WorldWideScience

Sample records for human extracellular fluid

  1. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  2. Handling and storage of human body fluids for analysis of extracellular vesicles

    NARCIS (Netherlands)

    Yuana, Yuana; Böing, Anita N.; Grootemaat, Anita E.; van der Pol, Edwin; Hau, Chi M.; Cizmar, Petr; Buhr, Egbert; Sturk, Auguste; Nieuwland, Rienk

    2015-01-01

    Because procedures of handling and storage of body fluids affect numbers and composition of extracellular vesicles (EVs), standardization is important to ensure reliable and comparable measurements of EVs in a clinical environment. We aimed to develop standard protocols for handling and storage of

  3. Is There Volume Transmission Along Extracellular Fluid Pathways Corresponding to the Acupuncture Meridians?

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2017-02-01

    Full Text Available Volume transmission is a new major communication signaling via extracellular fluid (interstitial fluid pathways. It was proposed by the current authors that such pathways can explain the meridian phenomena and acupuncture effects. To investigate whether meridian-like structures exist in fish body and operate via volume transmission in extracellular fluid pathways, we injected alcian blue (AB under anesthesia into Gephyrocharax melanocheir, which has a translucent body. The migration of AB could be seen directly and was recorded by a digital camera. The fish was then embedded and cut transversely to observe the position of tracks in three dimensions. Eight longitudinal threadlike blue tracks were recognized on the fish. The positions of these threadlike tracks were similar to meridians on the human body. Transverse sections showed that these tracks distributed to different layers of distinct subcutaneous loose connective tissues and intermuscular septa. Lymphatic vessels were sometimes associated with the extracellular blue tracks where the migration of AB occurred. Extracellular fluid pathways were found on fish through their transport of AB. These pathways operating via volume transmission appeared to be similar in positions and functions to the acupuncture meridians in Chinese medicine.

  4. Brain washing : Transport of cerebral extracellular fluids and solutes

    NARCIS (Netherlands)

    Bedussi, B.

    2017-01-01

    Regulation of extracellular volume and fluid composition provides a robust microenvironment for brain cells. In peripheral tissue, fluid surplus and solutes are removed from the interstitium via drainage into lymphatic channels. Since the central nervous system lacks a proper lymphatic vasculature,

  5. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy

    Directory of Open Access Journals (Sweden)

    Johanna L. Höög

    2015-11-01

    Full Text Available Human ejaculates contain extracellular vesicles (EVs, that to a large extent are considered to originate from the prostate gland, and are often denominated “prostasomes.” These EVs are important for human fertility, for example by promoting sperm motility and by inducing immune tolerance of the female immune system to the spermatozoa. So far, the EVs present in human ejaculate have not been studied in their native state, inside the seminal fluid without prior purification and isolation procedures. Using cryo-electron microscopy and tomography, we performed a comprehensive inventory of human ejaculate EVs. The sample was neither centrifuged, fixed, filtered or sectioned, nor were heavy metals added. Approximately 1,500 extracellular structures were imaged and categorized. The extracellular environment of human ejaculate was found to be diverse, with 5 major subcategories of EVs and 6 subcategories of extracellular membrane compartments, including lamellar bodies. Furthermore, 3 morphological features, including electron density, double membrane bilayers and coated surface, are described in all subcategories. This study reveals that the extracellular environment in human ejaculate is multifaceted. Several novel morphological EV subcategories are identified and clues to their cellular origin may be found in their morphology. This inventory is therefore important for developing future experimental approaches, and to interpret previously published data to understand the role of EVs for human male fertility.

  6. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    Science.gov (United States)

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  7. Sleep Apnea and Circadian Extracellular Fluid Change as Independent Factors for Nocturnal Polyuria.

    Science.gov (United States)

    Niimi, Aya; Suzuki, Motofumi; Yamaguchi, Yasuhiro; Ishii, Masaki; Fujimura, Tetsuya; Nakagawa, Tohru; Fukuhara, Hiroshi; Kume, Haruki; Igawa, Yasuhiko; Akishita, Masahiro; Homma, Yukio

    2016-10-01

    We investigated the relationships among nocturnal polyuria, sleep apnea and body fluid volume to elucidate the pathophysiology of nocturia in sleep apnea syndrome. We enrolled 104 consecutive patients who underwent polysomnography for suspected sleep apnea syndrome. Self-assessed symptom questionnaires were administered to evaluate sleep disorder and lower urinary tract symptoms, including nocturia. Voiding frequency and voided volume were recorded using a 24-hour frequency-volume chart. Body fluid composition was estimated in the morning and at night using bioelectric impedance analysis. Frequency-volume chart data were analyzed in 22 patients after continuous positive airway pressure therapy. Patients with nocturnal polyuria showed a higher apnea-hypopnea index (33.9 vs 24.2, p = 0.03) and a larger circadian change in extracellular fluid adjusted to lean body mass (0.22 vs -0.19, p = 0.019) than those without nocturnal polyuria. These relations were more evident in patients 65 years old or older than in those 64 years or younger. A multivariate linear regression model showed an independent relationship of nocturnal polyuria with the apnea-hypopnea index and the circadian change in extracellular fluid adjusted to lean body mass (p = 0.0012 and 0.022, respectively). Continuous positive airway pressure therapy significantly improved nocturnal polyuria and nocturia only in patients with nocturnal polyuria. This study identified sleep apnea and the circadian change in extracellular fluid as independent factors for nocturnal polyuria. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence.

    Directory of Open Access Journals (Sweden)

    Md Mahmodul Hasan Sohel

    Full Text Available Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down in exosomes and 30 miRNAs differentially expressed (21 up and 9 down in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.

  9. Real-time Kinetics of High-mobility Group Box 1 (HMGB1) Oxidation in Extracellular Fluids Studied by in Situ Protein NMR Spectroscopy*

    Science.gov (United States)

    Zandarashvili, Levani; Sahu, Debashish; Lee, Kwanbok; Lee, Yong Sun; Singh, Pomila; Rajarathnam, Krishna; Iwahara, Junji

    2013-01-01

    Some extracellular proteins are initially secreted in reduced forms via a non-canonical pathway bypassing the endoplasmic reticulum and become oxidized in the extracellular space. One such protein is HMGB1 (high-mobility group box 1). Extracellular HMGB1 has different redox states that play distinct roles in inflammation. Using a unique NMR-based approach, we have investigated the kinetics of HMGB1 oxidation and the half-lives of all-thiol and disulfide HMGB1 species in serum, saliva, and cell culture medium. In this approach, salt-free lyophilized 15N-labeled all-thiol HMGB1 was dissolved in actual extracellular fluids, and the oxidation and clearance kinetics were monitored in situ by recording a series of heteronuclear 1H-15N correlation spectra. We found that the half-life depends significantly on the extracellular environment. For example, the half-life of all-thiol HMGB1 ranged from ∼17 min (in human serum and saliva) to 3 h (in prostate cancer cell culture medium). Furthermore, the binding of ligands (glycyrrhizin and heparin) to HMGB1 significantly modulated the oxidation kinetics. Thus, the balance between the roles of all-thiol and disulfide HMGB1 proteins depends significantly on the extracellular environment and can also be artificially modulated by ligands. This is important because extracellular HMGB1 has been suggested as a therapeutic target for inflammatory diseases and cancer. Our work demonstrates that the in situ protein NMR approach is powerful for investigating the behavior of proteins in actual extracellular fluids containing an enormous number of different molecules. PMID:23447529

  10. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  11. Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson’s Disease

    Science.gov (United States)

    Padilla-Zambrano, Huber S.; Tomás-Zapico, Cristina; García, Benjamin Fernández

    2018-01-01

    This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain. PMID:29570693

  12. A New Enzyme-linked Sorbent Assay (ELSA) to Quantify Syncytiotrophoblast Extracellular Vesicles in Biological Fluids.

    Science.gov (United States)

    Göhner, Claudia; Weber, Maja; Tannetta, Dionne S; Groten, Tanja; Plösch, Torsten; Faas, Marijke M; Scherjon, Sicco A; Schleußner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S

    2015-06-01

    The pregnancy-associated disease preeclampsia is related to the release of syncytiotrophoblast extracellular vesicles (STBEV) by the placenta. To improve functional research on STBEV, reliable and specific methods are needed to quantify them. However, only a few quantification methods are available and accepted, though imperfect. For this purpose, we aimed to provide an enzyme-linked sorbent assay (ELSA) to quantify STBEV in fluid samples based on their microvesicle characteristics and placental origin. Ex vivo placenta perfusion provided standards and samples for the STBEV quantification. STBEV were captured by binding of extracellular phosphatidylserine to immobilized annexin V. The membranous human placental alkaline phosphatase on the STBEV surface catalyzed a colorimetric detection reaction. The described ELSA is a rapid and simple method to quantify STBEV in diverse liquid samples, such as blood or perfusion suspension. The reliability of the ELSA was proven by comparison with nanoparticle tracking analysis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Trash or Treasure: extracellular microRNAs and cell-to-cell communication

    Directory of Open Access Journals (Sweden)

    Nobuyoshi eKosaka

    2013-09-01

    Full Text Available Circulating RNAs in human body fluids are promising candidates for diagnostic purposes. However, the biological significance of circulating RNAs remains elusive. Recently, small non-coding RNAs, microRNAs (miRNAs, were isolated from multiple human body fluids, and these circulating miRNAs have been implicated as novel disease biomarkers. Concurrently, miRNAs were also identified in the extracellular space associated with extracellular vesicles (EVs, which are small membrane vesicles secreted from various types of cells. The function of these secreted miRNAs has been revealed in several papers. Circulating miRNAs have been experimentally found to be associated with EVs, however, other types of extracellular miRNAs were also described. This review discusses studies related to extracellular miRNAs, including circulating miRNAs and secreted miRNAs, to highlight the importance of studying not only secreted miRNAs but also circulating miRNAs to determine the contribution of extracellular miRNAs especially in cancer development.

  14. Effects of Weightlessness on Human Fluid and Electrolyte Physiology

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    The changes that occur in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. A number of questions remain to be answered. At a time when plasma volume and extracellular fluid volume are contracted and salt and water intake is unrestricted. ADH does not correct the volume deficit and serum sodium decreases. Change in secretion or activity of a natriuretic factor during spaceflight is one possible explanation. Recent identification of a polypeptide hormone produced in cardiac muscle cells which is natiuretic, is hypotensive, and has an inhibitory effect on renin and aldosterone secretion has renewed interest in the role of a natriuretic factor. The role of this atrial natriuretic factor (ANF) in both long- and short-term variation in extracellular volumes and in the inability of the kidney to bring about an escape from the sodium-retaining state accompanying chronic cardiac dysfunction makes it reasonable to look for a role of ANF in the regulation of sodium during exposure to microgravity. Prostaglandin-E is another hormone that may antagonize the action of ADH. Assays of these hormones will be performed on samples from crew members in the future.

  15. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    Science.gov (United States)

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  16. Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs in Clinical Cerebrospinal Fluids (CSF.

    Directory of Open Access Journals (Sweden)

    Johnny C Akers

    Full Text Available Extracellular vesicles (EVs have emerged as a promising biomarker platform for glioblastoma patients. However, the optimal method for quantitative assessment of EVs in clinical bio-fluid remains a point of contention. Multiple high-resolution platforms for quantitative EV analysis have emerged, including methods grounded in diffraction measurement of Brownian motion (NTA, tunable resistive pulse sensing (TRPS, vesicle flow cytometry (VFC, and transmission electron microscopy (TEM. Here we compared quantitative EV assessment using cerebrospinal fluids derived from glioblastoma patients using these methods. For EVs 150 nm in diameter, NTA consistently detected lower number of EVs relative to TRPS. These results unveil the strength and pitfalls of each quantitative method alone for assessing EVs derived from clinical cerebrospinal fluids and suggest that thoughtful synthesis of multi-platform quantitation will be required to guide meaningful clinical investigations.

  17. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide...... generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  18. Effects of immersion water temperature on whole-body fluid distribution in humans.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-09-01

    In this study, we quantified acute changes in the intracellular and extracellular fluid compartments during upright neutral- and cold-water immersion. We hypothesized that, during short-term cold immersion, fluid shifts would be wholly restricted to the extracellular space. Seven males were immersed 30 days apart: control (33.3 degrees SD 0.6 degrees C); and cold (18.1 degrees SD 0.3 degrees C). Posture was controlled for 4 h prior to a 60-min seated immersion. Significant reductions in terminal oesophageal (36.9 degrees +/- 0.1 degrees -36.3 degrees +/- 0.1 degrees C) and mean skin temperatures (30.3 degrees +/- 0.3 degrees -23.0 degrees +/- 0.3 degrees C) were observed during the cold, but not the control immersion. Both immersions elicited a reduction in intracellular fluid [20.17 +/- 6.02 mL kg(-1) (control) vs. 22.72 +/- 9.90 mL kg(-1)], while total body water (TBW) remained stable. However, significant plasma volume (PV) divergence was apparent between the trials at 60 min [12.5 +/- 1.0% (control) vs. 6.1 +/- 3.1%; P cold immersion, consistent with its role in PV regulation. We observed that, regardless of the direction of the PV change, both upright immersions elicited reductions in intracellular fluid. These observations have two implications. First, one cannot assume that PV changes reflect those of the entire extracellular compartment. Second, since immersion also increases interstitial fluid pressure, fluid leaving the interstitium must have been rapidly replaced by intracellular water.

  19. Adrenal hormones in human follicular fluid.

    Science.gov (United States)

    Jimena, P; Castilla, J A; Peran, F; Ramirez, J P; Vergara, F; Molina, R; Vergara, F; Herruzo, A

    1992-11-01

    Considerable evidence indicates that adrenal hormones may affect gonadal function. To assess the role of some adrenal hormones in human follicular fluid and their relationship with the ability of the oocyte to be fertilized and then to cleave in vitro, cortisol and dehydroepiandrosterone sulfate were measured in follicular fluid obtained at the time of oocyte recovery for in vitro fertilization from cycles stimulated by clomiphene citrate, human menopausal gonadotropin and human chorionic gonadotropin. Thirty-six follicular fluid containing mature oocyte-corona-cumulus complexes and free of visible blood contamination were included in this study. There was no significant difference in follicular fluid dehydroepiandrosterone sulfate concentration between follicles with oocytes which did or did not fertilize (5.1 +/- 1.1 vs 5.8 +/- 2.0 mumol/l). However, follicular fluid from follicles whose oocytes were not fertilized had levels of cortisol significantly higher than those in follicular fluid from follicles containing successfully fertilized oocytes (406.0 +/- 75.9 vs 339.2 +/- 37.0 nmol/l; p < 0.005). No significant correlations were found between rates of embryo cleavage and cortisol and dehydroepiandrosterone levels in follicular fluid. We conclude that cortisol levels in follicular fluid may provide an index of fertilization outcome, at least in stimulated cycles by clomiphene citrate, human menopausal gonadotropin and human chorionic gonadotropin.

  20. The plasticity of extracellular fluid homeostasis in insects.

    Science.gov (United States)

    Beyenbach, Klaus W

    2016-09-01

    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.

  1. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  2. In vivo extracellular matrix protein expression by human periodontal ...

    African Journals Online (AJOL)

    It is well known that the orthodontic force applied to teeth generates a series of events that remodel the periodontal ligament (PDL). Extracellular matrix proteins (ECM) are described as molecular regulators of these events. However, the exact contribution of these proteins in human PDL modeling by orthodontic force ...

  3. Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes.

    Science.gov (United States)

    McBride, Jeffrey D; Rodriguez-Menocal, Luis; Badiavas, Evangelos V

    2017-08-01

    Extracellular vesicles (exosomes, microvesicles, and apoptotic bodies) are ubiquitous in human tissues, circulation, and body fluids. Of these vesicles, exosomes are of growing interest among investigators across multiple fields, including dermatology. The characteristics of exosomes, their associated cargo (nucleic acids, proteins, and lipids), and downstream functions are vastly different, depending on the cell origin. Here, we review concepts in extracellular vesicle biology, with a focus on exosomes, highlighting recent studies in the field of dermatology. Furthermore, we highlight emerging technical issues associated with isolating and measuring exosomes. Extracellular vesicles, including exosomes, have immediate potential for serving as biomarkers and therapeutics in dermatology over the next decade. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Intra-operative on-line discrimination of kidney cancer from normal tissue by IR ATR spectroscopy of extracellular fluid

    Science.gov (United States)

    Urboniene, V.; Velicka, M.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.; Steiner, G.

    2016-03-01

    Determination of cancerous and normal kidney tissues during partial, simple or radical nephrectomy surgery was performed by using differences in the IR absorption spectra of extracellular fluid taken from the corresponding tissue areas. The samples were prepared by stamping of the kidney tissue on ATR diamond crystal. The spectral measurements were performed directly in the OR during surgery for 58 patients. It was found that intensities of characteristic spectral bands of glycogen (880-1200 cm-1) in extracellular fluid are sensitive to the type of the tissue and can be used as spectral markers of tumours. Characteristic spectral band of lactic acid (1730 cm-1) - product of the anaerobic glycolysis, taking place in the cancer cells is not suitable for use as a spectral marker of cancerous tissue, since it overlaps with the band of carbonyl stretch in phospholipids and fatty acids. Results of hierarchical cluster analysis of the spectra show that the spectra of healthy and tumour tissue films can be reliably separated into two groups. On the other hand, possibility to differentiate between tumours of different types and grades remains in question. While the fluid from highly malignant G3 tumour tissue contains highly pronounced glycogen spectral bands and can be well separated from benign and G1 tumours by principal component analysis, the variations between spectra from sample to sample prevent from obtaining conclusive results about the grouping between different tumour types and grades. The proposed method is instant and can be used in situ and even in vivo.

  5. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-10-15

    Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.

  6. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    Science.gov (United States)

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  7. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans.

    Science.gov (United States)

    Spector, Reynold; Robert Snodgrass, S; Johanson, Conrad E

    2015-11-01

    In this review, a companion piece to our recent examination of choroid plexus (CP), the organ that secretes the cerebrospinal fluid (CSF), we focus on recent information in the context of reliable older data concerning the composition and functions of adult human CSF. To accomplish this, we define CSF, examine the methodology employed in studying the CSF focusing on ideal or near ideal experiments and discuss the pros and cons of several widely used analogical descriptions of the CSF including: the CSF as the "third circulation," the CSF as a "nourishing liquor," the similarities of the CSF/choroid plexus to the glomerular filtrate/kidney and finally the CSF circulation as part of the "glymphatic system." We also consider the close interrelationship between the CSF and extracellular space of brain through gap junctions and the paucity of data suggesting that the cerebral capillaries secrete a CSF-like fluid. Recently human CSF has been shown to be in dynamic flux with heart-beat, posture and especially respiration. Functionally, the CSF provides buoyancy, nourishment (e.g., vitamins) and endogenous waste product removal for the brain by bulk flow into the venous (arachnoid villi and nerve roots) and lymphatic (nasal) systems, and by carrier-mediated reabsorptive transport systems in CP. The CSF also presents many exogenous compounds to CP for metabolism or removal, indirectly cleansing the extracellular space of brain (e.g., of xenobiotics like penicillin). The CSF also carries hormones (e.g., leptin) from blood via CP or synthesized in CP (e.g., IGF-2) to the brain. In summary the CP/CSF, the third circulation, performs many functions comparable to the kidney including nourishing the brain and contributing to a stable internal milieu for the brain. These tasks are essential to normal adult brain functioning. Copyright © 2015. Published by Elsevier Inc.

  8. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  9. Role of an extracellular loop in determining the stoichiometry of Na+–HCO3− cotransporters

    Science.gov (United States)

    Chen, Li-Ming; Liu, Ying; Boron, Walter F

    2011-01-01

    The Na+–HCO3− cotransporters (NBCs) of the solute carrier 4 family (SLC4) are critical for regulating pH in cells as well as in fluids such as blood and cerebrospinal fluid. Moreover, mutations and gene disruptions in NBC are linked to a wide range of pathologies. NBCe1 (SLC4A4) is electrogenic because it has an apparent Na+:HCO3− stoichiometry of 1:2 or 1:3, whereas NBCn1 (SLC4A7) is electroneutral because it has an apparent stoichiometry of 1:1. Because stoichiometry influences the effect of transport on membrane potential and vice versa, a central question is what structural features underlie electrogenicity versus electroneutrality. A previous study on rat NBCe1/n1 chimeras demonstrated that the structural elements determining the electrogenicity of NBCe1-A are located within the transmembrane domain, excluding the large third extracellular loop. In the present study we generated a series of chimeras of human NBCe1-A and human NBCn1-A. We found that replacing merely the predicted fourth extracellular loop (EL4) – containing 32 amino acid residues that include 7 prolines – of human NBCe1-A with EL4 of NBCn1-A creates an electroneutral NBC. The opposite switch converts an electroneutral construct to one with electrogenic properties. The introduction of an N-glycosylation site into EL4 confirms that at least a part of it is exposed to the extracellular fluid. We hypothesize that putative EL4 either contributes to the substrate-binding vestibule or indirectly influences substrate binding by interacting with one or more transmembrane segments, thereby controlling the nature of transport. PMID:21224233

  10. Decreased extracellular pH inhibits osteogenesis through proton-sensing GPR4-mediated suppression of yes-associated protein.

    Science.gov (United States)

    Tao, Shi-Cong; Gao, You-Shui; Zhu, Hong-Yi; Yin, Jun-Hui; Chen, Yi-Xuan; Zhang, Yue-Lei; Guo, Shang-Chun; Zhang, Chang-Qing

    2016-06-03

    The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.

  11. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    Science.gov (United States)

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  12. Clinical application of extracellular fluid measurement using /sup 35/S-sodium sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, H; Kondo, K; Uneda, S; Goto, E; Ono, Y [Yokohama City Univ. (Japan). Faculty of Medicine

    1977-09-01

    ECF (extracellular fluid volume) was measured by /sup 35/S-sodium sulfate and at the same time value of PV (plasma volume) was determined by /sup 131/I-RISA in each subject. In normal ECF was average of 181 ml/kg, 6.21 l/m/sup 2/ and PV was 49.1 ml/kg, 1.69 l/m/sup 2/. Both values of ECF and PV in essential hypertension were almost the same as those in normal. In congestive heart failure ECF was 232 ml/kg, 7.51 l/m/sup 2/ and PV was 55.8 ml/kg, 1.80 l/m/sup 2/. In the patients with ascites or edema, ECF was 256 ml/kg, 8.69 l/m/sup 2/ and PV was 53.0 ml/kg, 1.79 l/m/sup 2/. The results of the measurement by the two compounds also corresponded to the conditions of the patients who showed electrolytes disorders (ACTH deficiency, SIADH) and was improved by treatment.

  13. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    Science.gov (United States)

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  15. Assessment of extracellular dehydration using saliva osmolality.

    Science.gov (United States)

    Ely, Brett R; Cheuvront, Samuel N; Kenefick, Robert W; Spitz, Marissa G; Heavens, Kristen R; Walsh, Neil P; Sawka, Michael N

    2014-01-01

    When substantial solute losses accompany body water an isotonic hypovolemia (extracellular dehydration) results. The potential for using blood or urine to assess extracellular dehydration is generally poor, but saliva is not a simple ultra-filtrate of plasma and the autonomic regulation of salivary gland function suggests the possibility that saliva osmolality (Sosm) may afford detection of extracellular dehydration via the influence of volume-mediated factors. This study aimed to evaluate the assessment of extracellular dehydration using Sosm. In addition, two common saliva collection methods and their effects on Sosm were compared. Blood, urine, and saliva samples were collected in 24 healthy volunteers during paired euhydration and dehydration trials. Furosemide administration and 12 h fluid restriction were used to produce extracellular dehydration. Expectoration and salivette collection methods were compared in a separate group of eight euhydrated volunteers. All comparisons were made using paired t-tests. The diagnostic potential of body fluids was additionally evaluated. Dehydration (3.1 ± 0.5% loss of body mass) decreased PV (-0.49 ± 0.12 L; -15.12 ± 3.94% change), but Sosm changes were marginal ( 0.05). Extracelluar dehydration was not detectable using plasma, urine, or saliva measures. Salivette and expectoration sampling methods produced similar, consistent results for Sosm, suggesting no methodological influence on Sosm.

  16. [Extracellular fluid, plasma and interstitial volume in cirrhotic patients without clinical edema or ascites].

    Science.gov (United States)

    Noguera Viñas, E C; Hames, W; Mothe, G; Barrionuevo, M P

    1989-01-01

    Extracellular fluid volume (E.C.F.) and plasma volume (P.V.), were measured with sodium sulfate labeled with 35I and 131I human serum albumin, respectively, by the dilution technique in control subjects and in cirrhotic patients without clinical ascites or edema, renal or hepatic failure, gastrointestinal bleeding or diuretics. Results are expressed as mean +/- DS in both ml/m2 and ml/kg. In normal subjects E.C.F. (n = 8) was 7,533 +/- 817 ml/m2 (201.3 +/- 182 ml/kg), P.V. (n = 11) 1,767 +/- 337 ml/m2 (47.2 +/- 9.3 ml/kg), and interstitial fluid (I.S.F.) (n = 7) 5,758 +/- 851 ml/m2 (Table 2). In cirrhotic patients E.C.F. (n = 11) was 10,318 +/- 2,980 ml/m2 (261.7 +/- 76.8 ml/kg), P.V. (n = 12) 2,649 +/- 558 ml/m2 (67.7 +/- 15.6 ml/kg) and I.S.F. (n = 11) 7,866 +/- 2,987 ml/m2 (Table 3). Cirrhotic patients compared with normal subjects have hypervolemia due to a significant E.C.F. and P.V. expansion (p less than 0.02 and less than 0.001 respectively) (Fig. 1). Reasons for E.C.F. and P.V. abnormalities in cirrhotic patients may reflect urinary sodium retention related to portal hipertension which stimulates aldosterone release or enhanced renal tubular sensitivity to the hormone. However, it is also possible that these patients, in the presence of hypoalbuminemia (Table 1), have no clinical edema or ascites due to increased glomerular filtration, suppressed release of vasopressin, increased natriuretic factor, and urinary prostaglandin excretion, in response to the intravascular expansion, all of which increased solute and water delivery to the distal nephron and improved renal water excretion. We conclude that in our clinical experience cirrhotic patients without ascites or edema have hypervolemia because of a disturbance in E.C.F.

  17. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  18. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  19. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    Science.gov (United States)

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    into thrombus remodeling. MATERIALS AND METHODS: Ten human thrombus samples were collected during cases of thrombectomy and open surgical repair of abdominal aortic aneurysms (five samples 1 y old). Additionally, an acute murine hindlimb ischemia model was created to evaluate...... thrombus samples in mice. Human sections were immunostained for the H2A/H2B/DNA complex, myeloperoxidase, fibrinogen, and von Willebrand factor. Mouse sections were immunostained with the H2A antibody. All samples were further evaluated after hematoxylin and eosin and Masson trichrome staining. RESULTS......: An extensive network of extracellular histone/DNA complex was demonstrated in the matrix of human ex vivo thrombus. This network is present throughout the highly cellular acute thrombus. However, in chronic thrombi, detection of the histone/DNA network was predominantly in regions of low collagen content...

  1. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2011-04-01

    To evaluate the viability and proliferative activity of human urothelial cells (HUCs) cultured on tissue-engineered extracellular matrix scaffolds and to assess the potential of extracellular matrixes to support the growth of HUCs in their expected in vivo urine environment.

  2. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  3. Detection of HIV-1 and Human Proteins in Urinary Extracellular Vesicles from HIV+ Patients

    Directory of Open Access Journals (Sweden)

    Samuel I. Anyanwu

    2018-01-01

    Full Text Available Background. Extracellular vesicles (EVs are membrane bound, secreted by cells, and detected in bodily fluids, including urine, and contain proteins, RNA, and DNA. Our goal was to identify HIV and human proteins (HPs in urinary EVs from HIV+ patients and compare them to HIV− samples. Methods. Urine samples were collected from HIV+ (n=35 and HIV− (n=12 individuals. EVs were isolated by ultrafiltration and characterized using transmission electron microscopy, tandem mass spectrometry (LC/MS/MS, and nanoparticle tracking analysis (NTA. Western blots confirmed the presence of HIV proteins. Gene ontology (GO analysis was performed using FunRich and HIV Human Interaction database (HHID. Results. EVs from urine were 30–400 nm in size. More EVs were in HIV+ patients, P<0.05, by NTA. HIV+ samples had 14,475 HPs using LC/MS/MS, while only 111 were in HIV−. HPs in the EVs were of exosomal origin. LC/MS/MS showed all HIV+ samples contained at least one HIV protein. GO analysis showed differences in proteins between HIV+ and HIV− samples and more than 50% of the published HPs in the HHID interacted with EV HIV proteins. Conclusion. Differences in the proteomic profile of EVs from HIV+ versus HIV− samples were found. HIV and HPs in EVs could be used to detect infection and/or diagnose HIV disease syndromes.

  4. Evaluation of Bioelectrical Impedance Spectroscopy for the Assessment of Extracellular Body Water

    Directory of Open Access Journals (Sweden)

    Sören Weyer

    2012-01-01

    Full Text Available This study evaluates bioelectrical impedance spectroscopy (BIS measurements to detect body fluid status. The multifrequency impedance measurements were performed in five female pigs. Animals were connected to an extracorporeal membrane oxygenation device during a lung disease experiment and fluid balance was recorded. Every 15 min the amount of fluid infusion and the weight of the urine drainage bag was recorded. From the fluid intake and output, the fluid balance was calculated. These data were compared with values calculated from a mathematical model, based on the extracellular tissue resistance and the Hanai Mixture theory. The extracellular tissue resistance was also measured with BIS. These experimental results strongly support the feasibility and clinical value of BIS for in vivo assessment of the hydration status.

  5. Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage.

    Science.gov (United States)

    Steck, Eric; Bräun, Jessica; Pelttari, Karoliina; Kadel, Stephanie; Kalbacher, Hubert; Richter, Wiltrud

    2007-01-01

    Cartilage acidic protein 1 (CRTAC1), a novel human marker which allowed discrimination of human chondrocytes from osteoblasts and mesenchymal stem cells in culture was so far studied only on the RNA-level. We here describe its genomic organisation and detect a new brain expressed (CRTAC1-B) isoform resulting from alternate last exon usage which is highly conserved in vertebrates. In humans, we identify an exon sharing process with the neighbouring tail-to-tail orientated gene leading to CRTAC1-A. This isoform is produced by cultured human chondrocytes, localized in the extracellular matrix of articular cartilage and its secretion can be stimulated by BMP4. Of five putative O-glycosylation motifs in the last exon of CRTAC1-A, the most C-terminal one is modified according to exposure of serial C-terminal deletion mutants to the O-glycosylation inhibitor Benzyl-alpha-GalNAc. Both isoforms contain four FG-GAP repeat domains and an RGD integrin binding motif, suggesting cell-cell or cell-matrix interaction potential. In summary, CRTAC1 acquired an alternate last exon from the tail-to-tail oriented neighbouring gene in humans resulting in the glycosylated isoform CRTAC1-A which represents a new extracellular matrix molecule of articular cartilage.

  6. Zymographic analysis using gelatin-coated film of the effect of etanercept on the extracellular matrix-degrading activity in synovial fluids of rheumatoid arthritis patients.

    Science.gov (United States)

    Kamataki, Akihisa; Ishida, Mutsuko; Komagamine, Masataka; Yoshida, Masaaki; Ando, Takanobu; Sawai, Takashi

    2016-04-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease. Most RA patients develop cartilage and bone destruction, and various proteinases are involved in the destruction of extracellular matrix of cartilage and bone. The aim of this study is to evaluate the utility of our newly developed method to measure total gelatinolytic activity. We adopted this method for measurement in synovial fluid from RA patients treated by the anti-rheumatic drug etanercept (ETN), a recombinant human soluble tumor necrosis factor receptor fusion protein, and compared the findings with clinical and laboratory data. Enzymatic activity of synovial fluid was analyzed by zymography using gelatin-coated film, and compared with the index of Disease Activity Score of 28 joints - C-reactive protein (DAS28-CRP), CRP and matrix metalloproteinase (MMP)-3 level before and after ETN therapy. Synovial fluids of 19 patients were collected before and after administration of ETN therapy. In nine of 19 patients, who showed a decrease in gelatin-degrading activity in synovial fluid, the index of DAS28-CRP (4.85-2.85, ΔDAS = -2.00) and CRP (3.30-0.94 mg/dL, ΔCRP = -2.36) was alleviated after ETN therapy, while cases with no change or an increase in gelatin-degrading activity showed a modest improvement in clinical data: DAS28-CRP (4.23-3.38, ΔDAS = -0.85) and CRP (1.70-0.74 mg/dL, ΔCRP = -0.96). Our newly developed method for measurement of gelatin-degrading activity in synovial fluid from RA patients is highly practicable and useful for predicting the effect of ETN therapy. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  7. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery

    NARCIS (Netherlands)

    Merchant, M.L.; Rood, I.M.; Deegens, J.K.J.; Klein, J.B.

    2017-01-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies.

  8. Smoking is associated with increased levels of extracellular peptidylarginine deiminase 2 (PAD2) in the lungs

    DEFF Research Database (Denmark)

    Damgaard, Dres; Friberg Bruun Nielsen, Michael; Quisgaard Gaunsbaek, Maria

    2015-01-01

    lavage (BAL) fluid from smokers, but intracellularly located PAD cannot be responsible for citrullination of extracellular self-antigens. We aimed to establish a link between smoking and extracellular PAD2 in the lungs. METHODS: BAL fluid samples were obtained from 13 smokers and 11 nonsmoking controls...... fluids from smokers as compared to non-smokers (p=0.018). The PAD2 content correlated with the overall CRP levels (p=0.009) and cell count (p=0.016). CONCLUSIONS: This first demonstration of increased levels of extracellular PAD2 in the lungs of smokers supports the hypothesis that smoking promotes...

  9. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...... from the ICM of the human blastocyst are exposed to via the blastocoel fluid. These results can be an inspiration for the development of improved culture conditions for hESCs....

  10. In vitro culture of mouse embryos amniotic fluid ID human

    African Journals Online (AJOL)

    1989-07-15

    Jul 15, 1989 ... Because human amniotic fluid is a physiological, balanced ultrafiltrate, it has been considered as an inexpensive alternative culture medium in. IVF. A study of the development of mouse embryos in human amniotic fluid was undertaken to assess the suitability of this as an optional culture medium in human ...

  11. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    Science.gov (United States)

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  12. Fluid balance concepts in medicine: Principles and practice

    Science.gov (United States)

    Roumelioti, Maria-Eleni; Glew, Robert H; Khitan, Zeid J; Rondon-Berrios, Helbert; Argyropoulos, Christos P; Malhotra, Deepak; Raj, Dominic S; Agaba, Emmanuel I; Rohrscheib, Mark; Murata, Glen H; Shapiro, Joseph I; Tzamaloukas, Antonios H

    2018-01-01

    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several

  13. Regulation of extracellular fluid volume and renal function

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    2011-01-01

    Normal fluid homoeostasis includes dynamic shifts in water, crystalloids, and proteins between the various compartments of the body (1–3). The fluid dynamics are controlled by refined mechanisms that include water and solute intake, renal handling, haemodynamic/oncotic forces, and neurohumoral...

  14. Effects of extracellular modulation through hypoxia on the glucose metabolism of human breast cancer stem cells

    Science.gov (United States)

    Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.

    2017-08-01

    Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.

  15. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface

    NARCIS (Netherlands)

    Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred

    2014-01-01

    The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies

  16. Volume and density changes of biological fluids with temperature

    Science.gov (United States)

    Hinghofer-Szalkay, H.

    1985-01-01

    The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.

  17. Exosome levels in human body fluids: A tumor marker by themselves?

    Science.gov (United States)

    Cappello, Francesco; Logozzi, Mariantonia; Campanella, Claudia; Bavisotto, Celeste Caruso; Marcilla, Antonio; Properzi, Francesca; Fais, Stefano

    2017-01-01

    Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can provide several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Recombinant expression in E. coli of human FGFR2 with its transmembrane and extracellular domains

    Directory of Open Access Journals (Sweden)

    Adam Bajinting

    2017-06-01

    Full Text Available Fibroblast growth factor receptors (FGFRs are a family of receptor tyrosine kinases containing three domains: an extracellular receptor domain, a single transmembrane helix, and an intracellular tyrosine kinase domain. FGFRs are activated by fibroblast growth factors (FGFs as part of complex signal transduction cascades regulating angiogenesis, skeletal formation, cell differentiation, proliferation, cell survival, and cancer. We have developed the first recombinant expression system in E. coli to produce a construct of human FGFR2 containing its transmembrane and extracellular receptor domains. We demonstrate that the expressed construct is functional in binding heparin and dimerizing. Size exclusion chromatography demonstrates that the purified FGFR2 does not form a complex with FGF1 or adopts an inactive dimer conformation. Progress towards the successful recombinant production of intact FGFRs will facilitate further biochemical experiments and structure determination that will provide insight into how extracellular FGF binding activates intracellular kinase activity.

  19. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  20. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  1. Substance P in human cerebrospinal fluid

    International Nuclear Information System (INIS)

    Wallasch, T.M.

    1987-01-01

    Using a combined method of reversed-phase, high-pressure liquid chromatography and RIA, the author was able to isolate the neuropephide substance P from human cerebrospinal fluid and to make a quantitative measurement. The rp-HPLC-RIA method was found to be superior to other methods. (MBC) [de

  2. Radioimmunological evidence for beta-endorphin in human cerebrospinal fluid

    International Nuclear Information System (INIS)

    Graf, M.

    1982-01-01

    Both-endomorphin-like immunoreactivity in human cerebrospinal fluid was determined by two different radioimmunoassays. Measurements made using a bought RIA-kit (Immuno Nuclear Corporation) produced results which were too high compared to results from the literature. The procedure for the beta-endophin radioimmunoassay of Hoellt et al. was followed, the various steps studied and in part modified. Here both beta endorphin and beta-lipotropin were labelled with I-125 and a new method introduced for separating I - -125 following labelling. Studies on the specificity of the method revealed that, in addition to beta-endorphin, beta-lipotropin and two further non-identified fluid fractions were also determined but that the specificity of the RIA's could be significantly increased by prior extraction of the fluid with silicic acid. Determinations of beta-endorphin-like immunoreactivity in 28 different human fluids using this RIA gave values from below 20 pg/ml to 70 pg/ml thus confirming literature values. (orig.) [de

  3. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy.

    Science.gov (United States)

    Woodcock, T E; Woodcock, T M

    2012-03-01

    I.V. fluid therapy does not result in the extracellular volume distribution expected from Starling's original model of semi-permeable capillaries subject to hydrostatic and oncotic pressure gradients within the extracellular fluid. Fluid therapy to support the circulation relies on applying a physiological paradigm that better explains clinical and research observations. The revised Starling equation based on recent research considers the contributions of the endothelial glycocalyx layer (EGL), the endothelial basement membrane, and the extracellular matrix. The characteristics of capillaries in various tissues are reviewed and some clinical corollaries considered. The oncotic pressure difference across the EGL opposes, but does not reverse, the filtration rate (the 'no absorption' rule) and is an important feature of the revised paradigm and highlights the limitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluid returns to the circulation as lymph. The EGL excludes larger molecules and occupies a substantial volume of the intravascular space and therefore requires a new interpretation of dilution studies of blood volume and the speculation that protection or restoration of the EGL might be an important therapeutic goal. An explanation for the phenomenon of context sensitivity of fluid volume kinetics is offered, and the proposal that crystalloid resuscitation from low capillary pressures is rational. Any potential advantage of plasma or plasma substitutes over crystalloids for volume expansion only manifests itself at higher capillary pressures.

  4. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  5. Expression of matrix metrallproteinase-2 in human tears fluid after LASIK

    Directory of Open Access Journals (Sweden)

    Ai-Wei Chen

    2014-12-01

    Full Text Available AIM: To monitor long-term changes of matrix metalloproteinase-2(MMP-2in human tears fluid after laser in situ keratomileusis(LASIK. METHODS: Thirty-two myopia cases(64 eyesunderwent uneventful LASIK were enrolled in the study. Tear fluid were collected and MMP-2 expression was analyzed by Western-bolt assay preoperatively and postoperatively on 15d, at 1, 3mo, and 1a. RESULTS: LASIK increased the concentration of MMP-2 in human tear fluid. At 15d postoperatively, the magnitude of MMP-2 was 1.4 times that of preoperative, thereafter subsided, but didn't return to preoperative level by 3mo(PP>0.05. CONCLUSION: MMP-2 is significantly expressed in human tear fluid after LASIK, then subsided with time, but didn't return to preoperative level by 3mo and almost recovered up to 1a, indicating wound healing of LASIK would continue up at least 3mo after surgery and almost recovered 1a postoperatively.

  6. Immunohistochemical study of extracellular matrices and elastic fibers in a human sternoclavicular joint.

    Science.gov (United States)

    Shimada, K; Takeshige, N; Moriyama, H; Miyauchi, Y; Shimada, S; Fujimaki, E

    1997-12-01

    In this study, we clarified the distribution of elastic and oxytalan fibers in a human sternoclavicular joint (SCJ) using a color image system and in extracellular matrices using immunoperoxidase staining. Fine elastic fibers (EFs) were scattered in the fibrous layer of the sternoclavicular disk. This articular disk was composed of a collagenous bundle on the sternum side of the articular disk in the SCJ and cellular components including connective tissue on the clavicular side of the articular disk. The thickness of the disk gradually increased from the inferior to superior portion. Collagen fibers type I, III and V and other extracellular matrices (ECMs) were detected in the hypertrophic zone in the clavicular and sternum side of the SCJ and in the connective tissue of the articulatio condylar. On the cervical surface of the articular disk, cellular activity was higher than on the sternum surface.

  7. Extracellular matrix alterations in human corneas with bullous keratopathy

    DEFF Research Database (Denmark)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J

    1996-01-01

    PURPOSE. To uncover abnormalities of extracellular matrix (ECM) distribution in human corneas with pseudophakic and aphakic bullous keratopathy (PBK/ABK). METHODS. Indirect immunofluorescence with antibodies to 27 ECM components was used on frozen sections of 14 normal and 20 PBK/ABK corneas...... in some cases, correlated with decreased visual acuity. In normal central corneas, tenascin was never found. Other major ECM abnormalities in PBK/ABK corneas compared to normals included: discontinuous epithelial BM straining for laminin-1 (alpha 1 beta 1 gamma 1), entactin/nidogen and fibronectin......; accumulation of fibronectin and alpha 1-alpha 2 type IV collagen on the endothelial face of the Descemet's membrane; and abnormal deposition of stromal ECM (tenascin, fibronectin, decorin, types I, III, V, VI, VIII, XII, XIV collagen) and BM components (type IV, collagen, perlecan, bamacan, laminin-1, entactin...

  8. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    Science.gov (United States)

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  9. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  10. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    Science.gov (United States)

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-08-01

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  12. Reprint of "EXOSOME LEVELS IN HUMAN BODY FLUIDS: A TUMOR MARKER BY THEMSELVES?"

    Science.gov (United States)

    Cappello, Francesco; Logozzi, Mariantonia; Campanella, Claudia; Bavisotto, Celeste Caruso; Marcilla, Antonio; Properzi, Francesca; Fais, Stefano

    2017-02-15

    Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can at once provide with several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may by themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions

    NARCIS (Netherlands)

    D.C. MacLeod (Donald); B.H. Strauss (Bradley); J. Escaned (Javier); V.A.W.M. Umans (Victor); R-J. van Suylen (Robert-Jan); A. Verkerk (Anton); P.J. de Feyter (Pim); P.W.J.C. Serruys (Patrick); M. de Jong (Marcel)

    1994-01-01

    textabstractOBJECTIVES. The purpose of this study was to examine the proliferative capacity and extracellular matrix synthesis of human coronary plaque cells in vitro. BACKGROUND. Common to both primary atherosclerosis and restenosis are vascular smooth muscle cell proliferation and production of

  14. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    Science.gov (United States)

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  15. Free and conjugated dopamine in human ventricular fluid

    International Nuclear Information System (INIS)

    Sharpless, N.S.; Thal, L.J.; Wolfson, L.I.; Tabaddor, K.; Tyce, G.M.; Waltz, J.M.

    1981-01-01

    Free dopamine and an acid hydrolyzable conjugate of dopamine were measured in human ventricular fluid specimens with a radioenzymatic assay and by high performance liquid chromatography (HPLC) with electrochemical detection. Only trace amounts of free norepinephrine and dopamine were detected in ventricular fluid from patients with movement disorders. When the ventricular fluid was hydrolyzed by heating in HClO 4 or by lyophilization in dilute HClO 4 , however, a substantial amount of free dopamine was released. Values for free plus conjugated dopamine in ventricular fluid from patients who had never taken L-DOPA ranged from 139 to 340 pg/ml when determined by HPLC and from 223 to 428 pg/ml when measured radioenzymatically. The correlation coefficient for values obtained by the two methods in the same sample of CSF was 0.94 (P<0.001). Patients who had been treated with L-DOPA had higher levels of conjugated dopamine in their ventricular CSF which correlated inversely with the time between the last dose of L-DOPA and withdrawal of the ventricular fluid. Additionally, one patient with acute cerebral trauma had elevated levels of free norepinephrine and both free and conjugated dopamine in his ventricular fluid. Conjugation may be an important inactivation pathway for released dopamine in man. (Auth.)

  16. Intrinsic factor in human amniotic fluid as determined by radioimmunoassay

    International Nuclear Information System (INIS)

    Wahlstedt, V.; Stenman, U.-H.; Ylinen, K.; Graesbeck, R.

    1983-01-01

    The intrinsic factor (IF) concentration in 55 human amniotic fluid specimens was determined by radioimmunoassay (RIA). The antiserum was produced by immunizing rabbits with the cobalamin-IF complex isolated from human gastric juice. The median concentration of IF was 0.17 nmol/l and the extreme values <0.07-2.51 nmol/l. Three specimens with a clearly elevated level (0.96, 1.11 and 2.51 nmol/l) were observed. The highest value was associated with a fetal malformation, viz. obstruction of the proximal gut. There was no evident correlation between the concentration of IF in amniotic fluid and gestational age. (author)

  17. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Extracellular fluid management and hypertension in urban dwelling versus rural dwelling hemodialysis patients.

    Science.gov (United States)

    Tonelli, Marcello; Lloyd, Anita; Pannu, Neesh; Klarenbach, Scott; Ravani, Pietro; Jindal, Kailash; MacRae, Jennifer; Unsworth, Larry; Manns, Braden; Hemmelgarn, Brenda

    2018-02-01

    Rural-dwelling hemodialysis patients have less frequent contact with nephrologists than urban-dwelling patients, and are known to have higher mortality. We hypothesized that rural-dwelling hemodialysis patients would have more evidence of poorly controlled extracellular fluid volume (ECVF) than otherwise similar urban-dwellers. We studied prevalent hemodialysis patients within a single renal program in Alberta, Canada and assessed ECFV using bioimpedance spectroscopy (BIS). Our primary outcome was impedance vector length (ohm/m) as assessed by BIS using the Xitron Hydra 4200 device, where shorter vector length indicated poorer ECFV control. Because poor ECFV control can lead to hypertension, we also assessed pre- and post-dialysis blood pressure. We measured outcomes at baseline. We studied 228 hemodialysis patients, of whom 115 (50.4 %) and 113 (49.6 %) were urban- and rural-dwelling, respectively. There were no differences in volume control in urban versus rural participants; odds ratio (OR) for vector length in the lowest sex-specific quartile of vector length was 0.93 (95 % CI 0.54, 1.59) after adjusting for age, sex, diabetic status, years since dialysis initiation and phase angle. The odds of very poor blood pressure control (pre-dialysis blood pressure ≥180/100) did not differ between urban and rural participants [fully adjusted OR 0.96 (0.36, 2.60)]. Differences in ECFV control do not appear to explain higher mortality among remote- and rural- dwelling hemodialysis patients, compared to urban-dwellers.

  19. BEAMing and Droplet Digital PCR Analysis of Mutant IDH1 mRNA in Glioma Patient Serum and Cerebrospinal Fluid Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Walter W Chen

    2013-01-01

    Full Text Available Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics PCR and droplet digital PCR (ddPCR are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing, as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.

  20. Biodistribution, Uptake and Effects Caused by Cancer-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Lilite Sadovska

    2015-03-01

    Full Text Available Extracellular vesicles (EVs have recently emerged as important mediators of intercellular communication. They are released in the extracellular space by a variety of normal and cancerous cell types and have been found in all human body fluids. Cancer-derived EVs have been shown to carry lipids, proteins, mRNAs, non-coding and structural RNAs and even extra-chromosomal DNA, which can be taken up by recipient cells and trigger diverse physiological and pathological responses. An increasing body of evidence suggests that cancer-derived EVs mediate paracrine signalling between cancer cells. This leads to the increased invasiveness, proliferation rate and chemoresistance, as well as the acquisition of the cancer stem cell phenotype. This stimulates angiogenesis and the reprogramming of normal stromal cells into cancer-promoting cell types. Furthermore, cancer-derived EVs contribute to the formation of the pre-metastatic niche and modulation of anti-tumour immune response. However, as most of these data are obtained by in vitro studies, it is not entirely clear which of these effects are recapitulated in vivo . In the current review, we summarize studies that assess the tissue distribution, trafficking, clearance and uptake of cancer-derived EVs in vivo and discuss the impact they have, both locally and systemically.

  1. The study on mutations of the gene of extracellular domain of human thyrotropin receptor in the patients with thyroid diseases

    International Nuclear Information System (INIS)

    Zhang Zuncheng; Fang Peihua; Tan Jian; Lu Mei

    2002-01-01

    Objective: To define the sequence of the gene of extracellular domain of normal human thyrotropin receptor (hTSHR) and to investigate the mutations of the gene in the patients with thyroid diseases. Methods: Total RNAs were extracted from the thyroid tissue of four normal controls, twelve Graves' disease, four Hashimoto's thyroiditis and eleven nodular goiter patients. The extracellular domain of hTSHR genes were amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced with CEQ 2000 Genetic Analyzer. Results: The normal controls and the patients with thyroid disease had the same gene sequences of the extracellular domain of hTSHR. No mutation was found, except a silent base exchange in exon 7 (Asn187) at 661 base, in which 20 samples were 'T', 11 samples were 'C', without changes of amino acid of the TSHR. Conclusions: This study has not revealed mutations in the gene of extracellular domain of hTSHR. Other molecular pathogenetic mechanisms may be involved and more research is demanded

  2. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  3. Collection of apoplastic fluids from Arabidopsis thaliana leaves

    DEFF Research Database (Denmark)

    Madsen, Svend Roesen; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2016-01-01

    The leaf apoplast comprises the extracellular continuum outside cell membranes. A broad range of processes take place in the apoplast, including intercellular signaling, metabolite transport, and plant-microbe interactions. To study these processes, it is essential to analyze the metabolite conte...... in apoplastic fluids. Due to the fragile nature of leaf tissues, it is a challenge to obtain apoplastic fluids from leaves. Here, methods to collect apoplastic washing fluid and guttation fluid from Arabidopsis thaliana leaves are described....

  4. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses.

    Science.gov (United States)

    Chan, S T; Kapadia, C R; Johnson, A W; Radcliffe, A G; Dudley, H A

    1983-01-01

    Intestinal surgery is usually associated with the parenteral administration of sodium and water, sometimes in amounts considerably in excess of excretory capacity. We have studied the effect of this situation on the water content of the gut at and 5 cm from a single-layer end-to-end anastomosis in the rabbit. Water content was measured by desiccation. One group of animals (group 1) did not receive intravenous therapy. The second group (group 2) received 5 ml kg-1 h-1 of Hartmann's solution during the operative period and thereafter to a total volume of 200 ml by 48 h. In group 1 there was a 5-10 per cent increase in tissue weight both at the anastomotic site and at 5 cm (P less than 0.01, Mann-Whitney U test) on the first 3 days. Thereafter, water content at the anastomosis persisted, but resolved in normal gut. In group 2 a further 5 per cent increase in weight over group 1 occurred (P less than 0.01), persistent at the anastomotic site over 5 days, though resolving elsewhere after 2 days. Extracellular fluid volume expansion exaggerates an anatomical third space present in the region of an anastomosis. At the suture line, oedema so induced is persistent and could be deleterious.

  5. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media

    NARCIS (Netherlands)

    Dingemans, K. P.; Teeling, P.; Lagendijk, J. H.; Becker, A. E.

    2000-01-01

    Aortic distensability is the key to normal aortic function and relates to the lamellar unit in the media. However, the organization of the extracellular matrix components in these lamellar units, which are largely responsible for the distensability, is insufficiently known, especially in the human.

  6. Informatic system for a global tissue-fluid biorepository with a graph theory-oriented graphical user interface

    OpenAIRE

    Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred

    2014-01-01

    The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and e...

  7. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    Science.gov (United States)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  8. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix.

    Science.gov (United States)

    Arzouni, Ahmed A; Vargas-Seymour, Andreia; Rackham, Chloe L; Dhadda, Paramjeet; Huang, Guo-Cai; Choudhary, Pratik; Nardi, Nance; King, Aileen J F; Jones, Peter M

    2017-12-01

    The aims of the present study were (i) to determine whether the reported beneficial effects of mesenchymal stromal cells (MSCs) on mouse islet function extend to clinically relevant human tissues (islets and MSCs), enabling translation into improved protocols for clinical human islet transplantation; and (ii) to identify possible mechanisms through which human MSCs influence human islet function. Human islets were co-cultured with human adipose tissue-derived MSCs (hASCs) or pre-treated with its products - extracellular matrix (ECM) and annexin A1 (ANXA1). Mouse islets were pre-treated with mouse MSC-derived ECM. Islet insulin secretory function was assessed in vitro by radioimmunoassay. Quantitative RT-PCR was used to screen human adipMSCs for potential ligands of human islet G-protein-coupled receptors. We show that co-culture with hASCs improves human islet secretory function in vitro , as measured by glucose-stimulated insulin secretion, confirming previous reports using rodent tissues. Furthermore, we demonstrate that these beneficial effects on islet function can be partly attributed to the MSC-derived products ECM and ANXA1. Our results suggest that hASCs have the potential to improve the quality of human islets isolated for transplantation therapy of Type 1 diabetes. Furthermore, it may be possible to achieve improvements in human islet quality in a cell-free culture system by using the MSC-derived products ANXA1 and ECM. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Disregarded Effect of Biological Fluids in siRNA Delivery: Human Ascites Fluid Severely Restricts Cellular Uptake of Nanoparticles.

    Science.gov (United States)

    Dakwar, George R; Braeckmans, Kevin; Demeester, Joseph; Ceelen, Wim; De Smedt, Stefaan C; Remaut, Katrien

    2015-11-04

    Small interfering RNA (siRNA) offers a great potential for the treatment of various diseases and disorders. Nevertheless, inefficient in vivo siRNA delivery hampers its translation into the clinic. While numerous successful in vitro siRNA delivery stories exist in reduced-protein conditions, most studies so far overlook the influence of the biological fluids present in the in vivo environment. In this study, we compared the transfection efficiency of liposomal formulations in Opti-MEM (low protein content, routinely used for in vitro screening) and human undiluted ascites fluid obtained from a peritoneal carcinomatosis patient (high protein content, representing the in vivo situation). In Opti-MEM, all formulations are biologically active. In ascites fluid, however, the biological activity of all lipoplexes is lost except for lipofectamine RNAiMAX. The drop in transfection efficiency was not correlated to the physicochemical properties of the nanoparticles, such as premature siRNA release and aggregation of the nanoparticles in the human ascites fluid. Remarkably, however, all of the formulations except for lipofectamine RNAiMAX lost their ability to be taken up by cells following incubation in ascites fluid. To take into account the possible effects of a protein corona formed around the nanoparticles, we recommend always using undiluted biological fluids for the in vitro optimization of nanosized siRNA formulations next to conventional screening in low-protein content media. This should tighten the gap between in vitro and in vivo performance of nanoparticles and ensure the optimal selection of nanoparticles for further in vivo studies.

  10. Anxiolytic-Like Actions of Fatty Acids Identified in Human Amniotic Fluid

    Directory of Open Access Journals (Sweden)

    Rosa Isela García-Ríos

    2013-01-01

    Full Text Available Eight fatty acids (C12–C18 were previously identified in human amniotic fluid, colostrum, and milk in similar proportions but different amounts. Amniotic fluid is well known to be the natural environment for development in mammals. Interestingly, amniotic fluid and an artificial mixture of fatty acids contained in amniotic fluid produce similar anxiolytic-like actions in Wistar rats. We explored whether the lowest amount of fatty acids contained in amniotic fluid with respect to colostrum and milk produces such anxiolytic-like effects. Although a trend toward a dose-response effect was observed, only an amount of fatty acids that was similar to amniotic fluid fully mimicked the effect of diazepam (2 mg/kg, i.p. in the defensive burying test, an action devoid of effects on locomotor activity and motor coordination. Our results confirm that the amount of fatty acids contained in amniotic fluid is sufficient to produce anxiolytic-like effects, suggesting similar actions during intrauterine development.

  11. Site-specific distribution of claudin-based paracellular channels with roles in biological fluid flow and metabolism.

    Science.gov (United States)

    Tanaka, Hiroo; Tamura, Atsushi; Suzuki, Koya; Tsukita, Sachiko

    2017-10-01

    The claudins are a family of membrane proteins with at least 27 members in humans and mice. The extracellular regions of claudin proteins play essential roles in cell-cell adhesion and the paracellular barrier functions of tight junctions (TJs) in epithelial cell sheets. Furthermore, the extracellular regions of some claudins function as paracellular channels in the paracellular barrier that allow the selective passage of water, ions, and/or small organic solutes across the TJ in the extracellular space. Structural analyses have revealed a common framework of transmembrane, cytoplasmic, and extracellular regions among the claudin-based paracellular barriers and paracellular channels; however, differences in the claudins' extracellular regions, such as their charges and conformations, determine their properties. Among the biological systems that involve fluid flow and metabolism, it is noted that hepatic bile flow, renal Na + reabsorption, and intestinal nutrient absorption are dynamically regulated via site-specific distributions of paracellular channel-forming claudins in tissue. Here, we focus on how site-specific distributions of claudin-2- and claudin-15-based paracellular channels drive their organ-specific functions in the liver, kidney, and intestine. © 2017 New York Academy of Sciences.

  12. Sensitization of interferon-γ induced apoptosis in human osteosarcoma cells by extracellular S100A4

    International Nuclear Information System (INIS)

    Pedersen, Kjetil Boye; Andersen, Kristin; Fodstad, Øystein; Mælandsmo, Gunhild Mari

    2004-01-01

    S100A4 is a small Ca 2+ -binding protein of the S100 family with metastasis-promoting properties. Recently, secreted S100A4 protein has been shown to possess a number of functions, including induction of angiogenesis, stimulation of cell motility and neurite extension. Cell cultures from two human osteosarcoma cell lines, OHS and its anti-S100A4 ribozyme transfected counterpart II-11b, was treated with IFN-γ and recombinant S100A4 in order to study the sensitizing effects of extracellular S100A4 on IFN-γ mediated apoptosis. Induction of apoptosis was demonstrated by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase and Lamin B. In the present work, we found that the S100A4-expressing human osteosarcoma cell line OHS was more sensitive to IFN-γ-mediated apoptosis than the II-11b cells. S100A4 protein was detected in conditioned medium from OHS cells, but not from II-11b cells, and addition of recombinant S100A4 to the cell medium sensitized II-11b cells to apoptosis induced by IFN-γ. The S100A4/IFN-γ-mediated induction of apoptosis was shown to be independent of caspase activation, but dependent on the formation of reactive oxygen species. Furthermore, addition of extracellular S100A4 was demonstrated to activate nuclear factor-κB (NF-κB). In conclusion, we have shown that S100A4 sensitizes osteosarcoma cells to IFN-γ-mediated induction of apoptosis. Additionally, extracellular S100A4 activates NF-κB, but whether these events are causally related remains unknown

  13. Crystal structure of the extracellular domain of human myelin protein zero

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Brunzelle, Joseph S.; Kovari, Iulia A.; Sohi, Jasloveleen; Kamholz, John; Kovari, Ladislau C. (WSU-MED); (NWU)

    2012-03-27

    Charcot-Marie-Tooth disease (CMT), a hereditary motor and sensory neuropathy, is the most common genetic neuropathy with an incidence of 1 in 2600. Several forms of CMT have been identified arising from different genomic abnormalities such as CMT1 including CMT1A, CMT1B, and CMTX. CMT1 with associated peripheral nervous system (PNS) demyelination, the most frequent diagnosis, demonstrates slowed nerve conduction velocities and segmental demyelination upon nerve biopsy. One of its subtypes, CMT1A, presents a 1.5-Mb duplication in the p11-p12 region of the human chromosome 17 which encodes peripheral myelin protein 22 (PMP22). CMT1B, a less common form, arises from the mutations in the myelin protein zero (MPZ) gene on chromosome 1, region q22-q23, which encodes the major structural component of the peripheral myelin. A rare type of CMT1 has been found recently and is caused by point mutations in early growth response gene 2 (EGR2), encoding a zinc finger transcription factor in Schwann cells. In addition, CMTX, an X-linked form of CMT, arises from a mutation in the connexin-32 gene. Myelin protein zero, associated with CMT1B, is a transmembrane protein of 219 amino acid residues. Human MPZ consists of three domains: 125 residues constitute the glycosylated immunoglobulin-like extracellular domain; 27 residues span the membrane; and 67 residues comprise the highly basic intracellular domain. MPZ makes up approximately 50% of the protein content of myelin, and is expressed predominantly in Schwann cells, the myelinating cell of the PNS. Myelin protein zero, a homophilic adhesion molecule, is a member of the immunoglobulin super-family and is essential for normal myelin structure and function. In addition, MPZ knockout mice displayed abnormal myelin that severely affects the myelination pathway, and overexpression of MPZ causes congenital hypomyelination of peripheral nerves. Myelin protein zero mutations account for {approx}5% of patients with CMT. To date, over 125

  14. Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene - methyltetrazine reactions.

    Science.gov (United States)

    Muraki, Michiro; Hirota, Kiyonori

    2017-07-03

    Fas ligand plays a key role in the human immune system as a major cell death inducing protein. The extracellular domain of human Fas ligand (hFasLECD) triggers apoptosis of malignant cells, and therefore is expected to have substantial potentials in medical biotechnology. However, the current application of this protein to clinical medicine is hampered by a shortage of the benefits relative to the drawbacks including the side-effects in systemic administration. Effective procedures for the engineering of the protein by attaching useful additional functions are required to overcome the problem. A procedure for the site-specific chemical conjugation of hFasLECD with a fluorochrome and functional proteins was devised using an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene group and methyltetrazine group. The conjugations in the present study were attained by using much less molar excess amounts of the compounds to be attached as compared with the conventional chemical modification reactions using maleimide derivatives in the previous study. The isolated conjugates of hFasLECD with sulfo-Cy3, avidin and rabbit IgG Fab' domain presented the functional and the structural integrities of the attached molecules without impairing the specific binding activity toward human Fas receptor extracellular domain. The present study provided a new fundamental strategy for the production of the engineered hFasLECDs with additional beneficial functions, which will lead to the developments of the improved diagnostic systems and the effective treatment methods of serious diseases by using this protein as a component of novel molecular tools.

  15. Distribution volumes of macromolecules in human ovarian and endometrial cancers--effects of extracellular matrix structure.

    Science.gov (United States)

    Haslene-Hox, Hanne; Oveland, Eystein; Woie, Kathrine; Salvesen, Helga B; Tenstad, Olav; Wiig, Helge

    2015-01-01

    Elements of the extracellular matrix (ECM), notably collagen and glucosaminoglycans, will restrict part of the space available for soluble macromolecules simply because the molecules cannot occupy the same space. This phenomenon may influence macromolecular drug uptake. To study the influence of steric and charge effects of the ECM on the distribution volumes of macromolecules in human healthy and malignant gynecologic tissues we used as probes 15 abundant plasma proteins quantified by high-resolution mass spectrometry. The available distribution volume (VA) of albumin was increased in ovarian carcinoma compared with healthy ovarian tissue. Furthermore, VA of plasma proteins between 40 and 190 kDa decreased with size for endometrial carcinoma and healthy ovarian tissue, but was independent of molecular weight for the ovarian carcinomas. An effect of charge on distribution volume was only found in healthy ovaries, which had lower hydration and high collagen content, indicating that a condensed interstitium increases the influence of negative charges. A number of earlier suggested biomarker candidates were detected in increased amounts in malignant tissue, e.g., stathmin and spindlin-1, showing that interstitial fluid, even when unfractionated, can be a valuable source for tissue-specific proteins. We demonstrate that the distribution of abundant plasma proteins in the interstitium can be elucidated by mass spectrometry methods and depends markedly on hydration and ECM structure. Our data can be used in modeling of drug uptake, and give indications on ECM components to be targeted to increase the uptake of macromolecular substances. Copyright © 2015 the American Physiological Society.

  16. Effects of extracellular magnesium on the differentiation and function of human osteoclasts.

    Science.gov (United States)

    Wu, Lili; Luthringer, Bérengère J C; Feyerabend, Frank; Schilling, Arndt F; Willumeit, Regine

    2014-06-01

    Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  18. A catalogue of human secreted proteins and its implications

    Directory of Open Access Journals (Sweden)

    Shivakumar Keerthikumar

    2016-11-01

    Full Text Available Under both normal and pathological conditions, cells secrete variety of proteins through classical and non-classical secretory pathways into the extracellular space. Majority of these proteins represent pathophysiology of the cell from which it is secreted. Recently, though more than 92% of the protein coding genes has been mapped by human proteome map project, but number of those proteins that constitutes secretome of the cell still remains elusive. Secreted proteins or the secretome can be accessible in bodily fluids and hence are considered as potential biomarkers to discriminate between healthy and diseased individuals. In order to facilitate the biomarker discovery and to further aid clinicians and scientists working in these arenas, we have compiled and catalogued secreted proteins from the human proteome using integrated bioinformatics approach. In this study, nearly 14% of the human proteome is likely to be secreted through classical and non-classical secretory pathways. Out of which, ~38% of these secreted proteins were found in extracellular vesicles including exosomes and shedding microvesicles. Among these secreted proteins, 94% were detected in human bodily fluids including blood, plasma, serum, saliva, semen, tear and urine. We anticipate that this high confidence list of secreted proteins could serve as a compendium of candidate biomarkers. In addition, the catalogue may provide functional insights in understanding the molecular mechanisms involved in various physiological and pathophysiological conditions of the cell.

  19. In vivo extracellular matrix protein expression by human periodontal ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... Extracellular matrix proteins (ECM) are described as molecular regulators of these events. ..... zation and adhesive interaction of cells (Yamada, 1983). .... periodontal ligament fibroblasts after simulation of orthodontic force.

  20. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly...... for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions...

  1. Proteomic Analysis of Human Blastocoel Fluid and Blastocyst Cells

    DEFF Research Database (Denmark)

    Linnert Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    The human blastocyst consists of 100-200 cells that are organized in an outer layer of differentiated trophectoderm (TE) cells lining the blastocyst cavity into which the undifferentiated inner cell mass (ICM) protrudes. The cavity of the blastocyst is filled with blastocoel fluid to which all...... the cells of the blastocyst are exposed. The ICM is the starting point for the development of undifferentiated human embryonic stem cells (hESCs), which posses the potential to develop into any cell type present in the adult human body [1,2]. This ability makes hESCs a potential source of cells...

  2. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  3. Abundant extracellular myelin in the meninges of patients with multiple sclerosis.

    Science.gov (United States)

    Kooi, E-J; van Horssen, J; Witte, M E; Amor, S; Bø, L; Dijkstra, C D; van der Valk, P; Geurts, J J G

    2009-06-01

    In multiple sclerosis (MS) myelin debris has been observed within MS lesions, in cerebrospinal fluid and cervical lymph nodes, but the route of myelin transport out of the brain is unknown. Drainage of interstitial fluid from the brain parenchyma involves the perivascular spaces and leptomeninges, but the presence of myelin debris in these compartments has not been described. To determine whether myelin products are present in the meninges and perivascular spaces of MS patients. Formalin-fixed brain tissue containing meninges from 29 MS patients, 9 non-neurological controls, 6 Alzheimer's disease, 5 stroke, 5 meningitis and 7 leucodystrophy patients was investigated, and immunohistochemically stained for several myelin proteins [proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)]. On brain material from MS patients and (non)neurological controls, PLP immunostaining was used to systematically investigate the presence of myelin debris in the meninges, using a semiquantitative scale. Extensive extracellular presence of myelin particles, positive for PLP, MBP, MOG and CNPase in the leptomeninges of MS patients, was observed. Myelin particles were also observed in perivascular spaces of MS patients. Immunohistochemical double-labelling for macrophage and dendritic cell markers and PLP confirmed that the vast majority of myelin particles were located extracellularly. Extracellular myelin particles were virtually absent in meningeal tissue of non-neurological controls, Alzheimer's disease, stroke, meningitis and leucodystrophy cases. In MS leptomeninges and perivascular spaces, abundant extracellular myelin can be found, whereas this is not the case for controls and other neurological disease. This may be relevant for understanding sustained immunogenicity or, alternatively, tolerogenicity in MS.

  4. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  5. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen

    DEFF Research Database (Denmark)

    Damgaard, Dres; Senolt, Ladislav; Nielsen, Michael Friberg

    2014-01-01

    INTRODUCTION: Members of the peptidylarginine deiminase (PAD) family catalyse the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullination of proteins is well described in rheumatoid arthritis (RA), and hypercitrullination of proteins may be related to inflammation...... in general. PAD activity has been demonstrated in various cell lysates, but so far not in synovial fluid. We aimed to develop an assay for detection of PAD activity, if any, in synovial fluid from RA patients. METHODS: An enzyme-linked immunosorbent assay using human fibrinogen as the immobilized substrate...... for citrullination and anti-citrullinated fibrinogen antibody as the detecting agent were used for measurement of PAD activity in synovial fluid samples from five RA patients. The concentrations of PAD2 and calcium were also determined. RESULTS: Approximately 150 times lower levels of recombinant human PAD2 (rhPAD2...

  6. Developmental changes in thyrotropin-releasing hormone (pGlu-His-ProNH2, TRH) metabolism in human cerebrospinal fluid

    International Nuclear Information System (INIS)

    Prasad, C.; Rao, J.K.; Ponte, E.; Jayaraman, A.

    1986-01-01

    Since CSF is in constant exchange with the brain extracellular fluids, studies on the development of TRH metabolism in CSF might give insight into the functions of TRH in the brain. In human CSF, TRH metabolism is exclusively catalyzed by enzyme Pyroglutamate animopeptidase (pGlu-peptidase) yielding cyclo(His-Pro) as product. [ 3 H-Pro]-TRH (20 μM, 0.1 μCi) was incubated with CSF at 37C for 15, 30, 45 and 60 minutes and the rates of cyclo(His-Pro) formation was calculated. pGlu-peptidase activities [pmol cyclo(His-Pro) formed from TRH/min/ml CSF] in CSF from pre-term (gestational age: 29-36 weeks) and newborn (0-8 days) babies were significantly (p 0.2] or the mixing of pediatric and adult CSF did not decrease the enzyme activity of adult CSF. In conclusion, TRH metabolism in CSF increases with age and low pGlu-peptidase activity in pediatric CSF may suggest some unique development role for this enzyme in brain TRH function(s)

  7. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    Science.gov (United States)

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  8. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    International Nuclear Information System (INIS)

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G.

    1989-01-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing

  9. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

    Science.gov (United States)

    El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T

    2003-03-01

    The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal

  10. The source of net ultrafiltration during hemodialysis is mostly the extracellular space regardless of hydration status.

    Science.gov (United States)

    Jeong, Hyeonju; Lim, Chae-Wan; Choi, Hye-Min; Oh, Dong-Jin

    2016-01-01

    Fluid shifts are common in patients undergoing chronic hemodialysis (HD) during the intradialytic periods, as several liters of fluid are removed during ultrafiltration (UF). Some patients have experienced frequent intradialytic hypotension (IDH). However, the characteristics of fluid shifts and which fluid space is affected remain controversial. Therefore, we designed this study to evaluate the fluid spaces most affected by UF and to determine whether hydration status influences the fluid shifts during HD. This was a prospective cohort study of 40 patients undergoing HD. We measured the patient's fluid spaces using a whole-body bioimpedance apparatus to evaluate the changes in the fluid spaces before HD and 1-4 hours of HD and 30 minutes after HD. UF achieved during HD by the 40 patients (age, 60.0 ± 5.2 years; 50% men; 50% of patients with diabetes; body weight, 61.3 ± 10.5 kg) was 2.18 ± 0.78 L (measured fluid overload, 2.15 ± 1.24 L). 1) Mean relative reduction of total body water and extracellular water was reduced from the start to the end of HD. 2) However, mean relative reduction of intracellular water was not reduced from the start to the end of HD. 3) No significant differences in fluid shifts were observed according to hydration status. The source of net UF during HD is mostly the extracellular space regardless of hydration status. Thus, IDH may be related to differences in the interstitial fluid shift to the vascular space. © 2015 International Society for Hemodialysis.

  11. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold.

    Science.gov (United States)

    Kim, Dong Wook; Kim, Eun Ji; Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps-ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest.

  12. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  13. Influence of human ascitic fluid on the in vitro antibacterial activity of moxifloxacin.

    Science.gov (United States)

    Miglioli, P A; Cappellari, G; Cavallaro, A; Cardaioli, C; Sossai, P; Fille, M; Allerberger, F

    2005-08-01

    We investigated the in vitro influence of HAF on the antibacterial activity of moxifloxacin against Escherichia coli ATCC 10798, Escherichia coli K-12, Proteus rettgeri (Sanelli), Staphylococcus aureus ATCC 25923, Staphylococcus aureus NCTC 1808 and Staphylococcus epidermidis ATCC 12228. Human ascitic fluid was obtained from 6 cirrhotic patients by paracentesis. The interaction effect was evaluated by the checkerboard technique. Our results indicate the ability of human ascitic fluid to reduce minimum inhibitory concentrations of moxifloxacin against Gram-negative bacteria, but not against Gram-positives.

  14. Brain Extracellular Space: The Final Frontier of Neuroscience.

    Science.gov (United States)

    Nicholson, Charles; Hrabětová, Sabina

    2017-11-21

    Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Investigating the role of the extracellular matrix on differentiation of human mesenchymal stem cells and MC3T3 cells

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Dechering, Koen; Someren, Eugene; van Blitterswijk, Clemens; de Boer, Jan

    2008-01-01

    Human mesenchymal stem cells (hMSCs) are a promising cell source for bone tissue engineering, but due to their limited number and donor variation, other cell types are used to answer relevant questions in bone tissue engineering. Since the extracellular matrix (ECM) is a complex entity with

  16. miR-200–containing extracellular vesicles promote breast cancer cell metastasis

    Science.gov (United States)

    Le, Minh T.N.; Hamar, Peter; Guo, Changying; Basar, Emre; Perdigão-Henriques, Ricardo; Balaj, Leonora; Lieberman, Judy

    2014-01-01

    Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200–expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200–dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles. PMID:25401471

  17. Effect of SLC34A2 gene mutation on extracellular phosphorus transport in PAM alveolar epithelial cells.

    Science.gov (United States)

    Ma, Tiangang; Qu, Danhua; Yan, Bingdi; Zhang, Qinghua; Ren, Jin; Hu, Yanbing

    2018-01-01

    A mutation in the IIb sodium phosphate transporter SLC34A2 gene has recently been described in pulmonary alveolar microlithiasis (PAM) patients. Experiments in this study were aimed at confirming the role of the gene product in PAM by comparing phosphorylated products in extracellular fluid of alveolar epithelial cells overexpressing the SLC34A2 gene or its mutated version. Eukaryotic expression vectors were constructed and transfected into A549 human alveolar epithelial cells. There were three groups of cells including those transfected with empty vector plasmid pcDNA3.1(+) (plasmid control group), those transfected with normal SLC34A2 gene expressed from pcDNA3.1 (normal control group), and those transfected with a version of the PAM SLC34A2 gene linked to the pcDNA3.1(+) (PAM group). Transfection efficiencies were detected by reverse transcription-polymerase chain reaction (RT-PCR). At 48 h after transfection, the concentration of inorganic phosphorus in the culture medium was detected using an automatic biochemical analyzer. Our results showed the concentration of inorganic phosphorus in the supernatant of the normal control group was significantly lower than that in the plasmid control and PAM groups (PPAM group was significantly lower than that in the plasmid control group (PPAM patients, given that the function of the phosphate transporter seems to be affected and it is conceivable that it would lead to extracellular fluid alterations in vivo .

  18. Computer modelling of the chemical speciation of Americium (III) in human body fluids

    International Nuclear Information System (INIS)

    Jiang, Shu-bin; Lei, Jia-rong; Wang, He-yi; Zhong, Zhi-jing; Yang, Yong; Du, Yang

    2008-01-01

    A multi-phase equilibrium model consisted of multi-metal ion and low molecular mass ligands in human body fluid has been constructed to discuss the speciation of Am 3+ in gastric juice, sweat, interstitial fluid, intracellular fluid and urine of human body, respectively. Computer simulations indicated that the major Am(III)P Species were Am 3+ , [Am Cl] 2+ and [AmH 2 PO 4 ] 2+ at pH 4 became dominant with higher pH value when [Am] = 1 x 10 -7 mol/L in gastric juice model and percentage of AmPO 4 increased with [Am]. in sweat system, Am(III) existed with soluble species at pH 4.2∼pH 7.5 when [Am] = 1 x 10 -7 mol/L and Am(III) existed with Am 3+ and [Am OH] 2+ at pH 6.5 when [Am] -10 mol/L or [Am] > 5 x 10 -8 mol/L . With addition of EDTA, the Am(III) existed with soluble [Am EDTA] - whereas the Am(III) existed with insoluble AmPO 4 when [Am] > 1 x 10 -12 mol/L at interstitial fluid. The major Am(III) species was AmPO 4 at pH 7.0 and [Am]=4 x 10 -12 mol/L in intracellular fluid, which implied Am(III) represented strong cell toxicity. The percentage of Am(III) soluble species increased at lower pH hinted that the Am(III), in the form of aerosol, ingested by macrophage, could released into interstitial fluid and bring strong toxicity to skeleton system. The soluble Am(III) species was dominant when pH 4 when pH > 4.5 when [Am] = 1 x 10 -10 Pmol/L in human urine, so it was favorable to excrete Am(III) from kidney by taking acid materials. (author)

  19. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold.

    Directory of Open Access Journals (Sweden)

    Dong Wook Kim

    Full Text Available Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM and methylcellulose (MC for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps-ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest.

  20. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA-complexes.

    Science.gov (United States)

    Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien

    2018-05-10

    Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release

  1. Memory Loss and the Onset of Alzheimer's Disease Could Be Under the Control of Extracellular Heat Shock Proteins.

    Science.gov (United States)

    Arispe, Nelson; De Maio, Antonio

    2018-04-17

    Alzheimer's disease (AD) is a major contemporary and escalating malady in which amyloid-β (Aβ) peptides are the most likely causative agent. Aβ peptides spontaneously tend to aggregate in extracellular fluids following a progression from a monomeric state, through intermediate forms, ending in amyloid fibers and plaques. It is generally accepted now that the neurotoxic agents leading to cellular death, memory loss, and other AD characteristics are the Aβ intermediate aggregated states. However, Aβ peptides are continuously produced, released into the extracellular space, and rapidly cleared from healthy brains. Coincidentally, members of the heat shock proteins (hsp) family are present in the extracellular medium of healthy cells and body fluids, opening the possibility that hsps and Aβ could meet and interact in the extracellular milieu of the brain. In this perspective and reflection article, we place our investigation showing that the presence of Hsp70s mitigate the formation of low molecular weight Aβ peptide oligomers resulting in a reduction of cellular toxicity, in context of the current understanding of the disease. We propose that it may be an inverse relationship between the presence of Hsp70, the stage of Aβ oligomers, neurotoxicity, and the incidence of AD, particularly since the expression and circulating levels of hsp decrease with aging. Combining these observations, we propose that changes in the dynamics of Hsp70s and Aβ concentrations in the circulating brain fluids during aging defines the control of the formation of Aβ toxic aggregates, thus determining the conditions for neuron degeneration and the incidence of AD.

  2. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  3. Survey of 800+ datasets from human tissue and body fluid reveals XenomiRs are likely artifacts

    DEFF Research Database (Denmark)

    Kang, Wenjing; Bang-Berthelsen, Claus Heiner; Holm, Anja

    2017-01-01

    the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are rare human dietary contributions, but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomi...

  4. Extracellular microvesicle production by human eosinophils activated by “inflammatory” stimuli

    Directory of Open Access Journals (Sweden)

    Praveen Akuthota

    2016-10-01

    Full Text Available A key function of human eosinophils is to secrete cytokines, chemokines and cationic proteins, trafficking and releasing these mediators for roles in inflammation and other immune responses. Eosinophil activation leads to secretion of pre-synthesized granule-stored mediators through different mechanisms, but the ability of eosinophils to secrete extracellular vesicles (EVs, very small vesicles with preserved membrane topology, is still poorly understood. In the present work, we sought to identify and characterize EVs released from human eosinophils during different conditions: after a culturing period or after isolation and stimulation with inflammatory stimuli, which are known to induce eosinophil activation and secretion: CCL11 (eotaxin-1 and tumor necrosis factor alpha (TNF-α. EV production was investigated by nanoscale flow cytometry, conventional transmission electron microscopy (TEM and pre-embedding immunonanogold EM. The tetraspanins CD63 and CD9 were used as EV biomarkers for both flow cytometry and ultrastructural immunolabeling. Nanoscale flow cytometry showed that human eosinophils produce EVs in culture and that a population of EVs expressed detectable CD9, while CD63 was not consistently detected. When eosinophils were stimulated immediately after isolation and analyzed by TEM, EVs were clearly identified as microvesicles (MVsoutwardly budding off the plasma membrane. Both CCL11 and TNF-α induced significant increases of MVs compared to unstimulated cells.TNF-α induced amplified release of MVs more than CCL11. Eosinophil MV diameters varied from 20-1000 nm. Immunonanogold EM revealed clear immunolabeling for CD63 and CD9 on eosinophil MVs, although not all MVs were labeled. Altogether, we identified, for the first time, that human eosinophils secrete MVs and that this production increases in response to inflammatory stimuli. This is important to understand the complex secretory activities of eosinophils underlying immune

  5. A novel functional site of extracellular matrix metalloproteinase inducer (EMMPRIN) that limits the migration of human uterine cervical carcinoma cells.

    Science.gov (United States)

    Sato, Takashi; Watanabe, Mami; Hashimoto, Kei; Ota, Tomoko; Akimoto, Noriko; Imada, Keisuke; Nomizu, Motoyoshi; Ito, Akira

    2012-01-01

    EMMPRIN (extracellular matrix metalloproteinase inducer)/CD147, a membrane-bound glycoprotein with two extracellular loop domains (termed loops I and II), progresses tumor invasion and metastasis by increasing the production of matrix metalloproteinase (MMP) in peritumoral stoma cells. EMMPRIN has also been associated with the control of migration activity in some tumor cells, but little is known about how EMMPRIN regulates tumor cell migration. In the present study, EMMPRIN siRNA suppressed the gene expression and production of EMMPRIN in human uterine cervical carcinoma SKG-II cells. An in vitro scratch wound assay showed enhancement of migration of EMMPRIN-knockdown SKG-II cells. In addition, the SKG-II cell migration was augmented by adding an E. coli-expressed human EMMPRIN mutant with two extracellular loop domains (eEMP-I/II), which bound to the cell surface of SKG-II cells. However, eEMP-I/II suppressed the native EMMPRIN-mediated augmentation of proMMP-1/procollagenase-1 production in a co-culture of the SKG-II cells and human uterine cervical fibroblasts, indicating that the augmentation of SKG-II cell migration resulted from the interference of native EMMPRIN functions by eEMP-I/II on the cell surface. Furthermore, a systematic peptide screening method using nine synthetic EMMPRIN peptides coding the loop I and II domains (termed EM1-9) revealed that EM9 (170HIENLNMEADPGQYR184) facilitated SKG-II cell migration. Moreover, SKG-II cell migration was enhanced by administration of an antibody against EM9, but not EM1 which is a crucial site for the MMP inducible activity of EMMPRIN. Therefore, these results provide novel evidence that EMMPRIN on the cell surface limits the cell migration of human uterine cervical carcinoma cells through 170HIENLNMEADPGQYR184 in the loop II domain. Finally, these results should provide an increased understanding of the functions of EMMPRIN in malignant cervical carcinoma cells, and could contribute to the development of

  6. The Associations of Malnutrition and Aging with Fluid Volume Imbalance between Intra- and Extracellular Water in Patients with Chronic Kidney Disease.

    Science.gov (United States)

    Ohashi, Y; Tai, R; Aoki, T; Mizuiri, S; Ogura, T; Tanaka, Y; Okada, T; Aikawa, A; Sakai, K

    2015-12-01

    Fluid imbalance due to sodium retention and malnutrition can be characterized by the ratio of extracellular water (ECW) to intracellular water (ICW). We investigated whether the ECW/ICW ratio is a risk factor for adverse outcomes. Retrospective cohort study. 149 patients with chronic kidney disease from 2005 to 2009, who were followed until August 2013. Body fluid composition was measured by bioelectrical impedance analysis. Patients were categorized according to the ECW/ICW ratio tertile. Daily nutrient intake was estimated from 24-h dietary recall and analyzed using standard food composition tables. The main outcomes were adverse renal outcomes, as defined by a decline of 50% or more from the baseline glomerular filtration rate or initiation of renal replacement therapy, cardiovascular events, and all-cause mortality. The ECW/ICW ratio increased with downward ICW slope with age and renal dysfunction besides ECW excess with massive proteinuria. Sodium intake, protein intake, and calorie intake were negatively correlated with the ECW/ICW ratios due to the steeper decreasing ICW content with the decreased dietary intake than the decreasing ECW content. During a median 4.9-year follow up, patients in the highest tertile had the worst adverse renal outcomes (15.9 vs. 5.1 per 100 patient-years, P patient-years, P = 0.002), and mortality (11.2 vs. 1.3 per 100 patient-years, P patients with chronic kidney disease may explain the reserve capacity for volume overload and is associated with adverse renal outcomes and all-cause mortality.

  7. Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress.

    Science.gov (United States)

    Kraft, David Christian Evar; Bindslev, Dorth Arenholt; Melsen, Birte; Klein-Nulend, Jenneke

    2011-02-01

    For engineering bone tissue to restore, for example, maxillofacial defects, mechanosensitive cells are needed that are able to conduct bone cell-specific functions, such as bone remodelling. Mechanical loading affects local bone mass and architecture in vivo by initiating a cellular response via loading-induced flow of interstitial fluid. After surgical removal of ectopically impacted third molars, human dental pulp tissue is an easily accessible and interesting source of cells for mineralized tissue engineering. The aim of this study was to determine whether human dental pulp-derived cells (DPC) are responsive to mechanical loading by pulsating fluid flow (PFF) upon stimulation of mineralization in vitro. Human DPC were incubated with or without mineralization medium containing differentiation factors for 3 weeks. Cells were subjected to 1-h PFF (0.7 ± 0.3 Pa, 5 Hz) and the response was quantified by measuring nitric oxide (NO) and prostaglandin E₂ (PGE₂) production, and gene expression of cyclooxygenase (COX)-1 and COX-2. We found that DPC are intrinsically mechanosensitive and, like osteogenic cells, respond to PFF-induced fluid shear stress. PFF stimulated NO and PGE₂ production, and up-regulated COX-2 but not COX-1 gene expression. In DPC cultured under mineralizing conditions, the PFF-induced NO, but not PGE₂, production was significantly enhanced. These data suggest that human DPC, like osteogenic cells, acquire responsiveness to pulsating fluid shear stress in mineralizing conditions. Thus DPC might be able to perform bone-like functions during mineralized tissue remodeling in vivo, and therefore provide a promising new tool for mineralized tissue engineering to restore, for example, maxillofacial defects.

  8. Neuropeptide K is present in human cerebrospinal fluid

    International Nuclear Information System (INIS)

    Toresson, G.; de las Carreras, C.; Brodin, E.; Bertilsson, L.

    1990-01-01

    Neurokinin A-like immunoreactivity (NKA-LI) in human cerebrospinal fluid (CSF) was determined by radioimmuno assay (RIA) combined with high performance liquid chromatography (HPLC). The major immunoreactive component did not coelute with NKA, but coeluted with neuropeptide K (NPK), which contains the NKA sequence in its C-terminus. Trypsin treatment of this component from human CSF and of synthetic NPK, produced a substance which coeluted with NKA in the HPLC system. When the NKA-LI was oxidized with hydrogen peroxide and rechromatographed, the immunoreactivity coeluted with NPK sulfoxide. The results indicate that the main part of the NKA-LI in CSF is identical with NPK. The mean concentration of NPK measured in CSF from 6 healthy subjects by HPLC-RIA was 23 + 11 (SD) pmol/L

  9. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    Science.gov (United States)

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  10. Extracellular KCl effect on organic bound tritium in human cells

    International Nuclear Information System (INIS)

    Gonen, Rafi; Uzi, German; Priel, Esther; Alfassi, Zeev B.

    2008-01-01

    Tritium atoms can replace hydrogen atoms in organic compounds, forming Organic Bound Tritium. Therefore, exposure of the body to tritium may lead to binding of tritium in tissue molecules, retaining it in the body longer than HTO, and causing higher doses. Ignoring this effect when evaluating inner exposures, may lead to under-estimation of tritium exposures. It was published, that tritium bound to some organic molecules has the potential to accumulate in organisms at higher levels as in the surrounding media. In order to investigate this effect and to identify physiological factors, OBT production in human malignant MG-63 osteoblast cells was studied. The purpose of the present work was to investigate the influence of the ionic extracellular potassium concentration on the amount of tritium in cells. Potassium is known as an ionic compound present in the body, which has the potential to cause cells swelling. Therefore, cells were exposed to isotonic and hypotonic media, supplemented with different concentrations of KCl, and the tritium accumulations were determined after incubation with HTO. An increase in the total Organic Bound Tritium production was observed, as well as an increase of the intracellular HTO content when increasing the KCl concentration. (author)

  11. Studies on the fluid balance of the calf. 3

    International Nuclear Information System (INIS)

    Hartmann, H.; Finsterbusch, L.; Rudolf, C.; Meyer, H.; Schweinitz, P.

    1988-01-01

    Volumes, biological half-life values, and transfer rates of the fluid compartments of whole-body water and extracellular space were recorded from 37 clinically intact calves, aged between two days and six weeks, as well as from 50 animals with diarrhea, aged between four days and six weeks. The effect of infusion on fluid spaces of calves with diarrhea was also investigated. Transfer rates of whole-body water and extracellular space were 4.6 ml or 1.5 mlkg -1 hr -1 for calves aged two weeks and were 6.2 ml or 1.8 mlkg -1 hr -1 for animals between five and six weeks of age. Diarrhea in young calves was found to increase the transfer rate of whole-body water to 6.3 mlkg -1 hr -1 (137 per cent) in surviving individuals or to 12.1 mlkg -1 hr -1 (263 per cent) in those individuals which died within two days. The transfer rates for extracellular space increased even more clearly to 2.4 mlkg -1 hr -1 (160 per cent) in survivors and to 7.4 mlkg -1 hr -1 (493 per cent) in dying calves. The reduced volumes of fluid spaces were largely normalized at least by the end of infusion in calves with moderate to severe diarrhea which received intravenous applications of 1.0 l or 1.5 l of an electrolyte-glucose solution. The calves thus treated still exhibited, however, clearly increased transfer rates for???

  12. Origin of estradiol fatty acid esters in human ovarian follicular fluid.

    Science.gov (United States)

    Pahuja, S L; Kim, A H; Lee, G; Hochberg, R B

    1995-03-01

    The estradiol fatty acid esters are the most potent of the naturally occurring steroidal estrogens. These esters are present predominantly in fat, where they are sequestered until they are hydrolyzed by esterases. Thus they act as a preformed reservoir of estradiol. We have previously shown that ovarian follicular fluid from patients undergoing gonadotropin stimulation contains very high amounts of estradiol fatty acid esters (approximately 10(-7) M). The source of these esters is unknown. They can be formed by esterification of estradiol in the follicular fluid by lecithin:cholesterol acyltransferase (LCAT), or in the ovary by an acyl coenzyme A:acyltransferase. In order to determine which of these enzymatic processes is the source of the estradiol esters in the follicular fluid, we incubated [3H]estradiol with follicular fluid and cells isolated from human ovarian follicular fluid and characterized the fatty acid composition of the [3H]estradiol esters biosynthesized in each. In addition, we characterized the endogenous estradiol fatty acid esters in the follicular fluid and compared them to the biosynthetic esters. The fatty acid composition of the endogenous esters was different than those synthesized by the cellular acyl coenzyme A:acyltransferase, and the same as the esters synthesized by LCAT, demonstrating that the esters are produced in situ in the follicular fluid. Although the role of these estradiol esters in the ovary is not known, given their remarkable estrogenic potency it is highly probable that they have an important physiological role.

  13. Partitioning of body fluids in the Lake Nicaragua shark and three marine sharks.

    Science.gov (United States)

    THORSON, T B

    1962-11-09

    The relative volumes of major body fluids of freshwater and marine sharks are remarkably similar in spite of the differences in external medium and in osmotic pressure of body fluids. The small differences detected are in agreement with differences reported in comparisons of freshwater and marine teleosts: a slightly higher total water content and a smiller ratio of extracellular to intracellular fluids in freshwater forms.

  14. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  15. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  16. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    Science.gov (United States)

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  17. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    Science.gov (United States)

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  18. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid.

    Directory of Open Access Journals (Sweden)

    Izabela Sitkiewicz

    Full Text Available BACKGROUND: Streptococcus agalactiae (group B Streptococcus is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds

  19. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification.

    Science.gov (United States)

    Donfack, Joseph; Wiley, Anissa

    2015-05-01

    Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20pg input phosphoglycerate kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework. Published by Elsevier Ireland Ltd.

  20. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.

    Science.gov (United States)

    Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein

    2015-01-01

    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.

  1. Concentrations and speciation of polybrominated diphenyl ethers in human amniotic fluid

    Science.gov (United States)

    Miller, Mark F.; Chernyak, Sergei M.; Domino, Steven E.; Batterman, Stuart A.; Loch-Caruso, Rita

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are persistent organic chemicals used as flame retardants in textiles, plastics, and consumer products. Although PBDE accumulation in humans has been noted since the 1970s, few studies have investigated PBDEs within the gestational compartment, and none to date has identified levels in amniotic fluid. The present study reports congener-specific brominated diphenyl ether (BDE) concentrations in second-trimester clinical amniotic fluid samples collected in 2009 from fifteen women in southeast Michigan, USA. Twenty-one BDE congeners were measured by GC/MS/NCI. The average total PBDE concentration was 3795 pg/ml amniotic fluid (range: 337 – 21842 pg/ml). BDE-47 and BDE-99 were identified in all samples. Based on median concentrations, the dominant congeners were BDE-208, 209, 203, 206, 207, and 47 representing 23, 16, 12, 10, 9 and 6%, respectively, of the total detected PBDEs. PBDE concentrations were identified in all amniotic fluid samples from southeast Michigan, supporting a need for further investigations of fetal exposure pathways and potential impacts on perinatal health. PMID:22236635

  2. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    International Nuclear Information System (INIS)

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B.

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites

  3. The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis.

    Science.gov (United States)

    Al Shammari, Basim; Shiomi, Takayuki; Tezera, Liku; Bielecka, Magdalena K; Workman, Victoria; Sathyamoorthy, Tarangini; Mauri, Francesco; Jayasinghe, Suwan N; Robertson, Brian D; D'Armiento, Jeanine; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    A central tenet of tuberculosis pathogenesis is that caseous necrosis leads to extracellular matrix destruction and bacterial transmission. We reconsider the underlying mechanism of tuberculosis pathology and demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as opposed to resulting from it. In human tuberculosis granulomas, regions of extracellular matrix destruction map to areas of caseous necrosis. In mice, transgenic expression of human matrix metalloproteinase 1 causes caseous necrosis, the pathological hallmark of human tuberculosis. Collagen destruction is the principal pathological difference between humanised mice and wild-type mice with tuberculosis, whereas the release of proinflammatory cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and caseation. To investigate this hypothesis, we developed a 3-dimensional cell culture model of tuberculosis granuloma formation, using bioelectrospray technology. Collagen improved survival of Mycobacterium tuberculosis-infected cells analyzed on the basis of a lactate dehydrogenase release assay, propidium iodide staining, and measurement of the total number of viable cells. Taken together, these findings suggest that collagen destruction is an initial event in tuberculosis immunopathology, leading to caseous necrosis and compromising the immune response, revealing a previously unappreciated role for the extracellular matrix in regulating the host-pathogen interaction. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. β-endorphin in human cerebrospinal fluid

    International Nuclear Information System (INIS)

    Jeffcoate, W.J.; McLoughlin, L.; Hope, J.; Rees, L.H.; Ratter, S.J.; Lowry, P.J.; Besser, G.M.

    1978-01-01

    β-endorphin is a brain peptide with potent morphine-like activity structurally related to the anterior pituitary hormone β-lipotrophin (β-L.P.H.). A radioimmunoassay has been developed for human β-endorphin in plasma and cerebrospinal fluid (C.S.F.). Since the antiserum also reacts with β-L.P.H., β-endorphin was distinguished by using a second antiserum which measures β-L.P.H. alone. With these two immunoassay systems and gel chromatography, β-endorphin was found in all 20 C.S.F. samples tested at a concentration always higher than, but with no other relationship to, that in plasma. β-endorphin was found in C.S.F. of patients who had hypopituitarism and undetectable plasma-β-endorphin, suggesting that it is synthesised in the brain rather than in the pituitary. (author)

  5. Extracellular small heat shock proteins: exosomal biogenesis and function.

    Science.gov (United States)

    Reddy, V Sudhakar; Madala, Satish K; Trinath, Jamma; Reddy, G Bhanuprakash

    2018-05-01

    Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.

  6. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability.

    Science.gov (United States)

    Blair, Clancy

    2006-04-01

    This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.

  7. Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts.

    Science.gov (United States)

    Sancilio, Silvia; Gallorini, Marialucia; Cataldi, Amelia; di Giacomo, Viviana

    2016-04-01

    Electronic cigarettes (e-cigarettes) are generally acknowledged as a safer alternative to the use of combusted tobacco products. Nevertheless, there are increasing conflicting claims concerning the effect of these novel industrial products on the health of e-cigarettes users. The aim of this work was to investigate the effects of the liquids of e-cigarettes on human gingival fibroblasts (HGFs) and to compare the effects of nicotine-containing fluid to the fluid itself. HGFs were treated with different concentrations (0-5 mg/mL) of fluids of e-cigarettes for different times (0-72 h) and cytotoxicity was analyzed by MTT assay. Fluids were administered also after being vaped (e.g., warmed into the cartomizer). Apoptosis occurrence and Bax expression were evaluated by flow cytometry; ROS production was analyzed by fluorescence optical microscopy. Both nicotine-containing and nicotine-free fluids induced an increased ROS production after 24 h, along with an increased Bax expression, followed by apoptosis occurrence after 48 h of exposure. The cytotoxicity exerted on HGFs by e-cigarettes fluids is not entirely ascribable to nicotine. Since the e-cigarettes are advertised as a safer alternative to traditional ones, especially for the possibility of "smoking" nicotine-free fluids, further studies are necessary to clarify the mechanism involved in the occurrence of cytotoxicity exerted by such compounds. Our results suggest a role for e-cigarette fluids in the pathogenesis of oral diseases, such as periodontitis.

  8. Decrease of extracellular taurine in the rat dorsal hippocampus after central nervous administration of vasopressin

    DEFF Research Database (Denmark)

    Brust, P; Christensen, Thomas; Diemer, Nils Henrik

    1992-01-01

    of the composition of the extracellular fluid. The concentrations of 16 amino acids were measured by HPLC in the perfusate samples. The level of taurine declined 20% in the right hippocampus during perfusion with vasopressin, whereas o-phosphoethanolamine decreased in both sides, the left 20% and the right 24...

  9. Extracellular Ca(2+)-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells.

    Science.gov (United States)

    Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto

    2015-08-15

    Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    Science.gov (United States)

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  11. Comparative lipidomic analysis of synovial fluid in human and canine osteoarthritis

    NARCIS (Netherlands)

    Kosinska, M. K.; Mastbergen, S. C.; Liebisch, G.; Wilhelm, J.; Dettmeyer, R. B.; Ishaque, B.; Rickert, M.; Schmitz, G.; Lafeber, F. P.; Steinmeyer, J.

    Objective: The lipid profile of synovial fluid (SF) is related to the health status of joints. The early stages of human osteoarthritis (OA) are poorly understood, which larger animals are expected to be able to model closely. This study examined whether the canine groove model of OA represents

  12. A New Enzyme-linked Sorbent Assay (ELSA) to Quantify Syncytiotrophoblast Extracellular Vesicles in Biological Fluids

    NARCIS (Netherlands)

    Goehner, Claudia; Weber, Maja; Tannetta, Dionne S.; Groten, Tanja; Ploesch, Torsten; Faas, Marijke M.; Scherjon, Sicco A.; Schleussner, Ekkehard; Markert, Udo R.; Fitzgerald, Justine S.

    ProblemThe pregnancy-associated disease preeclampsia is related to the release of syncytiotrophoblast extracellular vesicles (STBEV) by the placenta. To improve functional research on STBEV, reliable and specific methods are needed to quantify them. However, only a few quantification methods are

  13. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans.

    Science.gov (United States)

    Eigenheer, Richard A; Jin Lee, Young; Blumwald, Eduardo; Phinney, Brett S; Gelli, Angie

    2007-06-01

    Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or beta-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography-mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans.

  14. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  15. Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins

    Directory of Open Access Journals (Sweden)

    S Capossela

    2014-04-01

    Full Text Available Degeneration of intervertebral discs (IVDs is associated with back pain and elevated levels of inflammatory cells. It has been hypothesised that discogenic pain is a direct result of vascular and neural ingrowth along annulus fissures, which may expose the avascular nucleus pulposus (NP to the systemic circulation and induce an autoimmune reaction. In this study, we confirmed our previous observation of antibodies in human degenerated and post-traumatic IVDs cultured in vitro. We hypothesised that the presence of antibodies was due to an autoimmune reaction against specific proteins of the disc. Furthermore we identified antigens which possibly trigger an autoimmune response in degenerative disc diseases. We demonstrated that degenerated and post-traumatic IVDs contain IgG antibodies against typical extracellular proteins of the disc, particularly proteins of the NP. We identified IgGs against collagen type II and aggrecan, confirming an autoimmune reaction against the normally immune privileged NP. We also found specific IgGs against collagens types I and V, but not against collagen type III. In conclusion, this study confirmed the association between disc degeneration and autoimmunity, and may open the avenue for future studies on developing prognostic, diagnostic and therapy-monitoring markers for degenerative disc diseases.

  16. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  17. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  18. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    Directory of Open Access Journals (Sweden)

    Valášek J.

    2016-01-01

    Full Text Available The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE is used. The whole problem is solved by the finite element method (FEM based solver. Results of numerical experiments with different boundary conditions are presented.

  19. Numerical solution of fluid-structure interaction represented by human vocal folds in airflow

    Science.gov (United States)

    Valášek, J.; Sváček, P.; Horáček, J.

    2016-03-01

    The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.

  20. Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment.

    Science.gov (United States)

    Hastrup, H; Karlin, A; Javitch, J A

    2001-08-28

    There is evidence both for and against Na(+)- and Cl(-)-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from approximately 85 to approximately 195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface.

  1. Extracellular hyperosmolality and body temperature during physical exercise in dogs

    Science.gov (United States)

    Kozlowski, S.; Greenleaf, J. E.; Turlejska, E.; Nazar, K.

    1980-01-01

    The purpose of this study was to test the hypothesis that thermoregulation during exercise can be affected by extracellular fluid hyperosmolality without changing the plasma Na(+) concentration. The effects of preexercise venous infusions of hypertonic mannitol and NaCl solutions on rectal temperature responses were compared in dogs running at moderate intensity for 60 min on a treadmill. Plasma Na(+) concentration was increased by 12 meq after NaCl infusion, and decreased by 9 meq after mannitol infusion. Both infusions increased plasma by 15 mosmol/kg. After both infusions, rectal temperature was essentially constant during 60 min rest. However, compared with the noninfusion exercise increase in osmolality of 1.3 C, rectal temperature increased by 1.9 C after both postinfusion exercise experiments. It was concluded that inducing extracellular hyperosmolality, without elevating plasma, can induce excessive increases in rectal temperature during exericse but not at rest.

  2. Electrodiffusion Models of Neurons and Extracellular Space Using the Poisson-Nernst-Planck Equations—Numerical Simulation of the Intra- and Extracellular Potential for an Axon Model

    Science.gov (United States)

    Pods, Jurgis; Schönke, Johannes; Bastian, Peter

    2013-01-01

    In neurophysiology, extracellular signals—as measured by local field potentials (LFP) or electroencephalography—are of great significance. Their exact biophysical basis is, however, still not fully understood. We present a three-dimensional model exploiting the cylinder symmetry of a single axon in extracellular fluid based on the Poisson-Nernst-Planck equations of electrodiffusion. The propagation of an action potential along the axonal membrane is investigated by means of numerical simulations. Special attention is paid to the Debye layer, the region with strong concentration gradients close to the membrane, which is explicitly resolved by the computational mesh. We focus on the evolution of the extracellular electric potential. A characteristic up-down-up LFP waveform in the far-field is found. Close to the membrane, the potential shows a more intricate shape. A comparison with the widely used line source approximation reveals similarities and demonstrates the strong influence of membrane currents. However, the electrodiffusion model shows another signal component stemming directly from the intracellular electric field, called the action potential echo. Depending on the neuronal configuration, this might have a significant effect on the LFP. In these situations, electrodiffusion models should be used for quantitative comparisons with experimental data. PMID:23823244

  3. Neutrophil extracellular traps in patients with pulmonary tuberculosis

    NARCIS (Netherlands)

    van der Meer, Anne Jan; Zeerleder, Sacha; Blok, Dana C.; Kager, Liesbeth M.; Lede, Ivar O.; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E.; Zahed, Abu Shahed Md; Husain, Md Anwar; Alam, Khan Mashrequl; Barua, Pravat Chandra; Hassan, Mahtabuddin; Tayab, Md Abu; Dondorp, Arjen M.; van der Poll, Tom

    2017-01-01

    Tuberculosis is a devastating infectious disease causing many deaths worldwide. Recent investigations have implicated neutrophil extracellular traps (NETs) in the host response to tuberculosis. The aim of the current study was to obtain evidence for NETs release in the circulation during human

  4. Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility.

    Science.gov (United States)

    Bathala, Pradeepthi; Fereshteh, Zeinab; Li, Kun; Al-Dossary, Amal A; Galileo, Deni S; Martin-DeLeon, Patricia A

    2018-03-01

    Are extracellular vesicles (EVs) in the murine oviduct (oviductosomes, OVS) conserved in humans and do they play a role in the fertility of Pmca4-/- females? OVS and their fertility-modulating proteins are conserved in humans, arise via the apocrine pathway, and mediate a compensatory upregulation of PMCA1 (plasma membrane Ca2+-ATPase 1) in Pmca4-/- female mice during proestrus/estrus, to account for their fertility. Recently murine OVS were identified and shown during proestrus/estrus to express elevated levels of PMCA4 which they can deliver to sperm. PMCA4 is the major Ca2+ efflux pump in murine sperm and Pmca4 deletion leads to loss of sperm motility and male infertility as there is no compensatory upregulation of the remaining Ca2+ pump, PMCA1. Of the four family members of PMCAs (PMCA1-4), PMCA1 and PMCA4 are ubiquitous, and to date there have been no reports of one isoform being upregulated to compensate for another in any organ/tissue. Since Pmca4-/- females are fertile, despite the abundant expression of PMCA4 in wild-type (WT) OVS, we propose that OVS serve a role of packaging and delivering to sperm elevated levels of PMCA1 in Pmca4-/- during proestrus/estrus to compensate for PMCA4's absence. Fallopian tubes from pre-menopausal women undergoing hysterectomy were used to study EVs in the luminal fluid. Oviducts from sexually mature WT mice were sectioned after perfusion fixation to detect EVs in situ. Oviducts were recovered from WT and Pmca4-/- after hormonally induced estrus and sectioned for PMCA1 immunofluorescence (IF) (detected with confocal microscopy) and hematoxylin and eosin staining. Reproductive tissues, luminal fluids and EVs were recovered after induced estrus and after natural cycling for western blot analysis of PMCA1 and qRT-PCR of Pmca1 to compare expression levels in WT and Pmca4-/-. OVS, uterosomes, and epididymal luminal fluid were included in the comparisons. WT and Pmca4-/- OVS were analyzed for the presence of known PMCA4 partners

  5. Human Intestinal Fluid Layer Separation: The Effect On Colloidal Structures & Solubility Of Lipophilic Compounds.

    Science.gov (United States)

    Danny, Riethorst; Amitava, Mitra; Filippos, Kesisoglou; Wei, Xu; Jan, Tack; Joachim, Brouwers; Patrick, Augustijns

    2018-05-23

    In addition to individual intestinal fluid components, colloidal structures are responsible for enhancing the solubility of lipophilic compounds. The present study investigated the link between as well as the variability in the ultrastructure of fed state human intestinal fluids (FeHIF) and their solubilizing capacity for lipophilic compounds. For this purpose, FeHIF samples from 10 healthy volunteers with known composition and ultrastructure were used to determine the solubility of four lipophilic compounds. In light of the focus on solubility and ultrastructure, the study carefully considered the methodology of solubility determination in relation to colloid composition and solubilizing capacity of FeHIF. To determine the solubilizing capacity of human and simulated intestinal fluids, the samples were saturated with the compound of interest, shaken for 24 h, and centrifuged. When using FeHIF, solubilities were determined in the micellar layer of FeHIF, i.e. after removing the upper (lipid) layer (standard procedure), as well as in 'full' FeHIF (without removal of the upper layer). Compound concentrations were determined using HPLC-UV/fluorescence. To link the solubilizing capacity with the ultrastructure, all human and simulated fluids were imaged using transmission electron microscopy (TEM) before and after centrifugation and top layer (lipid) removal. Comparing the ultrastructure and solubilizing capacity of individual FeHIF samples demonstrated a high intersubject variability in postprandial intestinal conditions. Imaging of FeHIF after removal of the upper layer clearly showed that only micellar structures remain in the lower layer. This observation suggests that larger colloids such as vesicles and lipid droplets are contained in the upper, lipid layer. The solubilizing capacity of most FeHIF samples substantially increased with inclusion of this lipid layer. The relative increase in solubilizing capacity upon inclusion of the lipid layer was most pronounced

  6. Analysis of cellular and extracellular DNA in fingerprints

    Energy Technology Data Exchange (ETDEWEB)

    Button, Julie M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implications for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.

  7. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids

    DEFF Research Database (Denmark)

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim

    2016-01-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification...... System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study...... and HIF indicate that the simulated intestinal fluids (FaSSIF-V1 and FeSSIF-V1) represent rather simplified models of the real human intestinal environment in terms of coexisting colloidal particles. It is hypothesized that the different supramolecular assemblies detected differ in their lipid composition...

  8. Recovery after exercise in the heat--factors influencing fluid intake

    Science.gov (United States)

    Mack, G. W.

    1998-01-01

    The restoration of body fluid balance following dehydration induced by exercise will occur through regulatory responses which stimulate ingestion of water and sodium ions. A number of different afferent signalling systems are necessary to generate appropriate thirst or sodium appetite. The primary sensory information of naturally occurring thirst is derived from receptors sensing cell volume and the volume of the extracellular fluid compartment. Sensory information from the oropharyngeal region is also an important determinant of thirst. The interaction of these various afferent signalling systems within the central nervous system determines the extent of fluid replacement following dehydration.

  9. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  10. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    International Nuclear Information System (INIS)

    Mann, D.M.

    1987-01-01

    The specific binding of soluble 125 I-human plasma fibronectin ( 125 I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of 125 I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of 125 I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10 -8 M (early passage) and 4.2 x 10 -8 M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function

  11. Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation

    OpenAIRE

    Ribeiro, Diana; Horvath, Istvan; Heath, Nikki; Hicks, Ryan; Forslöw, Anna; Wittung-Stafshede, Pernilla

    2017-01-01

    Protein assembly into amyloid fibers underlies such neurodegenerative disorders as Alzheimer’s disease and Parkinson’s disease. Type 2 diabetes (T2D) also involves amyloid formation, although in the pancreas. Because there are no cures for amyloid diseases and T2D is on the rise due to an increasing prevalence of obesity, identifying involved mechanisms and control processes is of utmost importance. Extracellular vesicles (EVs) can mediate physiological and pathological communication both loc...

  12. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids

    Science.gov (United States)

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.

  13. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    Science.gov (United States)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  14. [Study of work accidents related to human body fluids exposure among health workers at a university hospital].

    Science.gov (United States)

    Balsamo, Ana Cristina; Felli, Vanda Elisa Andres

    2006-01-01

    This descriptive and exploratory study from a quantitative approach aimed to characterize workers who were victims of work accidents related to human body fluids exposure and to evaluate the accident victim care protocol. The population consisted of 48 workers who were victims of work accidents involving exposure to human body fluids, from July 2000 to June 2001. Data were collected through a form and interviews. Results showed that nursing workers presented higher accident risk levels and that 87.50% involved piercing and cutting material, such as needles and butterflies (70%). As to the accident-related situation/activity, the workers indicated that 25% were due to an "inadequate act during the procedure"; 19.64% mentioned that "it happened" and 29.17% answered that they did not have any suggestion. This study provided important tools to review and elaborate strategies to prevent accidents involving exposure to human body fluids.

  15. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    Directory of Open Access Journals (Sweden)

    Dequina Nicholas

    Full Text Available Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96 analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  16. A model of fluid and solute exchange in the human: validation and implications.

    Science.gov (United States)

    Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T

    2000-11-01

    In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.

  17. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    O’Day, Danton H.; Huber, Robert J.; Suarez, Andres

    2012-01-01

    Highlights: ► Extracellular calmodulin is present throughout growth and development in Dictyostelium. ► Extracellular calmodulin localizes within the ECM during development. ► Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. ► Extracellular calmodulin exists in eukaryotic microbes. ► Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca 2+ /CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of the research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model amoebozoan.

  18. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    Science.gov (United States)

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  19. The relationship between nocturnal polyuria and the distribution of body fluid: assessment by bioelectric impedance analysis.

    Science.gov (United States)

    Torimoto, Kazumasa; Hirayama, Akihide; Samma, Shoji; Yoshida, Katsunori; Fujimoto, Kiyohide; Hirao, Yoshihiko

    2009-01-01

    Increased nocturnal urinary volume is closely associated with nocturia. We investigated the relationship between nocturnal polyuria and the variation of body fluid distribution during the daytime using bioelectric impedance analysis. A total of 34 men older than 60 years were enrolled in this study. A frequency volume chart was recorded. Nocturnal polyuria was defined as a nocturnal urine volume per 24-hour production of greater than 0.35 (the nocturnal polyuria index). Bioelectric impedance analysis was performed 4 times daily at 8 and 11 a.m., and 5 and 9 p.m. using an InBody S20 body composition analyzer (BioSpace, Seoul, Korea). A significant difference was found in mean +/- SEM 24-hour urine production per fat-free mass between the groups with and without nocturnal polyuria (17.8 +/- 1.4 vs 7.7 +/- 0.9 ml/kg). The increase in fluid in the legs compared with the volume at 8 a.m. was significantly larger at 5 p.m., while there was no difference in the arms or trunk. Nocturnal urine volume significantly correlated with the difference in fluid volume in the legs (r = 0.527, p = 0.0019) and extracellular fluid volume (r = 0.3844, p = 0.0248) between the volumes at 8 a.m. and 9 p.m. Overproduction of urine per fat-free mass leads to nocturnal polyuria. Extracellular fluid accumulates as edema in the legs during the day in patients with nocturnal polyuria. The volume of accumulated extracellular fluid correlates with nocturnal urine volume. We suggest that leg edema is the source of nocturnal urine volume and decreasing edema may cure nocturnal polyuria.

  20. Nature of extracellular signal that triggers RhoA/ROCK activation for the basal internal anal sphincter tone in humans

    Science.gov (United States)

    Singh, Jagmohan; Kumar, Sumit; Phillips, Benjamin

    2015-01-01

    The extracellular signal that triggers activation of rho-associated kinase (RhoA/ROCK), the major molecular determinant of basal internal anal sphincter (IAS) smooth muscle tone, is not known. Using human IAS tissues, we identified the presence of the biosynthetic machineries for angiotensin II (ANG II), thromboxane A2 (TXA2), and prostaglandin F2α (PGF2α). These end products of the renin-angiotensin system (RAS) (ANG II) and arachidonic acid (TXA2 and PGF2α) pathways and their effects in human IAS vs. rectal smooth muscle (RSM) were studied. A multipronged approach utilizing immunocytochemistry, Western blot analyses, and force measurements was implemented. Additionally, in a systematic analysis of the effects of respective inhibitors along different steps of biosynthesis and those of antagonists, their end products were evaluated either individually or in combination. To further describe the molecular mechanism for the IAS tone via these pathways, we monitored RhoA/ROCK activation and its signal transduction cascade. Data showed characteristically higher expression of biosynthetic machineries of RAS and AA pathways in the IAS compared with the RSM. Additionally, specific inhibition of the arachidonic acid (AA) pathway caused ∼80% decrease in the IAS tone, whereas that of RAS lead to ∼20% decrease. Signal transduction studies revealed that the end products of both AA and RAS pathways cause increase in the IAS tone via activation of RhoA/ROCK. Both AA and RAS (via the release of their end products TXA2, PGF2α, and ANG II, respectively), provide extracellular signals which activate RhoA/ROCK for the maintenance of the basal tone in human IAS. PMID:25882611

  1. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

    Science.gov (United States)

    Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2018-06-01

    An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.

  2. Alterations in the extracellular matrix organization associated with the reexpression of tumorigenicity in human cell hybrids.

    Science.gov (United States)

    Der, C J; Stanbridge, E J

    1980-10-15

    The expression of fibronectin on the cell surface was evaluated on a series of intraspecific human cell hybrids formed between HeLa and normal fibroblast strains. Although these hybrids continued to express many of the in vitro transformation properties of their corresponding tumorigenic HeLa parent, they were now unable to form tumors when inoculated into athymic nude mice. From these suppressed hybrid populations, rare tumorigenic segregant subpopulations arose which had regained their tumorigenic capacity. A comparison of the expression of fibronectin on the cell surface was made between these tumorigenic segregant cell lines and their corresponding non-tumorigenic HeLa/fibroblast hybrid. Following specific immunofluorescent staining for fibronectin, a striking alteration in the cell surface organization was observed to correspond with the reexpression of tumorigenicity in these hybrids. Tumorigenic HeLa/fibroblast hybrids were also significantly altered in both their cellular and colonial morphology. Double immunofluorescent staining to simultaneously visualize both surface fibronectin and collagen revealed that these two extracellular matrix proteins displayed an extensive degree of codistribution and expressed a coordinate shift in organization which correlated with the appearance of tumorigenic segregant hybrid populations. These observations are in agreement with the apparently close structural association between fibronectin and collagen and suggest that the organization of these two components in the extracellular matrix may be an important determinant for in vivo growth potential.

  3. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  4. In Vitro Cardiomyogenic Potential of Human Amniotic Fluid Stem Cells

    OpenAIRE

    Guan, Xuan; Delo, Dawn M.; Atala, Anthony; Soker, Shay

    2011-01-01

    Stem cell therapy for damaged cardiac tissue is currently limited by a number of factors, including the inability to obtain sufficient cell numbers, the potential tumorigenicity of certain types of stem cells, and the possible link between stem cell therapy and the development of malignant arrhythmias. In this study, we investigated whether human amniotic fluid-derived stem (hAFS) cells could be a potential source of cells for cardiac cell therapy by testing the in vitro differentiation capab...

  5. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation

    DEFF Research Database (Denmark)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch

    2015-01-01

    ) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced...... to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4...

  6. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.

    Science.gov (United States)

    Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S

    2017-07-01

    Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.

  7. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes.

    Science.gov (United States)

    Ito, Akira; Aoyama, Tomoki; Iijima, Hirotaka; Tajino, Junichi; Nagai, Momoko; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-05-01

    To date, there have been few studies on how temperature affects the phenotype and metabolism of human chondrocytes. Thus, the purpose of this study was to elucidate the effects of culture temperature on chondrocyte redifferentiation and extracellular matrix (ECM) formation using dedifferentiated mature human chondrocytes in vitro. Dedifferentiated chondrocytes were cultured in a pellet culture system for up to 21 days. The pellets were randomly divided into three groups with different culture temperature (32, 37, and 41°C). Chondrocyte redifferentiation and ECM formation were evaluated by wet weight, messenger ribonucleic acid (mRNA), histological, and biochemical analyses. The results showed that the wet weight and the mRNA expressions of collagen type II A1 and cartilage oligomeric matrix protein at 37°C were higher than the corresponding values at 32°C. The histological and biochemical analyses revealed that the syntheses of type II collagen and proteoglycan were promoted at 37°C compared to those at 32°C, whereas they were considerably inhibited at 41°C. In conclusion, the results obtained herein indicated that temperature affects chondrocyte redifferentiation and ECM formation, and modulation of temperature might thus represent an advantageous means to regulate the phenotype and biosynthetic activity of chondrocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Hydroxyl Radical Formation from HULIS and Fe(II) Interactions: Fulvic Acid-Fe(II) Complexes in Simulated and Human Lung Fluids

    Science.gov (United States)

    Gonzalez, D.

    2017-12-01

    Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins

  9. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  10. Enhanced extracellular chitinase production in Pseudomonas fluorescens: biotechnological implications

    Directory of Open Access Journals (Sweden)

    Azhar Alhasawi

    2017-06-01

    Full Text Available Chitin is an important renewable biomass of immense commercial interest. The processing of this biopolymer into value-added products in an environmentally-friendly manner necessitates its conversion into N-acetyl glucosamine (NAG, a reaction mediated by the enzyme chitinase. Here we report on the ability of the soil microbe Pseudomonas fluorescens to secrete copious amounts of chitinase in the spent fluid when cultured in mineral medium with chitin as the sole source of carbon and nitrogen. Although chitinase was detected in various cellular fractions, the enzyme was predominantly localized in the extracellular component that was also rich in NAG and glucosamine. Maximal amounts of chitinase with a specific activity of 80 µmol NAG produced mg–1 protein min–1 was obtained at pH 8 after 6 days of growth in medium with 0.5 g of chitin. In-gel activity assays and Western blot studies revealed three isoenzymes. The enzyme had an optimal activity at pH 10 and a temperature range of 22–38 ℃. It was stable for up to 3 months. Although it showed optimal specificity toward chitin, the enzyme did readily degrade shrimp shells. When these shells (0.1 g were treated with the extracellular chitinase preparation, NAG [3 mmoles (0.003 g-mol] was generated in 6 h. The extracellular nature of the enzyme coupled with its physico-chemical properties make this chitinase an excellent candidate for biotechnological applications.

  11. Expression of human immunodeficiency virus in cerebrospinal fluid of children with progressive encephalopathy

    NARCIS (Netherlands)

    Epstein, L. G.; Goudsmit, J.; Paul, D. A.; Morrison, S. H.; Connor, E. M.; Oleske, J. M.; Holland, B.

    1987-01-01

    The retrovirus that causes acquired immune deficiency syndrome (AIDS) is now designated the human immunodeficiency virus (HIV). The cerebrospinal fluid (CSF) of 27 children with HIV infection was assayed for intra-blood-brain barrier (IBBB) synthesis of HIV-specific antibodies and for the presence

  12. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  13. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors.

    Science.gov (United States)

    El Harane, Nadia; Kervadec, Anaïs; Bellamy, Valérie; Pidial, Laetitia; Neametalla, Hany J; Perier, Marie-Cécile; Lima Correa, Bruna; Thiébault, Léa; Cagnard, Nicolas; Duché, Angéline; Brunaud, Camille; Lemitre, Mathilde; Gauthier, Jeanne; Bourdillon, Alexandra T; Renault, Marc P; Hovhannisyan, Yeranuhi; Paiva, Solenne; Colas, Alexandre R; Agbulut, Onnik; Hagège, Albert; Silvestre, Jean-Sébastien; Menasché, Philippe; Renault, Nisa K E

    2018-05-21

    We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left

  14. Therapeutic application of extracellular vesicles in acute and chronic renal injury.

    Science.gov (United States)

    Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José

    A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.

  15. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  16. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  17. Development of a magnetic bead-based method for the collection of circulating extracellular vesicles.

    Science.gov (United States)

    Shih, Chun-Liang; Chong, Kowit-Yu; Hsu, Shih-Che; Chien, Hsin-Jung; Ma, Ching-Ting; Chang, John Wen-Cheng; Yu, Chia-Jung; Chiou, Chiuan-Chian

    2016-01-25

    Cells release different types of extracellular vesicles (EVs). These EVs contain biomolecules, including proteins and nucleic acids, from their parent cells, which can be useful for diagnostic applications. The aim of this study was to develop a convenient procedure to collect circulating EVs with detectable mRNA or other biomolecules. Magnetic beads coated with annexin A5 (ANX-beads), which bound to phosphatidylserine moieties on the surfaces of most EVs, were tested for their ability to capture induced apoptotic bodies in vitro and other phosphatidylserine-presenting vesicles in body fluids. Our results show that up to 60% of induced apoptotic bodies could be captured by the ANX-beads. The vesicles captured from cultured media or plasma contained amplifiable RNA. Suitable blood samples for EV collection included EDTA-plasma and serum but not heparin-plasma. In addition, EVs in plasma were labile to freeze-and-thaw cycles. In rodents xenografted with human cancer cells, tumor-derived mRNA could be detected in EVs captured from serum samples. Active proteins could be detected in EVs captured from ascites but not from plasma. In conclusion, we have developed a magnetic bead-based procedure for the collection of EVs from body fluids and proved that captured EVs contain biomolecules from their parent cells, and therefore have great potential for disease diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    Science.gov (United States)

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture.

    Science.gov (United States)

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-15

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.

  20. Incorporation of Tenascin-C into the Extracellular Matrix by Periostin Underlies an Extracellular Meshwork Architecture*

    Science.gov (United States)

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-01

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment. PMID:19887451

  1. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    Science.gov (United States)

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  2. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  3. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  4. Sustainable extraction of molecules for human food, cosmetic and pharmaceutical products: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, GianPaolo; Ferri, Donatella

    2015-01-01

    Since several years, the ENEA Innovation Laboratory for Agro-Industrial, proposed activities of research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), focusing on sustainability characteristics of the process. The technique, in fact, makes no use of organic solvents, has a low energy consumption and requires a lower number of process steps compared to conventional extractions. The process also responds to the requirements imposed by the legislation for human food, cosmetic and pharmaceutical extracts. [it

  5. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization.

    Science.gov (United States)

    Brast, Sabine; Grabner, Alexander; Sucic, Sonja; Sitte, Harald H; Hermann, Edwin; Pavenstädt, Hermann; Schlatter, Eberhard; Ciarimboli, Giuliano

    2012-03-01

    Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.

  6. Effects of extracellular plaque components on the chlorhexidine sensitivity of strains of Streptococcus mutans and human dental plaque

    International Nuclear Information System (INIS)

    Wolinsky, L.E.; Hume, W.R.

    1985-01-01

    An in vitro study was undertaken to determine the effects of sucrose-derived extracellular plaque components on the sensitivity of selected oral bacteria to chlorhexidine (CX). Cultures of Streptococcus mutans HS-6, OMZ-176, Ingbritt C, 6715-wt13, and pooled human plaque were grown in trypticase soy media with or without 1% sucrose. The sensitivity to CX of bacteria grown in each medium was determined by fixed-time exposure to CX and subsequent measurement of 3 H-thymidine uptake. One-hour exposure to CX at concentrations of 10(-4) M (0.01% w/v) or greater substantially inhibited subsequent cellular division among all the S. mutans strains and human plaque samples tested. An IC50 (the CX concentration which depressed 3 H-thymidine incorporation to 50% of control level) of close to 10(-4) M was noted for S. mutans strains HS-6, OMZ-176, and 6715-wt13 when grown in the presence of sucrose. The same strains grown in cultures without added sucrose showed about a ten-fold greater sensitivity to CX (IC50 close to 10(-5) M). A three-fold difference was noted for S. mutans Ingbritt C. Only a slight increase in the IC50 was noted for the plaque samples cultured in sucrose-containing media, but their threshold for depression of 3 H-thymidine uptake by CX was lower than that for the sucrose-free plaque samples. The study showed that extracellular products confer some protection against CX to the bacteria examined, and provided an explanation for the disparity between clinically-recommended concentrations for plaque suppression and data on in vitro susceptibility

  7. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  8. Wetting and dewetting of extracellular matrix and glycocalix models

    International Nuclear Information System (INIS)

    Tanaka, Motomu; Rehfeldt, Florian; Schneider, Matthias F; Mathe, Gerald; Albersdoerfer, Antero; Neumaier, Klaus R; Purrucker, Oliver; Sackmann, Erich

    2005-01-01

    In this paper, we study wetting and dewetting of hydrated biopolymer layers mediating cell-cell and cell-tissue contacts, called the extracellular matrix and cell surface glycocalix, by the combination of various physical techniques. Here, the sum of the net effects of the various interfacial forces, which is referred to as the disjoining pressure, is used as a semi-quantitative measure to describe the thermodynamics of hydrated interlayers. The disjoining pressure can be measured by applying external forces to maintain the equilibrium distance between two parallel surfaces (in biology, two neighbouring plasma membranes). Using artificial models of the extracellular matrix and glycocalix, we describe stable cell-cell contacts in terms of the wetting (or spreading) of complex fluids on polymer surfaces. In fact, the adjustment of the wetting interaction via thin hydrating layers enables us to transform three-dimensional cell membranes into quasi-two-dimensional films on macroscopically large surfaces. Fine-tuning of local wetting conditions at the interface further allows for the selective wetting of native cell membranes on microstructured polysaccharide films, which has a large potential for individual detection of biological functions in confined geometries

  9. Secretory proteins of the pulmonary extracellular lining

    International Nuclear Information System (INIS)

    Gupta, R.P.; Patton, S.E.; Eddy, M.; Smits, H.L.; Jetten, A.M.; Nettesheim, P.; Hook, G.E.R.

    1986-01-01

    The objective of this investigation was to identify proteins in the pulmonary extracellular lining (EL) that are secreted by cells of the pulmonary epithelium. Pulmonary lavage effluents from the lungs of rabbits were centrifuged to remove all cells and particulate materials. Serum proteins were removed by repeatedly passing concentrated lavage effluent fluid through an affinity column containing IgG fraction of goat anti-rabbit (whole serum) antiserum bound to Sepharose-4B. Nonserum proteins accounted for 21.3 +/- 10.3% of the total soluble proteins in pulmonary lavage effluents. Serum free lavage effluents (SFL) contained 25 identifiable proteins as determined by using SDS-PAGE under reducing conditions. Of these proteins approximately 73% was accounted for by a single protein with MW of 66 kd. The secretory nature of the proteins present in SFL was investigated by studying the incorporation of 35 S-methionine into proteins released by lung slices and trachea followed by SDS-PAGE and autoradiography. Many, but not all proteins present in SFL were identified as proteins secreted by pulmonary tissues. The major secretory proteins appeared to have MWs of 59, 53, 48, 43, 24, 14, and 6 kd under reducing conditions. These data demonstrate the presence of several proteins in the pulmonary extracellular lining that appear to be secreted by the pulmonary epithelium

  10. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

    DEFF Research Database (Denmark)

    Goettsch, Claudia; Hutscheson, JD; Aikawa, M

    2016-01-01

    obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin...

  11. Drug delivery to the human brain via the cerebrospinal fluid

    International Nuclear Information System (INIS)

    Howden, L.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  12. Drug delivery to the human brain via the cerebrospinal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Howden, L.; Aroussi, A. [Univ. of Nottingham, School of Mechanical, Material, Manufacturing Engineering and Managements, Nottingham (United Kingdom)]. E-mail: eaxljh@nottingham.ac.uk; Vloeberghs, M. [Queens Medical Centre, Dept. of Child Health, Nottingham (United Kingdom)

    2003-07-01

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  13. Seizure-induced damage to substantia nigra and globus pallidus is accompanied by pronounced intra- and extracellular acidosis

    International Nuclear Information System (INIS)

    Inamura, K.; Smith, M.L.; Hansen, A.J.; Siesjoe, B.K.

    1989-01-01

    Status epilepticus of greater than 30-min duration in rats gives rise to a conspicuous lesion in the substantia nigra pars reticulata (SNPR) and globus pallidus (GP). The objective of the present study was to explore whether the lesion, which encompasses necrosis of both neurons and glial cells, is related to intra- and extracellular acidosis. Using the flurothyl model previously described to produce seizures, we assessed regional pH values with the autoradiographic 5,5-dimethyl[2-14C]oxazolidine-2,4-dione technique. Regional pH values were assessed in animals with continuous seizures for 20 and 60 min, as well as in those allowed to recover for 30 and 120 min after seizure periods of 20 or 60 min. In additional animals, changes in extracellular fluid pH (pHe) were measured with ion-selective microelectrodes, and extracellular fluid (ECF) volume was calculated from the diffusion profile for electrophoretically administered tetramethylammonium. In structures such as the neocortex and the hippocampus, which show intense metabolic activation during seizures, status epilepticus of 20- and 60-min duration was accompanied by a reduction of the composite tissue pH (pHt) of 0.2-0.3 unit. Recovery of pHt was observed upon termination of seizures. In SNPR and in GP, the acidosis was marked to excessive after 20 and 60 min of seizures (delta pHt approximately 0.6 after 60 min)

  14. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  15. Reduction of hexavalent chromium by fasted and fed human gastric fluid. II. Ex vivo gastric reduction modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kirman, Christopher R., E-mail: ckirman@summittoxicology.com [Summit Toxicology, Orange Village, OH, 44022 (United States); Suh, Mina, E-mail: msuh@toxstrategies.com [ToxStrategies, Inc., Mission Viejo, CA, 92692 (United States); Hays, Sean M., E-mail: shays@summittoxicology.com [Summit Toxicology, Allenspark, CO, 8040 (United States); Gürleyük, Hakan, E-mail: hakan@brooksrand.com [Brooks Applied Labs, Bothell, WA, 98011 (United States); Gerads, Russ, E-mail: russ@brooksrand.com [Brooks Applied Labs, Bothell, WA, 98011 (United States); De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Parker, William, E-mail: william.parker@duke.edu [Duke University Medical Center, Department of Surgery, Durham, NC, 27710 (United States); Lin, Shu, E-mail: shu.lin@duke.edu [Duke University Medical Center, Department of Surgery, Durham, NC, 27710 (United States); Haws, Laurie C., E-mail: lhaws@toxstrategies.com [ToxStrategies, Inc., Katy, TX, 77494 (United States); Harris, Mark A., E-mail: mharris@toxstrategies.com [ToxStrategies, Inc., Austin, TX, 78751 (United States); Proctor, Deborah M., E-mail: dproctor@toxstrategies.com [ToxStrategies, Inc., Mission Viejo, CA, 92692 (United States)

    2016-09-01

    To extend previous models of hexavalent chromium [Cr(VI)] reduction by gastric fluid (GF), ex vivo experiments were conducted to address data gaps and limitations identified with respect to (1) GF dilution in the model; (2) reduction of Cr(VI) in fed human GF samples; (3) the number of Cr(VI) reduction pools present in human GF under fed, fasted, and proton pump inhibitor (PPI)-use conditions; and (4) an appropriate form for the pH-dependence of Cr(VI) reduction rate constants. Rates and capacities of Cr(VI) reduction were characterized in gastric contents from fed and fasted volunteers, and from fasted pre-operative patients treated with PPIs. Reduction capacities were first estimated over a 4-h reduction period. Once reduction capacity was established, a dual-spike approach was used in speciated isotope dilution mass spectrometry analyses to characterize the concentration-dependence of the 2nd order reduction rate constants. These data, when combined with previously collected data, were well described by a three-pool model (pool 1 = fast reaction with low capacity; pool 2 = slow reaction with higher capacity; pool 3 = very slow reaction with higher capacity) using pH-dependent rate constants characterized by a piecewise, log-linear relationship. These data indicate that human gastric samples, like those collected from rats and mice, contain multiple pools of reducing agents, and low concentrations of Cr(VI) (< 0.7 mg/L) are reduced more rapidly than high concentrations. The data and revised modeling results herein provide improved characterization of Cr(VI) gastric reduction kinetics, critical for Cr(VI) pharmacokinetic modeling and human health risk assessment. - Highlights: • SIDMS allows for measurement of Cr(VI) reduction rate in gastric fluid ex vivo • Human gastric fluid has three reducing pools • Cr(VI) in drinking water at < 0.7 mg/L is rapidly reduced in human gastric fluid • Reduction rate is concentration- and pH-dependent • A refined PK

  16. Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil Extracellular Traps as a Predominant Innate Immune Response in Chronic Otitis Media.

    Directory of Open Access Journals (Sweden)

    Stephanie Val

    Full Text Available Chronic Otitis Media (COM is characterized by middle ear effusion (MEE and conductive hearing loss. MEE reflect mucus hypersecretion, but global proteomic profiling of the mucosal components are limited.This study aimed at characterizing the proteome of MEEs from children with COM with the goal of elucidating important innate immune responses.MEEs were collected from children (n = 49 with COM undergoing myringotomy. Mass spectrometry was employed for proteomic profiling in nine samples. Independent samples were further analyzed by cytokine multiplex assay, immunoblotting, neutrophil elastase activity, next generation DNA sequencing, and/or immunofluorescence analysis.109 unique and common proteins were identified by MS. A majority were innate immune molecules, along with typically intracellular proteins such as histones and actin. 19.5% percent of all mapped peptide counts were from proteins known to be released by neutrophils. Immunofluorescence and immunoblotting demonstrated the presence of neutrophil extracellular traps (NETs in every MEE, along with MUC5B colocalization. DNA found in effusions revealed unfragmented DNA of human origin.Proteomic analysis of MEEs revealed a predominantly neutrophilic innate mucosal response in which MUC5B is associated with NET DNA. NETs are a primary macromolecular constituent of human COM middle ear effusions.

  17. Zinc and magnesium ions synergistically inhibit superoxide generation by cultured human neutrophils--a promising candidate formulation for amnioinfusion fluid.

    Science.gov (United States)

    Uchida, Toshiyuki; Itoh, Hiroaki; Nakamura, Yuki; Kobayashi, Yukiko; Hirai, Kyuya; Suzuki, Kazunao; Sugihara, Kazuhiro; Kanayama, Naohiro; Hiramatsu, Mitsuo

    2010-06-01

    Oligohydramnios is often caused by the premature rupturing of membranes and subsequent intrauterine infections, such as chorioamnionitis, in which event oxidative stress is hypothesized to be closely associated with the damage to the fetal organs. The clinical efficiency of amnioinfusion using warmed saline in cases of premature rupture of membranes is still controversial, especially concerning the prognosis for the fetus. In the present study, we found that human amniotic fluid per se suppresses the release of superoxide from cultured human neutrophils, suggesting an acute or chronic shortage of amniotic fluid in cases of premature rupture of membranes can affect the shielding of intrauterine organs from oxidative stress. The aim of this study was to propose a formula of zinc and magnesium ions in saline for amnioinfusion, by assessing antioxidative activities. A combination of 5 microM zinc and 5mM magnesium in saline synergistically inhibited superoxide production by cultured human neutrophils, equivalent to human amniotic fluid. The intraperitoneal administration of this formula significantly improved the survival rate in a rat model of peritonitis compared to the saline control (46.7% vs. 10%). The combination of these metals with saline may thus be a promising formula for an amnioinfusion fluid with the capacity to protect fetal organs from oxidative stress. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  19. [The study on the change of extracellular histones in human plasma during the pathogenesis of silicosis].

    Science.gov (United States)

    Zhang, Yanglin; Cong, Cuicui; Guan, Li; Yu, Jie; Mao, Lijun; Li, Shuqiang; Wen, Tao; Zhao, Jinyuan

    2016-01-01

    To investigate the plasma level of extracellular histones in patients with silicosis, and to explore the role of extracellular histones in the pathogenesis of pulmonary fibrosis in silicosis. Sixty-two patients with silicosis were enrolled as the silicosis group, consisting of 23 patients with stage I silicosis, 25 with stage II silicosis, and 14 with stage III silicosis; sixty workers who had a history of occupational exposure to silica dust for more than 2 years and had not been diagnosed with silicosis were enrolled as the silica dust exposure group; sixty-five healthy workers without a history of occupational exposure to dust were enrolled as healthy controls. Enzyme-linked immunosorbent assay was applied to measure the plasma levels of plasma extracellular histone (H4) and transforming growth factor-β(TGF-β). Compared with healthy controls [(0.82±0.67) μg/ml], the silica dust exposure group[(4.14±2.85) μg/ml] and silicosis group[(9.50±5.04) μg/ml] had significant increases in plasma level of H4 (Phistones increases significantly in the pathogenesis of silicosis, and extracellular histones may play an important role in the progression of fibrosis in silicosis.

  20. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation.

    Science.gov (United States)

    Sayah, David M; Mallavia, Beñat; Liu, Fengchun; Ortiz-Muñoz, Guadalupe; Caudrillier, Axelle; DerHovanessian, Ariss; Ross, David J; Lynch, Joseph P; Saggar, Rajan; Ardehali, Abbas; Ware, Lorraine B; Christie, Jason D; Belperio, John A; Looney, Mark R

    2015-02-15

    Primary graft dysfunction (PGD) causes early mortality after lung transplantation and may contribute to late graft failure. No effective treatments exist. The pathogenesis of PGD is unclear, although both neutrophils and activated platelets have been implicated. We hypothesized that neutrophil extracellular traps (NETs) contribute to lung injury in PGD in a platelet-dependent manner. To study NETs in experimental models of PGD and in lung transplant patients. Two experimental murine PGD models were studied: hilar clamp and orthotopic lung transplantation after prolonged cold ischemia (OLT-PCI). NETs were assessed by immunofluorescence microscopy and ELISA. Platelet activation was inhibited with aspirin, and NETs were disrupted with DNaseI. NETs were also measured in bronchoalveolar lavage fluid and plasma from lung transplant patients with and without PGD. NETs were increased after either hilar clamp or OLT-PCI compared with surgical control subjects. Activation and intrapulmonary accumulation of platelets were increased in OLT-PCI, and platelet inhibition reduced NETs and lung injury, and improved oxygenation. Disruption of NETs by intrabronchial administration of DNaseI also reduced lung injury and improved oxygenation. In bronchoalveolar lavage fluid from human lung transplant recipients, NETs were more abundant in patients with PGD. NETs accumulate in the lung in both experimental and clinical PGD. In experimental PGD, NET formation is platelet-dependent, and disruption of NETs with DNaseI reduces lung injury. These data are the first description of a pathogenic role for NETs in solid organ transplantation and suggest that NETs are a promising therapeutic target in PGD.

  1. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    Science.gov (United States)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  2. Extracellular Protease Activity of Enteropathogenic Escherechia coli on Mucin Substrate

    Directory of Open Access Journals (Sweden)

    SRI BUDIARTI

    2007-03-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC causes gastrointestinal infections in human. EPEC invasion was initiated by attachment and aggressive colonization on intestinal surface. Attachment of EPEC alter the intestine mucosal cells. Despite this, the pathogenic mechanism of EPEC infectior has not been fully understood. This research hypothesizes that extracellular proteolytic enzymes is necessary for EPEC colonization. The enzyme is secreted into gastrointestinal milieu and presumably destroy mucus layer cover the gastrointestinal tract. The objective of this study was to assay EPEC extracellular protease enzyme by using mucin substrate. The activity of EPEC extracellular proteolytic enzyme on 1% mucin substrate was investigated. Non-pathogenic E. coli was used as a negative control. Positive and tentative controls were Yersinia enterocolitica and Salmonella. Ten EPEC strains were assayed, seven of them were able to degrade mucin, and the highest activity was produced by K1.1 strain. Both positive and tentative controls also showed the ability to digest 0.20% mucin.

  3. Transport of fluid and solutes in the body II. Model validation and implications.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.

  4. Sample preparation in separation of the extracellular chitinolytic enzymes of the human intestinal bacterium Clostridium paraputrificum J4 from the culture fluids

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Šimůnek, Jiří; Bartoňová, Hana; Dušková, Jarmila; Dohnálek, Jan; Ponomareva, Evgenia; Tennikova, T.

    2011-01-01

    Roč. 879, č. 22 (2011), s. 2175-2178 ISSN 1570-0232 R&D Projects: GA ČR GA310/09/1407; GA ČR GA525/05/2584 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : sample preparation * culture fluids C. paraputrificum J4 * chitinases Subject RIV: EE - Microbiology, Virology Impact factor: 2.888, year: 2011

  5. Mifepristone inhibits extracellular matrix formation in uterine leiomyoma.

    Science.gov (United States)

    Patel, Amrita; Malik, Minnie; Britten, Joy; Cox, Jeris; Catherino, William H

    2016-04-01

    To characterize the efficacy of mifepristone treatment on extracellular matrix (ECM) production in leiomyomas. Laboratory study. University research laboratory. None. Treatment of human immortalized two-dimensional (2D) and three-dimensional (3D) leiomyoma and myometrial cells with mifepristone and the progestin promegestone (R5020). Expression of COL1A1, fibronectin, versican variant V0, and dermatopontin in treated leiomyoma cells by Western blot analysis and confirmatory immunohistochemistry staining of treated 3D cultures. Treatment with progestin stimulated production of COL1A1, fibronectin, versican, and dermatopontin. Mifepristone treatment inhibited protein production of these genes, most notably with versican expression. Combination treatment with both the agonist and antagonist further inhibited protein expression of these genes. Immunohistochemistry performed on 3D cultures demonstrated generalized inhibition of ECM protein concentration. Our study demonstrated that the progesterone agonist R5020 directly stimulated extracellular matrix components COL1A1, fibronectin, versican, and dermatopontin production in human leiomyoma cells. Progesterone antagonist mifepristone decreased protein production of these genes to levels comparable with untreated leiomyoma cells. Published by Elsevier Inc.

  6. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF

    NARCIS (Netherlands)

    Nagy, R. A.; van Montfoort, A. P. A.; Dikkers, A.; van Echten-Arends, J.; Homminga, I.; Land, J. A.; Hoek, A.; Tietge, U. J. F.

    STUDY QUESTION: Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? SUMMARY ANSWER: BAconcentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid

  7. IMMUNOHISTOCHEMICAL STUDY OF EXTRACELLULAR-MATRIX IN ACUTE GALACTOSAMINE HEPATITIS IN RATS

    NARCIS (Netherlands)

    JONKER, AM; DIJKHUIS, FWJ; BOES, A; HARDONK, MJ

    A single injection of D-galactosamine hydrochloride induces acute self-limiting liver disease in rats that morphologically resembles drug-induced hepatitis in human beings. In this immunohistochemical study we examined the localization and expression of the hepatic extracellular matrix components

  8. Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance*

    Science.gov (United States)

    Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.

    2013-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023

  9. Proteomic Analysis of Human Tendon and Ligament: Solubilization and Analysis of Insoluble Extracellular Matrix in Connective Tissues.

    Science.gov (United States)

    Sato, Nori; Taniguchi, Takako; Goda, Yuichiro; Kosaka, Hirofumi; Higashino, Kosaku; Sakai, Toshinori; Katoh, Shinsuke; Yasui, Natsuo; Sairyo, Koichi; Taniguchi, Hisaaki

    2016-12-02

    Connective tissues such as tendon, ligament and cartilage are mostly composed of extracellular matrix (ECM). These tissues are insoluble, mainly due to the highly cross-linked ECM proteins such as collagens. Difficulties obtaining suitable samples for mass spectrometric analysis render the application of modern proteomic technologies difficult. Complete solubilization of them would not only elucidate protein composition of normal tissues but also reveal pathophysiology of pathological tissues. Here we report complete solubilization of human Achilles tendon and yellow ligament, which is achieved by chemical digestion combined with successive protease treatment including elastase. The digestion mixture was subjected to liquid chromatography-mass spectrometry. The low specificity of elastase was overcome by accurate mass analysis achieved using FT-ICR-MS. In addition to the detailed proteome of both tissues, we also quantitatively determine the major protein composition of samples, by measuring peak area of some characteristic peptides detected in tissue samples and in purified proteins. As a result, differences between human Achilles tendon and yellow ligament were elucidated at molecular level.

  10. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  11. Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity

    Energy Technology Data Exchange (ETDEWEB)

    De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Camoirano, Anna, E-mail: Anna.Fiorenza.Camoirano@unige.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Micale, Rosanna T., E-mail: rosannamicale@yahoo.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); La Maestra, Sebastiano, E-mail: lamaestra78@yahoo.it [Department of Health Sciences, University of Genoa, 16132 Genoa (Italy); Savarino, Vincenzo, E-mail: vsavarin@unige.it [Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa (Italy); Zentilin, Patrizia, E-mail: Patrizia.Zentilin@unige.it [Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa (Italy); Marabotto, Elisa, E-mail: emarabotto@libero.it [Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa (Italy); Suh, Mina, E-mail: msuh@toxstrategies.com [ToxStrategies, Mission Viejo, CA 92692 (United States); Proctor, Deborah M., E-mail: dproctor@toxstrategies.com [ToxStrategies, Mission Viejo, CA 92692 (United States)

    2016-09-01

    Evaluation of the reducing capacity of human gastric fluid from healthy individuals, under fasted and fed conditions, is critical for assessing the cancer hazard posed by ingested hexavalent chromium [Cr(VI)] and for developing quantitative physiologically-based pharmacokinetic models used in risk assessment. In the present study, the patterns of Cr(VI) reduction were evaluated in 16 paired pre- and post-meal gastric fluid samples collected from 8 healthy volunteers. Human gastric fluid was effective both in reducing Cr(VI), as measured by using the s-diphenylcarbazide colorimetric method, and in attenuating mutagenicity in the Ames test. The mean (± SE) Cr(VI)-reducing ability of post-meal samples (20.4 ± 2.6 μg Cr(VI)/mL gastric fluid) was significantly higher than that of pre-meal samples (10.2 ± 2.3 μg Cr(VI)/mL gastric fluid). When using the mutagenicity assay, the decrease of mutagenicity produced by pre-meal and post-meal samples corresponded to reduction of 13.3 ± 1.9 and 25.6 ± 2.8 μg Cr(VI)/mL gastric fluid, respectively. These data are comparable to parallel results conducted by using speciated isotope dilution mass spectrometry. Cr(VI) reduction was rapid, with > 70% of total reduction occurring within 1 min and 98% of reduction is achieved within 30 min with post-meal gastric fluid at pH 2.0. pH dependence was observed with decreasing Cr(VI) reducing capacity at higher pH. Attenuation of the mutagenic response is consistent with the lack of DNA damage observed in the gastrointestinal tract of rodents following administration of ≤ 180 ppm Cr(VI) for up to 90 days in drinking water. Quantifying Cr(VI) reduction kinetics in the human gastrointestinal tract is necessary for assessing the potential hazards posed by Cr(VI) in drinking water. - Highlights: • Cr(VI) reduction capacity was greater in post-meal than paired pre-meal samples. • Cr(VI) reduction was rapid, pH dependent, and due to heat stable components. • Gastric fluid attenuates

  12. Minimally-invasive, microneedle-array extraction of interstitial fluid for comprehensive biomedical applications: transcriptomics, proteomics, metabolomics, exosome research, and biomarker identification.

    Science.gov (United States)

    Taylor, Robert M; Miller, Philip R; Ebrahimi, Parwana; Polsky, Ronen; Baca, Justin T

    2018-01-01

    Interstitial fluid (ISF) has recently garnered interest as a biological fluid that could be used as an alternate to blood for biomedical applications, diagnosis, and therapy. ISF extraction techniques are promising because they are less invasive and less painful than venipuncture. ISF is an alternative, incompletely characterized source of physiological data. Here, we describe a novel method of ISF extraction in rats, using microneedle arrays, which provides volumes of ISF that are sufficient for downstream analysis techniques such as proteomics, genomics, and extracellular vesicle purification and analysis. This method is potentially less invasive than previously reported techniques. The limited invasiveness and larger volumes of extracted ISF afforded by this microneedle-assisted ISF extraction method provide a technique that is less stressful and more humane to laboratory animals, while also allowing for a reduction in the numbers of animals needed to acquire sufficient volumes of ISF for biomedical analysis and application.

  13. Comparison of the antimicrobial adhesion potential of human body fluid glycoconjugates using fucose-binding lectin (PA-IIL) of Pseudomonas aeruginosa and Ulex europaeus lectin (UEA-I).

    Science.gov (United States)

    Lerrer, Batia; Lesman-Movshovich, Efrat; Gilboa-Garber, Nechama

    2005-09-01

    Pseudomonas aeruginosa produces a fucose-binding lectin (PA-IIL) which strongly binds to human cells. This lectin was shown to be highly sensitive to inhibition by fucose-bearing human milk glycoproteins. Since the glycans of these glycoproteins mimic human cell receptors, they may function as decoys in blocking lectin-dependent pathogen adhesion to the host cells. Human saliva and seminal fluid also contain such compounds, and body fluids of individuals who are "secretors" express additional fucosylated (alpha 1,2) residues. The latter are selectively detected by Ulex europaeus lectin UEA-I. The aim of the present research was to compare the PA-IIL and UEA-I interactions with human salivas and seminal fluids of "secretors" and "nonsecretors" with those obtained with the respective milks. Using hemagglutination inhibition and Western blot analyses, we showed that PA-IIL interactions with the saliva and seminal fluid glycoproteins were somewhat weaker than those obtained with the milk and that "nonsecretor" body fluids were not less efficient than those of "secretors" in PA-IIL blocking. UEA-I, which interacted only with the "secretors" glycoproteins, was most sensitive to those of the seminal fluids.

  14. Enhancement of human mesenchymal stem cell infiltration into the electrospun poly(lactic-co-glycolic acid) scaffold by fluid shear stress.

    Science.gov (United States)

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    The infiltration of the cells into the scaffolds is important phenomenon to give them good biocompatibility and even biodegradability. Fluid shear stress is one of the candidates for the infiltration of cells into scaffolds. Here we investigated the directional migration of human mesenchymal stem cells and infiltration into PLGA scaffold by fluid shear stress. The human mesenchymal stem cells showed directional migrations following the direction of the flow (8, 16 dyne/cm(2)). In the scaffold models, the fluid shear stress (8 dyne/cm(2)) enhanced the infiltration of cells but did not influence on the infiltration of Poly(lactic-co-glycolic acid) particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes.

    Science.gov (United States)

    Beltramo, Elena; Nizheradze, Konstantin; Berrone, Elena; Tarallo, Sonia; Porta, Massimo

    2009-10-01

    Early and selective loss of pericytes and thickening of the basement membrane are hallmarks of diabetic retinopathy. We reported reduced adhesion, but no changes in apoptosis, of bovine retinal pericytes cultured on extracellular matrix (ECM) produced by endothelial cells in high glucose (HG). Since human and bovine pericytes may behave differently in conditions mimicking the diabetic milieu, we verified the behaviour of human retinal pericytes cultured on HG-conditioned ECM. Pericytes were cultured in physiological/HG on ECM produced by human umbilical vein endothelial cells in physiological/HG, alone or in the presence of thiamine and benfotiamine. Adhesion, proliferation, apoptosis, p53 and Bcl-2/Bax ratio (mRNA levels and protein concentrations) were measured in wild-type and immortalized human pericytes. Both types of pericytes adhered less to HG-conditioned ECM and plastic than to physiological glucose-conditioned ECM. DNA synthesis was impaired in pericytes cultured in HG on the three different surfaces but there were no differences in proliferation. DNA fragmentation and Bcl-2/Bax ratio were greatly enhanced by HG-conditioned ECM in pericytes kept in both physiological and HG. Addition of thiamine and benfotiamine to HG during ECM production completely prevented these damaging effects. Apoptosis is strongly increased in pericytes cultured on ECM produced by endothelium in HG, probably due to impairment of the Bcl-2/Bax ratio. Thiamine and benfotiamine completely revert this effect. This behaviour is therefore completely different from that of bovine pericytes, underlining the importance of establishing species-specific cell models to study the mechanisms of diabetic retinopathy. (c) 2009 John Wiley & Sons, Ltd.

  16. Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Wen, Zongmei; Guan, Li; Jiang, Ping; Gu, Tao; Zhao, Jinyuan; Lv, Xin; Wen, Tao

    2015-01-01

    Systemic inflammation is a key feature in acid aspiration-induced acute respiratory distress syndrome (ARDS), but the factors that trigger inflammation are unclear. The authors hypothesize that extracellular histones, a newly identified inflammatory mediator, play important roles in the pathogenesis of ARDS. The authors used a hydrochloric acid aspiration-induced ARDS model to investigate whether extracellular histones are pathogenic and whether targeting histones are protective. Exogenous histones and antihistone antibody were administered to mice. Heparin can bind to histones, so the authors studied whether heparin could protect from ARDS using cell and mouse models. Furthermore, the authors analyzed whether extracellular histones are clinically involved in ARDS patients caused by gastric aspiration. Extracellular histones in bronchoalveolar lavage fluid of acid-treated mice were significantly higher (1.832 ± 0.698) at 3 h after injury than in sham-treated group (0.63 ± 0.153; P = 0.0252, n = 5 per group). Elevated histones may originate from damaged lung cells and neutrophil infiltration. Exogenous histones aggravated lung injury, whereas antihistone antibody markedly attenuated the intensity of ARDS. Notably, heparin provided a similar protective effect against ARDS. Analysis of plasma from ARDS patients (n = 21) showed elevated histones were significantly correlated with the degree of ARDS and were higher in nonsurvivors (2.723 ± 0.2933, n = 7) than in survivors (1.725 ± 0.1787, P = 0.006, n = 14). Extracellular histones may play a contributory role toward ARDS by promoting tissue damage and systemic inflammation and may become a novel marker reflecting disease activity. Targeting histones by neutralizing antibody or heparin shows potent protective effects, suggesting a potentially therapeutic strategy.

  17. Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle.

    Science.gov (United States)

    Smith, Johanna A; Daniel, Rene

    2016-11-13

    Vaginal transmission is crucial to the spread of HIV-1 around the world. It is not yet clear what type (s) of innate defenses against HIV-1 infection are present in the vagina. Here, we aimed to determine whether human vaginal fluid contains exosomes that may possess anti-HIV-1 activity. The exosomal fraction was isolated from samples of vaginal fluids. The presence of exosomes was confirmed by flow cytometry and western blotting. The newly discovered exosomes were tested for their ability to block early steps of HIV-1 infection in vitro using established cell culture systems and real time PCR-based methods. Vaginal fluid contains exosomes expressing CD9, CD63, and CD81 exosomal markers. The exosomal fraction of the fluid-reduced transmission of HIV-1 vectors by 60%, the efficiency of reverse transcription step by 58.4%, and the efficiency of integration by 47%. Exosomes had no effect on the entry of HIV-1 vectors. Human vaginal fluid exosomes are newly discovered female innate defenses that may protect women against HIV-1 infection.

  18. Extracellular small RNAs: what, where, why?

    Science.gov (United States)

    Hoy, Anna M.; Buck, Amy H.

    2012-01-01

    miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell–cell communication. PMID:22817753

  19. Modulation of human melanoma cell proliferation and apoptosis by hydatid cyst fluid of Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Gao X

    2018-03-01

    Full Text Available Xiang-Yang Gao,1,* Guang-Hui Zhang,2,* Li Huang3 1Department of Laboratory Medicine, Pu’er People’s Hospital, Pu’er, 2Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of General Surgery, Shanghai General Hospital, Shanghai, China *These authors contributed equally to this work Objective: The objective of this paper was to assess the effects of hydatid cyst fluid (HCF of Echinococcus granulosus on melanoma A375 cell proliferation and apoptosis.Methods: A375 cells were classified into five groups by in vitro culture: normal group, control group, 10% HCF group, 20% HCF group and 30% HCF group. Trypan blue staining method was employed to detect the toxicity of HCF. Effects of different concentrations of HCF on melanoma A375 cell proliferation at different time points were evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Flow cytometry and propidium iodide (PI staining were used to detect cell cycle, and Annexin-V/PI double staining method was used to determine A375 cell apoptotic rate. Western blotting was applied to detect the expression of phosphorylated extracellular regulated protein kinases, proliferating cell nuclear antigen (PCNA, cell-cycle-related proteins (cyclin A, cyclin B1, cyclin D1 and cyclin E and apoptosis-related proteins (Bcl-2, Bax and caspase-3.Results: HCF with a high concentration was considered as atoxic to A375 cells. HCF promoted A375 cell proliferation, and the effects got stronger with an increase in concentrations but was retarded after reaching a certain range of concentrations. HCF increased phosphorylation level and expression of extracellular regulated protein kinase, as well as PCNA expression. HCF also promoted the transferring progression of A375 cells from the G0/G1 phase to the S phase to increase the cell number in S phase and increased the expression of cyclin A, cyclin D1 and

  20. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    Science.gov (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  1. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, Per Glud; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicula...

  2. Ascorbic acid: Nonradioactive extracellular space marker in canine heart

    International Nuclear Information System (INIS)

    Reil, G.H.; Frombach, R.; Kownatzki, R.; Quante, W.; Lichtlen, P.R.

    1987-01-01

    The distribution pattern of ascorbic acid and L-[ 14 C]ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers [ 3 H]-inulin, [ 3 H]sucrose, and Na 82 Br. A new polarographic techniques was developed for analogue registration of ascorbic acid concentration in coronary venous blood. The kinetic data of the markers were studied in an open-chest canine heart preparation during a constant tracer infusion of up to 9 min. Distribution volumes were calculated based on the mean transit time method of Zierler. The distribution volume of ascorbic acid as well as of L-[ 14 C]ascorbic acid in myocardial tissue agreed closely with those of [ 3 H]inulin and [ 3 H]sucrose as well as 82 Br. The obtained kinetic data confirmed that ascorbic acid exhibits the physicochemical properties of an extracellular space marker, though this compound was shown to leak slowly into myocardial cells. Favorable attributes of this indicator are its low molecular weight, high diffusibility in interstitial fluid, low binding affinity to macromolecules, and high transcapillary as well as low transplasmalemmal penetration rate. Therefore, this nonradioactive marker can be applied in a safe and simple fashion, and without untoward side effects in experimental animals as well as in patients

  3. DNA methylation patterns of imprinting centers for H19, SNRPN, and KCNQ1OT1 in single-cell clones of human amniotic fluid mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Hsiu-Huei Peng

    2012-09-01

    Conclusion: In conclusion, human amniotic fluid mesenchymal stem cells contain a unique epigenetic signature during in vitro cell culture. H19 and KCNQ1OT1 possessed a substantial degree of hypermethylation status, and variable DNA methylation patterns of SNRPN was observed during in vitro cell culture of human amniotic fluid mesenchymal stem cells. Our results urge further understanding of epigenetic status of human amniotic fluid mesenchymal stem cells before it is applied in cell replacement therapy.

  4. The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation

    DEFF Research Database (Denmark)

    Hansen, Jakob Lerche; Aplin, Mark; Hansen, Jonas Tind

    2008-01-01

    The angiotensin AT(1) receptor is a key regulator of blood pressure and body fluid homeostasis, and it plays a key role in the pathophysiology of several cardiovascular diseases such as hypertension, cardiac hypertrophy, congestive heart failure, and arrhythmia. The importance of human angiotensi...

  5. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  6. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    Science.gov (United States)

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  7. Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo.

    Science.gov (United States)

    Saravanan, Rathi; Adav, Sunil S; Choong, Yeu Khai; van der Plas, Mariena J A; Petrlova, Jitka; Kjellström, Sven; Sze, Siu Kwan; Schmidtchen, Artur

    2017-10-13

    The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments. Proteolytic peptide patterns could therefore correlate and "report" healing activity and infection. This work describes a proof of principle delineating a strategy by which peptides from a selected protein, human thrombin, are detected and attributed to proteolytic actions. With a particular focus on thrombin-derived C-terminal peptides (TCP), we show that distinct peptide patterns are generated in vitro by the human S1 peptidases human neutrophil elastase and cathepsin G, and the bacterial M4 peptidases Pseudomonas aeruginosa elastase and Staphylococcus aureus aureolysin, respectively. Corresponding peptide sequences were identified in wound fluids from acute and non-healing ulcers, and notably, one peptide, FYT21 (FYTHVFRLKKWIQKVIDQFGE), was only present in wound fluid from non-healing ulcers colonized by P. aeruginosa and S. aureus. Our result is a proof of principle pointing at the possibility of defining peptide biomarkers reporting distinct proteolytic activities, of potential implication for improved diagnosis of wound healing and infection.

  8. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    Science.gov (United States)

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  9. The potential for targeting extracellular LOX proteins in human malignancy

    DEFF Research Database (Denmark)

    Mayorca Guiliani, Alejandro Enrique; Erler, Janine T

    2013-01-01

    The extracellular matrix (ECM) is the physical scaffold where cells are organized into tissues and organs. The ECM may be modified during cancer to allow and promote proliferation, invasion, and metastasis. The family of lysyl oxidase (LOX) enzymes cross-links collagens and elastin and, therefore......, is a central player in ECM deposition and maturation. Extensive research has revealed how the LOX proteins participate in every stage of cancer progression, and two family members, LOX and LOX-like 2, have been linked to metastasis, the final stage of cancer responsible for over 90% of cancer patient deaths...

  10. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Directory of Open Access Journals (Sweden)

    Adam S Zeiger

    Full Text Available Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs via immunocytochemistry, atomic force microscopy (AFM, and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  11. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Science.gov (United States)

    Zeiger, Adam S; Loe, Felicia C; Li, Ran; Raghunath, Michael; Van Vliet, Krystyn J

    2012-01-01

    Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  12. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography.

    Science.gov (United States)

    Blans, Kristine; Hansen, Maria S; Sørensen, Laila V; Hvam, Michael L; Howard, Kenneth A; Möller, Arne; Wiking, Lars; Larsen, Lotte B; Rasmussen, Jan T

    2017-01-01

    Studies have suggested that nanoscale extracellular vesicles (EV) in human and bovine milk carry immune modulatory properties which could provide beneficial health effects to infants. In order to assess the possible health effects of milk EV, it is essential to use isolates of high purity from other more abundant milk structures with well-documented bioactive properties. Furthermore, gentle isolation procedures are important for reducing the risk of generating vesicle artefacts, particularly when EV subpopulations are investigated. In this study, we present two isolation approaches accomplished in three steps based on size-exclusion chromatography (SEC) resulting in effective and reproducible EV isolation from raw milk. The approaches do not require any EV pelleting and can be applied to both human and bovine milk. We show that SEC effectively separates phospholipid membrane vesicles from the primary casein and whey protein components in two differently obtained casein reduced milk fractions, with one of the fractions obtained without the use of ultracentrifugation. Milk EV isolates were enriched in lactadherin, CD9, CD63 and CD81 compared to minimal levels of the EV-marker proteins in other relevant milk fractions such as milk fat globules. Nanoparticle tracking analysis and electron microscopy reveals the presence of heterogeneous sized vesicle structures in milk EV isolates. Lipid analysis by thin layer chromatography shows that EV isolates are devoid of triacylglycerides and presents a phospholipid profile differing from milk fat globules surrounded by epithelial cell plasma membrane. Moreover, the milk EV fractions are enriched in RNA with distinct and diverging profiles from milk fat globules. Collectively, our data supports that successful milk EV isolation can be accomplished in few steps without the use of ultracentrifugation, as the presented isolation approaches based on SEC effectively isolates EV in both human and bovine milk.

  13. Metabolite Profiling of Human Amniotic Fluid by Hyphenated Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Graça, Gonçalo; Duarte, Iola F.; Goodfellow, Brian J.; Carreira, Isabel M.; Couceiro, Ana Bela; Domingues, Maria do Rosário; Spraul, Manfred; Tseng, Li-Hong; Gil, Ana M.

    2008-01-01

    The metabolic profiling of human amniotic fluid (HAF) is of potential interest for the diagnosis of disorders in the mother or the fetus. In order to build a comprehensive metabolite database for HAF, hyphenated NMR has been used, for the first time, for systematic HAF profiling. Experiments were carried out using reverse-phase (RP) and ion-exchange liquid chromatography (LC), in order to detect less and more polar compounds, respectively. RP-LC conditions achieved good separation of amino ac...

  14. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Koushan Sineh sepehr

    2013-02-01

    Full Text Available Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells.

  15. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    Science.gov (United States)

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan

    2013-01-01

    Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells. PMID:24312838

  16. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  17. Determination of mazindol in human oral fluid by high performance liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    de Oliveira, Marcella Herbstrith; Carlos, Graciela; Bergold, Ana Maria; Pechansky, Flavio; Limberger, Renata Pereira; Fröehlich, Pedro Eduardo

    2014-08-01

    Brazil is one of the countries most affected by abuse of stimulant medications by professional drivers, especially fenproporex, amfepramone and mazindol. Even though their sale is banned, they can be found in illegal markets, such as those located on the country's borders. The use of oral fluid to monitor drug levels has many advantages over plasma and urine because it is noninvasive, easier to collect and more difficult to adulterate. The aim of this study was to develop and validate a sensitive and specific method to quantify mazindol in human oral fluid by liquid chromatography-mass spectrometry (LC-MS). The LC system consisted of an LC-MS system operated in selected ion monitoring mode. The mobile phase was composed of water at pH 4.0, acetonitrile and methanol (60:15:25 v/v/v) at a flow rate of 1.0 mL/min and propranolol was used as internal standard. Total running time was 10 min. The lower limit of quantification was 0.2 ng/mL and the method exhibited good linearity within the 0.2-20 ng/mL range (r = 0.9987). A rapid, specific, sensitive, linear, precise and accurate method was developed for determination of mazindol in human oral fluid according to European Medicines Agency guidelines, and is suitable for monitoring mazindol levels in oral fluid of professional drivers. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Release of ATP from Marginal Cells in the Cochlea of Neonatal Rats Can Be Induced by Changes in Extracellular and Intracellular Ion Concentrations

    Science.gov (United States)

    Peng, Yating; Chen, Jie; He, Shan; Yang, Jun; Wu, Hao

    2012-01-01

    Background Adenosine triphosphate (ATP) plays an important role in the cochlea. However, the source of ATP and the mechanism by which it is released remain unclear. This study investigates the presence and release mechanism of ATP in vitro cultured marginal cells isolated from the stria vascularis of the cochlea in neonatal rats. Methods Sprague-Dawley rats aged 1–3 days old were used for isolation, in vitro culture, and purification of marginal cells. Cultured marginal cells were verified by flow cytometry. Vesicles containing ATP in these cells were identified by fluorescence staining. The bioluminescence assay was used for determination of ATP concentration in the extracellular fluid released by marginal cells. Assays for ATP concentration were performed when the ATP metabolism of cells was influenced, and ionic concentrations in intracellular and extracellular fluid were found to change. Results Evaluation of cultured marginal cells with flow cytometry revealed the percentage of fluorescently-labeled cells as 92.9% and 81.9%, for cytokeratin and vimentin, respectively. Quinacrine staining under fluorescence microscopy revealed numerous green, star-like spots in the cytoplasm of these cells. The release of ATP from marginal cells was influenced by changes in the concentration of intracellular and extracellular ions, namely extracellular K+ and intra- and extracellular Ca2+. Furthermore, changes in the concentration of intracellular Ca2+ induced by the inhibition of the phospholipase signaling pathway also influence the release of ATP from marginal cells. Conclusion We confirmed the presence and release of ATP from marginal cells of the stria vascularis. This is the first study to demonstrate that the release of ATP from such cells is associated with the state of the calcium pump, K+ channel, and activity of enzymes related to the phosphoinositide signaling pathway, such as adenylate cyclase, phospholipase C, and phospholipase A2. PMID:23071731

  19. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix

    International Nuclear Information System (INIS)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Zhang, Xiaohui; Xu, Feng; Ling, Kai

    2015-01-01

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue. (paper)

  20. Extracellular creatine regulates creatine transport in rat and human muscle cells.

    OpenAIRE

    Loike, J D; Zalutsky, D L; Kaback, E; Miranda, A F; Silverstein, S C

    1988-01-01

    Muscle cells do not synthesize creatine; they take up exogenous creatine by specific Na+-dependent plasma membrane transporters. We found that extracellular creatine regulates the level of expression of these creatine transporters in L6 rat muscle cells. L6 myoblasts maintained for 24 hr in medium containing 1 mM creatine exhibited 1/3rd of the creatine transport activity of cells maintained for 24 hr in medium without creatine. Down-regulation of creatine transport was partially reversed whe...

  1. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Šafaříková, Jana; Barešová, Magdalena; Pivokonská, Lenka; Kopecká, Ivana

    2014-01-01

    Roč. 51, March (2014), s. 37-46 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902 Institutional support: RVO:67985874 Keywords : Algal organic matter * Extracellular organic matter * Cellular organic matter * Peptide/protein content * Hydrophobicity * Molecular weight fraction ation Subject RIV: BK - Fluid Dynamics Impact factor: 5.528, year: 2014 http://www.sciencedirect.com/science/article/pii/S004313541301021X

  2. A controllable tactile device for human-like tissue realization using smart magneto-rheological fluids: fabrication and modeling

    Science.gov (United States)

    Cha, Seung-Woo; Kang, Seok-Rae; Hwang, Yong-Hoon; Oh, Jong-Seok; Choi, Seung-Bok

    2018-06-01

    This paper proposes a new tactile device to realize the force of human-like organs using the viscoelastic property by combing a smart magneto-rheological (MR) fluid with a sponge (MR sponge in short). The effectiveness of the sensor is validated through the comparison of the force obtained through measurement and the proposed prediction model. As the first step, a conventional standard linear solid model is adopted to independently investigate the force characteristics of MR fluid and sponge. Force is measured using a 3-axis robot with a force sensor to obtain certain properties of MR fluid and sponge. In addition, to show that the proposed MR sponge can realize the force of human-like tissues, experiments are performed using three specimens, i.e., porcine heart, lung, and liver. Subsequently, a quasi-static model for predicting the field-dependent force of the MR sponge is formulated using empirical values. It is demonstrated through comparison that the proposed force model can accurately predict the force of the specimens without significant error. In addition, a psychophysical test is carried out by ordinary subjects to validate the effectiveness of the proposed tactile device. Results show that the MR sponge tactile device can easily produce various levels of the force of human-like tissues, such as the liver and lung of the porcine, by controlling input current.

  3. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells

    OpenAIRE

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-01-01

    Introduction Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhanci...

  4. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    Science.gov (United States)

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  5. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Verónica Azcutia

    Full Text Available BACKGROUND: Hyperglycemia is acknowledged as an independent risk factor for developing diabetes-associated atherosclerosis. At present, most therapeutic approaches are targeted at a tight glycemic control in diabetic patients, although this fails to prevent macrovascular complications of the disease. Indeed, it remains highly controversial whether or not the mere elevation of extracellular D-glucose can directly promote vascular inflammation, which favors early pro-atherosclerotic events. METHODS AND FINDINGS: In the present work, increasing extracellular D-glucose from 5.5 to 22 mmol/L was neither sufficient to induce intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression, analyzed by flow cytometry, nor to promote leukocyte adhesion to human umbilical vein endothelial cells (HUVEC in vitro, measured by flow chamber assays. Interestingly, the elevation of D-glucose levels potentiated ICAM-1 and VCAM-1 expression and leukocyte adhesion induced by a pro-inflammatory stimulus, such as interleukin (IL-1beta (5 ng/mL. In HUVEC, high D-glucose augmented the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2 and nuclear transcription factor-kappaB (NF-kappaB elicited by IL-1beta, measured by Western blot and electromobility shift assay (EMSA, respectively, but had no effect by itself. Both ERK 1/2 and NF-kappaB were necessary for VCAM-1 expression, but not for ICAM-1 expression. In vivo, leukocyte trafficking was evaluated in the rat mesenteric microcirculation by intravital microscopy. In accordance with the in vitro data, the acute intraperitoneal injection of D-glucose increased leukocyte rolling flux, adhesion and migration, but only when IL-1beta was co-administered. CONCLUSIONS: These results indicate that the elevation of extracellular D-glucose levels is not sufficient to promote vascular inflammation, and they highlight the pivotal role of a pro-inflammatory environment in diabetes, as

  6. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

    International Nuclear Information System (INIS)

    Rogers, Kim R.; Bradham, Karen; Tolaymat, Thabet; Thomas, David J.; Hartmann, Thomas; Ma, Longzhou; Williams, Alan

    2012-01-01

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1 h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414 nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates. - Highlights: ► Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (pH 1.5). ► Particle changes in chemical composition, zeta potential, aggregation and morphology were observed. ► Silver chloride appeared to be physically associated with the particle aggregates.

  7. Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    Ryan P. McNamara

    2018-02-01

    Full Text Available Extracellular vesicles (EVs or exosomes have been implicated in the pathophysiology of infections and cancer. The negative regulatory factor (Nef encoded by simian immunodeficiency virus (SIV and human immunodeficiency virus (HIV plays a critical role in the progression to AIDS and impairs endosomal trafficking. Whether HIV-1 Nef can be loaded into EVs has been the subject of controversy, and nothing is known about the connection between SIV Nef and EVs. We find that both SIV and HIV-1 Nef proteins are present in affinity-purified EVs derived from cultured cells, as well as in EVs from SIV-infected macaques. Nef-positive EVs were functional, i.e., capable of membrane fusion and depositing their content into recipient cells. The EVs were able to transfer Nef into recipient cells. This suggests that Nef readily enters the exosome biogenesis pathway, whereas HIV virions are assembled at the plasma membrane. It suggests a novel mechanism by which lentiviruses can influence uninfected and uninfectable, i.e., CD4-negative, cells.

  8. A generalised porous medium approach to study thermo-fluid dynamics in human eyes.

    Science.gov (United States)

    Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal

    2018-03-22

    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.

  9. Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma.

    Science.gov (United States)

    Delpech, B; Maingonnat, C; Girard, N; Chauzy, C; Maunoury, R; Olivier, A; Tayot, J; Creissard, P

    1993-01-01

    Hyaluronan (HA) and the hyaluronan-binding glycoprotein hyaluronectin (HN) were measured in 23 gliomas and 8 meningiomas and their location was revisited in 35 tumours. A clear-cut difference was found in the HN/HA ratio values of glioblastomas (below 0.5) and that of astrocytomas (above 0.5 P edification of the extracellular matrix. In meningiomas only the stroma would be responsible for HA and HN production.

  10. Extracellular miRNA-21 as a novel biomarker in glioma: evidence from meta-analysis, clinical validation and experimental investigations

    Science.gov (United States)

    Liu, Tian; Wang, Zhixin; Tai, Minghui; Meng, Fandi; Zhang, Jingyao; Wan, Yong; Mao, Ping; Dong, Xiaoqun; Liu, Chang; Niu, Wenquan; Dong, Shunbin

    2016-01-01

    Evidence is accumulating highlighting the importance of extracellular miRNA as a novel biomarker for diagnosing various kinds of malignancies. MiR-21 is one of the most studied miRNAs and is over-expressed in cancer tissues. To explore the clinical implications and secretory mechanisms of extracellular miR-21, we firstly meta-analyzed the diagnostic efficiency of extracellular miR-21 in different cancer types. Eighty-one studies based on 59 articles were finally included. In our study, extracellular miR-21 was observed to exhibit an outstanding diagnostic accuracy in detecting brain cancer (area under the summary receiver operating characteristic curve or AUC = 0.94), and this accuracy was more obvious in glioma diagnosis (AUC = 0.95). Our validation study (n = 45) further confirmed the diagnostic and prognostic role of miR-21 in cerebrospinal fluid (CSF) for glioma. These findings inspired us to explore the biological function of miR-21. We next conducted mechanistic investigations to explain the secretory mechanisms of extracellular miR-21 in glioma. TGF-β/Smad3 signaling was identified to participate in mediating the release of miR-21 from glioma cells. Further targeting TGF-β/Smad3 signaling using galunisertib, an inhibitor of the TGF-β type I receptor kinase, can attenuate the secretion of miR-21 from glioma cells. Taken together, CSF-based miR-21 might serve as a potential biomarker for diagnosing brain cancer, especially for patients with glioma. Moreover, extracellular levels of miR-21 were affected by exogenous TGF-β activity and galunisertib treatment. PMID:27166186

  11. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  12. Extracellular matrix-derived hydrogels for dental stem cell delivery

    OpenAIRE

    Viswanath, Aiswarya; Vanacker, Julie; Germain, Loic; Leprince, Julien G.; Diogenes, Anibal; Shakesheff, Kevin M.; White, Lisa J.; des Rieux, Anne

    2016-01-01

    Decellularised mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human ap...

  13. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  14. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  15. Squeeze-film Lubrication of the Human Ankle Joint with Synovial Fluid Filtrated by Articular Cartilage with the Superficial Zone Worn out

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2000-01-01

    Roč. 33, č. 11 (2000), s. 1415-1422 ISSN 0021-9290 R&D Projects: GA ČR GA103/00/0008 Keywords : human ankle joint * squeeze-film lubrication * synovial fluid filtration * worn-out cartilage superficial zone Subject RIV: BK - Fluid Dynamics Impact factor: 1.474, year: 2000

  16. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries).

    Science.gov (United States)

    Arun, G; Eyini, M; Gunasekaran, P

    2015-06-01

    Melanins are enigmatic pigments produced by a wide variety of microorganisms including bacteria and fungi. Here, we have isolated and characterized extracellular melanin from mushroom fungus, Schizophyllum commune. The extracellular dark pigment produced by the broth culture of S. commune, after 21 days of incubation was recovered by hot acid-alkali treatment. The melanin nature of the pigment was characterized by biochemical tests and further, confirmed by UV, IR, EPR, NMR and MALDI-TOF Mass Spectra. Extracellular melanin, at 100 μg/ml, showed significant antibacterial activity against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas fluorescens and antifungal activity against Trichophyton simii and T. rubrum. At a concentration of 50 μg/ml, melanin showed high free radical scavenging activity of DPPH (2,2-diphenyl-1-picrylhydrazyl) indicating its antioxidant potential. It showed concentration dependent inhibition of cell proliferation of Human Epidermoid Larynx Carcinoma Cell Line (HEP-2). This study has demonstrated characterization of melanin from basidiomycetes mushroom fungus, Schizophyllum commune and its applications.

  17. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  18. Dermal extracellular lipid in birds.

    Science.gov (United States)

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  19. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    Science.gov (United States)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  20. In Vitro Studies Evaluating Leaching of Mercury from Mine Waste Calcine Using Simulated Human Body Fluids

    OpenAIRE

    Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.

    2010-01-01

    In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almad?n, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute prim...

  1. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes.

    Science.gov (United States)

    Gould, Travis J; Lysov, Zakhar; Swystun, Laura L; Dwivedi, Dhruva J; Zarychanski, Ryan; Fox-Robichaud, Alison E; Liaw, Patricia C

    2016-12-01

    Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.

  2. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  3. Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids

    International Nuclear Information System (INIS)

    Stefaniak, A B; Leonard, S S; Hoover, M D; Virji, M A; Day, G A

    2009-01-01

    Inhalation of both cobalt (Co) and tungsten carbide (WC) particles is associated with development of hard metal lung disease (HMD) via generation of reactive oxygen species (ROS), whereas Co alone is sufficient to cause asthma via solubilization and hapten formation. We characterized bulk and aerodynamically size-separated W, WC, Co, spray dryer (pre-sintered), and chamfer grinder (post-sintered) powders. ROS generation was measured in the murine RAW 264.7 cell line using electron spin resonance. When dose was normalized to surface area, hydroxyl radical generation was independent of particle size, which suggests that particle surface chemistry may be an important exposure factor. Chamfer grinder particles generated the highest levels of ROS, consistent with the hypothesis that intimate contact of metals is important for ROS generation. In artificial extracellular lung fluid, alkylbenzyldimethylammonium chloride (ABDC), added to prevent mold growth during experiments, did not influence dissolution of Co (44.0±5.2 vs. 48.3±6.4%); however, dissolution was higher (p<0.05) in the absence of phosphate (62.0±5.4 vs. 48.3±6.4%). In artificial macrophage phagolysosomal fluid, dissolution of Co (36.2±10.4%) does not appear to be influenced (p=0.30) by the absence of glycine (29.8±2.1%), phosphate (39.6±8.6%), or ABDC (44.0±10.5%). These results aid in assessing and understanding Co and W inhalation dosimetry.

  4. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  5. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix.

    Science.gov (United States)

    Villa-Diaz, Luis G; Garcia-Perez, Jose L; Krebsbach, Paul H

    2010-12-01

    Because human embryonic stem (hES) cells can differentiate into virtually any cell type in the human body, these cells hold promise for regenerative medicine. The genetic manipulation of hES cells will enhance our understanding of genes involved in early development and will accelerate their potential use and application for regenerative medicine. The objective of this study was to increase the transfection efficiency of plasmid DNA into hES cells by modifying a standard reverse transfection (RT) protocol of lipofection. We hypothesized that immobilization of plasmid DNA in extracellular matrix would be a more efficient method for plasmid transfer due to the affinity of hES cells for substrates such as Matrigel and to the prolonged exposure of cells to plasmid DNA. Our results demonstrate that this modification doubled the transfection efficiency of hES cells and the generation of clonal cell lines containing a piece of foreign DNA stably inserted in their genomes compared to results obtained with standard forward transfection. In addition, treatment with dimethyl sulfoxide further increased the transfection efficiency of hES cells. In conclusion, modifications to the RT protocol of lipofection result in a significant and robust increase in the transfection efficiency of hES cells.

  6. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  7. Congenital heart block maternal sera autoantibodies target an extracellular epitope on the α1G T-type calcium channel in human fetal hearts.

    Directory of Open Access Journals (Sweden)

    Linn S Strandberg

    Full Text Available Congenital heart block (CHB is a transplacentally acquired autoimmune disease associated with anti-Ro/SSA and anti-La/SSB maternal autoantibodies and is characterized primarily by atrioventricular (AV block of the fetal heart. This study aims to investigate whether the T-type calcium channel subunit α1G may be a fetal target of maternal sera autoantibodies in CHB.We demonstrate differential mRNA expression of the T-type calcium channel CACNA1G (α1G gene in the AV junction of human fetal hearts compared to the apex (18-22.6 weeks gestation. Using human fetal hearts (20-22 wks gestation, our immunoprecipitation (IP, Western blot analysis and immunofluorescence (IF staining results, taken together, demonstrate accessibility of the α1G epitope on the surfaces of cardiomyocytes as well as reactivity of maternal serum from CHB affected pregnancies to the α1G protein. By ELISA we demonstrated maternal sera reactivity to α1G was significantly higher in CHB maternal sera compared to controls, and reactivity was epitope mapped to a peptide designated as p305 (corresponding to aa305-319 of the extracellular loop linking transmembrane segments S5-S6 in α1G repeat I. Maternal sera from CHB affected pregnancies also reacted more weakly to the homologous region (7/15 amino acids conserved of the α1H channel. Electrophysiology experiments with single-cell patch-clamp also demonstrated effects of CHB maternal sera on T-type current in mouse sinoatrial node (SAN cells.Taken together, these results indicate that CHB maternal sera antibodies readily target an extracellular epitope of α1G T-type calcium channels in human fetal cardiomyocytes. CHB maternal sera also show reactivity for α1H suggesting that autoantibodies can target multiple fetal targets.

  8. Amniotic fluid deficiency and congenital abnormalities both influence fluctuating asymmetry in developing limbs of human deceased fetuses.

    Directory of Open Access Journals (Sweden)

    Clara Mariquita Antoinette ten Broek

    Full Text Available Fluctuating asymmetry (FA, as an indirect measure of developmental instability (DI, has been intensively studied for associations with stress and fitness. Patterns, however, appear heterogeneous and the underlying causes remain largely unknown. One aspect that has received relatively little attention in the literature is the consequence of direct mechanical effects on asymmetries. The crucial prerequisite for FA to reflect DI is that environmental conditions on both sides should be identical. This condition may be violated during early human development if amniotic fluid volume is deficient, as the resulting mechanical pressures may increase asymmetries. Indeed, we showed that limb bones of deceased human fetuses exhibited increased asymmetry, when there was not sufficient amniotic fluid (and, thus, space in the uterine cavity. As amniotic fluid deficiency is known to cause substantial asymmetries and abnormal limb development, these subtle asymmetries are probably at least in part caused by the mechanical pressures. On the other hand, deficiencies in amniotic fluid volume are known to be associated with other congenital abnormalities that may disturb DI. More specifically, urogenital abnormalities can directly affect/reduce amniotic fluid volume. We disentangled the direct mechanical effects on FA from the indirect effects of urogenital abnormalities, the latter presumably representing DI. We discovered that both factors contributed significantly to the increase in FA. However, the direct mechanical effect of uterine pressure, albeit statistically significant, appeared less important than the effects of urogenital abnormalities, with an effect size only two-third as large. We, thus, conclude that correcting for the relevant direct factors allowed for a representative test of the association between DI and stress, and confirmed that fetuses form a suitable model system to increase our understanding in patterns of FA and symmetry development.

  9. Functional and Transcriptomic Characterization of Peritoneal Immune-Modulation by Addition of Alanyl-Glutamine to Dialysis Fluid.

    Science.gov (United States)

    Herzog, Rebecca; Kuster, Lilian; Becker, Julia; Gluexam, Tobias; Pils, Dietmar; Spittler, Andreas; Bhasin, Manoj K; Alper, Seth L; Vychytil, Andreas; Aufricht, Christoph; Kratochwill, Klaus

    2017-07-24

    Peritonitis remains a major cause of morbidity and mortality during chronic peritoneal dialysis (PD). Glucose-based PD fluids reduce immunological defenses in the peritoneal cavity. Low concentrations of peritoneal extracellular glutamine during PD may contribute to this immune deficit. For these reasons we have developed a clinical assay to measure the function of the immune-competent cells in PD effluent from PD patients. We then applied this assay to test the impact on peritoneal immune-competence of PD fluid supplementation with alanyl-glutamine (AlaGln) in 6 patients in an open-label, randomized, crossover pilot trial (EudraCT 2012-004004-36), and related the functional results to transcriptome changes in PD effluent cells. Ex-vivo stimulation of PD effluent peritoneal cells increased release of interleukin (IL) 6 and tumor necrosis factor (TNF) α. Both IL-6 and TNF-α were lower at 1 h than at 4 h of the peritoneal equilibration test but the reductions in cytokine release were attenuated in AlaGln-supplemented samples. AlaGln-supplemented samples exhibited priming of IL-6-related pathways and downregulation of TNF-α upstream elements. Results from measurement of cytokine release and transcriptome analysis in this pilot clinical study support the conclusion that suppression of PD effluent cell immune function in human subjects by standard PD fluid is attenuated by AlaGln supplementation.

  10. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  11. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    Directory of Open Access Journals (Sweden)

    Hass Jamie L

    2012-01-01

    Full Text Available Abstract Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of

  12. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  13. Cerebrospinal fluid dynamics in a simplified model of the human ventricular system

    International Nuclear Information System (INIS)

    Ammourah, S.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This study investigates the flow of the Cerebrospinal Fluid (CSF) inside a simplified model of the human ventricular system. Both computational and experimental results are explored. Due to the complexity of the real geometry, a simplified three-dimensional (3-D) model of the ventricular system was constructed with the same volume as the real geometry. The numerical study was conducted using the commercial computational fluid dynamics (CFD) package FLUENT-6. Different CFD cases were solved for different flow rates range between 100-500 ml/day. A scaled up to 4:1 physical model with the same geometry as the computational model, was built. A diluted dye was injected into the physical model and visualized. From the CFD studies it was found that the flow pattern of the CSF is structured and has a 3-D motion. Recirculating motion takes place in the lateral ventricles in the form of small eddies at each plane. Experimentally, the dye reverse motion noticed confirms the CFD findings about the presence of a recirculating motion. (author)

  14. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Kim R., E-mail: rogers.kim@epa.gov [U.S. Environmental Protection Agency, Las Vegas, NV (United States); Bradham, Karen [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Tolaymat, Thabet [U.S. Environmental Protection Agency, Cincinnati, OH (United States); Thomas, David J. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Hartmann, Thomas; Ma, Longzhou [University of Nevada, Harry Reid Center for Environmental Studies, Las Vegas, NV (United States); Williams, Alan [U.S. Environmental Protection Agency, Las Vegas, NV (United States)

    2012-03-15

    The bioavailability of ingested silver nanoparticles (AgNPs) depends in large part on initial particle size, shape and surface coating, properties which will influence aggregation, solubility and chemical composition during transit of the gastrointestinal tract. Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (SSF) (pH 1.5) and changes in size, shape, zeta potential, hydrodynamic diameter and chemical composition were determined during a 1 h exposure period using Surface Plasmon Resonance (SPR), High Resolution Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy (TEM/EDS), Dynamic Light Scattering (DLS) and X-ray Powder Diffraction (XRD) combined with Rietveld analysis. Exposure of AgNPs to SSF produced a rapid decrease in the SPR peak at 414 nm and the appearance of a broad absorbance peak in the near infrared (NIR) spectral region. During exposure to SSF, changes in zeta potential, aggregation and morphology of the particles were also observed as well as production of silver chloride which appeared physically associated with particle aggregates. - Highlights: Black-Right-Pointing-Pointer Citrate-stabilized AgNPs were exposed to synthetic human stomach fluid (pH 1.5). Black-Right-Pointing-Pointer Particle changes in chemical composition, zeta potential, aggregation and morphology were observed. Black-Right-Pointing-Pointer Silver chloride appeared to be physically associated with the particle aggregates.

  15. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Shepheard, Stephanie R; Chataway, Tim; Schultz, David W; Rush, Robert A; Rogers, Mary-Louise

    2014-01-01

    Objective biomarkers for amyotrophic lateral sclerosis would facilitate the discovery of new treatments. The common neurotrophin receptor p75 is up regulated and the extracellular domain cleaved from injured neurons and peripheral glia in amyotrophic lateral sclerosis. We have tested the hypothesis that urinary levels of extracellular neurotrophin receptor p75 serve as a biomarker for both human motor amyotrophic lateral sclerosis and the SOD1(G93A) mouse model of the disease. The extracellular domain of neurotrophin receptor p75 was identified in the urine of amyotrophic lateral sclerosis patients by an immuno-precipitation/western blot procedure and confirmed by mass spectrometry. An ELISA was established to measure urinary extracellular neurotrophin receptor p75. The mean value for urinary extracellular neurotrophin receptor p75 from 28 amyotrophic lateral sclerosis patients measured by ELISA was 7.9±0.5 ng/mg creatinine and this was significantly higher (pneurotrophin receptor p75 was also readily detected in SOD1(G93A) mice by immuno-precipitation/western blot before the onset of clinical symptoms. These findings indicate a significant relation between urinary extracellular neurotrophin receptor p75 levels and disease progression and suggests that it may be a useful marker of disease activity and progression in amyotrophic lateral sclerosis.

  16. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    Science.gov (United States)

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions.

  17. Extracellular DNA and histones: double-edged swords in immunothrombosis.

    Science.gov (United States)

    Gould, T J; Lysov, Z; Liaw, P C

    2015-06-01

    The existence of extracellular DNA in human plasma, also known as cell-free DNA (cfDNA), was first described in the 1940s. In recent years, there has been a resurgence of interest in the functional significance of cfDNA, particularly in the context of neutrophil extracellular traps (NETs). cfDNA and histones are key components of NETs that aid in the host response to infection and inflammation. However, cfDNA and histones may also exert harmful effects by triggering coagulation, inflammation, and cell death and by impairing fibrinolysis. In this article, we will review the pathologic nature of cfDNA and histones in macrovascular and microvascular thrombosis, including venous thromboembolism, cancer, sepsis, and trauma. We will also discuss the prognostic value of cfDNA and histones in these disease states. Understanding the molecular and cellular pathways regulated by cfDNA and histones may provide novel insights to prevent pathological thrombus formation and vascular occlusion. © 2015 International Society on Thrombosis and Haemostasis.

  18. Increase of {sup 210}Po levels in human semen fluid after mussel ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Kelecom, Alphonse, E-mail: lararapls@hotmail.co [Laboratory of Radiobiology and Radiometry-LARARA-PLS, Universidade Federal Fluminense, P.O.Box 100.436, 24001-970 Niteroi, RJ (Brazil); Programs in Environmental Science and Marine Biology, Universidade Federal Fluminense, Niteroi, RJ (Brazil); Gouvea, Rita de Cassia dos Santos [Laboratory of Radiobiology and Radiometry-LARARA-PLS, Universidade Federal Fluminense, P.O.Box 100.436, 24001-970 Niteroi, RJ (Brazil)

    2011-05-15

    Polonium-210 ({sup 210}Po) radioactive concentrations were determined in human semen fluid of vasectomized non-smoker volunteers. The {sup 210}Po levels ranged from 0.10 to 0.39 mBq g{sup -1} (mean: 0.23 {+-} 0.08 mBq g{sup -1}). This value decreased to 0.10 {+-} 0.02 mBq g{sup -1} (range from 0.07 to 0.13 mBq g{sup -1}) after two weeks of a controlled diet, excluding fish and seafood. Then, volunteers ate during a single meal 200 g of the cooked mussel Perna perna L., and {sup 210}Po levels were determined again, during ten days, in semen fluid samples collected every morning. Volunteers continued with the controlled diet and maintained sexual abstinence through the period of the experiment. A 300% increase of {sup 210}Po level was observed the day following mussel consumption, with a later reduction, such that the level returned to near baseline by day 4.

  19. Influence of substrate composition on human embryonic stem cell differentiation and extracellular matrix production in embryoid bodies.

    Science.gov (United States)

    Laperle, Alex; Masters, Kristyn S; Palecek, Sean P

    2015-01-01

    Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM, which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers.

  20. Analysis of a self-propelling sheet with heat transfer through non-isothermal fluid in an inclined human cervical canal.

    Science.gov (United States)

    Walait, Ahsan; Siddiqui, A M; Rana, M A

    2018-02-13

    The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.

  1. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation.

    Science.gov (United States)

    Mirabella, Teodelinda; Poggi, Alessandro; Scaranari, Monica; Mogni, Massimo; Lituania, Mario; Baldo, Chiara; Cancedda, Ranieri; Gentili, Chiara

    2011-06-01

    The amniotic fluid is a new source of multipotent stem cells with a therapeutic potential for human diseases. Cultured at low cell density, human amniotic fluid stem cells (hAFSCs) were still able to generate colony-forming unit-fibroblast (CFU-F) after 60 doublings, thus confirming their staminal nature. Moreover, after extensive in vitro cell expansion hAFSCs maintained a stable karyotype. The expression of genes, such as SSEA-4, SOX2 and OCT3/4 was confirmed at early and later culture stage. Also, hAFSCs showed bright expression of mesenchymal lineage markers and immunoregulatory properties. hAFSCs, seeded onto hydroxyapatite scaffolds and subcutaneously implanted in nude mice, played a pivotal role in mounting a response resulting in the recruitment of host's progenitor cells forming tissues of mesodermal origin such as fat, muscle, fibrous tissue and immature bone. Implanted hAFSCs migrated from the scaffold to the skin overlying implant site but not to other organs. Given their in vivo: (i) recruitment of host progenitor cells, (ii) homing towards injured sites and (iii) multipotentiality in tissue repair, hAFSCs are a very appealing reserve of stem cells potentially useful for clinical application in regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase

    International Nuclear Information System (INIS)

    Hjalmarsson, K.; Marklund, S.L.; Engstroem, A.; Edlund, T.

    1987-01-01

    A complementary DNA (cDNA) clone from a human placenta cDNA library encoding extracellular superoxide dismutase has been isolated and the nucleotide sequence determined. The cDNA has a very high G + C content. EC-SOD is synthesized with a putative 18-amino acid signal peptide, preceding the 222 amino acids in the mature enzyme, indicating that the enzyme is a secretory protein. The first 95 amino acids of the mature enzyme show no sequence homology with other sequenced proteins and there is one possible N-glycosylation site (Asn-89). The amino acid sequence from residues 96-193 shows strong homology (∼ 50%) with the final two-thirds of the sequences of all know eukaryotic CuZn SODs, whereas the homology with the P. leiognathi CuZn SOD is clearly lower. The ligands to Cu and Zn, the cysteines forming the intrasubunit disulfide bridge in the CuZn SODs, and the arginine found in all CuZn SODs in the entrance to the active site can all be identified in EC-SOD. A comparison with bovine CuZn SOD, the three-dimensional structure of which is known, reveals that the homologies occur in the active site and the divergencies are in the part constituting the subunit contact area in CuZn SOD. Amino acid sequence 194-222 in the carboxyl-terminal end of EC-SOD is strongly hydrophilic and contains nine amino acids with a positive charge. This sequence probably confers the affinity of EC-SOD for heparin and heparan sulfate. An analysis of the amino acid sequence homologies with CuZn SODs from various species indicates that the EC-SODs may have evolved form the CuZn SODs before the evolution of fungi and plants

  3. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Mina Ghahremani

    2016-09-01

    Full Text Available Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  4. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  5. Extracellular and Intracellular Mechanisms Mediating Metastatic Activity of Exogenous Osteopontin

    Science.gov (United States)

    Mandelin, Jami; Lin, Emme C. K.; Hu, Dana D.; Knowles, Susan K.; Do, Kim-Anh; Wang, Xuemei; Sage, E. Helene; Smith, Jeffrey W.; Arap, Wadih; Pasqualini, Renata

    2009-01-01

    BACKGROUND Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. We used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis. METHODS Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo designed to test extracellular and intracellular mechanisms involved in experimental metastasis. RESULTS In the extracellular environment, we confirm that soluble osteopontin is required for its pro-metastatic effects; this phenomenon is specific, RGD-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induces rapid Tyr-418 dephosphorylation of c-Src, with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation is followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site. CONCLUSION Our results reveal a complex molecular interaction as well as a dual role for osteopontin in metastasis that is dependent on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to anti-metastasis strategies. PMID:19224553

  6. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  7. Cardiovascular and fluid volume control in humans in space

    DEFF Research Database (Denmark)

    Norsk, Peter

    2005-01-01

    on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations...... by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control...

  8. Extracellular Vesicles in Bile as Markers of Malignant Biliary Stenoses

    DEFF Research Database (Denmark)

    Severino, Valeria; Dumonceau, Jean Marc; Delhaye, Myriam

    2017-01-01

    Background & Aims Algorithms for diagnosis of malignant common bile duct (CBD) stenoses are complex and lack accuracy. Malignant tumors secrete large numbers of extracellular vesicles (EVs) into surrounding fluids; EVs might therefore serve as biomarkers for diagnosis. We investigated whether...... concentrations of EVs in bile could discriminate malignant from nonmalignant CBD stenoses. Methods We collected bile and blood samples from 50 patients undergoing therapeutic endoscopic retrograde cholangiopancreatography at university hospitals in Europe for CBD stenosis of malignant (pancreatic cancer, n = 20...... with a diagnosis of pancreatic cancer, based on tissue analysis, and 10 consecutive controls. Using samples from these subjects, we identified a threshold concentration of bile EVs that could best discriminate between patients with pancreatic cancer from controls. We verified the diagnostic performance of bile EV...

  9. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  10. Synovial Fluid Filtration by Articular Cartilage with a Worn-out Surface Zone in the Human Ankle Joint during Walking- I.A Mathematical Mixture Model

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2000-01-01

    Roč. 45, č. 3 (2000), s. 295-321 ISSN 0001-7043 R&D Projects: GA ČR GA103/00/0008 Keywords : asymptotic solution * biphasic articular cartilage * biphasic synovial fluid * human ankle joint Subject RIV: BK - Fluid Dynamics

  11. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    Science.gov (United States)

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  12. Decreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization

    International Nuclear Information System (INIS)

    Smith, J.B.; Dwyer, S.D.; Smith, L.

    1989-01-01

    Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45 Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45 Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing [Ca2+]i and vice versa. Na+o removal rapidly increased [ 3 H]inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in 45 Ca2+ efflux produced by Na+o removal. Therefore, decreasing [Na+]o probably stimulates a receptor(s) which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively

  13. Large Scale Generation and Characterization of Anti-Human IgA Monoclonal Antibody in Ascitic Fluid of Balb/c Mice

    Science.gov (United States)

    Ezzatifar, Fatemeh; Majidi, Jafar; Baradaran, Behzad; Aghebati Maleki, Leili; Abdolalizadeh, Jalal; Yousefi, Mehdi

    2015-01-01

    Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. Results: Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. Conclusion: This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori. PMID:25789225

  14. Large Scale Generation and Characterization of Anti-Human IgA Monoclonal Antibody in Ascitic Fluid of Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Fatemeh Ezzatifar

    2015-03-01

    Full Text Available Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. Results: Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. Conclusion: This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori.

  15. Sources of extracellular tau and its signaling.

    Science.gov (United States)

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  16. Low Fluid Shear Culture of Staphylococcus Aureus Represses hfq Expression and Induces an Attachment-Independent Biofilm Phenotype

    Science.gov (United States)

    Ott, C. Mark; Castro, S. L.; Nickerson, C. A.; Nelman-Gonzalez, M.

    2011-01-01

    Background: The opportunistic pathogen, Staphylococcus aureus, experiences fluctuations in fluid shear during infection and colonization of a human host. Colonization frequently occurs at mucus membrane sites such as in the gastrointestinal tract where the bacterium may experience low levels of fluid shear. The response of S. aureus to low fluid shear remains unclear. Methods: S. aureus was cultured to stationary phase using Rotating-Wall Vessel (RWV) bioreactors which produce a physiologically relevant low fluid shear environment. The bacterial aggregates that developed in the RWV were evaluated by electron microscopy as well as for antibiotic resistance and other virulence-associated stressors. Genetic expression profiles for the low-shear cultured S. aureus were determined by microarray analysis and quantitative real-time PCR. Results: Planktonic S. aureus cultures in the low-shear environment formed aggregates completely encased in high amounts of extracellular polymeric substances. In addition, these aggregates demonstrated increased antibiotic resistance indicating attachment-independent biofilm formation. Carotenoid production in the low-shear cultured S. aureus was significantly decreased, and these cultures displayed an increased susceptibility to oxidative stress and killing by whole blood. The hfq gene, associated with low-shear growth in Gram negative organisms, was also found to be down-regulated in S. aureus. Conclusions: Collectively, this data suggests that S. aureus decreases virulence characteristics in favor of a biofilm-dwelling colonization phenotype in response to a low fluid shear environment. Furthermore, the identification of an Hfq response to low-shear culture in S. aureus, in addition to the previously reported responses in Gram negative organisms, strongly suggests an evolutionarily conserved response to mechanical stimuli among structurally diverse prokaryotes.

  17. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    OpenAIRE

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in human cerebrospinal fluid (CSF) are used as a surrogate for human brainECF concentrations. Due to qualitative and quantitative differences in processes that govern the pharmacokinetics (PK) of drugs in...

  18. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  19. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  20. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems.

    Science.gov (United States)

    Mandatori, Domitilla; Penolazzi, Letizia; Pipino, Caterina; Di Tomo, Pamela; Di Silvestre, Sara; Di Pietro, Natalia; Trevisani, Sara; Angelozzi, Marco; Ucci, Mariangela; Piva, Roberta; Pandolfi, Assunta

    2018-02-01

    Menaquinones, also known as Vitamin K2 family, regulate calcium homeostasis in a 'bone-vascular cross-talk' and recently received particular attention for their positive effect on bone formation. Given that the correlation between menaquinones and bone metabolism to date is still unclear, the objective of our study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of the menaquinones family, in the modulation of osteogenesis. For this reason, we used a model of human amniotic fluid mesenchymal stem cells (hAFMSCs) cultured both in two-dimensional (2D) and three-dimensional (3D; RCCS™bioreactor) in vitro culture systems. Furthermore, to mimic the 'bone remodelling unit' in vitro, hAFMSCs were co-cultured in the 3D system with human monocyte cells (hMCs) as osteoclast precursors. The results showed that in a conventional 2D culture system, hAFMSCs were responsive to the MK-4, which significantly improved the osteogenic process through γ-glutamyl carboxylase-dependent pathway. The same results were obtained in the 3D dynamic system where MK-4 treatment supported the osteoblast-like formation promoting the extracellular bone matrix deposition and the expression of the osteogenic-related proteins (alkaline phosphatase, osteopontin, collagen type-1 and osteocalcin). Notably, when the hAFMSCs were co-cultured in a 3D dynamic system with the hMCs, the presence of MK-4 supported the cellular aggregate formation as well as the osteogenic function of hAFMSCs, but negatively affected the osteoclastogenic process. Taken together, our results demonstrate that MK-4 supported the aggregate formation of hAFMSCs and increased the osteogenic functions. Specifically, our data could help to optimize bone regenerative medicine combining cell-based approaches with MK-4 treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  2. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. The impact of extracellular matrix coatings on the performance of human renal cells applied in bioartificial kidneys.

    Science.gov (United States)

    Zhang, Huishi; Tasnim, Farah; Ying, Jackie Y; Zink, Daniele

    2009-05-01

    Extracellular matrix (ECM) coatings have been used to improve cell performance in bioartificial kidneys (BAKs). However, their effects on primary human renal proximal tubule cells (HPTCs), which is the most important cell type with regard to clinical applications, have not been tested systematically. Also, the effects of ECM coatings on cell performance during extended time periods have not been addressed. Studying such effects is important for the development of long-term applications. Herein we analyzed for the first time systematically the effects of ECM coatings on proliferation and differentiation of human renal cells and we addressed, in particular, formation and long-term maintenance of differentiated epithelia. Our study focused on HPTCs. ECM coatings were tested alone or in combination with the growth factor bone morphogenetic protein-7 and other additives. The best results were obtained with ECMs consisting of the basal lamina components, laminin or collagen IV, and differentiated epithelia could be maintained up to three weeks on these ECMs. These results provide for the first time clear evidence which kinds of ECM coatings are most appropriate for BAKs. The results also showed that alpha-SMA-expressing myofibroblasts played a key role in the final disruption of differentiated epithelia. This suggests that epithelial-to-mesenchymal transition-related processes might be the major obstacle in long-term applications and such processes should be carefully addressed in future BAK-related research.

  4. Fetal- and uterine-specific antigens in human amniotic fluid.

    Science.gov (United States)

    Sutcliffe, R G; Brock, D J; Nicholson, L V; Dunn, E

    1978-09-01

    Removal of the major maternal serum proteins from second trimester amniotic fluid by antibody affinity chromatography revealed various soluble tissue antigens, of which two were fetal-specific skin proteins and another, of alpha2-mobility, was specific to the uterus, and was therefore designated alpha-uterine protein (AUP). These proteins could not be detected in maternal serum by antibody-antigen crossed electrophoresis. The concentration of AUP in amniotic fluid reached a maximum between 10 and 20 weeks of gestation, suggesting that there is an influx of uterine protein into the amniotic fluid at this stage of pregnancy.

  5. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  6. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  7. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  8. Sprifermin (rhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo

    DEFF Research Database (Denmark)

    Reker, Ditte; Kjelgaard-Petersen, Cecilie Freja; Siebuhr, Anne Sofie

    2017-01-01

    Background: Sprifermin (recombinant human fibroblast growth factor 18) is in clinical development as a potential disease-modifying osteoarthritis drug (DMOAD). In vitro studies have shown that cartilage regenerative properties of sprifermin involve chondrocyte proliferation and extracellular matrix...... or placebo at weekly intervals, similar to the dosing regimen used in clinical trials. Pre-culturing with oncostatin M and tumour necrosis factor-a, was also used to induce an inflammatory state before treatment. Metabolic activity was measured using AlamarBlue, and chondrocyte proliferation was visualized...... aggrecanase activity. Results: Sprifermin was able to reach the chondrocytes through the extracellular matrix, as it increased cell proliferation and metabolic activity of explants. ProC2 and CS846 was dose-dependently increased (P

  9. Assets of the non-pathogenic microorganism Dictyostelium discoideum as a model for the study of eukaryotic extracellular vesicles [v1; ref status: indexed, http://f1000r.es/pa

    Directory of Open Access Journals (Sweden)

    Irène Tatischeff

    2013-03-01

    Full Text Available Dictyostelium discoideum microvesicles have recently been presented as a valuable model for eukaryotic extracellular vesicles. Here, the advantages of D. discoideum for unraveling important biological functions of extracellular vesicles in general are detailed. D. discoideum, a non-pathogenic eukaryotic microorganism, belongs to a billion-year-old Amoeboza lineage, which diverged from the animal-fungal lineage after the plant animal-split. During growth and early starvation-induced development, it presents analogies with lymphocytes and macrophages with regard to motility and phagocytosis capability, respectively. Its 6-chromosome genome codes for about 12,500 genes, some showing analogies with human genes. The presence of extracellular vesicles during cell growth has been evidenced as a detoxification mechanism of various structurally unrelated drugs. Controls led to the discovery of constitutive extracellular vesicle secretion in this microorganism, which was an important point. It means that the secretion of extracellular vesicles occurs, in the absence of any drug, during both cell growth and early development. This constitutive secretion of D. discoideum cells is very likely to play a role in intercellular communication. The detoxifying secreted vesicles, which can transport drugs outside the cells, can also act as "Trojan horses", capable of transferring these drugs not only into naïve D. discoideum cells, but into human cells as well. Therefore, these extracellular vesicles were proposed as a new biological drug delivery tool. Moreover, Dictyostelium, chosen by the NIH (USA as a new model organism for biomedical research, has already been used for studying some human diseases. These cells, which are much easier to manipulate than human cells, can be easily designed in simple conditioned medium experiments. Owing to the increasing consensus that extracellular vesicles are probably important mediators of intercellular communication, D

  10. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production.

    Science.gov (United States)

    Naasani, Liliana I Sous; Rodrigues, Cristiano; de Campos, Rafael Paschoal; Beckenkamp, Liziane Raquel; Iser, Isabele C; Bertoni, Ana Paula Santin; Wink, Márcia R

    2017-08-01

    Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105 + , CD44 + , CD14 - , CD34 - , CD45 - , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  12. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    International Nuclear Information System (INIS)

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  13. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rappa, Germana [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Mercapide, Javier; Anzanello, Fabio [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Le, Thuc T. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Johlfs, Mary G. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Fiscus, Ronald R. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Wilsch-Bräuninger, Michaela [Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden (Germany); Corbeil, Denis [Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Tatzberg 47–49, 01307 Dresden, Germany Technische Universitat Dresden, Dresden (Germany); Lorico, Aurelio, E-mail: alorico@roseman.edu [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States)

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  14. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer

    OpenAIRE

    Chen, I-Hsuan; Xue, Liang; Hsu, Chuan-Chih; Paez, Juan Sebastian Paez; Pan, Li; Andaluz, Hillary; Wendt, Michael K.; Iliuk, Anton B.; Zhu, Jian-Kang; Tao, W. Andy

    2017-01-01

    Protein phosphorylation is a major regulatory mechanism for many cellular functions, but no phosphoprotein in biofluids has been developed for disease diagnosis because of the presence of active phosphatases. This study presents a general strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs from small volumes of plasma sam...

  15. Extracellular ATP reduces HIV-1 transfer from immature dendritic cells to CD4+ T lymphocytes

    Directory of Open Access Journals (Sweden)

    Barat Corinne

    2008-03-01

    Full Text Available Abstract Background Dendritic cells (DCs are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1 infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes. Results In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission. Conclusion These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.

  16. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    Directory of Open Access Journals (Sweden)

    Y Hu

    2015-09-01

    Full Text Available The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA and 5-hydroxytryptamine (5-HT levels were subsequently detected with high-performance liquid chromatography (HPLC. For immunohistochemistry study, the expression of DRD 2 and HT 2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P0.05. Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue.

  17. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF.

    Science.gov (United States)

    Nagy, R A; van Montfoort, A P A; Dikkers, A; van Echten-Arends, J; Homminga, I; Land, J A; Hoek, A; Tietge, U J F

    2015-05-01

    Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the

  18. Vitronectin in human breast carcinomas

    DEFF Research Database (Denmark)

    Aaboe, Mads; Offersen, Birgitte Vrou; Christensen, Anni

    2003-01-01

    We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters and in the subendothe......We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters...... and in the subendothelial area of some blood vessels. In normal tissue, vitronectin had a homogeneous periductal occurrence, with local accumulation much lower than that in the carcinomas. Using a new solid phase radioligand assay, the vitronectin concentrations of extracts of carcinomas and normal breast tissue were...... is not synthesised locally in breast tissue but derived by leakage from vessels, followed by extracellular accumulation in patterns distinctly different in carcinomas and normal tissue. The observation of a high vitronectin content in the carcinomas and its localisation in the tissue contributes to the clarification...

  19. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  20. Genome-wide quantitative trait loci mapping of the human cerebrospinal fluid proteome.

    Science.gov (United States)

    Sasayama, Daimei; Hattori, Kotaro; Ogawa, Shintaro; Yokota, Yuuki; Matsumura, Ryo; Teraishi, Toshiya; Hori, Hiroaki; Ota, Miho; Yoshida, Sumiko; Kunugi, Hiroshi

    2017-01-01

    Cerebrospinal fluid (CSF) is virtually the only one accessible source of proteins derived from the central nervous system (CNS) of living humans and possibly reflects the pathophysiology of a variety of neuropsychiatric diseases. However, little is known regarding the genetic basis of variation in protein levels of human CSF. We examined CSF levels of 1,126 proteins in 133 subjects and performed a genome-wide association analysis of 514,227 single nucleotide polymorphisms (SNPs) to detect protein quantitative trait loci (pQTLs). To be conservative, Spearman's correlation was used to identify an association between genotypes of SNPs and protein levels. A total of 421 cis and 25 trans SNP-protein pairs were significantly correlated at a false discovery rate (FDR) of less than 0.01 (nominal P genome-wide association studies. The present findings suggest that genetic variations play an important role in the regulation of protein expression in the CNS. The obtained database may serve as a valuable resource to understand the genetic bases for CNS protein expression pattern in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.

    Science.gov (United States)

    Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher

    2018-04-11

    The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    Science.gov (United States)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  3. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    Science.gov (United States)

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  4. The concentration of extracellular superoxide dismutase in plasma is maintained by LRP-mediated endocytosis

    DEFF Research Database (Denmark)

    Petersen, Steen V; Thøgersen, Ida B; Valnickova, Zuzana

    2010-01-01

    In this study, we show that human extracellular superoxide dismutase (EC-SOD) binds to low-density lipoprotein receptor-related protein (LRP). This interaction is most likely responsible for the removal of EC-SOD from the blood circulation via LRP expressed in liver tissue. The receptor recognition...

  5. The characterization of exosomes from biological fluids of patients with different types of cancer

    Science.gov (United States)

    Yunusova, N. V.; Tamkovich, S. N.; Stakheeva, M. N.; Grigor'eva, A. A.; Somov, A. K.; Tugutova, E. A.; Kolomiets, L. A.; Molchanov, S. V.; Afanas'ev, S. G.; Kakurina, G. V.; Choinzonov, E. L.; Kondakova, I. V.

    2017-09-01

    Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The purpose of the study was to isolate, identify and analyze the total content of exosomes in biological fluids. The exosomes from the plasma and ascites samples of the patients with ovarian cancer, from the blood plasma of the patients with colorectal and head and neck squamous cell cancer as well as from the blood plasma of healthy donors were characterized using transmission electron microscopy and flow cytometry. The subpopulations of the exosomes in the biological fluids of the patients with different types of cancer were similar, but the protein concentrations of exosomes were different. In this paper we present the methodological approaches allowing us to obtain high quality exosome preparations from biological fluids.

  6. Identification of Small Peptides in Human Cerebrospinal Fluid upon Amyloid-β Degradation.

    Science.gov (United States)

    Mizuta, Naoki; Yanagida, Kanta; Kodama, Takashi; Tomonaga, Takeshi; Takami, Mako; Oyama, Hiroshi; Kudo, Takashi; Ikeda, Manabu; Takeda, Masatoshi; Tagami, Shinji; Okochi, Masayasu

    2017-01-01

    Amyloid-β (Aβ) degradation in brains of Alzheimer disease patients is a crucial focus for the clarification of disease pathogenesis. Nevertheless, the mechanisms underlying Aβ degradation in the human brain remain unclear. This study aimed to quantify the levels of small C-terminal Aβ fragments generated upon Aβ degradation in human cerebrospinal fluid (CSF). A fraction containing small peptides was isolated and purified from human CSF by high-pressure liquid chromatography. Degradation products of Aβ C termini were identified and measured by liquid chromatography-tandem mass spectrometry. The C-terminal fragments of Aβ in the conditioned medium of cultured cells transfected with the Swedish variant of βAPP (sw βAPP) were analyzed. These fragments in brains of PS1 I213T knock-in transgenic mice, overexpressing sw βAPP, were also analyzed. The peptide fragments GGVV and GVV, produced by the cleavage of Aβ40, were identified in human CSF as well as in the brains of the transgenic mice and in the conditioned medium of the cultured cells. Relative to Aβ40 levels, GGVV and GVV levels were 7.6 ± 0.81 and 1.5 ± 0.18%, respectively, in human CSF. Levels of the GGVV fragment did not increase by the introduction of genes encoding neprilysin and insulin-degrading enzyme to the cultured cells. Our results indicate that a substantial amount of Aβ40 in human brains is degraded via a neprilysin- or insulin-degrading enzyme-independent pathway. © 2017 S. Karger AG, Basel.

  7. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    Directory of Open Access Journals (Sweden)

    Kazuya Iwai

    2016-05-01

    Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.

  8. Extracellular and Intracellular Cyclophilin A, Native and Post-Translationally Modified, Show Diverse and Specific Pathological Roles in Diseases.

    Science.gov (United States)

    Xue, Chao; Sowden, Mark P; Berk, Bradford C

    2018-05-01

    CypA (cyclophilin A) is a ubiquitous and highly conserved protein with peptidyl prolyl isomerase activity. Because of its highly abundant level in the cytoplasm, most studies have focused on the roles of CypA as an intracellular protein. However, emerging evidence suggests an important role for extracellular CypA in the pathogenesis of several diseases through receptor (CD147 or other)-mediated autocrine and paracrine signaling pathways. In this review, we will discuss the shared and unique pathological roles of extracellular and intracellular CypA in human cardiovascular diseases. In addition, the evolving role of post-translational modifications of CypA in the pathogenesis of disease is discussed. Finally, recent studies with drugs specific for extracellular CypA show its importance in disease pathogenesis in several animal models and make extracellular CypA a new therapeutic target. © 2018 American Heart Association, Inc.

  9. The extracellular matrix of the lung and its role in edema formation

    Directory of Open Access Journals (Sweden)

    Paolo Pelosi

    2007-06-01

    Full Text Available The extracellular matrix is composed of a three-dimensional fiber mesh filled with different macromolecules such as: collagen (mainly type I and III, elastin, glycosaminoglycans, and proteoglycans. In the lung, the extracellular matrix has several functions which provide: 1 mechanical tensile and compressive strength and elasticity, 2 low mechanical tissue compliance contributing to the maintenance of normal interstitial fluid dynamics, 3 low resistive pathway for an effective gas exchange, d control of cell behavior by the binding of growth factors, chemokines, cytokines and the interaction with cell-surface receptors, and e tissue repair and remodeling. Fragmentation and disorganization of extracellular matrix components comprises the protective role of the extracellular matrix, leading to interstitial and eventually severe lung edema. Thus, once conditions of increased microvascular filtration are established, matrix remodeling proceeds fairly rapidly due to the activation of proteases. Conversely, a massive matrix deposition of collagen fiber decreases interstitial compliance and therefore makes the tissue safety factor stronger. As a result, changes in lung extracellular matrix significantly affect edema formation and distribution in the lung.A matriz extracelular é um aglomerado tridimensional demacromoléculas composta por: fibras colágenas (principalmente, tipos I e III, elastina, glicosaminoglicanos e proteoglicanos. No pulmão, a matriz extracelular tem várias funções, tais como: 1 promover estresse tensil e elasticidade tecidual, 2 contribuir para a manutenção da dinâmica de fluidos no interstício, 3 propiciar efetiva troca gasosa, 4 controlar a função celular através de sua ligação com fatores de crescimento, quimiocinas, citocinas e interação com receptores de superfície, e 5 remodelamento e reparo tecidual. A fragmentação e a desorganização da matriz extracelular pode acarretar edema intersticial e

  10. Fluid distribution kinetics during cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Mattias Törnudd

    2014-08-01

    Full Text Available OBJECTIVE: The purpose of this study was to examine the isovolumetric distribution kinetics of crystalloid fluid during cardiopulmonary bypass. METHODS: Ten patients undergoing coronary artery bypass grafting participated in this prospective observational study. The blood hemoglobin and the serum albumin and sodium concentrations were measured repeatedly during the distribution of priming solution (Ringer's acetate 1470 ml and mannitol 15% 200 ml and initial cardioplegia. The rate of crystalloid fluid distribution was calculated based on 3-min Hb changes. The preoperative blood volume was extrapolated from the marked hemodilution occurring during the onset of cardiopulmonary bypass. Clinicaltrials.gov: NCT01115166. RESULTS: The distribution half-time of Ringer's acetate averaged 8 minutes, corresponding to a transcapillary escape rate of 0.38 ml/kg/min. The intravascular albumin mass increased by 5.4% according to mass balance calculations. The preoperative blood volume, as extrapolated from the drop in hemoglobin concentration by 32% (mean at the beginning of cardiopulmonary bypass, was 0.6-1.2 L less than that estimated by anthropometric methods (p<0.02. The mass balance of sodium indicated a translocation from the intracellular to the extracellular fluid space in 8 of the 10 patients, with a median volume of 236 ml. CONCLUSIONS: The distribution half-time of Ringer's solution during isovolumetric cardiopulmonary bypass was 8 minutes, which is the same as for crystalloid fluid infusions in healthy subjects. The intravascular albumin mass increased. Most patients were hypovolemic prior to the start of anesthesia. Intracellular edema did not occur.

  11. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  12. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus.

    Science.gov (United States)

    Møller, Marie S; Goh, Yong Jun; Rasmussen, Kasper Bøwig; Cypryk, Wojciech; Celebioglu, Hasan Ufuk; Klaenhammer, Todd R; Svensson, Birte; Abou Hachem, Maher

    2017-06-15

    Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 ( La Pul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by La Pul13_14 and is abolished in a mutant strain lacking a functional La Pul13_14 gene. Hydrolysis kinetics of recombinant La Pul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest K m reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut. IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a

  13. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2012-03-10

    Traces of human body fluids, such as blood, saliva, sweat, semen and vaginal fluid, play an increasingly important role in forensic investigations. However, a nondestructive, easy and rapid identification of body fluid traces at the scene of a crime has not yet been developed. The obstacles have recently been addressed in our studies, which demonstrated the considerable potential of Raman spectroscopy. In this study, we continued to build a full library of body fluid spectroscopic signatures. The problems concerning vaginal fluid stain identification were addressed using Raman spectroscopy coupled with advanced statistical analysis. Calculated characteristic Raman and fluorescent spectral components were used to build a multidimensional spectroscopic signature of vaginal fluid, which demonstrated good specificity and was able to handle heterogeneous samples from different donors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Intracranial Fluid Redistribution During a Spaceflight Analog

    Science.gov (United States)

    Koppelmans, Vincent; Pasternak, Ofer; Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Riascos, Roy; Reuter-Lorenz, Patrica A.; Kofman, Igor S.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.

  15. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    Science.gov (United States)

    De Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-07-03

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  16. A noninvasive method to study regulation of extracellular fluid volume in rats using nuclear magnetic resonance

    Data.gov (United States)

    U.S. Environmental Protection Agency — NMR fluid measurements of commonly used rat strains when subjected to SQ normotonic or hypertonic salines, as well as physiologic comparisons to sedentary and...

  17. In vitro evaluation of the interactions between human corneal endothelial cells and extracellular matrix proteins

    International Nuclear Information System (INIS)

    Choi, Jin San; Kim, Eun Young; Kim, Min Jeong; Giegengack, Matthew; Khan, Faraaz A; Soker, Shay; Khang, Gilson

    2013-01-01

    The corneal endothelium is the innermost cell layer of the cornea and rests on Descemet's membrane consisting of various extracellular matrix (ECM) proteins which can directly affect the cellular behaviors such as cell adhesion, proliferation, polarity, morphogenesis and function. The objective of this study was to investigate the interactions between the ECM environment and human corneal endothelial cells (HCECs), with the ultimate goal to improve cell proliferation and function in vitro. To evaluate the interaction of HCECs with ECM proteins, cells were seeded on ECM-coated tissue culture dishes, including collagen type I (COL I), collagen type IV (COL IV), fibronectin (FN), FNC coating mix (FNC) and laminin (LM). Cell adhesion and proliferation of HCECs on each substratum and expression of CEC markers were studied. The results showed that HCECs plated on the COL I, COL IV, FN and FNC-coated plates had enhanced cell adhesion initially; the number for COL I, COL IV, FN and FNC was significantly higher than the control (P < 0.05). In addition, cells grown on ECM protein-coated dishes showed more compact cellular morphology and CEC marker expression compared to cells seeded on uncoated dishes. Collectively, our results suggest that an adequate ECM protein combination can provide a long-term culture environment for HCECs for corneal endothelium transplantation. (paper)

  18. Mechanisms controlling the volume of pleural fluid and extravascular lung water

    Directory of Open Access Journals (Sweden)

    G. Miserocchi

    2009-12-01

    Full Text Available Pleural and interstitial lung fluid volumes are strictly controlled and maintained at the minimum thanks to the ability of lymphatics to match the increase in filtration rate. In the pleural cavity, fluid accumulation is easily accommodated by retraction of lung and chest wall (high compliance of the pleural space; the increase of lymph flow per unit increase in pleural fluid volume is high due to the great extension of the parietal lymphatic. However, for the lung interstitium, the increase in lymph flow to match increased filtration does not need to be so great. In fact, increased filtration only causes a minor increase in extravascular water volume (<10% due to a marked increase in interstitial pulmonary pressure (low compliance of the extracellular matrix which, in turn, buffers further filtration. Accordingly, a less extended lymphatic network is needed. The efficiency of lymphatic control is achieved through a high lymphatic conductance in the pleural fluid and through a low interstitial compliance for the lung interstitium. Fluid volume in both compartments is so strictly controlled that it is difficult to detect initial deviations from the physiological state; thus, a great physiological advantage turns to be a disadvantage on a clinical basis as it prevents an early diagnosis of developing disease.

  19. Caffeine Inhibits Fluid Secretion by Interlobular Ducts From Guinea Pig Pancreas.

    Science.gov (United States)

    Mochimaru, Yuka; Yamamoto, Akiko; Nakakuki, Miyuki; Yamaguchi, Makoto; Taniguchi, Ituka; Ishiguro, Hiroshi

    2017-04-01

    Caffeine is contained in coffee, tea, and numerous beverages and foods. We examined the direct effects of caffeine on the physiological function of pancreatic duct cells by using interlobular duct segments isolated from guinea pig pancreas. The rate of fluid secretion was continuously measured by monitoring the luminal volume of isolated duct segments. Changes in intracellular Ca concentration ([Ca]i) were estimated by microfluorometry in ducts loaded with Fura-2. Both secretin-stimulated and acetylcholine (ACh)-stimulated fluid secretions were substantially and reversibly inhibited by relatively low concentrations of caffeine as low as 0.03 mM relevant to blood levels after ingestion of caffeine-containing beverages. Caffeine inhibited ACh-induced elevation of [Ca]i and secretin-induced fluctuation of [Ca]i. Caffeine abolished thapsigargin-induced intracellular Ca release but did not affect the entry of extracellular Ca. Caffeine (0.05 mM) abolished ethanol (1 mM)-induced fluid hypersecretion in secretin-stimulated pancreatic duct. Low concentrations of caffeine directly inhibit pancreatic ductal fluid secretion stimulated by secretin or ACh and also ethanol-induced fluid hypersecretion. The inhibition by caffeine seems to be mediated by the blockade of intracellular Ca mobilization. Daily intake of caffeine may reduce the volume of pancreatic juice secretion.

  20. Do alterations in follicular fluid proteases contribute to human infertility?

    Science.gov (United States)

    Cookingham, Lisa Marii; Van Voorhis, Bradley J; Ascoli, Mario

    2015-05-01

    Cathepsin L and ADAMTS-1 are known to play critical roles in follicular rupture, ovulation, and fertility in mice. Similar studies in humans are limited; however, both are known to increase during the periovulatory period. No studies have examined either protease in the follicular fluid of women with unexplained infertility or infertility related to advanced maternal age (AMA). We sought to determine if alterations in cathepsin L and/or ADAMTS-1 existed in these infertile populations. Patients undergoing in vitro fertilization (IVF) for unexplained infertility or AMA-related infertility were prospectively recruited for the study; patients with tubal or male factor infertility were recruited as controls. Follicular fluid was collected to determine gene expression (via quantitative polymerase chain reaction), enzyme concentrations (via enzyme-linked immunosorbent assays), and enzymatic activities (via fluorogenic enzyme cleavage assay or Western blot analysis) of cathepsin L and ADAMTS-1. The analysis included a total of 42 patients (14 per group). We found no statistically significant difference in gene expression, enzyme concentration, or enzymatic activity of cathepsin L or ADAMTS-1 in unexplained infertility or AMA-related infertility as compared to controls. We also found no statistically significant difference in expression or concentration with advancing age. Cathepsin L and ADAMTS-1 are not altered in women with unexplained infertility or AMA-related infertility undergoing IVF, and they do not decline with advancing age. It is possible that differences exist in natural cycles, contributing to infertility; however, our findings do not support a role for protease alterations as a common cause of infertility.

  1. Osteoblasts secrete miRNA-containing extracellular vesicles that enhance expansion of human umbilical cord blood cells

    NARCIS (Netherlands)

    J. Morhayim (Jess); J. van de Peppel (Jeroen); E. Braakman (Eric); Rombouts, E.W.J.C. (Elwin W. J. C.); M.N.D. Ter Borg (Mariëtte N. D.); A. Dudakovic (Amel); H. Chiba (Hideki); B.C.J. van der Eerden (Bram); M.H.G.P. Raaijmakers (Marc H.G.P.); A.J. van Wijnen (André); J.J. Cornelissen (Jan); J.P.T.M. van Leeuwen (Hans)

    2016-01-01

    textabstractOsteolineage cells represent one of the critical bone marrow niche components that support maintenance of hematopoietic stem and progenitor cells (HSPCs). Recent studies demonstrate that extracellular vesicles (EVs) regulate stem cell development via horizontal transfer of bioactive

  2. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  3. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the

  4. Sensitive, automatic method for the determination of diazepam and its five metabolites in human oral fluid by online solid-phase extraction and liquid chromatography with tandem mass spectrometry

    DEFF Research Database (Denmark)

    Jiang, Fengli; Rao, Yulan; Wang, Rong

    2016-01-01

    A novel and simple online solid-phase extraction liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of diazepam and its five metabolites including nordazepam, oxazepam, temazepam, oxazepam glucuronide, and temazepam glucuronide...... in human oral fluid. Human oral fluid was obtained using the Salivette(®) collection device, and 100 μL of oral fluid samples were loaded onto HySphere Resin GP cartridge for extraction. Analytes were separated on a Waters Xterra C18 column and quantified by liquid chromatography with tandem mass...

  5. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    Science.gov (United States)

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (pbacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  6. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps.

    Science.gov (United States)

    Loures, Flávio V; Röhm, Marc; Lee, Chrono K; Santos, Evelyn; Wang, Jennifer P; Specht, Charles A; Calich, Vera L G; Urban, Constantin F; Levitz, Stuart M

    2015-02-01

    Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.

  7. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps.

    Directory of Open Access Journals (Sweden)

    Flávio V Loures

    2015-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs. The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.

  8. Oligosaccharide substrate preferences of human extracellular sulfatase Sulf2 using liquid chromatography-mass spectrometry based glycomics approaches.

    Directory of Open Access Journals (Sweden)

    Yu Huang

    Full Text Available Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2.

  9. Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis.

    Science.gov (United States)

    Fujii, Wataru; Kawahito, Yutaka; Nagahara, Hidetake; Kukida, Yuji; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Oda, Ryo; Taniguchi, Daigo; Fujiwara, Hiroyoshi; Ejima, Akika; Kishida, Tsunao; Mazda, Osam; Ashihara, Eishi

    2015-11-01

    Synovial fluid pH is decreased in patients with rheumatoid arthritis (RA); however, the underlying mechanisms are unclear. We undertook this study to examine the mechanism by which synovial fluid pH is regulated and to explore the possibility of a therapeutic strategy by manipulating this mechanism. We determined the pH and lactate concentration in synovial fluid from 16 RA patients. Cultured synovial fibroblasts (SFs) from the inflamed joints of 9 RA patients (RASFs) were examined for the expression of ion transporters that regulate intracellular and extracellular pH. The ion transporter up-regulated in RASF lines was then suppressed in RASFs by small interfering RNA (siRNA), and the effect of transfection on viability and proliferation was investigated. Finally, we examined the therapeutic effect of electrotransfer of monocarboxylate transporter 4 (MCT4)-specific siRNA into the articular synovium of mice with collagen-induced arthritis (CIA). Synovial fluid pH correlated inversely with both the Disease Activity Score in 28 joints using the C-reactive protein level and the synovial fluid lactate levels. RASFs exhibited up-regulated transcription of MCT4 messenger RNA. MCT4 exported intracellular lactate into the extracellular space. RASFs had significantly higher MCT4 protein levels than did SFs from patients with osteoarthritis. Knockdown of MCT4 induced intrinsic apoptosis of RASFs, thereby inhibiting their proliferation. Moreover, electrotransfer of MCT4-specific siRNA into the articular synovium of mice with CIA significantly reduced the severity of arthritis. RA activity correlated with decreased synovial fluid pH. This may be due to increased MCT4 expression in RASFs. Silencing MCT4 induced apoptosis in RASFs and reduced the severity of CIA, suggesting that MCT4 is a potential therapeutic target for inflammatory arthritis. © 2015, American College of Rheumatology.

  10. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  11. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L

    1999-01-01

    , and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level...... in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....

  12. The development of a radioimmunoassay for reverse triiodothyronine sulfate in human serum and amniotic fluid

    International Nuclear Information System (INIS)

    Wu, Sing-Yung; Huang, Wen-Sheng; Chen, Wei-Lian; Polk, D.; Reviczky, A.; Williams, J. III; Chopra, I.J.; Fisher, D.A.

    1993-01-01

    Sulfated iodothyronines including T 4 -sulfate (T 4 S) and T 3 -sulfate (T 3 S) have been identified in human serum and amniotic fluid. Little is know, however, about the existence of sulfate conjugation of reverse T 3 (rT 3 S) in man. In this report, the authors employed a novel, sensitive, and specific rT 3 S RIA to address this question. The rabbit antiserum to rT 3 S was highly specific; T 4 , T 3 , rT 3 , and 3,3'-T 2 showed less than 0.002% cross-reaction with the antiserum. Only T 4 S and T 3 S cross-reacted significantly (0.3% and 0.01%, respectively); other analogs cross-reacted less than 0.0001%. The detection threshold of the RIA was 14 pmol/L (1.0 ng/dL). The mean serum rT 3 S concentration (pmol/L) was 40 in euthyroid subjects. Values were similar in hypothyroid patients (38) and pregnant women (52) but significantly (P 3 S increased significantly in hyperthyroid patients 1 day after administration of 1 g sodium ipodate orally. Reverse T 3 S was detected consistently in amniotic fluid at 14 to 22 weeks of gestation and showed a marked rise 1-3 weeks after intraamniotic administration of 500-1000 μg T 4 . The various data suggest that : (1) rT 3 S is a normal component of human serum and amniotic fluid; (2) it is derived from metabolism of T 4 or rT 3 ; (3) circulating rT 3 S increases in hyperthyroidism and in circumstances where type I 5'-monodeiodinating activity is low, e.g. nonthyroid illnesses, fetal life, and after administration of ipodate. 20 refs., 4 figs

  13. Computer simulation of preflight blood volume reduction as a countermeasure to fluid shifts in space flight

    Science.gov (United States)

    Simanonok, K. E.; Srinivasan, R.; Charles, J. B.

    1992-01-01

    Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.

  14. Human neuroglobin protein in cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Whalen Gail

    2005-02-01

    Full Text Available Abstract Background Neuroglobin is a hexacoordinated member of the globin family of proteins. It is predominantly localized to various brain regions and retina where it may play a role in protection against ischemia and nitric oxide-induced neural injury. Cerebrospinal fluid was collected from 12 chronic regional or systemic pain and 5 control subjects. Proteins were precipitated by addition of 50% 0.2 N acetic acid, 50% ethanol, 0.02% sodium bisulfite. The pellet was extensively digested with trypsin. Peptides were separated by capillary liquid chromatography using a gradient from 95% water to 95% acetonitrile in 0.2% formic acid, and eluted through a nanoelectrospray ionization interface into a quadrapole – time-of-flight dual mass spectrometer (QToF2, Waters, Milford, MA. Peptides were sequenced (PepSeq, MassLynx v3.5 and proteins identified using MASCOT ®. Results Six different neuroglobin peptides were identified in various combinations in 3 of 9 female pain subjects, but none in male pain, or female or male control subjects. Conclusion This is the first description of neuroglobin in cerebrospinal fluid. The mechanism(s leading to its release in chronic pain states remain to be defined.

  15. Synovial Fluid Filtration by Articular Cartilage with a Worn-out Surface Zone in the Human Ankle Joint during Walking- II. Numerical Results for Steady Pure Sliding

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Miroslav

    2000-01-01

    Roč. 45, č. 4 (2000), s. 375-396 ISSN 0001-7043 R&D Projects: GA ČR GA103/00/0008 Keywords : biphasic articular cartilage * biphasic synovial fluid * boundary lubrication * human ankle joint Subject RIV: BK - Fluid Dynamics

  16. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  17. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species

    Directory of Open Access Journals (Sweden)

    Armstrong Dianna

    2004-12-01

    Full Text Available Abstract Background The parenchyma of the brain does not contain lymphatics. Consequently, it has been assumed that arachnoid projections into the cranial venous system are responsible for cerebrospinal fluid (CSF absorption. However, recent quantitative and qualitative evidence in sheep suggest that nasal lymphatics have the major role in CSF transport. Nonetheless, the applicability of this concept to other species, especially to humans has never been clarified. The purpose of this study was to compare the CSF and nasal lymph associations in human and non-human primates with those observed in other mammalian species. Methods Studies were performed in sheep, pigs, rabbits, rats, mice, monkeys and humans. Immediately after sacrifice (or up to 7 hours after death in humans, yellow Microfil was injected into the CSF compartment. The heads were cut in a sagittal plane. Results In the seven species examined, Microfil was observed primarily in the subarachnoid space around the olfactory bulbs and cribriform plate. The contrast agent followed the olfactory nerves and entered extensive lymphatic networks in the submucosa associated with the olfactory and respiratory epithelium. This is the first direct evidence of the association between the CSF and nasal lymph compartments in humans. Conclusions The fact that the pattern of Microfil distribution was similar in all species tested, suggested that CSF absorption into nasal lymphatics is a characteristic feature of all mammals including humans. It is tempting to speculate that some disorders of the CSF system (hydrocephalus and idiopathic intracranial hypertension for example may relate either directly or indirectly to a lymphatic CSF absorption deficit.

  18. Escherichia coli biofilms have an organized and complex extracellular matrix structure.

    Science.gov (United States)

    Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S; Dodson, Karen W; Crowley, Jan R; Heuser, John; Chapman, Matthew R; Hadjifrangiskou, Maria; Henderson, Jeffrey P; Hultgren, Scott J

    2013-09-10

    Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.

  19. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities

    DEFF Research Database (Denmark)

    Pedersen, Pernille Barbre; Vilmann, Peter; Bar-Shalom, Daniel

    2013-01-01

    be considered important during development of gastric simulated media. Further, the activity of the HGL is active even under fasted gastric conditions and might contribute to the digestion and emulsification of lipid-based drug delivery systems in the entire gastrointestinal tract. HGL should therefore......PURPOSE: To characterize human gastric fluid with regard to rheological properties and gastric lipase activity. In addition, traditional physicochemical properties were determined. METHODS: Fasted HGA were collected from 19 healthy volunteers during a gastroscopic examination. Rheological...... be considered in gastric evaluation of lipid-based drug delivery systems....

  20. GABA-mediated synchronization in the human neocortex: elevations in extracellular potassium and presynaptic mechanisms.

    Science.gov (United States)

    Louvel, J; Papatheodoropoulos, C; Siniscalchi, A; Kurcewicz, I; Pumain, R; Devaux, B; Turak, B; Esposito, V; Villemeure, J G; Avoli, M

    2001-01-01

    Field potential and extracellular [K(+)] ([K(+)](o)) recordings were made in the human neocortex in an in vitro slice preparation to study the synchronous activity that occurs in the presence of 4-aminopyridine (50 microM) and ionotropic excitatory amino acid receptor antagonists. Under these experimental conditions, negative or negative-positive field potentials accompanied by rises in [K(+)](o) (up to 4.1 mM from a baseline of 3.25 mM) occurred spontaneously at intervals of 3-27 s. Both field potentials and [K(+)](o) elevations were largest at approximately 1000 microm from the pia. Similar events were induced by neocortical electrical stimuli. Application of medium containing low [Ca(2+)]/high [Mg(2+)] (n=3 slices), antagonism of the GABA(A) receptor (n=7) or mu-opioid receptor activation (n=4) abolished these events. Hence, they represented network, GABA-mediated potentials mainly reflecting the activation of type A receptors following GABA release from interneurons. The GABA(B) receptor agonist baclofen (10-100 microM, n=11) reduced and abolished the GABA-mediated potentials (ID(50)=18 microM). Baclofen effects were antagonized by the GABA(B) receptor antagonist CGP 35348 (0.1-1 mM, n=6; ID(50)=0.19 mM). CGP 38345 application to control medium increased the amplitude of the GABA-mediated potentials and the concomitant [K(+)](o) rises without modifying their rate of occurrence. The GABA-mediated potentials were not influenced by the broad-spectrum metabotropic glutamate agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (100 microM, n=10), but decreased in rate with the group I receptor agonist (S)-3,5-dihydroxyphenylglycine (10-100 microM, n=9). Our data indicate that human neocortical networks challenged with 4-aminopyridine generate glutamatergic-independent, GABA-mediated potentials that are modulated by mu-opioid and GABA(B) receptors presumably located on interneuron terminals. These events are associated with [K(+)](o) elevations that may

  1. Establishing the proteome of normal human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Steven E Schutzer

    2010-06-01

    Full Text Available Knowledge of the entire protein content, the proteome, of normal human cerebrospinal fluid (CSF would enable insights into neurologic and psychiatric disorders. Until now technologic hurdles and access to true normal samples hindered attaining this goal.We applied immunoaffinity separation and high sensitivity and resolution liquid chromatography-mass spectrometry to examine CSF from healthy normal individuals. 2630 proteins in CSF from normal subjects were identified, of which 56% were CSF-specific, not found in the much larger set of 3654 proteins we have identified in plasma. We also examined CSF from groups of subjects previously examined by others as surrogates for normals where neurologic symptoms warranted a lumbar puncture but where clinical laboratory were reported as normal. We found statistically significant differences between their CSF proteins and our non-neurological normals. We also examined CSF from 10 volunteer subjects who had lumbar punctures at least 4 weeks apart and found that there was little variability in CSF proteins in an individual as compared to subject to subject.Our results represent the most comprehensive characterization of true normal CSF to date. This normal CSF proteome establishes a comparative standard and basis for investigations into a variety of diseases with neurological and psychiatric features.

  2. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Directory of Open Access Journals (Sweden)

    Tue Bjerg Bennike

    2015-12-01

    In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935.

  3. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes

    NARCIS (Netherlands)

    Llacua Carrasco, Luis; de Haan, Bart J; Smink, Sandra A; de Vos, Paul

    In the pancreas, extracellular matrix (ECM) components play an import role in providing mechanical and physiological support, and also contribute to the function of islets. These ECM-connections are damaged during islet-isolation from the pancreas and are not fully recovered after encapsulation and

  4. NMR studies of transmembrane electron transport in human erythrocytes

    International Nuclear Information System (INIS)

    Kennett, E.C.; Bubb, W.A.; Kuchel, P.W.

    2002-01-01

    Full text: Electron transport systems exist in the plasma membranes of all cells. These systems appear to play a role in cell growth and proliferation, intracellular signalling, hormone responses, apoptotic events, cell defence and perhaps most importantly they enable the cell to respond to changes in the redox state of both the intra- and extracellular environments. Previously, 13 C NMR has been used to study transmembrane electron transport in human erythrocytes, specifically the reduction of extracellular 13 C-ferricyanide. NMR is a particularly useful tool for studying such systems as changes in the metabolic state of the cell can be observed concomitantly with extracellular reductase activity. We investigated the oxidation of extracellular NADH by human erythrocytes using 1 H and 31 P NMR spectroscopy. Recent results for glucose-starved human erythrocytes indicate that, under these conditions, extracellular NADH can be oxidised at the plasma membrane with the electron transfer across the membrane resulting in reduction of intracellular NAD + . The activity is inhibited by known trans-plasma membrane electron transport inhibitors (capsaicin and atebrin) and is unaffected by inhibition of the erythrocyte Band 3 anion transporter. These results suggest that electron import from extracellular NADH allows the cell to re-establish a reducing environment after the normal redox balance is disturbed

  5. Neutrophil Extracellular Traps in the Amniotic Cavity of Women with Intra-Amniotic Infection: A New Mechanism of Host Defense.

    Science.gov (United States)

    Gomez-Lopez, Nardhy; Romero, Roberto; Xu, Yi; Miller, Derek; Unkel, Ronald; Shaman, Majid; Jacques, Suzanne M; Panaitescu, Bogdan; Garcia-Flores, Valeria; Hassan, Sonia S

    2017-08-01

    Neutrophil extracellular traps (NETs) control microbial infections through their antimicrobial activities attributed to DNA, histones, granules, and cytoplasmic proteins (eg, elastase). Intra-amniotic infection is characterized by the influx of neutrophils into the amniotic cavity; therefore, the aim of this study was to determine whether amniotic fluid neutrophils form NETs in this inflammatory process. Amniotic fluid samples from women with intra-amniotic infection (n = 15) were stained for bacteria detection using fluorescent dyes. Amniotic fluid neutrophils were purified by filtration. As controls, neutrophils from maternal blood samples (n = 3) were isolated by density gradients. Isolated neutrophils were plated onto glass cover slips for culture with and without 100 nM of phorbol-12-myristate-13-acetate (PMA). NET formation was assessed by 4',6-diamidino-2-phenylindole (DAPI) staining and scanning electron microscopy. Different stages of NET formation were visualized using antibodies against elastase and histone H3, in combination with DAPI staining, by confocal microscopy. Finally, maternal or neonatal neutrophils were added to amniotic fluid samples from women without intra-amniotic infection (n = 4), and NET formation was evaluated by DAPI staining. (1) NETs were present in the amniotic fluid of women with intra-amniotic infection; (2) all of the amniotic fluid samples had detectable live and dead bacteria associated with the presence of NETs; (3) in contrast to neutrophils from the maternal circulation, amniotic fluid neutrophils did not require PMA stimulation to form NETs; (4) different stages of NET formation were observed by co-localizing elastase, histone H3, and DNA in amniotic fluid neutrophils; and (5) neither maternal nor neonatal neutrophils form NETs in the amniotic fluid of women without intra-amniotic infection. NETs are detectable in the amniotic fluid of women with intra-amniotic infection.

  6. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Stephanie R Shepheard

    Full Text Available Objective biomarkers for amyotrophic lateral sclerosis would facilitate the discovery of new treatments. The common neurotrophin receptor p75 is up regulated and the extracellular domain cleaved from injured neurons and peripheral glia in amyotrophic lateral sclerosis. We have tested the hypothesis that urinary levels of extracellular neurotrophin receptor p75 serve as a biomarker for both human motor amyotrophic lateral sclerosis and the SOD1(G93A mouse model of the disease. The extracellular domain of neurotrophin receptor p75 was identified in the urine of amyotrophic lateral sclerosis patients by an immuno-precipitation/western blot procedure and confirmed by mass spectrometry. An ELISA was established to measure urinary extracellular neurotrophin receptor p75. The mean value for urinary extracellular neurotrophin receptor p75 from 28 amyotrophic lateral sclerosis patients measured by ELISA was 7.9±0.5 ng/mg creatinine and this was significantly higher (p<0.001 than 12 controls (2.6±0.2 ng/mg creatinine and 19 patients with other neurological disease (Parkinson's disease and Multiple Sclerosis; 4.1±0.2 ng/mg creatinine. Pilot data of disease progression rates in 14 MND patients indicates that p75NTR(ECD levels were significantly higher (p = 0.0041 in 7 rapidly progressing patients as compared to 7 with slowly progressing disease. Extracellular neurotrophin receptor p75 was also readily detected in SOD1(G93A mice by immuno-precipitation/western blot before the onset of clinical symptoms. These findings indicate a significant relation between urinary extracellular neurotrophin receptor p75 levels and disease progression and suggests that it may be a useful marker of disease activity and progression in amyotrophic lateral sclerosis.

  7. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury.

    Science.gov (United States)

    Bosmann, Markus; Grailer, Jamison J; Ruemmler, Robert; Russkamp, Norman F; Zetoune, Firas S; Sarma, J Vidya; Standiford, Theodore J; Ward, Peter A

    2013-12-01

    We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.

  8. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    Science.gov (United States)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  9. Ultrastructure of collagen fibers and distribution of extracellular matrix in the temporomandibular disk of the human fetus and adult.

    Science.gov (United States)

    Takahashi, H; Sato, I

    2001-12-01

    We quantitatively examined the distribution of these differences in extracellular matrices (collagen types I, III, and fibronectin) and elastic fibers under confocal laser scanning microscopy and electron scanning microscopy in terms of their contribution to the mechanics of the TMJ during development and in adults. Elastic fibers were found in the anterior and posterior bands in adults aged 40 years, and a few elastic fibers in the anterior band of the disk in adults aged 80 to 90 years. The extracellular matrix contents of the TMJ disk are shown in various detected levels in the anterior, intermediate, posterior bands of TMJ disk. During development, collagen fibers are arranged in a complex fashion from 28 weeks' gestation. These ultrastructures of the embryonic TMJ are resembled to that of adults aged the 40s, however the difference in extracellular matrix distribution found in embryonic stages and adults. They might reflect the differences in function between mastication and sucking or the changes in shape and form as results of functional disorders of the TMJ.

  10. Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid.

    NARCIS (Netherlands)

    Ham, M. van der; Koning, T.J. de; Lefeber, D.J.; Fleer, A.; Prinsen, B.H.; Sain-van der Velden, M.G. de

    2010-01-01

    BACKGROUND: Analysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was

  11. Extracellular protease mRNAs are predominantly expressed in the stromal areas of microdissected mouse breast carcinomas

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Pennington, Caroline J; Almholt, Kasper

    2005-01-01

    Solid tumors synthesize a number of extracellular matrix-degrading proteases that are important for tumor progression. Based on qualitative in situ hybridization studies in human cancer tissue, a range of components involved in proteolysis appear to be expressed by stromal cells rather than cancer...

  12. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.

    Directory of Open Access Journals (Sweden)

    Michael Welter

    Full Text Available Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law and sources (vessels and sinks (lymphatics for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss

  13. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.

    Science.gov (United States)

    Welter, Michael; Rieger, Heiko

    2013-01-01

    Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation, permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we consider-with the help of a theoretical model-the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs. convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy's law) and sources (vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous, compartmentalized vasculature. Finally we discuss various

  14. Intraluminal proteome and peptidome of human urinary extracellular vesicles.

    Science.gov (United States)

    Liu, Xinyu; Chinello, Clizia; Musante, Luca; Cazzaniga, Marta; Tataruch, Dorota; Calzaferri, Giulio; James Smith, Andrew; De Sio, Gabriele; Magni, Fulvio; Zou, Hequn; Holthofer, Harry

    2015-06-01

    Urinary extracellular vesicles (UEVs) are a novel source for disease biomarker discovery. However, Tamm-Horsfall protein (THP) is still a challenge for proteomic analysis since it can inhibit detection of low-abundance proteins. Here, we introduce a new approach that does not involve an ultracentrifugation step to enrich vesicles and that reduces the amount of THP to manageable levels. UEVs were dialyzed and ultrafiltered after reduction and alkylation. The retained fraction was digested with trypsin to reduce the remaining THP and incubated with deoxycholate (DOC). The internal peptidome and internal proteome were analyzed by LC-ESI-MS. A total of 942 different proteins and 3115 unique endogenous peptide fragments deriving from 973 different protein isoforms were identified. Around 82% of the key endosomal sorting complex required for transport components of UEVs generation could be detected from the intraluminal content. Our UEVs preparation protocol provides a simplified way to investigate the intraluminal proteome and peptidome, in particular the subpopulation of UEVs of the trypsin-resistant class of exosomes (positive for tumor susceptibility gene101) and eliminates the majority of interfering proteins such as THP. This method allows the possibility to study endoproteome and endopeptidome of UEVs, thus greatly facilitating biomarker discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry

    Science.gov (United States)

    Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.

    2010-01-01

    Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171

  16. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    Science.gov (United States)

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  17. Indian Hedgehog in Synovial Fluid Is a Novel Marker for Early Cartilage Lesions in Human Knee Joint

    Science.gov (United States)

    Zhang, Congming; Wei, Xiaochun; Chen, Chongwei; Cao, Kun; Li, Yongping; Jiao, Qiang; Ding, Juan; Zhou, Jingming; Fleming, Braden C.; Chen, Qian; Shang, Xianwen; Wei, Lei

    2014-01-01

    To determine whether there is a correlation between the concentration of Indian hedgehog (Ihh) in synovial fluid (SF) and the severity of cartilage damage in the human knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF samples were analyzed with immunohistochemistry (IHC), western blot, and enzyme-linked immunosorbent assay (ELISA). Furthermore, we detected and compared Ihh protein levels in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA) group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and SF samples was significantly increased in early-stage OA samples when compared to normal samples (r = 0.556; p Ihh protein was also an early event in the surgery-induced OA models. Increased Ihh is associated with the severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid correlates with early cartilage lesions. PMID:24786088

  18. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?

    Science.gov (United States)

    Abbott, N Joan; Pizzo, Michelle E; Preston, Jane E; Janigro, Damir; Thorne, Robert G

    2018-03-01

    Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K + , Ca 2+ , and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with

  19. Detection of cancerous kidney tissue areas by means of infrared spectroscopy of intercellular fluid

    Science.gov (United States)

    Urboniene, V.; Jankevicius, F.; Zelvys, A.; Steiner, G.; Sablinskas, V.

    2014-03-01

    In this work the infrared absorption spectra of intercellular fluid of normal and tumor kidney tissue were recorded and analyzed. The samples were prepared by stamping freshly resected tissue onto a CaF2 substrate. FT-IR spectra obtained from intracellular fluid of tumor tissue exhibit stronger absorption bands in the spectral region from 1000-1200 cm-1 and around 1750 cm-1 than those obtained from normal tissue. It is likely the spectra of extracellular matrix of kidney tumor tissue with large increases in the intensities of these bands represent a higher concentration of fatty acids and glycerol. Amide I and amide II bands are stronger in spectra of normal tissue indicating a higher level of proteins. The results demonstrate that FT-IR spectroscopy of intercellular fluids is a novel approach for a quick diagnosis during surgical resection, which can improve the therapy of kidney tumors.

  20. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  1. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells.

    Science.gov (United States)

    Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J

    2014-04-15

    ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.

  2. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  4. The effect of extracellular alkalinization on lactate metabolism of breast cancer stem cells: Overview of LDH-A, LDH-B, MCT1 and MCT4 gene expression

    Science.gov (United States)

    Neolaka, G. M. G.; Yustisia, I.; Sadikin, M.; Wanandi, S. I.

    2017-08-01

    Changes in the metabolic status of cancer cells are presumed to be correlated with the adjustment of these cells to extracellular changes. Cell glycolysis increases the production of intracellular lactate catalyzed by the lactate dehydrogenases, both LDH-A and LDH-B. An increase in intracellular lactate can affect extracellular pH balance through monocarboxylate transporters, particularly MCT1 and MCT4. This study aimed to analyze the effects of extracellular alkalinization on the lactate metabolism of human breast cancer stem cells (BCSCs). In this study, human primary BCSCs (CD24-/CD44+ cells) were treated with 100 mM sodium bicarbonate for 0.5, 24, and 48 h in DMEM F12/HEPES. After incubation, extracellular pH was measured and cells were harvested to extract the total RNA and protein. The expression of LDH-A, LDH-B, MCT1, and MCT4 mRNA genes were analyzed using qRT-PCR method. Our study shows that administration of sodium bicarbonate in the BCSC culture medium could increase extracellular pH. To balance the increase of extracellular pH, BCSCs regulated the expression of LDH-A, LDH-B, MCT1, and MCT4 genes. As the extracellular pH increases, the expression of LDH-A that converts pyruvate to lactate increased along with the increase of MCT 4 and MCT 1 expression, which act as lactate transporters. As the incubation time increases, the pH decreases, leading to the suppression of LDH-A and increase of LDH-B expression that converts lactate into pyruvate. Therefore, we suggest that the extracellular alkalinization by sodium bicarbonate in BCSCs affected the genes that regulate lactate metabolism.

  5. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, P; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicular....../l, respectively. VIP at a concentration of 10 nmol/l caused a significant increase in [3H]thymidine incorporation, and at 1000 nmol/l a significant increase in oestradiol secretion was observed. VIP had no effect on progesterone secretion. PHM at the concentrations tested did not influence any of the activities...

  6. The mannosylated extracellular domain of Her2/neu produced in P. pastoris induces protective antitumor immunity

    International Nuclear Information System (INIS)

    Dimitriadis, Alexios; Gontinou, Chrysanthi; Baxevanis, Constantin N; Mamalaki, Avgi

    2009-01-01

    Her2/neu is overexpressed in various human cancers of epithelial origin and is associated with increased metastatic potential and poor prognosis. Several attempts have been made using the extracellular domain of Her2/neu (ECD/Her2) as a prophylactic vaccine in mice with no success in tumor prevention. The extracellular domain of Her2/neu (ECD/Her2) was expressed in yeast P. pastoris, in a soluble highly mannosylated form. The immune response of the immunization with this recombinant ECD/Her2 was analyzed using immunoprecipitation and western blot analysis, proliferation and cytotoxicity assays as well as specific tumor growth assays. Mannosylated ECD/Her2 elicited a humoral response with HER2/neu specific antibodies in vaccinated mice, which were able to reduce the proliferation rate of cancer cells in vitro. Moreover, it elicited a cellular response with Her2/neu-specific CTL capable of lysing tumor cells, in vitro. When immunized Balb/c and HHD mice were challenged with Her2/neu-overexpressing cells, tumor growth was inhibited. Here we report on the efficacy of the extracellular domain of human Her2/neu produced in yeast P. pastoris, which confers mannosylation of the protein, to act as a potent anti-tumor vaccine against Her2/neu overexpressing tumors. Specific cellular and humoral responses were observed as well as efficacy

  7. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  8. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc

    Directory of Open Access Journals (Sweden)

    MP Grant

    2016-07-01

    Full Text Available The cartilaginous endplates (CEPs are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs. In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+ impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR; however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.

  9. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  10. Effect of apoptosis and response of extracellular matrix proteins after chemotherapy application on human breast cancer cell spheroids.

    Science.gov (United States)

    Oktem, G; Vatansever, S; Ayla, S; Uysal, A; Aktas, S; Karabulut, B; Bilir, A

    2006-02-01

    Multicellular tumor spheroid (MTS) represents a three-dimensional structural form of tumors in laboratory conditions, and it has the characteristics of avascular micrometastases or intervascular spaces of big tumors. Recent studies indicate that extracellular matrix (ECM) proteins play a critical role in tumor metastasis, therefore normal and cancer cells require an ECM for survival, proliferation and differentiation. Doxorubicin and Docetaxel are widely used in the therapy of breast cancer, as well as in in vivo and in vitro studies. In this study, we examined the effect of apoptosis and proliferation of cells on the human breast cancer cell line, MCF-7, by using p53, bcl-2 and Ki67 gene expression, and the tendency to metastasis with extracellular matrix proteins, laminin and type IV collagen after chemotherapy in the spheroid model. The apoptotic cell death in situ was detected by TUNEL method. TUNEL-positive cells and positive immunoreactivities of laminin, type IV collagen, p53 and, bcl-2 were detected in the control group. There was no laminin and type IV collagen immunoreactivities in spheroids of drug groups. While TUNEL-positive cells and p53 immunoreactivity were detected in Docetaxel, Doxorubicin and Docetaxel/Doxorubicin groups, p53 immunoreactivity was not observed in the Docetaxel group. There was no bcl-2 immunoreactivity in either drug group. In addition, we did not detect Ki67 immunoreactivity in both control and drug treatment groups. However, the absence of Ki67 protein in MCF-7 breast multicellular tumor spheroids is possibly related to the cells in G0 or S phase. These chemotherapeutic agents may affect the presence of ECM proteins in this in vitro model of micrometastasis of spheroids. These findings suggest that the possible mechanism of cell death in Doxorubicin and Docetaxel/Doxorubicin treatment groups is related to apoptosis through the p53 pathway. However, we considered the possibility that there is another control mechanism for the

  11. Prediction of brain target site concentrations on the basis of CSF PK : impact of mechanisms of blood-to-brain transport and within brain distribution

    NARCIS (Netherlands)

    Westerhout, J.

    2014-01-01

    In the development of drugs for the treatment of central nervous system (CNS) disorders, the prediction of human CNS drug action is a big challenge. Direct measurement of brain extracellular fluid (brainECF) concentrations is highly restricted in human. Therefore, unbound drug concentrations in

  12. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S

    2016-12-01

    A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.

  14. Fluid mechanics of human fetal right ventricles from image-based computational fluid dynamics using 4D clinical ultrasound scans.

    Science.gov (United States)

    Wiputra, Hadi; Lai, Chang Quan; Lim, Guat Ling; Heng, Joel Jia Wei; Guo, Lan; Soomar, Sanah Merchant; Leo, Hwa Liang; Biwas, Arijit; Mattar, Citra Nurfarah Zaini; Yap, Choon Hwai

    2016-12-01

    There are 0.6-1.9% of US children who were born with congenital heart malformations. Clinical and animal studies suggest that abnormal blood flow forces might play a role in causing these malformation, highlighting the importance of understanding the fetal cardiovascular fluid mechanics. We performed computational fluid dynamics simulations of the right ventricles, based on four-dimensional ultrasound scans of three 20-wk-old normal human fetuses, to characterize their flow and energy dynamics. Peak intraventricular pressure gradients were found to be 0.2-0.9 mmHg during systole, and 0.1-0.2 mmHg during diastole. Diastolic wall shear stresses were found to be around 1 Pa, which could elevate to 2-4 Pa during systole in the outflow tract. Fetal right ventricles have complex flow patterns featuring two interacting diastolic vortex rings, formed during diastolic E wave and A wave. These rings persisted through the end of systole and elevated wall shear stresses in their proximity. They were observed to conserve ∼25.0% of peak diastolic kinetic energy to be carried over into the subsequent systole. However, this carried-over kinetic energy did not significantly alter the work done by the heart for ejection. Thus, while diastolic vortexes played a significant role in determining spatial patterns and magnitudes of diastolic wall shear stresses, they did not have significant influence on systolic ejection. Our results can serve as a baseline for future comparison with diseased hearts. Copyright © 2016 the American Physiological Society.

  15. Sphingolipids in human synovial fluid--a lipidomic study.

    Directory of Open Access Journals (Sweden)

    Marta Krystyna Kosinska

    Full Text Available Articular synovial fluid (SF is a complex mixture of components that regulate nutrition, communication, shock absorption, and lubrication. Alterations in its composition can be pathogenic. This lipidomic investigation aims to quantify the composition of sphingolipids (sphingomyelins, ceramides, and hexosyl- and dihexosylceramides and minor glycerophospholipid species, including (lysophosphatidic acid, (lysophosphatidylglycerol, and bis(monoacylglycerophosphate species, in the SF of knee joints from unaffected controls and from patients with early (eOA and late (lOA stages of osteoarthritis (OA, and rheumatoid arthritis (RA. SF without cells and cellular debris from 9 postmortem donors (control, 18 RA, 17 eOA, and 13 lOA patients were extracted to measure lipid species using electrospray ionization tandem mass spectrometry--directly or coupled with hydrophilic interaction liquid chromatography. We provide a novel, detailed overview of sphingolipid and minor glycerophospholipid species in human SF. A total of 41, 48, and 50 lipid species were significantly increased in eOA, lOA, and RA SF, respectively when compared with normal SF. The level of 21 lipid species differed in eOA SF versus SF from lOA, an observation that can be used to develop biomarkers. Sphingolipids can alter synovial inflammation and the repair responses of damaged joints. Thus, our lipidomic study provides the foundation for studying the biosynthesis and function of lipid species in health and most prevalent joint diseases.

  16. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.

    Science.gov (United States)

    Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni

    2017-07-27

    Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme

  17. Inhibition of Brain Swelling after Ischemia-Reperfusion by β-Adrenergic Antagonists: Correlation with Increased K+ and Decreased Ca2+ Concentrations in Extracellular Fluid

    Directory of Open Access Journals (Sweden)

    Dan Song

    2014-01-01

    Full Text Available Infarct size and brain edema following ischemia/reperfusion are reduced by inhibitors of the Na+, K+, 2Cl−, and water cotransporter NKCC1 and by β1-adrenoceptor antagonists. NKCC1 is a secondary active transporter, mainly localized in astrocytes, driven by transmembrane Na+/K+ gradients generated by the Na+,K+-ATPase. The astrocytic Na+,K+-ATPase is stimulated by small increases in extracellular K+ concentration and by the β-adrenergic agonist isoproterenol. Larger K+ increases, as occurring during ischemia, also stimulate NKCC1, creating cell swelling. This study showed no edema after 3 hr medial cerebral artery occlusion but pronounced edema after 8 hr reperfusion. The edema was abolished by inhibitors of specifically β1-adrenergic pathways, indicating failure of K+-mediated, but not β1-adrenoceptor-mediated, stimulation of Na+,K+-ATPase/NKCC1 transport during reoxygenation. Ninety percent reduction of extracellular Ca2+ concentration occurs in ischemia. Ca2+ omission abolished K+ uptake in normoxic cultures of astrocytes after addition of 5 mM KCl. A large decrease in ouabain potency on K+ uptake in cultured astrocytes was also demonstrated in Ca2+-depleted media, and endogenous ouabains are needed for astrocytic K+ uptake. Thus, among the ionic changes induced by ischemia, the decrease in extracellular Ca2+ causes failure of the high-K+-stimulated Na+,K+-ATPase/NKCC1 ion/water uptake, making β1-adrenergic activation the only stimulus and its inhibition effective against edema.

  18. The development of a radioimmunoassay for reverse triiodothyronine sulfate in human serum and amniotic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sing-Yung (Veterans Administration Medical Center, Long Beach, CA (United States)); Huang, Wen-Sheng; Chen, Wei-Lian (Tri-Service General Hospital, Taipei (Taiwan, Province of China)); Polk, D.; Reviczky, A.; Williams, J. III; Chopra, I.J.; Fisher, D.A. (Univ. of California, Los Angeles (United States))

    1993-06-01

    Sulfated iodothyronines including T[sub 4]-sulfate (T[sub 4]S) and T[sub 3]-sulfate (T[sub 3]S) have been identified in human serum and amniotic fluid. Little is know, however, about the existence of sulfate conjugation of reverse T[sub 3] (rT[sub 3]S) in man. In this report, the authors employed a novel, sensitive, and specific rT[sub 3]S RIA to address this question. The rabbit antiserum to rT[sub 3]S was highly specific; T[sub 4], T[sub 3], rT[sub 3], and 3,3'-T[sub 2] showed less than 0.002% cross-reaction with the antiserum. Only T[sub 4]S and T[sub 3]S cross-reacted significantly (0.3% and 0.01%, respectively); other analogs cross-reacted less than 0.0001%. The detection threshold of the RIA was 14 pmol/L (1.0 ng/dL). The mean serum rT[sub 3]S concentration (pmol/L) was 40 in euthyroid subjects. Values were similar in hypothyroid patients (38) and pregnant women (52) but significantly (P < 0.01) elevated to 176 in hyperthyroid patient, 74 in patients with nonthyroid illnesses, and 684 in cord sera of newborns. Serum rT[sub 3]S increased significantly in hyperthyroid patients 1 day after administration of 1 g sodium ipodate orally. Reverse T[sub 3]S was detected consistently in amniotic fluid at 14 to 22 weeks of gestation and showed a marked rise 1-3 weeks after intraamniotic administration of 500-1000 [mu]g T[sub 4]. The various data suggest that : (1) rT[sub 3]S is a normal component of human serum and amniotic fluid; (2) it is derived from metabolism of T[sub 4] or rT[sub 3]; (3) circulating rT[sub 3]S increases in hyperthyroidism and in circumstances where type I 5'-monodeiodinating activity is low, e.g. nonthyroid illnesses, fetal life, and after administration of ipodate. 20 refs., 4 figs.

  19. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  20. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues

    Czech Academy of Sciences Publication Activity Database

    Kočí, Zuzana; Výborný, Karel; Dubišová, Jana; Vacková, Irena; Jäger, Aleš; Lunov, Oleg; Jiráková, Klára; Kubinová, Šárka

    2017-01-01

    Roč. 23, č. 6 (2017), s. 333-345 ISSN 1937-3384 R&D Projects: GA ČR(CZ) GA15-01396S; GA MŠk(CZ) LO1309; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EF15_003/0000419 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378041 ; RVO:68378271 Keywords : extracellular matrix * hydrogel * umbilical cord Subject RIV: FH - Neurology; EB - Genetics ; Molecular Biology (FZU-D) OBOR OECD: Neurosciences (including psychophysiology; Biophysics (FZU-D)

  1. Changes in silver nanoparticles exposed to human synthetic stomach fluid: Effects of particle size and surface chemistry

    International Nuclear Information System (INIS)

    Mwilu, Samuel K.; El Badawy, Amro M.; Bradham, Karen; Nelson, Clay; Thomas, David; Scheckel, Kirk G.; Tolaymat, Thabet; Ma, Longzhou; Rogers, Kim R.

    2013-01-01

    The significant rise in consumer products and applications utilizing the antibacterial properties of silver nanoparticles (AgNPs) has increased the possibility of human exposure. The mobility and bioavailability of AgNPs through the ingestion pathway will depend, in part, on properties such as particle size and the surface chemistries that will influence their physical and chemical reactivities during transit through the gastrointestinal tract. This study investigates the interactions between synthetic stomach fluid and AgNPs of different sizes and with different capping agents. Changes in morphology, size and chemical composition were determined during a 30 min exposure to synthetic human stomach fluid (SSF) using Absorbance Spectroscopy, High Resolution Transmission Electron and Scanning Electron Microscopy (TEM/SEM), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA). AgNPs exposed to SSF were found to aggregate significantly and also released ionic silver which physically associated with the particle aggregates as silver chloride. Generally, the smaller sized AgNPs (< 10 nm) showed higher rates of aggregation and physical transformation than larger particles (75 nm). Polyvinylpyrrolidone (pvp)-stabilized AgNPs prepared in house behaved differently in SSF than particles obtained from a commercial source despite having similar surface coating and size distribution characteristics. - Highlights: ► Interactions between synthetic stomach fluid (SSF) and silver nanoparticles (AgNPs) are described. ► AgNPs exposed to SSF aggregate and silver chloride are associated with the particle aggregates. ► Smaller AgNPs (< 10 nm) showed higher rates of aggregation and transformation than larger particles (75 nm). ► Polyvinylpyrrolidone-stabilized AgNPs obtained from different sources aggregated at different rates when exposed to SSF

  2. Bioprocess development for extracellular production of recombinant human interleukin-3 (hIL-3) in Pichia pastoris.

    Science.gov (United States)

    Dagar, Vikas Kumar; Adivitiya; Devi, Nirmala; Khasa, Yogender Pal

    2016-10-01

    Human interleukin-3 (hIL-3) is a therapeutically important cytokine involved in the maturation and differentiation of various cells of the immune system. The codon-optimized hIL-3 gene was cloned in fusion with the N-terminus α-mating factor signal peptide of Saccharomyces cerevisiae under an inducible alcohol oxidase 1 (AOX1) and constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. A Zeocin concentration up to 2000 mg/L was used to select hyper-producers. The shake flask cultivation studies in the Pichia pastoris GS115 host resulted a maximum recombinant hIL-3 expression level of 145 mg/L in the extracellular medium under the control of AOX1 promoter. The batch fermentation strategy allowed us to attain a fairly pure glycosylated hIL-3 protein in the culture supernatant at a final concentration of 475 mg/L with a high volumetric productivity of 4.39 mg/L/h. The volumetric product concentration achieved at bioreactor level was 3.28 folds greater than the shake flask results. The 6x His-tagged protein was purified using Ni-NTA affinity chromatography and confirmed further by western blot analysis using anti-6x His tag antibody. The glycosylation of recombinant hIL-3 protein was confirmed in a PNGase F deglycosylation reaction where it showed a molecular weight band pattern similar to E. coli produced non-glycosylated hIL-3 protein. The structural properties of recombinant hIL-3 protein were confirmed by CD and fluorescence spectroscopy where protein showed 40 % α-helix, 12 % β-sheets with an emission maxima at 343 nm. MALDI-TOF-TOF analysis was used to establish the protein identity. The biological activity of purified protein was confirmed by the human erythroleukemia TF-1 cell proliferation assay.

  3. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters.

    Directory of Open Access Journals (Sweden)

    Diana Ribeiro

    Full Text Available It has been suggested that extracellular vesicles (EVs can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.

  4. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  5. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  6. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    Science.gov (United States)

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The 1H NMR profile of healthy dog cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    Full Text Available The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using (1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%. The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the (1H NMR analysis of the dog's cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies.

  8. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors.

    Science.gov (United States)

    Medrano, Micaela; Pérez, Pablo Fernando; Abraham, Analía Graciela

    2008-02-29

    Kefiran, the polysaccharide produced by microorganisms present in kefir grains, is a water-soluble branched glucogalactan containing equal amounts of D-glucose and D-galactose. In this study, the effect of kefiran on the biological activity of Bacillus cereus strain B10502 extracellular factors was assessed by using cultured human enterocytes (Caco-2 cells) and human erythrocytes. In the presence of kefiran concentrations ranging from 300 to 1000 mg/L, the ability of B. cereus B10502 spent culture supernatants to detach and damage cultured human enterocytes was significantly abrogated. In addition, mitochondrial dehydrogenase activity was higher when kefiran was present during the cell toxicity assays. Protection was also demonstrated in hemolysis and apoptosis/necrosis assays. Scanning electron microscopy showed the protective effect of kefiran against structural cell damages produced by factors synthesized by B. cereus strain B10502. Protective effect of kefiran depended on strain of B. cereus. Our findings demonstrate the ability of kefiran to antagonize key events of B. cereus B10502 virulence. This property, although strain-specific, gives new perspectives for the role of bacterial exopolysaccharides in functional foods.

  9. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles

    Science.gov (United States)

    Sharma, S.; LeClaire, M.; Gimzewski, J. K.

    2018-04-01

    Over the last 30 years, atomic force microscopy (AFM) has made several significant contributions to the field of biology and medicine. In this review, we draw our attention to the recent applications and promise of AFM as a high-resolution imaging and force sensing technology for probing subcellular vesicles: exosomes and other extracellular vesicles. Exosomes are naturally occurring nanoparticles found in several body fluids such as blood, saliva, cerebrospinal fluid, amniotic fluid and urine. Exosomes mediate cell-cell communication, transport proteins and genetic content between distant cells, and are now known to play important roles in progression of diseases such as cancers, neurodegenerative disorders and infectious diseases. Because exosomes are smaller than 100 nm (about 30-120 nm), the structural and molecular characterization of these vesicles at the individual level has been challenging. AFM has revealed a new degree of complexity in these nanosized vesicles and generated growing interest as a nanoscale tool for characterizing the abundance, morphology, biomechanics, and biomolecular make-up of exosomes. With the recent interest in exosomes for diagnostic and therapeutic applications, AFM-based characterization promises to contribute towards improved understanding of these particles at the single vesicle and sub-vesicular levels. When coupled with complementary methods like optical super resolution STED and Raman, AFM could further unlock the potential of exosomes as disease biomarkers and as therapeutic agents.

  10. Analysis of new psychoactive substances in human urine by ultra-high performance supercritical fluid and liquid chromatography: Validation and comparison.

    Science.gov (United States)

    Borovcová, Lucie; Pauk, Volodymyr; Lemr, Karel

    2018-05-01

    New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  12. Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study.

    Science.gov (United States)

    Surowiec, Izabella; Karimpour, Masoumeh; Gouveia-Figueira, Sandra; Wu, Junfang; Unosson, Jon; Bosson, Jenny A; Blomberg, Anders; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Trygg, Johan; Nording, Malin L

    2016-07-01

    Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas

  13. Human cerebrospinal fluid monoclonal N-methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis.

    Science.gov (United States)

    Kreye, Jakob; Wenke, Nina K; Chayka, Mariya; Leubner, Jonas; Murugan, Rajagopal; Maier, Nikolaus; Jurek, Betty; Ly, Lam-Thanh; Brandl, Doreen; Rost, Benjamin R; Stumpf, Alexander; Schulz, Paulina; Radbruch, Helena; Hauser, Anja E; Pache, Florence; Meisel, Andreas; Harms, Lutz; Paul, Friedemann; Dirnagl, Ulrich; Garner, Craig; Schmitz, Dietmar; Wardemann, Hedda; Prüss, Harald

    2016-10-01

    SEE ZEKERIDOU AND LENNON DOI101093/AWW213 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesias, and seizures. Little is known about the cerebrospinal fluid autoantibody repertoire. Antibodies against the NR1 subunit of the NMDAR are thought to be pathogenic; however, direct proof is lacking as previous experiments could not distinguish the contribution of further anti-neuronal antibodies. Using single cell cloning of full-length immunoglobulin heavy and light chain genes, we generated a panel of recombinant monoclonal NR1 antibodies from cerebrospinal fluid memory B cells and antibody secreting cells of NMDAR encephalitis patients. Cells typically carried somatically mutated immunoglobulin genes and had undergone class-switching to immunoglobulin G, clonally expanded cells carried identical somatic hypermutation patterns. A fraction of NR1 antibodies were non-mutated, thus resembling 'naturally occurring antibodies' and indicating that tolerance induction against NMDAR was incomplete and somatic hypermutation not essential for functional antibodies. However, only a small percentage of cerebrospinal fluid-derived antibodies reacted against NR1. Instead, nearly all further antibodies bound specifically to diverse brain-expressed epitopes including neuronal surfaces, suggesting that a broad repertoire of antibody-secreting cells enrich in the central nervous system during encephalitis. Our functional data using primary hippocampal neurons indicate that human cerebrospinal fluid-derived monoclonal NR1 antibodies alone are sufficient to cause neuronal surface receptor downregulation and subsequent impairment of NMDAR-mediated currents, thus providing ultimate proof of antibody pathogenicity. The observed formation of immunological memory might be relevant for clinical relapses. © The Author (2016). Published by Oxford University Press on

  14. Using PRP and human amniotic fluid combination for osteogenesis in rabbit socket preservation

    Directory of Open Access Journals (Sweden)

    Amir Hossein Moradi

    2015-01-01

    Full Text Available Introduction: Platelet-rich plasma (PRP is used as an adjunct treatment during periodontal grafting surgery because of its capability of enhancing healing process. Amniotic fluid is a rich source of growth factors and hyaluronic acid (HA and a good point to study its properties of wound healing and bone formation. The aim of this study was to evaluate the osteogenic properties of a combination of amniotic fluid and PRP in rabbit′s dental socket preservation. Materials and Methods: The study population consisted of 24 healthy male laboratory rabbits (average weight 3,125 ± 185 gr that were randomly allocated into four groups. PRP for the first group, human amniotic fluid (HAF for the second group, a combination of PRP and HAF (PRHA for the third group was used. In the fourth (control group, no biomaterial was used. In each group, half of the rabbits were sacrificed at 4 weeks following surgery and the rest were sacrificed after 8 weeks. Histological analysis of biopsies of the sockets was performed using hematoxylin and eosin (H&E staining. Data were analyzed using Statistical Package for the Social Sciences (SPSS software (version 16 and P-value <0.05 was considered significance. Results: All three experimental groups showed positive effect on bone formation in terms of area of trabecular bone and number of osteocytes and also vessel formation. Socket preservation using HAF and PRHA showed the highest impact on bone formation. Socket preservation using HAF also had the highest impact on vessel formation. Conclusion: PRHA and HAF appear to be useful for enhancing bone formation. Since there was no difference between HAF and PRHA, it seems beneficial to use HAF due to its simplicity of application.

  15. Differential effect of extracellular calcium on the Na(+)-K+ pump activity in intact polymorphonuclear leucocytes and erythrocytes

    DEFF Research Database (Denmark)

    Petersen, R H; Knudsen, T; Johansen, Torben

    1991-01-01

    The effect of extracellular calcium on the Na(+)-K+ pump activity in human polymorphonuclear leucocytes and erythrocytes was studied and compared with the activity in mixed peritoneal leucocytes from rats. While there was maximal decrease in the pump activity (25-30%) of leucocytes from both rat ...

  16. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.

    Science.gov (United States)

    Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.

  17. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  18. Protein Dynamics in the Plant Extracellular Space

    Directory of Open Access Journals (Sweden)

    Leonor Guerra-Guimarães

    2016-07-01

    Full Text Available The extracellular space (ECS or apoplast is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF. The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in “cell wall organization and biogenesis”, “response to stimulus” and “protein metabolism”. It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions.

  19. Facilitation of tear fluid secretion by 3% diquafosol ophthalmic solution in normal human eyes.

    Science.gov (United States)

    Yokoi, Norihiko; Kato, Hiroaki; Kinoshita, Shigeru

    2014-01-01

    To evaluate the increase in tear fluid volume induced by 3% diquafosol ophthalmic solution in normal human eyes. Prospective, randomized, double-masked, comparative study. Twenty healthy adults (17 males and 3 females; mean age, 38.8 years) underwent topical instillation of 2 ophthalmic solutions, artificial tears in 1 eye and 3% diquafosol ophthalmic solution in the fellow eye, in a masked manner. The radius of curvature of the central lower tear meniscus was measured at 5, 10, 15, 30, and 60 minutes after instillation by use of reflective meniscometry, and subjects' self-evaluated symptoms of wetness and stinging using a visual analog scale. Changes after instillation in the radius of curvature from baseline (artificial tear group vs diquafosol group; mean ± standard error of the mean) were as follows: at 5 minutes, -0.008 ± 0.012 vs 0.045 ± 0.013; at 10 minutes, 0.001 ± 0.014 vs 0.057 ± 0.016; at 15 minutes, -0.012 ± 0.014 vs 0.037 ± 0.019; at 30 minutes, -0.010 ± 0.016 vs 0.030 ± 0.025; and at 60 minutes, -0.029 ± 0.012 vs -0.020 ± 0.012. The diquafosol group showed significantly greater values from 5 to 30 minutes after instillation. Of the 40 eyes, 13 showed abnormal tear film breakup time (≤5 seconds). The diquafosol group had significantly more wetness at 15 minutes after instillation than did the artificial tear group. Topical instillation of 3% diquafosol ophthalmic solution increases tear fluid on the ocular surface for up to 30 minutes in normal human eyes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation.

    Science.gov (United States)

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-06-05

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    Science.gov (United States)

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Glutaminase enzyme biosensor for determination of glutamine in cerebrospinal fluid, human serum and l-glutamine capsule

    International Nuclear Information System (INIS)

    Bagriyanik, D.B.; Karakus, E

    2014-01-01

    Ammonium-selective glutamine biosensor was prepared by immobilizing glutaminase on poly(vinylchloride) (PVC) ammonium membrane electrode containing palmitic acid prepared by using nonactine. The response of glutamine biosensor was linear over the concentration range of 1.0x10-11.0x10-4M and slope was Nernstian. We determined optimum working conditions of the biosensor such as buffer concentration, buffer pH, lifetime, response time, linear working range and other response characteristics. The optimum buffer concentration and pH of proposed glutamine biosensor were determined as 20mM and pH 7.5, respectively. The interference effects of some ions and amino acids that may be present in body fluids were also investigated. The Km and Vmax values of glutaminase were determined. Additionally, glutamine assay in several biological samples such as healthy human serum, cerebrospinal fluid (CSF) and commercial glutamine capsule were also successfully carried out by using the standard addition method. The results were good agreement with previously reported values. (author)

  3. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  4. Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro

    International Nuclear Information System (INIS)

    Cordes, N.; Meineke, V.

    2003-01-01

    Background: Cell-extracellular matrix (ECM) contact is thought to have great impact on cellular mechanisms resulting in increased cell survival upon exposure to ionizing radiation. Several human tumor cell lines and normal human fibroblastic cell strains of different origin, all of them expressing the wide-spread and important integrin subunit β1, were irradiated, and clonogenic cell survival, β1-integrin cell surface expression, and adhesive functionality were investigated. Material and Methods: Human tumor cell lines A172 (glioblastoma), PATU8902 (pancreas carcinoma), SKMES1 (lung carcinoma), A549 (lung carcinoma), and IPC298 (melanoma) as well as normal human skin (HSF1) and lung fibroblasts (CCD32) and human keratinocytes (HaCaT) were irradiated with 0-8 Gy. Besides colony formation assays, β1-integrin cell surface expression by flow cytometry and adhesive functionality by adhesion assays were analyzed. Results: All cell lines showed improved clonogenic survival after irradiation in the presence of fibronectin as compared to plastic. Irradiated cells exhibited a significant, dose-dependent increase in β1-integrin cell surface expression following irradiation. As a parameter of the adhesive functionality of the β1-integrin, a radiation-dependent elevation of cell adhesion to fibronectin in comparison with adhesion to plastic was demonstrated. Conclusion: The in vitro cellular radiosensitivity is highly influenced by fibronectin according to the phenomenon of cell adhesion-mediated radioresistance. Additionally, our emerging data question the results of former and current in vitro cytotoxicity studies performed in the absence of an ECM. These findings might also be important for the understanding of malignant transformation, anchorage-independent cell growth, optimization of radiotherapeutic regimes and the prevention of normal tissue side effects on the basis of experimental radiobiological data. (orig.)

  5. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I.

    Science.gov (United States)

    Paduano, Francesco; Marrelli, Massimo; White, Lisa J; Shakesheff, Kevin M; Tatullo, Marco

    2016-01-01

    The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.

  6. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  7. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    Science.gov (United States)

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  8. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

    Science.gov (United States)

    Kusuzaki, Katsuyuki; Matsubara, Takao; Murata, Hiroaki; Logozzi, Mariantonia; Iessi, Elisabetta; Di Raimo, Rossella; Carta, Fabrizio; Supuran, Claudiu T; Fais, Stefano

    2017-12-01

    Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.

  9. Integrin-mediated adhesion of human mesenchymal stem cells to extracellular matrix proteins adsorbed to polymer surfaces

    International Nuclear Information System (INIS)

    Dånmark, S; Mustafa, K; Finne-Wistrand, A; Albertsson, A-C; Patarroyo, M

    2012-01-01

    In vitro, degradable aliphatic polyesters are widely used as cell carriers for bone tissue engineering, despite their lack of biological cues. Their biological active surface is rather determined by an adsorbed layer of proteins from the surrounding media. Initial cell fate, including adhesion and proliferation, which are key properties for efficient cell carriers, is determined by the adsorbed layer of proteins. Herein we have investigated the ability of human bone marrow derived stem cells (hBMSC) to adhere to extracellular matrix (ECM) proteins, including fibronectin and vitronectin which are present in plasma and serum. hBMSC expressed integrins for collagens, laminins, fibronectin and vitronectin. Accordingly, hBMSC strongly adhered to these purified ECM proteins by using the corresponding integrins. Although purified fibronectin and vitronectin adsorbed to aliphatic polyesters to a lower extent than to cell culture polystyrene, these low levels were sufficient to mediate adhesion of hBMSC. It was found that plasma- and serum-coated polystyrene adsorbed significant levels of both fibronectin and vitronectin, and fibronectin was identified as the major adhesive component of plasma for hBMSC; however, aliphatic polyesters adsorbed minimal levels of fibronectin under similar conditions resulting in impaired cell adhesion. Altogether, the results suggest that the efficiency of aliphatic polyesters cell carriers could be improved by increasing their ability to adsorb fibronectin. (paper)

  10. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  11. Locostatin, a disrupter of Raf kinase inhibitor protein, inhibits extracellular matrix production, proliferation, and migration in human uterine leiomyoma and myometrial cells.

    Science.gov (United States)

    Janjusevic, Milijana; Greco, Stefania; Islam, Md Soriful; Castellucci, Clara; Ciavattini, Andrea; Toti, Paolo; Petraglia, Felice; Ciarmela, Pasquapina

    2016-11-01

    To investigate the presence of Raf kinase inhibitor protein (RKIP) in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation, and migration in human myometrial and leiomyoma cells. Laboratory study. Human myometrium and leiomyoma. Thirty premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and Western blotting. Myometrial and leiomyoma cells were treated with locostatin (10 μM) to measure ECM expression by real-time polymerase chain reaction, GSK3β expression by Western blotting, cell migration by wound-healing assay, and cell proliferation by MTT assay and immunocytochemistry. The expression of RKIP in human myometrial and leiomyoma tissue; ECM components and GSK3β expression, migration, and proliferation in myometrial and leiomyoma cells. RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the mitogen-activated protein kinase (MAPK) signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells. Our results indicate that RKIP may be involved in leiomyoma pathophysiology. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J.

    2016-01-01

    A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940

  13. Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular VesiclesSummary

    Directory of Open Access Journals (Sweden)

    Takahiro Sanada

    2017-03-01

    Full Text Available Background & Aims: An extracellular vesicle (EV is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV infection. Methods: We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells. Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. Results: Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA–transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA–transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. Conclusions: These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization–resistant route of HBV infection. Keywords: HBV, Extracellular Vesicles, Transmission Pathway

  14. PPAR-δ Agonist With Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid.

    Science.gov (United States)

    Heck, Bruce E; Park, Joshua J; Makani, Vishruti; Kim, Eun-Cheol; Kim, Dong Hyun

    2017-08-01

    Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator-activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form

  15. Studies on the interaction between the Ehrlich ascites tumor cell and its fluid environment

    International Nuclear Information System (INIS)

    Magnani, B.

    1984-01-01

    In this dissertation, the glycolytic nature of the Ehrlich ascites tumor (EAT) cell is disclosed both in vivo and in vitro by experiments challenging it with glucose. It is demonstrated that EAT cells can cause the extracellular pH to drop to values sufficiently acidic so as to inhibit EAT glycolysis. However, the extracellular fluid or the Ascites Supernatant Fluid (ASF) reduced the extent to which the pH dropped during EAT cell glycolysis. A comparison of the activities of the sera from tumor-bearing mice and normal mice revealed that the serumfrom the tumor-bearing mice reduced the pH fall generated by the EAT cell in the same way as did ASF; normal mouse serum had no such effect. The metabolic pathways utilized during glucose catabolism were examined by radio-respirometry and the results demonstrated that the high percentage of the glucose conversion to lactate occurred because of partial blockade of the TCA cycle. The databolism of glutamine, glutamic acid, asparagine, aspartic acid, and alanine was enhanced by ASF as determined by measuring 14 CO 2 from 14 C-labelled amino acids, with glutamine catabolism enhanced about three-fold. Fractionation experiments revealed that ASF contained a factor(s) responsible for this enhancement that had a molecular weight greater than 300,000 daltons and was heat-labile

  16. Does selection for short sleep duration explain human vulnerability to Alzheimer’s disease?

    Science.gov (United States)

    Nesse, Randolph M; Finch, Caleb E; Nunn, Charles L

    2017-01-01

    Abstract Compared with other primates, humans sleep less and have a much higher prevalence of Alzheimer ’s disease (AD) pathology. This article reviews evidence relevant to the hypothesis that natural selection for shorter sleep time in humans has compromised the efficacy of physiological mechanisms that protect against AD during sleep. In particular, the glymphatic system drains interstitial fluid from the brain, removing extra-cellular amyloid beta (eAβ) twice as fast during sleep. In addition, melatonin—a peptide hormone that increases markedly during sleep—is an effective antioxidant that inhibits the polymerization of soluble eAβ into insoluble amyloid fibrils that are associated with AD. Sleep deprivation increases plaque formation and AD, which itself disrupts sleep, potentially creating a positive feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep, and may lead to potential new strategies for preventing and treating AD. PMID:28096295

  17. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  18. The role of extracellular histones in haematological disorders.

    Science.gov (United States)

    Alhamdi, Yasir; Toh, Cheng-Hock

    2016-06-01

    Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders. © 2016 John Wiley & Sons Ltd.

  19. Liarozole inhibits transforming growth factor-β3–mediated extracellular matrix formation in human three-dimensional leiomyoma cultures

    Science.gov (United States)

    Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.

    2014-01-01

    Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427

  20. In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Shakushi, Yukina; Sasaki, Miku; Koike, Yuta; Osawa, Misa; Takeda, Atsushi

    2017-02-17

    Artificial cerebrospinal fluid (ACSF), i.e., brain extracellular medium, which includes Ca 2+ and Mg 2+ , but not other divalent cations such as Zn 2+ , has been used for in vitro and in vivo experiments. The present study deals with the physiological significance of extracellular Zn 2+ in ACSF. Spontaneous presynaptic activity is suppressed in the stratum lucidum of brain slices from young rats bathed in ACSF containing 10 nM ZnCl 2 , indicating that extracellular Zn 2+ modifies hippocampal presynaptic activity. To examine the in vivo action of 10 nM ZnCl 2 on long-term potentiation (LTP), the recording region was perfused using a recording electrode attached to a microdialysis probe. The magnitude of LTP was not modified in young rats by perfusion with ACSF containing 10 nM ZnCl 2 , compared to perfusion with ACSF without Zn 2+ , but attenuated by perfusion with ACSF containing 100 nM ZnCl 2 . Interestingly, the magnitude of LTP was not modified in aged rats even by perfusion with ACSF containing 100 nM ZnCl 2 , but enhanced by perfusion with ACSF containing 10 mM CaEDTA, an extracellular Zn 2+ chelator. The present study indicates that the basal levels of extracellular Zn 2+ , which are in the range of low nanomolar concentrations, are critical for synaptic activity and perhaps increased age-dependently.

  1. Integrins and extracellular matrix in mechanotransduction

    Directory of Open Access Journals (Sweden)

    Ramage L

    2011-12-01

    Full Text Available Lindsay RamageQueen’s Medical Research Institute, University of Edinburgh, Edinburgh, UKAbstract: Integrins are a family of cell surface receptors which mediate cell–matrix and cell–cell adhesions. Among other functions they provide an important mechanical link between the cells external and intracellular environments while the adhesions that they form also have critical roles in cellular signal-transduction. Cell–matrix contacts occur at zones in the cell surface where adhesion receptors cluster and when activated the receptors bind to ligands in the extracellular matrix. The extracellular matrix surrounds the cells of tissues and forms the structural support of tissue which is particularly important in connective tissues. Cells attach to the extracellular matrix through specific cell-surface receptors and molecules including integrins and transmembrane proteoglycans. Integrins work alongside other proteins such as cadherins, immunoglobulin superfamily cell adhesion molecules, selectins, and syndecans to mediate cell–cell and cell–matrix interactions and communication. Activation of adhesion receptors triggers the formation of matrix contacts in which bound matrix components, adhesion receptors, and associated intracellular cytoskeletal and signaling molecules form large functional, localized multiprotein complexes. Cell–matrix contacts are important in a variety of different cell and tissue properties including embryonic development, inflammatory responses, wound healing, and adult tissue homeostasis. This review summarizes the roles and functions of integrins and extracellular matrix proteins in mechanotransduction.Keywords: ligand binding, α subunit, ß subunit, focal adhesion, cell differentiation, mechanical loading, cell–matrix interaction

  2. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer.

    Science.gov (United States)

    Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R

    2018-04-27

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.

  3. Extracellular digestion during hyposaline exposure in the Dungeness crab, Cancer magister, and the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Curtis, Daniel L; van Breukelen, Frank; McGaw, Iain J

    2013-12-01

    Extracellular digestive processes were examined in the Dungeness crab, Cancer magister and the blue crab, Callinectes sapidus, during hyposaline exposure. Both species are found in estuaries as adults, but vary in their ability to balance the cardiovascular and respiratory demands of concurrent osmoregulation and digestion. The weak osmoregulator, C. magister, is unable to balance the demands of osmoregulation and digestion. Concordant with observed decreases in oxygen consumption and mechanical digestion, proteolytic digestion within the foregut and hepatopancreas was delayed, resulting in a relative reduction of circulating amino acids post-feeding in low salinity. In contrast, the efficient osmoregulator, C. sapidus, balances the demands of osmoregulation and digestion, and mechanical digestion continues unabated in low salinity. Protease activity in the gut fluid and hepatopancreas showed either no change or a reduction over time. The transport of amino acids into the cells post-feeding is opposed by an efflux of amino acids at the cellular level, and resulted in a build up of amino acids in the hemolymph. Despite differences in the extracellular responses to low salinity exposure following feeding, both species were able to maintain high digestive efficiencies. © 2013.

  4. Identification of a receptor for extracellular renalase.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI in wild type (WT mice. Therefore, we sought to identity the receptor for extracellular renalase.RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase.PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling.

  5. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  6. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  7. Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity?

    Directory of Open Access Journals (Sweden)

    Sin-Yeang Teow

    2016-01-01

    Full Text Available Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted into the extracellular space to facilitate intercellular communication. Collective findings demonstrated that exosomes from HIV-infected subjects share many commonalities with Human Immunodeficiency Virus Type I (HIV-1 particles in terms of proteomics and lipid profiles. These observations postulated that HIV-resembled exosomes may contribute to HIV pathogenesis. Interestingly, recent reports illustrated that exosomes from body fluids could inhibit HIV infection, which then bring up a new paradigm for HIV/AIDS therapy. Accumulative findings suggested that the cellular origin of exosomes may define their effects towards HIV-1. This review summarizes the two distinctive roles of exosomes in regulating HIV pathogenesis. We also highlighted several additional factors that govern the exosomal functions. Deeper understanding on how exosomes promote or abate HIV infection can significantly contribute to the development of new and potent antiviral therapeutic strategy and vaccine designs.

  8. Stability of fault submitted to fluid injections

    Science.gov (United States)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  9. High-Temperature Induced Changes of Extracellular Metabolites in Pleurotus ostreatus and Their Positive Effects on the Growth of Trichoderma asperellum.

    Science.gov (United States)

    Qiu, Zhiheng; Wu, Xiangli; Zhang, Jinxia; Huang, Chenyang

    2018-01-01

    Pleurotus ostreatus is a widely cultivated edible fungus in China. Green mold disease of P. ostreatus which can seriously affect yield is a common disease during cultivation. It occurs mostly after P. ostreatus mycelia have been subjected to high temperatures. However, little information is available on the relationship between high temperature and green mold disease. The aim of this study is to prove that extracellular metabolites of P. ostreatus affected by high temperature can promote the growth of Trichoderma asperellum . After P. ostreatus mycelia was subjected to high temperature, the extracellular fluid of P. ostreatus showed a higher promoting effect on mycelial growth and conidial germination of T. asperellum . The thiobarbituric acid reactive substance (TBARS) content reached the maximum after 48 h at 36°C. A comprehensive metabolite profiling strategy involving gas chromatography-mass spectrometry (GC/MS) combined with liquid chromatography-mass spectrometry (LC/MS) was used to analyze the changes of extracellular metabolites in response to high temperature. A total of 141 differential metabolites were identified, including 84.4% up-regulated and 15.6% down-regulated. Exogenous metabolites whose concentrations were increased after high temperature were randomly selected, and nearly all of them were able to promote the mycelial growth and conidial germination of T. asperellum . The combination of all selected exogenous metabolites also has the promotion effects on the mycelial growth and conidial germination of T. asperellum in a given concentration range in vitro . Overall, these results provide a first view that high temperature affects the extracellular metabolites of P. ostreatus , and the extensive change in metabolites promotes T. asperellum growth.

  10. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use

    Directory of Open Access Journals (Sweden)

    Mario Gimona

    2017-06-01

    Full Text Available Extracellular vesicles (EVs derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.

  11. Treatment of PPROM with anhydramnion in humans: first experience with different amniotic fluid substitutes for continuous amnioinfusion through a subcutaneously implanted port system.

    Science.gov (United States)

    Tchirikov, Michael; Bapayeva, Gauri; Zhumadilov, Zhaxybay Sh; Dridi, Yasmina; Harnisch, Ralf; Herrmann, Angelika

    2013-11-01

    This study aims to treat patients with preterm premature rupture of the membranes (PPROM) and anhydramnion using continuous amnioinfusion through a subcutaneously implanted port system. An amniotic fluid replacement port system was implanted in seven patients with PPROM and anhydramnion starting at the 20th week of gestation (range, 14-26 weeks) for long-term amnioinfusion. Saline solutions (2 L/day; Jonosteril(®), Sterofundin(®), isotonic NaCl 0.9% solution, lactated Ringer's solution) and a hypotonic aqueous composition with reduced chloride content similar to the electrolyte concentration of human amniotic fluid were used for the continuous amnioinfusion. The mean duration of the PPROM delivery interval continued for 49 days (range, 9-69 days), with 3 weeks of amnioinfusion via the port system (range, 4-49). The newborns showed no signs of lung hypoplasia. Long-term lavage of the amniotic cavity via a subcutaneously implanted port system in patients with PPROM and anhydramnion may help prolong the pregnancy and avoid fetal lung hypoplasia. A hypotonic aqueous composition with reduced chloride content similar to human amniotic fluid can be safely used for amnioinfusion. Prospective randomized studies are ongoing.

  12. Indian Hedgehog in Synovial Fluid Is a Novel Marker for Early Cartilage Lesions in Human Knee Joint

    Directory of Open Access Journals (Sweden)

    Congming Zhang

    2014-04-01

    Full Text Available To determine whether there is a correlation between the concentration of Indian hedgehog (Ihh in synovial fluid (SF and the severity of cartilage damage in the human knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF samples were analyzed with immunohistochemistry (IHC, western blot, and enzyme-linked immunosorbent assay (ELISA. Furthermore, we detected and compared Ihh protein levels in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and SF samples was significantly increased in early-stage OA samples when compared to normal samples (r = 0.556; p < 0.001; however, there were no significant differences between normal samples and late-stage OA samples. Up-regulation of Ihh protein was also an early event in the surgery-induced OA models. Increased Ihh is associated with the severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid correlates with early cartilage lesions.

  13. Development of ovarian hyperstimulation syndrome: interrogation of key proteins and biological processes in human follicular fluid of women undergoing in vitro fertilization

    Czech Academy of Sciences Publication Activity Database

    Jarkovská, Karla; Skalníková, Helena; Halada, Petr; Hrabáková, Rita; Moos, J.; Rezábek, K.; Gadher, S. J.; Kovářová, Hana

    2011-01-01

    Roč. 17, č. 11 (2011), s. 679-692 ISSN 1360-9947 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : biomarkers * computer modelling * human follicular fluid Subject RIV: FK - Gynaecology, Childbirth Impact factor: 3.852, year: 2011

  14. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Extracellular deoxyribonuclease production by periodontal bacteria.

    Science.gov (United States)

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  16. In vitro Determination of Extracellular Proteins from Xylella fastidiosa.

    Science.gov (United States)

    Mendes, Juliano S; Santiago, André S; Toledo, Marcelo A S; Horta, Maria A C; de Souza, Alessandra A; Tasic, Ljubica; de Souza, Anete P

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa . Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa . Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.

  17. Modern embalming, circulation of fluids, and the voyage through the human arterial system: Carl L. Barnes and the culture of immortality in America.

    Science.gov (United States)

    Podgorny, Irina

    2011-01-01

    By considering the work of American embalmer, lawyer, and physician Carl Lewis Barnes (1872-1927), this paper analyzes the emergence of modern embalming in America. Barnes experimented with and exhibited the techniques by which embalming fluids travelled into the most remote cavities of the human body. In this sense, modem embalmers based their skills and methods on experimental medicine, turning the anatomy of blood vessels, physiology of circulation, and composition of blood into a circuit that allowed embalming fluids to move throughout the corpse. Embalmers in the late 19th century took ownership of the laws of hydrodynamics and the physiology of blood circulation to market their fluids and equipment, thus playing the role of physiologists of death, performing and demonstrating physiological experiments with dead bodies.

  18. Differential staining of Western blots of human secreted glycoproteins from serum, milk, saliva, and seminal fluid using lectins displaying diverse sugar specificities.

    Science.gov (United States)

    Gilboa-Garber, Nechama; Lerrer, Batya; Lesman-Movshovich, Efrat; Dgani, Orly

    2005-12-01

    Human milk, serum, saliva, and seminal fluid glycoproteins (gps) nourish and protect newborn and adult tissues. Their saccharides, which resemble cell membrane components, may block pathogen adhesion and infection. In the present study, they were examined by a battery of lectins from plants, animals, and bacteria, using hemagglutination inhibition and Western blot analyses. The lectins included galactophilic ones from Aplysia gonad, Erythrina corallodendron, Maclura pomifera (MPL), peanut, and Pseudomonas aeruginosa (PA-IL); fucose-binding lectins from Pseudomonas aeruginosa (PA-IIL), Ralstonia solanacearum (RSL), and Ulex europaeus (UEA-I), and mannose/glucose-binding Con A. The results demonstrated the chosen lectin efficiency for differential analysis of human secreted gps as compared to CBB staining. They unveiled the diversity of these body fluid gp glycans (those of the milk and seminal fluid being highest): the milk gps interacted most strongly with PA-IIL, followed by RSL; the saliva gps with RSL, followed by PA-IIL and MPL; the serum gps with Con A and MPL, followed by PA-IIL and RSL, and the seminal plasma gps with RSL and MPL, followed by UEA-I and PA-IIL. The potential usage of these lectins as probes for scientific, industrial, and medical purposes, and for quality control of the desired gps is clearly indicated.

  19. Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells

    NARCIS (Netherlands)

    M. Franquesa (Marcella); M.J. Hoogduijn (Martin); E. Ripoll (Elia); F. Luk (Franka); M. Salih (Mahdi); M.G.H. Betjes (Michiel); J. Torras; C.C. Baan (Carla); J. Grinyo (Josep); A. Merino (Ana)

    2014-01-01

    textabstractThe research field on extracellular vesicles (EV) has rapidly expanded in recent years due to the therapeutic potential of EV. Adipose tissue human mesenchymal stem cells (ASC) may be a suitable source for therapeutic EV. A major limitation in the field is the lack of standardization of

  20. A Conserved Salt Bridge between Transmembrane Segment 1 and 10 Constitutes an Extracellular Gate in the Dopamine Transporter

    DEFF Research Database (Denmark)

    Pedersen, Anders Vingborg; Andreassen, Thorvald Faurschou; Løland, Claus Juul

    2014-01-01

    into the structural and dynamic requirements for substrate transport. These structures support the existence of gating domains controlling access to a central binding site. On the extracellular side, access is controlled by the "thin gate" formed by an interaction between Arg-30 and Asp-404. In the human dopamine...

  1. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve.

    Science.gov (United States)

    Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie

    2018-04-01

    The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.

  2. Human papillomavirus infection is associated with decreased levels of GM-CSF in cervico-vaginal fluid of infected women.

    Science.gov (United States)

    Comar, Manola; Monasta, Lorenzo; Zanotta, Nunzia; Vecchi Brumatti, Liza; Ricci, Giuseppe; Zauli, Giorgio

    2013-10-01

    Although human papillomavirus (HPV) is the most common sexually transmitted infection, there are very scant data about the influence of this virus on the in vitro fertilization outcome. To assess the presence of HPV in the cervico-vaginal fluid in relationship to the in vitro fertilization (IVF) outcome and to the concentration of selected cytokines, known to affect embryo implantation and gestation: granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF). Cervico-vaginal samples were collected on the day of oocyte pick-up from 82 women. Vaginas were flushed with 50 mL of sterile water and 3 mL of fluid was collected. Twelve women (15%) were positive for HPV. Interestingly, among HPV(+) women live birth rate was about half of the rate in HPV(-) women, although the differences were not statistically significant due to the low number of cases. Cervico-vaginal samples of a sub-group of 29 (8 HPV(+) and 21 HPV(-)) women were analyzed for GM-CSF and G-CSF by ELISA. GM-CSF but not G-CSF was significantly lower in the cervico-vaginal fluid of HPV(+) than in HPV(-) women. Since GM-CSF plays an important role during pregnancy, the reduced levels of GM-CSF in the cervico-vaginal fluid of HPV(+) women might contribute to explain the reduced live birth rate observed in HPV(+) women. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  4. Human cervicovaginal fluid biomarkers to predict term and preterm labor

    Science.gov (United States)

    Heng, Yujing J.; Liong, Stella; Permezel, Michael; Rice, Gregory E.; Di Quinzio, Megan K. W.; Georgiou, Harry M.

    2015-01-01

    Preterm birth (PTB; birth before 37 completed weeks of gestation) remains the major cause of neonatal morbidity and mortality. The current generation of biomarkers predictive of PTB have limited utility. In pregnancy, the human cervicovaginal fluid (CVF) proteome is a reflection of the local biochemical milieu and is influenced by the physical changes occurring in the vagina, cervix and adjacent overlying fetal membranes. Term and preterm labor (PTL) share common pathways of cervical ripening, myometrial activation and fetal membranes rupture leading to birth. We therefore hypothesize that CVF biomarkers predictive of labor may be similar in both the term and preterm labor setting. In this review, we summarize some of the existing published literature as well as our team's breadth of work utilizing the CVF for the discovery and validation of putative CVF biomarkers predictive of human labor. Our team established an efficient method for collecting serial CVF samples for optimal 2-dimensional gel electrophoresis resolution and analysis. We first embarked on CVF biomarker discovery for the prediction of spontaneous onset of term labor using 2D-electrophoresis and solution array multiple analyte profiling. 2D-electrophoretic analyses were subsequently performed on CVF samples associated with PTB. Several proteins have been successfully validated and demonstrate that these biomarkers are associated with term and PTL and may be predictive of both term and PTL. In addition, the measurement of these putative biomarkers was found to be robust to the influences of vaginal microflora and/or semen. The future development of a multiple biomarker bed-side test would help improve the prediction of PTB and the clinical management of patients. PMID:26029118

  5. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis.

    Science.gov (United States)

    Peng, Yan; Grassl, Julia; Millar, A Harvey; Baer, Boris

    2016-01-27

    The societies of ants, bees and wasps are genetically closed systems where queens only mate during a brief mating episode prior to their eusocial life and males therefore provide queens with a lifetime supply of high-quality sperm. These ejaculates also contain a number of defence proteins that have been detected in the seminal fluid but their function and efficiency have never been investigated in great detail. Here, we used the honeybee Apis mellifera and quantified whether seminal fluid is able to combat infections of the fungal pathogen Nosema apis, a widespread honeybee parasite that is also sexually transmitted. We provide the first empirical evidence that seminal fluid has a remarkable antimicrobial activity against N. apis spores and that antimicrobial seminal fluid components kill spores in multiple ways. The protein fraction of seminal fluid induces extracellular spore germination, which disrupts the life cycle of N. apis, whereas the non-protein fraction of seminal fluid induces a direct viability loss of intact spores. We conclude that males provide their ejaculates with efficient antimicrobial molecules that are able to kill N. apis spores and thereby reduce the risk of disease transmission during mating. Our findings could be of broader significance to master honeybee diseases in managed honeybee stock in the future. © 2016 The Author(s).

  6. Touch sensitive electrorheological fluid based tactile display

    Science.gov (United States)

    Liu, Yanju; Davidson, Rob; Taylor, Paul

    2005-12-01

    A tactile display is programmable device whose controlled surface is intended to be investigated by human touch. It has a great number of potential applications in the field of virtual reality and elsewhere. In this research, a 5 × 5 tactile display array including electrorheological (ER) fluid has been developed and investigated. Force responses of the tactile display array have been measured while a probe was moved across the upper surface. The purpose of this was to simulate the action of touch performed by human finger. Experimental results show that the sensed surface information could be controlled effectively by adjusting the voltage activation pattern imposed on the tactels. The performance of the tactile display is durable and repeatable. The touch sensitivity of this ER fluid based tactile display array has also been investigated in this research. The results show that it is possible to sense the touching force normal to the display's surface by monitoring the change of current passing through the ER fluid. These encouraging results are helpful for constructing a new type of tactile display based on ER fluid which can act as both sensor and actuator at the same time.

  7. Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo

    Science.gov (United States)

    Demidova-Rice, Tatiana N.; Wolf, Lindsey; Deckenback, Jeffry; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects. PMID:22384158

  8. Shaping Synapses by the Neural Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Maura Ferrer-Ferrer

    2018-05-01

    Full Text Available Accumulating data support the importance of interactions between pre- and postsynaptic neuronal elements with astroglial processes and extracellular matrix (ECM for formation and plasticity of chemical synapses, and thus validate the concept of a tetrapartite synapse. Here we outline the major mechanisms driving: (i synaptogenesis by secreted extracellular scaffolding molecules, like thrombospondins (TSPs, neuronal pentraxins (NPs and cerebellins, which respectively promote presynaptic, postsynaptic differentiation or both; (ii maturation of synapses via reelin and integrin ligands-mediated signaling; and (iii regulation of synaptic plasticity by ECM-dependent control of induction and consolidation of new synaptic configurations. Particularly, we focused on potential importance of activity-dependent concerted activation of multiple extracellular proteases, such as ADAMTS4/5/15, MMP9 and neurotrypsin, for permissive and instructive events in synaptic remodeling through localized degradation of perisynaptic ECM and generation of proteolytic fragments as inducers of synaptic plasticity.

  9. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair.

    Directory of Open Access Journals (Sweden)

    Inna Maltseva

    Full Text Available Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS. SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1⁻/⁻, but not Sulf2⁻/⁻, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1⁻/⁻ mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE. Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.

  10. Role of Stroma-Derived Extracellular Matrix in Regulation of Growth and Hormonal Responsiveness of Normal and Cancerous Human Breast Epithelium

    National Research Council Canada - National Science Library

    Woodward, Terry

    1997-01-01

    Specific extracellular matrix (ECM) proteins and their cellular receptors (integrins) are required for normal mammary gland morphogenesis and differentiation, while their expression is dramatically altered during tumorigenesis...

  11. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P. aeruginosa NY3.

    Science.gov (United States)

    Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin

    2018-03-02

    The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.

  12. Effects of Intraoperative Fluid Management on Postoperative Outcomes : A Hospital Registry Study

    NARCIS (Netherlands)

    Shin, Christina H; Long, Dustin R; McLean, Duncan; Grabitz, Stephanie D; Ladha, Karim; Timm, Fanny P; Thevathasan, Tharusan; Pieretti, Alberto; Ferrone, Cristina; Hoeft, Andreas; Scheeren, Thomas W L; Thompson, Boyd Taylor; Kurth, Tobias; Eikermann, Matthias

    2017-01-01

    OBJECTIVE: Evaluate the dose-response relationship between intraoperative fluid administration and postoperative outcomes in a large cohort of surgical patients. BACKGROUND: Healthy humans may live in a state of fluid responsiveness without the need for fluid supplementation. Goal-directed protocols

  13. Modulation of memory with septal injections of morphine and glucose: effects on extracellular glucose levels in the hippocampus.

    Science.gov (United States)

    McNay, Ewan C; Canal, Clinton E; Sherwin, Robert S; Gold, Paul E

    2006-02-28

    The concentration of glucose in the extracellular fluid (ECF) of the hippocampus decreases substantially during memory testing on a hippocampus-dependent memory task. Administration of exogenous glucose, which enhances task performance, prevents this decrease, suggesting a relationship between hippocampal glucose availability and memory performance. In the present experiment, spontaneous alternation performance and task-related changes in hippocampal ECF glucose were assessed in rats after intraseptal administration of morphine, which impairs memory on a spontaneous alternation task, and after co-administration of intraseptal glucose, which attenuates that impairment. Consistent with previous findings, spontaneous alternation testing resulted in a decrease in hippocampal ECF glucose levels in control rats. However, rats that received intraseptal morphine prior to testing showed memory impairments and an absence of the task-related decrease in hippocampal ECF glucose levels. Intraseptal co-administration of glucose with morphine attenuated the memory impairment, and ECF glucose levels in the hippocampus decreased in a manner comparable to that seen in control rats. These data suggest that fluctuations in hippocampal ECF glucose levels may be a marker of mnemonic processing and support the view that decreases in extracellular glucose during memory testing reflect increased glucose demand during memory processing.

  14. Elemental analysis of human amniotic fluid and placenta by TXRF and EDXRF: child weight and aging mother dependences

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Custodio, P.J.; Reus, U.; Prange, A.

    2000-01-01

    This work is an attempt to evaluate the possible influence of the age's mother in trace elemental concentration in human amniotic fluid and placenta and whether these concentrations are correlated to the weight of the newborn infants. Total reflection x-ray fluorescence (TXRF) was used to analyze 16 amniotic fluid samples, and the placenta samples were analyzed by energy dispersive x-ray fluorescence (EDXRF). The whole samples were collected during the delivery, from healthy mothers and healthy infants. According to the age of the mother three different groups were considered: from 20-25, 25-30 and 30-40. Only two mothers were aged more than 35. The weight of the infants ranged from 2.56 to 4.05 kg. The organic matrices of the amniotic fluid samples were removed by wet ashing with HNO 3 in oxygen plasma. Yttrium was used as internal standard, for TXRF analysis. For EDXRF placenta samples were lyophilized and analyzed without any chemical treatment. Very low levels of Ni, and Sr were found in the amniotic fluid samples, independently of age of the mother and child weight. Cr, Mn, Se and Pb were at the level of the detection limit. Zn, considered one of the key elements in the newborn health, was not significantly different in the analyzed samples, however, was related, though weakly, to birth weigh. The obtained concentrations ranged from 0.11 to 0.92 mg/L and 30 to 65 μg/g in amniotic fluid and placenta respectively. The only two elements seemed to be significantly affected with age mother and newborn weight were Ca and Fe for both kind of samples: Ca levels were increased in heavier children and elder mothers, however Fe increased with the increase of the age mother but decreased for heavier babies. The same conclusions were obtained for placenta and amniotic fluid samples. Cu is closely associated in its function in the organism with Fe and has a similar behavior with this element, however not so pronounced. (author)

  15. Levels of lipocalin-2 in crevicular fluid and tear fluid in chronic periodontitis and obesity subjects.

    Science.gov (United States)

    Pradeep, Avani Raju; Nagpal, Kanika; Karvekar, Shruti; Patnaik, Kaushik

    2016-11-01

    Lipocalin-2, a 25 kDa secretory glycoprotein, was first found in the neutrophilic granules of humans and in mouse kidney cells. It has been shown to have an important role in inflammation. The aim of this study was to determine the levels of lipocalin-2 in gingival crevicular fluid and tear fluid in patients with obesity and chronic periodontitis. A total of 40 subjects in the age group 25-40 years were divided into four groups based on probing depth, gingival index, clinical attachment level, body mass index, and radiographic evidence of bone loss. The groups were: nonobese healthy group; obese healthy group; nonobese chronic periodontitis group; obese chronic periodontitis group Gingival crevicular fluid and tear fluid samples were collected on the subsequent day. There was an increase in lipocalin-2 levels from group 1 to group 4 (with the nonobese healthy group showing the least levels and obese chronic periodontitis group showing the highest levels) in both gingival crevicular fluid and tear fluid. Lipocalin-2 may be an important inflammatory marker that may help link obesity and chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  16. Response of extracellular zinc in the ventral hippocampus against novelty stress.

    Science.gov (United States)

    Takeda, Atsushi; Sakurada, Naomi; Kanno, Shingo; Minami, Akira; Oku, Naoto

    2006-10-01

    An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.

  17. Extracellular matrix metabolism disorder induced by mechanical strain on human parametrial ligament fibroblasts.

    Science.gov (United States)

    Min, Jie; Li, Bingshu; Liu, Cheng; Guo, Wenjun; Hong, Shasha; Tang, Jianming; Hong, Li

    2017-05-01

    Pelvic organ prolapse (POP) is a global health problem that may seriously impact the quality of life of the sufferer. The present study aimed to investigate the potential mechanisms underlying alterations in extracellular matrix (ECM) metabolism in the pathogenesis of POP, by investigating the expression of ECM components in human parametrial ligament fibroblasts (hPLFs) subject to various mechanical strain loads. Fibroblasts derived from parametrial ligaments were cultured from patients with POP and without malignant tumors, who underwent vaginal hysterectomy surgery. Fibroblasts at generations 3‑6 of exponential phase cells were selected, and a four‑point bending device was used for 0, 1,333 or 5,333 µ mechanical loading of cells at 0.5 Hz for 4 h. mRNA and protein expression levels of collagen type I α 1 chain (COL1A1), collagen type III α 1 chain (COL3A1), elastin, matrix metalloproteinase (MMP) ‑2 and ‑9, and transforming growth factor (TGF)‑β1 were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Under increased mechanical strain (5,333 µ), mRNA and protein expression levels of COL1A1, COL3A1 elastin and TGF‑β1 decreased, particularly COL1A1; however, mRNA and protein expression levels of MMP‑2 and ‑9 were significantly increased, compared with the control group (0 µ strain). Following 1,333 µ mechanical strain, mRNA and protein expression levels of COL1A1, COL3A1 elastin and MMP‑2 increased, and MMP‑9 decreased, whereas no significant differences were observed in TGF‑β1 mRNA and protein expression levels. In conclusion, ECM alterations may be involved in pathogenesis of POP, with decreased synthesis and increased degradation of collagen and elastin. Furthermore, the TGF‑β1 signaling pathway may serve an important role in this process and thus may supply a new target and strategy for understanding the etiology and therapy of POP.

  18. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    Science.gov (United States)

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  19. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix.

    Science.gov (United States)

    Alkhouli, Nadia; Mansfield, Jessica; Green, Ellen; Bell, James; Knight, Beatrice; Liversedge, Neil; Tham, Ji Chung; Welbourn, Richard; Shore, Angela C; Kos, Katarina; Winlove, C Peter

    2013-12-01

    Adipose tissue (AT) expansion in obesity is characterized by cellular growth and continuous extracellular matrix (ECM) remodeling with increased fibrillar collagen deposition. It is hypothesized that the matrix can inhibit cellular expansion and lipid storage. Therefore, it is important to fully characterize the ECM's biomechanical properties and its interactions with cells. In this study, we characterize and compare the mechanical properties of human subcutaneous and omental tissues, which have different physiological functions. AT was obtained from 44 subjects undergoing surgery. Force/extension and stress/relaxation data were obtained. The effects of osmotic challenge were measured to investigate the cellular contribution to tissue mechanics. Tissue structure and its response to tensile strain were determined using nonlinear microscopy. AT showed nonlinear stress/strain characteristics of up to a 30% strain. Comparing paired subcutaneous and omental samples (n = 19), the moduli were lower in subcutaneous: initial 1.6 ± 0.8 (means ± SD) and 2.9 ± 1.5 kPa (P = 0.001), final 11.7 ± 6.4 and 32 ± 15.6 kPa (P matrix fibers. These results suggest that subcutaneous AT has greater capacity for expansion and recovery from mechanical deformation than omental AT.

  20. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter

    2012-12-01

    In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.