01

    The Application of Human Factors to the design of Man-Machine Interfaces System(MMIS) in the nuclear power plant is essential to the safety and productivity of the nuclear power plants, human factors standards and guidelines as well as human factors analysis methods and experiments are weightily used to the design application. A Korean engineering company has developed a human factors engineering guideline, so-call HF-010, and has used it for human factors design, however the revision of HF-010 is necessary owing to lack of the contents related to the advanced MMI(Man-Machine Interfaces). As the results of the reviews of HF-010, it is found out that the revision of Section 9. Computer Displays of HF-010 is urgent, thus the revision was drafted on the basis of integrated human factors design guidelines for VDT, human factors design guidelines for PMAS SPADES display, human factors design guidelines for PMAS alarm display, and human factors design guidelines for electronic displays developed by the surveillance and operation support project of KOICS. The draft revision of HF-010 Section 9 proposed in this report can be utilized for the human factors design of the advanced MMI, and the high practical usability of the draft can be kept up through the continuous revision according to the advancement of digital technology

  8. Human Factors in Financial Trading

    Science.gov (United States)

    Leaver, Meghan; Reader, Tom W.

    2016-01-01

    Objective This study tests the reliability of a system (FINANS) to collect and analyze incident reports in the financial trading domain and is guided by a human factors taxonomy used to describe error in the trading domain. Background Research indicates the utility of applying human factors theory to understand error in finance, yet empirical research is lacking. We report on the development of the first system for capturing and analyzing human factors–related issues in operational trading incidents. Method In the first study, 20 incidents are analyzed by an expert user group against a referent standard to establish the reliability of FINANS. In the second study, 750 incidents are analyzed using distribution, mean, pathway, and associative analysis to describe the data. Results Kappa scores indicate that categories within FINANS can be reliably used to identify and extract data on human factors–related problems underlying trading incidents. Approximately 1% of trades (n = 750) lead to an incident. Slip/lapse (61%), situation awareness (51%), and teamwork (40%) were found to be the most common problems underlying incidents. For the most serious incidents, problems in situation awareness and teamwork were most common. Conclusion We show that (a) experts in the trading domain can reliably and accurately code human factors in incidents, (b) 1% of trades incur error, and (c) poor teamwork skills and situation awareness underpin the most critical incidents. Application This research provides data crucial for ameliorating risk within financial trading organizations, with implications for regulation and policy. PMID:27142394

  9. HUMAN PROSTATE CANCER RISK FACTORS

    Science.gov (United States)

    Prostate cancer has the highest prevalence of any non-skin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating an...

  10. Human Factor in Therapeutic Relationship

    Directory of Open Access Journals (Sweden)

    Ramazan Akdogan

    2011-03-01

    Full Text Available herapeutic relationship is a professional relationship that has been structured based on theoretical props. This relationship is a complicated, wide and unique relationship which develops between two people, where both sides' personality and attitudes inevitably interfere. Therapist-client relationship experienced through transference and counter transference, especially in psychodynamic approaches, is accepted as the main aspect of therapeutic process. However, the approaches without dynamic/deterministic tendency also take therapist-client relationship into account seriously and stress uniqueness of interaction between two people. Being a person and a human naturally sometimes may negatively influence the relationship between the therapist and client and result in a relationship going out of the theoretical frame at times. As effective components of a therapeutic process, the factors that stem from being human include the unique personalities of the therapist and the client, their values and their attitude either made consciously or subconsciously. Literature has shown that the human-related factors are too effective to be denied in therapeutic relationship process. Ethical and theoretical knowledge can be inefficient to prevent the negative effects of these factors in therapeutic process at which point a deep insight and supervision would have a critical role in continuing an acceptable therapeutic relationship. This review is focused on the reflection of some therapeutic factors resulting from being human and development of counter transference onto the therapeutic process.

  11. Role of human factors in system safety

    International Nuclear Information System (INIS)

    Brooks, D. M.; Robert, C.; Graham, T.

    2008-01-01

    What happens when technology goes wrong? Three Mile Island, Chernobyl, space shuttles Challenger and Columbia, numerous airplane crashes, and other notable and newsworthy as well as many more incidents that are not reported on the news, have all been attributed to human error. Millions of dollars in fines are levied against industry under the General Duty clause for ergonomic violations, all avoidable. These incidents and situations indicate a lack of consideration for the humans in the system during the design phase. As a consequence, all of these organizations had to retrofit, had to redesign and had to pay countless dollars for medical costs, Worker's Compensation, OSHA fines and in some instances had irrecoverable damage to their public image. Human Factors, otherwise known as Engineering Psychology or Ergonomics, found its origins in loss, loss of life, loss of confidence, loss of technology, loss of property. Without loss, there would be no need for human factors. No one really 'attends' to discomfort...nor are errors attended to that have little consequence. Often it is ultimately the compilation and cumulative effects of these smaller and often ignored occurrences that lead to the bigger and more tragic incidents that make the evening news. When an incident or accident occurs, they are frequently attributed to accomplished, credible, experienced people. In reality however, the crisis was inevitable when a series of events happen such that a human is caught in the whirlwind of accident sequence. The world as known is becoming smaller and more complex. Highly technical societies have been hard at work for several centuries rebuilding the world out of cold steel that is very far removed from ancient instincts and traditions and is becoming more remote to human users. The growth of technology is more than exponential, and is virtually beyond comprehension for many people. Humans, feeling comfortable with the familiar, fulfill their propensity to implement new

  12. On recent advances in human engineering.

    Science.gov (United States)

    Anton, Roman

    2016-01-01

    Advances in embryology, genetics, and regenerative medicine regularly attract attention from scientists, scholars, journalists, and policymakers, yet implications of these advances may be broader than commonly supposed. Laboratories culturing human embryos, editing human genes, and creating human-animal chimeras have been working along lines that are now becoming intertwined. Embryogenic methods are weaving traditional in vivo and in vitro distinctions into a new "in vivitro" (in life in glass) fabric. These and other methods known to be in use or thought to be in development promise soon to bring society to startling choices and discomfiting predicaments, all in a global effort to supply reliably rejuvenating stem cells, to grow immunologically nonprovocative replacement organs, and to prevent, treat, cure, or even someday eradicate diseases having genetic or epigenetic mechanisms. With humanity's human-engineering era now begun, procedural prohibitions, funding restrictions, institutional controls, and transparency rules are proving ineffective, and business incentives are migrating into the most basic life-sciences inquiries, wherein lie huge biomedical potentials and bioethical risks. Rights, health, and heritage are coming into play with bioethical presumptions and formal protections urgently needing reassessment.

  13. Human Leptospirosis and risk factors.

    Directory of Open Access Journals (Sweden)

    Yanelis Emilia Tabío Henry

    2010-09-01

    Full Text Available The human leptospirosis is a zoonosis of world distribution, were risk factors exist that have favored the wild and domestic animal propagation and so man. A descpitive investigation was made with the objective of determining the behavior of risk factors in outpatients by human leptospirosis in “Camilo Cienfuegos“ University General Hospital from Sncti Spíritus In the comprised time period betwen december 1 st and 3 st , 2008.The sample of this study was conformed by 54 risk persons that keep inclusion criteria. Some variables were used:age, sex, risk factors and number of ill persons, according to the month. Some patients of masculine sex prevailed (61,9%, group of ages between 15-29 and 45-59 years (27,7%, patients treated since october to december (53,7%, the direct and indirect contact with animals (46,2 %. The risk factors cassually associated to human leptospirosis turned to be: the masculine sex, the contac with animals, the occupational exposition and the inmersion on sources of sweet water.

  14. Human subject research for engineers a practical guide

    CERN Document Server

    de Winter, Joost C F

    2017-01-01

    This Brief introduces engineers to the main principles in ethics, research design, statistics, and publishing of human subject research. In recent years, engineering has become strongly connected to disciplines such as biology, medicine, and psychology. Often, engineers (and engineering students) are expected to perform human subject research. Typical human subject research topics conducted by engineers include human-computer interaction (e.g., evaluating the usability of software), exoskeletons, virtual reality, teleoperation, modelling of human behaviour and decision making (often within the framework of ‘big data’ research), product evaluation, biometrics, behavioural tracking (e.g., of work and travel patterns, or mobile phone use), transport and planning (e.g., an analysis of flows or safety issues), etc. Thus, it can be said that knowledge on how to do human subject research is indispensable for a substantial portion of engineers. Engineers are generally well trained in calculus and mechanics, but m...

  15. An improvement of the applicability of human factors guidelines for coping with human factors issues in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, J. Y.

    2003-01-01

    Human factors have been well known as one of the key factors to the system effectiveness as well as the efficiency and safety of nuclear power plants(NPPs). Human factors engineering(HFE) are included in periodic safety review(PSR) on the existing NPPs and the formal safety assessment for the new ones. However, HFE for NPPs is still neither popular in practice nor concrete in methodology. Especially, the human factors guidelines, which are the most frequent form of human factors engineering in practice, reveal the limitations in their applications. We discuss the limitations and their casual factors found in human factors guidelines in order to lesson the workload of HFE practitioners and to improve the applicability of human factors guidelines. According to the purposes and the phases of HFE for NPPs, more selective items and specified criteria should be prepared carefully in the human factors guidelines for the each HFE applications in practice. These finding on the human factors guidelines can be transferred to the other HFE application field, such as military, aviation, telecommunication, HCI, and product safety

  16. Human factors reliability Benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-06-01

    The Joint Research Centre of the European Commission has organized a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organized around two study cases: (1) analysis of routine functional Test and Maintenance (T and M) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report contains the final summary reports produced by the participants in the exercise

  17. Theoretical Fundamentals of Human Factor

    OpenAIRE

    Nicoleta Maria Ienciu

    2012-01-01

    The purpose of this paper is to identify the theoretical approaches presented by the literature on the human factor. In order to achieve such objective we have performed a qualitative research by analyzing the content of several papers published in internationally renowned journals, classified according to the list of journals' ranking provided by the Association of Business Schools (UK), in relation to the theories that have been approached within it. Our findings suggest that from all ident...

  18. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  19. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Hennig, J.; Bohr, E.

    1976-04-01

    This annotated bibliography is a first attempt to give a survey of the kind of literature which is relevant for the ergonomic working conditions in nuclear power plants. Such a survey seems to be useful in view of the fact that the 'factor human being' comes recently more and more to the fore in nuclear power plants. In this context, the necessity is often pointed out to systematically include our knowledge of the performance capacity and limits of human beings when designing the working conditions for the personnel of nuclear power plants. For this reason, the bibliography is so much intended for the ergonomics experts as for the experts of nuclear engineering. (orig./LN) [de

  20. From Usability Testing to Clinical Simulations: Bringing Context into the Design and Evaluation of Usable and Safe Health Information Technologies. Contribution of the IMIA Human Factors Engineering for Healthcare Informatics Working Group.

    Science.gov (United States)

    Kushniruk, A; Nohr, C; Jensen, S; Borycki, E M

    2013-01-01

    The objective of this paper is to explore human factors approaches to understanding the use of health information technology (HIT) by extending usability engineering approaches to include analysis of the impact of clinical context through use of clinical simulations. Methods discussed are considered on a continuum from traditional laboratory-based usability testing to clinical simulations. Clinical simulations can be conducted in a simulation laboratory and they can also be conducted in real-world settings. The clinical simulation approach attempts to bring the dimension of clinical context into stronger focus. This involves testing of systems with representative users doing representative tasks, in representative settings/environments. Application of methods where realistic clinical scenarios are used to drive the study of users interacting with systems under realistic conditions and settings can lead to identification of problems and issues with systems that may not be detected using traditional usability engineering methods. In conducting such studies, careful consideration is needed in creating ecologically valid test scenarios. The evidence obtained from such evaluation can be used to improve both the usability and safety of HIT. In addition, recent work has shown that clinical simulations, in particular those conducted in-situ, can lead to considerable benefits when compared to the costs of running such studies. In order to bring context of use into the testing of HIT, clinical simulation, involving observing representative users carrying out tasks in representative settings, holds considerable promise.

  1. Improving human performance: Industry factors influencing the ability to perform

    OpenAIRE

    Güera Massyn Romo

    2013-01-01

    Learning interventions and new technologies that aim to improve human performance must take cognisance of industry factors inhibiting human performance. The dynamic and fast pace nature of the Information and Communication Technologies (ICT) and the engineering industries do not lend themselves to proper skills planning and management. These industries experience real skills gaps, to some of which they contribute by themselves. This study reports on these performance-inhibiting factors such a...

  2. Trefoil factors in human milk

    DEFF Research Database (Denmark)

    Vestergaard, Else Marie; Nexø, Ebba; Wendt, A

    2008-01-01

    We measured concentrations of the gastrointestinal protective peptides Trefoil factors in human milk. By the use of in-house ELISA we detected high amounts of TFF3, less TFF1 and virtually no TFF2 in human breast milk obtained from 46 mothers with infants born extremely preterm (24-27 wk gestation......), preterm (28-37 wk gestation), and full term (38-42 wk gestation). Samples were collected during the first, second, third to fourth weeks and more than 4 wks postpartum. Median (range) TFF1 [TFF3] concentrations in human milk were 320 (30-34000) [1500 (150-27,000)] pmol/L in wk 1, 120 (30-720) [310 (50......-7100)] pmol/L in wk 2, 70 (20-670) [120 (20-650)] pmol/L in wks 3 to 4, and 60 (30-2500) [80 (20-540)] pmol/L in > 4 wks after delivery. The lowest concentrations of TFF1 and TFF3 were found later than 2 wks after birth. In conclusion, TFF was present in term and preterm human milk with rapidly declining...

  3. Human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-08-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organised around two study cases: (1) analysis of routine functional Test and Maintenance (TPM) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report summarises the contributions received from the participants and analyses these contributions on a comparative basis. The aim of this analysis was to compare the procedures, modelling techniques and quantification methods used, to obtain insight in the causes and magnitude of the variability observed in the results, to try to identify preferred human reliability assessment approaches and to get an understanding of the current state of the art in the field identifying the limitations that are still inherent to the different approaches

  4. Information Technology: A challenge to the Human Factors Society?

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1988-01-01

    In his presidential address at the annual meeting of the Human Factors Society, Julian Christensen urged the members of the society to spread the gospel and to persuade the members of other professional societies such as psychologists,sociologists and engineers to join the Human Factors Society......, the argument being that advanced technology requires a cross-disciplinary approach to human factors problems. In the present note, I would like to support this presidential effort. In fact, I will go further in that direction and argue that the present fast pace of information technology threatens to overrun...

  5. HLA engineering of human pluripotent stem cells.

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-06-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.

  6. HLA Engineering of Human Pluripotent Stem Cells

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  7. Integrating human factors and artificial intelligence in the development of human-machine cooperation

    NARCIS (Netherlands)

    Maanen, P.P. van; Lindenberg, J.; Neericx, M.A.

    2005-01-01

    Increasing machine intelligence leads to a shift from a mere interactive to a much more complex cooperative human-machine relation requiring a multidisciplinary development approach. This paper presents a generic multidisciplinary cognitive engineering method CE+ for the integration of human factors

  8. Human factors review of power plant maintainability. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1981-02-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a check list guided observation system, structured interviews with maintenance personnel, direct observation of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach to ensure that future power plants are human engineered to the needs of maintenance personnel

  9. Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle.

    Science.gov (United States)

    Wajih, Nadeem; Hutson, Susan M; Owen, John; Wallin, Reidar

    2005-09-09

    Some recombinant vitamin K-dependent blood coagulation factors (factors VII, IX, and protein C) have become valuable pharmaceuticals in the treatment of bleeding complications and sepsis. Because of their vitamin K-dependent post-translational modification, their synthesis by eukaryotic cells is essential. The eukaryotic cell harbors a vitamin K-dependent gamma-carboxylation system that converts the proteins to gamma-carboxyglutamic acid-containing proteins. However, the system in eukaryotic cells has limited capacity, and cell lines overexpressing vitamin K-dependent clotting factors produce only a fraction of the recombinant proteins as fully gamma-carboxylated, physiologically competent proteins. In this work we have used recombinant human factor IX (r-hFIX)-producing baby hamster kidney (BHK) cells, engineered to stably overexpress various components of the gamma-carboxylation system of the cell, to determine whether increased production of functional r-hFIX can be accomplished. All BHK cell lines secreted r-hFIX into serum-free medium. Overexpression of gamma-carboxylase is shown to inhibit production of functional r-hFIX. On the other hand, cells overexpressing VKORC1, the reduced vitamin K cofactor-producing enzyme of the vitamin K-dependent gamma-carboxylation system, produced 2.9-fold more functional r-hFIX than control BHK cells. The data are consistent with the notion that VKORC1 is the rate-limiting step in the system and is a key regulatory protein in synthesis of active vitamin K-dependent proteins. The data suggest that overexpression of VKORC1 can be utilized for increased cellular production of recombinant vitamin K-dependent proteins.

  10. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  11. Key Future Engineering Capabilities for Human Capital Retention

    Science.gov (United States)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  12. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  13. Habitability and Human Factors Contributions to Human Space Flight

    Science.gov (United States)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  14. Human factors methods for nuclear control room design. Volume I. Human factors enhancement of existing nuclear control rooms. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Seidenstein, S.; Eckert, S.K.; Smith, D.L.

    1979-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. Human factors approaches were applied in the design of representative nuclear power plant control panels. First, methods for upgrading existing operational control panels were examined. Then, based on detailed human factors analyses of operator information and control requirements, designs of reactor, feedwater, and turbine-generator control panels were developed to improve the operator-control board interface, thereby reducing the potential for operator errors. In addition to examining present-generation concepts, human factors aspects of advanced systems and of hybrid combinations of advanced and conventional designs were investigated. Special attention was given to warning system designs. Also, a survey was conducted among control board designers to (1) develop an overview of design practices in the industry, and (2) establish appropriate measures leading to a more systematic concern for human factors in control board design

  15. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    Science.gov (United States)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  16. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  17. Local control stations: Human engineering issues and insights

    International Nuclear Information System (INIS)

    Brown, W.S.; Higgins, J.C.; O'Hara, J.M.

    1994-09-01

    The objective of this research project was to evaluate current human engineering at local control stations (LCSs) in nuclear power plants, and to identify good human engineering practices relevant to the design of these operator interfaces. General literature and reports of operating experience were reviewed to determine the extent and type of human engineering deficiencies at LCSs in nuclear power plants. In-plant assessments were made of human engineering at single-function as well as multifunction LCSs. Besides confirming the existence of human engineering deficiencies at LCSs, the in-plant assessments provided information about the human engineering upgrades that have been made at nuclear power plants. Upgrades were typically the result of any of three influences regulatory activity, broad industry initiatives such as INPO, and specific in-plant programs (e.g. activities related to training). It is concluded that the quality of LCSs is quite variable and might be improved if there were greater awareness of good practices and existing human engineering guidance relevant to these operator interfaces, which is available from a variety of sources. To make such human engineering guidance more readily accessible, guidelines were compiled from such sources and included in the report as an appendix

  18. Motivational and adaptational factors of successful women engineers

    Science.gov (United States)

    Bornsen, Susan Edith

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged in the field. This paper examines how women engineers view their education, their work, and their motivation to remain in the field. A qualitative research design was used to understand the motivation and adaptability factors women use to support their decision to major in engineering and stay in the engineering profession. Women engineers were interviewed using broad questions about motivation and adaptability. Interviews were transcribed and coded, looking for common threads of factors that suggest not only why women engineers persist in the field, but also how they thrive. Findings focus on the experiences, insights, and meaning of women interviewed. A grounded theory approach was used to describe the success factors found in practicing women engineers. The study found categories of attraction to the field, learning environment, motivation and adaptability. Sub-categories of motivation are intrinsic motivational factors such as the desire to make a difference, as well as extrinsic factors such as having an income that allows the kind of lifestyle that supports the family. Women engineers are comfortable with and enjoy working with male peers and when barriers arise, women learn to adapt in the male dominated field. Adaptability was indicated in areas of gender, culture, and communication. Women found strength in the ability to 'read' their clients, and provide insight to their teams. Sufficient knowledge from the field advances theory and offers strategies to programs for administrators and faculty of schools of engineering as well as engineering firms, who have interest in recruitment, and retention of female students

  19. Human-factor operating concept for Borssele Nuclear Power Station

    International Nuclear Information System (INIS)

    Wieman, J.L.

    1995-01-01

    The safety level in the operation of a reactor is determined basically by human beings. The Borssele Nuclear Power Station has carried out measures for improving the man-machine interface through training and operating instructions for the shift personnel. The retrofitting of control technology relevant to safety engineering should avoid operating instructions which can cause potential failures. A safety study has shown that the remaining risk following all retrofitting measures remains dependent to the extent of 80% on human factors and that human factors as a whole have a positive effect on reactor safety. (orig.) [de

  20. Development of human factors design review guidelines(III)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-02-15

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25, human factors engineering program review model' and '26, review criteria for human factors aspects of advanced controls and instrumentation', which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents NUREG--0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm system. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994.

  1. Development of human factors design review guidelines(II)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: 25. Human Factors Engineering Program Review Model and 26. Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation, which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents of NUREG-0711. We also computerized the Korean version of NUREG-0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm systems. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994. (author). 11 refs., 2 figs., 2 tabs.

  2. Development of human factors design review guidelines(III)

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul

    1999-02-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25, human factors engineering program review model' and '26, review criteria for human factors aspects of advanced controls and instrumentation', which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents NUREG--0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm system. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994

  3. Development of human factors design review guidelines(II)

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul

    1998-06-01

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25, human factors engineering program review model' and '26, review criteria for human factors aspects of advanced controls and instrumentation', which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents NUREG--0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm system. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994

  4. Development of human factors design review guidelines(III)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Oh, In Suk; Suh, Sang Moon; Lee, Hyun Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-02-15

    The objective of this study is to develop human factors engineering program review guidelines and alarm system review guidelines in order to resolve the two major technical issues: '25, human factors engineering program review model' and '26, review criteria for human factors aspects of advanced controls and instrumentation', which are related to the development of human factors safety regulation guides being performed by KINS. For the development of human factors program review guidelines, we made a Korean version of NUREG-0711 and added our comments by considering Korean regulatory situation and reviewing the reference documents NUREG--0711, additional comments, and selected portion of the reference documents for the developer of safety regulation guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guides in KINS to see the contents comparatively at a glance and use them easily. For the development of alarm system review guidelines, we made a Korean version of NUREG/CR-6105, which was published by NRC in 1994 as a guideline document for the human factors review of alarm system. Then we will update the guidelines by reviewing the literature related to alarm design published after 1994.

  5. Development of a Human Performance Evaluation Support System for Human Factors Validation of MCR MMI Design in APR-1400

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2005-01-01

    As CRT-based display and advanced information technology were applied to advanced reactors such as APR-1400 (Advanced Power Reactor-1400), human operators' tasks became more cognitive works. As a results, Human Factors Engineering (HFE) became more important in designing the MCR (Main Control Room) MMI (Man-Machine Interface) of an advanced reactor. According to the Human Factors Engineering Program Review Model, human factors validation of MCR MMI design should be performed through performance-based tests to determine whether it acceptably supports safe operation of the plant. In order to support the evaluation of the performance, a HUman Performance Evaluation Support System (HUPESS) is in development

  6. FACTORS AFFECTING PERFORMANCE OF ENGINEERED BARRIERS

    International Nuclear Information System (INIS)

    J.A. BLINK, R.W. ANDREWS, J.N. BAILEY, T.W. DOERING J.H. LEE, J.K. MCCOY, D.G. MCKENZIE, D. SEVOUGIAN AND V. VALLIKAT

    1998-01-01

    For the Yucca Mountain Viability Assessment (VA), a reference design was tentatively selected in September 1997, and a series of model abstractions are being prepared for the performance assessment (PA) of that design. To determine the sensitivity of peak dose rate at the accessible environment to engineered components, several design options were subjected to the PA models available late in FY97

  7. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Swain, A.D.

    1981-01-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.) [de

  8. Human factors in nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1980-08-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants

  9. Human Engineering Modeling and Performance Lab Study Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  10. Critical human-factors issues in nuclear-power regulation and a recommended comprehensive human-factors long-range plan. Critical discussion of human factors areas of concern

    International Nuclear Information System (INIS)

    Hopkins, C.O.; Snyder, H.L.; Price, H.E.; Hornick, R.J.; Mackie, R.R.; Smillie, R.J.; Sugarman, R.C.

    1982-08-01

    This comprehensive long-range human factors plan for nuclear reactor regulation was developed by a Study Group of the Human Factors Society, Inc. This Study Group was selected by the Executive Council of the Society to provide a balanced, experienced human factors perspective to the applications of human factors scientific and engineering knowledge to nuclear power generation. The report is presented in three volumes. Volume 1 contains an Executive Summary of the 18-month effort and its conclusions. Volume 2 summarizes all known nuclear-related human factors activities, evaluates these activities wherever adequate information is available, and describes the recommended long-range (10-year) plan for human factors in regulation. Volume 3 elaborates upon each of the human factors issues and areas of recommended human factors involvement contained in the plan, and discusses the logic that led to the recommendations

  11. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  12. Company culture and human factor

    International Nuclear Information System (INIS)

    Rerucha, F.

    1999-01-01

    Human beings constitute an important factor for smooth operation and fulfilment of special safety requirements in the workplace environment of a nuclear power station. It is therefore important to carry out investigations and continual checks in order to prevent routine complacency of the employees, not only for their respective tasks but also with regard to the structure of the plant. Frantisek Rerucha reports on the investigation of procedural approaches, the methods thereby involved and the results obtained in the nuclear power station Dukovany. The investigation came to the conclusion that communication and information problems exist in many areas. The company goals are communicated inadequately, especially on the lower and middle levels, with the result that employees do not always comply exactly with the directives. On the other hand, the employees are often overstressed with additional, often useless, information. However, willingness to communicate is mostly absent, and the employees have a feeling that personal relationships in general tend to be unsatisfactory in the nuclear power station. Management personnel is experienced as highly qualified experts without qualifications for leadership. But the study came to the conclusion that communication on the operative sector functions very well, by virtue of a well-established personal network. (orig.) [de

  13. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  14. Integrating human factors into process hazard analysis

    International Nuclear Information System (INIS)

    Kariuki, S.G.; Loewe, K.

    2007-01-01

    A comprehensive process hazard analysis (PHA) needs to address human factors. This paper describes an approach that systematically identifies human error in process design and the human factors that influence its production and propagation. It is deductive in nature and therefore considers human error as a top event. The combinations of different factors that may lead to this top event are analysed. It is qualitative in nature and is used in combination with other PHA methods. The method has an advantage because it does not look at the operator error as the sole contributor to the human failure within a system but a combination of all underlying factors

  15. Unmasking the social engineer the human element of security

    CERN Document Server

    Hadnagy, Christopher

    2014-01-01

    Learn to identify the social engineer by non-verbal behavior Unmasking the Social Engineer: The Human Element of Security focuses on combining the science of understanding non-verbal communications with the knowledge of how social engineers, scam artists and con men use these skills to build feelings of trust and rapport in their targets. The author helps readers understand how to identify and detect social engineers and scammers by analyzing their non-verbal behavior. Unmasking the Social Engineer shows how attacks work, explains nonverbal communications, and demonstrates with visuals the c

  16. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Finlayson, F.C.

    1977-01-01

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  17. Human factors of safety: a few landmarks

    International Nuclear Information System (INIS)

    Mosneron Dupin, F.

    1992-06-01

    This paper discusses factors to be taken into account, and methods to be used. It concludes that more realistic and positive conceptions of Human Factors should be developed, and that Human Factors should be addressed at the very beginning of any technical project

  18. Factors Affecting Students' Choice of Science and Engineering in Portugal.

    Science.gov (United States)

    de Almeida, Maria Jose B. M.; Leite, Maria Salete S. C. P.; Woolnough, Brian E.

    This paper presents the results of a study undertaken in Portugal to determine the influence of different factors on students' (n=499) decisions to study or refuse to study in one of the physical sciences or engineering. Some influencing factors are related to what goes on in school and during science lessons, and other factors are related to the…

  19. Restricting Factors at Modification of Parameters of Associative Engineering Objects

    Science.gov (United States)

    Horváth, László

    Advancements in product development have reached full integration of engineering activities and processes in product lifecycle management (PLM) systems. PLM systems are based on high-level modeling, simulation and data management. Despite significant development of modeling in PLM systems, a strong demand was recognized for improved decision assistance in product development. Decision assistance can be improved by application of methods from the area of computer intelligence. In order for a product development company to stay competitive, it is important for its modeling system to be relied on local even personal knowledge. The authors analyzed current PLM systems for shortcomings and possibilities for extended intelligence at decision-making during product development. They propose methods in order to increase suitability of current modeling systems to accommodate knowledge based IT at definition of sets of parameters of modeled objects and in the management of frequent changes of modeled objects. In the center of the proposed methodology, constrained parameters act as restricting factors at definition and modification of parameters of associative engineering objects. Paper starts with an outlook to modeling in current engineering systems and preliminary results by the authors. Following this, groups of essential information as handled by he proposed modeling are summarized and procedures for processing of that groups of information are detailed. Next, management of chains of changes along chains of associa-tive product objects and a new style of decision assistance in modeling systems are explained. Changes are created or verified by behavior analysis. Finally, behavior analysis, human intent combination, product data view creation, and change management are discussed as the proposed integrated and coordinated methodology for enhanced support of decision-making in product development.

  20. Critical human-factors issues in nuclear-power regulation and a recommended comprehensive human-factors long-range plan. Executive summary

    International Nuclear Information System (INIS)

    Hopkins, C.O.; Snyder, H.L.; Price, H.E.; Hornick, R.J.; Mackie, R.R.; Smillie, R.J.; Sugarman, R.C.

    1982-08-01

    This comprehensive long-range human factors plan for nuclear reactor regulation was developed by a Study Group of the Human Factors Society, Inc. This Study Group was selected by the Executive Council of the Society to provide a balanced, experienced human factors perspective to the applications of human factors scientific and engineering knowledge to nuclear power generation. The report is presented in three volumes. Volume 1 contains an Executive Summary of the 18-month effort and its conclusions. Volume 2 summarizes all known nuclear-related human factors activities, evaluates these activities wherever adequate information is available, and describes the recommended long-range (10-year) plan for human factors in regulation. Volume 3 elaborates upon each of the human factors issues and areas of recommended human factors involvement contained in the plan, and discusses the logic that led to the recommendations

  1. 2016 Annual Meeting of the German Human Factors and Ergonomics Society

    CERN Document Server

    Duckwitz, Sönke; Flemisch, Frank; Frenz, Martin; Kuz, Sinem; Mertens, Alexander; Mütze-Niewöhner, Susanne

    2017-01-01

    These proceedings summarize the best papers in each research area represented at the 2016 Annual Meeting of the German Human Factors and Ergonomics Society, held at Institute of Industrial Engineering and Ergonomics of RWTH Aachen University from March 2-4. The meeting featured more than 200 presentations and 36 posters reflecting the diversity of subject matter in the field of human and industrial engineering. This volume addresses human factors and safety specialists, industrial engineers, work and organizational psychologists, occupational medicines as well as production planners and design engineers.

  2. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  3. Human factors analysis and design methods for nuclear waste retrieval systems. Human factors design methodology and integration plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, S.M.

    1980-06-01

    The purpose of this document is to provide an overview of the recommended activities and methods to be employed by a team of human factors engineers during the development of a nuclear waste retrieval system. This system, as it is presently conceptualized, is intended to be used for the removal of storage canisters (each canister containing a spent fuel rod assembly) located in an underground salt bed depository. This document, and the others in this series, have been developed for the purpose of implementing human factors engineering principles during the design and construction of the retrieval system facilities and equipment. The methodology presented has been structured around a basic systems development effort involving preliminary development, equipment development, personnel subsystem development, and operational test and evaluation. Within each of these phases, the recommended activities of the human engineering team have been stated, along with descriptions of the human factors engineering design techniques applicable to the specific design issues. Explicit examples of how the techniques might be used in the analysis of human tasks and equipment required in the removal of spent fuel canisters have been provided. Only those techniques having possible relevance to the design of the waste retrieval system have been reviewed. This document is intended to provide the framework for integrating human engineering with the rest of the system development effort. The activities and methodologies reviewed in this document have been discussed in the general order in which they will occur, although the time frame (the total duration of the development program in years and months) in which they should be performed has not been discussed.

  4. Human factors analysis and design methods for nuclear waste retrieval systems. Human factors design methodology and integration plan

    International Nuclear Information System (INIS)

    Casey, S.M.

    1980-06-01

    The purpose of this document is to provide an overview of the recommended activities and methods to be employed by a team of human factors engineers during the development of a nuclear waste retrieval system. This system, as it is presently conceptualized, is intended to be used for the removal of storage canisters (each canister containing a spent fuel rod assembly) located in an underground salt bed depository. This document, and the others in this series, have been developed for the purpose of implementing human factors engineering principles during the design and construction of the retrieval system facilities and equipment. The methodology presented has been structured around a basic systems development effort involving preliminary development, equipment development, personnel subsystem development, and operational test and evaluation. Within each of these phases, the recommended activities of the human engineering team have been stated, along with descriptions of the human factors engineering design techniques applicable to the specific design issues. Explicit examples of how the techniques might be used in the analysis of human tasks and equipment required in the removal of spent fuel canisters have been provided. Only those techniques having possible relevance to the design of the waste retrieval system have been reviewed. This document is intended to provide the framework for integrating human engineering with the rest of the system development effort. The activities and methodologies reviewed in this document have been discussed in the general order in which they will occur, although the time frame (the total duration of the development program in years and months) in which they should be performed has not been discussed

  5. Human Factors Military Lexicon: Auditory Displays

    National Research Council Canada - National Science Library

    Letowski, Tomasz

    2001-01-01

    .... In addition to definitions specific to auditory displays, speech communication, and audio technology, the lexicon includes several terms unique to military operational environments and human factors...

  6. Human factor problem in nuclear power generation

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Fujimoto, Junzo

    1999-01-01

    Since a nuclear power plant accident at Threemile Island in U.S.A. occurred in March, 1979, twenty years have passed. After the accident, the human factor problem became focussed in nuclear power, to succeed its research at present. For direct reason of human error, most of factors at individual level or work operation level are often listed at their center. Then, it is natural that studies on design of a machine or apparatus suitable for various human functions and abilities and on improvement of relationship between 'human being and machine' and 'human being and working environment' are important in future. Here was, as first, described on outlines of the human factor problem in a nuclear power plant developed at a chance of past important accident, and then was described on educational training for its countermeasure. At last, some concrete researching results obtained by human factor research were introduced. (G.K.)

  7. Human factors and safe patient care.

    Science.gov (United States)

    Norris, Beverley

    2009-03-01

    This paper aims to introduce the topic of human factors to nursing management and to identify areas where it can be applied to patient safety. Human factors is a discipline established in most safety critical industries and uses knowledge about human behaviour in the analysis and design of complex systems, yet it is relatively new to many in healthcare. Most safety critical industries have developed tools and techniques to apply human factors to system design, and these have been reviewed together with those resources already available for use in healthcare. Models of human behaviour such as the nature and patterns of human error, information processing, decision-making and team work have clear applications to healthcare. Human factors focus on a system view of safety, and propose that safety should, where possible, be 'designed in'. Other interventions such as building defences, mitigating hazards and education and training should only be used where design solutions cannot be found. Simple human factors principles such as: designing for standardization; the involvement of users and staff in designing services and procuring equipment; understanding how errors occur; and the workarounds that staff will inevitably take are vital considerations in improving patient safety. Opportunities for the application of human factors to healthcare and improved patient safety are discussed. Some existing tools and techniques for applying human factors in nursing management are also presented.

  8. ESTIMATION OF AMPLIFICATION FACTOR IN EARTHQUAKE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Nazarov Yuriy Pavlovich

    2015-03-01

    Full Text Available The authors are the developers of Odyssey Software (Eurosoft Co. for the analysis of seismological data and computing of seismic loads and their parameters. While communicating with the users of the software, the authors have revealed some uncertainty about both understanding of the term "amplification factor (AF" and calculation of the amplification factor using various methods. In this article, a simple example shows that the determination of the amplification factor as the ratio of the acceleration’s spectrum to the maximal acceleration is derived from the classical definition of AF in the form of the ratio of maximal dynamic displacement to the displacement by the action of static load. Deterministic and probabilistic ap-proaches for the calculating of the AF were discussed. There was an example of AFs calculation and their envelopes for translational and rotational components of seismic impact by using Odyssey Software.

  9. A human factors data bank for French nuclear power plants

    International Nuclear Information System (INIS)

    Villemeur, A.; Mosneron-Dupin, F.; Bouissou, M.; Meslin, T.

    1986-01-01

    CONFUCIUS is a computerized data bank developed by Electricite de France to study human factors in nuclear power plants. A detailed and homogeneous grouping of described operation and maintenance errors as well as of performance times is possible with CONFUCIUS. It also incorporates a selection of statistical treatment softwares. Readily usable and modifiable, the system can easily evolve. It allows a wide range of applications (safety analysis, event analysis, training, human factors engineering, probabilistic analysis). Data derived from the analysis of significant events reported in power plants and from the analysis of simulator tests are used as inputs into this data bank

  10. Battelle's human factors program for the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Shikiar, R.

    1983-10-01

    Battelle has been involved in a programmatic effort of technical assistance to the Division of Human Factors Safety of the NRC. This program involves the efforts of over 75 professionals engaged in over 20 projects. These projects span the areas of human factors engineering, procedures, examinations, training, staffing and qualifications, and utility management and organization. All of these bear, one way or another, on the role of operators in nuclear power plants. This programmatic effort can be viewed as part of an integrative approach to system safety

  11. New engineering safety factors for Loviisa NPP core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuopanportti, Jaakko; Saarinen, Simo; Lahtinen, Tuukka; Ekstroem, Karoliina [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    In Loviisa NPP, there are two limiting thermal margins called the enthalpy rise margin and the linear heat rate margin that are monitored during normal operation. Engineering safety factors are applied in determination of both of these factors. The factors take into account the effect of various manufacturing tolerances, impact of the irradiation and simulation uncertainties on the local heat rate and on the enthalpy of the coolant. The engineering factors were re-evaluated during 2015 and the factors were approved by the Finnish radiation and nuclear safety authority in 2016. The re-evaluation was performed by considering all of the identified phenomena that affect the local heat rate or the enthalpy of the coolant. This paper summarizes the work that was performed during the re-evaluation of the engineering safety factors and presents the results for each uncertainty component. The new engineering safety factors are 1.115 for the linear heat rate and 1.100 for the enthalpy rise margin when the old factors were 1.12 and 1.16, respectively. The new factors improve the fuel economy by about 1%.

  12. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  13. Cooperative and human aspects of software engineering: CHASE 2010

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; Sharp, Helen C.; Winschiers Theophilus, Heike

    2010-01-01

    Software is created by people -- software engineers in cooperation with domain experts, users and other stakeholders--in varied environments, under various conditions. Thus understanding cooperative and human aspects of software development is crucial to comprehend how and which methods and tools...... are required, to improve the creation and maintenance of software. The 3rd workshop on Cooperative and Human Aspects of Software Engineering held at the International Conference on Software Engineering continued the tradition from earlier workshops and provided a lively forum to discuss current developments...... and high quality research in the field. Further dissemination of research results will lead to an improvement of software development and deployment across the globe....

  14. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  15. Human Factors Simulation in Construction Management Education

    Science.gov (United States)

    Jaeger, M.; Adair, D.

    2010-01-01

    Successful construction management depends primarily on the representatives of the involved construction project parties. In addition to effective application of construction management tools and concepts, human factors impact significantly on the processes of any construction management endeavour. How can human factors in construction management…

  16. Implementing human factors in clinical practice

    Science.gov (United States)

    Timmons, Stephen; Baxendale, Bryn; Buttery, Andrew; Miles, Giulia; Roe, Bridget; Browes, Simon

    2015-01-01

    Objectives To understand whether aviation-derived human factors training is acceptable and useful to healthcare professionals. To understand whether and how healthcare professionals have been able to implement human factors approaches to patient safety in their own area of clinical practice. Methods Qualitative, longitudinal study using semi-structured interviews and focus groups, of a multiprofessional group of UK NHS staff (from the emergency department and operating theatres) who have received aviation-derived human factors training. Results The human factors training was evaluated positively, and thought to be both acceptable and relevant to practice. However, the staff found it harder to implement what they had learned in their own clinical areas, and this was principally attributed to features of the informal organisational cultures. Conclusions In order to successfully apply human factors approaches in hospital, careful consideration needs to be given to the local context and informal culture of clinical practice. PMID:24631959

  17. Human Factors in Cabin Accident Investigations

    Science.gov (United States)

    Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.

  18. Specifications for human factors guiding documents

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, W; Szlapetis, I; MacGregor, C [Rhodes and Associates Inc., Toronto, ON (Canada)

    1995-04-01

    This report specifies the content, function and appearance of three proposed human factors guiding documents to be used by the Atomic Energy Control board and its licensees. These three guiding documents, to be developed at a later date, are: (a) Human Factors Process Guide; (b) Human Factors Activities Guide; and (c) Human Factors Design Integration Guide. The specifications were developed by examining the best documents as identified in a previous contract with the AECB (Review of Human Factors Guidelines and Methods by W. Rhodes, I. Szlapetis et al. 1992), and a brief literature review. The best features and content were selected from existing documents and used to develop specifications for the guiding documents. The developer of the actual guides would use these specifications to produce comprehensive and consolidated documents at a later date. (author). 128 ref., 7 figs.

  19. Specifications for human factors guiding documents

    International Nuclear Information System (INIS)

    Rhodes, W.; Szlapetis, I.; MacGregor, C.

    1995-04-01

    This report specifies the content, function and appearance of three proposed human factors guiding documents to be used by the Atomic Energy Control board and its licensees. These three guiding documents, to be developed at a later date, are: (a) Human Factors Process Guide; (b) Human Factors Activities Guide; and (c) Human Factors Design Integration Guide. The specifications were developed by examining the best documents as identified in a previous contract with the AECB (Review of Human Factors Guidelines and Methods by W. Rhodes, I. Szlapetis et al. 1992), and a brief literature review. The best features and content were selected from existing documents and used to develop specifications for the guiding documents. The developer of the actual guides would use these specifications to produce comprehensive and consolidated documents at a later date. (author). 128 ref., 7 figs

  20. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    Science.gov (United States)

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  1. Buried waste integrated demonstration human engineered control station. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  2. Buried waste integrated demonstration human engineered control station. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system

  3. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  4. Modification and analysis of engineering hot spot factor of HFETR

    International Nuclear Information System (INIS)

    Hu Yuechun; Deng Caiyu; Li Haitao; Xu Taozhong; Mo Zhengyu

    2014-01-01

    This paper presents the modification and analysis of engineering hot spot factors of HFETR. The new factors are applied in the fuel temperature analysis and the estimated value of the safety allowable operating power of HFETR. The result shows the maximum cladding temperature of the fuel is lower when the new factor are in utilization, and the safety allowable operating power of HFETR if higher, thus providing the economical efficiency of HFETR. (authors)

  5. Design for human factors (DfHF): a grounded theory for integrating human factors into production design processes.

    Science.gov (United States)

    Village, Judy; Searcy, Cory; Salustri, Filipo; Patrick Neumann, W

    2015-01-01

    The 'design for human factors' grounded theory explains 'how' human factors (HF) went from a reactive, after-injury programme in safety, to being proactively integrated into each step of the production design process. In this longitudinal case study collaboration with engineers and HF Specialists in a large electronics manufacturer, qualitative data (e.g. meetings, interviews, observations and reflections) were analysed using a grounded theory methodology. The central tenet in the theory is that when HF Specialists acclimated to the engineering process, language and tools, and strategically aligned HF to the design and business goals of the organisation, HF became a means to improve business performance. This led to engineers 'pulling' HF Specialists onto their team. HF targets were adopted into engineering tools to communicate HF concerns quantitatively, drive continuous improvement, visibly demonstrate change and lead to benchmarking. Senior management held engineers accountable for HF as a key performance indicator, thus integrating HF into the production design process. Practitioner Summary: Research and practice lack explanations about how HF can be integrated early in design of production systems. This three-year case study and the theory derived demonstrate how ergonomists changed their focus to align with design and business goals to integrate HF into the design process.

  6. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  7. Quality management in the nuclear industry: the human factor

    International Nuclear Information System (INIS)

    1990-01-01

    In the nuclear industry it is vital to understand the 'human factor' with regard to plant performance and plant safety. A proper management system ensures that personnel perform their duties correctly. 'Quality Management in the Nuclear Industry: the Human Factor', was a conference organized by the Institution of Mechanical Engineers in October 1990. The conference covered a wide range of topics on an international level including: standards, licensing and regulatory procedures; selection assessment and training of personnel; feedback from experience of good practice and of deviations; management and support of personnel performance; modelling and evaluation of human factors. The papers presented at the conference are contained in this volume. All twenty papers are indexed separately. (author)

  8. Human factors in safety and business management.

    Science.gov (United States)

    Vogt, Joachim; Leonhardt, Jorg; Koper, Birgit; Pennig, Stefan

    2010-02-01

    Human factors in safety is concerned with all those factors that influence people and their behaviour in safety-critical situations. In aviation these are, for example, environmental factors in the cockpit, organisational factors such as shift work, human characteristics such as ability and motivation of staff. Careful consideration of human factors is necessary to improve health and safety at work by optimising the interaction of humans with their technical and social (team, supervisor) work environment. This provides considerable benefits for business by increasing efficiency and by preventing incidents/accidents. The aim of this paper is to suggest management tools for this purpose. Management tools such as balanced scorecards (BSC) are widespread instruments and also well known in aviation organisations. Only a few aviation organisations utilise management tools for human factors although they are the most important conditions in the safety management systems of aviation organisations. One reason for this is that human factors are difficult to measure and therefore also difficult to manage. Studies in other domains, such as workplace health promotion, indicate that BSC-based tools are useful for human factor management. Their mission is to develop a set of indicators that are sensitive to organisational performance and help identify driving forces as well as bottlenecks. Another tool presented in this paper is the Human Resources Performance Model (HPM). HPM facilitates the integrative assessment of human factors programmes on the basis of a systematic performance analysis of the whole system. Cause-effect relationships between system elements are defined in process models in a first step and validated empirically in a second step. Thus, a specific representation of the performance processes is developed, which ranges from individual behaviour to system performance. HPM is more analytic than BSC-based tools because HPM also asks why a certain factor is

  9. EXPERIMENTAL SEMIOTICS: AN ENGINE OF DISCOVERY FOR UNDERSTANDING HUMAN COMMUNICATION

    OpenAIRE

    BRUNO GALANTUCCI; GARETH ROBERTS

    2012-01-01

    The recent growth of Experimental Semiotics (ES) offers us a new option to investigate human communication. We briefly introduce ES, presenting results from three themes of research which emerged within it. Then we illustrate the contribution ES can make to the investigation of human communication systems, particularly in comparison with the other existing options. This comparison highlights how ES can provide an engine of discovery for understanding human communication. In fact, in complemen...

  10. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    Stubler, W.F.; O'Hara, J..M.

    1996-01-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  11. Unifying Human Centered Design and Systems Engineering for Human Systems Integration

    Science.gov (United States)

    Boy, Guy A.; McGovernNarkevicius, Jennifer

    2013-01-01

    Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.

  12. ACSNI study group on human factors

    International Nuclear Information System (INIS)

    1993-01-01

    Organisational failures are now recognised as being as important as mechanical failures or individual human errors in causing major accidents such as the capsize of the Herald of Free Enterprise or the Pipa Alpha disaster. The Human Factors Study Group of the Advisory Committee on the Safety of Nuclear Installations was set up to look at the part played by human factors in nuclear risk and its reduction. The third report of the Study Group considers the role played by organisational factors and management in promoting nuclear safety. Actions to review and promote a safety culture are suggested. Three main conclusions are drawn and several recommendations made. (UK)

  13. Aspects of computer control from the human engineering standpoint

    International Nuclear Information System (INIS)

    Huang, T.V.

    1979-03-01

    A Computer Control System includes data acquisition, information display and output control signals. In order to design such a system effectively we must first determine the required operational mode: automatic control (closed loop), computer assisted (open loop), or hybrid control. The choice of operating mode will depend on the nature of the plant, the complexity of the operation, the funds available, and the technical expertise of the operating staff, among many other factors. Once the mode has been selected, consideration must be given to the method (man/machine interface) by which the operator interacts with this system. The human engineering factors are of prime importance to achieving high operating efficiency and very careful attention must be given to this aspect of the work, if full operator acceptance is to be achieved. This paper will discuss these topics and will draw on experience gained in setting up the computer control system in Main Control Center for Stanford University's Accelerator Center (a high energy physics research facility)

  14. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  15. Human factors review for Severe Accident Sequence Analysis (SASA)

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.; Manning, J.J.; Bovell, C.R.

    1984-01-01

    The paper will discuss work being conducted during this human factors review including: (1) support of the Severe Accident Sequence Analysis (SASA) Program based on an assessment of operator actions, and (2) development of a descriptive model of operator severe accident management. Research by SASA analysts on the Browns Ferry Unit One (BF1) anticipated transient without scram (ATWS) was supported through a concurrent assessment of operator performance to demonstrate contributions to SASA analyses from human factors data and methods. A descriptive model was developed called the Function Oriented Accident Management (FOAM) model, which serves as a structure for bridging human factors, operations, and engineering expertise and which is useful for identifying needs/deficiencies in the area of accident management. The assessment of human factors issues related to ATWS required extensive coordination with SASA analysts. The analysis was consolidated primarily to six operator actions identified in the Emergency Procedure Guidelines (EPGs) as being the most critical to the accident sequence. These actions were assessed through simulator exercises, qualitative reviews, and quantitative human reliability analyses. The FOAM descriptive model assumes as a starting point that multiple operator/system failures exceed the scope of procedures and necessitates a knowledge-based emergency response by the operators. The FOAM model provides a functionally-oriented structure for assembling human factors, operations, and engineering data and expertise into operator guidance for unconventional emergency responses to mitigate severe accident progression and avoid/minimize core degradation. Operators must also respond to potential radiological release beyond plant protective barriers. Research needs in accident management and potential uses of the FOAM model are described. 11 references, 1 figure

  16. Incorporating Human Factors into design change processes - a regulator's perspective

    International Nuclear Information System (INIS)

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guide-lines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  17. Human Factors in Nuclear Reactor Accidents

    International Nuclear Information System (INIS)

    Mustafa, M.E.

    2016-01-01

    While many people would blame nature for the disaster of the “Fukushima Daiichi” accident, experts considered this accident to be also a human-induced disaster. This confirmed the importance of human errors which have been getting a growing interest in the nuclear field after the Three Mile Island accident. Personnel play an important role in design, operation, maintenance, planning, and management. The interface between machine and man is known as a human factor. In the present work, the human factors that have to be considered were discussed. The effect of the control room configuration and equipment design effect on the human behavior was also discussed. Precise reviewing of person’s qualifications and experience was focused. Insufficient training has been a major cause of human error in the nuclear field. The effective training issues were introduced. Avoiding complicated operational processes and non responsive management systems was stressed. Distinguishing between the procedures for normal and emergency operations was emphasised. It was stated that human error during maintenance and testing activities could cause a serious accident. This is because safety systems do not cover much more risk probabilities in the maintenance and testing activities like they do in the normal operation. In nuclear industry, the need for a classification and identification of human errors has been well recognised. As a result of this, human reliability must be assessed. These errors are analyzed by a probabilistic safety assessment which deals with errors in reading, listening and implementing procedures but not with cognitive errors. Much efforts must be accomplished to consider cognitive errors in the probabilistic safety assessment. The ways of collecting human factor data were surveyed. The methods for identifying safe designs, helping decision makers to predict how proposed or current policies will affect safety, and comprehensive understanding of the relationship

  18. The development and evaluation of human factors guidelines for the review of advanced human-system interfaces

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1992-01-01

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are approximately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline

  19. Assessment of Environmental Factors of Geology on Waste and Engineering Barriers for Waste Storage Near Surface

    International Nuclear Information System (INIS)

    Arimuladi SP

    2007-01-01

    Geological environment factors include features and processes occurring within that spatial and temporal (post-closure) domain whose principal effect is to determine the evolution of the physical, chemical, biological and human conditions of the domain that are relevant to estimating the release and migration of radionuclide and consequent exposure to man. Hardness of radioactive waste and engineer barrier can be decrease by environmental factors. Disposal system domain geological environment factors is a category in the International FEP list and is divided into sub-categories. There are 13 sub-factors of geological environment, 12 sub-factors influence hardness of radioactive waste and engineer barrier, thermal processes and conditions in geosphere can be excluded. (author)

  20. Development of a draft of human factors safety review procedures for the Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    In this study, a draft of human factors engineering (HFE) safety review procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation findings for the areas of review including HFE Program Management, Human Factors Analyses, Human Factors Design, and HFE Verification and Validation, based on Section 15.1 'Human Factors Engineering Design Process' and 15.2 'Control Room Human Factors Engineering' of KNGR Specific Safety Requirements and Chapter 15 'Human Factors Engineering' of KNGR Safety Regulatory Guides. For the effective review, human factors concerns or issues related to advanced HSI design that have been reported so far should be extensively examined. In this study, a total of 384 human factors issues related to the advanced HSI design were collected through our review of a total of 145 documents. A summary of each issue was described and the issues were identified by specific features of HSI design. These results were implemented into a database system. 8 refs., 2 figs. (Author)

  1. Development of a draft of human factors safety review procedures for the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Moon, B. S.; Park, J. C.; Lee, Y. H.; Oh, I. S.; Lee, H. C.

    2000-02-01

    In this study, a draft of Human Factors Engineering (HFE) Safety Review Procedures (SRP) was developed for the safety review of KNGR based on HFE Safety and Regulatory Requirements and Guidelines (SRRG). This draft includes acceptance criteria, review procedure, and evaluation findings for the areas of review including HFE program management, human factors analyses, human factors design, and HFE verification and validation, based on section 15.1 'human factors engineering design process' and 15.2 'control room human factors engineering' of KNGR specific safety requirements and chapter 15 'human factors engineering' of KNGR safety regulatory guides. For the effective review, human factors concerns or issues related to advanced HSI design that have been reported so far should be extensively examined. In this study, a total of 384 human factors issues related to the advanced HSI design were collected through our review of a total of 145 documents. A summary of each issue was described and the issues were identified by specific features of HSI design. These results were implemented into a database system

  2. Human Factors in Aviation Maintenance. Phase 1

    Science.gov (United States)

    1991-11-01

    solution is war- more effe-ctive use of human resoUrecs , the neat step Ls to ane- uassol o efogte.S a hr sn tes te de. Af piot progfctram can...and Subtitle 5. Report Date November 1991 Human Factors in Aviation Maintenance - Phase One Progress Report 6. Perfarng Oon z’on Code i8. Perfo-rrng...Independence Avenue, SW 14. Sponsor,mg Agency Code Washington, DC 20591 15. Supplementary Notes 16. Abstract "• This human factors research in aviation

  3. Engineering success: Persistence factors of African American doctoral recipients in engineering and applied science

    Science.gov (United States)

    Simon, Tiffany Monique

    The purpose of this qualitative study was to identify factors that influence African Americans to pursue and complete doctoral degrees in engineering and applied science disciplines. Critical race theory (CRT), two models of doctoral student persistence, and graduate student persistence literature guided the conceptual framework of this study. In-depth and focus group interviews were conducted to learn the key factors that positively impacted the persistence of 19 African Americans who earned doctoral degrees in engineering and applied science. The following two factors were found to significantly contribute to the decision to pursue the doctorate: encouragement from others and participation in a research or internship program. Key factors impacting doctoral degree completion included: peer support, faculty adviser support, support from university administrators, and family support. In addition to identifying factors that influenced 19 African Americans to pursue and complete doctoral degrees in engineering and applied science, this study was about the importance of diversity and inclusion of multiple perspectives in education research and scholarship. To this end, the study served to promote and include the expert knowledge of African American doctoral degree recipients in engineering and applied science in the scholarly discourse on the issue of low participation rates of African Americans in engineering and applied science disciplines. Such knowledge will challenge traditional views on this issue and hopefully inspire new ways of addressing and remedying this issue. With African Americans and other minority populations growing at an exponential rate, people of color are quickly becoming the majority in key states across the nation. Therefore, it is imperative that all Americans have an opportunity to develop skills necessary to compete for professional positions in the science and engineering workforce. This mandate is required for the United States to maintain

  4. Human Factors Engineering. Part 2. HEDGE (Human Factors Engineering Data Guide for Evaluation)

    Science.gov (United States)

    1983-11-30

    his. telly Ir~O -rtkm1 dew. *or ~ ~ ~ ~ o IrIs leaf .13-2oses 1m I~ ~ wvv wit Ro.w=soI ll., o.W W n t,,. A wop. SOW -ao rmA ido 104151*854044.. .10.0...Footivoielortomb idntitffed. fhetld torae’, Idetoififed. . Eont lskhtiamate a, betel . *Minitttedecadln en Wbt L SID-t 21; -eoOt(r nbiriwoe. -TI "ostep*=’to it

  5. Activation of human factor V by factor Xa and thrombin

    International Nuclear Information System (INIS)

    Monkovic, D.D.; Tracy, P.B.

    1990-01-01

    The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polycarylamide gel electrophoresis followed by either autoradiography of 125 I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of M r 220,000 and 105,000. Although thrombin cleaved the M r 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the M r 220,000 peptide. The factor Xa dependent functional assessment of 125 I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the M r 220,000 peptide. The data indicate that factor Xa is as efficient an enzyme toward factor V as thrombin

  6. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  7. Human engineering design in medical x-ray system

    International Nuclear Information System (INIS)

    Mori, Sadayoshi

    1981-01-01

    The dimension of control desk, design of controller and indicator are studied in relation with human body dimension of radiological technologist. First, in the design of apparatus, it is reasonable to adopt the cumulative distribution in stead of mean values of human body dimension because the mean values would be cause of inadequacy to the majority of operator. Second, I reported about the fundamental items e.g. the display of controller and indicator recommended from the point of view of human engineering. Up to now the radiological technologists were intended to take a serious view of performance of X-ray apparatus only, but hereafter, we think, it is also important to induce the thought of human engineering in the design of X-ray apparatus. (J.P.N.)

  8. Cognitive engineering in the design of human-computer interaction and expert systems

    International Nuclear Information System (INIS)

    Salvendy, G.

    1987-01-01

    The 68 papers contributing to this book cover the following areas: Theories of Interface Design; Methodologies of Interface Design; Applications of Interface Design; Software Design; Human Factors in Speech Technology and Telecommunications; Design of Graphic Dialogues; Knowledge Acquisition for Knowledge-Based Systems; Design, Evaluation and Use of Expert Systems. This demonstrates the dual role of cognitive engineering. On the one hand cognitive engineering is utilized to design computing systems which are compatible with human cognition and can be effectively and be easily utilized by all individuals. On the other hand, cognitive engineering is utilized to transfer human cognition into the computer for the purpose of building expert systems. Two papers are of interest to INIS

  9. Human factors and safety in emergency medicine

    Science.gov (United States)

    Schaefer, H. G.; Helmreich, R. L.; Scheidegger, D.

    1994-01-01

    A model based on an input process and outcome conceptualisation is suggested to address safety-relevant factors in emergency medicine. As shown in other dynamic and demanding environments, human factors play a decisive role in attaining high quality service. Attitudes held by health-care providers, organisational shells and work-cultural parameters determine communication, conflict resolution and workload distribution within and between teams. These factors should be taken into account to improve outcomes such as operational integrity, job satisfaction and morale.

  10. Determination of engineering safety factor -routine in Hungary (a methodology for the normal operation local power engineering safety factors)

    International Nuclear Information System (INIS)

    Szecsenyi, Z.; Korpas, L.; Bona, G.; Kereszturi, A.

    2010-01-01

    From the late nineties Paks Nuclear Power Plant-in collaboration with KFKI Atomic Energy Research Institute (KFKI AEKI)- is developing a system for determining the normal operation local power engineering safety factors. The system is based on a Monte Carlo sampling of the uncertain model input parameters. Additionally, the comparison of the calculation to the in-core measurements plays essential role for determining some important input parameters. By using new fuel types and the corresponding more recent detailed technological data, the applied method is being improved from time to time. Presently, the actually used and authorized engineering safety factors at Paks NPP are determined by using this method. In the paper, the system.s main properties are described (not going beyond the possible extent). The main points are as follows:-Mathematical definition of the engineering safety factor;-Sources of the uncertainties;-Input error propagation method constituting the basis of the system;-Flow-chart of the subsequent steps of the determination Finally, in the paper the engineering safety factors values of some selected parameters are presented as examples for demonstration of the capability of the method. (Authors)

  11. Human factors guidelines for nuclear power plant applications

    International Nuclear Information System (INIS)

    Ketchel, J.

    1993-01-01

    In 1989, Waters et al. reported to the Human Factors Society on developing human factors criteria for a new reactor plant. They correctly indicated that much of the guidance documentation in human factors engineering has derived from MIL-STD-1472 and its antecedents. Guidelines for human-computer interface have sprung primarily from the Smith and Mosier compendium and its source documents. NUREG-0700, which is currently being updated, was developed by the US Nuclear Regulatory Commission (NRC) as a general evaluation guide for inspecting control rooms. In addition, the Electric Power Research Institute, Institute of Nuclear Power Operations, US Department of Energy, the NRC, and others have published a number of specialized documents on a range of subjects. The number of guidelines and standards has grown in the past few years to an impressive number, including those published by international organizations and professional societies. This paper provides an update on current efforts to provide appropriate guidance for the power industry and, perhaps more importantly, offers a perspective on how users should think about using the available materials and what else is needed. The Electric Power Research Institute (EPRI) continues to be one of the principal participants in providing guidance to the utilities. Human factors guidelines is indeed a timely topic, currently of great interest to EPRI's constituents and to designers of new and upgraded nuclear power plants (NPMs) in the Advanced Light Water Reactor and the Instrumentation and Control Upgrade Initiative programs

  12. Human factors questionnaire as a tool for risk assessment

    International Nuclear Information System (INIS)

    Santos, Isaac J.A.L.; Grecco, Claudio H.S.; Carvalho, Paulo V.R.; Mol, Antonio C.A.; Oliveira, Mauro V.; Augusto, Silas C.

    2009-01-01

    The human factors engineering (HFE) as a discipline, and as a process, seeks to discover and to apply knowledge about human capabilities and limitations to system and equipment design, ensuring that the system design, human tasks and work environment are compatible with the sensory, perceptual, cognitive and physical attributes of the personnel who operates systems and equipment. Risk significance considers the magnitude of the consequences (loss of life, material damage, environmental degradation) and the frequency of occurrence of a particular adverse event. The questionnaire design was based on the following definitions: the score and the classification of the nuclear safety risk. The principal benefit of applying an approach based on the risk significance in the development of the questionnaire is to ensure the identification and evaluation of the features of the projects, related to human factors, which affect the nuclear safety risk, the human actions and the safety of the nuclear plant systems. The human factors questionnaire developed in this study will provide valuable support for risk assessment, making possible the identification of design problems that can influence the evaluation of the nuclear safety risk. (author)

  13. An EDF perspective on human factors

    International Nuclear Information System (INIS)

    Carnino, A.

    1987-01-01

    Human factors are important in the reliability or unreliability of industrial processes. The study of how to improve human performers, and their working conditions to enable them to perform reliably is difficult. Some of the human characteristics of importance for understanding human behaviour in this context are described. These include such things as ''man is not a component, man functions through a single channel'', ''man biases risk estimation''. The Electricite de France programme for improving human reliability following the Three Mile Island accident is then discussed. This has many aspects, the man-machine interfaces, operator training, crew organization, operator experience analysis and emergency planning. The control room planned for a new plant, which is based on this program is described. The improvements are in communication, identification and labelling, stress, simulator tests and human performance data banks. (UK)

  14. Implementing human factors in clinical practice.

    Science.gov (United States)

    Timmons, Stephen; Baxendale, Bryn; Buttery, Andrew; Miles, Giulia; Roe, Bridget; Browes, Simon

    2015-05-01

    To understand whether aviation-derived human factors training is acceptable and useful to healthcare professionals. To understand whether and how healthcare professionals have been able to implement human factors approaches to patient safety in their own area of clinical practice. Qualitative, longitudinal study using semi-structured interviews and focus groups, of a multiprofessional group of UK NHS staff (from the emergency department and operating theatres) who have received aviation-derived human factors training. The human factors training was evaluated positively, and thought to be both acceptable and relevant to practice. However, the staff found it harder to implement what they had learned in their own clinical areas, and this was principally attributed to features of the informal organisational cultures. In order to successfully apply human factors approaches in hospital, careful consideration needs to be given to the local context and informal culture of clinical practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  16. Human engineering considerations in the design of New Virginia Power Radwaste facilities

    International Nuclear Information System (INIS)

    Bankley, A.V.; Morris, L.L.; Lippard, D.W.

    1988-01-01

    Human engineering principles were considered by Virginia Power in the recent design of new radwaste facilities (NRFs) for both the Surry and North Anna power stations. Virginia Power recognized that the rigorous application of human engineering principles to the NRF design was essential to the ultimate success or failure of the facilities. Success of the NRF should not only be measured in the volume of radwaste processed but also by other factors such as (a) availability and maintainability of preferred equipment, (b) as-low-as-reasonably-achievable considerations, (c) actual release rates versus achievable release rates, and (d) flexibility to deal with varying circumstances. Each of these success criteria would suffer as the result of operator/human inefficiencies or error. Therefore, human engineering should be applied to the maximum practical extent to minimize such inefficiencies or errors. No method is ever going to ensure a perfectly human-engineered facility design. Virginia Power believes, however, that significant strides have been made in efforts to design and construct a successful radwaste processing facility, a facility where operating success rests with the ability of the human operators to perform their jobs in an efficient and reliable fashion

  17. Modelling human factor with Petri nets

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constantinescu, Cristina; Guzun, Basarab

    2007-01-01

    The human contribution to risk and safety of nuclear power plant operation can be best understood, assessed and quantified using tools to evaluate human reliability. Human reliability analysis becomes an important part of every probabilistic safety assessment and it is used to demonstrate that nuclear power plants designed with different safety levels are prepared to cope with severe accidents. Human reliability analysis in context of probabilistic safety assessment consists in: identifying human-system interactions important to safety; quantifying probabilities appropriate with these interactions. Nowadays, the complex system functions can be modelled using special techniques centred either on states space adequate to system or on events appropriate to the system. Knowing that complex system model consists in evaluating the likelihood of success, in other words, in evaluating the possible value for that system being in some state, the inductive methods which are based on the system states can be applied also for human reliability modelling. Thus, switching to the system states taking into account the human interactions, the underlying basis of the Petri nets can be successfully applied and the likelihoods appropriate to these states can also derived. The paper presents the manner to assess the human reliability quantification using Petri nets approach. The example processed in the paper is from human reliability documentation without a detailed human factor analysis (qualitative). The obtained results by these two kinds of methods are in good agreement. (authors)

  18. Hematopoietic growth factors and human acute leukemia.

    Science.gov (United States)

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  19. How do radiologists use the human search engine?

    International Nuclear Information System (INIS)

    Wolfe, Jeremy M.; Evans, Karla K.; Drew, Trafton; Aizenman, Avigael; Josephs, Emilie

    2016-01-01

    Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search? (authors)

  20. Regulatory perspectives on human factors validation

    International Nuclear Information System (INIS)

    Harrison, F.; Staples, L.

    2001-01-01

    Validation is an important avenue for controlling the genesis of human error, and thus managing loss, in a human-machine system. Since there are many ways in which error may intrude upon system operation, it is necessary to consider the performance-shaping factors that could introduce error and compromise system effectiveness. Validation works to this end by examining, through objective testing and measurement, the newly developed system, procedure or staffing level, in order to identify and eliminate those factors which may negatively influence human performance. It is essential that validation be done in a high-fidelity setting, in an objective and systematic manner, using appropriate measures, if meaningful results are to be obtained, In addition, inclusion of validation work in any design process can be seen as contributing to a good safety culture, since such activity allows licensees to eliminate elements which may negatively impact on human behaviour. (author)

  1. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  2. Human and organizational factors in nuclear safety

    International Nuclear Information System (INIS)

    Garcia, A.; Barrientos, M.; Gil, B.

    2015-01-01

    Nuclear installations are socio technical systems where human and organizational factors, in both utilities and regulators, have a significant impact on safety. Three Mile Island (TMI) accident, original of several initiatives in the human factors field, nevertheless became a lost opportunity to timely acquire lessons related to the upper tiers of the system. Nowadays, Spanish nuclear installations have integrated in their processes specialists and activities in human and organizational factors, promoted by the licensees After many years of hard work, Spanish installations have achieved a better position to face new challenges, such as those posed by Fukushima. With this experience, only technology-centered action plan would not be acceptable, turning this accident in yet another lost opportunity. (Author)

  3. Human factors issues in fuel handling

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.; Tucker, D.A.

    1994-01-01

    The staff of the Atomic Energy Control Board wish to further their understanding of human factors issues of potential concern associated with fuel handling in CANDU nuclear power stations. This study contributes to that objective by analysing the role of human performance in the overall fuel handling process at Ontario Hydro's Darlington Nuclear Generating Station, and reporting findings in several areas. A number of issues are identified in the areas of design, operating and maintenance practices, and the organizational and management environment

  4. HAMMLAB 2000 for human factor's studies

    International Nuclear Information System (INIS)

    Kvalem, J.

    1999-01-01

    The simulator-based Halden Man-Machine Laboratory (HAMMLAB) has, since its establishment in 1983, been the main vehicle for the human-machine systems research at the OECD Halden Reactor Project. The human factors programme relies upon HAMMLAB for performing experimental studies, but the laboratory is also utilised when evaluating computerised operator support systems, and for experimentation with advanced control room prototypes. The increased focus on experimentation as part of the research programme at the Halden Project, has led to a discussion whether today's laboratory will meet the demands of the future. A pre-project concluded with the need for a new laboratory, with extended simulation capabilities. Based upon these considerations, the HAMMLAB 2000 project was initiated with the goal of making HAMMLAB a global centre of excellence for the study of human-technology interaction in the management and control of industrial processes. This paper will focus on human factors studies to be performed in the new laboratory, and which requirements this will bring upon the laboratory infrastructure and simulation capabilities. The aim of the human factors research at the Halden Project is to provide knowledge which can be used by member organisations to enhance safety and efficiency in the operation of nuclear power plants by utilising research about the capabilities and limitations of the human operator in a control room environment. (author)

  5. A development of the Human Factors Assessment Guide for the Study of Erroneous Human Behaviors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Oh, Yeon Ju; Lee, Yong Hee; Jang, Tong Il; Kim, Sa Kil

    2014-01-01

    The aim of this paper is to describe a human factors assessment guide for the study of the erroneous characteristic of operators in nuclear power plants (NPPs). We think there are still remaining the human factors issues such as an uneasy emotion, fatigue and stress, varying mental workload situation by digital environment, and various new type of unsafe response to digital interface for better decisions, although introducing an advanced main control room. These human factors issues may not be resolved through the current human reliability assessment which evaluates the total probability of a human error occurring throughout the completion of a specific task. This paper provides an assessment guide for the human factors issues a set of experimental methodology, and presents an assessment case of measurement and analysis especially from neuro physiology approach. It would be the most objective psycho-physiological research technique on human performance for a qualitative analysis considering the safety aspects. This paper can be trial to experimental assessment of erroneous behaviors and their influencing factors, and it can be used as an index for recognition and a method to apply human factors engineering V and V, which is required as a mandatory element of human factor engineering program plan for a NPP design

  6. A development of the Human Factors Assessment Guide for the Study of Erroneous Human Behaviors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yeon Ju; Lee, Yong Hee; Jang, Tong Il; Kim, Sa Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-08-15

    The aim of this paper is to describe a human factors assessment guide for the study of the erroneous characteristic of operators in nuclear power plants (NPPs). We think there are still remaining the human factors issues such as an uneasy emotion, fatigue and stress, varying mental workload situation by digital environment, and various new type of unsafe response to digital interface for better decisions, although introducing an advanced main control room. These human factors issues may not be resolved through the current human reliability assessment which evaluates the total probability of a human error occurring throughout the completion of a specific task. This paper provides an assessment guide for the human factors issues a set of experimental methodology, and presents an assessment case of measurement and analysis especially from neuro physiology approach. It would be the most objective psycho-physiological research technique on human performance for a qualitative analysis considering the safety aspects. This paper can be trial to experimental assessment of erroneous behaviors and their influencing factors, and it can be used as an index for recognition and a method to apply human factors engineering V and V, which is required as a mandatory element of human factor engineering program plan for a NPP design.

  7. Annotated bibliography of human factors applications literature

    Energy Technology Data Exchange (ETDEWEB)

    McCafferty, D.B.

    1984-09-30

    This bibliography was prepared as part of the Human Factors Technology Project, FY 1984, sponsored by the Office of Nuclear Safety, US Department of Energy. The project was conducted by Lawrence Livermore National Laboratory, with Essex Corporation as a subcontractor. The material presented here is a revision and expansion of the bibliographic material developed in FY 1982 as part of a previous Human Factors Technology Project. The previous bibliography was published September 30, 1982, as Attachment 1 to the FY 1982 Project Status Report.

  8. Annotated bibliography of human factors applications literature

    International Nuclear Information System (INIS)

    McCafferty, D.B.

    1984-01-01

    This bibliography was prepared as part of the Human Factors Technology Project, FY 1984, sponsored by the Office of Nuclear Safety, US Department of Energy. The project was conducted by Lawrence Livermore National Laboratory, with Essex Corporation as a subcontractor. The material presented here is a revision and expansion of the bibliographic material developed in FY 1982 as part of a previous Human Factors Technology Project. The previous bibliography was published September 30, 1982, as Attachment 1 to the FY 1982 Project Status Report

  9. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    Science.gov (United States)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  10. Human factors reliability benchmark exercise: a review

    International Nuclear Information System (INIS)

    Humphreys, P.

    1990-01-01

    The Human Factors Reliability Benchmark Exercise has addressed the issues of identification, analysis, representation and quantification of Human Error in order to identify the strengths and weaknesses of available techniques. Using a German PWR nuclear powerplant as the basis for the studies, fifteen teams undertook evaluations of a routine functional Test and Maintenance procedure plus an analysis of human actions during an operational transient. The techniques employed by the teams are discussed and reviewed on a comparative basis. The qualitative assessments performed by each team compare well, but at the quantification stage there is much less agreement. (author)

  11. Human genetic factors in tuberculosis: an update.

    Science.gov (United States)

    van Tong, Hoang; Velavan, Thirumalaisamy P; Thye, Thorsten; Meyer, Christian G

    2017-09-01

    Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB. © 2017 John Wiley & Sons Ltd.

  12. Improving human performance: Industry factors influencing the ability to perform

    Directory of Open Access Journals (Sweden)

    Güera Massyn Romo

    2013-03-01

    Full Text Available Learning interventions and new technologies that aim to improve human performance must take cognisance of industry factors inhibiting human performance. The dynamic and fast pace nature of the Information and Communication Technologies (ICT and the engineering industries do not lend themselves to proper skills planning and management. These industries experience real skills gaps, to some of which they contribute by themselves. This study reports on these performance-inhibiting factors such as the underutilisation of available skills, tolerance for individual preferences, and dynamically, and informally refining a role objective while an employee is occupying a certain role. The important professional skills required by individuals to cope with these real life factors are also explored in the skills gaps management context. Moreover, these industries need a profile they refer to as Special Forces, which denotes a high calibre of worker that possesses well-developed professional skills whilst having advanced technical expertise and sufficient experience. This resource profile is required largely due to the poor management of human resource processes in practice and the current reported lack of adequate skills. Furthermore, this study refers to the recent lack of a working definition for these Special Forces leading to the omitted active development of these profiles in industry today, which appears to become a key human performance inhibiting factor.

  13. Human factors and training the partnership agreement

    International Nuclear Information System (INIS)

    Macris, A.C.; Fleming, S.T.

    1987-01-01

    Four fundamental activities directly affect human performance in operating nuclear power plants: Control Room Design Reviews (CRDR's); Operating Procedures; Training Curriculum Materials; Simulator Training. Typically it was believed that multi-disciplined core teams, for each activity, provided an integration of all activities. Representatives of each discipline (CRDR, Engineering, Training, Simulator Project) provided real time inputs during team deliberations. While these inputs affected team decisions, there were no assurances that any functional follow-up would result. Furthermore, no mechanism existed for systematic integration between activities. Now, with a majority of the Control Room Design Reviews complete, plant specific simulators becoming a reality, and the incorporation of Safety Parameter Display System (SPDS) and Symptom Based EOP's; the reality is that these activities require more systematic integration than was previously recognized. This paper presents an innovative approach for integrating the above four activities using Computer Aided Drafting (CAD) and computerized Data Base Management (DBM) to synergistically optimize human performance

  14. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    O'Hara, J.; Brown, W.; Granda, T.; Baker, C.

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  15. Integrating Data and Networks: Human Factors

    Science.gov (United States)

    Chen, R. S.

    2012-12-01

    The development of technical linkages and interoperability between scientific networks is a necessary but not sufficient step towards integrated use and application of networked data and information for scientific and societal benefit. A range of "human factors" must also be addressed to ensure the long-term integration, sustainability, and utility of both the interoperable networks themselves and the scientific data and information to which they provide access. These human factors encompass the behavior of both individual humans and human institutions, and include system governance, a common framework for intellectual property rights and data sharing, consensus on terminology, metadata, and quality control processes, agreement on key system metrics and milestones, the compatibility of "business models" in the short and long term, harmonization of incentives for cooperation, and minimization of disincentives. Experience with several national and international initiatives and research programs such as the International Polar Year, the Group on Earth Observations, the NASA Earth Observing Data and Information System, the U.S. National Spatial Data Infrastructure, the Global Earthquake Model, and the United Nations Spatial Data Infrastructure provide a range of lessons regarding these human factors. Ongoing changes in science, technology, institutions, relationships, and even culture are creating both opportunities and challenges for expanded interoperability of scientific networks and significant improvement in data integration to advance science and the use of scientific data and information to achieve benefits for society as a whole.

  16. Human Factors and Habitability Challenges for Mars Missions

    Science.gov (United States)

    Whitmore, Mihriban

    2015-01-01

    As NASA is planning to send humans deeper into space than ever before, adequate crew health and performance will be critical for mission success. Within the NASA Human Research Program (HRP), the Space Human Factors and Habitability (SHFH) team is responsible for characterizing the risks associated with human capabilities and limitations with respect to long-duration spaceflight, and for providing mitigations (e.g., guidelines, technologies, and tools) to promote safe, reliable and productive missions. SHFH research includes three domains: Advanced Environmental Health (AEH), Advanced Food Technology (AFT), and Space Human Factors Engineering (SHFE). The AEH portfolio focuses on understanding the risk of microbial contamination of the spacecraft and on the development of standards for exposure to potential toxins such as chemicals, bacteria, fungus, and lunar/Martian dust. The two risks that the environmental health project focuses on are adverse health effects due to changes in host-microbe interactions, and risks associated with exposure to dust in planetary surface habitats. This portfolio also proposes countermeasures to these risks by making recommendations that relate to requirements for environmental quality, foods, and crew health on spacecraft and space missions. The AFT portfolio focuses on reducing the mass, volume, and waste of the entire integrated food system to be used in exploration missions, and investigating processing methods to extend the shelf life of food items up to five years, while assuring that exploration crews will have nutritious and palatable foods. The portfolio also delivers improvements in both the food itself and the technologies for storing and preparing it. SHFE sponsors research to establish human factors and habitability standards and guidelines in five risk areas, and provides improved design concepts for advanced crew interfaces and habitability systems. These risk areas include: Incompatible vehicle/habitat design

  17. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  18. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  19. The human factors approach at EDF

    International Nuclear Information System (INIS)

    Colas, A.

    2004-01-01

    At the dawn of the 21st century, French electricity utility EDF is facing a number of major changes, in particular the liberalisation of European energy markets and the restructuring needed to cope with this development. EDF's approach to human factors (HF) aspects is also undergoing major changes, since people obviously play a predominant role in any organisational structure. (author)

  20. Warranty claim analysis considering human factors

    International Nuclear Information System (INIS)

    Wu Shaomin

    2011-01-01

    Warranty claims are not always due to product failures. They can also be caused by two types of human factors. On the one hand, consumers might claim warranty due to misuse and/or failures caused by various human factors. Such claims might account for more than 10% of all reported claims. On the other hand, consumers might not be bothered to claim warranty for failed items that are still under warranty, or they may claim warranty after they have experienced several intermittent failures. These two types of human factors can affect warranty claim costs. However, research in this area has received rather little attention. In this paper, we propose three models to estimate the expected warranty cost when the two types of human factors are included. We consider two types of failures: intermittent and fatal failures, which might result in different claim patterns. Consumers might report claims after a fatal failure has occurred, and upon intermittent failures they might report claims after a number of failures have occurred. Numerical examples are given to validate the results derived.

  1. Human factors in healthcare level two

    CERN Document Server

    Rosenorn-Lanng, Debbie

    2015-01-01

    This book builds on Human Factors in Healthcare Level One by delving deeper into the challenges of leadership, conflict resolution, and decision making that healthcare professionals currently face. It is written in an easy to understand style and includes a wealth of real-life examples of errors and patient safety issues.

  2. Cooperative mobility systems: The human factor challenges.

    NARCIS (Netherlands)

    Martens, Marieke; Kroon, Elisabeth

    2014-01-01

    This paper presents a vision on cooperative mobility systems from a human factors perspective. To create a common ground for future developments, it’s important to define the common research themes and knowledge gaps. This article presents what steps need to be taken in order to come to proper

  3. Review of human factors guidelines and methods

    International Nuclear Information System (INIS)

    Rhodes, W.; Szlapetis, I.; Hay, T.; Weihrer, S.

    1995-04-01

    The review examines the use of human factors guidelines and methods in high technology applications, with emphasis on application to the nuclear industry. An extensive literature review was carried out identifying over 250 applicable documents, with 30 more documents identified during interviews with experts in human factors. Surveys were sent to 15 experts, of which 11 responded. The survey results indicated guidelines used and why these were favoured. Thirty-three of the most applicable guideline documents were described in detailed annotated bibliographies. A bibliographic list containing over 280 references was prepared. Thirty guideline documents were rated for their completeness, validity, applicability and practicality. The experts survey indicated the use of specific techniques. Ten human factors methods of analysis were described in general summaries, including procedures, applications, and specific techniques. Detailed descriptions of the techniques were prepared and each technique rated for applicability and practicality. Recommendations for further study of areas of importance to human factors in the nuclear field in Canada are given. (author). 8 tabs., 2 figs

  4. Review of human factors guidelines and methods

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, W; Szlapetis, I; Hay, T; Weihrer, S [Rhodes and Associates Inc., Toronto, ON (Canada)

    1995-04-01

    The review examines the use of human factors guidelines and methods in high technology applications, with emphasis on application to the nuclear industry. An extensive literature review was carried out identifying over 250 applicable documents, with 30 more documents identified during interviews with experts in human factors. Surveys were sent to 15 experts, of which 11 responded. The survey results indicated guidelines used and why these were favoured. Thirty-three of the most applicable guideline documents were described in detailed annotated bibliographies. A bibliographic list containing over 280 references was prepared. Thirty guideline documents were rated for their completeness, validity, applicability and practicality. The experts survey indicated the use of specific techniques. Ten human factors methods of analysis were described in general summaries, including procedures, applications, and specific techniques. Detailed descriptions of the techniques were prepared and each technique rated for applicability and practicality. Recommendations for further study of areas of importance to human factors in the nuclear field in Canada are given. (author). 8 tabs., 2 figs.

  5. Human factors considerations for reliability and safety

    International Nuclear Information System (INIS)

    Carnino, A.

    1985-01-01

    Human factors in many industries have become an important issue, since the last few years. They should be considered during the whole life time of a plant: design, fabrication and construction, licensing, operation. Improvements have been performed in the field of man-machine interface such as procedures, control room lay-out, operator aids, training. In order to meet the needs of reliability and probabilistic risk studies, quantification of human errors has been developed but needs still improvements in the field of cognitive behaviour, diagnosis and representation errors. Data banks to support these quantifications are still in a development stage. This applies to nuclear power plants and several examples are given to illustrate the above ideas. In conclusion, human factors field is in a very quickly evolving process but the tendency is still to adapt the man to the machines whilst the reverse would be desirable

  6. The human factor in the nuclear industry

    International Nuclear Information System (INIS)

    Colas, Armand

    1998-01-01

    After having evoked the progressive reduction and stabilization of significant incidents occurring every year in French nuclear power plants, and the challenges faced by nuclear energy (loss of public confidence, loss of competitiveness), and then outlined the importance of safety to overcome these challenges, the author comments EDF's approach to the human factor. He first highlights the importance of information and communication towards the population. He briefly discusses the meaning of human factors for the nuclear industry, sometimes perceived as the contribution people to the company's safety and performance. He comments the evolution observed in the perception of human error in different industrial or technical environments and situations, and outlines what is at stake to reduce the production of faults and organize a 'hunt for latent defects'

  7. An EDF perspective on human factors

    International Nuclear Information System (INIS)

    Carnino, A.

    1989-01-01

    The paper presents the main lines of the program undertaken by Electricite de France in the field of human factors as a result of the Three-Mile Island (TMI) accident. As it is important to be aware of some human characteristics to understand the difficulties and needs in the field, the following behaviour characteristics are described: man is not a component, man functions through a single channel, man has a continuous need of information, man biases risk estimation and man uses mental representations. The following actions taken after TMI to improve the man-machine interface, the operator training, the crew organisation, the operating experience analysis, the state approach development and the emergency planning, are all linked to human factors. The paper ends by presenting the new control room studies for the N4 project (a light water reactor) and some other actions aimed at improving plant operation. (author)

  8. NATO Guidelines on Human Engineering Testing and Evaluation

    National Research Council Canada - National Science Library

    Geddie, J

    2001-01-01

    The purpose of this report is to document the efforts of RSC-24, which was initiated by DRG Panel 8 in 1992, and was sponsored after the merger of DRG and AGARD by the Human Factors and Medicine (HFM...

  9. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  10. Cooperative and Human Aspects of Software Engineering (CHASE 2010)

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; De Souza, Cleidson; Korpela, Mikko

    2010-01-01

    Software is created by people---software engineers---working in varied environments, under various conditions. Thus understanding cooperative and human aspect of software development is crucial to comprehend how methods and tools are used, and thereby improving the creation and maintenance...... research on human and cooperative aspects of software engineering. We aim at providing both a meeting place for the growing community and the possibility for researchers interested in joining the field to present their work in progress and get an overview over the field....... of software. Inspired by the hosting country's concept of co-responsibility -- ubuntu -- we especially invited contributions that address community-based development like open source development and sustainability of ICT eco-systems. The goal of this workshop is to provide a forum for discussing high quality...

  11. Computer aided systems human engineering: A hypermedia tool

    Science.gov (United States)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  12. Advancing biomaterials of human origin for tissue engineering

    OpenAIRE

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking in...

  13. Engineering Education Development to Enhance Human Skill in DENSO

    Science.gov (United States)

    Isogai, Emiko; Nuka, Takeji

    Importance of human skills such as communication or instruction capability to their staff members has recently been highlighted in a workplace, due to decreasing opportunity of face-to-face communication between supervisors and their staff, or Instruction capability through OJT (On the Job Training) . Currently, communication skills are being reinforced mainly through OJT at DENSO. Therefore, as part of supplemental support tools, DENSO has established comprehensive engineers training program on off-JT basis for developing human skills, covering from newly employeed enginners up to managerial class since 2003. This paper describes education activities and reports the results.

  14. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig./RW)

  15. Human Engineering of Space Vehicle Displays and Controls

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  16. Components of WWER engineering factors for peaking factors: status and trends

    International Nuclear Information System (INIS)

    Tsyganov, S.V.

    2010-01-01

    One of the topics for discussion at special working group 'Elaboration of the methodology for calculating the core design engineering factors' is the problem of engineering factor components. The list of components corresponds to the phenomena that are taken into account with the engineering factor. It is supposed the better understanding of the influenced phenomena is important stage for developing unified methodology. This paper presents some brief overview of components of the engineering factor for VVER core peaking factors as they are in the Kurchatov Institute methodology. The evolution of some components to less conservative values is observed. Author makes some assumptions as for the further progress in components assessment. The engineering factors providing observance of design limits at normal operation, should cover, with the set probability, the uncertainty, connected with process of core design. For definition of the value of factors it is necessary to define influence of these uncertainties on the investigated parameter of the reactor. Practice consists in defining all possible sources of uncertainties, to estimate influence of each of them, and on their basis to define total influence of all uncertainties. The important stage of a technique of factor calculation is a definition of the list influencing uncertainties. It is obvious that all characteristics of VVER core are known with some uncertainty-owing to manufacturing tolerances, the measurement errors, etc. However essential influence on the parameters connected with safety, render only a part from them. At list formation those characteristics get out only, whose influence is essential to the corresponding parameter. (Author)

  17. Optimizing the human engineering design of control panels in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Behrendt, V.; Krehbiehl, T.; Hartfiel, H.D.; Mannhaupt, H.R.

    1986-12-01

    The study contains two parts. In the first part an analytical procedure is developed to logically and reproducibly subdivide the control room personnel tasks resulting in a list of the elements (operations) and the structure (operations scheme) of a task. The second part lists together all knowledge of and influences on human engineering which are known at this time and which should be taken into account in designing control rooms. The content of this catalogue can best be used and presented by using a personal computer. Two fundamental different ways are possible to use the catalogue. Designing new control rooms or new parts of control rooms the results of the task analysis which should be done first, should guide the search in the catalogue to find the right human engineering factors. For assessing existing control room panels the performance shaping factors which are establishing the table of content, permit a quick access to the catalogue. Both the specific procedure of the task analysis and the different ways of access to the catalogue of human engineering knowledge for designing nuclear power plant control rooms have been proven by experienced system engineers and safety experts. The results are presented. They have been considered in this version of the study. (orig.) [de

  18. Factors affecting employee attrition among engineers and non-engineers in manufacturing industry

    Directory of Open Access Journals (Sweden)

    Bhardwaj, Shikha

    2017-12-01

    Full Text Available Almost every industry nowadays is badly affected by attrition. Retention of talented employees is the biggest problem faced by India Incorporation. In order to gather more insights on the talent crunch, the undertaken study was conducted on technical and non-technical jobs in manufacturing sector in Delhi NCR. Research has identified three major factors – Salary, Boss and Stress in the jobs after conducted interviews with around 50 technical and non-technical respondents. A set of questions were prepared and send to 120 employee but only 75 responded. The study shows a strong relationship between type of job and factors of attrition. Chi-square test clearly states strong relationship among two. Thus, any change in one will affect the other also. At the same time other important outcomes were that for technical jobs salary is the most important factor whereas non-technical Boss is the factor. Out 75, 63 were engineer and rest were non-engineer. The research can be further done to understand factors of attrition with other demographic variable.

  19. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    Science.gov (United States)

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  20. Human factors issues in fuel handling

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, J D; Iwasa-Madge, K M; Tucker, D A [Humansystems Inc., Milton, ON (Canada)

    1994-12-31

    The staff of the Atomic Energy Control Board wish to further their understanding of human factors issues of potential concern associated with fuel handling in CANDU nuclear power stations. This study contributes to that objective by analysing the role of human performance in the overall fuel handling process at Ontario Hydro`s Darlington Nuclear Generating Station, and reporting findings in several areas. A number of issues are identified in the areas of design, operating and maintenance practices, and the organizational and management environment. 1 fig., 4 tabs., 19 refs.

  1. Turning men into machines? Scientific management, industrial psychology, and the "human factor".

    Science.gov (United States)

    Derksen, Maarten

    2014-01-01

    In the controversy that broke out in 1911 over Frederick W. Taylor's scientific management, many critics contended that it ignored "the human factor" and reduced workers to machines. Psychologists succeeded in positioning themselves as experts of the human factor, and their instruments and expertise as the necessary complement of Taylor's psychologically deficient system. However, the conventional view that the increasing influence of psychologists and other social scientists "humanized" management theory and practice needs to be amended. Taylor's scientific management was not less human than later approaches such as Human Relations, but it articulated the human factor differently, and aligned it to its own instruments and practices in such a way that it was at once external to them and essential to their functioning. Industrial psychologists, on the other hand, at first presented themselves as engineers of the human factor and made the human mind an integral part of management. © 2014 Wiley Periodicals, Inc.

  2. National plan to enhance aviation safety through human factors improvements

    Science.gov (United States)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  3. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    Science.gov (United States)

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  4. The influence of environmental factors on bone tissue engineering.

    Science.gov (United States)

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  5. Study on human factor at NPP

    International Nuclear Information System (INIS)

    Nopp, I.

    1984-01-01

    Factors affecting the reliabilty of the reactor control by an NPP operator are considered on the base of the Czechoslovakia NPP operating experience. The reliability level of NPP operators depends on objective factors (conditions and regime of labour) determining the labour productivity and on subjective ones (psychological morale, physical and mental abilities and occupational level of personnel). Problems of the effect of physical and mental abilities and professional level on the reliability of personnel are considered to be the most important ones. The effect of individual abilities and specific features of the human body on changes in his occupational abilities can be estimated only to a certain degree

  6. Analysis of Human Error Types and Performance Shaping Factors in the Next Generation Main Control Room

    International Nuclear Information System (INIS)

    Sin, Y. C.; Jung, Y. S.; Kim, K. H.; Kim, J. H.

    2008-04-01

    Main control room of nuclear power plants has been computerized and digitalized in new and modernized plants, as information and digital technologies make great progresses and become mature. Survey on human factors engineering issues in advanced MCRs: Model-based approach, Literature survey-based approach. Analysis of human error types and performance shaping factors is analysis of three human errors. The results of project can be used for task analysis, evaluation of human error probabilities, and analysis of performance shaping factors in the HRA analysis

  7. A human factors approach to effective maintenance

    International Nuclear Information System (INIS)

    Penington, J.; Shakeri, S.

    2006-01-01

    Traditionally in the field of Human Factors within the nuclear industry, the focus has been to identify the potential for human errors in operating tasks, and develop strategies to prevent their occurrence, provide recovery mechanisms, and mitigate the consequences of error as appropriate. Past experience has demonstrated however a significant number of human errors within the nuclear industry occur during maintenance tasks. It is for this reason, and the fact that our nuclear power plants are ageing and increasingly in need of maintenance, that the industry must pay more attention to maintenance tasks. The purpose of this paper is to present a framework for effective maintenance programs, and based upon this framework discuss an approach (an audit tool) that can be used to both design such a program, and to assess existing programs. In addition, this tool can form the basis of cost benefit decisions relating to priorities for improvements to existing programs. (author)

  8. Human factors analysis and design methods for nuclear waste retrieval systems. Volume II. A compendium of human factors design data

    International Nuclear Information System (INIS)

    Casey, S.M.

    1980-04-01

    This document is a compilation of human factors engineering design recommendations and data, selected and organized to assist in the design of a nuclear waste retrieval system. Design guidelines from a variety of sources have been evaluated, edited, and expanded for inclusion in this document, and, where appropriate, portions of text from selected sources have been included in their entirety. A number of human factors engineering guidelines for equipment designers have been written over the past three decades, each tailored to the needs of the specific system being designed. In the case of this particular document, a review of the preliminary human operator functions involved in each phase of the retrieval process was performed, resulting in the identification of areas of design emphasis upon which this document should be based. Documents containing information and design data on each of these areas were acquired, and data and design guidelines related to the previously identified areas of emphasis were extracted and reorganized. For each system function, actions were first assigned to operator and/or machine, and the operator functions were then described. Separate lists of operator functions were developed for each of the areas of retrieval activities - survey and mapping, remining, floor flange emplacement, plug and canister overcoring, plug and canister removal and transport, and CWSRS activity. These functions and the associated man-machine interface were grouped into categories based on task similarity, and the principal topics of human factors design emphasis were extracted. These topic areas are reflected in the contents of the 12 sections of this document

  9. Immune Defence Factors In Human Milk

    Directory of Open Access Journals (Sweden)

    Kumar Sanjeev

    1985-01-01

    Full Text Available Scientific evidence is accumulating to prove the nutritional, anti-infective, anti-fertility, psychosomal and economic advantages of breast-feeding. A number of studies have shown that breast milk protects against diarrheal, respiratory and other infections. Its value in protecting against allergy has also been established. This article reviews the studies on various immune defence factors present in the human milk. The available scientific knowledge makes a very strong case in favour of promoting breast-feeding.

  10. The development of human factors technologies -The development of human factors experimental evaluation techniques-

    International Nuclear Information System (INIS)

    Shim, Bong Sik; Oh, In Suk; Cha, Kyung Hoh; Lee, Hyun Chul

    1995-07-01

    In this year, we studied the followings: 1) Development of operator mental workload evaluation techniques, 2) Development of a prototype for preliminary human factors experiment, 3) Suitability test of information display on a large scale display panel, 4) Development of guidelines for VDU-based control room design, 5) Development of integrated test facility (ITF). 6) Establishment of an eye tracking system, and we got the following results: 1) Mental workload evaluation techniques for MMI evaluation, 2) PROTOPEX (PROTOtype for preliminary human factors experiment) for preliminary human factors experiments, 3) Usage methods of APTEA (Analysis-Prototyping-Training-Experiment-Analysis) experiment design, 4) Design guidelines for human factors verification, 5) Detail design requirements and development plan of ITF, 6) Eye movement measurement system. 38 figs, 20 tabs, 54 refs. (Author)

  11. Double Shell Tank (DST) Human Factors Study

    International Nuclear Information System (INIS)

    CHAFFEE, G.A.

    1994-01-01

    This report documents the data collection and analyses that were performed in development of material to be used in the Human Factors chapter for the upgrade to the Safety Analysis Report (SAR) for the Double-Shell Tank Farms (DSTF). This study was conducted to collect the data that is necessary to prepare the Human Factors chapter for the upgrade of the SAR for the DSTF. Requirements for the HF chapter of the SAR generally dictate that the facility management describe how the consideration of operator capabilities and limitations and operating experience are used in ensuring the safe and effective operation of the facility. Additionally, analysis to indicate the contribution of human error to the safety basis accidents or events must be reported. Since the DSTF is a mature operating facility and the requirement to prepare a HF chapter is new, it was not expected that the consideration of HF principles would be an explicit part of DSTF operations. It can be expected, however, that the programs that guide the daily operations at the DSTF contain provisions for the consideration of the needs of their operating personnel and lessons learned from prior experience. Consideration of both the SAR requirements and the nature of the DSTF operations led to the following objectives being defined for the study: (1) to identify the programs at the OSTF where human performance may be considered; (2) to describe how HF principles and operating experience are used to ensure safe and reliable human performance at the DSTF; (3) to describe how HF principles and operating experience are considered as modifications or improvements are made at the DSTF; and (4) to perform task analysis sufficient to understand the potential for human error in OSTF operations

  12. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  13. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.

    Science.gov (United States)

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.

  14. HOW DO RADIOLOGISTS USE THE HUMAN SEARCH ENGINE?

    Science.gov (United States)

    Wolfe, Jeremy M; Evans, Karla K; Drew, Trafton; Aizenman, Avigael; Josephs, Emilie

    2016-06-01

    Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search? © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Implication of human factors in terms of safety

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2001-01-01

    A critical accident of JCO occurred on September 30, 1999 gave a large impact not only to common society but also to nuclear energy field. This accident occurred by direct reason perfectly out of forecasting of the participants of nuclear energy, where a company made up a guideline violating from business allowance and safety rule and workmen also operated under a procedure out of the guideline. After the accident, a number of countermeasures on equipments, rules, and regulations were carried out, but discussion on software such as their operating methods, concrete regulation on business and authority of operators, and training of specialists seems to be much late. Safety is a problem on a complex system, containing not only hardware but also software such as human, organization, society, and so on. Then, here was discussed on a problem directly faced by conventional safety, engineering centering at hardware through thinking of a problem on human factors. (G.K.)

  16. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    International Nuclear Information System (INIS)

    Kaye, R.D.; Henriksen, K.; Jones, R.; Morisseau, D.S.; Serig, D.I.

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable

  17. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.D.; Henriksen, K.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable.

  18. Seasonal variation in human reproduction: environmental factors.

    Science.gov (United States)

    Bronson, F H

    1995-06-01

    Almost all human populations exhibit seasonal variation in births, owing mostly to seasonal variation in the frequency of conception. This review focuses on the degree to which environmental factors like nutrition, temperature and photoperiod contribute to these seasonal patterns by acting directly on the reproductive axis. The reproductive strategy of humans is basically that of the apes: Humans have the capacity to reproduce continuously, albeit slowly, unless inhibited by environmental influences. Two, and perhaps three, environmental factors probably act routinely as seasonal inhibitors in some human populations. First, it seems likely that ovulation is regulated seasonally in populations experiencing seasonal variation in food availability. More specifically, it seems likely that inadequate food intake or the increased energy expenditure required to obtain food, or both, can delay menarche, suppress the frequency of ovulation in the nonlactating adult, and prolong lactational amenorrhea in these populations on a seasonal basis. This action is most easily seen in tropical subsistence societies where food availability often varies greatly owing to seasonal variation in rainfall; hence births in these populations often correlate with rainfall. Second, it seems likely that seasonally high temperatures suppress spermatogenesis enough to influence the incidence of fertilization in hotter latitudes, but possibly only in males wearing clothing that diminishes scrotal cooling. Since most of our knowledge about this phenomenon comes from temperate latitudes, the sensitivity of spermatogenesis in both human and nonhuman primates to heat in the tropics needs further study. It is quite possible that high temperatures suppress ovulation and early embryo survival seasonally in some of these same populations. Since we know less than desired about the effect of heat stress on ovulation and early pregnancy in nonhuman mammals, and nothing at all about it in humans or any of the

  19. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  20. A Human Factors Perspective on Alarm System Research and Development 2000 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Curt Braun; John Grimes; Eric Shaver; Ronald Boring (Principal Investigator)

    2011-09-01

    By definition, alarms serve to notify human operators of out-of-parameter conditions that could threaten equipment, the environment, product quality and, of course, human life. Given the complexities of industrial systems, human machine interfaces, and the human operator, the understanding of how alarms and humans can best work together to prevent disaster is continually developing. This review examines advances in alarm research and development from 2000 to 2010 and includes the writings of trade professionals, engineering and human factors researchers, and standards organizations with the goal of documenting advances in alarms system design, research, and implementation.

  1. Human Pluripotent Stem Cells to Engineer Blood Vessels.

    Science.gov (United States)

    Chan, Xin Yi; Elliott, Morgan B; Macklin, Bria; Gerecht, Sharon

    2018-01-01

    Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.

  2. Human-Machine Systems concepts applied to Control Engineering Education

    OpenAIRE

    Marangé , Pascale; Gellot , François; Riera , Bernard

    2008-01-01

    International audience; In this paper, we interest us to Human-Machine Systems (HMS) concepts applied to Education. It is shown how the HMS framework enables to propose original solution in matter of education in the field of control engineering. We focus on practical courses on control of manufacturing systems. The proposed solution is based on an original use of real and large-scale systems instead of simulation. The main idea is to enable the student, whatever his/her level to control the ...

  3. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    Science.gov (United States)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  4. Human factors activities in teleoperator development at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Draper, J.V.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. Consequently, human factors issues which affect teleoperator performance must be addressed. This papers surveys research and development activities carried out by the human factors group within the Remote Control Engineering Task of the CFRP

  5. Application of fuzzy synthetic assessment to assess human factors design level on reactor control panel

    International Nuclear Information System (INIS)

    Peng Xuecheng

    1999-01-01

    Reactor control panel design level on human factors must be considered by designer. The author evaluated the human factor design level of arrangement and combinations including the switch buttons, meter dials and indication lamps on Minjiang Reactor and High-Flux Engineer Test Reactor (HFETR) critical device by application of fuzzy synthetic assessment method in mathematics. From the assessment results, the advantages and shortcomings are fount, and some modification suggestions have also been proposed

  6. An Overview of the Application of Human Factors Guidance to Control Room Design

    International Nuclear Information System (INIS)

    Yondola, Paul R.; Karlewicz, George T.

    2002-01-01

    A new power plant design has the goal of making major improvements in cost and ease of operation over previous designs. Improvements in the way information is organized and presented to control room operators based on established Human Factors Engineering (HFE) criteria is key to achieving these goals. An overview of the process and methods being employed in an ongoing design effort will be discussed, including the ways in which current Human Factors guidance is being applied in a unique operating environment

  7. Human Factors in Training - Space Medicine Proficiency Training

    Science.gov (United States)

    Connell, Erin; Arsintescu, Lucia

    2009-01-01

    The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Work on medical training has been conducted in collaboration with the Medical Training Group at the Space Life Sciences Directorate and with Wyle Lab which provides medical training to crew members, Biomedical Engineers (BMEs), and to flight surgeons under the JSC Space Life Sciences Directorate s Bioastronautics contract. The space medical training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground, and researchers at the Ames Research Center performed a literature review on medical errors. The work proposed for FY10 continues to build on this strong collaboration with the Space Medical Training Group and previous research. This abstract focuses on two areas of work involving Performance Support Tools for Space Medical Operations. One area of research building on activities from FY08, involved the feasibility of just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1

  8. Human Factors in Accidents Involving Remotely Piloted Aircraft

    Science.gov (United States)

    Merlin, Peter William

    2013-01-01

    This presentation examines human factors that contribute to RPA mishaps and provides analysis of lessons learned. RPA accident data from U.S. military and government agencies were reviewed and analyzed to identify human factors issues. Common contributors to RPA mishaps fell into several major categories: cognitive factors (pilot workload), physiological factors (fatigue and stress), environmental factors (situational awareness), staffing factors (training and crew coordination), and design factors (human machine interface).

  9. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  10. Human factors in nuclear power plant operation

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Husseiny, A.A.

    1980-01-01

    An extensive effort is being devoted to developing a comprehensive human factor program that encompasses establishment of a data base for human error prediction using past operation experience in commercial nuclear power plants. Some of the main results of such an effort are reported including data retrieval and classification systems which have been developed to assist in estimation of operator error rates. Also, statistical methods are developed to relate operator error data to reactor type, age, and specific technical design features. Results reported in this paper are based on an analysis of LER's covering a six-year period for LWR's. Developments presently include a computer data management program, statistical model, and detailed error taxonomy

  11. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  12. Risky business: human factors in critical care.

    Science.gov (United States)

    Laussen, Peter C; Allan, Catherine K; Larovere, Joan M

    2011-07-01

    Remarkable achievements have occurred in pediatric cardiac critical care over the past two decades. The specialty has become well defined and extremely resource intense. A great deal of focus has been centered on optimizing patient outcomes, particularly mortality and early morbidity, and this has been achieved through a focused and multidisciplinary approach to management. Delivering high-quality and safe care is our goal, and during the Risky Business symposium and simulation sessions at the Eighth International Conference of the Pediatric Cardiac Intensive Care Society in Miami, December 2010, human factors, systems analysis, team training, and lessons learned from malpractice claims were presented.

  13. Diabetes technology and the human factor.

    Science.gov (United States)

    Liberman, A; Buckingham, B; Phillip, M

    2011-02-01

    When developing new technologies for human use the developer should take into consideration not only the efficacy and safety of the technology but also the desire and capabilities of the potential user. Any chronic disease is a challenge for both the patient and his/her caregivers. This statement is especially true in the case of patients with type 1 diabetes mellitus (T1DM) where adherence to therapy is crucial 24 hours a day 365 days a year. No vacation days are possible for the T1DM patient. It is therefore obvious why any new technology which is developed for helping patients cope with the disease should take into consideration the 'human factor' before, during and after the production process starts. There is no doubt that technology has changed the life of patients with T1DM in the last few decades, but despite the availability of new meters, new syringes, new sophisticated insulin pumps and continuous glucose sensors and communication tools, these technologies have not been well utilised by many patients. It is therefore important to understand why the technology is not always utilised and to find new ways to maximise use and benefits from the technology to as many patients as possible. The present chapter will review papers published in the last year where the patient's ability or willingness was an important factor in the success of the technology. We will try to understand why insulin pumps, glucose sensors and self-monitoring of blood glucose (SMBG) are not used enough or appropriately, whether there is a specific group that finds it more difficult than others to adopt new technologies and what can be done to overcome that issue. For this chapter we chose articles from a Public Medicine review of the literature related to human factors affecting the outcome of studies and of user acceptance of continuous glucose monitoring, insulin infusion pump therapy. We also searched the literature in the field of psychology in order to accurately define the problems

  14. Review of EPRI Nuclear Human Factors Program

    International Nuclear Information System (INIS)

    Hanes, L.F.; O'Brien, J.F.

    1996-01-01

    The Electric Power Research Institute (EPRI) Human Factors Program, which is part of the EPRI Nuclear Power Group, was established in 1975. Over the years, the Program has changed emphasis based on the shifting priorities and needs of the commercial nuclear power industry. The Program has produced many important products that provide significant safety and economic benefits for EPRI member utilities. This presentation will provide a brief history of the Program and products. Current projects and products that have been released recently will be mentioned

  15. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    Science.gov (United States)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  16. Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments.

    Science.gov (United States)

    Cipitria, Amaia; Salmeron-Sanchez, Manuel

    2017-08-01

    Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Interaction of human factor X with thromboplastin].

    Science.gov (United States)

    Kiselev, S V; Zubairov, D M; Timarbaev, V N

    2003-01-01

    The binding of 125I-labeled human factor X to native and papaine-treated tissue tromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard analysis suggests the existence of high (Kd=l,8 x10(-9) M) and low affinity binding sites on the thromboplastin surface. The removal of Ca2+ reduced affinity of factor X to the high affinity sites. This was accompanied by some increase of their number. Proteolysis by papaine decreased affinity of high affinity sites and caused the increase of their number in the presence of Ca2+. In the absence of Ca2+ the affinity remained unchanged, but the number of sites decreased. At low concentrations of factor X positive cooperativity for high affinity binding sites was observed. It did not depend on the presence of Ca2+. The results indirectly confirm the role of hydrophobic interactons in Ca2+ dependent binding of factor X to thromboplastin and the fact that heterogeneity of this binding is determined by mesophase structure of the thromboplastin phospholipids.

  18. Incorporation of human factors into design change processes - a regulator's perspective

    International Nuclear Information System (INIS)

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guidelines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  19. Leveraging Health Care Simulation Technology for Human Factors Research: Closing the Gap Between Lab and Bedside.

    Science.gov (United States)

    Deutsch, Ellen S; Dong, Yue; Halamek, Louis P; Rosen, Michael A; Taekman, Jeffrey M; Rice, John

    2016-11-01

    We describe health care simulation, designed primarily for training, and provide examples of how human factors experts can collaborate with health care professionals and simulationists-experts in the design and implementation of simulation-to use contemporary simulation to improve health care delivery. The need-and the opportunity-to apply human factors expertise in efforts to achieve improved health outcomes has never been greater. Health care is a complex adaptive system, and simulation is an effective and flexible tool that can be used by human factors experts to better understand and improve individual, team, and system performance within health care. Expert opinion is presented, based on a panel delivered during the 2014 Human Factors and Ergonomics Society Health Care Symposium. Diverse simulators, physically or virtually representing humans or human organs, and simulation applications in education, research, and systems analysis that may be of use to human factors experts are presented. Examples of simulation designed to improve individual, team, and system performance are provided, as are applications in computational modeling, research, and lifelong learning. The adoption or adaptation of current and future training and assessment simulation technologies and facilities provides opportunities for human factors research and engineering, with benefits for health care safety, quality, resilience, and efficiency. Human factors experts, health care providers, and simulationists can use contemporary simulation equipment and techniques to study and improve health care delivery. © 2016, Human Factors and Ergonomics Society.

  20. Human factors review of CFMS displays for Ulchin Nuclear Power Unit 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Baek, Seung Min; Kim, Jung Taek; Park, Jae Chang; Lee, Jung Woon; Oh, In Suk; Lee, Joon Whan; Jung, Kwang Tae; Cha, Hye Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    This report describes the human factors review of CFMS displays for Ulchin 3 and 4 by the following four subjects; At first, by reviewing issues regarding the design process of present CFMS, human factors engineering program plan (HFEPP) and human factors verification and validation plan Were proposed to accomplish the completeness of design word; Secondly, researches and developments were integrated into the review results at the point of suitability of CFMS design concept and basic function; For the third, availability and suitability were assessed according to human factors evaluation criteria on the CFMS display design, and overall effectiveness was also evaluated in parts; For the fourth, recommendations were made to human factors problems in accordance with their importance and an implementation plan was suggested for the resolution of problems. 54 refs., 34 tabs., 42 figs. (author)

  1. First International Workshop on Human Factors in Modeling (HuFaMo 2015)

    DEFF Research Database (Denmark)

    Störrle, Harald; Chaudron, Michel R. V.; Amaral, Vasco

    2015-01-01

    human factors in modeling. Our goal is to improve the state of the science and professionalism in empirical research in the Model Based Engineering community. Typical examples of research questions might consider the usability of a certain approach, such as a method or language, or the emotional states......Modeling is a human-intensive enterprise. As such, many research questions related to modeling can only be answered by empirical studies employing human factors. The International Workshop Series on Human Factors in Modeling (HuFaMo) is dedicated to the discussion of empirical research involving...... or personal judgements of modelers. While concerned with foundations and framework support for modeling, the community has been somehow neglecting the issue of human factors in this context. There is a growing need from the community concerned with quality factors to understand the best practices...

  2. Human factors review of nuclear power plant control room design. Summary report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Gonzalez, W.R.; Parsons, S.O.

    1976-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The human factors aspects of five representative nuclear power plant control rooms were evaluated using such methods as a checklist-guided observation system, structured interviews with operators and trainers, direct observations of operator behavior, task analyses and procedure evaluation, and historical error analyses. The human factors aspects of design practices are illustrated, and many improvements in current practices are suggested. The study recommends that a detailed set of applicable human factors standards be developed to stimulate a uniform and systematic concern for human factors in design considerations

  3. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Bohr, E.; Hennig, J.; Preuss, W.; Thau, G.

    1977-01-01

    This report describes the results of a study on the functions of operating and maintenance personnel in nuclear power plants. Since an effective power plant design must take into systematic account the possibilities and limitations of the human element, the basic aim of the study was to identify what the human operators are required to do and how they achieve it. Information was acquired by direct observation and by interviews as well as by evaluation of written documents (e.g. incident reports, procedures manuals, work regulations) and of working conditions (e.g. equipment and workplace design). A literature search and evaluation carried out within the scope of this study has been published as a separate document. The main part of the report is devoted to discussions and conclusions on selected areas of potential improvements. The topics include control room design, factors of the physical environment including radiation, problems of maintainability, design of written documents, problems in communicating information, design and control of tasks, placement and training. A separate section deals with problems of recording human errors. (orig.) [de

  4. Use of search engine optimization factors for Google page rank prediction

    OpenAIRE

    Tvrdi, Barbara

    2012-01-01

    Over the years, search engines have become an important tool for finding information. It is known that users select the link on the first page of search results in 62% of the cases. Search engine optimization techniques enable website improvement and therefore a better ranking in search engines. The exact specification of the factors that affect website ranking is not disclosed by search engine owners. In this thesis we tried to choose some most frequently mentioned search engine optimizatio...

  5. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    OpenAIRE

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering’s pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the humanistic side of engineering with illustrative examples of what appealing to the humanistic side of engineering can look like in a classroom setting, a...

  6. Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials.

    Science.gov (United States)

    Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A

    2017-08-01

    Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. A systems engineering perspective on the human-centered design of health information systems.

    Science.gov (United States)

    Samaras, George M; Horst, Richard L

    2005-02-01

    The discipline of systems engineering, over the past five decades, has used a structured systematic approach to managing the "cradle to grave" development of products and processes. While elements of this approach are typically used to guide the development of information systems that instantiate a significant user interface, it appears to be rare for the entire process to be implemented. In fact, a number of authors have put forth development lifecycle models that are subsets of the classical systems engineering method, but fail to include steps such as incremental hazard analysis and post-deployment corrective and preventative actions. In that most health information systems have safety implications, we argue that the design and development of such systems would benefit by implementing this systems engineering approach in full. Particularly with regard to bringing a human-centered perspective to the formulation of system requirements and the configuration of effective user interfaces, this classical systems engineering method provides an excellent framework for incorporating human factors (ergonomics) knowledge and integrating ergonomists in the interdisciplinary development of health information systems.

  8. Human factors quantification via boundary identification of flight performance margin

    Directory of Open Access Journals (Sweden)

    Yang Changpeng

    2014-08-01

    Full Text Available A systematic methodology including a computational pilot model and a pattern recognition method is presented to identify the boundary of the flight performance margin for quantifying the human factors. The pilot model is proposed to correlate a set of quantitative human factors which represent the attributes and characteristics of a group of pilots. Three information processing components which are influenced by human factors are modeled: information perception, decision making, and action execution. By treating the human factors as stochastic variables that follow appropriate probability density functions, the effects of human factors on flight performance can be investigated through Monte Carlo (MC simulation. Kernel density estimation algorithm is selected to find and rank the influential human factors. Subsequently, human factors are quantified through identifying the boundary of the flight performance margin by the k-nearest neighbor (k-NN classifier. Simulation-based analysis shows that flight performance can be dramatically improved with the quantitative human factors.

  9. Europe Chapter of the Human Factors and Ergonomics Society Meeting

    National Research Council Canada - National Science Library

    de

    2002-01-01

    The Final Proceedings for Europe Chapter of the Human Factors and Ergonomics Society Meeting, 7 November 2001 - 9 November 2001 This is an interdisciplinary conference in human factors and ergonomics...

  10. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    Science.gov (United States)

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering's pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the…

  11. The suitability of human adipose-derived stem cells for the engineering of ligament tissue.

    Science.gov (United States)

    Eagan, Michael J; Zuk, Patricia A; Zhao, Ke-Wei; Bluth, Benjamin E; Brinkmann, Elyse J; Wu, Benjamin M; McAllister, David R

    2012-10-01

    Rupture of the anterior cruciate ligament (ACL) is the one of the most common sports-related injuries. With its poor healing capacity, surgical reconstruction using either autografts or allografts is currently required to restore function. However, serious complications are associated with graft reconstructions and the number of such reconstructions has steadily risen over the years, necessitating the search for an alternative approach to ACL repair. Such an approach may likely be tissue engineering. Recent engineering approaches using ligament-derived fibroblasts have been promising, but the slow growth rate of such fibroblasts in vitro may limit their practical application. More promising results are being achieved using bone marrow mesenchymal stem cells (MSCs). The adipose-derived stem cell (ASC) is often proposed as an alternative choice to the MSC and, as such, may be a suitable stem cell for ligament engineering. However, the use of ASCs in ligament engineering still remains relatively unexplored. Therefore, in this study, the potential use of human ASCs in ligament tissue engineering was initially explored by examining their ability to express several ligament markers under growth factor treatment. ASC populations treated for up to 4 weeks with TGFβ1 or IGF1 did not show any significant and consistent upregulation in the expression of collagen types 1 and 3, tenascin C and scleraxis. While treatment with EGF or bFGF resulted in increased tenascin C expression, increased expression of collagens 1 and 3 were never observed. Therefore, simple in vitro treatment of human ASC populations with growth factors may not stimulate their ligament differentiative potential. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Review of human factors in operator aids development at ORNL

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.

    1983-01-01

    Three related Oak Ridge National Laboratory (ORNL) projects in the area of human factors in diagnostic aids are described. The goal of the first, sponsored by the Electric Power Research Institute (EPRI RP2184), is to provide guidance to nuclear-utility engineers in the selection and retrofit of computer-generated display systems in nuclear-plant control rooms. The goal of the second, sponsored by the Office of Research of the Nuclear Regulatory Commission (NRC), is to provide the NRC with a preview of some of the operator aids currently under development by industry for the purpose of assessing the applicability of current requirements. The goal of the third, also sponsored by the NRC, is to develop a methodology to determine the proper allocation of function between an operator and an automated system. The status of each project is given, together with the current and expected findings

  13. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant

  14. Humanism Factors and Islam Viewpoint from Motahri's Point of View

    Science.gov (United States)

    Yousefi, Zargham; Yousefy, Alireza; Keshtiaray, Narges

    2015-01-01

    The aim of this research is to criticize liberal humanism based on Islam viewpoint emphasizing Motahri's point of view. In this paper, the researchers tried to identify liberalism humanism factors with analytical look in order to present a new categorization called "main factor of liberal humanism". Then, each factor was studied and…

  15. Engineering and Humanities Students' Strategies for Vocabulary Acquisition: An Iranian Experience

    Directory of Open Access Journals (Sweden)

    Hassan Soodmand Afshar

    2014-05-01

    Full Text Available The present study set out to investigate the differences between EAP (English for Academic Purposes students of Humanities and Engineering in terms of vocabulary strategy choice and use. One hundred and five undergraduate Iranian students (39 students from Engineering Faculty and 66 from Humanities Faculty studying at Bu-Ali Sina University Hamedan, during the academic year of 2011–2012 participated in this study. For data collection purposes, a pilot-tested factor-analyzed five-point Likert-scale vocabulary learning strategies questionnaire (VLSQ containing 45 statements was adopted. The results of independent samples t-test indicated that, overall, the two groups were not significantly different in the choice and use of vocabulary learning strategies. However, running Chi square analyses, significant differences were found in individual strategy use in 6 out of 45 strategies. That is, while Humanities students used more superficial and straightforward strategies like repetition strategy and seeking help from others, the Engineering students preferred much deeper, thought-provoking and sophisticated strategies like using a monolingual dictionary and learning vocabulary through collocations and coordinates. Further, the most and the least frequently used vocabulary learning strategies by the two groups were specified, out of which only two strategies in each category were commonly shared by both groups. The possible reasons why the results have turned out to be so as well as the implications of the study are discussed in details in the paper.

  16. Organizational crisis management: the human factor.

    Science.gov (United States)

    Lewis, Gerald

    2005-01-01

    While many professionals are quite competent when dealing with operational aspects of organizational continuity, often the "human factor" does not receive adequate attention. This article provides a brief overview of a soon to be published book by the same title. It provides a comprehensive understanding of the ubiquitous yet complex reactions of the workforce to a wide array of organizational disruptions. It goes beyond the short term intervention of debriefings to describe the more extensive pre and post incident strategies required to mitigate the impact of crises on the workforce. It is important to remember: "An organization can get its phone lines back up and have its computers backed up...but its workers may still be messed up."

  17. Human factors and ergonomics for primary care.

    Science.gov (United States)

    Bowie, Paul; Jeffcott, Shelly

    2016-03-01

    In the second paper of this series, we provide a brief overview of the scientific discipline of human factors and ergonomics (HFE). Traditionally the HFE focus in healthcare has been in acute hospital settings which are perceived to exhibit characteristics more similar to other high-risk industries already applying related principles and methods. This paper argues that primary care is an area which could benefit extensively from an HFE approach, specifically in improving the performance and well-being of people and organisations. To this end, we define the purpose of HFE, outline its three specialist sub-domains (physical, cognitive and organisational HFE) and provide examples of guiding HFE principles and practices. Additionally, we describe HFE issues of significance to primary care education, improvement and research and outline early plans for building capacity and capability in this setting.

  18. The human factor in maintenance work

    International Nuclear Information System (INIS)

    Hansson, B.

    1996-01-01

    In most of the maintenance works performed at operating plants, the personnel is the warranty for both efficient performance and good quality. To reach the right quality level in performance, the personnel needs adequate tools and of course a maintenance strategy and an organisation that supports the efficient work. The human factor is mostly referred to when something went wrong and analyses are done. There is a great potential of doing preventive analysis. The presentation will focus on experience in this field and what has been done at Barsebaeck NPP to analyse and improve the maintenance work. As maintenance work can't be seen as an isolated area, the rest of the plant organisation is included in the presentation. (author) figs., tabs

  19. Dosimetry of hands and human factor

    International Nuclear Information System (INIS)

    Harr, R.

    2008-12-01

    The human factor in facilities where open radioactive sources are managed it can be controlled through the use of the ring dosimetry, however, that these devices only provide qualitative information that is not extrapolated to legislative limits. lt is present the case analysis of hands dosimetry of female person with responsibility for professional standards and a very high profile with ratings that allow her to have a high level of knowledge of the basic standards, and because with an attitude and a culture rooted of radiation protection, among other qualities. Their records reveal a trend in which monthly doses are below the 7 mSv, and only occasionally are between 7 and 12 mSv per month and hand. The other case correspond to a technician, trained in radiological techniques, also with a high profile, with two courses for occupationally exposed personnel more than 10 annual retraining, and work experience of over 10 years as occupationally exposed personnel, in which knowledge of standards and because of the entrenched culture of radiation protection and their interest degree in the care of their exposure is still in a phase half, in this case also shows a trend in the monthly dose where found registers between 7 and 11 mSv per month and hand. The third case is of a second technician with less experience and most basic knowledge, his dose register not show a real trend, sometimes be found reads of irregular values as if the dosimeter is not used and some other times as if misused by exposing to purpose (was observed at least one reading above the monthly 30 mSv). By way of conclusion, it is noted that the hands dosimetry is a useful tool to monitor transactions through the data compilation susceptible to analysis with variations which can be placed in the context of the human factor. (Author)

  20. Engineering Data Compendium. Human Perception and Performance. Volume 2

    Science.gov (United States)

    1988-01-01

    Solanch Consultant J.W. Whitlow Rutgers University Section 10.0 Effects of Environmental Stressors Colin Corbridge Institute of Sound Vibration...surrounding discs. Human Factors, 14, 139-148. 2. Drury , C, & Clement. M. (1978). The effect of area, density, and number of background charac- ters...nontargets are often difficult to distinguish. Key References * 1. Drury , C., & Clement, M. (1978). The effect of area, density, and number of

  1. A human transcription factor in search mode.

    Science.gov (United States)

    Hauser, Kevin; Essuman, Bernard; He, Yiqing; Coutsias, Evangelos; Garcia-Diaz, Miguel; Simmerling, Carlos

    2016-01-08

    Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Human factors paradigm and customer care perceptions.

    Science.gov (United States)

    Clarke, Colin; Eales-Reynolds, Lesley-Jane

    2015-01-01

    The purpose of this paper is to examine if customer care (CC) can be directly linked to patient safety through a human factors (HF) framework. Data from an online questionnaire, completed by a convenience healthcare worker sample (n=373), was interrogated using thematic analysis within Vincent et al.'s (1998) HF theoretical framework. This proposes seven areas affecting patient safety: institutional context, organisation and management, work environment, team factors, individual, task and patient. Analysis identified responses addressing all framework areas. Responses (597) principally focused on work environment 40.7 per cent (n=243), organisation and management 28.8 per cent (n=172). Nevertheless, reference to other framework areas were clearly visible within the data: teams 10.2 per cent (n=61), individual 6.7 per cent (n=40), patients 6.0 per cent (n=36), tasks 4.2 per cent (n=24) and institution 3.5 per cent (n=21). Findings demonstrate congruence between CC perceptions and patient safety within a HF framework. The questionnaire requested participants to identify barriers to rather than CC enablers. Although this was at a single site complex organisation, it was similar to those throughout the NHS and other international health systems. CC can be viewed as consonant with patient safety rather than the potentially dangerous consumerisation stance, which could ultimately compromise patient safety. This work provides an original perspective on the link between CC and patient safety and has the potential to re-focus healthcare perceptions.

  3. Human Factors in Training - Space Flight Resource Management Training

    Science.gov (United States)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    . Work on SFRM training has been conducted in collaboration with the Expedition Vehicle Division at the Mission Operations Directorate (MOD) and with United Space Alliance (USA) which provides training to Flight Controllers. The space flight resource management training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at the Ames Research Center have been investigating team work and distributed decision making processes to develop a generic SFRM training framework for flight controllers. The work proposed for FY10 continues to build on this strong collaboration with MOD and the USA Training Group as well as previous research in relevant domains such as aviation. In FY10, the work focuses on documenting and analyzing problem solving strategies and decision making processes used in MCC by experienced FCers.

  4. Human factors in the Canadian nuclear industry: future needs

    International Nuclear Information System (INIS)

    Harrison, F.

    2008-01-01

    Currently the industry is facing refurbishment and new builds. At present most licensees in Canada do not have sufficient numbers of Human Factors staff. As a result, the activities of the CNSC are too often focused on providing guidance regarding the application of Human Factors, in addition to reviewing work submitted by the licensee. Greater efficiencies for both the licensee and the CNSC could be realized if licensee staff had greater Human Factors expertise. Strategies for developing Human Factors expertise should be explored through cooperative partnerships with universities, which could be encouraged to include Human Factors courses specific to nuclear. (author)

  5. Human Factors in Training: Space Medical Proficiency Training

    Science.gov (United States)

    Byrne, Vicky E.; Barshi, I.; Arsintescu, L.; Connell, E.

    2010-01-01

    The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and the International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to the ISS, medical equipment will be located on the ISS, and carried into CEV in the event of an emergency. Flight surgeons (FS) on the ground in Mission Control will be expected to direct the crew medical officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. The space medical training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). This is a joint project consisting of human factors team from the Ames Research Center (ARC) with Immanuel Barshi as Principal Investigator and the Johnson Space Center (JSC). Human factors researchers at JSC have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground, and researchers at the Ames Research Center performed a literature review on medical errors. Work on medical training has been conducted in collaboration with the Medical Training Group at the Johnson Space Center (JSC) and with Wyle Laboratories that provides medical training to crew members, biomedical engineers (BMEs), and to flight surgeons under the Bioastronautics contract. One area of research building on activities from FY08, involved the feasibility of just-in-time (JIT) training techniques and concepts for real-time medical procedures. A second area of research involves FS performance support tools. Information needed by the FS during the ISS mission

  6. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    Directory of Open Access Journals (Sweden)

    Dyondi D

    2012-12-01

    Full Text Available Deepti Dyondi,1 Thomas J Webster,2 Rinti Banerjee11Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; 2Nanomedicine Laboratories, Division of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF, and bone morphogenetic protein 7 (BMP7 were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.Keywords: bone tissue engineering, bone morphogenetic protein 7 (BMP7, basic fibroblast growth factor (bFGF, hydrogel, nanoparticles, osteoblasts

  7. Sensitivity evaluation of human factors for reliability of the containment spray system

    International Nuclear Information System (INIS)

    Tsujimura, Yasuhiro; Suzuki, Eiji

    1988-01-01

    Evaluation of the human reliability is one of the most difficult problems that deal with the safety and reliability of large systems, especially of the Engineered Safety Features (ESF) of the nuclear power plant. Influences of human factors on the reliability of the Containment Spray System in the ESF were estimated by using the FTA method in this paper. As a result, the adequacy of the system structure and the effects of human factors on variations of the design of the system structure were explained. (author)

  8. Proceedings of the international topical meeting on advances in human factors in nuclear power systems

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book presents the papers given at a conference on the human factors engineering of nuclear power plants. Topics considered at the conference included human modeling, artificial intelligence, expert systems, robotics and teleoperations, organizational issues, innovative applications, testing and evaluation, training systems technology, a modeling framework for crew decisions during reactor accident sequences, intelligent operator support systems, control algorithms for robot navigation, and personnel management

  9. The Insertion of Human Factors Concerns into NextGen Programmatic Decisions

    Science.gov (United States)

    Beard, Bettina L.; Holbrook, Jon Brian; Seely, Rachel

    2013-01-01

    Since the costs of proposed improvements in air traffic management exceed available funding, FAA decision makers must select and prioritize what actually gets implemented. We discuss a set of methods to help forecast operational and human performance issues and benefits before new automation is introduced. This strategy could minimize the impact of politics, assist decision makers in selecting and prioritizing potential improvements, make the process more transparent and strengthen the link between the engineering and human factors domains.

  10. Ergonomic (human factors) problems in design of NPPs. A review of TMI and Chernobyl accidents

    International Nuclear Information System (INIS)

    Huang Xiangrui; Zheng Fuyu; Gao Jia

    1994-01-01

    The general principle of ergonomic in design of NPPs is given and some causes of TMI and Chernobyl accidents from the view point of human factor engineering are reviewed. The paper also introduces some Ergonomic problems in design, operation and management of earlier NPPs. Some ergonomic principles of man-machine systems design have been described. Some proposals have been suggested for improving human reliability in NPPs

  11. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    Science.gov (United States)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  12. The science of human factors: separating fact from fiction.

    Science.gov (United States)

    Russ, Alissa L; Fairbanks, Rollin J; Karsh, Ben-Tzion; Militello, Laura G; Saleem, Jason J; Wears, Robert L

    2013-10-01

    Interest in human factors has increased across healthcare communities and institutions as the value of human centred design in healthcare becomes increasingly clear. However, as human factors is becoming more prominent, there is growing evidence of confusion about human factors science, both anecdotally and in scientific literature. Some of the misconceptions about human factors may inadvertently create missed opportunities for healthcare improvement. The objective of this article is to describe the scientific discipline of human factors and provide common ground for partnerships between healthcare and human factors communities. The primary goal of human factors science is to promote efficiency, safety and effectiveness by improving the design of technologies, processes and work systems. As described in this article, human factors also provides insight on when training is likely (or unlikely) to be effective for improving patient safety. Finally, we outline human factors specialty areas that may be particularly relevant for improving healthcare delivery and provide examples to demonstrate their value. The human factors concepts presented in this article may foster interdisciplinary collaborations to yield new, sustainable solutions for healthcare quality and patient safety.

  13. Motivational and Adaptational Factors of Successful Women Engineers

    Science.gov (United States)

    Bornsen, Susan Edith

    2012-01-01

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged…

  14. Human factors assessments of D and D technologies

    International Nuclear Information System (INIS)

    Carpenter, C.P.; Evans, T.T.; McCabe, B.

    2000-01-01

    On April 2, 1997, the US Secretary of Energy directed the US Assistant Secretary of Environmental Management and of Safety and Health to require field input of appropriate data to ensure that safety and health considerations were properly addressed in the Accelerating Cleanup: Focus on 2006 Plan. The US Department of Energy (DOE) field managers have committed to the Secretary that they will fully implement integrated safety management systems (ISMSs) at their respective sites by the end of fiscal year 1999. The Secretary has further directed that headquarters safety and health guidance be developed to support consistent and comprehensive project baseline summaries from the field. The Secretary has committed to institutionalizing ISMS as an integral component of the way the DOE conducts its business. The Defense Nuclear Facilities Safety Board continues to oversee and closely monitor the DOE's commitment to the safety and health of its workers. The DOE is committed to a management system approach to ensure that work is performed in a manner that protects the worker, public, and environment. The Deactivation and Decommissioning Focus Area (DDFA) is actively addressing the need to incorporate environmental safety and health (ES and H) considerations in developing technologies. The DDFA is partnered with the Operating Engineers National Hazmat Program (OENHP) to evaluate the ES and H considerations of the innovative and improved decontamination and decommissioning technologies. Part of the implementation of the ES and H work practices in the field is through a cooperative agreement between the National Energy Technology Laboratory (NETL) and the OENHP. The objective of this program is to establish an International Environmental Technology and Training Center to conduct human factors assessments and protocols on environmental technologies. The intent of the human factors assessments is to enhance the effectiveness and efficiency of the technologies and to enhance

  15. Human Factors, Habitability and Environmental Health and the Human Integration Design Handbook. Volume 2

    Science.gov (United States)

    Houbec, Keith; Tillman, Barry; Connolly, Janis

    2010-01-01

    For decades, Space Life Sciences and NASA as an Agency have considered NASA-STD-3000, Man-Systems Integration Standards, a significant contribution to human spaceflight programs and to human-systems integration in general. The document has been referenced in numerous design standards both within NASA and by organizations throughout the world. With research program and project results being realized, advances in technology and new information in a variety of topic areas now available, the time arrived to update this extensive suite of requirements and design information. During the past several years, a multi-NASA center effort has been underway to write the update to NASA-STD-3000 with standards and design guidance that would be applicable to all future human spaceflight programs. NASA-STD-3001 - Volumes 1 and 2 - and the Human Integration Design Handbook (HIDH) were created. Volume 1, Crew Health, establishes NASA s spaceflight crew health standards for the pre-flight, in-flight, and post-flight phases of human spaceflight. Volume 2, Human Factors, Habitability and Environmental Health, focuses on the requirements of human-system integration and how the human crew interacts with other systems, and how the human and the system function together to accomplish the tasks for mission success. The HIDH is a compendium of human spaceflight history and knowledge, and provides useful background information and research findings. And as the HIDH is a stand-alone companion to the Standards, the maintenance of the document has been streamlined. This unique and flexible approach ensures that the content is current and addresses the fundamental advances of human performance and human capabilities and constraints research. Current work focuses on the development of new sections of Volume 2 and collecting updates to the HIDH. The new sections in development expand the scope of the standard and address mission operations and support operations. This effort is again collaboration

  16. CAPTCHA Based on Human Cognitive Factor

    OpenAIRE

    Chowdhury, Mohammad Jabed Morshed; Chakraborty, Narayan Ranjan

    2013-01-01

    A CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an automatic security mechanism used to determine whether the user is a human or a malicious computer program. It is a program that generates and grades tests that are human solvable, but intends to be beyond the capabilities of current computer programs. CAPTCHA should be designed to be very easy for humans but very hard for machines. Unfortunately, the existing CAPTCHA systems while trying to maximize ...

  17. Human factor analysis and preventive countermeasures in nuclear power plant

    International Nuclear Information System (INIS)

    Li Ye

    2010-01-01

    Based on the human error analysis theory and the characteristics of maintenance in a nuclear power plant, human factors of maintenance in NPP are divided into three different areas: human, technology, and organization. Which is defined as individual factors, including psychological factors, physiological characteristics, health status, level of knowledge and interpersonal skills; The technical factors including technology, equipment, tools, working order, etc.; The organizational factors including management, information exchange, education, working environment, team building and leadership management,etc The analysis found that organizational factors can directly or indirectly affect the behavior of staff and technical factors, is the most basic human error factor. Based on this nuclear power plant to reduce human error and measures the response. (authors)

  18. HUMAN POTENTIAL AS A STRATEGIC FACTOR OF REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.M. Korobeynikov

    2008-12-01

    Full Text Available The article gives an insight of human potential as the strategic factor of regional development. The matter of human potential and its role in regional reproducing process is considered; regional intellectual potential as an integral part of human potential is analysed. The author outlines major directions of active social policy, aimed to develop regional human potential.

  19. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.

    Science.gov (United States)

    Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob

    2017-07-01

    Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.

  20. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  1. An investigation on factors influencing on human resources productivity

    Directory of Open Access Journals (Sweden)

    Masoumeh Seifi Divkolaii

    2014-05-01

    Full Text Available Human resources development is one of the most important components of any organization and detecting important factors influencing on human resources management plays essential role on the success of the firms. In this paper, we present an empirical investigation to determine different factors influencing productivity of human resources of Islamic Republic of Iran Broadcasting (IRIB in province of Mazandaran, Iran. The study uses analytical hierarchy process (AHP to rank 17 important factors and determines that personal characteristics were the most important factors followed by management related factors and environmental factors. In terms of personal characteristics, job satisfaction plays essential role on human resources development. In terms of managerial factors, paying attention on continuous job improvement by receiving appropriate training is the most important factor followed by welfare facilities for employees and using a system of reward/punishment in organization. Finally, in terms of environmental factors, occupational safety is number one priority followed by organizational rules and regulations.

  2. Investigation of evaluation methods for human factors education effectiveness

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fujimoto, Junzo; Sasou Kunihide; Hasegawa, Naoko

    2004-01-01

    Education effectiveness in accordance with investment is required in the steam of electric power regulation alleviation. Therefore, evaluation methods for human factors education effectiveness which can observe human factors culture pervading process were investigated through research activities on education effectiveness in universities and actual in house education in industry companies. As a result, the contents of evaluation were found to be the change of feeling for human factors and some improving proposals in work places when considering the purpose of human factors education. And, questionnaire is found to be suitable for the style of evaluation. In addition, the timing of evaluation is desirable for both just after education and after some period in work places. Hereafter, data will be collected using these two kinds of questionnaires in human factors education courses in CRIEPI and some education courses in utilities. Thus, education effectiveness evaluation method which is suitable for human factors will be established. (author)

  3. U.S. Nuclear Regulatory Commission human factors program plan

    International Nuclear Information System (INIS)

    1986-04-01

    The purpose of the U.S. Nuclear Regulatory Commission (NRC) Human Factors Program Plan is to ensure that proper consideration is given to human factors in the design and operation of nuclear facilities. This revised plan addresses human factors issues related to the operation of nuclear power plants (NPPs). The three issues of concern are (1) the activities planned to provide the technical bases to resolve the remaining tasks related to human factors as described in NUREG-0660, The NRC Action Plan Developed as a Result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements; (2) the need to address the additional human factors efforts that were identified during implementation of the Action Plan; and (3) the actual fulfillment of those developmental activities specified in Revision 1 of this plan. The plan represents a systematic approach for addressing high priority human factors concerns important to NPP safety in FY 1986 through 1987

  4. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  5. Pharmacokinetics of natural and engineered secreted factors delivered by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Jessica S Elman

    Full Text Available Transient cell therapy is an emerging drug class that requires new approaches for pharmacological monitoring during use. Human mesenchymal stem cells (MSCs are a clinically-tested transient cell therapeutic that naturally secrete anti-inflammatory factors to attenuate immune-mediated diseases. MSCs were used as a proof-of-concept with the hypothesis that measuring the release of secreted factors after cell transplantation, rather than the biodistribution of the cells alone, would be an alternative monitoring tool to understand the exposure of a subject to MSCs. By comparing cellular engraftment and the associated serum concentration of secreted factors released from the graft, we observed clear differences between the pharmacokinetics of MSCs and their secreted factors. Exploration of the effects of natural or engineered secreted proteins, active cellular secretion pathways, and clearance mechanisms revealed novel aspects that affect the systemic exposure of the host to secreted factors from a cellular therapeutic. We assert that a combined consideration of cell delivery strategies and molecular pharmacokinetics can provide a more predictive model for outcomes of MSC transplantation and potentially other transient cell therapeutics.

  6. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  7. Discussing the Effective Factors on Maintenance of Human Resources

    OpenAIRE

    Bahare Shahriari

    2016-01-01

    In this research, the author has elaborated on detection of effective factors on maintenance and retention of human resources. Since human resources are the most resources for obtaining competitive advantage, it is essential to pay attention to different dimensions of human resources management. One of these dimensions is retention of human resources. Factors such as providing correct and valid information at the time of recruitment, assigning tasks based on competence, existence of a clear c...

  8. Development of human factors evaluation techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Oh, I.S.; Lee, Y.H.; Lee, J.W.; Sim, B.S.

    1999-01-01

    This paper describes development of an operator task simulation analyzer and human factors evaluation techniques performed recently at Korea Atomic Energy Research Institute. The first is the SACOM (Simulation Analyzer with a Cognitive Operator Model) for the assessment of task performance by simulating control room operation. The latter has two objectives: to establish a human factors experiment facility, the Integrated Test Facility (ITF), and to establish techniques for human factors experiments. (author)

  9. A regulatory perspective on human factors in nuclear power

    International Nuclear Information System (INIS)

    Whitfield, D.

    1987-01-01

    This paper sets out the approaches being taken by the United Kingdom Nuclear Installations Inspectorate (NII) to monitoring the application of human factors principles and practice in the UK industry. The role of NII is outlined, the development of human factors concerns is reviewed, the assessment of the Sizewell 'B' safety case is presented as a particular example, and pertinent future developments in the human factors discipline are proposed. (author)

  10. Importance of human factors on nuclear installations safety

    International Nuclear Information System (INIS)

    Caruso, G.J.

    1990-01-01

    Actually, installations safety and, in particular the nuclear installations infer a strong incidence in human factors related to the design and operation of such installations. In general, the experience aims to that the most important accidents have happened as result of the components' failures combination and human failures in the operation of safety systems. Human factors in the nuclear installations may be divided into two areas: economy and human reliability. Human factors treatments for the safety evaluation of the nuclear installations allow to diagnose the weak points of man-machine interaction. (Author) [es

  11. Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment.

    Science.gov (United States)

    Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H

    2017-07-01

    For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.

  12. Human factors analysis of incident/accident report

    International Nuclear Information System (INIS)

    Kuroda, Isao

    1992-01-01

    Human factors analysis of accident/incident has different kinds of difficulties in not only technical, but also psychosocial background. This report introduces some experiments of 'Variation diagram method' which is able to extend to operational and managemental factors. (author)

  13. The contributions of human factors on human error in Malaysia aviation maintenance industries

    Science.gov (United States)

    Padil, H.; Said, M. N.; Azizan, A.

    2018-05-01

    Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.

  14. Human error risk management for engineering systems: a methodology for design, safety assessment, accident investigation and training

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    2004-01-01

    The objective of this paper is to tackle methodological issues associated with the inclusion of cognitive and dynamic considerations into Human Reliability methods. A methodology called Human Error Risk Management for Engineering Systems is presented that offers a 'roadmap' for selecting and consistently applying Human Factors approaches in different areas of application and contains also a 'body' of possible methods and techniques of its own. Two types of possible application are discussed to demonstrate practical applications of the methodology. Specific attention is dedicated to the issue of data collection and definition from specific field assessment

  15. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    Science.gov (United States)

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.

  16. Human factors inspection of current control room panel in Jose Cabrera NPP

    International Nuclear Information System (INIS)

    Almeida, P.; O'Hara, J.; Higgins, J.

    2002-01-01

    Within the process of renewal of Exploitation Permit of Jose Cabrera Nuclear Power Plant, UNION FENOSA GENERACIO, S. A. (UFG) has carried out an analysis and evaluation project regarding human factors implications of current control room panel arrangement. The project has been developed in two phases. In the first phase, leaded by EPRI and carried out by experts from SAIC, an independent review from a double viewpoint of human reliability and human factors was developed. In the second phase, a multidisciplinary team (composed by human factors, risk analysis, operation, engineering, training and instrumentation and controls experts) has developed a study on human factors implications of current panel arrangement, following the methodology pointed out in NUREG-0711. The project has been developed under the direction of Brookhaven National Laboratory (BNL), organisation that has authored the aforementioned methodology, with the participation of UFG and SOLUZIONA Ingenieria. For the development of the second study the following steps were taken: Firstly, the potential effects of panel arrangement on crew performance were identified its real evidence was analysed and the goals for the improvement of control room operation were established; following NUREG-0711. After this, several design alternatives that addressed these goals were identified and were analysed along three dimensions: human factors, risk analysis and economic costs. Finally the results of these evaluations were combined using a multi-attribute decision method to arrive at a recommended alternative as he best proposal to incorporate human factors criteria and good practices in the design of control room panels. (Author)

  17. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  18. Human factors and technology environment in multinational project: problems and solutions

    International Nuclear Information System (INIS)

    Jardi Besa, X.; Munoz Cervantes, A.

    2012-01-01

    At the onset of nuclear projects in Spain, there was an import of nuclear technology. In a second phase, there was a transfer of technology. Subsequently, there was an adaptation of the technology. In this evolution, comparable to that of other countries, were involved several countries, overcoming the difficulties of human factors involved. The current nuclear projects multinationals have a new difficulty: the different industrial technological environments. This paper will address the organizational challenges of multinational engineering projects, in the type of project and the human factors of the participating companies.

  19. Human factors/ergonomics as a systems discipline? "The human use of human beings" revisited

    DEFF Research Database (Denmark)

    Hollnagel, Erik

    2014-01-01

    Discussions of the possible future of Human factors/ergonomics (HFE) usually take the past for granted in the sense that the future of HFE is assumed to be more of the same. This paper argues that the nature of work in the early 2010s is so different from the nature of work when HFE was formulated...

  20. Imaging shear stress distribution and evaluating the stress concentration factor of the human eye

    Science.gov (United States)

    Joseph Antony, S.

    2015-03-01

    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future.

  1. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  2. IEEE 845 - a proposed guideline for use of human factors in design and retrofit design of nuclear power plants

    International Nuclear Information System (INIS)

    Schurman, D.L.

    1987-01-01

    This paper describes the development and content of the Institute of Electrical and Electronics Engineers (IEEE) Standard 845. This guide was developed by Working Group 7.2 of Subcommittee 7 of the Nuclear Power Engineering Committee of the Power Engineering Society of the IEEE. The guide has been approved by the Nuclear Power Engineering Committee (NPEC) and is now in the standards development and approval process. The guide is the first standards action approved by the NPEC of IEEE and is presented here to obtain wider peer response to its content. The guide provides a systematic framework for selection of human factors techniques and for the use of those techniques. The guide also provides a list of commonly used human factors techniques, along with a commentary about cost, ease of use, and other characteristics of each of the techniques. The guide is written with the project engineer and design engineer in mind. Thus, the guide attempts to provide a basis for the systematic selection of human factors techniques for various purposes and guidance regarding which of these techniques is likely to require the assistance of a human factors expert to apply

  3. Research of human factor in nuclear power plants

    International Nuclear Information System (INIS)

    Nopp, I.

    1983-01-01

    The question is discussed of the study of the human factor with regard to the reliability of nuclear power plant operation. The reliability of the human factor is the result of the functional fitness, motivation, working conditions and working regime of personnel. (J.B.)

  4. Identifying the challenging factors in the transition from colleges of engineering to employment

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad

    2012-03-01

    The transition from university to a career in engineering is a challenging process. This study examined the perceptions of engineering graduates regarding the difficulties they encountered in their transition from the university to the workplace. Lebanese practising engineers (n=217), living around the world, were surveyed to identify their current employment situations and their attitudes toward their academic preparation. Factor analysis revealed three main challenges facing engineering graduates: communication; responsibility; self-confidence. Seventeen interviews were conducted to gather information on ways to facilitate this transition. Comments reflected the need for better collaboration between engineering schools and engineering firms. The results will provide insight for engineering colleges, faculty members and administrators into the challenges faced by graduates and their aspirations for a smoother transition into employment.

  5. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  6. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  7. Research Directory for Manpower, Personnel, Training, and Human Factors.

    Science.gov (United States)

    1991-01-01

    Enhance Automatic Recognition of Speech in Noisy, Highly Stressful Environments Cofod R* Lica Systems Inc 703-359-0996 Smart Contract Preparation...Lab 301-278-2946 Smart Contract Preparation Expediter Frezell T LTCOL Human Engineering Lab 301-278-5998 Impulse Noise Hazard Information Processing R&D

  8. Human Milk Composition: Nutrients and Bioactive Factors

    Science.gov (United States)

    Ballard, Olivia; Morrow, Ardythe L.

    2013-01-01

    Synopsis The composition of human milk is the biologic norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules, e.g., lactoferrin, are being investigated as novel therapeutic agents. A dynamic, bioactive fluid, human milk changes in composition from colostrum to late lactation, and varies within feeds, diurnally, and between mothers. Feeding infants with expressed human milk is increasing. Pasteurized donor milk is now commonly provided to high risk infants and most mothers in the U.S. express and freeze their milk at some point in lactation for future infant feedings. Many milk proteins are degraded by heat treatment and freeze-thaw cycles may not have the same bioactivity after undergoing these treatments. This article provides an overview of the composition of human milk, sources of its variation, and its clinical relevance. PMID:23178060

  9. Accounting for human factor in QC and QA inspections

    International Nuclear Information System (INIS)

    Goodman, J.

    1986-01-01

    Two types of human error during QC/QA inspection have been identified. The method of accounting for the effects of human error in QC/QA inspections was developed. The result of evaluation of the proportion of discrepant items in the population is affected significantly by human factor

  10. Simulator training and human factor reliability in Kozloduy NPP, Bulgaria

    International Nuclear Information System (INIS)

    Stoychev, Kosta

    2007-01-01

    This is a PowerPoint presentation. Situated in North Bulgaria, in the vicinity of the town of Kozloduy, near the Danube River bank, there is the Bulgarian Kozloduy Nuclear Power plant operating four WWER-440 and two WWER-1000 units. Units 1 and 2 were commissioned in July, 1974 and November, 1975, respectively. These were shut down at the end of 2003. Units 3 and 4 were commissioned in December, 1980 and May, 1982. They were shut down at the end of 2006 as a precondition for Bulgaria's accession to the European Union. The 1000 MW units 5 and 6 of Kozloduy NPP were commissioned in September, 1988 and December, 1993, respectively. Large-scale modernization have been implemented and now the units meet all international safety standards. The paper describes the multifunctional simulator Kozloduy NPP for the operational staff training. The training stages are as follows: - Preparatory; -Theoretical studies; - Training at the Training Centre by means of technical devices; - Preparation and sitting for an exam before a Kozloduy NPP expert commission; - Simulator training ; - Preparation to obtain a permit for a license, corresponding to the position to begin work at the NPP; - Exams before the Nuclear Regulatory Agency (NRA) and licensing; - Shadow training at the working place; - Permission for unaided operation. The following positions are addressed by the simulator training: - Chief Plant Supervisor; - Shift Unit Supervisor; - Senior Reactor Operator; - Simulator Instructor; - Controller physicist; -Senior Turbine Operator; - Senior Operator of Turbine Feedwater Pumps of Kozloduy NPP. Improving of training method led to a reduction of number of significant events while worldwide practice proves that improvement of engineering resulted in an increase in the percentage of events, related to human factor. Analysis of human reliability in 2005 and 2006 in cooperation with representatives from Great Britain and the Technical University in Sofia were worked on the DTI NSP B

  11. The human factor: enhancing women's rights.

    Science.gov (United States)

    Steinzor, N

    1995-01-01

    The Universal Declaration of Human Rights, adopted by the UN in 1948, declares that all human beings are born free and equal in dignity and rights, and that everyone has the right to life, liberty, and security of person. In practice, however, far from everyone has these rights, especially women. Many women worldwide have neither the awareness of nor access to family planning methods with which they could regulate their fertility and childbearing. Thus deprived of their reproductive freedom, these women cannot pursue education, employment, and other life options which would otherwise be readily available to them were they not saddled with poor reproductive health and too many children. Expanded choices enhance the status of women, which in turn helps them to reduce fertility rates and stabilize population growth. The author discusses how the wide range of cultural and social norms, and economic and political systems worldwide make it very difficult and complex to actually implement universal human rights.

  12. US Nuclear Regulatory Commission human-factors program plan

    International Nuclear Information System (INIS)

    1983-08-01

    The purpose of the NRC Human Factors Program Plan is to ensure that proper consideration is given to human factors in the design, operation, and maintenance of nuclear facilities. This initial plan addresses nuclear power plants (NPP) and describes (1) the technical assistance and research activities planned to provide the technical bases for the resolution of the remaining human factors related tasks described in NUREG-0660, The NRC Action Plan Developed as a Result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements, and (2) the additional human factors efforts identified during implementation of the Action Plan that should receive NRC attention. The plan represents a systematic and comprehensive approach for addressing human factors concerns important to NPP safety in the FY-83 through FY-85 time frame

  13. Tools and technologies for expert systems: A human factors perspective

    Science.gov (United States)

    Rajaram, Navaratna S.

    1987-01-01

    It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.

  14. Human factors aspects of advanced instrumentation in the nuclear industry

    International Nuclear Information System (INIS)

    Carter, R.J.

    1989-01-01

    An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs

  15. Human factors for engineering: A South African study

    CSIR Research Space (South Africa)

    Venter, Karien

    2013-10-01

    Full Text Available solutions to alleviate fatigue 351 along this route. Currently Route N3 has a number of lay-bys (informal stopping areas next to 352 the road) as well as four formal truck stops with facilities such as restaurants, bathrooms and so 353 forth. 354... designated stop instructions and the fact 362 that the load is secure (crime issues) were also deemed important by the drivers. Healthy food, 363 affordable restaurants and facilities, such as showers, personal safety and the safety of their loads 364...

  16. Digital image processor as a human factors engineering tool

    International Nuclear Information System (INIS)

    Clayhold, J.A.; Cook, S.A.; Harrington, T.P.; Toffer, H.

    1982-01-01

    Safe and efficient operation of a nuclear reactor requires assimilation by the operators of a large amount of information. This information which includes pressure, temperature and flow conditions, rod and valve positions, and power output is usually presented to the operator in analog form on meters, position indicators, or numerically on digital readouts. Compounding the data assimilation problem is the fact that the meters, readouts, and indicators are usually distributed throughout the control room. The plant parameter and instrumentation displays need to be visible, concise, and concentrated such that an operator can readily survey and understand the information and take proper action during a transient event. This paper describes a technique for condensing a large amount of reactor operating information into a compact readily comprehensible display to assist the reactor operator with his tasks

  17. Human Factors Engineering Bibliographic Series. Volume 5, 1967 Literature

    Science.gov (United States)

    1976-03-01

    Continuous record2 of pvIiss :ate and the total number of I-*art beats can now te obtained over long periods a! tins. The different devices and the choice of...In *no ear. At least one shovs no fusioo of a binaurally presented sigral when the part of the signal in the ear recelving interference I Is...orestntina 4iignls binAurally with complete masking In on. ear. The stili oe pure tones, and a subject manaulates teloudness of the signal In the umnsked car

  18. Human factors engineering in Clinch River Breeder plant design

    International Nuclear Information System (INIS)

    Planchon, H.P. Jr.; Kaushal, N.N.; Snider, J.

    1982-01-01

    The Clinch River Breeder Reactor Plant (CRBRP) Project formed a Control Room Task Force to ensure that lessons learned from the Three Mile Island accident are incorporated into the design. The charter for the Control Room Task Force was to review plant operations from the control room. The focus was on the man-machine interface to ensure that the systems' designs and operator actions meshed to properly support plant operation during normal and off-normal conditions. Specific items included for review are described. This paper describes the methodology utilized to accomplish the Task Forces' objectives and the results of the review

  19. Development of Human Factor Management Requirements and Human Error Classification for the Prevention of Railway Accident

    International Nuclear Information System (INIS)

    Kwak, Sang Log; Park, Chan Woo; Shin, Seung Ryoung

    2008-08-01

    Railway accident analysis results show that accidents cased by human factors are not decreasing, whereas H/W related accidents are steadily decreasing. For the efficient management of human factors, many expertise on design, conditions, safety culture and staffing are required. But current safety management activities on safety critical works are focused on training, due to the limited resource and information. In order to improve railway safety, human factors management requirements for safety critical worker and human error classification is proposed in this report. For this accident analysis, status of safety measure on human factor, safety management system on safety critical worker, current safety planning is analysis

  20. Seroprevalence and Risk Factors for Human Immunodeficiency ...

    African Journals Online (AJOL)

    This study sought to determine the seroprevalence of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B surface antigen (HBsAg) among blood donors at Bolga-tanga Regional Hospital, Ghana by blood group type, sex and age and also determining the asso-ciation, if any, in the occurrence of the ...