WorldWideScience

Sample records for human exposure assessment

  1. Assessment of human exposures

    Energy Technology Data Exchange (ETDEWEB)

    Lebret, E. [RIVM-National Inst. of Public Health and Environmental Protection (Netherlands)

    1995-12-31

    This article describes some of the features of the assessment of human exposure to environmental pollutants in epidemiological studies. Since exposure assessment in air pollution epidemiology studies typically involve professionals from various backgrounds, interpretation of a concepts like `exposure` may vary. A brief descriptions is therefore given by way of introduction

  2. Assessment of human exposures

    Energy Technology Data Exchange (ETDEWEB)

    Lebret, E [RIVM-National Inst. of Public Health and Environmental Protection (Netherlands)

    1996-12-31

    This article describes some of the features of the assessment of human exposure to environmental pollutants in epidemiological studies. Since exposure assessment in air pollution epidemiology studies typically involve professionals from various backgrounds, interpretation of a concepts like `exposure` may vary. A brief descriptions is therefore given by way of introduction

  3. Human exposure assessment to environmental chemicals using biomonitoring.

    Science.gov (United States)

    Calafat, Antonia M; Ye, Xiaoyun; Silva, Manori J; Kuklenyik, Zsuzsanna; Needham, Larry L

    2006-02-01

    In modern societies, humans may be exposed to a wide spectrum of environmental chemicals. Although the health significance of this exposure for many chemicals is unknown, studies to investigate the prevalence of exposure are warranted because of the chemicals' potential harmful health effects, as often indicated in animal studies. Three tools have been used to assess exposure: exposure history/questionnaire information, environmental monitoring, and biomonitoring (i.e. measuring concentrations of the chemicals, their metabolites, or their adducts in human specimens). We present an overview on the use of biomonitoring in exposure assessment using phthalates, bisphenol A and other environmental phenols, and perfluorinated chemicals as examples. We discuss some factors relevant for interpreting and understanding biomonitoring data, including selection of both biomarkers of exposure and human matrices, and toxicokinetic information. The use of biomonitoring in human risk assessment is not discussed.

  4. Assessment of Human Exposure to ENMs.

    Science.gov (United States)

    Jiménez, Araceli Sánchez; van Tongeren, Martie

    2017-01-01

    Human exposure assessment of engineered nanomaterials (ENMs) is hampered, among other factors, by the difficulty to differentiate ENM from other nanomaterials (incidental to processes or naturally occurring) and the lack of a single metric that can be used for health risk assessment. It is important that the exposure assessment is carried out throughout the entire life-cycle as releases can occur at the different stages of the product life-cycle, from the synthesis, manufacture of the nano-enable product (occupational exposure) to the professional and consumer use of nano-enabled product (consumer exposure) and at the end of life.Occupational exposure surveys should follow a tiered approach, increasing in complexity in terms of instruments used and sampling strategy applied with higher tiers in order tailor the exposure assessment to the specific materials used and workplace exposure scenarios and to reduce uncertainty in assessment of exposure. Assessment of consumer exposure and of releases from end-of-life processes currently relies on release testing of nano-enabled products in laboratory settings.

  5. Perspectives for integrating human and environmental exposure assessments.

    Science.gov (United States)

    Ciffroy, P; Péry, A R R; Roth, N

    2016-10-15

    Integrated Risk Assessment (IRA) has been defined by the EU FP7 HEROIC Coordination action as "the mutual exploitation of Environmental Risk Assessment for Human Health Risk Assessment and vice versa in order to coherently and more efficiently characterize an overall risk to humans and the environment for better informing the risk analysis process" (Wilks et al., 2015). Since exposure assessment and hazard characterization are the pillars of risk assessment, integrating Environmental Exposure assessment (EEA) and Human Exposure assessment (HEA) is a major component of an IRA framework. EEA and HEA typically pursue different targets, protection goals and timeframe. However, human and wildlife species also share the same environment and they similarly inhale air and ingest water and food through often similar overlapping pathways of exposure. Fate models used in EEA and HEA to predict the chemicals distribution among physical and biological media are essentially based on common properties of chemicals, and internal concentration estimations are largely based on inter-species (i.e. biota-to-human) extrapolations. Also, both EEA and HEA are challenged by increasing scientific complexity and resources constraints. Altogether, these points create the need for a better exploitation of all currently existing data, experimental approaches and modeling tools and it is assumed that a more integrated approach of both EEA and HEA may be part of the solution. Based on the outcome of an Expert Workshop on Extrapolations in Integrated Exposure Assessment organized by the HEROIC project in January 2014, this paper identifies perspectives and recommendations to better harmonize and extrapolate exposure assessment data, models and methods between Human Health and Environmental Risk Assessments to support the further development and promotion of the concept of IRA. Ultimately, these recommendations may feed into guidance showing when and how to apply IRA in the regulatory decision

  6. Progress in human exposure assessment for biocidal products

    NARCIS (Netherlands)

    Hemmen, J.J. van

    2004-01-01

    An important shortcoming in our present knowledge required for risk assessment of biocidal products is the assessment of human exposure. This knowledge gap has been filled in a preliminary fashion with the TNsG on human exposure to biocidal products (available from the ECB website). Explicit User

  7. Human Exposure Assessment for Air Pollution.

    Science.gov (United States)

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  8. Human exposure to bisphenol A by biomonitoring: Methods, results and assessment of environmental exposures

    International Nuclear Information System (INIS)

    Dekant, Wolfgang; Voelkel, Wolfgang

    2008-01-01

    Human exposure to bisphenol A is controversially discussed. This review critically assesses methods for biomonitoring of bisphenol A exposures and reported concentrations of bisphenol A in blood and urine of non-occupationally ('environmentally') exposed humans. From the many methods published to assess bisphenol A concentrations in biological media, mass spectrometry-based methods are considered most appropriate due to high sensitivity, selectivity and precision. In human blood, based on the known toxicokinetics of bisphenol A in humans, the expected very low concentrations of bisphenol A due to rapid biotransformation and the very rapid excretion result in severe limitations in the use of reported blood levels of bisphenol A for exposure assessment. Due to the rapid and complete excretion of orally administered bisphenol A, urine samples are considered as the appropriate body fluid for bisphenol A exposure assessment. In urine samples from several cohorts, bisphenol A (as glucuronide) was present in average concentrations in the range of 1-3 μg/L suggesting that daily human exposure to bisphenol A is below 6 μg per person (< 0.1 μg/kg bw/day) for the majority of the population

  9. Human exposure assessment: Approaches for chemicals (REACH) and biocides (BPD)

    NARCIS (Netherlands)

    Hemmen, J.J. van; Gerritsen-Ebben, R.

    2008-01-01

    The approaches that are indicated in the various guidance documents for the assessment of human exposure for chemicals and biocides are summarised. This reflects the TNsG (Technical notes for Guidance) version 2: human exposure assessment for biocidal products (1) under the BPD (Biocidal Products

  10. Quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment

    DEFF Research Database (Denmark)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive E

    2013-01-01

    exposure studies to accurately assess human health risks. ? We discuss potential and shortcomings of methods and tools with a focus on how their development influences study design. ? We propose a novel conceptual model for integrated health impact assessment of human exposure to air pollutants. ? We......Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure...... results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population...

  11. Human health risk assessment related to cyanotoxins exposure.

    Science.gov (United States)

    Funari, Enzo; Testai, Emanuela

    2008-01-01

    This review focuses on the risk assessment associated with human exposure to cyanotoxins, secondary metabolites of an ubiquitous group of photosynthetic procariota. Cyanobacteria occur especially in eutrophic inland and coastal surface waters, where under favorable conditions they attain high densities and may form blooms and scums. Cyanotoxins can be grouped according to their biological effects into hepatotoxins, neurotoxins, cytotoxins, and toxins with irritating potential, also acting on the gastrointestinal system. The chemical and toxicological properties of the main cyanotoxins, relevant for the evaluation of possible risks for human health, are presented. Humans may be exposed to cyanotoxins via several routes, with the oral one being by far the most important, occurring by ingesting contaminated drinking water, food, some dietary supplements, or water during recreational activities. Acute and short-term toxic effects have been associated in humans with exposure to high levels of cyanotoxins in drinking and bathing waters. However, the chronic exposure to low cyanotoxin levels remains a critical issue. This article identifies the actual risky exposure scenarios, provides toxicologically derived reference values, and discusses open issues and research needs.

  12. Critical elements for human health risk assessment of less than lifetime exposures.

    Science.gov (United States)

    Geraets, Liesbeth; Nijkamp, Monique M; Ter Burg, Wouter

    2016-11-01

    Less than lifetime exposure has confronted risk assessors as to how to interpret the risks for human health in case a chronic health-based limit is exceeded. Intermittent, fluctuating and peak exposures do not match with the basis of the chronic limit values possibly leading to conservative outcomes. This paper presents guidance on how to deal with human risk assessment of less than lifetime exposure. Important steps to be considered are characterization of the human exposure situation, evaluation whether the human less than lifetime exposure scenario corresponds to a non-chronic internal exposure: toxicokinetic and toxicodynamic considerations, and, finally, re-evaluation of the risk assessment. Critical elements for these steps are the mode of action, Haber's rule, and toxicokinetics (ADME) amongst others. Previous work for the endpoints non-genotoxic carcinogenicity and developmental toxicity is included in the guidance. The guidance provides a way to consider the critical elements, without setting default factors to correct for the less than lifetime exposure in risk assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quantifying human exposure to air pollution--moving from static monitoring to spatio-temporally resolved personal exposure assessment.

    Science.gov (United States)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive Eric

    2013-01-15

    Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population distributions. New developments in sensor technology now enable us to monitor personal exposure to air pollutants directly while people are moving through their activity spaces and varying concentration fields. The literature review on which this paper is based on reflects recent developments in the assessment of human exposure to air pollution. This includes the discussion of methodologies and concepts, and the elaboration of approaches and study designs applied in the field. We identify shortcomings of current approaches and discuss future research needs. We close by proposing a novel conceptual model for the integrated assessment of human exposure to air pollutants taking into account latest technological capabilities and contextual information. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. ASSESSMENT OF HUMAN EXPOSURE TO TOLUENE DIISOCYANATE

    Directory of Open Access Journals (Sweden)

    OLIVIA ANCA RUSU

    2011-03-01

    Full Text Available Assessment of human exposure to toluene diisocyanate. Toluene diisocyanate (TDI, an aromatic compound, may be dangerous for human health. Diisocyanates have wide industrial use in the fabrication of flexible and rigid foams, fibers, elastomers, and coatings such as paints and varnishes. Isocyanates are known skin and respiratory sensitizers, and proper engineering controls should be in place to prevent exposure to isocyanate liquid and vapor; exposure to TDI vapors is well documented to increase asthma risk. The study focused on the exposure of workers and nearby populations to toluene diisocyanate in a Polyurethane Foam Factory located in Baia Mare, Romania. Workplace air measurements were performed in different departments of the plant, after sampling either in fixed points or as personal monitoring. Sampling in four different locations of Baia Mare town was carried out, - during and after the foaming process. TDI sampling was performed on silica cartridge followed by GC-MS analysis. TDI concentration at workplace was lower than 0,035 mg/m³, which represents the permissible exposure limit, while in the city the TDI concentration had shown values below 0,20 μg/m³. Health assessment of a group of 49 workers was based on questionnaire interview, determination of TDI antibodies and lung function tests. Data collected until this stage do not show any negative effects of TDI on the employees health. Since this plant had only recently begun operating, continuous workplace and ambient air TDI monitoring, along with workers health surveillance, is deemed necessary.

  15. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Sevcenko, V.A.; Rubanovic, A.V.

    2002-01-01

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  16. ASSESSING CHILDREN'S EXPOSURES TO PESTICIDES: AN IMPORTANT APPLICATION OF THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL (SHEDS)

    Science.gov (United States)

    Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...

  17. Indicative and complementary effects of human biological indicators for heavy metal exposure assessment.

    Science.gov (United States)

    Xing, Ruiya; Li, Yonghua; Zhang, Biao; Li, Hairong; Liao, Xiaoyong

    2017-10-01

    Although human biological indicators have been widely utilized for biomonitoring environmental pollutants in health exposure assessment, the relationship between internal and external exposure has not yet been adequately established. In this study, we collected and analyzed 61 rice, 56 pepper, and 58 soil samples, together with 107 hair, 107 blood, and 107 urine samples from residents living in selected intensive mining areas in China. Concentrations of most of the four elements considered (Pb, Cd, Hg, and Se) exceeded national standards, implying high exposure risk in the study areas. Regression analysis also revealed a correlation (0.33, P human hair (as well as in human blood); to some extent, Pb content in hair and blood could therefore be used to characterize external Pb exposure. The correlation between Hg in rice and in human hair (up to 0.5, P human hair for Hg exposure. A significant correlation was also noted between concentrations of some elements in different human samples, for example, between Hg in hair and blood (0.641, P assessing heavy metal exposure.

  18. An approach for assessing human exposures to chemical mixtures in the environment

    International Nuclear Information System (INIS)

    Rice, Glenn; MacDonell, Margaret; Hertzberg, Richard C.; Teuschler, Linda; Picel, Kurt; Butler, Jim; Chang, Young-Soo; Hartmann, Heidi

    2008-01-01

    Humans are exposed daily to multiple chemicals, including incidental exposures to complex chemical mixtures released into the environment and to combinations of chemicals that already co-exist in the environment because of previous releases from various sources. Exposures to chemical mixtures can occur through multiple pathways and across multiple routes. In this paper, we propose an iterative approach for assessing exposures to environmental chemical mixtures; it is similar to single-chemical approaches. Our approach encompasses two elements of the Risk Assessment Paradigm: Problem Formulation and Exposure Assessment. Multiple phases of the assessment occur in each element of the paradigm. During Problem Formulation, analysts identify and characterize the source(s) of the chemical mixture, ensure that dose-response and exposure assessment measures are concordant, and develop a preliminary evaluation of the mixture's fate. During Exposure Assessment, analysts evaluate the fate of the chemicals comprising the mixture using appropriate models and measurement data, characterize the exposure scenario, and estimate human exposure to the mixture. We also describe the utility of grouping the chemicals to be analyzed based on both physical-chemical properties and an understanding of environmental fate. In the article, we also highlight the need for understanding of changes in the mixture composition in the environment due to differential transport, differential degradation, and differential partitioning to other media. The section describes the application of the method to various chemical mixtures, highlighting issues associated with assessing exposures to chemical mixtures in the environment

  19. A flexible matrix-based human exposure assessment framework suitable for LCA and CAA

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Ernstoff, Alexi; Huang, Lei

    2016-01-01

    are not applicable to all types of near-field chemical releases from consumer products, e.g. direct dermal application. A consistent near-and far-field framework is needed for life cycle assessment (LCA) and chemical alternative assessment (CAA) to inform mitigation of human exposure to harmful chemicals. To close......Humans can be exposed to chemicals via near-field exposure pathways (e.g. through consumer product use) and far-field exposure pathways (e.g. through environmental emissions along product life cycles). Pathways are often complex where chemicals can transfer directly from products to humans during...... use or exchange between near-and far-field compartments until sub -fractions reach humans via inhalation, ingestion or dermal uptake. Currently, however, multimedia exposure models mainly focus on far-field exposure pathways. Metrics and modeling approaches used in far-field, emission-based models...

  20. An introduction to the indirect exposure assessment approach: modeling human exposure using microenvironmental measurements and the recent National Human Activity Pattern Survey.

    Science.gov (United States)

    Klepeis, N E

    1999-01-01

    Indirect exposure approaches offer a feasible and accurate method for estimating population exposures to indoor pollutants, including environmental tobacco smoke (ETS). In an effort to make the indirect exposure assessment approach more accessible to people in the health and risk assessment fields, this paper provides examples using real data from (italic>a(/italic>) a week-long personal carbon monoxide monitoring survey conducted by the author; and (italic>b(/italic>) the 1992 to 1994 National Human Activity Pattern Survey (NHAPS) for the United States. The indirect approach uses measurements of exposures in specific microenvironments (e.g., homes, bars, offices), validated microenvironmental models (based on the mass balance equation), and human activity pattern data obtained from questionnaires to predict frequency distributions of exposure for entire populations. This approach requires fewer resources than the direct approach to exposure assessment, for which the distribution of monitors to a representative sample of a given population is necessary. In the indirect exposure assessment approach, average microenvironmental concentrations are multiplied by the total time spent in each microenvironment to give total integrated exposure. By assuming that the concentrations encountered in each of 10 location categories are the same for different members of the U.S. population (i.e., the NHAPS respondents), the hypothetical contribution that ETS makes to the average 24-hr respirable suspended particle exposure for Americans working their main job is calculated in this paper to be 18 microg/m3. This article is an illustrative review and does not contain an actual exposure assessment or model validation. Images Figure 3 Figure 4 PMID:10350522

  1. Pesticide Flow Analysis to Assess Human Exposure in Greenhouse Flower Production in Colombia

    Directory of Open Access Journals (Sweden)

    Claudia R. Binder

    2013-03-01

    Full Text Available Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology. The transfer coefficients were obtained using the whole body dosimetry method for dermal exposure and the button personal inhalable aerosol sampler for inhalation exposure, using the tracer uranine as a pesticide surrogate. The case study was a greenhouse rose farm in the Bogota Plateau in Colombia. The approach was applied to estimate the exposure to pesticides such as mancozeb, carbendazim, propamocarb hydrochloride, fosetyl, carboxin, thiram, dimethomorph and mandipropamide. We found dermal absorption estimations close to the AOEL reference values for the pesticides carbendazim, mancozeb, thiram and mandipropamide during the study period. In addition, high values of dermal exposure were found on the forearms, hands, chest and legs of study participants, indicating weaknesses in the overlapping areas of the personal protective equipment parts. These results show how the material flow analysis methodology can be applied in the field of human exposure for early recognition of the dispersion of pesticides and support the development of measures to improve operational safety during pesticide management. Furthermore, the model makes it possible to identify the status quo of the health risk faced by workers in the study area.

  2. A margin-of-exposure approach to assessment of noncancer risks of dioxins based on human exposure and response data.

    Science.gov (United States)

    Aylward, Lesa L; Goodman, Julie E; Charnley, Gail; Rhomberg, Lorenz R

    2008-10-01

    Risk assessment of human environmental exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFs) and other dioxin-like compounds is complicated by several factors, including limitations in measuring intakes because of the low concentrations of these compounds in foods and the environment and interspecies differences in pharmacokinetics and responses. We examined the feasibility of relying directly on human studies of exposure and potential responses to PCDD/PCDFs and related compounds in terms of measured lipid-adjusted concentrations to assess margin of exposure (MOE) in a quantitative, benchmark dose (BMD)-based framework using representative exposure and selected response data sets. We characterize estimated central tendency and upper-bound general U.S. population lipid-adjusted concentrations of PCDD/PCDFs from the 1970s and early 2000s based on available data sets. Estimates of benchmark concentrations for three example responses of interest (induction of cytochrome P4501A2 activity, dental anomalies, and neonatal thyroid hormone alterations) were derived based on selected human studies. The exposure data sets indicate that current serum lipid concentrations in young adults are approximately 6- to 7-fold lower than 1970s-era concentrations. Estimated MOEs for each end point based on current serum lipid concentrations range from 100 for dental anomalies-approximately 6-fold greater than would have existed during the 1970s. Human studies of dioxin exposure and outcomes can be used in a BMD framework for quantitative assessments of MOE. Incomplete exposure characterization can complicate the use of such studies in a BMD framework.

  3. Integrated Environmental Assessment Part III: ExposureAssessment

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Small, Mitchell J.

    2006-06-01

    Human exposure assessment is a key step in estimating the environmental and public health burdens that result chemical emissions in the life cycle of an industrial product or service. This column presents the third in a series of overviews of the state of the art in integrated environmental assessment - earlier columns described emissions estimation (Frey and Small, 2003) and fate and transport modeling (Ramaswami, et al., 2004). When combined, these first two assessment elements provide estimates of ambient concentrations in the environment. Here we discuss how both models and measurements are used to translate ambient concentrations into metrics of human and ecological exposure, the necessary precursors to impact assessment. Exposure assessment is the process of measuring and/or modeling the magnitude, frequency and duration of contact between a potentially harmful agent and a target population, including the size and characteristics of that population (IPCS, 2001; Zartarian, et al., 2005). Ideally the exposure assessment process should characterize the sources, routes, pathways, and uncertainties in the assessment. Route of exposure refers to the way that an agent enters the receptor during an exposure event. Humans contact pollutants through three routes--inhalation, ingestion, and dermal uptake. Inhalation occurs in both outdoor environments and indoor environments where most people spend the majority of their time. Ingestion includes both water and food, as well as soil and dust uptake due to hand-to-mouth activity. Dermal uptake occurs through contacts with consumer products; indoor and outdoor surfaces; the water supply during washing or bathing; ambient surface waters during swimming or boating; soil during activities such as work, gardening, and play; and, to a lesser extent, from the air that surrounds us. An exposure pathway is the course that a pollutant takes from an ambient environmental medium (air, soil, water, biota, etc), to an exposure medium

  4. Biomonitoring of the mycotoxin Zearalenone: current state-of-the art and application to human exposure assessment.

    Science.gov (United States)

    Mally, Angela; Solfrizzo, Michele; Degen, Gisela H

    2016-06-01

    Zearalenone (ZEN), a mycotoxin with high estrogenic activity in vitro and in vivo, is a widespread food contaminant that is commonly detected in maize, wheat, barley, sorghum, rye and other grains. Human exposure estimates based on analytical data on ZEN occurrence in various food categories and food consumption data suggest that human exposure to ZEN and modified forms of ZEN may be close to or even exceed the tolerable daily intake (TDI) derived by the European Food Safety Authority (EFSA) for some consumer groups. Considering the inherent uncertainties in estimating dietary intake of ZEN that may lead to an under- or overestimation of ZEN exposure and consequently human risk and current lack of data on vulnerable consumer groups, there is a clear need for more comprehensive and reliable exposure data to refine ZEN risk assessment. Human biomonitoring (HBM) is increasingly being recognized as an efficient and cost-effective way of assessing human exposure to food contaminants, including mycotoxins. Based on animal and (limited) human data on the toxicokinetics of ZEN, it appears that excretion of ZEN and its major metabolites may present suitable biomarkers of ZEN exposure. In view of the limitations of available dietary exposure data on ZEN and its modified forms, the purpose of this review is to provide an overview of recent studies utilizing HBM to monitor and assess human exposure to ZEN. Considerations are given to animal and human toxicokinetic data relevant to HBM, analytical methods, and available HBM data on urinary biomarkers of ZEN exposure in different cohorts.

  5. Biocides Steering Group on human exposure assessment: a preliminary report.

    Science.gov (United States)

    van Hemmen, J J

    1999-06-30

    In a project granted by DG XI of the European Commission, it is attempted to collate experimental and theoretical data on human (workers and consumers) exposure assessment to biocidal products, and to outline the methodology for sampling and measurement. On the basis of the available evidence, approaches are presented for the exposure assessment to be used for estimation of risks in authorization procedures under the recently accepted Directive 98/8/EC. Gaps in knowledge are indicated, making it possible to study the issues involved in a comprehensive and cost-effective way. Some recommendations are given on how to best do this. The current project has been detailed in a final report.

  6. Ecological and human exposure assessment to PBDEs in Adige River.

    Science.gov (United States)

    Giulivo, Monica; Suciu, Nicoleta Alina; Eljarrat, Ethel; Gatti, Marina; Capri, Ettore; Barcelo, Damia

    2018-07-01

    The interest for environmental issues and the concern resulting from the potential exposure to contaminants were the starting point to develop methodologies in order to evaluate the consequences that those might have over both the environment and human health. Considering the feature of POPs, including PBDEs, such as bioaccumulation, biomagnification, long-range transport and adverse effects even long time after exposure, risk assessment of POPs requires specific approaches and tools. In this particular context, the MERLIN-Expo tool was used to assess the aquatic environmental exposure of Adige River to PBDEs and the accumulation of PBDEs in humans through the consumption of possible contaminated local aquatic food. The aquatic food web models provided as output of the deterministic simulation the time trend of concentrations for twenty years of BDE-47 and total PBDEs, expressed using the physico-chemical properties of BDE-47, in aquatic organisms of the food web of Adige River. For BDE-47, the highest accumulated concentrations were detected for two benthic species: Thymallus thymallus and Squalius cephalus whereas the lowest concentrations were obtained for the pelagic specie Salmo trutta marmoratus. The trend obtained for the total PBDEs, calculated using the physico-chemical properties of BDE-47, follows the one of BDE-47. For human exposure, different BDE-47 and total PBDEs concentration trends between children, adolescent, adults and elderly were observed, probably correlated with the human intake of fish products in the daily diet and the ability to metabolize these contaminants. In detail, for the adolescents, adults and elderly a continuous accumulation of the target contaminants during the simulation's years was observed, whereas for children a plateau at the end of the simulation period was perceived. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Major national human biomonitoring programs in chemical exposure assessment

    Directory of Open Access Journals (Sweden)

    Judy Choi

    2015-07-01

    Full Text Available Human biomonitoring (HBM programs have been established in several countries around the world in order to monitor the levels of chemical exposures in the general population and qualify health risk assessment of national and international interest. Study design, population, sample collection, and chemical analysis must be considered when comparing and interpreting the results. In this review, the objectives and brief descriptions of the major national HBM programs in North America, Europe, and Asia are provided. Similarities and differences observed from a comparative analysis among these programs, including the stratification of data according to age, sex, socioeconomic background, etc. as well as the identification of chemical exposure associated with food intake, are discussed. Overall, although there are some discrepancies in the study designs among the reviewed national HBM programs, results from the programs can provide useful information such as chemical levels found within the general population of a country that can be compared. Furthermore, the results can be used by regulatory authorities or the government to enforce legislations in order to reduce the exposure of chemicals into the human body.

  8. A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Moon Hee

    2002-01-01

    The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house using by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, a PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater

  9. Biocides Steering Group on human exposure assessment: A preliminary report

    NARCIS (Netherlands)

    Hemmen, J.J. van

    1999-01-01

    In a project granted by DG XI of the European Commission, it is attempted to collate experimental and theoretical data on human (workers and consumers) exposure assessment to biocidal products, and to outline the methodology for sampling and measurement. On the basis of the available evidence,

  10. Truncated Levy flights and agenda-based mobility are useful for the assessment of personal human exposure

    International Nuclear Information System (INIS)

    Schlink, Uwe; Ragas, Ad M.J.

    2011-01-01

    Receptor-oriented approaches can assess the individual-specific exposure to air pollution. In such an individual-based model we analyse the impact of human mobility to the personal exposure that is perceived by individuals simulated in an exemplified urban area. The mobility models comprise random walk (reference point mobility, RPM), truncated Levy flights (TLF), and agenda-based walk (RPMA). We describe and review the general concepts and provide an inter-comparison of these concepts. Stationary and ergodic behaviour are explained and applied as well as performance criteria for a comparative evaluation of the investigated algorithms. We find that none of the studied algorithm results in purely random trajectories. TLF and RPMA prove to be suitable for human mobility modelling, because they provide conditions for very individual-specific trajectories and exposure. Suggesting these models we demonstrate the plausibility of their results for exposure to air-borne benzene and the combined exposure to benzene and nonane. - Highlights: → Human exposure to air pollutants is influenced by a person's movement in the urban area. → We provide a simulation study of approaches to modelling personal exposure. → Agenda-based models and truncated Levy flights are recommended for exposure assessment. → The procedure is demonstrated for benzene exposure in an urban region. - Truncated Levy flights and agenda-based mobility are useful for the assessment of personal human exposure.

  11. Probabilistic integrated risk assessment of human exposure risk to environmental bisphenol A pollution sources.

    Science.gov (United States)

    Fu, Keng-Yen; Cheng, Yi-Hsien; Chio, Chia-Pin; Liao, Chung-Min

    2016-10-01

    Environmental bisphenol A (BPA) exposure has been linked to a variety of adverse health effects such as developmental and reproductive issues. However, establishing a clear association between BPA and the likelihood of human health is complex yet fundamentally uncertain. The purpose of this study was to assess the potential exposure risks from environmental BPA among Chinese population based on five human health outcomes, namely immune response, uterotrophic assay, cardiovascular disease (CVD), diabetes, and behavior change. We addressed these health concerns by using a stochastic integrated risk assessment approach. The BPA dose-dependent likelihood of effects was reconstructed by a series of Hill models based on animal models or epidemiological data. We developed a physiologically based pharmacokinetic (PBPK) model that allows estimation of urinary BPA concentration from external exposures. Here we showed that the daily average exposure concentrations of BPA and urinary BPA estimates were consistent with the published data. We found that BPA exposures were less likely to pose significant risks for infants (0-1 year) and adults (male and female >20 years) with human long-term BPA susceptibility in relation to multiple exposure pathways, and for informing the public of the negligible magnitude of environmental BPA pollution impacts on human health.

  12. Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust.

    Science.gov (United States)

    Cao, Zhi-Guo; Yu, Gang; Chen, Yong-Shan; Cao, Qi-Ming; Fiedler, Heidelore; Deng, Shu-Bo; Huang, Jun; Wang, Bin

    2012-11-15

    For researches on toxic chemicals in settled indoor dust, selection of dust fraction is a critical influencing factor to the accuracy of human exposure risk assessment results. However, analysis of the selection of dust fraction in recent studies revealed that there is no consensus. This study classified and presented researches on distribution of toxic chemicals according to dust particle size and on relationship between dust particle size and human exposure possibility. According to the literature, beyond the fact that there were no consistent conclusions on particle size distribution of adherent fraction, dust with particle size less than 100 μm should be paid more attention and that larger than 250 μm is neither adherent nor proper for human exposure risk assessment. Calculation results based on literature data show that with different selections of dust fractions, analytical results of toxic chemicals would vary up to 10-fold, which means that selecting dust fractions arbitrarily will lead to large errors in risk assessment of human exposure to toxic chemicals in settled dust. Taking into account the influence of dust particle size on risk assessment of human exposure to toxic chemicals, a new methodology for risk assessment of human exposure to toxic chemicals in settled indoor dust is proposed and human exposure parameter systems to settled indoor dust are advised to be established at national and regional scales all over the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Final report on the Project Research 'Assessment of Human Exposure to Environmental Radiation'

    International Nuclear Information System (INIS)

    1989-03-01

    This is the final report of the Project Research, 'Assessment of Human Exposure to Environmental Radiation', which has been conducted during the period 1983-1988. With the objective of assessing risk of environmental radioactivity to the population, the Project was divided into the following five research groups: (1) research for establishing calculation models and parameters in transfer of radionuclides from crop species through the human body; (2) research for analyzing transfer of radionuclides in the ocean and their contributions to exposure doses in the human body; (3) research for surveying accuracy of exposure models for the external body and respiratory organ and the influential factors; (4) research for determining uptake and biokinetics of radionuclides in the body; and (5) research for estimating and evaluating physical and physiological characteristics of reference Japanese man and the populaltion doses. Effluents from nuclear power plants and reprocessing plants were regarded as radionuclide sources in the water and atmosphere. (N.K.)

  14. Improving the relevance and efficiency of human exposure assessments within the process of regulatory risk assessment.

    Science.gov (United States)

    Money, Chris

    2018-01-24

    The process for undertaking exposure assessments varies dependent on its purpose. But for exposure assessments to be relevant and accurate, they are reliant on access to reliable information on key exposure determinants. Acquiring such information is seldom straightforward and can take significant time and resources. This articles examines how the application of tiered and targeted approaches to information acquisition, within the context of European human health risk assessments, can not only lead to improvements in the efficiency and effectiveness of the process but also in the confidence of stakeholders in its outputs. The article explores how the benefits might be further improved through the coordination of such activities, as well as those areas that represent barriers to wider international harmonisation.

  15. A Margin-of-Exposure Approach to Assessment of Noncancer Risks of Dioxins Based on Human Exposure and Response Data

    OpenAIRE

    Aylward, Lesa L.; Goodman, Julie E.; Charnley, Gail; Rhomberg, Lorenz R.

    2008-01-01

    Background Risk assessment of human environmental exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFs) and other dioxin-like compounds is complicated by several factors, including limitations in measuring intakes because of the low concentrations of these compounds in foods and the environment and interspecies differences in pharmacokinetics and responses. Objectives We examined the feasibility of relying directly on human studies of exposure and potential responses to...

  16. Estimating human exposure to perfluoroalkyl acids via solid food and drinks : Implementation and comparison of different dietary assessment methods

    NARCIS (Netherlands)

    Papadopoulou, Eleni; Poothong, Somrutai; Koekkoek, Jacco; Lucattini, Luisa; Padilla-Sánchez, Juan Antonio; Haugen, Margaretha; Herzke, Dorte; Valdersnes, Stig; Maage, Amund; Cousins, Ian T.; Leonards, Pim E.G.; Småstuen Haug, Line

    2017-01-01

    Background Diet is a major source of human exposure to hazardous environmental chemicals, including many perfluoroalkyl acids (PFAAs). Several assessment methods of dietary exposure to PFAAs have been used previously, but there is a lack of comparisons between methods. Aim To assess human exposure

  17. Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods.

    Science.gov (United States)

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Ford, Randall M; Baker, Robert C; Pradhan, Abani K

    2016-01-04

    Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to

  18. Assessing human exposure risk to cadmium through inhalation and seafood consumption

    International Nuclear Information System (INIS)

    Ju, Yun-Ru; Chen, Wei-Yu; Liao, Chung-Min

    2012-01-01

    Highlights: ► Trophically available fraction in seafood and bioaccessibility is linked. ► Human health risk to Cd can via inhalation and seafood consumption. ► Female had the higher Cd accumulation in urine and blood than male. ► Cigarette smoking is a major determinant of human Cd intake. - Abstract: The role of cadmium (Cd) bioaccessibility in risk assessment is less well studied. The aim of this study was to assess human health risk to Cd through inhalation and seafood consumption by incorporating bioaccessibility. The relationships between trophically available Cd and bioaccessibility were constructed based on available experimental data. We estimated Cd concentrations in human urine and blood via daily intake from seafood consumption and inhalation based on a physiologically-based pharmacokinetic (PBPK) model. A Hill-based dose–response model was used to assess human renal dysfunction and peripheral arterial disease risks for long-term Cd exposure. Here we showed that fish had higher bioaccessibility (∼83.7%) than that of shellfish (∼73.2%) for human ingestion. Our results indicated that glomerular and tubular damage among different genders and smokers ranged from 18.03 to 18.18%. Our analysis showed that nonsmokers had 50% probability of peripheral arterial disease level exceeding from 3.28 to 8.80%. Smoking populations had 2–3 folds higher morbidity risk of peripheral arterial disease than those of nonsmokers. Our study concluded that the adverse effects of Cd exposure are exacerbated when high seafood consumption coincides with cigarette smoking. Our work provides a framework that could more accurately address risk dose dependency of Cd hazard.

  19. An Exposure Assessment of Polybrominated Diphenyl Ethers ...

    Science.gov (United States)

    EPA announced the availability of the final report, An Exposure Assessment of Polybrominated Diphenyl Ethers. This report provides a comprehensive assessment of the exposure of Americans to this class of persistent organic pollutants. Individual chapters in this document address: the production, use, and lifecycle of PBDEs; environmental fate; environmental levels; and human exposure. This final report addresses the exposure assessment needs identified in the OPBDE Workgroup project plan. It provides a comprehensive assessment of the exposure of Americans to this class of persistent organic pollutants. Individual chapters in this document address: the production, use, and lifecycle of PBDEs; environmental fate; environmental levels; and human exposure.

  20. Assessment of genetic risk for human exposure to radiation. State of the art

    International Nuclear Information System (INIS)

    Shevchenko, V.A.

    2000-01-01

    Historical aspects of the conception of genetic risk of human irradiation for recent 40 years. Methodology of assessing the genetic risk of radiation exposure is based on the concept of hitting the target. To predict genetic risk of irradiation, the direct and indirect methods of assessment, extrapolation, integral and populational criteria of risk analysis is widely used. Combination of these methods permits to calculate the risk from human exposure on the basis of data obtained for mice. Method of doubling dose based on determination of the dose doubling the level of natural mutational process in humans is the main one used to predict the genetic risk. Till 1972 the main model for assessing the genetic risk was the human/mouse model (the use of data on the spontaneous human variability and data on the frequency of induced mutations in mice). In the period from 1972 till 1994 the mouse/mouse model was intensively elaborated in many laboratories. This model was also used in this period to analyse the genetic risk of human irradiation. Recent achievements associated with the study of molecular nature of many hereditary human diseases as well as the criticism of a fundamental principles of the mouse/mouse model for estimating the genetic risk on a new basis. Estimates of risk for the different classes of genetic diseases have been obtained using the doubling-dose method [ru

  1. Risk assessment of human health from exposure to the discharged ballast water after full-scale electrolysis treatment.

    Science.gov (United States)

    Zhang, Nahui; Wang, Yidan; Xue, Junzeng; Yuan, Lin; Wang, Qiong; Liu, Liang; Wu, Huixian; Hu, Kefeng

    2016-06-01

    The presence of disinfection by-products (DBPs) releasing from ballast water management systems (BWMS) can cause a possible adverse effects on humans. The objectives of this study were to compute the Derived No Effect Levels (DNELs) for different exposure scenarios and to compare these levels with the exposure levels from the measured DBPs in treated ballast water. The risk assessment showed that when using animal toxicity data, all the DNELs values were approximately 10(3)-10(12) times higher than the exposure levels of occupational and general public exposure scenarios, indicating the level of risk was low (risk characterization ratios (RCRs) < 1). However, when using human data, the RCRs were higher than 1 for dichlorobromomethane and trichloromethane, indicating that the risk of adverse effects on human were significant. This implies that there are apparent discrepancies between risk characterization from animal and human data, which may affect the overall results. We therefore recommend that when appropriate, human data should be used in risk assessment as much as possible, although human data are very limited. Moreover, more appropriate assessment factors can be considered to be employed in estimating the DNELs for human when the animal data is selected as the dose descriptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting.

    Directory of Open Access Journals (Sweden)

    André Ravel

    Full Text Available Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF. It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79% human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases whereas exposure to cattle (manure ranked second (14-19% of attributable cases, the other sources being minor (including beef meat. In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.

  3. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting.

    Science.gov (United States)

    Ravel, André; Hurst, Matt; Petrica, Nicoleta; David, Julie; Mutschall, Steven K; Pintar, Katarina; Taboada, Eduardo N; Pollari, Frank

    2017-01-01

    Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF). It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water) collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79%) human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases) whereas exposure to cattle (manure) ranked second (14-19% of attributable cases), the other sources being minor (including beef meat). In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.

  4. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    Science.gov (United States)

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The EPA's human exposure research program for assessing cumulative risk in communities.

    Science.gov (United States)

    Zartarian, Valerie G; Schultz, Bradley D

    2010-06-01

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available and most relevant, and understanding how to use those tools; given these barriers, community groups tend to rely more on risk perception than science. The U.S. Environmental Protection Agency's Office of Research and Development, National Exposure Research Laboratory (NERL) and collaborators are developing and applying tools (models, data, methods) for enhancing cumulative risk assessments. The NERL's "Cumulative Communities Research Program" focuses on key science questions: (1) How to systematically identify and prioritize key chemical stressors within a given community?; (2) How to develop estimates of exposure to multiple stressors for individuals in epidemiologic studies?; and (3) What tools can be used to assess community-level distributions of exposures for the development and evaluation of the effectiveness of risk reduction strategies? This paper provides community partners and scientific researchers with an understanding of the NERL research program and other efforts to address cumulative community risks; and key research needs and opportunities. Some initial findings include the following: (1) Many useful tools exist for components of risk assessment, but need to be developed collaboratively with end users and made more comprehensive and user-friendly for practical application; (2) Tools for quantifying cumulative risks and impact of community risk reduction activities are also needed; (3) More data are needed to assess community- and individual-level exposures, and to link exposure-related information with health effects; and (4) Additional research is needed to incorporate risk-modifying factors ("non-chemical stressors") into cumulative risk assessments. The products of this

  6. Human biomonitoring after chemical incidents and during short-term maintenance work as a tool for exposure analysis and assessment.

    Science.gov (United States)

    Bader, M; Van Weyenbergh, T; Verwerft, E; Van Pul, J; Lang, S; Oberlinner, C

    2014-12-15

    Human biomonitoring (HBM) is frequently used for the analysis and assessment of exposure to chemicals under routine working conditions. In recent years, HBM has also been applied to monitor the exposure of the general population, and of emergency responders in the aftermath of chemical incidents. Two examples of targeted HBM programs in the chemical industry are described and discussed in this paper: (1) analysis and assessment of the exposure of firefighters and chemical workers after the spill of p-chloroaniline from a burning chemical barrel, and (2) biomonitoring of maintenance workers potentially exposed to benzene during regular turnarounds. The results of these investigations underline that human biomonitoring contributes substantially to comprehensive exposure analyses, human health risk assessments and communication. In addition, regular HBM surveillance and feedback can assist in the continuous improvement of workplace safety measures and exposure control. In conclusion, data on accidental or short-term exposure to hazardous chemicals are an important source of information for the further development of limit and assessment values, the validation of biomarkers and of targeted HBM programs for both routine monitoring and disaster management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Model for screening-level assessment of near-field human exposure to neutral organic chemicals released indoors.

    Science.gov (United States)

    Zhang, Xianming; Arnot, Jon A; Wania, Frank

    2014-10-21

    Screening organic chemicals for hazard and risk to human health requires near-field human exposure models that can be readily parametrized with available data. The integration of a model of human exposure, uptake, and bioaccumulation into an indoor mass balance model provides a quantitative framework linking emissions in indoor environments with human intake rates (iRs), intake fractions (iFs) and steady-state concentrations in humans (C) through consideration of dermal permeation, inhalation, and nondietary ingestion exposure pathways. Parameterized based on representative indoor and adult human characteristics, the model is applied here to 40 chemicals of relevance in the context of human exposure assessment. Intake fractions and human concentrations (C(U)) calculated with the model based on a unit emission rate to air for these 40 chemicals span 2 and 5 orders of magnitude, respectively. Differences in priority ranking based on either iF or C(U) can be attributed to the absorption, biotransformation and elimination processes within the human body. The model is further applied to a large data set of hypothetical chemicals representative of many in-use chemicals to show how the dominant exposure pathways, iF and C(U) change as a function of chemical properties and to illustrate the capacity of the model for high-throughput screening. These simulations provide hypotheses for the combination of chemical properties that may result in high exposure and internal dose. The model is further exploited to highlight the role human contaminant uptake plays in the overall fate of certain chemicals indoors and consequently human exposure.

  8. Assessment of human exposure to environmental sources of nickel in Europe: Inhalation exposure.

    Science.gov (United States)

    Buekers, Jurgen; De Brouwere, Katleen; Lefebvre, Wouter; Willems, Hanny; Vandenbroele, Marleen; Van Sprang, Patrick; Eliat-Eliat, Maxime; Hicks, Keegan; Schlekat, Christian E; Oller, Adriana R

    2015-07-15

    The paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered. The value of 20ngNi/m(3) is the current EU air quality guidance value. The value of 60ngNi/m(3) is derived here based on recently published Ni data (Oller et al., 2014). Both values are protective for respiratory toxicity and carcinogenicity but differ in the application of toxicokinetic adjustments and cancer threshold considerations. Estimates of air Ni concentrations at the European regional scale were derived from the database of the European Environment Agency. The 50th and 90th percentile regional exposures were below both DNEL values. To assess REACH compliance at the local scale, measured ambient air data are preferred but are often unavailable. A tiered approach for the use of modelled ambient air concentrations was developed, starting with the application of the default EUSES model and progressing to more sophisticated models. As an example, the tiered approach was applied to 33 EU Ni sulphate producers' and downstream users' sites. Applying the EUSES model demonstrates compliance with a DNEL of 60ngNi/m(3) for the majority of sites, while the value of the refined modelling is demonstrated when a DNEL of 20ngNi/m(3) is considered. The proposed approach, applicable to metals in general, can be used in the context of REACH, for refining the risk characterisation and guiding the selection of risk management measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. ASSESSING HUMAN EXPOSURE TO GRASS POLLEN IN DENMARK

    DEFF Research Database (Denmark)

    Peel, Robert George; Hertel, Ole; Herbert, Rob

    Objectives: Exposure to pollen is typically assessed using data collected at fixed roof-top monitoring stations, which give a general picture of airborne pollen concentrations over a wide region. Actual exposure levels can be obtained through personal exposure monitoring. This is typically done u...

  10. Indoor human exposure to size-fractionated aerosols during the 2015 Southeast Asian smoke haze and assessment of exposure mitigation strategies

    Science.gov (United States)

    Sharma, Ruchi; Balasubramanian, Rajasekhar

    2017-11-01

    The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72-157 μg m-3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m-3) several times over. The smoke haze episode not only affected ambient air quality, but also indoor air quality due to the migration of PM of different sizes from the outdoor to the indoor environment. Despite the frequent occurrence of smoke haze episodes over the years, their potential health impacts on indoor building occupants remain largely unknown in SEA due to the lack of systematic investigations and observational data. The current work was carried out in Singapore to assess human exposure to size-resolved PM during the 2015 smoke haze episode, and to evaluate the effectiveness of exposure mitigation measures in smoke-haze-impacted naturally ventilated indoor environments. The potential health risks associated with exposure to PM2.5 were assessed based on the concentrations of redox active particulate-bound trace elements, which are known to be harmful to human health, with and without exposure mitigation. Overall, it was observed that human health exposure to PM2.5 and its carcinogenic chemical components was reduced substantially by 62% (p health.

  11. Assessment of human dietary exposure to arsenic through rice.

    Science.gov (United States)

    Davis, Matthew A; Signes-Pastor, Antonio J; Argos, Maria; Slaughter, Francis; Pendergrast, Claire; Punshon, Tracy; Gossai, Anala; Ahsan, Habibul; Karagas, Margaret R

    2017-05-15

    Rice accumulates 10-fold higher inorganic arsenic (i-As), an established human carcinogen, than other grains. This review summarizes epidemiologic studies that examined the association between rice consumption and biomarkers of arsenic exposure. After reviewing the literature we identified 20 studies, among them included 18 observational and 2 human experimental studies that reported on associations between rice consumption and an arsenic biomarker. Among individuals not exposed to contaminated water, rice is a source of i-As exposure - rice consumption has been consistently related to arsenic biomarkers, and the relationship has been clearly demonstrated in experimental studies. Early-life i-As exposure is of particular concern due to its association with lifelong adverse health outcomes. Maternal rice consumption during pregnancy also has been associated with infant toenail total arsenic concentrations indicating that dietary exposure during pregnancy results in fetal exposure. Thus, the collective evidence indicates that rice is an independent source of arsenic exposure in populations around the world and highlights the importance of investigating its affect on health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. A PROBABILISTIC EXPOSURE ASSESSMENT FOR CHILDREN WHO CONTACT CCA-TREATED PLAYSETS AND DECKS USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL FOR THE WOOD PRESERVATIVE EXPOSURE SCENARIO

    Science.gov (United States)

    The U.S. Environmental Protection Agency has conducted a probabilistic exposure and dose assessment on the arsenic (As) and chromium (Cr) components of Chromated Copper Arsenate (CCA) using the Stochastic Human Exposure and Dose Simulation model for wood preservatives (SHEDS-Wood...

  13. Harmonizing human exposure and toxicity characterization

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, O.; McKone, T.E.

    2017-01-01

    The UNEP-SETAC Life Cycle Initiative has launched a project to provide global guidance and build consensus on environmental life cycle impact assessment (LCIA) indicators. Human health effects from exposure to toxic chemicals was selected as impact category due to high relevance of human toxicity...... and harmonizing human toxicity characterization in LCIA. Building on initial work for the far-field and indoor air environments, and combining it with latest work on near-field consumer and occupational exposure assessment, dose-response and severity data, we aim at providing revised guidance on the development...... and use of impact factors for toxic chemicals. We propose to couple fate processes in consumer and occupational environments with existing environmental compartments and processes via a consistent and mass balance-based set of transfer fractions to quantify overall aggregated exposure to toxic substances...

  14. Estimating the human exposure to chemical substances and radiation. Definition report

    International Nuclear Information System (INIS)

    Vermeire, T.G.; Van Veen, M.P.

    1995-06-01

    This report aims at boosting the human exposure assessment activities of the RIVM with regard to chemical substances and radiation. It is the result of thorough discussions with RIVM-experts. The report starts with an overview of past developments in the area of human exposure assessment at the RIVM and continues describing recent projects. Major developments outside the Institute are also discussed. An attempt is made to harmonize definitions which are relevant for exposure assessment, i.e. definitions on exposure, intake, uptake and dose. Important gaps in the human exposure assessment work at the RIVM are identified, leading to proposals for future work. 2 figs., 31 refs., 3 appendices

  15. Deoxynivalenol Exposure in Norway, Risk Assessments for Different Human Age Groups

    Science.gov (United States)

    Sundheim, Leif; Lillegaard, Inger Therese; Fæste, Christiane Kruse; Brantsæter, Anne-Lise; Brodal, Guro; Eriksen, Gunnar Sundstøl

    2017-01-01

    Deoxynivalenol (DON) is the most common mycotoxin in Norwegian cereals, and DON is detected in most samples of crude cereal grain and cereal food commodities such as flour, bran, and oat flakes. The Norwegian Scientific Committee for Food Safety assessed the risk for adverse effects of deoxynivalenol (DON) in different age groups of the domestic population. This review presents the main results from the risk assessment, supplemented with some recently published data. Impairment of the immune system together with reduced feed intake and weight gain are the critical effects of DON in experimental animals on which the current tolerable daily intake was established. Based on food consumption and occurrence data, the mean exposure to DON in years with low and high levels of DON in the flour, respectively, were in the range of or up to two times the Tolerable Daily Intake (TDI) in 1-year-old infants and 2-year-old children. In years with high mean DON concentration, the high (95th-percentile) exposure exceeded the TDI by up to 3.5 times in 1-, 2- , 4-, and 9-year-old children. The assessment concluded that exceeding the TDI in infants and children is of concern. The estimated dietary DON intakes in adolescent and adult populations are in the range of the TDI or below, and are not a health concern. Acute human exposure to DON is not of concern in any age group. PMID:28165414

  16. Deoxynivalenol Exposure in Norway, Risk Assessments for Different Human Age Groups

    Directory of Open Access Journals (Sweden)

    Leif Sundheim

    2017-02-01

    Full Text Available Deoxynivalenol (DON is the most common mycotoxin in Norwegian cereals, and DON is detected in most samples of crude cereal grain and cereal food commodities such as flour, bran, and oat flakes. The Norwegian Scientific Committee for Food Safety assessed the risk for adverse effects of deoxynivalenol (DON in different age groups of the domestic population. This review presents the main results from the risk assessment, supplemented with some recently published data. Impairment of the immune system together with reduced feed intake and weight gain are the critical effects of DON in experimental animals on which the current tolerable daily intake was established. Based on food consumption and occurrence data, the mean exposure to DON in years with low and high levels of DON in the flour, respectively, were in the range of or up to two times the Tolerable Daily Intake (TDI in 1-year-old infants and 2-year-old children. In years with high mean DON concentration, the high (95th-percentile exposure exceeded the TDI by up to 3.5 times in 1-, 2- , 4-, and 9-year-old children. The assessment concluded that exceeding the TDI in infants and children is of concern. The estimated dietary DON intakes in adolescent and adult populations are in the range of the TDI or below, and are not a health concern. Acute human exposure to DON is not of concern in any age group.

  17. New experimental data on the human dermal absorption of Simazine and Carbendazim help to refine the assessment of human exposure.

    Science.gov (United States)

    Bányiová, Katarína; Nečasová, Anežka; Kohoutek, Jiří; Justan, Ivan; Čupr, Pavel

    2016-02-01

    Due to their widespread usage, people are exposed to pesticides on a daily basis. Although these compounds may have adverse effects on their health, there is a gap in the data and the methodology needed to reliably quantify the risks of non-occupational human dermal exposure to pesticides. We used Franz cells and human skin in order to measure the dermal absorption kinetics (steady-state flux, lag time and permeability coefficient) of Carbendazim and Simazine. These parameters were then used to refine the dermal exposure model and a probabilistic simulation was used to quantify risks resulting from exposure to pesticide-polluted waters. The experimentally derived permeability coefficient was 0.0034 cm h(-1) for Carbendazim and 0.0047 cm h(-1) for Simazine. Two scenarios (varying exposure duration and concentration, i.e. environmentally relevant and maximum solubility) were used to quantify the human health risks (hazard quotients) for Carbendazim and Simazine. While no risks were determined in the case of either scenario, the permeability coefficient, which is concentration independent and donor, formulation, compound and membrane specific, may be used in other scenarios and exposure models to quantify more precisely the dermally absorbed dose during exposure to polluted water. To the best of our knowledge, the dermal absorption kinetics parameters defined here are being published for the first time. The usage of experimental permeability parameters in combination with probabilistic risk assessment thus provides a new tool for quantifying the risks of human dermal exposure to pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Assessment of indirect human exposure to environmental sources of nickel: oral exposure and risk characterization for systemic effects.

    Science.gov (United States)

    De Brouwere, Katleen; Buekers, Jurgen; Cornelis, Christa; Schlekat, Christian E; Oller, Adriana R

    2012-03-01

    This paper describes the indirect human exposure to Ni via the oral route for the regional scale in the EU, together with a method to assess additional local exposure from industrial emissions. The approach fills a gap in the generic REACH guidance which is inadequate for assessing indirect environmental exposure of metals. Estimates of regional scale Ni dietary intake were derived from Ni dietary studies performed in the EU. Typical and Reasonable Worst Case dietary Ni intakes for the general population in the EU were below the oral Derived No Effect Level (DNEL) of Ni sulfate for systemic effects. Estimates for the Ni dietary intake at the local scale take into account the influence of aerial Ni deposition and transfer from soil to crops grown near industrial plants emitting Ni. The additional dietary exposure via this local contribution was small. Despite the use of conservative parameters for these processes, this method may underestimate dietary exposure around older industrial sites because REACH guidance does not account for historical soil contamination. Nevertheless, the method developed here can also be used as a screening tool for community-based risk assessment, as it accounts for historical soil pollution. Nickel exposure via drinking water was derived from databases on Ni tap water quality. A small proportion of the EU population (<5%) is likely to be exposed to tap water exceeding the EU standard (20 μg Ni/l). Taking into account the relative gastrointestinal absorption of Ni from water (30%) versus from solid matrices (5%), water intake constitutes, after dietary intake, the second most important pathway for oral Ni intake. Incidental ingestion of Ni from soil/dust at the regional scale, and also at the local scale, was low in comparison with dietary intake. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A comprehensive assessment of human exposure to phthalates from environmental media and food in Tianjin, China.

    Science.gov (United States)

    Ji, Yaqin; Wang, Fumei; Zhang, Leibo; Shan, Chunyan; Bai, Zhipeng; Sun, Zengrong; Liu, Lingling; Shen, Boxiong

    2014-08-30

    A total of 448 samples including foodstuffs (rice, steamed bun, vegetables, meat, poultry, fish, milk and fruits), ambient PM10, drinking water, soil, indoor PM10 and indoor dust samples from Tianjin were obtained to determine the distribution of six priority phthalates (PAEs) and assess the human exposure to them. The results indicated that DBP and DEHP were the most frequently detected PAEs in these samples. The concentrations of PAEs in environmental media were higher than those in food. We estimated the daily intake (DI) of PAEs via ingestion, inhalation and dermal absorption from five sources (food, water, air, dust and soil). Dietary intake was the main exposure source to DEP, BBP, DEHP and DOP, whereas water ingestion/absorption was the major source of exposure to DBP, DEHP and DOP. Although food and water were the overwhelmingly predominant sources of PAEs intake by Tianjin population, contaminated air was another important source of DMP, DEP and DBP contributing to up to 45% of the exposure. The results of this study will help in understanding the major pathways of human exposure to PAEs. These findings also suggest that human exposure to phthalate esters via the environment should not be overlooked. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Non-ionizing electromagnetic exposure assessment and dosimetry

    International Nuclear Information System (INIS)

    Paulsson, L.E.

    1992-11-01

    A comprehensive literature survey of advancements in the area 'human exposure assessment and dosimetry' for the years 1988-1992 has been performed by the author and published elsewhere. In the present report that material has been complemented with a historical background and a thorough description of the physical principles behind the methods and techniques. The report covers strategies, principles, methods, limitations and future developments for the area of human exposure assessment and dosimetry of electromagnetic fields form extremely low frequencies up to and including microwaves

  1. Exploring Global Exposure Factors Resources for Use in Consumer Exposure Assessments

    Science.gov (United States)

    Zaleski, Rosemary T.; Egeghy, Peter P.; Hakkinen, Pertti J.

    2016-01-01

    This publication serves as a global comprehensive resource for readers seeking exposure factor data and information relevant to consumer exposure assessment. It describes the types of information that may be found in various official surveys and online and published resources. The relevant exposure factors cover a broad range, including general exposure factor data found in published compendia and databases and resources about specific exposure factors, such as human activity patterns and housing information. Also included are resources on exposure factors related to specific types of consumer products and the associated patterns of use, such as for a type of personal care product or a type of children’s toy. Further, a section on using exposure factors for designing representative exposure scenarios is included, along with a look into the future for databases and other exposure science developments relevant for consumer exposure assessment. PMID:27455300

  2. Modeling human exposure to hazardous-waste sites: a question of completeness

    International Nuclear Information System (INIS)

    Daniels, J.I.; McKone, T.E.

    1991-01-01

    In risk analysis, we use human-exposure assessments to translate contaminant sources into quantitative estimates of the amount of contaminant that comes in contact with human-environment boundaries, that is, the lungs, the gastrointestinal tract, and the skin surface of individuals within a specified population. An assessment of intake requires that we determine how much crosses these boundaries. Exposure assessments often rely implicitly in the assumption that exposure can be linked by simple parameters to ambient concentration in air, water, and soil. However, more realistic exposure models require that we abandon such simple assumptions. To link contaminant concentrations in water, air, or soil with potential human intakes, we constrict pathway-exposure factors (PEFs). For each PEF we combine information in environmental partitioning as well as human anatomy, physiology, and patterns into an algebraic term that converts concentrations of contaminants (in mg/L water, mg/m 3 air, and mg/kg soil) into a daily intake per unit body weight in mg/kg-d for a specific rout of exposure such as inhalation, ingestion, or dermal uptake. Using examples involving human exposure to either a radionuclide (tritium, 3 H) or a toxic organic chemical (tetrachloroethylene, PCE) in soil, water, and air, we illustrate the use of PEFs and consider the implications for risk assessment. (au)

  3. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment.

    Science.gov (United States)

    Hernández, Antonio F; Tsatsakis, Aristidis M

    2017-05-01

    Little is known about the potential adverse effects from longterm exposure to complex mixtures at low doses, close to health-based reference values. Traditional chemical-specific risk assessment based on animal testing may be insufficient and the lack of toxicological studies on chemical mixtures remains a major regulatory challenge. Hence, new methodologies on cumulative risk assessment are being developed but still present major limitations. Evaluation of chemical mixture effects requires an integrated and systematic approach and close collaboration across different scientific fields, particularly toxicology, epidemiology, exposure science, risk assessment and statistics for a proper integration of data from all these disciplines. Well designed and conducted epidemiological studies can take advantage of this new paradigm and can provide insight to support the correlation between humans low-dose exposures and diseases, thus avoiding the uncertainty associated with extrapolation across species. In this regard, human epidemiology studies may play a significant role in the new vision of toxicity testing. However, this type of information has not been fully considered in risk assessment, mainly due to the inherent limitations of epidemiologic studies. An integrated approach of in vivo, in vitro and in silico data, together with systematic reviews or meta-analysis of high quality epidemiological studies will improve the robustness of risk assessment of chemical mixtures and will provide a stronger basis for regulatory decisions. The ultimate goal is that experimental and mechanistic data can lend support and biological plausibility to the human epidemiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessment of Nicotine Exposure From Active Human Cigarette Smoking Time

    Directory of Open Access Journals (Sweden)

    Cahours Xavier

    2017-09-01

    Full Text Available The burning of a cigarette is a series of consecutive sequences of both passive and active burnings when a smoking cycle is applied to the cigarette. A previous study, using a smoking machine, showed that cigarette nicotine yields are dependent linearly on the difference between the time of smouldering (passive burning and the time of smoking (active burning. It is predicted that the smoker’s nicotine yield increases when the intensity of smoking increases, i.e., when the time to smoke a cigarette (smoking time decreases. Note that observations made on machines might not be comparable to human behaviours. The aim of this study was to determine whether nicotine mouth-level exposure could be predicted through measurement of human smoking time. A smoking behaviour study was conducted to compare human smoking nicotine yields obtained from both filter tip analysis and the cigarette burning time model. Results showed that smokers’ exposure to the smoke depends essentially on the speed at which the cigarette is smoked. An increase in human smoking intensity, resulting in a decrease in smoking time, generates an increase in smoke exposure, whatever the puff number, puff duration, puff volume and filter ventilation (open or blocked. The association of a machine smoking yield with a corresponding smoking time, and the time taken by a consumer to smoke the cigarette would provide information on the exposure to smoke constituents in a simple and effective manner.

  5. Use of human metabolic studies and urinary arsenic speciation is assessing arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Farmer, J.G. (Memphis State Univ., TN (United States) Univ. of Edinburgh (United Kingdom))

    1991-01-01

    The use of hair and nail analyses to assess human exposure to the trace metalloid arsenic (As) is hindered by the possibility of external contamination. Even though urine represents the major excretory route, its use as an indicator of exposure is limited when no distinction is made between the nontoxic organoarsenical (arsenobetaine) excreted following the consumption of seafood and the toxic inorganic forms of As and related metabolites. The development of analytical techniques capable of separating the different chemical species of As in urine have shown that the ingestion of inorganic As (AsV or AsIII) by animals and man triggers an in vivo reduction/methylation process resulting in excretion of the less toxic species, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). This paper establishes the uptake, bio-transformation and elimination patterns reflected in urinary As following carefully controlled experimental exposure.

  6. Knowledge of human immunodeficiency virus post-exposure ...

    African Journals Online (AJOL)

    2011-05-21

    May 21, 2011 ... Appropriate post-exposure prophylaxis is an integral part of prevention, control and workplace safety. This study was undertaken to assess the level of knowledge of post-exposure prophylaxis (PEP) against human immunodeficiency virus (HIV) among doctors in Federal Medical Centre, Gombe, Nigeria.

  7. Multi-pathway human exposure assessment of phthalate esters and DINCH.

    Science.gov (United States)

    Giovanoulis, Georgios; Bui, Thuy; Xu, Fuchao; Papadopoulou, Eleni; Padilla-Sanchez, Juan A; Covaci, Adrian; Haug, Line S; Cousins, Anna Palm; Magnér, Jörgen; Cousins, Ian T; de Wit, Cynthia A

    2018-03-01

    Phthalate esters are substances mainly used as plasticizers in various applications. Some have been restricted and phased out due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative plasticizers, such as DINCH. Using a comprehensive dataset from a Norwegian study population, human exposure to DMP, DEP, DnBP, DiBP, BBzP, DEHP, DINP, DIDP, DPHP and DINCH was assessed by measuring their presence in external exposure media, allowing an estimation of the total intake, as well as the relative importance of different uptake pathways. Intake via different uptake routes, in particular inhalation, dermal absorption, and oral uptake was estimated and total intake based on all uptake pathways was compared to the calculated intake from biomonitoring data. Hand wipe results were used to determine dermal uptake and compared to other exposure sources such as air, dust and personal care products. Results showed that the calculated total intakes were similar, but slightly higher than those based on biomonitoring methods by 1.1 to 3 times (median), indicating a good understanding of important uptake pathways. The relative importance of different uptake pathways was comparable to other studies, where inhalation was important for lower molecular weight phthalates, and negligible for the higher molecular weight phthalates and DINCH. Dietary intake was the predominant exposure route for all analyzed substances. Dermal uptake based on hand wipes was much lower (median up to 2000 times) than the total dermal uptake via air, dust and personal care products. Still, dermal uptake is not a well-studied exposure pathway and several research gaps (e.g. absorption fractions) remain. Based on calculated intakes, the exposure for the Norwegian participants to the phthalates and DINCH was lower than health based limit values. Nevertheless, exposure to alternative plasticizers, such as DPHP and DINCH, is expected to increase in the future and continuous

  8. Health risk assessment of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu

    2011-01-01

    Risk assessment is an essential process for evaluating the human health effects of exposure to ionizing radiation and for determining acceptable levels of exposure. There are two major components of radiation risk assessment: a measure of exposure level and a measure of disease occurrence. For quantitative estimation of health risks, it is important to evaluate the association between exposure and disease occurrence using epidemiological or experimental data. In these approaches, statistical risk models are used particularly for estimating cancer risks related to exposure to low levels of radiation. This paper presents a summary of basic models and methods of risk assessment for studying exposure-risk relationships. Moreover, quantitative risk estimates are subject to several sources of uncertainty due to inherent limitations in risk assessment studies. This paper also discusses the limitations of radiation risk assessment. (author)

  9. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures.

    Science.gov (United States)

    Bhatt, Chhavi Raj; Redmayne, Mary; Abramson, Michael J; Benke, Geza

    2016-03-01

    Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.

  10. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures

    International Nuclear Information System (INIS)

    Bhatt, Chhavi R.; Redmayne, Mary; Abramson, Michael J.; Benke, Geza

    2016-01-01

    Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.

  11. Assessment of human exposure to pesticides by hair analysis: The case of vegetable-producing areas in Burkina Faso.

    Science.gov (United States)

    Lehmann, Edouard; Oltramare, Christelle; Nfon Dibié, Jean-Jacques; Konaté, Yacouba; de Alencastro, Luiz Felippe

    2018-02-01

    The present work assesses human exposure to pesticides in vegetable-producing areas in Burkina Faso, using hair as an indicator. The study design includes a comparison between operators who are occupationally exposed while working in the fields and a reference population (i.e. not occupationally exposed) to evaluate both occupational and indirect exposures. Hair samples from volunteers (n=101) were positive for 17 pesticides (38 analyzed). Acetamiprid, desethylatrazine, carbofuran, and deltamethrin were detected for the first time in field samples. With a maximum of 9 residues per sample, pesticide exposure was ubiquitous in both populations. Contamination by acetamiprid, cypermethrin, and lambda-cyhalothrin (used in vegetable production) prevailed in operator samples. For other pesticides, such as imidacloprid and deltamethrin, no significant difference was found. This indicates a potentially large environmental exposure (dietary intake or atmospheric contamination) or the prevalence of other contamination sources. The present findings are concerning, as detected levels are globally higher than those previously reported, and indicate exposure to endocrine disrupting chemicals and probable carcinogens. Hair was found to be a suitable matrix for biomonitoring human exposure to pesticides and assessing dominant factors (i.e. sex, age, and protective equipment) in subgroups, as well as identifying geographical contamination patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessing Sources of Human Methylmercury Exposure Using Stable Mercury Isotopes

    DEFF Research Database (Denmark)

    Li, Miling; Sherman, Laura S; Blum, Joel D

    2014-01-01

    Seafood consumption is the primary route of methylmercury (MeHg) exposure for most populations. Inherent uncertainties in dietary survey data point to the need for an empirical tool to confirm exposure sources. We therefore explore the utility of Hg stable isotope ratios in human hair as a new...... method for discerning MeHg exposure sources. We characterized Hg isotope fractionation between humans and their diets using hair samples from Faroese whalers exposed to MeHg predominantly from pilot whales. We observed an increase of 1.75‰ in δ(202)Hg values between pilot whale muscle tissue and Faroese...... whalers' hair but no mass-independent fractionation. We found a similar offset in δ(202)Hg between consumed seafood and hair samples from Gulf of Mexico recreational anglers who are exposed to lower levels of MeHg from a variety of seafood sources. An isotope mixing model was used to estimate individual...

  13. A margin of exposure approach to assessment of non-cancerous risk of diethyl phthalate based on human exposure from bottled water consumption.

    Science.gov (United States)

    Zare Jeddi, Maryam; Rastkari, Noushin; Ahmadkhaniha, Reza; Yunesian, Masud; Nabizadeh, Ramin; Daryabeygi, Reza

    2015-12-01

    Phthalates may be present in food due to their widespread presence as environmental contaminants or due to migration from food contact materials. Exposure to phthalates is considered to be potentially harmful to human health as well. Therefore, determining the main source of exposure is an important issue. So, the purpose of this study was (1) to measure the release of diethyl phthalate (DEP) in bottled water consumed in common storage conditions specially low temperature and freezing conditions; (2) to evaluate the intake of DEP from polyethylene terephthalate (PET) bottled water and health risk assessment; and (3) to assess the contribution of the bottled water to the DEP intake against the tolerable daily intake (TDI) values. DEP migration was investigated in six brands of PET-bottled water under different storage conditions room temperature, refrigerator temperature, freezing conditions (40 °C ,0 °C and -18 °C) and outdoor] at various time intervals by magnetic solid extraction (MSPE) using gas chromatography-mass spectroscopy (GC-MS). Eventually, a health risk assessment was conducted and the margin of exposure (MOE) was calculated. The results indicate that contact time with packaging and storage temperatures caused DEP to be released into water from PET bottles. But, when comprising the DEP concentration with initial level, the results demonstrated that the release of phthalates were not substantial in all storage conditions especially at low temperatures ( children > lactating women > teenagers > adults > pregnant women), but in all target groups, the MOE was much higher than 1000, thus, low risk is implied. Consequently, PET-bottled water is not a major source of human exposure to DEP and from this perspective is safe for consumption.

  14. Problem formulation for risk assessment of combined exposures to chemicals and other stressors in humans.

    Science.gov (United States)

    Solomon, Keith R; Wilks, Martin F; Bachman, Ammie; Boobis, Alan; Moretto, Angelo; Pastoor, Timothy P; Phillips, Richard; Embry, Michelle R

    2016-11-01

    When the human health risk assessment/risk management paradigm was developed, it did not explicitly include a "problem formulation" phase. The concept of problem formulation was first introduced in the context of ecological risk assessment (ERA) for the pragmatic reason to constrain and focus ERAs on the key questions. However, this need also exists for human health risk assessment, particularly for cumulative risk assessment (CRA), because of its complexity. CRA encompasses the combined threats to health from exposure via all relevant routes to multiple stressors, including biological, chemical, physical and psychosocial stressors. As part of the HESI Risk Assessment in the 21st Century (RISK21) Project, a framework for CRA was developed in which problem formulation plays a critical role. The focus of this effort is primarily on a chemical CRA (i.e., two or more chemicals) with subsequent consideration of non-chemical stressors, defined as "modulating factors" (ModFs). Problem formulation is a systematic approach that identifies all factors critical to a specific risk assessment and considers the purpose of the assessment, scope and depth of the necessary analysis, analytical approach, available resources and outcomes, and overall risk management goal. There are numerous considerations that are specific to multiple stressors, and proper problem formulation can help to focus a CRA to the key factors in order to optimize resources. As part of the problem formulation, conceptual models for exposures and responses can be developed that address these factors, such as temporal relationships between stressors and consideration of the appropriate ModFs.

  15. Risk Assessment and Implication of Human Exposure to Road Dust Heavy Metals in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Shabbaj, Ibrahim I; Alghamdi, Mansour A; Shamy, Magdy; Hassan, Salwa K; Alsharif, Musaab M; Khoder, Mamdouh I

    2017-12-26

    Data dealing with the assessment of heavy metal pollution in road dusts in Jeddah, Saudi Arabia and its implication to human health risk of human exposure to heavy metals, are scarce. Road dusts were collected from five different functional areas (traffic areas (TA), parking areas (PA), residential areas (RA), mixed residential commercial areas (MCRA) and suburban areas (SA)) in Jeddah and one in a rural area (RUA) in Hada Al Sham. We aimed to measure the pollution levels of heavy metals and estimate their health risk of human exposure applying risk assessment models described by United States Environmental Protection Agency (USEPA). Using geo-accumulation index (I geo ), the pollution level of heavy metals in urban road dusts was in the following order Cd > As > Pb > Zn > Cu > Ni > Cr > V > Mn > Co > Fe. Urban road dust was found to be moderately to heavily contaminated with As, Pb and Zn, and heavily to extremely contaminated with Cd. Calculation of enrichment factor (EF) revealed that heavy metals in TA had the highest values compared to that of the other functional areas. Cd, As, Pb, Zn and Cu were severely enriched, while Mn, V, Co, Ni and Cr were moderately enriched. Fe was considered as a natural element and consequently excluded. The concentrations of heavy metals in road dusts of functional areas were in the following order: TA > PA > MCRA > SA > RA > RUA. The study revealed that both children and adults in all studied areas having health quotient (HQ) exposure route was ingestion. The cancer risk for children and adults from exposure to Pb, Cd, Co, Ni, and Cr was found to be negligible (≤1 × 10 -6 ).

  16. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    OpenAIRE

    Arnold, Scott M.; Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O?Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of ?Common Criteria? (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of th...

  17. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment.

    Science.gov (United States)

    Shi, Zhixiong; Zhang, Lei; Li, Jingguang; Wu, Yongning

    2018-05-01

    Brominated flame retardants (BFRs) are a large group of widely used chemicals, which have been produced and used since 1970s. As a consequence of substantial and long-term usage, BFRs have been found to be ubiquitous in humans, wildlife, and abiotic matrices around the world. Although several reports have reviewed BFRs contamination in general, none have focused specifically on foods and human milk, and the corresponding dietary exposure. Foods (including human milk) have long been recognized as a major pathway of BFRs intake for non-occupationally exposed persons. This review summarizes most available BFRs data in foods and human milk from China in recent years, and emphasizes several specific aspects, i.e., contamination levels of legacy and emerging BFRs, dietary exposure assessment and related health concerns, comparison between various BFRs, and temporal changes in BFRs contamination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Human biological monitoring of occupational genotoxic exposures

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Sorsa, M

    1993-01-01

    Human biological monitoring is a valuable tool for exposure assessment in groups of persons occupationally exposed to genotoxic agents. If the monitoring activity covers genetic material the term genetic monitoring is used. The methods used for genetic monitoring are either substance specific, e......) occupational exposure limit value of styrene in ambient air. The consideration of ethical issues in human genetic monitoring is an important but often overlooked aspect. This includes the scientific and preventional relevance of performing a test on individuals, pre- and post study information of donors...

  19. Sampling strategy for estimating human exposure pathways to consumer chemicals

    NARCIS (Netherlands)

    Papadopoulou, Eleni; Padilla-Sanchez, Juan A.; Collins, Chris D.; Cousins, Ian T.; Covaci, Adrian; de Wit, Cynthia A.; Leonards, Pim E.G.; Voorspoels, Stefan; Thomsen, Cathrine; Harrad, Stuart; Haug, Line S.

    2016-01-01

    Human exposure to consumer chemicals has become a worldwide concern. In this work, a comprehensive sampling strategy is presented, to our knowledge being the first to study all relevant exposure pathways in a single cohort using multiple methods for assessment of exposure from each exposure pathway.

  20. Assessing population exposures to motor vehicle exhaust.

    Science.gov (United States)

    Van Atten, Chris; Brauer, Michael; Funk, Tami; Gilbert, Nicolas L; Graham, Lisa; Kaden, Debra; Miller, Paul J; Bracho, Leonora Rojas; Wheeler, Amanda; White, Ronald H

    2005-01-01

    The need is growing for a better assessment of population exposures to motor vehicle exhaust in proximity to major roads and highways. This need is driven in part by emerging scientific evidence of adverse health effects from such exposures and policy requirements for a more targeted assessment of localized public health impacts related to road expansions and increasing commercial transportation. The momentum for improved methods in measuring local exposures is also growing in the scientific community, as well as for discerning which constituents of the vehicle exhaust mixture may exert greater public health risks for those who are exposed to a disproportionate share of roadway pollution. To help elucidate the current state-of-the-science in exposure assessments along major roadways and to help inform decision makers of research needs and trends, we provide an overview of the emerging policy requirements, along with a conceptual framework for assessing exposure to motor-vehicle exhaust that can help inform policy decisions. The framework includes the pathway from the emission of a single vehicle, traffic emissions from multiple vehicles, atmospheric transformation of emissions and interaction with topographic and meteorologic features, and contact with humans resulting in exposure that can result in adverse health impacts. We describe the individual elements within the conceptual framework for exposure assessment and discuss the strengths and weaknesses of various approaches that have been used to assess public exposures to motor vehicle exhaust.

  1. Probabilistic assessment of wildfire hazard and municipal watershed exposure

    Science.gov (United States)

    Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille

    2012-01-01

    The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...

  2. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety

    DEFF Research Database (Denmark)

    Choi, Judy; Mørck, Thit Aarøe; Polcher, Alexandra

    2015-01-01

    Human biomonitoring (HBM) measures the levels of substances in body fluids and tissues. Many countries have conducted HBM studies, yet little is known about its application towards chemical risk assessment, particularly in relation to food safety. Therefore a literature search was performed...... in several databases and conference proceedings for 2002 – 2014. Definitions of HBM and biomarkers, HBM techniques and requirements, and the possible application to the different steps of risk assessment were described. The usefulness of HBM for exposure assessment of chemical substances from food source...... safety areas (namely exposure assessment), and for the implementation of a systematic PMM approach. But further work needs to be done to improve usability. Major deficits are the lack of HBM guidance values on a considerable number of substance groups, for which health based guidance values (HBGVs) have...

  3. Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure.

    Science.gov (United States)

    Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry

    2013-12-01

    Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.

  4. Assessing the risks from exposure to radon in dwellings

    International Nuclear Information System (INIS)

    Walsh, P.J.; Lowder, W.M.

    1983-07-01

    The factors used to assess the radiation dose and health risks from human exposure to radon in dwellings are critically reviewed in this summary. Sources of indoor radon and determinants of air concentrations and exposure levels are given as well as the uncertainties that exist in their formulation. Methods of assessing health effects from inhalation of radon and its progeny are discussed with emphasis on dosimetry of radon daughters and formulation of risk per dose values. Finally, methods of assessing risks for general population exposures to indoor radon concentrations are treated

  5. Human exposure assessment for biocides in the EU development of step by step guidance and worked examples

    NARCIS (Netherlands)

    Gerritsen-Ebben, R.M.G.; Hemmen, J.J. van

    2007-01-01

    Directive 98/8/EC(1) concerns EU harmonisation of placing biocidal products on the market. In the present short paper the preliminary results of an ongoing project are presented in which step by step guidance on human exposure assessment with worked examples is developed. For all 23 biocidal product

  6. Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach.

    Science.gov (United States)

    Pizzol, Massimo; Bulle, Cécile; Thomsen, Marianne

    2012-04-01

    In order to estimate the total exposure to the lead emissions from a municipal waste combustion plant in Denmark, the indirect pathway via ingestion of lead deposited on soil has to be quantified. Multi-media fate models developed for both Risk Assessment (RA) and Life Cycle Assessment (LCA) can be used for this purpose, but present high uncertainties in the assessment of metal's fate. More sophisticated and metal-specific geochemical models exist, that could lower the uncertainties by e.g. accounting for metal speciation, but they require a large amount of data and are unpractical to combine broadly with other fate and dispersion models. In this study, a Simplified Fate & Speciation Model (SFSM) is presented, that is based on the parsimony principle: "as simple as possible, as complex as needed", and that can be used for indirect human exposure assessment in different context like RA and regionalized LCA. SFSM couples traditional multi-media mass balances with empirical speciation models in a tool that has a simple theoretical framework and that is not data-intensive. The model calculates total concentration, dissolved concentration, and free ion activity of Cd, Cu, Ni, Pb and Zn in different soil layers, after accounting for metal deposition and dispersion. The model is tested for these five metals by using data from peer reviewed literature. Results show good accordance between measured and calculated values (factor of 3). The model is used to predict the human exposure via soil to lead initially emitted into air by the waste combustion plant and both the lead cumulative exposure and intake fraction are calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

    Science.gov (United States)

    Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.

    2012-01-01

    Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278

  8. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment.

    Science.gov (United States)

    Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; McLachlan, Michael S

    2012-11-01

    Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner.

  9. FDTD assessment of human exposure to electromagnetic fields from WiFi and bluetooth devices in some operating situations.

    Science.gov (United States)

    Martínez-Búrdalo, M; Martín, A; Sanchis, A; Villar, R

    2009-02-01

    In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna. Copyright 2008 Wiley-Liss, Inc.

  10. Exposure assessment of process-related contaminants in food by biomarker monitoring.

    Science.gov (United States)

    Rietjens, Ivonne M C M; Dussort, P; Günther, Helmut; Hanlon, Paul; Honda, Hiroshi; Mally, Angela; O'Hagan, Sue; Scholz, Gabriele; Seidel, Albrecht; Swenberg, James; Teeguarden, Justin; Eisenbrand, Gerhard

    2018-01-01

    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.

  11. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment.

    Science.gov (United States)

    Cho, YongMin; Ryu, Seung-Hun; Lee, Byeo Ri; Kim, Kyung Hee; Lee, Eunil; Choi, Jaewook

    2015-01-01

    It has frequently been reported that exposure to artificial light at night (ALAN) may cause negative health effects, such as breast cancer, circadian phase disruption and sleep disorders. Here, we reviewed the literature assessing the effects of human exposure to ALAN in order to list the health effects of various aspects of ALAN. Several electronic databases were searched for articles, published through August 2014, related to assessing the effects of exposure to ALAN on human health; these also included the details of experiments on such exposure. A total of 85 articles were included in the review. Several observational studies showed that outdoor ALAN levels are a risk factor for breast cancer and reported that indoor light intensity and individual lighting habits were relevant to this risk. Exposure to artificial bright light during the nighttime suppresses melatonin secretion, increases sleep onset latency (SOL) and increases alertness. Circadian misalignment caused by chronic ALAN exposure may have negative effects on the psychological, cardiovascular and/or metabolic functions. ALAN also causes circadian phase disruption, which increases with longer duration of exposure and with exposure later in the evening. It has also been reported that shorter wavelengths of light preferentially disturb melatonin secretion and cause circadian phase shifts, even if the light is not bright. This literature review may be helpful to understand the health effects of ALAN exposure and suggests that it is necessary to consider various characteristics of artificial light, beyond mere intensity.

  12. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  13. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram

    2013-01-01

    of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical...

  14. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Science.gov (United States)

    Biswas, Sumi; Choudhary, Prateek; Elias, Sean C; Miura, Kazutoyo; Milne, Kathryn H; de Cassan, Simone C; Collins, Katharine A; Halstead, Fenella D; Bliss, Carly M; Ewer, Katie J; Osier, Faith H; Hodgson, Susanne H; Duncan, Christopher J A; O'Hara, Geraldine A; Long, Carole A; Hill, Adrian V S; Draper, Simon J

    2014-01-01

    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases

  15. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Directory of Open Access Journals (Sweden)

    Sumi Biswas

    Full Text Available The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i ChAd63-MVA immunization, ii immunization and CHMI, and iii primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i total IgG responses before and after CHMI, ii responses to allelic variants of MSP1 and AMA1, iii functional growth inhibitory activity (GIA, iv IgG avidity, and v isotype responses (IgG1-4, IgA and IgM. These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other

  16. Assessment of environmental exposure to mercury in selected human populations as studied by nuclear and other techniques

    International Nuclear Information System (INIS)

    1995-01-01

    A Co-ordinated Research Programme (CRP) on assessment of environmental exposure to mercury in selected human populations as studied by nuclear and other techniques was initiated by the IAEA in 1990. The purpose of this CRP is to promote national and regional studies to evaluate the exposure of selected population groups to mercury and methylmercury and to estimate potential risks in these groups. The programme is focused on the analysis of human head hair for the determination of mercury and methylmercury. The CRP has two main components: (i) identifying population groups that are at risk, and (ii) studying health effects in the exposed persons, particularly pregnant women and the babies born to them. This document reports the discussions held during the third Research Co-ordination Meeting (RCM) for the CRP which took place at the IAEA, Monaco Laboratory. (author)

  17. The use of biomonitoring data in exposure and human health risk assessment: benzene case study.

    Science.gov (United States)

    Arnold, Scott M; Angerer, Juergen; Boogaard, Peter J; Hughes, Michael F; O'Lone, Raegan B; Robison, Steven H; Schnatter, A Robert

    2013-02-01

    Abstract A framework of "Common Criteria" (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m(3)), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10(-5) excess cancer risk (2.9 µg/m(3)). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

  18. Developing and evaluating distributions for probabilistic human exposure assessments

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy L.; McKone, Thomas E.

    2002-08-01

    This report describes research carried out at the Lawrence Berkeley National Laboratory (LBNL) to assist the U. S. Environmental Protection Agency (EPA) in developing a consistent yet flexible approach for evaluating the inputs to probabilistic risk assessments. The U.S. EPA Office of Emergency and Remedial Response (OERR) recently released Volume 3 Part A of Risk Assessment Guidance for Superfund (RAGS), as an update to the existing two-volume set of RAGS. The update provides policy and technical guidance on performing probabilistic risk assessment (PRA). Consequently, EPA risk managers and decision-makers need to review and evaluate the adequacy of PRAs for supporting regulatory decisions. A critical part of evaluating a PRA is the problem of evaluating or judging the adequacy of input distributions PRA. Although the overarching theme of this report is the need to improve the ease and consistency of the regulatory review process, the specific objectives are presented in two parts. The objective of Part 1 is to develop a consistent yet flexible process for evaluating distributions in a PRA by identifying the critical attributes of an exposure factor distribution and discussing how these attributes relate to the task-specific adequacy of the input. This objective is carried out with emphasis on the perspective of a risk manager or decision-maker. The proposed evaluation procedure provides consistency to the review process without a loss of flexibility. As a result, the approach described in Part 1 provides an opportunity to apply a single review framework for all EPA regions and yet provide the regional risk manager with the flexibility to deal with site- and case-specific issues in the PRA process. However, as the number of inputs to a PRA increases, so does the complexity of the process for calculating, communicating and managing risk. As a result, there is increasing effort required of both the risk professionals performing the analysis and the risk manager

  19. Human Exposure Model (HEM): A modular, web-based application to characterize near-field chemical exposures and releases

    Science.gov (United States)

    The U.S. EPA’s Chemical Safety and Sustainability research program is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur in various populations over the entire life cycle of a consumer product. The model will be implemented as a...

  20. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

    Science.gov (United States)

    Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon

    2018-04-01

    Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Human health effects of exposure to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, W.H.

    1986-01-01

    The health effects of human exposure to cadmium are discussed with emphases on intake, absorption, body burden, and excretion; osteomalacia in Japan; hypertension; and proteinuria, emphysema, osteomalacia, and cancer in workers. Elevated blood pressure has not been observed as a result of excessive exposures to cadmium in Japan or the workplace. Renal tubular dysfunction and consequent proteinuria is generally accepted as the main effect following long-term, low-level exposure to cadmium. Studies of workers show that proteinuria may develop after the first year of exposure or many years after the last exposure. Proteinuria and deterioration of renal function may continue even after cessation of exposure. The immediate health significance of low-level proteinuria is still under debate. However, there is evidence that long-term renal tubular dysfunction may lead to abnormalities of calcium metabolism and osteomalacia. The few autopsy and cross-sectional studies of workers do not permit conclusions to be drawn regarding the relationship between cadmium exposure and emphysema. Retrospective and historical-prospective studies are needed to settle this important question. No conclusive evidence has been published regarding cadmium-induced cancer in humans. However, there is sufficient evidence to regard cadmium as a suspect renal and prostate carcinogen. Because of equivocal results and the absence of dose-response relationships, the studies reviewed should be used with caution in making regulatory decisions and low-dose risk assessments. 62 references.

  2. Human health effects of exposure to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, W.H.

    1984-02-15

    The health effects of human exposure to cadmium are discussed with emphasis on intake, absorption, body burden, and excretion; osteomalacia in Japan; hypertension; and proteinuria, emphysema, osteomalacia, and cancer in workers. Elevated blood pressure has not been observed as a result of excessive exposures to cadmium in Japan or the workplace. Renal tubular dysfunction and consequent proteinuria is generally accepted as the main effect following long-term, low-level exposure to cadmium. Studies of workers show that proteinuria may develop after the first year of exposure or many years after the last exposure. Proteinuria and deterioration of renal function may continue even after cessation of exposure. The immediate health significance of low-level proteinuria is still under debate. However, there is evidence that long-term renal tubular dysfunction may lead to abnormalities of calcium metabolism and osteomalacia. The few autopsy and cross-sectional studies of workers do not permit conclusions to be drawn regarding the relationship between cadmium exposure and emphysema. Retrospective and historical-prospective studies are needed to settle this important question. No conclusive evidence has been published regarding cadmium-induced cancer in humans. However, there is sufficient evidence to regard cadmium as a suspect renal and prostate carcinogen. Because of equivocal results and the absence of dose-response relationships, the studies reviewed should be used with caution in making regulatory decisions and low-dose risk assessments.

  3. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.

    Science.gov (United States)

    Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man

    2017-06-01

    Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.

  4. Assessment of risk of potential exposures on facilities industries

    International Nuclear Information System (INIS)

    Leocadio, Joao Carlos

    2007-03-01

    This work develops a model to evaluate potential exposures on open facilities of industrial radiography in Brazil. This model will decisively contribute to optimize operational, radiological protection and safety procedures, to prevent radiation accidents and to reduce human errors in industrial radiography. The probabilistic safety assessment (PSA) methodology was very useful to assess potential exposures. The open facilities of industrial radiography were identified as the scenario to be analyzed in what concerns the evaluation of potential exposures, due to their high accidents indices. The results of the assessment of potential exposures confirm that the industrial radiography in Brazil is a high-risk practice as classified by the IAEA. The risk of potential exposure was estimated to be 40,5 x 10 -2 per year in Brazil, having as main consequences injuries to the workers' hands and arms. In the world scene, the consequences are worst, leading to fatalities of people, thus emphasizing the high risk of industrial radiography. (author)

  5. Development of exposure scenarios for CERCLA risk assessments at the Savannah River Site

    International Nuclear Information System (INIS)

    Nix, D.W.; Immel, J.W.; Phifer, M.A.

    1992-01-01

    A CERCLA Baseline Risk Assessment (BRA) is performed to determine if there are any potential risks to human health and the environment from waste unit at SRS. The SRS has numerous waste units to evaluate in the RFMU and CMS/FS programs and, in order to provide a consistent approach, four standard exposure scenarios were developed for exposure assessments to be used in human health risk assessments. The standard exposure scenarios are divided into two temporal categories: (a) Current Land Use in the BRA, and (b) Future Land Use in the RERA. The Current Land Use scenarios consist of the evaluation of human health risk for Industrial Exposure (of a worker not involved in waste unit characterization or remediation), a Trespasser, a hypothetical current On-site Resident, and an Off-site Resident. The Future Land Use scenario considers exposure to an On-site Resident following termination of institutional control in the absence of any remedial action (No Action Alternative), as well as evaluating potential remedial alternatives against the four scenarios from the BRA. A critical facet in the development of a BRA or RERA is the scoping of exposure scenarios that reflect actual conditions at a waste unit, rather than using factors such as EPA Standard Default Exposure Scenarios (OSWER Directive 9285.6-03) that are based on upper-bound exposures that tend to reflect worst case conditions. The use of site-specific information for developing risk assessment exposure scenarios will result in a more realistic estimate of Reasonable Maximum Exposure for SRS waste units

  6. Development of exposure scenarios for CERCLA risk assessments at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Nix, D.W.; Immel, J.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Phifer, M.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering

    1992-12-31

    A CERCLA Baseline Risk Assessment (BRA) is performed to determine if there are any potential risks to human health and the environment from waste unit at SRS. The SRS has numerous waste units to evaluate in the RFMU and CMS/FS programs and, in order to provide a consistent approach, four standard exposure scenarios were developed for exposure assessments to be used in human health risk assessments. The standard exposure scenarios are divided into two temporal categories: (a) Current Land Use in the BRA, and (b) Future Land Use in the RERA. The Current Land Use scenarios consist of the evaluation of human health risk for Industrial Exposure (of a worker not involved in waste unit characterization or remediation), a Trespasser, a hypothetical current On-site Resident, and an Off-site Resident. The Future Land Use scenario considers exposure to an On-site Resident following termination of institutional control in the absence of any remedial action (No Action Alternative), as well as evaluating potential remedial alternatives against the four scenarios from the BRA. A critical facet in the development of a BRA or RERA is the scoping of exposure scenarios that reflect actual conditions at a waste unit, rather than using factors such as EPA Standard Default Exposure Scenarios (OSWER Directive 9285.6-03) that are based on upper-bound exposures that tend to reflect worst case conditions. The use of site-specific information for developing risk assessment exposure scenarios will result in a more realistic estimate of Reasonable Maximum Exposure for SRS waste units.

  7. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    Science.gov (United States)

    Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O’Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of “Common Criteria” (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m3), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10−5 excess cancer risk (2.9 µg/m3). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects. PMID:23346981

  8. Variation in calculated human exposure. Comparison of calculations with seven European human exposure models

    NARCIS (Netherlands)

    Swartjes F; ECO

    2003-01-01

    Twenty scenarios, differing with respect to land use, soil type and contaminant, formed the basis for calculating human exposure from soil contaminants with the use of models contributed by seven European countries (one model per country). Here, the human exposures to children and children

  9. Gene expression signatures that predict radiation exposure in mice and humans.

    Directory of Open Access Journals (Sweden)

    Holly K Dressman

    2007-04-01

    Full Text Available The capacity to assess environmental inputs to biological phenotypes is limited by methods that can accurately and quantitatively measure these contributions. One such example can be seen in the context of exposure to ionizing radiation.We have made use of gene expression analysis of peripheral blood (PB mononuclear cells to develop expression profiles that accurately reflect prior radiation exposure. We demonstrate that expression profiles can be developed that not only predict radiation exposure in mice but also distinguish the level of radiation exposure, ranging from 50 cGy to 1,000 cGy. Likewise, a molecular signature of radiation response developed solely from irradiated human patient samples can predict and distinguish irradiated human PB samples from nonirradiated samples with an accuracy of 90%, sensitivity of 85%, and specificity of 94%. We further demonstrate that a radiation profile developed in the mouse can correctly distinguish PB samples from irradiated and nonirradiated human patients with an accuracy of 77%, sensitivity of 82%, and specificity of 75%. Taken together, these data demonstrate that molecular profiles can be generated that are highly predictive of different levels of radiation exposure in mice and humans.We suggest that this approach, with additional refinement, could provide a method to assess the effects of various environmental inputs into biological phenotypes as well as providing a more practical application of a rapid molecular screening test for the diagnosis of radiation exposure.

  10. Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok; Jeong, SeongYoung; Lee, JungJun; Song, HaeSang; Lee, SangWha; Son, BongKi

    2014-01-01

    Highlights: • The method of exposure dose assessment to workers during decommissioning of nuclear facilities. • The environments of simulation were designed under a virtual reality. • To assess exposure dose to workers, human model was developed within a virtual reality. - Abstract: This objective of this paper is to develop a method to simulate and assess the exposure dose to workers during decommissioning of nuclear facilities. To simulate several scenarios, decommissioning environments were designed using virtual reality. To assess exposure dose to workers, a human model was also developed using virtual reality. The exposure dose was measured and assessed under the principle of ALARA in accordance with radiological environmental change. This method will make it possible to plan for the exposure dose to workers during decommissioning of nuclear facilities

  11. Variability and uncertainty in Swedish exposure factors for use in quantitative exposure assessments.

    Science.gov (United States)

    Filipsson, Monika; Öberg, Tomas; Bergbäck, Bo

    2011-01-01

    Information of exposure factors used in quantitative risk assessments has previously been compiled and reported for U.S. and European populations. However, due to the advancement of science and knowledge, these reports are in continuous need of updating with new data. Equally important is the change over time of many exposure factors related to both physiological characteristics and human behavior. Body weight, skin surface, time use, and dietary habits are some of the most obvious examples covered here. A wealth of data is available from literature not primarily gathered for the purpose of risk assessment. Here we review a number of key exposure factors and compare these factors between northern Europe--here represented by Sweden--and the United States. Many previous compilations of exposure factor data focus on interindividual variability and variability between sexes and age groups, while uncertainty is mainly dealt with in a qualitative way. In this article variability is assessed along with uncertainty. As estimates of central tendency and interindividual variability, mean, standard deviation, skewness, kurtosis, and multiple percentiles were calculated, while uncertainty was characterized using 95% confidence intervals for these parameters. The presented statistics are appropriate for use in deterministic analyses using point estimates for each input parameter as well as in probabilistic assessments. © 2010 Society for Risk Analysis.

  12. Assessment of inhomogeneous ELF magnetic field exposures

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts. (authors)

  13. Assessment of exposure dose to workers in virtual decommissioning environments

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    This paper is intended to suggest the method analyze and assess the exposure dose to workers in virtual decommissioning environments. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. This work was to be able to simulate scenarios of decommissioning so that exposure dose to workers could be measured and assessed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities are accomplished, the method of simulation assessment was developed in virtual radiological environments. But this work was developed as a tool of simulation for single subject mode. Afterwards, the simulation environment for multi-subjects mode will be upgraded by simultaneous modules with networking environments. Then the much more practical method will be developed by changing number of workers and duration of time under any circumstances of decommissioning

  14. Assessment of exposure dose to workers in virtual decommissioning environments

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, GeunHo; Seo, JaeSeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    This paper is intended to suggest the method analyze and assess the exposure dose to workers in virtual decommissioning environments. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. This work was to be able to simulate scenarios of decommissioning so that exposure dose to workers could be measured and assessed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities are accomplished, the method of simulation assessment was developed in virtual radiological environments. But this work was developed as a tool of simulation for single subject mode. Afterwards, the simulation environment for multi-subjects mode will be upgraded by simultaneous modules with networking environments. Then the much more practical method will be developed by changing number of workers and duration of time under any circumstances of decommissioning.

  15. Revised Human Health Risk Assessment on Chlorpyrifos

    Science.gov (United States)

    We have revised our human health risk assessment and drinking water exposure assessment for chlorpyrifos that supported our October 2015 proposal to revoke all food residue tolerances for chlorpyrifos. Learn about the revised analysis.

  16. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals.

    Science.gov (United States)

    Calafat, Antonia M

    2012-02-01

    Researchers are increasingly interested in using human biomonitoring - the measurement of chemicals, their metabolites or specific reaction products in biological specimens/body fluids - for investigating exposure to environmental chemicals. General population human biomonitoring programs are useful for investigating human exposure to environmental chemicals and an important tool for integrating environment and health. One of these programs, the National Health and Nutrition Examination Survey (NHANES), conducted in the United States is designed to collect data on the health and nutritional status of the noninstitutionalized, civilian U.S. population. NHANES includes a physical examination, collecting a detailed medical history, and collecting biological specimens (i.e., blood and urine). These biological specimens can be used to assess exposure to environmental chemicals. NHANES human biomonitoring data can be used to establish reference ranges for selected chemicals, provide exposure data for risk assessment, and monitor exposure trends. Published by Elsevier GmbH.

  17. Using ecosystem modelling techniques in exposure assessments of radionuclides - an overview

    International Nuclear Information System (INIS)

    Kumblad, L.

    2005-01-01

    The risk to humans from potential releases from nuclear facilities is evaluated in safety assessments. Essential components of these assessments are exposure models, which estimate the transport of radionuclides in the environment, the uptake in biota, and transfer to humans. Recently, there has been a growing concern for radiological protection of the whole environment, not only humans, and a first attempt has been to employ model approaches based on stylized environments and transfer functions to biota based exclusively on bioconcentration factors (BCF). They are generally of a non-mechanistic nature and involve no knowledge of the actual processes involved, which is a severe limitation when assessing real ecosystems. in this paper, the possibility of using an ecological modelling approach as a complement or an alternative to the use of BCF-based models is discussed. The paper gives an overview of ecological and ecosystem modelling and examples of studies where ecosystem models have been used in association to ecological risk assessment studies for other pollutants than radionuclides. It also discusses the potential to use this technique in exposure assessments of radionuclides with a few examples from the safety assessment work performed by the Swedish nuclear fuel and waste management company (SKB). Finally there is a comparison of the characteristics of ecosystem models and traditionally exposure models for radionuclides used to estimate the radionuclide exposure of biota. The evaluation of ecosystem models already applied in safety assessments has shown that the ecosystem approach is possible to use to assess exposure to biota, and that it can handle many of the modelling problems identified related to BCF-models. The findings in this paper suggest that both national and international assessment frameworks for protection of the environment from ionising radiation would benefit from striving to adopt methodologies based on ecologically sound principles and

  18. Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment

    Directory of Open Access Journals (Sweden)

    Einarsson Östen

    2005-10-01

    Full Text Available Abstract Background Biomarkers for mercury (Hg exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. Methods Concentrations of total Hg (THg, inorganic Hg (IHg and organic Hg (OHg, assumed to be methylmercury; MeHg were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. Results About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. Conclusion The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure

  19. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment

    International Nuclear Information System (INIS)

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L.

    2015-01-01

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10 −6 ) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. - Highlights: • We determined in skin-contact clothes the concentrations of a number of metals. • Dermal contact exposure and health risks for adults and for 1-year-old children were assessed. • Carcinogenic risks were considered as acceptable (<10 −6 ). • For non-carcinogenic risks, only Sb exceeded a 10% of the HQ for dermal contact with clothes

  20. [Occupational exposure to nanoparticles. Assessment of workplace exposure].

    Science.gov (United States)

    Bujak-Pietrek, Stella

    2010-01-01

    Nanotechnology is currently one of the most popular branch of science. It is a technology that enables designing, manufacturing and application of materials and structures of very small dimensions, and its products are applied in almost every field of life. Nanoparticles are the structures having one or more dimensions of the order of 100 nm or less. They are used in precise mechanics, electronics, optics, medicine, pharmacy, cosmetics and many other spheres. Due to their very small size, nanostructures have completely different and specific properties, unknown for the bulk of materials. Fast-growing nanotechnology provides a wide spectrum of applications, but it also brings about new and unknown danger to human health. Nanotechnology is the branch that has developed rather recently, and much information about health risk and its influence on the environment is beyond our knowledge. Nanoparticles, released in many technological processes, as well as manufactured nanoparticles can induce occupational hazards to workers. The lack of regulations and standards, compulsory in the manufacture and use ofnanoparticles is a fundamental problem faced in the evaluation of exposure. Another problem is the choice of proper measurement equipment for surveying of very small particles - their number, mass and surface area in the workpost air. In this article, the possibility and scope of exposure assessment is discussed and a brief specification of available instrumentation for counting and assessing the parameters essential for classifying the exposure to nanoparticles is presented.

  1. Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2009-07-01

    Full Text Available This paper presents a model of factors influencing levels of human losses from natural hazards at the global scale, for the period 1980–2000. This model was designed for the United Nations Development Programme as a building stone of the Disaster Risk Index (DRI, which aims at monitoring the evolution of risk. Assessing what countries are most at risk requires considering various types of hazards, such as droughts, floods, cyclones and earthquakes. Before assessing risk, these four hazards were modelled using GIS and overlaid with a model of population distribution in order to extract human exposure. Human vulnerability was measured by crossing exposure with selected socio-economic parameters. The model evaluates to what extent observed past losses are related to population exposure and vulnerability. Results reveal that human vulnerability is mostly linked with country development level and environmental quality. A classification of countries is provided, as well as recommendations on data improvement for future use of the model.

  2. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale

    Energy Technology Data Exchange (ETDEWEB)

    Caudeville, Julien, E-mail: Julien.CAUDEVILLE@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Joint research unit UMR 6599, Heudiasyc (Heuristic and Diagnoses of Complex Systems), University of Technology of Compiegne and CNRS, Rue du Dr Schweitzer, 60200 Compiegne (France); Bonnard, Roseline, E-mail: Roseline.BONNARD@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Boudet, Celine, E-mail: Celine.BOUDET@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Denys, Sebastien, E-mail: Sebastien.DENYS@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Govaert, Gerard, E-mail: gerard.govaert@utc.fr [Joint research unit UMR 6599, Heudiasyc (Heuristic and Diagnoses of Complex Systems), University of Technology of Compiegne and CNRS, Rue du Dr Schweitzer, 60200 Compiegne (France); Cicolella, Andre, E-mail: Andre.CICOLELLA@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2012-08-15

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: -identify and manage geographic areas where hotspot exposures are a potential risk to human health; and -reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km{sup 2} regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. -- Highlights: Black-Right-Pointing-Pointer We present a multimedia exposure model for mapping environmental disparities. Black-Right-Pointing-Pointer We perform a risk assessment on a region of France at a fine scale for three metals. Black-Right-Pointing-Pointer We

  3. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale

    International Nuclear Information System (INIS)

    Caudeville, Julien; Bonnard, Roseline; Boudet, Céline; Denys, Sébastien; Govaert, Gérard; Cicolella, André

    2012-01-01

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: -identify and manage geographic areas where hotspot exposures are a potential risk to human health; and -reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km 2 regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. -- Highlights: ► We present a multimedia exposure model for mapping environmental disparities. ► We perform a risk assessment on a region of France at a fine scale for three metals. ► We examine exposure determinants and detect vulnerable population. ► The largest

  4. A hybrid modeling with data assimilation to evaluate human exposure level

    Science.gov (United States)

    Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.

    2015-12-01

    Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.

  5. [The methods of assessment of health risk from exposure to radon and radon daughters].

    Science.gov (United States)

    Demin, V F; Zhukovskiy, M V; Kiselev, S M

    2014-01-01

    The critical analysis of existing models of the relationship dose-effect (RDE) for radon exposure on human health has been performed. Conclusion about the necessity and possibility of improving these models has been made. A new improved version ofthe RDE has been developed. A technique for assessing the human health risk of exposure to radon, including the method for estimating of exposure doses of radon, an improved model of RDE, proper methodology risk assessment has been described. Methodology is proposed for the use in the territory of Russia.

  6. Occupational Exposure Assessment of Nanomaterials using Control Banding Tools

    DEFF Research Database (Denmark)

    Liguori, Biase

    , are relatively advanced, and they are good foundations for an advanced exposure assessment. Considering the tiered approach for workplace assessment proposed by the OECD, these two tools could be situated, between Tier 1 (Information gathering) and Tier 2 (Basic exposure assessment). Moreover, the thesis......Nanotechnology can be termed as the “new industrial revolution”. A broad range of potential benefits in various applications for the environment and everyday life of humans can be related to the use of nanotechnology. Nanomaterials are used in a large variety of products already in the market......, and because of their novel physical and chemical characteristics, the application of nanomaterials is projected to increase further. This will inevitably increase the production of nanomaterials with potential increase of exposure for the workers which are the first in line expected to become exposed...

  7. Human exposure assessment of silver and copper migrating from an antimicrobial nanocoated packaging material into an acidic food simulant.

    Science.gov (United States)

    Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda

    2016-09-01

    To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  9. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Directory of Open Access Journals (Sweden)

    Christos A. Damalas

    2011-05-01

    Full Text Available Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms, many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence, and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization

  10. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    Science.gov (United States)

    Damalas, Christos A.; Eleftherohorinos, Ilias G.

    2011-01-01

    Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already

  11. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, Joaquim [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Nadal, Martí [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Schuhmacher, Marta [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Domingo, José L., E-mail: joseluis.domingo@urv.cat [Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain)

    2015-07-15

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10{sup −6}) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. - Highlights: • We determined in skin-contact clothes the concentrations of a number of metals. • Dermal contact exposure and health risks for adults and for 1-year-old children were assessed. • Carcinogenic risks were considered as acceptable (<10{sup −6}). • For non-carcinogenic risks, only Sb exceeded a 10% of the HQ for dermal contact with clothes.

  12. Developing human health exposure scenarios for petroleum substances under REACH

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.; De Wilde, P.; Maksimainen, K.; Margary, A.; Money, C.; Pizzella, G.; Svanehav, T.; Tsang, W.; Urbanus, J.; Rohde, A.

    2012-12-15

    This report describes the approaches that were adopted by CONCAWE to prepare the human exposure estimates in the chemical safety assessments of the REACH registration dossiers for petroleum substances based on all applicable regulatory guidance. Separate exposure estimates were developed for workers and for consumers and included inhalation and dermal routes. The complex nature of petroleum substances required various scientifically justified refinements of the regulatory guidance.

  13. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    International Nuclear Information System (INIS)

    Dhondt, Stijn; Beckx, Carolien; Degraeuwe, Bart; Lefebvre, Wouter; Kochan, Bruno; Bellemans, Tom; Int Panis, Luc; Macharis, Cathy; Putman, Koen

    2012-01-01

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO 2 and O 3 using only home addresses were compared with models that integrate all time-activity patterns—including time in commute—for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO 2 using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: ► Exposure to ambient air pollution was assessed integrating population mobility. ► This dynamic exposure was integrated into a health impact assessment. ► Differences between the dynamic and residential exposure were quantified. ► Modest differences in health impact were found at a regional level. ► At municipal level larger differences were found, influenced by gender and age.

  14. Multi-scale spatial modeling of human exposure from local sources to global intake

    DEFF Research Database (Denmark)

    Wannaz, Cedric; Fantke, Peter; Jolliet, Olivier

    2018-01-01

    Exposure studies, used in human health risk and impact assessments of chemicals are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea......, an innovative multi-scale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties...... occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ~10,000 emission locations covering France more densely to determine per chemical and exposure route...

  15. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.

    Science.gov (United States)

    Bourdon, Julie A; Williams, Andrew; Kuo, Byron; Moffat, Ivy; White, Paul A; Halappanavar, Sabina; Vogel, Ulla; Wallin, Håkan; Yauk, Carole L

    2013-01-07

    New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Development of a ECOREA-II code for human exposures from radionuclides through food chain

    International Nuclear Information System (INIS)

    Yoo, D. H.; Choi, Y. H.

    2001-01-01

    The release of radionuclides from nuclear facilities following an accident into air results in human exposures through two pathways. One is direct human exposures by inhalation or dermal absorption of these radionucles. Another is indirect human exposures through food chain which includes intakes of plant products such as rice, vegetables from contaiminated soil and animal products such as meet, milk and eggs feeded by contaminated grasses or plants on the terrestial surface. This study presents efforts of the development of a computer code for the assessment of the indirect human exposure through such food chains. The purpose of ECOREA-II code is to develop appropriate models suitable for a specific soil condition in Korea based on previous experimental efforts and to provide a more user-friendly environment such as GUI for the use of the code. Therefore, the current code, when more fully developed, is expected to increase the understanding of environmental safety assessment of nuclear facilities following an accident and provide a reasonable regulatory guideline with respecte to food safety issues

  17. Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins.

    Science.gov (United States)

    Warth, Benedikt; Sulyok, Michael; Fruhmann, Philipp; Mikula, Hannes; Berthiller, Franz; Schuhmacher, Rainer; Hametner, Christian; Abia, Wilfred Angie; Adam, Gerhard; Fröhlich, Johannes; Krska, Rudolf

    2012-07-15

    Mycotoxins regularly occur in food worldwide and pose serious health risks to consumers. Since individuals can be exposed to a variety of these toxic secondary metabolites of fungi at the same time, there is a demand for proper analytical methods to assess human exposure by suitable biomarkers. This study reports on the development of a liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the quantitative measurement of 15 mycotoxins and key metabolites in human urine using polarity switching. Deoxynivalenol (DON), DON-3-O-glucuronide, DON-15-O-glucuronide (D15GlcA), de-epoxy DON, nivalenol (NIV), T-2 toxin, HT-2 toxin, zearalenone, zearalenone-14-O-glucuronide, α- and β-zearalenol, fumonisins B(1) and B(2) (FB(1), FB(2)), ochratoxin A (OTA) and aflatoxin M(1) (AFM(1)) were determined without the need for any cleanup using a rapid and simple dilute and shoot approach. Validation was performed in the range of 0.005-40 µg L(-1) depending on the analyte and expected urinary concentration levels. Apparent recoveries between 78 and 119% and interday precisions of 2-17% relative standard deviation (RSD) were achieved. The applicability of the method was demonstrated by the analysis of urine samples obtained from Cameroon. In naturally contaminated urine samples up to six biomarkers of exposure (AFM(1), DON, D15GlcA, NIV, FB(1), and OTA) were detected simultaneously. We conclude that the developed LC/MS/MS method is well suited to quantify multiple mycotoxin biomarkers in human urine down to the sub-ppb range within 18 min and without any prior cleanup. The co-occurrence of several mycotoxins in the investigated samples clearly emphasizes the great potential and importance of this method to assess exposure of humans and animals to naturally occurring mycotoxins. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Emission of ammonia from indoor concrete wall and assessment of human exposure.

    Science.gov (United States)

    Bai, Z; Dong, Y; Wang, Z; Zhu, T

    2006-04-01

    Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same

  19. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale.

    Science.gov (United States)

    Caudeville, Julien; Bonnard, Roseline; Boudet, Céline; Denys, Sébastien; Govaert, Gérard; Cicolella, André

    2012-08-15

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: - identify and manage geographic areas where hotspot exposures are a potential risk to human health; and - reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km(2) regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Assessment of Human Exposures to Natural Sources of Radiation in Kenya

    International Nuclear Information System (INIS)

    Mustapha, A.O.; Patel, J.P.

    1999-01-01

    Levels of exposures to different components of natural background radiation in Kenya were assessed from measured data and published conversion factors. Among them, the average annual per capital effective dose from terrestrial external radiation is 0.76 mSv and the annual per capital effective dose from external exposure to cosmic radiation at ground levels is 0.41 mSv. The total average annual effective dose is greater than the global average. Also among the measured data, concentrations of radon ( 222 Rn) vary from 5 to 1200 Bq m -3 in indoor air of dwellings, and from 1 to 410 KBq m -3 in drinking water. An unusual pathway to internal exposure was discovered among the female population who engage in consumption of some earth materials, some of which are rich in thorium

  1. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    Science.gov (United States)

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improved use of workplace exposure data in the regulatory risk assessment of chemicals within Europe.

    Science.gov (United States)

    Money, C D; Margary, S A

    2002-04-01

    The process of risk assessment for human health demands the availability of soundly based effects and exposure information. However, many of the available data, particularly those which seek to describe human exposures to chemicals, are of varying quality and scope. Changing public and regulatory expectations increasingly demand that the outcomes of risk assessments are seen to have duly accounted for these data, in order that their conclusions can be viewed as valid. The challenge for risk assessors, therefore, is how the different grades of data should be integrated within the overall process. A series of core values are identified that govern the relationships and the influence that different types of exposure data have within European Union (EU) regulatory risk assessment for chemicals. Building on these values, an approach is presented for evaluating workplace exposure information in the context of how such data might be used within the EU process for assessing the risks to human health of new and existing substances. The implications of adopting the approach for regulatory risk assessment within the EU and its consequent impact on current occupational hygiene practice are discussed.

  3. Estimating human exposure to perfluoroalkyl acids via solid food and drinks: Implementation and comparison of different dietary assessment methods.

    Science.gov (United States)

    Papadopoulou, Eleni; Poothong, Somrutai; Koekkoek, Jacco; Lucattini, Luisa; Padilla-Sánchez, Juan Antonio; Haugen, Margaretha; Herzke, Dorte; Valdersnes, Stig; Maage, Amund; Cousins, Ian T; Leonards, Pim E G; Småstuen Haug, Line

    2017-10-01

    Diet is a major source of human exposure to hazardous environmental chemicals, including many perfluoroalkyl acids (PFAAs). Several assessment methods of dietary exposure to PFAAs have been used previously, but there is a lack of comparisons between methods. To assess human exposure to PFAAs through diet by different methods and compare the results. We studied the dietary exposure to PFAAs in 61 Norwegian adults (74% women, average age: 42 years) using three methods: i) by measuring daily PFAA intakes through a 1-day duplicate diet study (separately in solid and liquid foods), ii) by estimating intake after combining food contamination with food consumption data, as assessed by 2-day weighted food diaries and iii) by a Food Frequency Questionnaire (FFQ). We used existing food contamination data mainly from samples purchased in Norway and if not available, data from food purchased in other European countries were used. Duplicate diet samples (n=122) were analysed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify 15 PFAAs (11 perfluoroalkyl carboxylates and 4 perfluoroalkyl sulfonates). Differences and correlations between measured and estimated intakes were assessed. The most abundant PFAAs in the duplicate diet samples were PFOA, PFOS and PFHxS and the median total intakes were 5.6ng/day, 11ng/day and 0.78ng/day, respectively. PFOS and PFOA concentrations were higher in solid than liquid samples. PFOS was the main contributor to the contamination in the solid samples (median concentration 14pg/g food), while it was PFOA in the liquid samples (median concentrations: 0.72pg/g food). High intakes of fats, oils, and eggs were statistically significantly related to high intakes of PFOS and PFOA from solid foods. High intake of milk and consumption of alcoholic beverages, as well as food in paper container were related to high PFOA intakes from liquid foods. PFOA intakes derived from food diary and FFQ were significantly higher than

  4. Human exposure, health hazards, and environmental regulations

    International Nuclear Information System (INIS)

    Steinemann, Anne

    2004-01-01

    United States environmental regulations, intended to protect human health, generally fail to address major sources of pollutants that endanger human health. These sources are surprisingly close to us and within our control, such as consumer products and building materials that we use within our homes, workplaces, schools, and other indoor environments. Even though these indoor sources account for nearly 90% of our pollutant exposure, they are virtually unregulated by existing laws. Even pollutant levels found in typical homes, if found outdoors, would often violate federal environmental standards. This article examines the importance of human exposure as a way to understand and reduce effects of pollutants on human health. Results from exposure studies challenge traditional thinking about pollutant hazards, and reveal deficiencies in our patchwork of laws. And results from epidemiological studies, showing increases in exposure-related diseases, underscore the need for new protections. Because we cannot rely solely on regulations to protect us, and because health effects from exposures can develop insidiously, greater efforts are needed to reduce and prevent significant exposures before they occur. Recommendations include the development and use of safer alternatives to common products, public education on ways to reduce exposure, systematic monitoring of human exposure to pollutants, and a precautionary approach in decision-making

  5. Human Exposure and Health

    Science.gov (United States)

    The ROE is divided into 5 themes: Air, Water, Land, Human Exposure and Health and Ecological Condition. From these themes, the report indicators address fundamental questions that the ROE attempts to answer. For human health there are 3 questions.

  6. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  7. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  8. Assessment of human hair as an indicator of exposure to organophosphate flame retardants. Case study on a Norwegian mother-child cohort.

    Science.gov (United States)

    Kucharska, Agnieszka; Cequier, Enrique; Thomsen, Cathrine; Becher, Georg; Covaci, Adrian; Voorspoels, Stefan

    2015-10-01

    A major challenge of non-invasive human biomonitoring using hair is to assess whether it can be used as an indicator of exposure to Flame Retardants, such as Organophosphate Flame Retardants (PFRs), since the contribution of atmospheric deposition (air and/or dust) cannot be neglected. Therefore, the aim of this study was to evaluate the suitability of using human hair more thoroughly by comparison of (i) levels of PFRs in human hair (from 48 mothers and 54 children), with levels measured in dust and air in their respective households; and (ii) levels of selected PFRs in hair with the levels of corresponding PFR metabolites in matching urine samples collected simultaneously. Most PFRs (tri-n-butyl phosphate (TNBP), 2-ethyl-hexyldiphenyl phosphate (EHDPHP), tri-phenyl phosphate (TPHP), tri-iso-butyl phosphate (TIBP), and tris(2-butoxyethyl) phosphate (TBOEP)) were detected in all human hair samples, tris(2-ethylhexyl) phosphate (TEHP) and tris(1,3-dichloro-iso-propyl) phosphate (TDCIPP) in 93%, tri-cresyl-phosphate (TCP) in 69% and tris(2-chloroethyl) phosphate (TCEP) in 21% of the samples. Levels of individual PFRs ranged between human hair and PFR levels in house dust and/or air were found, e.g. Spearman correlation (rS = 0.561, p exposure. To the best of our knowledge, this is the first study with such design and our findings might help to understand human exposure to and body burdens of PFRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    OpenAIRE

    Straub, J?rg Oliver

    2013-01-01

    An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured...

  10. Occurrence and levels of polybrominated diphenyl ethers (PBDEs) in house dust and hair samples from Northern Poland; an assessment of human exposure.

    Science.gov (United States)

    Król, Sylwia; Namieśnik, Jacek; Zabiegała, Bożena

    2014-09-01

    Polybrominated diphenyl ethers (PBDEs) are among most ubiquitous compounds to be found in indoor environment and ingestion of household dust is considered an important route of exposure to PBDEs, especially in toddlers and young children. The present work reported concentration levels of PBDE congeners (PBDE-28, -47, -99, -100, -153, -154, -183 and -209) in hair and dust samples from selected households from Northern Poland. The concentrations of PBDEs in dust ranged from human hair. PBDE-209 was reported the dominating congener. Two separated exposure scenarios (mean and 95th percentile) were used to provide a comprehensive overview of possible risks arising from ingestion of household dust. The estimated exposure to ∑PBDEs via ingestion of household dust varied from 21 to 92ngd(-1) in toddlers and from 3.7 to 20ngd(-1) in adults. By comparison of correlation between the concentrations of PBDEs in paired hair and dust samples the present work also investigated the possibility of use of hair for reflecting the actual exposure to PBDEs in humans. Finally the possible uncertainties associated with exposure assessment were investigated in the present study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy.

    Science.gov (United States)

    Xu, Fuchao; Giovanoulis, Georgios; van Waes, Sofie; Padilla-Sanchez, Juan Antonio; Papadopoulou, Eleni; Magnér, Jorgen; Haug, Line Småstuen; Neels, Hugo; Covaci, Adrian

    2016-07-19

    We compared the human exposure to organophosphate flame retardants (PFRs) via inhalation, dust ingestion, and dermal absorption using different sampling and assessment strategies. Air (indoor stationary air and personal ambient air), dust (floor dust and surface dust), and hand wipes were sampled from 61 participants and their houses. We found that stationary air contains higher levels of ΣPFRs (median = 163 ng/m(3), IQR = 161 ng/m(3)) than personal air (median = 44 ng/m(3), IQR = 55 ng/m(3)), suggesting that the stationary air sample could generate a larger bias for inhalation exposure assessment. Tris(chloropropyl) phosphate isomers (ΣTCPP) accounted for over 80% of ΣPFRs in both stationary and personal air. PFRs were frequently detected in both surface dust (ΣPFRs median = 33 100 ng/g, IQR = 62 300 ng/g) and floor dust (ΣPFRs median = 20 500 ng/g, IQR = 30 300 ng/g). Tris(2-butoxylethyl) phosphate (TBOEP) accounted for 40% and 60% of ΣPFRs in surface and floor dust, respectively, followed by ΣTCPP (30% and 20%, respectively). TBOEP (median = 46 ng, IQR = 69 ng) and ΣTCPP (median = 37 ng, IQR = 49 ng) were also frequently detected in hand wipe samples. For the first time, a comprehensive assessment of human exposure to PFRs via inhalation, dust ingestion, and dermal absorption was conducted with individual personal data rather than reference factors of the general population. Inhalation seems to be the major exposure pathway for ΣTCPP and tris(2-chloroethyl) phosphate (TCEP), while participants had higher exposure to TBOEP and triphenyl phosphate (TPHP) via dust ingestion. Estimated exposure to ΣPFRs was the highest with stationary air inhalation (median =34 ng·kg bw(-1)·day(-1), IQR = 38 ng·kg bw(-1)·day(-1)), followed by surface dust ingestion (median = 13 ng·kg bw(-1)·day(-1), IQR = 28 ng·kg bw(-1)·day(-1)), floor dust ingestion and personal air inhalation. The median dermal exposure on hand wipes was 0.32 ng·kg bw(-1)·day(-1) (IQR

  12. Challenges and perspectives of nanoparticle exposure assessment.

    Science.gov (United States)

    Lee, Ji Hyun; Moon, Min Chaul; Lee, Joon Yeob; Yu, Il Je

    2010-06-01

    Nanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activities related nanomaterial safety, and exposure assessment standard development for nanotechnology. Further this report describes challenges of nanoparticle exposure assessment such as background measurement, metrics of nanoparticle exposure assessment and personal sampling.

  13. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    Energy Technology Data Exchange (ETDEWEB)

    Dhondt, Stijn, E-mail: stijn.dhondt@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Beckx, Carolien, E-mail: Carolien.Beckx@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Degraeuwe, Bart, E-mail: Bart.Degraeuwe@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Lefebvre, Wouter, E-mail: Wouter.Lefebvre@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Kochan, Bruno, E-mail: Bruno.Kochan@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Bellemans, Tom, E-mail: Tom.Bellemans@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Int Panis, Luc, E-mail: Luc.intpanis@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Macharis, Cathy, E-mail: cjmachar@vub.ac.be [Department MOSI-Transport and Logistics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels (Belgium); Putman, Koen, E-mail: kputman@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Interuniversity Centre for Health Economics Research (I-CHER), Vrije Universiteit Brussel, Brussels (Belgium)

    2012-09-15

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO{sub 2} and O{sub 3} using only home addresses were compared with models that integrate all time-activity patterns-including time in commute-for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO{sub 2} using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: Black-Right-Pointing-Pointer Exposure to ambient air pollution was assessed integrating population mobility. Black-Right-Pointing-Pointer This dynamic exposure was integrated into a health impact assessment. Black-Right-Pointing-Pointer Differences between the dynamic and residential exposure were quantified. Black-Right-Pointing-Pointer Modest differences in health impact were found at a regional level. Black

  14. Managing Air Quality - Human Health, Environmental and Economic Assessments

    Science.gov (United States)

    Human health and environmental assessments characterize health and environmental risks associated with exposure to pollution. Economic assessments evaluate the cost and economic impact of a policy or regulation & can estimate economic benefits.

  15. Weighing serological evidence of human exposure to animal influenza viruses − A literature review

    NARCIS (Netherlands)

    Sikkema, R.S. (Reina S.); G.S. Freidl (Gudrun); E.I. de Bruin (Esther); M.P.G. Koopmans D.V.M. (Marion)

    2016-01-01

    textabstractAssessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal

  16. Stakeholder attitudes towards cumulative and aggregate exposure assessment of pesticides.

    Science.gov (United States)

    Verbeke, Wim; Van Loo, Ellen J; Vanhonacker, Filiep; Delcour, Ilse; Spanoghe, Pieter; van Klaveren, Jacob D

    2015-05-01

    This study evaluates the attitudes and perspectives of different stakeholder groups (agricultural producers, pesticide manufacturers, trading companies, retailers, regulators, food safety authorities, scientists and NGOs) towards the concepts of cumulative and aggregate exposure assessment of pesticides by means of qualitative in-depth interviews (n = 15) and a quantitative stakeholder survey (n = 65). The stakeholders involved generally agreed that the use of chemical pesticides is needed, primarily for meeting the need of feeding the growing world population, while clearly acknowledging the problematic nature of human exposure to pesticide residues. Current monitoring was generally perceived to be adequate, but the timeliness and consistency of monitoring practices across countries were questioned. The concept of cumulative exposure assessment was better understood by stakeholders than the concept of aggregate exposure assessment. Identified pitfalls were data availability, data limitations, sources and ways of dealing with uncertainties, as well as information and training needs. Regulators and food safety authorities were perceived as the stakeholder groups for whom cumulative and aggregate pesticide exposure assessment methods and tools would be most useful and acceptable. Insights obtained from this exploratory study have been integrated in the development of targeted and stakeholder-tailored dissemination and training programmes that were implemented within the EU-FP7 project ACROPOLIS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sensitivity Analysis of Personal Exposure Assessment Using a Computer Simulated Person

    DEFF Research Database (Denmark)

    Brohus, Henrik; Jensen, H. K.

    2009-01-01

    The paper considers uncertainties related to personal exposure assessment using a computer simulated person. CFD is used to simulate a uniform flow field around a human being to determine the personal exposure to a contaminant source. For various vertical locations of a point contaminant source...... three additional factors are varied, namely the velocity, details of the computer simulated person, and the CFD model of the wind channel. The personal exposure is found to be highly dependent on the relative source location. Variation in the range of two orders of magnitude is found. The exposure...

  18. Development of exposure scenarios for CERCLA risk assessments at the Savannah River Site (U)

    International Nuclear Information System (INIS)

    Nix, D.W.; Immel, J.W.; Phifer, M.A.

    1992-01-01

    Environmental Restoration (ER) activities at the Savannah River Site (SRS) begin with the characterization of inactive hazardous, radioactive and mixed waste disposal areas by a combined Resource Conservation Recovery Act (RCRA) Facility Investigation (RFI)/Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation (Rl) followed by evaluation of remedial alternatives in a RCRA Corrective Measures Study (CMS)/CERCLA Feasibility Study (FS). A CERCLA Baseline Risk Assessment (BRA) is performed during the RFVRI characterization to determine if there are any potential risks to human health or the environment from the waste unit. If it is determined that there is need for remedial action, a Risk Evaluation of Remedial Alternatives (RERA) is performed as part of the CMS/FS to provide a basis for selecting a remedy that is protective of human health and the environment. The SRS has numerous waste units to evaluate in the RFI/RI and CMS/FS programs and, in order to provide a consistent approach, four standard exposure scenarios were developed for exposure assessments to be used in human health risk assessments. The standard exposure scenarios are divided into two temporal categories: (a) Current Land Use in the BRA, and (b) Future Land Use in the RERA. The Current Land Use scenarios consist of the evaluation of human health risk for Industrial Exposure (of a worker not involved in waste unit characterization or remediation), a Trespasser, a hypothetical current On-site Resident, and an Off-site Resident. The Future Land Use scenario considers exposure to an On-site Resident following termination of institutional control in the absence of any remedial action (No Action Alternative), as well as evaluating potential remedial alternatives against the four scenarios from the BRA. A critical facet in the development of a BRA or RERA is the seeping of exposure scenarios that reflect actual conditions at a waste unit, rather than using

  19. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    Science.gov (United States)

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  20. Health effects assessment of chemical exposures: ARIES methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-07-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs.

  1. Health effects assessment of chemical exposures: ARIES methodology

    International Nuclear Information System (INIS)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-01-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs

  2. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Teeguarden, Justin G.; Fisher, Jeffrey W.

    2015-01-01

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d 6 -BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d 6 -BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d 6 -BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  3. Sampling strategy for estimating human exposure pathways to consumer chemicals

    Directory of Open Access Journals (Sweden)

    Eleni Papadopoulou

    2016-03-01

    Full Text Available Human exposure to consumer chemicals has become a worldwide concern. In this work, a comprehensive sampling strategy is presented, to our knowledge being the first to study all relevant exposure pathways in a single cohort using multiple methods for assessment of exposure from each exposure pathway. The selected groups of chemicals to be studied are consumer chemicals whose production and use are currently in a state of transition and are; per- and polyfluorinated alkyl substances (PFASs, traditional and “emerging” brominated flame retardants (BFRs and EBFRs, organophosphate esters (OPEs and phthalate esters (PEs. Information about human exposure to these contaminants is needed due to existing data gaps on human exposure intakes from multiple exposure pathways and relationships between internal and external exposure. Indoor environment, food and biological samples were collected from 61 participants and their households in the Oslo area (Norway on two consecutive days, during winter 2013-14. Air, dust, hand wipes, and duplicate diet (food and drink samples were collected as indicators of external exposure, and blood, urine, blood spots, hair, nails and saliva as indicators of internal exposure. A food diary, food frequency questionnaire (FFQ and indoor environment questionnaire were also implemented. Approximately 2000 samples were collected in total and participant views on their experiences of this campaign were collected via questionnaire. While 91% of our participants were positive about future participation in a similar project, some tasks were viewed as problematic. Completing the food diary and collection of duplicate food/drink portions were the tasks most frequent reported as “hard”/”very hard”. Nevertheless, a strong positive correlation between the reported total mass of food/drinks in the food record and the total weight of the food/drinks in the collection bottles was observed, being an indication of accurate performance

  4. Human biological monitoring for exposure assessment in response to an incident involving hazardous materials.

    Science.gov (United States)

    Scheepers, Paul T J; van Brederode, Nelly E; Bos, Peter M J; Nijhuis, Nicole J; van de Weerdt, Rik H J; van der Woude, Irene; Eggens, Martin L

    2014-12-15

    Biological monitoring in humans (HBM) is widely used in the field of occupational and environmental health. In the situation of an unexpected release of hazardous materials HBM may contribute to the medical support and treatment of exposed individuals from the general population or of emergency responders. Such exposure information may also be used to respond to individual concerns such as questions about a possible relationship between the chemicals released during the incident and health effects. In The Netherlands a guideline was prepared to support early decision-making about the possible use of HBM for exposure assessment during or as soon as possible following a chemical incident. The application of HBM in such an emergency setting is not much different from situations where HBM is normally used but there are some issues that need extra attention such as the choice of the biomarker, the biological media to be sampled, the time point at which biological samples should be collected, the ethics approval and technical implementation of the study protocol and the interpretation and communication of the study results. These issues addressed in the new guideline will support the use of HBM in the management of chemical disasters. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Exposure to UV radiation and human health

    Science.gov (United States)

    Kimlin, Michael G.

    2005-08-01

    This paper will overview the significant issues facing researchers in relating the impact of exposure to sunlight and human health. Exposure to solar ultraviolet radiation is the major causative factor in most sun-related skin and eye disorders, however, very little is known quantitatively about human UV exposures. Interestingly, human exposure to sunlight also has a nutritional impact, namely the development of pre-Vitamin D, which is an important nutrient in bone health. New research suggest that low vitamin D status may be a causative factor in the development of selective types of cancer and autoimminue diseases, as well as a contributing factor in bone health. The 'health duality' aspect of sunlight exposure is an interesting and controversial topic that is a research focus of Kimlin's research group.

  6. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity Using Human Keratinocyte Cells

    Science.gov (United States)

    Shvedova, Anna A.; Castranova, Vincent; Kisin, Elena R.; Schwegler-Berry, Diane; Murray, Ashley R.; Gandelsman, Vadim Z.; Maynard, Andrew; Baron, Paul

    2003-01-01

    Carbon nanotubes are new members of carbon allotropes similar to fullerenes and graphite. Because of their unique electrical, mechanical, and thermal properties, carbon nanotubes are important for novel applications in the electronics, aerospace, and computer industries. Exposure to graphite and carbon materials has been associated with increased incidence of skin diseases, such as carbon fiber dermatitis, hyperkeratosis, and naevi. We investigated adverse effects of single-wall carbon nanotubes (SWCNT) using a cell culture of immortalized human epidermal keratinocytes (HaCaT). After 18 h of exposure of HaCaT to SWCNT, oxidative stress and cellular toxicity were indicated by formation of free radicals, accumulation of peroxidative products, antioxidant depletion, and loss of cell viability. Exposure to SWCNT also resulted in ultrastructural and morphological changes in cultured skin cells. These data indicate that dermal exposure to unrefined SWCNT may lead to dermal toxicity due to accelerated oxidative stress in the skin of exposed workers.

  7. Hexachlorobenzene sources, levels and human exposure in the environment of China

    NARCIS (Netherlands)

    Wang, G.; Lu, Y.L.; Han, Jingyi; Luo, W.; Shi, Y.J.; Wang, T.Y.; Sun, Y.M.

    2010-01-01

    This article summarizes the published scientific data on sources, levels and human exposure of hexachlorobenzene (HCB) in China. Potential sources of unintended HCB emission were assessed by production information, emission factors and environmental policies. HCB was observed in various

  8. Integrating exposure into chemical alternatives assessment using a qualitative approach

    DEFF Research Database (Denmark)

    Greggs, Bill; Arnold, Scott; Burns, T. E.

    2016-01-01

    , other attributes beyond hazard are also important, including exposure, risk, life-cycle impacts, performance, cost, and social responsibility. Building on the 2014 recommendations by the U.S. National Academy of Sciences to improve AA decisions by including comparative exposure assessment, the HESI...... Sustainable Chemical Alternatives Technical Committee, which consists of scientists from academia, industry, government, and NGOs, has developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher human or environmental...... not necessarily reflect the views or policies of the U.S. Environmental Protection Agency....

  9. Range-finding risk assessment of inhalation exposure to nanodiamonds in a laboratory environment.

    Science.gov (United States)

    Koivisto, Antti J; Palomäki, Jaana E; Viitanen, Anna-Kaisa; Siivola, Kirsi M; Koponen, Ismo K; Yu, Mingzhou; Kanerva, Tomi S; Norppa, Hannu; Alenius, Harri T; Hussein, Tareq; Savolainen, Kai M; Hämeri, Kaarle J

    2014-05-16

    This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers' risk range of inhalation exposure to nanodiamonds (NDs) during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m(-3) (0.08 to 0.74 cm(-3)). In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled) dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m(-3), which is one of the proposed exposure limits for diesel particulate matter, and the workers' calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h) dose of submicrometer urban air particles.

  10. Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment

    Directory of Open Access Journals (Sweden)

    Antti J. Koivisto

    2014-05-01

    Full Text Available This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers’ risk range of inhalation exposure to nanodiamonds (NDs during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m−3 (0.08 to 0.74 cm−3. In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m−3, which is one of the proposed exposure limits for diesel particulate matter, and the workers’ calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h dose of submicrometer urban air particles.

  11. How Exposure Science can be Integrated into the Assessment ...

    Science.gov (United States)

    The presentation describes ongoing research in the Rapid Exposure and Dosimetry project funded under the Chemical Safety for Sustainability Research Program of the Office of Research and Development. There is a well known need for information on human exposure to thousands of chemicals, especially with respect to route of exposure. A combination of curation of legacy data, new data collection activities, and mathematical models based both upon statistics (empirical) and mechanism are allowing chemicals to be prioritized for further exposure study. This presentation pays special attention to the opportunities presented by non-targeted screening using mass spectrometry. This is a presentation to the American College of Toxicology annual meeting in Baltimore, Maryland on November 7, 2016. This half hour presentation is part of a session on 21st Century Approaches to Assessing Food Ingredient Safety.

  12. Naphthalene and Naphthoquinone: Distributions and Human Exposure in the Los Angeles Basin

    Science.gov (United States)

    Lu, R.; Wu, J.; Turco, R.; Winer, A. M.; Atkinson, R.; Paulson, S.; Arey, J.; Lurmann, F.

    2003-12-01

    Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons (PAHs). Naphthalene is found primarily in the gas-phase and has been detected in both outdoor and indoor samples. Evaporation from naphthalene-containing products (including gasoline), and during refining operations, are important sources of naphthalene in air. Naphthalene is also emitted during the combustion of fossil fuels and wood, and is a component of vehicle exhaust. Exposure to high concentrations of naphthalene can damage or destroy red blood cells, causing hemolytic anemia. If inhaled over a long period of time, naphthalene may cause kidney and liver damage, skin allergy and dermatitis, cataracts and retinal damage, as well as attack the central nervous system. Naphthalene has been found to cause cancer as a result of inhalation in animal tests. Naphthoquinones are photooxidation products of naphthalene and the potential health effects of exposure to these quinones are a current focus of research. We are developing and applying models that can be used to assess human exposure to naphthalene and its photooxidation products in major air basins such as California South Coast Air Basin (SoCAB). The work utilizes the Surface Meteorology and Ozone Generation (SMOG) airshed model, and the REgional Human EXposure (REHEX) model, including an analysis of individual exposure. We will present and discuss simulations of basin-wide distributions of, and human exposures to, naphthalene and naphthoquinone, with emphasis on the uncertainties in these estimates of atmospheric concentrations and human exposure. Regional modeling of pollutant sources and exposures can lead to cost-effective and optimally health-protective emission control strategies.

  13. Traffic Related Aerosol Exposure And Their Risk Assessment Of Associated Metals In Delhi, India

    Directory of Open Access Journals (Sweden)

    Rajesh Kushwaha

    2013-12-01

    Full Text Available A pilot study was carried out in New Delhi, India, to assess the level of traffic related aerosol exposure, individually and associated metals. These investigations also try to formulate their risk assessment using different modes of transport on a typical journey to work route and compared Bus, Auto-rickshaws and Bike (Two Wheelers during the journey. The inhalable particulate matter monitored in winter period and also evaluated the potential health risk due to inhalation in the study. The exposure of Particulate matter was observed maximum in the Bike (502 ± 176.38 μgm-3 and minimum in the Auto-rickshaw (208.15 ± 61.38 μgm-3. In case of human exposure to metals (viz. Cu, Cd, Mn, Pb, Ni, Co, Cr, Fe, Zn, it was mostly exposed by Fe, Zn and Co and least exposed by Cd, Cr and Pb. Human health risk was estimated based on exposure and dosage response. The assessment of particulate-bound elements was calculated by assuming exposure of 6 h. The findings indicated that the exposure to particulate bound elements have relatively more adverse health effects. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 26-36 DOI: http://dx.doi.org/10.3126/ije.v2i1.9205

  14. Use of chromosome translocations for measuring prior environment exposures in humans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, J. D.

    1997-05-01

    Recent advances in cytogenetic methodology are beginning to have a major impact upon our ability to provide assessments of environmental exposure in humans. The advent of fluorescent-based techniques for `painting` whole chromosomes has made the analysis of chromosome translocations rapid, specific, sensitive and routine. Chromosome painting has been used to address a wide variety of scientific questions, resulting in an increased understanding of the biological consequences of adverse environmental exposure. This paper describes the use of chromosome translocations as a biological marker of exposure and effect in humans. The relevance of translocations is discussed, as are the advantages and disadvantages of painting compared to classical cytogenetic methods for translocation evaluation. The factors to consider in the use of translocations as a retrospective indicator of exposure are then described. Several theoretical parameters that are important to the use of translocations are provided, and the paper concludes with a vision for the future of cytogenetic methodology.

  15. Exposure levels, environmental fate modelling and human health risk assessment of lindane in Ghana

    International Nuclear Information System (INIS)

    Adu-Kumi, S.

    2011-01-01

    This thesis discusses an innovative approach of combining chemical trace analysis including the use of 13 C-labelled isotopes as internal and recovery standards) with multi-media modelling for assessing health risks of Lindane which is a persistent organic pollutant (POP) and a commercial formulated insecticide also known as Gamma-hexachlorocyclohexane (γ-HCH). Samples studied were background air, human breast milk, and edible fish (tilapia and catfish). The investigations focused on the exposure of the general population. For the first time levels and seasonal variation of Lindane, α-HCH and β-HCH in background air of Lake Bosumtwi, Kwabenya and East Legon in Ghana were studied with polyurethane foam based passive air samplers. Lindane (average concentration 53 pg m -3 ) was measured in all samples with (i) gas chromatography-mass spectrometer (GC-MS) and (ii) gas chromatography-mass spectrometer operated in electron ionization mode (GC-EI-MS). Agricultural application and revolatilisation from soils were main primary and secondary sources of HCH releases. Levels and variation of Lindane, α-HCH and β-HCH in pooled and individual human breast milk samples collected from lactating mothers countrywide were determined using a high-resolution gas chromatography interfaced with a high-resolution gas chromatography interfaced with a high-resolution mass spectrometer (HRGC-HRMS). This constitutes the first comprehensive nationwide human breast milk study of assessing risks of HCHs for the general population of Ghana. Mothers were selected from three major cities (Accra, Kumasi and Tamale) and three rural communities (Ada, Jachie/Pramso and Tolon) representing the Southern, Middle and Northern sectors respectively. The results of the study showed that the general population of Ghana is widely exposed to HCHs although the current levels are generally low; and also suggest that the usage pattern and exposure levels of Lindane vary among the various regions in Ghana.

  16. Assessing exposures and risks in heterogeneously contaminated areas: A simulation approach

    International Nuclear Information System (INIS)

    Fingleton, D.J.; MacDonell, M.M.; Haroun, L.A.; Oezkaynak, H.; Butler, D.A.; Xue, J.

    1991-01-01

    The US Department of Energy (DOE) is responsible for cleanup activities at a number of facilities under its Environmental Restoration and Waste Management Program. The major goals of this program are to eliminate potential hazards to human health and the environment that are associated with contamination of these sites and, to the extent possible, make surplus real property available for other uses. The assessment of potential baseline health risks and ecological impacts associated with a contaminated site is an important component of the remedial investigation/feasibility study (RI/FS) process required at all Superfund sites. The purpose of this paper is to describe one phase of the baseline assessment, i.e., the characterization of human health risks associated with exposure to chemical contaminants in air and on interior building surfaces at a contaminated site. The model combines data on human activity patterns in a particular microenvironment within a building with contaminant concentrations in that microenvironment to calculate personal exposure profiles and risks within the building. The results of the building assessment are presented as probability distribution functions and cumulative distribution functions, which show the variability and uncertainty in the risk estimates

  17. Assessing exposures and risks in heterogeneously contaminated areas: A simulation approach

    International Nuclear Information System (INIS)

    Fingleton, D.J.; MacDonell, M.M.; Haroun, L.A.; Oezkaynak, H.; Butler, D.A.; Jianping Xue

    1991-01-01

    The US Department of Energy (DOE) is responsible for cleanup activities at a number of facilities under its Environmental Restoration and Waste Management Program. The major goals of this program are to eliminate potential hazards to human health and the environment that are associated with contamination of these sites and, to the extent possible, make surplus real property available for other uses. The assessment of potential baseline health risks and ecological impacts associated with a contaminated site is an important component of the remedial investigation/feasibility study (RI/FS) process required at all Superfund sites. The purpose of this paper is to describe one phase of the baseline assessment, i.e., the characterization of human health risks associated with exposure to chemical contaminants in air and on interior building surfaces at a contaminated site. The model combines data on human activity patterns in a particular microenvironment within a building with contaminant concentrations in that microenvironment to calculate personal exposure profiles and risks within the building. The results of the building assessment are presented as probability distributions functions and cumulative distribution functions, which show the variability and uncertainty in the risk estimates. 23 refs., 2 figs., 1 tab

  18. A systematic review of the human body burden of e-waste exposure in China.

    Science.gov (United States)

    Song, Qingbin; Li, Jinhui

    2014-07-01

    As China is one of the countries facing the most serious pollution and human exposure effects of e-waste in the world, much of the population there is exposed to potentially hazardous substances due to informal e-waste recycling processes. This report reviews recent studies on human exposure to e-waste in China, with particular focus on exposure routes (e.g. dietary intake, inhalation, and soil/dust ingestion) and human body burden markers (e.g. placenta, umbilical cord blood, breast milk, blood, hair, and urine) and assesses the evidence for the association between such e-waste exposure and the human body burden in China. The results suggest that residents in the e-waste exposure areas, located mainly in the three traditional e-waste recycling sites (Taizhou, Guiyu, and Qingyuan), are faced with a potential higher daily intake of these pollutants than residents in the control areas, especially via food ingestion. Moreover, pollutants (PBBs, PBDEs, PCBs, PCDD/Fs, and heavy metals) from the e-waste recycling processes were all detectable in the tissue samples at high levels, showing that they had entered residents' bodies through the environment and dietary exposure. Children and neonates are the groups most sensitive to the human body effects of e-waste exposure. We also recorded plausible outcomes associated with exposure to e-waste, including 7 types of human body burden. Although the data suggest that exposure to e-waste is harmful to health, better designed epidemiological investigations in vulnerable populations, especially neonates and children, are needed to confirm these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Exposure assessment in studies on health effects of traffic exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Setaelae, S. [Association for the Pulmonary Disabled, Helsinki (Finland); Jaakkola, J.J.K. [Helsinki Univ. (Finland). Dept. of Public Health

    1995-12-31

    A main source of outdoor air pollution is road traffic, which produces a complex mixture of nitrogen oxides, carbon monoxide, volatile hydrocarbons, airborne particles and some other compounds. Traffic exhaust affects also the concentrations of ozone and other photo chemical oxidants. In earlier studies those components have had remarkable health effects. Several studies on occupational exposure to automobile exhaust have been published and several studies have been observed an association between both outdoor and indoor pollutant levels and health outcomes. However, there are only a few epidemiological studies in which traffic exhaust, a complex mixture, has been studied in its entirety. During recent years, interesting epidemiological studies of the health effects of this complex mixture have been published. Human exposure assessment for traffic exhaust can be categorized according to the environment of exposure (indoors, outdoors, in-traffic) or to the method of exposure assessment (direct or indirect methods). In this presentation the methods are further categorized into (1) traffic activity, (2) air concentration measurements, and (3) dispersion models, in order to better understand the advantages and disadvantages of different approaches. The objective of this presentation is to make a critical review of exposure assessments in the epidemiological studies on health effects of traffic exhaust. (author)

  20. Exposure assessment in studies on health effects of traffic exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Setaelae, S [Association for the Pulmonary Disabled, Helsinki (Finland); Jaakkola, J J.K. [Helsinki Univ. (Finland). Dept. of Public Health

    1996-12-31

    A main source of outdoor air pollution is road traffic, which produces a complex mixture of nitrogen oxides, carbon monoxide, volatile hydrocarbons, airborne particles and some other compounds. Traffic exhaust affects also the concentrations of ozone and other photo chemical oxidants. In earlier studies those components have had remarkable health effects. Several studies on occupational exposure to automobile exhaust have been published and several studies have been observed an association between both outdoor and indoor pollutant levels and health outcomes. However, there are only a few epidemiological studies in which traffic exhaust, a complex mixture, has been studied in its entirety. During recent years, interesting epidemiological studies of the health effects of this complex mixture have been published. Human exposure assessment for traffic exhaust can be categorized according to the environment of exposure (indoors, outdoors, in-traffic) or to the method of exposure assessment (direct or indirect methods). In this presentation the methods are further categorized into (1) traffic activity, (2) air concentration measurements, and (3) dispersion models, in order to better understand the advantages and disadvantages of different approaches. The objective of this presentation is to make a critical review of exposure assessments in the epidemiological studies on health effects of traffic exhaust. (author)

  1. Dietary exposure and human risk assessment of phthalate esters based on total diet study in Cambodia

    International Nuclear Information System (INIS)

    Cheng, Zhang; Li, Han-Han; Wang, Hong-sheng; Zhu, Xue-Mei; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Yasin, Mohamed Salleh Mohamed; Hashim, Jamal Hisham; Wong, Ming-Hung

    2016-01-01

    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μg g −1 , 0.19–1.65 (median 0.86) μg g −1 and 0.24–3.05 (median 0.59) μg g −1 wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8 μg kg −1 bw d −1 , respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia. - Highlights: • Phthalate esters concentration in daily foodstuffs collected from Cambodia. • Investigate the bioaccessbility of phthalate esters via the foodstuffs consumption. • Health risk evaluation of dietary exposure to phthalate esters.

  2. Dietary exposure and human risk assessment of phthalate esters based on total diet study in Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhang; Li, Han-Han [College of Environment, Sichuan Agricultural University, Chengdu 611130 (China); Wang, Hong-sheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Waihuandong Road, University Town, Guangzhou 510006 (China); Zhu, Xue-Mei [College of Environment, Sichuan Agricultural University, Chengdu 611130 (China); Sthiannopkao, Suthipong [Department of Environmental and Occupational Health, National Cheng Kung University, Tainan City, Taiwan (China); Kim, Kyoung-Woong [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Yasin, Mohamed Salleh Mohamed; Hashim, Jamal Hisham [United Nations University-International Institute for Global Health, Kuala Lumpur (Malaysia); Wong, Ming-Hung, E-mail: minghwong@ied.edu.hk [Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, Hong Kong Institute of Education, Tai Po, Hong Kong (China); School of Environment, Jinan University, Guangzhou (China)

    2016-10-15

    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μg g{sup −1}, 0.19–1.65 (median 0.86) μg g{sup −1} and 0.24–3.05 (median 0.59) μg g{sup −1} wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8 μg kg{sup −1} bw d{sup −1}, respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia. - Highlights: • Phthalate esters concentration in daily foodstuffs collected from Cambodia. • Investigate the bioaccessbility of phthalate esters via the foodstuffs consumption. • Health risk evaluation of dietary exposure to phthalate esters.

  3. Coupled near-field and far-field exposure assessment framework for chemicals in consumer products

    DEFF Research Database (Denmark)

    Fantke, Peter; Ernstoff, Alexi; Huang, Lei

    2016-01-01

    Humans can be exposed to chemicals in consumer products through product use and environmental emissions over the product life cycle. Exposure pathways are often complex, where chemicals can transfer directly from products to humans during use or exchange between various indoor and outdoor...... compartments until sub-fractions reach humans. To consistently evaluate exposure pathways along product life cycles, a flexible mass balance-based assessment framework is presented structuring multimedia chemical transfers in a matrix of direct inter-compartmental transfer fractions. By matrix inversion, we...

  4. The prediction of human exposure to substances and radiation. The status of RIVM research

    International Nuclear Information System (INIS)

    Vermeire, T.; Veeren, M. van; Janssen, M.

    1998-03-01

    In 1994, the substances and risks sector of the National Institute of Public Health and the Environment (RIVM) decided to strengthen its research into risk assessment methodology strategically. To further this goal, this report describes the area of RIVM research dealing with the prediction of human exposure. A representative selection of the models used to predict human exposure to both chemical substances and radiation is analysed. The analysis considers aspects of the models such as the aims, basic principles, the extent to which the models have been analysed and values of default parameters. For comparison purposes, a model used to assess human exposure to micro-organisms is also included. All models are being, or are about to be, used operationally to produce risk assessments in the substances and risks sector and also in the public health and environmental research sectors. All the models discussed have a defined area of application and are directly available in support of policy implementation. Comparison of areas of research dealing with exposure assessment for substances and radiation reveals many methodological similarities. However, at the level of models and parameters, an in-depth analysis of these similarities and explained or unexplained differences is lacking. A first attempt is made in this report. Detailed examination of organisational aspects and RIVM-models for human exposure prediction reveals that all relevant areas of interest are covered. The range of methodology for the prediction of actual risks and exposures is great, for all exposure routes. The coverage is more uniform for radiation than for chemical substances, however. For both areas the prediction and recording of emissions could be improved. The development of risk assessment systems and related harmonisation projects have been underway for many years (for example CSOIL, USES, RIBRON). The methodology for the prediction of actual exposures and risks still requires further

  5. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure

    NARCIS (Netherlands)

    Boerleider, R. Z.; Olie, J. D N; van Eijkeren, J. C H; Bos, P. M J; Hof, B. G H; de Vries, I.; Bessems, J. G M; Meulenbelt, J.; Hunault, C. C.

    2015-01-01

    Introduction: Physiologically based pharmacokinetic (PBPK) models may be useful in emergency risk assessment, after acute exposure to chemicals, such as dichloromethane (DCM). We evaluated the applicability of three PBPK models for human risk assessment following a single exposure to DCM: one model

  6. Dosimetry Methods for Human Exposure to Non-Ionising Radiation

    International Nuclear Information System (INIS)

    Poljak, D.; Sarolic, A.; Doric, V.; Peratta, C.; Peratta, A.

    2011-01-01

    The paper deals with human exposure to electromagnetic fields from extremely low frequencies (ELF) to GSM frequencies. The problem requires (1) the assessment of external field generated by electromagnetic interference (EMI) source at a given frequency (incident field dosimetry) and then (2) the assessment of corresponding fields induced inside the human body (internal field dosimetry). Several methods used in theoretical and experimental dosimetry are discussed within this work. Theoretical dosimetry models at low frequencies are based on quasistatic approaches, while analyses at higher frequencies use the full-wave models. Experimental techniques involve near and far field measurement. Human exposure to power lines, transformer substations, power line communication (PLC) systems, Radio Frequency Identification (RFID) antennas and GSM base station antenna systems is analyzed. The results o are compared to the exposure limits proposed by relevant safety guidelines. Theoretical incident dosimetry used in this paper is based on the set of Pocklington integro-differential equations for the calculation of the current distribution and subsequently radiated field from power lines. Experimental incident dosimetry techniques involve measurement techniques of fields radiated by RFID antennas and GSM base station antennas. First example set of numerical results is related to the internal dosimetry of realistic well-grounded body model exposed to vertical component of the electric field E = 10 kV/m generated by high voltage power line. The results obtained via the HNA model exceed the ICNIRP basic restrictions for public exposure (2 mA/m 2 ) in knee (8.6 mA/m 2 ) and neck (9.8 mA/m 2 ) and for occupational exposure (10 mA/m 2 ) in ankle (32 mA/m 2 ). In the case of a conceptual model of a realistic human body inside a transformer substation room touching a control panel at the potential φ0 = 400 V and with two scenarios for dry-air between worker's hand and panel, the values

  7. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures.

    Science.gov (United States)

    Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi

    2013-07-01

    The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Teeguarden, Justin G. [Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  9. What are the elements required to improve exposure estimates in life cycle assessments?

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Rosenbaum, Ralph K.; Margni, Manuele

    2016-01-01

    human toxicity and ecosystem toxicity of chemicals posed by different product life cycle stages are characterized in the life cycle impact assessment (LCIA) phase. Exposure and effect quantification as part of LCIA toxicity characterization faces numerous challenges related to inventory analysis (e.......g. number and quantity of chemicals emitted), substance-specific modelling (e.g. organics, inorganics, nano-materials) in various environments and time horizons, human and ecosystem exposure quantification (e.g. exposed organisms and exposure pathways), and toxicity end-points (e.g. carcinogenicity...... chemical exposure and harmful effects. Thereby, we structure this study of key elements identified as areas of elevated public, industrial, regulatory, and scientific concerns. We found the majority of missing elements are directly related to the definition of exposed populations (both ecosystems...

  10. Exposure of Extremely-Low Frequency (ELF magnetic field may cause human cancer

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2017-01-01

    Full Text Available Introduction: Chronic exposure of non-ionizing extremely low-frequency magnetic fields (ELF-EMF is considered as a health hazard due to its adverse effects on human body such as generation of any type of cancer. Stem cells are appropriate models to assess the effects of ELF-EMF on other cell lines and human beings. Materials and methods: Adipose tissue has been known as source of multi potent stromal human mesenchymal stem cells (MSCs which can be obtained in less invasive method and in large amounts; so adipose-derived stem cells (ADSCs were used in this study. Effect of ELF-EMF (intensities of 0.5 and 1 mT and 50 Hz on proliferation rate of hADSCs was assessed in 20 and 40 min per day for 7 days. Trypan blue assay was performed to assess cell proliferation rate. Result: The results shown that 0.5 and 1 mT magnetic fields can promote the proliferation rate of adipose derived hMSCs according to the duration of exposure. Conclusion: These outcomes could approve the effect of ELF-EMF on cancer induction; although the effective mechanisms in this process are still unknown.

  11. TOWARDS RELIABLE AND COST-EFFECTIVE OZONE EXPOSURE ASSESSMENT: PARAMETER EVALUATION AND MODEL VALIDATION USING THE HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    Science.gov (United States)

    Accurate assessment of chronic human exposure to atmospheric criteria pollutants, such as ozone, is critical for understanding human health risks associated with living in environments with elevated ambient pollutant concentrations. In this study, we analyzed a data set from a...

  12. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk.

    Science.gov (United States)

    MacGregor, James T; Frötschl, Roland; White, Paul A; Crump, Kenny S; Eastmond, David A; Fukushima, Shoji; Guérard, Melanie; Hayashi, Makoto; Soeteman-Hernández, Lya G; Johnson, George E; Kasamatsu, Toshio; Levy, Dan D; Morita, Takeshi; Müller, Lutz; Schoeny, Rita; Schuler, Maik J; Thybaud, Véronique

    2015-05-01

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. 76 FR 12963 - Request for Information (NOT-ES-11-007): Needs and Approaches for Assessing the Human Health...

    Science.gov (United States)

    2011-03-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Information (NOT-ES-11-007): Needs and Approaches for Assessing the Human Health Impacts of Exposure to Mixtures AGENCY: National Institutes of... analyzes its findings to assess potential hazards to human health from exposure to environmental substances...

  14. An Agent-Based Modeling Framework for Simulating Human Exposure to Environmental Stresses in Urban Areas

    Directory of Open Access Journals (Sweden)

    Liang Emlyn Yang

    2018-04-01

    Full Text Available Several approaches have been used to assess potential human exposure to environmental stresses and achieve optimal results under various conditions, such as for example, for different scales, groups of people, or points in time. A thorough literature review in this paper identifies the research gap regarding modeling approaches for assessing human exposure to environment stressors, and it indicates that microsimulation tools are becoming increasingly important in human exposure assessments of urban environments, in which each person is simulated individually and continuously. The paper further describes an agent-based model (ABM framework that can dynamically simulate human exposure levels, along with their daily activities, in urban areas that are characterized by environmental stresses such as air pollution and heat stress. Within the framework, decision-making processes can be included for each individual based on rule-based behavior in order to achieve goals under changing environmental conditions. The ideas described in this paper are implemented in a free and open source NetLogo platform. A basic modeling scenario of the ABM framework in Hamburg, Germany, demonstrates its utility in various urban environments and individual activity patterns, as well as its portability to other models, programs, and frameworks. The prototype model can potentially be extended to support environmental incidence management through exploring the daily routines of different groups of citizens, and comparing the effectiveness of different strategies. Further research is needed to fully develop an operational version of the model.

  15. The Role of the Location of Personal Exposimeters on the Human Body in Their Use for Assessing Exposure to the Electromagnetic Field in the Radiofrequency Range 98–2450 MHz and Compliance Analysis: Evaluation by Virtual Measurements

    Directory of Open Access Journals (Sweden)

    Krzysztof Gryz

    2015-01-01

    Full Text Available The use of radiofrequency (98–2450 MHz range personal exposimeters to measure the electric field (E-field in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from −96 to +133%, measurement errors with respect to the unperturbed E-field value. When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions. However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements.

  16. COMPARING THE UTILITY OF MULTIMEDIA MODELS FOR HUMAN AND ECOLOGICAL EXPOSURE ANALYSIS: TWO CASES

    Science.gov (United States)

    A number of models are available for exposure assessment; however, few are used as tools for both human and ecosystem risks. This discussion will consider two modeling frameworks that have recently been used to support human and ecological decision making. The study will compare ...

  17. In vitro human epidermal permeation of nicotine from electronic cigarette refill liquids and implications for dermal exposure assessment.

    Science.gov (United States)

    Frasch, H Frederick; Barbero, Ana M

    2017-11-01

    Nicotine plus flavorings in a propylene glycol (PG) vehicle are the components of electronic cigarette liquids (e-liquids), which are vaporized and inhaled by the user. Dermal exposure to nicotine and e-liquids may occur among workers in mixing and filling of e-cigarettes in the manufacturing process. Inadvertent skin contact among consumers is also a concern. In vitro nicotine permeation studies using heat-separated human epidermis were performed with surrogate and two commercial e-liquids, neat and aqueous nicotine donor formulations. Steady-state fluxes (J ss ), and lag times (t lag ) were measured for each formulation. In addition, transient (4 h) exposure and finite dose (1-10 μl/cm 2 ) experiments were undertaken using one commercial e-liquid. Average J ss (μg/cm 2 /h) from formulations were: nicotine in PG (24 mg/ml): 3.97; commercial e-liquid containing menthol (25 mg/ml nicotine): 10.2; commercial e-liquid containing limonene (25 mg/ml nicotine): 23.7; neat nicotine: 175. E-liquid lag times ranged from 5 to 10 h. Absorbed fraction of nicotine from finite doses was ≈0.3 at 48 h. The data were applied to transient exposure and finite dose dermal exposure assessment models and to a simple pharmacokinetic model. Three illustrative exposure scenarios demonstrate use of the data to predict systemic uptake and plasma concentrations from dermal exposure. The data demonstrate the potential for significant nicotine absorption through skin contact with e-cigarette refill solutions and the neat nicotine used to mix them.

  18. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  19. Risk assessment of exposure to radon decay products

    International Nuclear Information System (INIS)

    Monchaux, G.

    1999-01-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f p - and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of 218 Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H w /P p ) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the HRTM have been

  20. The current status of exposure-driven approaches for chemical safety assessment: A cross-sector perspective.

    Science.gov (United States)

    Sewell, Fiona; Aggarwal, Manoj; Bachler, Gerald; Broadmeadow, Alan; Gellatly, Nichola; Moore, Emma; Robinson, Sally; Rooseboom, Martijn; Stevens, Alexander; Terry, Claire; Burden, Natalie

    2017-08-15

    For the purposes of chemical safety assessment, the value of using non-animal (in silico and in vitro) approaches and generating mechanistic information on toxic effects is being increasingly recognised. For sectors where in vivo toxicity tests continue to be a regulatory requirement, there has been a parallel focus on how to refine studies (i.e. reduce suffering and improve animal welfare) and increase the value that in vivo data adds to the safety assessment process, as well as where to reduce animal numbers where possible. A key element necessary to ensure the transition towards successfully utilising both non-animal and refined safety testing is the better understanding of chemical exposure. This includes approaches such as measuring chemical concentrations within cell-based assays and during in vivo studies, understanding how predicted human exposures relate to levels tested, and using existing information on human exposures to aid in toxicity study design. Such approaches promise to increase the human relevance of safety assessment, and shift the focus from hazard-driven to risk-driven strategies similar to those used in the pharmaceutical sectors. Human exposure-based safety assessment offers scientific and 3Rs benefits across all sectors marketing chemical or medicinal products. The UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) convened an expert working group of scientists across the agrochemical, industrial chemical and pharmaceutical industries plus a contract research organisation (CRO) to discuss the current status of the utilisation of exposure-driven approaches, and the challenges and potential next steps for wider uptake and acceptance. This paper summarises these discussions, highlights the challenges - particularly those identified by industry - and proposes initial steps for moving the field forward. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Road traffic air and noise pollution exposure assessment - A review of tools and techniques.

    Science.gov (United States)

    Khan, Jibran; Ketzel, Matthias; Kakosimos, Konstantinos; Sørensen, Mette; Jensen, Steen Solvang

    2018-09-01

    Road traffic induces air and noise pollution in urban environments having negative impacts on human health. Thus, estimating exposure to road traffic air and noise pollution (hereafter, air and noise pollution) is important in order to improve the understanding of human health outcomes in epidemiological studies. The aims of this review are (i) to summarize current practices of modelling and exposure assessment techniques for road traffic air and noise pollution (ii) to highlight the potential of existing tools and techniques for their combined exposure assessment for air and noise together with associated challenges, research gaps and priorities. The study reviews literature about air and noise pollution from urban road traffic, including other relevant characteristics such as the employed dispersion models, Geographic Information System (GIS)-based tool, spatial scale of exposure assessment, study location, sample size, type of traffic data and building geometry information. Deterministic modelling is the most frequently used assessment technique for both air and noise pollution of short-term and long-term exposure. We observed a larger variety among air pollution models as compared to the applied noise models. Correlations between air and noise pollution vary significantly (0.05-0.74) and are affected by several parameters such as traffic attributes, building attributes and meteorology etc. Buildings act as screens for the dispersion of pollution, but the reduction effect is much larger for noise than for air pollution. While, meteorology has a greater influence on air pollution levels as compared to noise, although also important for noise pollution. There is a significant potential for developing a standard tool to assess combined exposure of traffic related air and noise pollution to facilitate health related studies. GIS, due to its geographic nature, is well established and has a significant capability to simultaneously address both exposures. Copyright

  2. Assessment of human body influence on exposure measurements of electric field in indoor enclosures.

    Science.gov (United States)

    de Miguel-Bilbao, Silvia; García, Jorge; Ramos, Victoria; Blas, Juan

    2015-02-01

    Personal exposure meters (PEMs) used for measuring exposure to electromagnetic fields (EMF) are typically used in epidemiological studies. As is well known, these measurement devices cause a perturbation of real EMF exposure levels due to the presence of the human body in the immediate proximity. This paper aims to model the alteration caused by the body shadow effect (BSE) in motion conditions and in indoor enclosures at the Wi-Fi frequency of 2.4 GHz. For this purpose, simulation techniques based on ray-tracing have been carried out, and their results have been verified experimentally. A good agreement exists between simulation and experimental results in terms of electric field (E-field) levels, and taking into account the cumulative distribution function (CDF) of the spatial distribution of amplitude. The Kolmogorov-Smirnov (KS) test provides a P-value greater than 0.05, in fact close to 1. It has been found that the influence of the presence of the human body can be characterized as an angle of shadow that depends on the dimensions of the indoor enclosure. The CDFs show that the E-field levels in indoor conditions follow a lognormal distribution in the absence of the human body and under the influence of BSE. In conclusion, the perturbation caused by BSE in PEMs readings cannot be compensated for by correction factors. Although the mean value is well adjusted, BSE causes changes in CDF that would require improvements in measurement protocols and in the design of measuring devices to subsequently avoid systematic errors. © 2014 Wiley Periodicals, Inc.

  3. Asbestos Exposure Assessment Database

    Science.gov (United States)

    Arcot, Divya K.

    2010-01-01

    Exposure to particular hazardous materials in a work environment is dangerous to the employees who work directly with or around the materials as well as those who come in contact with them indirectly. In order to maintain a national standard for safe working environments and protect worker health, the Occupational Safety and Health Administration (OSHA) has set forth numerous precautionary regulations. NASA has been proactive in adhering to these regulations by implementing standards which are often stricter than regulation limits and administering frequent health risk assessments. The primary objective of this project is to create the infrastructure for an Asbestos Exposure Assessment Database specific to NASA Johnson Space Center (JSC) which will compile all of the exposure assessment data into a well-organized, navigable format. The data includes Sample Types, Samples Durations, Crafts of those from whom samples were collected, Job Performance Requirements (JPR) numbers, Phased Contrast Microscopy (PCM) and Transmission Electron Microscopy (TEM) results and qualifiers, Personal Protective Equipment (PPE), and names of industrial hygienists who performed the monitoring. This database will allow NASA to provide OSHA with specific information demonstrating that JSC s work procedures are protective enough to minimize the risk of future disease from the exposures. The data has been collected by the NASA contractors Computer Sciences Corporation (CSC) and Wyle Laboratories. The personal exposure samples were collected from devices worn by laborers working at JSC and by building occupants located in asbestos-containing buildings.

  4. Human exposure to radiation following the release of radioactivity from a reactor accident: a quantitative assessment of the biological consequences

    International Nuclear Information System (INIS)

    Smith, H.; Stather, J.W.

    1976-11-01

    The objective of this review is to provide a biological basis upon which to assess the consequences of the exposure of a population to radioactivity released after a reactor accident. Depending upon the radiation dose, both early and late somatic damage could occur in the exposed population and hereditary effects may occur in their descendants. The development of dose-effect relationships has been based upon the limited amount of information available on humans, supplemented by data obtained from experiments on animals. (author)

  5. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface.

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J; Bisig, Christoph; Damby, David E; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauser, Barbara

    2018-07-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited. The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm 2 and 0.39 ± 0.09 μg/cm 2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO 2 ). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses. Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  6. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface

    Science.gov (United States)

    Tomasek, Ines; Horwell, Claire J.; Bisig, Christoph; Damby, David; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauer, Barbara

    2018-01-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  7. Mutagenic potential assessment associated with human exposure to natural radioactivity.

    Science.gov (United States)

    Marcon, Alexandre Endres; Navoni, Julio Alejandro; de Oliveira Galvão, Marcos Felipe; Garcia, Anuska Conde Fagundes Soares; do Amaral, Viviane Souza; Petta, Reinaldo Antônio; Campos, Thomas Ferreira da Costa; Panosso, Renata; Quinelato, Antônio Luiz; de Medeiros, Sílvia Regina Batistuzzo

    2017-01-01

    Lucrécia city, known to harbor a high cancer rate, is located in a semiarid region characterized by the presence of mineral reservoirs, facing a high exposure to metal and natural radioactivity. The present study aimed to assess the environmental scenario at a semiarid region located in Northeastern Brazil. Metal concentration, alpha and beta radiation, and cyanobacteria content in tap water along with indoor radon and gamma emitters (U, K and Th) concentrations were measured. In addition, mutagenic and nuclear instability effects were assessed using buccal micronucleus cytome assay. The study included five samplings corresponding to a period between 2007 and 2009. Drinking water from Lucrécia city presented levels of Mn, Ni and Cr along with cyanobacteria in concentrations one to four times higher than regulatory guidelines considered. Furthermore, high levels of all the tested radionuclides were found. A high percentage of the houses included in this study presented indoor radon concentrations over 100 Bq m -3 . The mean annual effective dose from Lucrécia houses was six times higher than observed in a control region. The levels of exposure in most of the Lucrécia houses were classified as middle to high. A significant mutagenic effect, represented as an increase of micronuclei (MN) frequency and nuclear abnormalities as nuclear buds (NB), binucleated cells (BN), and pyknotic cells (PYC) were found. The results obtained highlight the role of high background radioactivity on the observed mutagenic effect and could help to explain the exacerbated cancer rate reported in this locality. Copyright © 2016. Published by Elsevier Ltd.

  8. #2 - An Empirical Assessment of Exposure Measurement Error ...

    Science.gov (United States)

    Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  9. Human scenarios for the screening assessment. Columbia River Comprehensive Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Harper, B.L.; Lane, N.K.; Strenge, D.L.; Spivey, R.B.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Impact Assessment (CRCIA) was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to humans. Because humans affected by the Columbia river are involved in a wide range of activities, various scenarios have been developed on which to base the risk assessments. The scenarios illustrate the range of activities possible by members of the public coming in contact with the Columbia River so that the impact of contaminants in the river on human health can be assessed. Each scenario illustrates particular activity patterns by a specific group. Risk will be assessed at the screening level for each scenario. This report defines the scenarios and the exposure factors that will be the basis for estimating the potential range of risk to human health from Hanford-derived radioactive as well as non-radioactive contaminants associated with the Columbia River.

  10. Human scenarios for the screening assessment. Columbia River Comprehensive Impact Assessment

    International Nuclear Information System (INIS)

    Napier, B.A.; Harper, B.L.; Lane, N.K.; Strenge, D.L.; Spivey, R.B.

    1996-03-01

    Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Impact Assessment (CRCIA) was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to humans. Because humans affected by the Columbia river are involved in a wide range of activities, various scenarios have been developed on which to base the risk assessments. The scenarios illustrate the range of activities possible by members of the public coming in contact with the Columbia River so that the impact of contaminants in the river on human health can be assessed. Each scenario illustrates particular activity patterns by a specific group. Risk will be assessed at the screening level for each scenario. This report defines the scenarios and the exposure factors that will be the basis for estimating the potential range of risk to human health from Hanford-derived radioactive as well as non-radioactive contaminants associated with the Columbia River

  11. Exposure Assessment Tools by Chemical Classes - Nanomaterials

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  12. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  13. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  14. Exposure Assessment Tools by Tiers and Types - Deterministic and Probabilistic Assessments

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  15. Human exposure to nickel

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, P

    1984-01-01

    In order of abundance in the earth's crust, nickel ranks as the 24th element and has been detected in different media in all parts of the biosphere. Thus, humans are constantly exposed to this ubiquitous element, though in variable amounts. Occupational exposures may lead to the retention of 100 micrograms of nickel per day. Environmental nickel levels depend particularly on natural sources, pollution from nickel-manufacturing industries and airborne particles from combustion of fossil fuels. Absorption from atmospheric nickel pollution is of minor concern. Vegetables usually contain more nickel than do other food items. Certain products, such as baking powder and cocoa powder, have been found to contain excessive amounts of nickel, perhaps related to nickel leaching during the manufacturing process. Soft drinking-water and acid beverages may dissolve nickel from pipes and containers. Scattered studies indicate a highly variable dietary intake of nickel, but most averages are about 200-300 micrograms/day. In addition, skin contact to a multitude of metal objects may be of significance to the large number of individuals suffering from contact dermatitis and nickel allergy. Finally, nickel alloys are often used in nails and prostheses for orthopaedic surgery, and various sources may contaminate intravenous fluids. Thus, human nickel exposure originates from a variety of sources and is highly variable. Occupational nickel exposure is of major significance, and leaching of nickel may add to dietary intakes and to cutaneous exposures. 79 references.

  16. Determinants of Dermal Exposure Relevant for Exposure Modelling in Regulatory Risk Assessment

    NARCIS (Netherlands)

    Marquart, J.; Brouwer, D.H.; Gijsbers, J.H.J.; Links, I.H.M.; Warren, N.; Hemmen, J.J. van

    2003-01-01

    Risk assessment of chemicals requires assessment of the exposure levels of workers. In the absence of adequate specific measured data, models are often used to estimate exposure levels. For dermal exposure only a few models exist, which are not validated externally. In the scope of a large European

  17. Comparative Probabilistic Assessment of Occupational Pesticide Exposures Based on Regulatory Assessments

    Science.gov (United States)

    Pouzou, Jane G.; Cullen, Alison C.; Yost, Michael G.; Kissel, John C.; Fenske, Richard A.

    2018-01-01

    Implementation of probabilistic analyses in exposure assessment can provide valuable insight into the risks of those at the extremes of population distributions, including more vulnerable or sensitive subgroups. Incorporation of these analyses into current regulatory methods for occupational pesticide exposure is enabled by the exposure data sets and associated data currently used in the risk assessment approach of the Environmental Protection Agency (EPA). Monte Carlo simulations were performed on exposure measurements from the Agricultural Handler Exposure Database and the Pesticide Handler Exposure Database along with data from the Exposure Factors Handbook and other sources to calculate exposure rates for three different neurotoxic compounds (azinphos methyl, acetamiprid, emamectin benzoate) across four pesticide-handling scenarios. Probabilistic estimates of doses were compared with the no observable effect levels used in the EPA occupational risk assessments. Some percentage of workers were predicted to exceed the level of concern for all three compounds: 54% for azinphos methyl, 5% for acetamiprid, and 20% for emamectin benzoate. This finding has implications for pesticide risk assessment and offers an alternative procedure that may be more protective of those at the extremes of exposure than the current approach. PMID:29105804

  18. Comparative Probabilistic Assessment of Occupational Pesticide Exposures Based on Regulatory Assessments.

    Science.gov (United States)

    Pouzou, Jane G; Cullen, Alison C; Yost, Michael G; Kissel, John C; Fenske, Richard A

    2017-11-06

    Implementation of probabilistic analyses in exposure assessment can provide valuable insight into the risks of those at the extremes of population distributions, including more vulnerable or sensitive subgroups. Incorporation of these analyses into current regulatory methods for occupational pesticide exposure is enabled by the exposure data sets and associated data currently used in the risk assessment approach of the Environmental Protection Agency (EPA). Monte Carlo simulations were performed on exposure measurements from the Agricultural Handler Exposure Database and the Pesticide Handler Exposure Database along with data from the Exposure Factors Handbook and other sources to calculate exposure rates for three different neurotoxic compounds (azinphos methyl, acetamiprid, emamectin benzoate) across four pesticide-handling scenarios. Probabilistic estimates of doses were compared with the no observable effect levels used in the EPA occupational risk assessments. Some percentage of workers were predicted to exceed the level of concern for all three compounds: 54% for azinphos methyl, 5% for acetamiprid, and 20% for emamectin benzoate. This finding has implications for pesticide risk assessment and offers an alternative procedure that may be more protective of those at the extremes of exposure than the current approach. © 2017 Society for Risk Analysis.

  19. Human intruder dose assessment for deep geological disposal

    International Nuclear Information System (INIS)

    Smith, G. M.; Molinero, J.; Delos, A.; Valls, A.; Conesa, A.; Smith, K.; Hjerpe, T.

    2013-07-01

    For near-surface disposal, approaches to assessment of inadvertent human intrusion have been developed through international cooperation within the IAEA's ISAM programme. Other assessments have considered intrusion into deep geological disposal facilities, but comparable international cooperation to develop an approach for deep disposal has not taken place. Accordingly, the BIOPROTA collaboration project presented here (1) examined the technical aspects of why and how deep geological intrusion might occur; (2) considered how and to what degree radiation exposure would arise to the people involved in such intrusion; (3) identified the processes which constrain the uncertainties; and hence (4) developed and documented an approach for evaluation of human intruder doses which addresses the criteria adopted by the IAEA and takes account of other international guidance and human intrusion assessment experience. Models for radiation exposure of the drilling workers and geologists were developed and described together with compilation of relevant input data, taking into account relevant combinations of drilling technique, geological formation and repository material. Consideration has been given also to others who might be exposed to contaminated material left at the site after drilling work has ceased. The models have been designed to be simple and stylised, in accordance with international recommendations. The set of combinations comprises 58 different scenarios which cover a very wide range of human intrusion possibilities via deep drilling. (orig.)

  20. Human exposure to dioxin from combustion sources

    International Nuclear Information System (INIS)

    Hattemer-Frey, H.A.; Travis, C.C.

    1988-01-01

    Because of their extreme toxicity, much concern and debate has arisen about the nature and extent of human exposure to dioxin. Since municipal solid waste (MSW) incinerators are known to emit polychorinated dibenzo-p-dioxins (PCDDs) and polycholorinated dibenzofurnas (PCDFs) many people who live near MSW incinerators fear that they will be exposed to high levels of dioxin and subsequently develop cancer. What is often overlooked in this debate, however, is the fact that the general population is continuously being exposed to trace amounts of dioxin as exemplified by the fact that virtually all human adipose tissue samples contain dioxin at levels of 3 parts per trillion (ppt) or greater. This paper provides a perspective on MSW incineration as a source of human exposure to dioxin by comparing this exposure source with exposure to background environmental contamination and evaluates some of the potential key sources of PCDD/PCDF input into the enviroment. 32 refs., 3 tabs

  1. Challenges and Perspectives of Nanoparticle Exposure Assessment

    OpenAIRE

    Lee, Ji Hyun; Moon, Min Chaul; Lee, Joon Yeob; Yu, Il Je

    2010-01-01

    Nanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activi...

  2. The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data - A case study with caffeine.

    Science.gov (United States)

    Bessems, Jos G M; Paini, Alicia; Gajewska, Monika; Worth, Andrew

    2017-12-01

    Route-to-route extrapolation is a common part of human risk assessment. Data from oral animal toxicity studies are commonly used to assess the safety of various but specific human dermal exposure scenarios. Using theoretical examples of various user scenarios, it was concluded that delineation of a generally applicable human dermal limit value is not a practicable approach, due to the wide variety of possible human exposure scenarios, including its consequences for internal exposure. This paper uses physiologically based kinetic (PBK) modelling approaches to predict animal as well as human internal exposure dose metrics and for the first time, introduces the concept of Margin of Internal Exposure (MOIE) based on these internal dose metrics. Caffeine was chosen to illustrate this approach. It is a substance that is often found in cosmetics and for which oral repeated dose toxicity data were available. A rat PBK model was constructed in order to convert the oral NOAEL to rat internal exposure dose metrics, i.e. the area under the curve (AUC) and the maximum concentration (C max ), both in plasma. A human oral PBK model was constructed and calibrated using human volunteer data and adapted to accommodate dermal absorption following human dermal exposure. Use of the MOIE approach based on internal dose metrics predictions provides excellent opportunities to investigate the consequences of variations in human dermal exposure scenarios. It can accommodate within-day variation in plasma concentrations and is scientifically more robust than assuming just an exposure in mg/kg bw/day. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Waste area Grouping 2 Phase I task data report: Human health risk assessment

    International Nuclear Information System (INIS)

    Purucker, S.T.; Douthat, D.M.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow- up information to the Phase 1 Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that could cause potential human health risk and ecological risk within WAG2 at ORNL. The purpose of this report is to present a summary of the human health risk assessment results based on the data collected for the WAG 2 Phase 1 RI. Estimates of risk are provided based on measured concentrations in the surface water, floodplain soil, and sediment of White Oak Creek, Melton Branch, and their tributaries. The human health risk assessment methodology used in this risk assessment is based on Risk Assessment Guidance for Superfund (RAGS). First, the data for the different media are elevated to determine usability for risk assessment. Second, through the process of selecting chemicals of potential concern (COPCs), contaminants to be considered in the risk assessment are identified for each assessment of exposure potential is performed, and exposure pathways are identified. Subsequently, exposure is estimated quantitatively, and the toxicity of each of the COPCs is determined. The results of these analyses are combined and summarized in a risk characterization

  4. The evaluation of stack metal emissions from hazardous waste incinerators: assessing human exposure through noninhalation pathways.

    OpenAIRE

    Sedman, R M; Polisini, J M; Esparza, J R

    1994-01-01

    Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human...

  5. Exposure Assessment of Diesel Bus Emissions

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2006-12-01

    Full Text Available The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG powered buses. Background (outside of the bus station and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform

  6. Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon.

    Science.gov (United States)

    Castilhos, Zuleica; Rodrigues-Filho, Saulo; Cesar, Ricardo; Rodrigues, Ana Paula; Villas-Bôas, Roberto; de Jesus, Iracina; Lima, Marcelo; Faial, Kleber; Miranda, Antônio; Brabo, Edilson; Beinhoff, Christian; Santos, Elisabeth

    2015-08-01

    Mercury (Hg) contamination is an issue of concern in the Amazon region due to potential health effects associated with Hg exposure in artisanal gold mining areas. The study presents a human health risk assessment associated with Hg vapor inhalation and MeHg-contaminated fish ingestion, as well as Hg determination in urine, blood, and hair, of human populations (about 325 miners and 321 non-miners) from two gold mining areas in the Brazilian Amazon (São Chico and Creporizinho, Pará State). In São Chico and Creporizinho, 73 fish specimens of 13 freshwater species, and 161 specimens of 11 species, were collected for total Hg determination, respectively. The hazard quotient (HQ) is a risk indicator which defines the ratio of the exposure level and the toxicological reference dose and was applied to determine the threat of MeHg exposure. The mean Hg concentrations in fish from São Chico and Creporizinho were 0.83 ± 0.43 and 0.36 ± 0.33 μg/g, respectively. More than 60 and 22 % of fish collected in São Chico and Creporizinho, respectively, were above the Hg limit (0.5 μg/g) recommended by WHO for human consumption. For all sampling sites, HQ resulted from 1.5 to 28.5, except for the reference area. In Creporizinho, the values of HQ are close to 2 for most sites, whereas in São Chico, there is a hot spot of MeHg contamination in fish (A2-São Chico Reservoir) with the highest risk level (HQ = 28) associated with its human consumption. Mean Hg concentrations in urine, blood, and hair samples indicated that the miners group (in São Chico: urine = 17.37 μg/L; blood = 27.74 μg/L; hair = 4.50 μg/g and in Creporizinho: urine = 13.75 μg/L; blood = 25.23 μg/L; hair: 4.58 μg/g) was more exposed to mercury compared to non-miners (in São Chico: urine = 5.73 μg/L; blood = 16.50 μg/L; hair = 3.16 μg/g and in Creporizinho: urine = 3.91 μg/L; blood = 21.04 μg/L, hair = 1.88 μg/g). These high Hg levels (found

  7. Risk assessment of antimicrobial usage in Danish pig production on the human exposure to antimicrobial resistant bacteria from pork

    DEFF Research Database (Denmark)

    Struve, Tina

    to antimicrobials are influenced by the use of antimicrobial agents, and the prudence of antimicrobial use have been emphasized since the Swann report in 1969 recommended that antibiotics used in human medicine should not be used as growth promoters in food-producing animals. In 2007, the World Health Organisation...... the human exposure to cephalosporin resistance from pork purchased in retail shops was assessed using different scenarios for the amount of antimicrobial used in the primary production. Also, farm-related factors affecting the antimicrobial usage were investigated as a part of this thesis. The thesis...... producing E. coli through the purchase of pork chops Objective 3: Identification of management factors in the Danish finishing pig production important for antimicrobial usage In Objective 1, the occurrence (presence/non-presence) of ESC producing E. coli in samples from healthy pigs at slaughter...

  8. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. This article is copyright of The Authors, 2016.

  9. Human risk assessment of dermal and inhalation exposures to chemicals assessed by route-to-route extrapolation: the necessity of kinetic data.

    Science.gov (United States)

    Geraets, Liesbeth; Bessems, Jos G M; Zeilmaker, Marco J; Bos, Peter M J

    2014-10-01

    In toxicity testing the oral route is in general the first choice. Often, appropriate inhalation and dermal toxicity data are absent. Risk assessment for these latter routes usually has to rely on route-to-route extrapolation starting from oral toxicity data. Although it is generally recognized that the uncertainties involved are (too) large, route-to-route extrapolation is applied in many cases because of a strong need of an assessment of risks linked to a given exposure scenario. For an adequate route-to-route extrapolation the availability of at least some basic toxicokinetic data is a pre-requisite. These toxicokinetic data include all phases of kinetics, from absorption (both absorbed fraction and absorption rate for both the starting route and route of interest) via distribution and biotransformation to excretion. However, in practice only differences in absorption between the different routes are accounted for. The present paper demonstrates the necessity of route-specific absorption data by showing the impact of its absence on the uncertainty of the human health risk assessment using route-to-route extrapolation. Quantification of the absorption (by in vivo, in vitro or in silico methods), particularly for the starting route, is considered essential. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Dynamic assessments of population exposure to urban greenspace using multi-source big data.

    Science.gov (United States)

    Song, Yimeng; Huang, Bo; Cai, Jixuan; Chen, Bin

    2018-09-01

    A growing body of evidence has proven that urban greenspace is beneficial to improve people's physical and mental health. However, knowledge of population exposure to urban greenspace across different spatiotemporal scales remains unclear. Moreover, the majority of existing environmental assessments are unable to quantify how residents enjoy their ambient greenspace during their daily life. To deal with this challenge, we proposed a dynamic method to assess urban greenspace exposure with the integration of mobile-phone locating-request (MPL) data and high-spatial-resolution remote sensing images. This method was further applied to 30 major cities in China by assessing cities' dynamic greenspace exposure levels based on residents' surrounding areas with different buffer scales (0.5km, 1km, and 1.5km). Results showed that regarding residents' 0.5-km surrounding environment, Wenzhou and Hangzhou were found to be with the greenest exposure experience, whereas Zhengzhou and Tangshan were the least ones. The obvious diurnal and daily variations of population exposure to their surrounding greenspace were also identified to be highly correlated with the distribution pattern of urban greenspace and the dynamics of human mobility. Compared with two common measurements of urban greenspace (green coverage rate and green area per capita), the developed method integrated the dynamics of population distribution and geographic locations of urban greenspace into the exposure assessment, thereby presenting a more reasonable way to assess population exposure to urban greenspace. Additionally, this dynamic framework could hold potential utilities in supporting urban planning studies and environmental health studies and advancing our understanding of the magnitude of population exposure to greenspace at different spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure.

    Science.gov (United States)

    McGrath, Thomas J; Morrison, Paul D; Ball, Andrew S; Clarke, Bradley O

    2018-04-01

    Polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFR) have been used in a range of polymers to inhibit the spread of fires but also have a propensity to migrate out of consumer materials and contaminate indoor dust. In this study, a total of 57 dust samples were collected from 12 homes, eight offices and eight vehicles in Melbourne, Australia and analysed for eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and seven NBFRs (PBT, PBEB, HBB, EH-TBB, BEH-TEBP, BTBPE and DBDPE) to determine human exposure risks from dust ingestion. Samples were analysed using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Legacy and replacement flame retardants were detected in all samples with overall ∑PBDE concentrations ranging from 120 to 1700,000 ng/g (median 2100 ng/g) and ∑NBFRs ranging from 1.1 to 10,000 ng/g (median 1800 ng/g). BDE-209 and DBDPE were the dominant compounds in dust samples, followed by congeners associated with commercial Penta-BDE formulations (-47, -99, -100, -153 and -154) and then EH-TBB of the FireMaster 550 and BZ-54 products. ∑Penta-BDE concentrations were elevated in office samples compared with homes and vehicles, while EH-TBB and BDE-209 measured higher concentrations in vehicles compared with their respective levels in homes and offices. Risk assessment estimates revealed the majority of exposure to occur in the home for both adults and toddlers in the City of Melbourne. Generally, body weight adjusted exposure to PBDEs and NBFRs was predicted to be 1 to 2 orders of magnitude higher for toddlers than adults. Estimated rates of BDE-47, -99, -153 and -209 ingestion were each 2 orders of magnitude or more below the USEPA's prescribed oral reference dose values (RfDs) for typical exposure scenarios. However, exposure rates for BDE-47 and -99 reached as high as 52 and 95% of RfDs, respectively, for adults and 4.4 and 7

  12. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  13. Outdoor and indoor cadmium distributions near an abandoned smelting works and their relations to human exposure

    Energy Technology Data Exchange (ETDEWEB)

    Spurgeon, David J., E-mail: dasp@ceh.ac.uk [Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB (United Kingdom); Lawlor, Alan [Centre for Ecology and Hydrology, Lancaster, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hooper, Helen L. [Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB (United Kingdom); Wadsworth, Richard [Centre for Ecology and Hydrology, Lancaster, Bailrigg, Lancaster LA1 4AP (United Kingdom); Svendsen, Claus [Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB (United Kingdom); Thomas, Laura D.K. [MRC-HPA Centre for Environment and Health, Department of Epidemiology and Public health, Imperial College London (United Kingdom); Ellis, James K.; Bundy, Jacob G.; Keun, Hector C. [Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ (United Kingdom); Jarup, Lars [MRC-HPA Centre for Environment and Health, Department of Epidemiology and Public health, Imperial College London (United Kingdom)

    2011-12-15

    The relationship of measured or modelled Cd concentrations in soil, house dust and available to plants with human urinary Cd concentrations were assessed in a population living around a Cd/Pb/Zn smelter in the UK. Modelled air concentrations explained 35% of soil Cd variation indicating the smelter contributed to soil Cd loads. Multi-variate analysis confirmed a significant role of biological and life-style factors in determining urinary Cd levels. Significant correlations of urinary Cd with soil, house dust and modelled plant available Cd concentrations were not, however, found. Potential reasons for the absence of clear relationships include limited environmental contact in urban populations; the role of undefined factors in determining exposure; and the limited spatial scope of the survey which did not sample from the full pollution gradient. Further, the absence of any significant relationship indicates that environmental measures provide limited advantage over atmospheric model outputs for first stage human exposure assessment. - Highlights: > Environmental measurements indicate smelter pollution of a surrounding urban area. > Life-style and biology influenced U-Cd more than measured environmental levels. > Limited contact with outdoor environments may limit Cd uptake in urban populations. > Better life-style data could improve the attribution of human Cd exposure routes. > Measured Cd levels provide limited added exposure insight over dispersion models. - Measured and modelled environmental cadmium concentrations provide limited additional explanation of human urinary cadmium concentrations.

  14. Mercury Exposure in Ireland: Results of the DEMOCOPHES Human Biomonitoring Study

    Directory of Open Access Journals (Sweden)

    Elizabeth Cullen

    2014-09-01

    Full Text Available Background: Monitoring of human exposure to mercury is important due to its adverse health effects. This study aimed to determine the extent of mercury exposure among mothers and their children in Ireland, and to identify factors associated with elevated levels. It formed part of the Demonstration of a study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES pilot biomonitoring study. Methods: Hair mercury concentrations were determined from a convenience sample of 120 mother/child pairs. Mothers also completed a questionnaire. Rigorous quality assurance within DEMOCOPHES guaranteed the accuracy and international comparability of results. Results: Mercury was detected in 79.2% of the samples from mothers, and 62.5% of children’s samples. Arithmetic mean levels in mothers (0.262 µg/g hair and children (0.149 µg /g hair did not exceed the US EPA guidance value. Levels were significantly higher for those with higher education, and those who consumed more fish. Conclusions: The study demonstrates the benefit of human biomonitoring for assessing and comparing internal exposure levels, both on a population and an individual basis. It enables the potential harmful impact of mercury to be minimised in those highly exposed, and can therefore significantly contribute to population health.

  15. Opportunities for using spatial property assessment data in air pollution exposure assessments

    Directory of Open Access Journals (Sweden)

    Keller C Peter

    2005-10-01

    Full Text Available Abstract Background Many epidemiological studies examining the relationships between adverse health outcomes and exposure to air pollutants use ambient air pollution measurements as a proxy for personal exposure levels. When pollution levels vary at neighbourhood levels, using ambient pollution data from sparsely located fixed monitors may inadequately capture the spatial variation in ambient pollution. A major constraint to moving toward exposure assessments and epidemiological studies of air pollution at a neighbourhood level is the lack of readily available data at appropriate spatial resolutions. Spatial property assessment data are widely available in North America and may provide an opportunity for developing neighbourhood level air pollution exposure assessments. Results This paper provides a detailed description of spatial property assessment data available in the Pacific Northwest of Canada and the United States, and provides examples of potential applications of spatial property assessment data for improving air pollution exposure assessment at the neighbourhood scale, including: (1 creating variables for use in land use regression modelling of neighbourhood levels of ambient air pollution; (2 enhancing wood smoke exposure estimates by mapping fireplace locations; and (3 using data available on individual building characteristics to produce a regional air pollution infiltration model. Conclusion Spatial property assessment data are an extremely detailed data source at a fine spatial resolution, and therefore a source of information that could improve the quality and spatial resolution of current air pollution exposure assessments.

  16. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    Science.gov (United States)

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  17. Human exposure to aluminium.

    Science.gov (United States)

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  18. Priority setting for risk assessment-The benefit of human experience

    International Nuclear Information System (INIS)

    Alonzo, Cristina; Laborde, Amalia

    2005-01-01

    The chemical risk assessment process plays an essential role in the potential human health risk evaluation. Setting priorities for this purpose is critical for better use of the available human and material resources. It has been generally accepted that all new chemicals require safety evaluation before manufacture and sale. This is a difficult task due to the large number of chemicals directly consumed by man, as well as those that are widely used. At present, more than 50% of chemicals do not have the minimum data requirements for risk assessment. Production and release volumes are well-established prioritization criteria, although volume itself does not directly reflect the likelihood of human exposure. This quantitative approach applied in setting priorities may be influenced by human experience. Human data provided by epidemiological investigations have been accepted as the most credible evidence for human toxicity although analytical studies are expensive and require long-term follow up. Unfortunately, some epidemiological studies continue to have difficulties with exposure documentation, controlling bias and confounding, and are not able to provide predictions of risk until humans are exposed. Clinical toxicology services and Poison Centres around the world accumulate a great amount of toxicological-related information that may contribute to the evidence-based medicine and research and so collaborate with all the risk assessment disciplines. The information obtained from these services and centers has the potential to prioritize existing chemical assessment processes or to influence scheduling of classes of chemicals. Prioritization process may be improved by evaluating Poisons Centres statistics about frequency of cases, severity of effects, detection of unusual circumstances of exposure, as well as vulnerable sub-populations. International efforts for the harmonization of these data offer a useful tool to take advantage of this global information. Case

  19. Radiation in complex exposure situations. Assessing health risks at low levels from concomitant exposures to radiation and chemicals

    International Nuclear Information System (INIS)

    Hornhardt, S.; Jung, T.; Burkart, W.

    2000-01-01

    Health effects from exposures to ionizing radiation are in general the result of complex multi-step reaction chains involving changes and responses on the level of molecules, cells, tissues and organisms. In environmental low dose exposure situations ionizing radiation only contributes a small fraction to the life-long attack on DNA by other exogenous and endogenous genotoxins. Nevertheless, efforts to assess and quantify deleterious effects at low exposure levels are directed mainly towards radiation as a single isolated agent, and rarely towards the concomitant presence of other natural and anthropogenic toxicants. Only these combined exposures may lead to observable health risk effects. In addition they might differ from those expected from simple addition of the individual risks due to interaction. The existing data base on combined effects is rudimentary, mainly descriptive and rarely covers exposure ranges large enough to make direct inferences to present day low dose exposure situations. Therefore, any risk assessment will have to consider the question whether combined effects, i.e. interaction between two or more agents will influence the health outcome from specific exposure situations in such a way that predictions derived from simple standard exposure situations would have to be revised. In view of the multitude of possible interactions between the large number of potentially harmful agents in the human environment, descriptive approaches will have to be supplemented by the use of mechanistic models for critical health endpoints such as cancer. Agents will have to be grouped depending on their physical or chemical mode of action at the molecular and cellular level, to generalize and predict the outcome of combined exposures at low exposure levels and the possibility of interactions. (author)

  20. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa

    Directory of Open Access Journals (Sweden)

    Vetrimurugan Elumalai

    2017-04-01

    Full Text Available Heavy metals in surface and groundwater were analysed and their sources were identified using multivariate statistical tools for two towns in South Africa. Human exposure risk through the drinking water pathway was also assessed. Electrical conductivity values showed that groundwater is desirable to permissible for drinking except for six locations. Concentration of aluminium, lead and nickel were above the permissible limit for drinking at all locations. Boron, cadmium, iron and manganese exceeded the limit at few locations. Heavy metal pollution index based on ten heavy metals indicated that 85% of the area had good quality water, but 15% was unsuitable. Human exposure dose through the drinking water pathway indicated no risk due to boron, nickel and zinc, moderate risk due to cadmium and lithium and high risk due to silver, copper, manganese and lead. Hazard quotients were high in all sampling locations for humans of all age groups, indicating that groundwater is unsuitable for drinking purposes. Highly polluted areas were located near the coast, close to industrial operations and at a landfill site representing human-induced pollution. Factor analysis identified the four major pollution sources as: (1 industries; (2 mining and related activities; (3 mixed sources- geogenic and anthropogenic and (4 fertilizer application.

  1. The impact of the human genome project on risk assessment

    International Nuclear Information System (INIS)

    Katarzyna Doerffer; Paul Unrau.

    1996-01-01

    The radiation protection approach to risk assessment assumes that cancer induction following radiation exposure is purely random. Present risk assessment methods derive risk from cancer incidence frequencies in exposed populations and associate disease outcomes totally with the level of exposure to ionizing red aeon. Exposure defines a risk factor that affects the probability of the disease outcome. But cancer risk can be affected by other risk factors such as underlying genetic factors (predisposition) of the exposed organism. These genetic risk factors are now becoming available for incorporation into ionizing radiation risk assessment Progress in the Human Genome Project (HOP) will lead to direct assays to measure the effects of genetic risk determinants in disease outcomes. When all genetic risk determinants are known and incorporated into risk assessment it will be possible to reevaluate the role of ionizing radiation in the causation of cancer. (author)

  2. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  3. Risk assessment for nickel and nickel compounds in the ambient air from exposure by inhalation. Review of the European situation

    Energy Technology Data Exchange (ETDEWEB)

    Lepicard, S; Schneider, T [Centre d` Etude sur l` Evaluation de la Protection dans le Domaine Nucleaire, 92 - Fontenay-aux-Roses (France); Fritsch, P; Maximilien, R [Commissariat a l` Energie Atomique, Brussels (Belgium). Dept. des Sciences du Vivant; Deloraine, A [Centre Rhone-Alpes d` Epidemiologie et de Prevention Sanitaire (France)

    1997-12-01

    The objective of this report is to evaluate the risk associated with exposure to nickel in the ambient air, for the general public. The document is divided into three parts, comprising: A review of the regulatory context, a description of the physical and chemical characteristics of nickel and certain nickel compounds, a description of certain industrial processes involving nickel, and the characterization of human exposure (emissions, immissions, transport in the atmosphere); a risk assessment on the basis of human (occupational exposure) and animal data related to the presumed risk of lung cancer; an assessment of the risk associated with exposure to nickel in the ambient air for the general public. (R.P.) 55 refs.

  4. Assessment of relevant factors and relationships concerning human dermal exposure to pesticides in greenhouse applications.

    Science.gov (United States)

    Martínez Vidal, Jose L; Egea González, Francisco J; Garrido Frenich, Antonia; Martínez Galera, María; Aguilera, Pedro A; López Carrique, Enrique

    2002-08-01

    Principal component analysis (PCA) was applied to the gas chromatographic data obtained from 23 different greenhouse trials. This was used to establish which factors, including application technique (very small, small, medium and large drop-size), crop characteristics (short/tall, thin/dense) and pattern application of the operator (walking towards or away from the treated area) are relevant to the dermal exposure levels of greenhouse applicators. The results showed that the highest exposure by pesticides during field applications in greenhouses, in the climatic conditions and in the crop conditions typical of a southern European country, occurs on the lower legs and front thighs of the applicators. Similar results were obtained by hierarchical cluster analysis (HCA). Drop-size seems to be very important in determining total exposure, while height and density of crops have little influence on total exposure under the conditions of the present study. No pesticide type is a major factor in total exposure. The application of multiple regression analysis (MRA) allowed assessment of the relationships between the pesticide exposure of the less affected parts of the body with the most affected parts.

  5. High Throughput Heuristics for Prioritizing Human Exposure to ...

    Science.gov (United States)

    The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, forecasts of exposure, the putative risk of adverse health effect from a chemical cannot be evaluated. We used Bayesian methodology to infer ranges of exposure intakes that are consistent with biomarkers of chemical exposures identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We perform linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using high throughput chemical descriptors gleaned from databases and chemical structure-based calculators. We find that five of these descriptors are capable of explaining roughly 50% of the variability across chemicals for all the demographic groups examined, including children aged 6-11. For the thousands of chemicals with no other source of information, this approach allows rapid and efficient prediction of average exposure intake of environmental chemicals. The methods described by this manuscript provide a highly improved methodology for HTS of human exposure to environmental chemicals. The manuscript includes a ranking of 7785 environmental chemicals with respect to potential human exposure, including most of the Tox21 in vit

  6. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa

    OpenAIRE

    Vetrimurugan Elumalai; K. Brindha; Elango Lakshmanan

    2017-01-01

    Heavy metals in surface and groundwater were analysed and their sources were identified using multivariate statistical tools for two towns in South Africa. Human exposure risk through the drinking water pathway was also assessed. Electrical conductivity values showed that groundwater is desirable to permissible for drinking except for six locations. Concentration of aluminium, lead and nickel were above the permissible limit for drinking at all locations. Boron, cadmium, iron and manganese ex...

  7. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  8. Study on sandstorm PM10 exposure assessment in the large-scale region: a case study in Inner Mongolia.

    Science.gov (United States)

    Wang, Hongmei; Lv, Shihai; Diao, Zhaoyan; Wang, Baolu; Zhang, Han; Yu, Caihong

    2018-04-12

    The current exposure-effect curves describing sandstorm PM 10 exposure and the health effects are drawn roughly by the outdoor concentration (OC), which ignored the exposure levels of people's practical activity sites. The main objective of this work is to develop a novel approach to quantify human PM 10 exposure by their socio-categorized micro-environment activities-time weighed (SCMEATW) in strong sandstorm period, which can be used to assess the exposure profiles in the large-scale region. Types of people's SCMEATW were obtained by questionnaire investigation. Different types of representatives were trackly recorded during the big sandstorm. The average exposure levels were estimated by SCMEATW. Furthermore, the geographic information system (GIS) technique was taken not only to simulate the outdoor concentration spatially but also to create human exposure outlines in a visualized map simultaneously, which could help to understand the risk to different types of people. Additionally, exposure-response curves describing the acute outpatient rate odds by sandstorm were formed by SCMEATW, and the differences between SCMEATW and OC were compared. Results indicated that acute outpatient rate odds had relationships with PM 10 exposure from SCMEATW, with a level less than that of OC. Some types of people, such as herdsmen and those people walking outdoors during a strong sandstorm, have more risk than office men. Our findings provide more understanding of human practical activities on their exposure levels; they especially provide a tool to understand sandstorm PM 10 exposure in large scale spatially, which might help to perform the different categories population's risk assessment regionally.

  9. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    Science.gov (United States)

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  10. Effect of Exposure to Non-ionizing Radiation (Electromagnetic Fields on Human System: A Literature Review

    Directory of Open Access Journals (Sweden)

    Paula Rubya Souza C and acirc;mara

    2014-08-01

    Full Text Available The indiscriminate presence of radio base stations, which emit non-ionizing radiation (NIR, as well as the frequent use of mobile phones, can cause increased susceptibility of populations to the emergence of diseases such as cancers of the head and neck, biochemical, hematopoietic and hepatic changes, among others. Exposure to physical contamination, including NIR, has been implicated in numerous diseases, raising concerns about the widespread sources of exposure to this type of radiation. This paper reviews studies that have assessed associations between likely exposure to electromagnetic fields, such as radiofrequency transmissions, and many kinds of human diseases including cancer, as well as alerts to the current knowledge on the association between environmental exposure to NIR and the risk of development of adverse human health effects. This way, there appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research. [J Interdiscipl Histopathol 2014; 2(4.000: 187-190

  11. Risk of human exposure to polycyclic aromatic hydrocarbons: A case study in Beijing, China

    International Nuclear Information System (INIS)

    Yu, Yanxin; Li, Qi; Wang, Hui; Wang, Bin; Wang, Xilong; Ren, Aiguo; Tao, Shu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) can cause adverse effects on human health. The relative contributions of their two major intake routes (diet and inhalation) to population PAH exposure are still unclear. We modeled the contributions of diet and inhalation to the overall PAH exposure of the population of Beijing in China, and assessed their human incremental lifetime cancer risks (ILCR) using a Mont Carlo simulation approach. The results showed that diet accounted for about 85% of low-molecular-weight PAH (L-PAH) exposure, while inhalation accounted for approximately 57% of high-molecular-weight PAH (H-PAH) exposure of the Beijing population. Meat and cereals were the main contributors to dietary PAH exposure. Both gaseous- and particulate-phase PAHs contributed to L-PAH exposure through inhalation, whereas exposure to H-PAHs was mostly from the particulate-phase. To reduce the cancer incidence of the Beijing population, more attention should be given to inhaled particulate-phase PAHs with considerable carcinogenic potential. - Highlights: • We modeled the contributions of diet and inhalation to population PAH exposure. • Diet contributed 85% of population exposure to low molecular-weight PAHs. • Inhalation contributed 57% of population exposure to high molecular-weight PAHs. • The PAH exposure level with body-weight adjustment decreased with age increasing. • The population cancer risk of PAH exposure is lower than the serious risk level. - The exposure of the Beijing population to carcinogenic polycyclic aromatic hydrocarbons was mainly from inhaled particulate matter

  12. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  13. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  14. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  15. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  16. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  17. Determinants of dermal exposure relevant for exposure modelling in regulatory risk assessment.

    Science.gov (United States)

    Marquart, J; Brouwer, D H; Gijsbers, J H J; Links, I H M; Warren, N; van Hemmen, J J

    2003-11-01

    Risk assessment of chemicals requires assessment of the exposure levels of workers. In the absence of adequate specific measured data, models are often used to estimate exposure levels. For dermal exposure only a few models exist, which are not validated externally. In the scope of a large European research programme, an analysis of potential dermal exposure determinants was made based on the available studies and models and on the expert judgement of the authors of this publication. Only a few potential determinants appear to have been studied in depth. Several studies have included clusters of determinants into vaguely defined parameters, such as 'task' or 'cleaning and maintenance of clothing'. Other studies include several highly correlated parameters, such as 'amount of product handled', 'duration of task' and 'area treated', and separation of these parameters to study their individual influence is not possible. However, based on the available information, a number of determinants could clearly be defined as proven or highly plausible determinants of dermal exposure in one or more exposure situation. This information was combined with expert judgement on the scientific plausibility of the influence of parameters that have not been extensively studied and on the possibilities to gather relevant information during a risk assessment process. The result of this effort is a list of determinants relevant for dermal exposure models in the scope of regulatory risk assessment. The determinants have been divided into the major categories 'substance and product characteristics', 'task done by the worker', 'process technique and equipment', 'exposure control measures', 'worker characteristics and habits' and 'area and situation'. To account for the complex nature of the dermal exposure processes, a further subdivision was made into the three major processes 'direct contact', 'surface contact' and 'deposition'.

  18. Probabilistic mercury multimedia exposure assessment in small children and risk assessment.

    Science.gov (United States)

    Morisset, Typhaine; Ramirez-Martinez, Alejandra; Wesolek, Nathalie; Roudot, Alain-Claude

    2013-09-01

    Emissions of mercury in the environment have been decreasing for several years. However, mercury species are still found in different media (food, water, air and breast-milk). Due to mercury toxicity and typical behaviour in children, we have conducted a mercury exposure assessment in French babies, and small children aged 0 to 36months. Consumption and mercury concentration data were chosen for the exposure assessment. The Monte Carlo technique has been used to calculate the weekly exposure dose in order to integrate inter-individual variability and parameter uncertainty. Exposure values have been compared to toxicological reference values for health risk assessment. Inorganic mercury median exposure levels ranged from 0.160 to 1.649μg/kg of body weight per week (95th percentile (P95): 0.298-2.027µg/kg bw/week); elemental mercury median exposure level in children was 0.11ng/kg bw/week (P95: 28ng/kg bw/week); and methylmercury median exposure level ranged from 0.247 to 0.273µg/kg bw/week (P95: 0.425-0.463µg/kg bw/week). Only elemental mercury by inhalation route (indoor air) and methylmercury by ingestion (fish and breast-milk) seem to lead to a health risk in small children. These results confirm the importance of assessing total mercury concentration in media like breast-milk, indoor air and dust and methylmercury level in food, other than fish and seafood. In this way, informed monitoring plan and risk assessment in an at-risk sub-population can be set. © 2013 Elsevier Ltd. All rights reserved.

  19. Weighing serological evidence of human exposure to animal influenza viruses − a literature review

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-01-01

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. PMID:27874827

  20. Health and exposure assessment of flare gas emissions

    International Nuclear Information System (INIS)

    Kindzierski, W.B.; Byrne-Lewis, C.; Probert, S.

    2000-01-01

    The incomplete combustion of flare gases produces pollutants such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) which are cause for concern for public health. Some of the concerns relate to potential long-term cumulative health effects from exposure to hazardous air pollutants including benzene, styrene, naphthalene, and benzopyrene. This study demonstrated that several factors should be taken into account when considering the importance of flaring and human exposure to flare gas emissions. Most flare stacks are located in rural areas, but most time-availability studies have been done on urban populations where the majority of people spend their time indoors. It was recommended that more time-activity studies are needed to emphasize the behaviour of rural populations which are most susceptible to exposure from pollutants from flaring. It was concluded that higher indoor air concentrations exist for many VOCs and PAHs compared to outdoors, but in these instances, indoor sources are the major contributors to indoor air concentrations. It was recommended that health assessments of hazardous air pollutants emitted from gas flaring has to take into account the indoor setting and other background exposures in order to provide useful information for decision makers. 49 refs., 8 tabs., 1 fig

  1. Outdoor and indoor cadmium distributions near an abandoned smelting works and their relations to human exposure

    International Nuclear Information System (INIS)

    Spurgeon, David J.; Lawlor, Alan; Hooper, Helen L.; Wadsworth, Richard; Svendsen, Claus; Thomas, Laura D.K.; Ellis, James K.; Bundy, Jacob G.; Keun, Hector C.; Jarup, Lars

    2011-01-01

    The relationship of measured or modelled Cd concentrations in soil, house dust and available to plants with human urinary Cd concentrations were assessed in a population living around a Cd/Pb/Zn smelter in the UK. Modelled air concentrations explained 35% of soil Cd variation indicating the smelter contributed to soil Cd loads. Multi-variate analysis confirmed a significant role of biological and life-style factors in determining urinary Cd levels. Significant correlations of urinary Cd with soil, house dust and modelled plant available Cd concentrations were not, however, found. Potential reasons for the absence of clear relationships include limited environmental contact in urban populations; the role of undefined factors in determining exposure; and the limited spatial scope of the survey which did not sample from the full pollution gradient. Further, the absence of any significant relationship indicates that environmental measures provide limited advantage over atmospheric model outputs for first stage human exposure assessment. - Highlights: → Environmental measurements indicate smelter pollution of a surrounding urban area. → Life-style and biology influenced U-Cd more than measured environmental levels. → Limited contact with outdoor environments may limit Cd uptake in urban populations. → Better life-style data could improve the attribution of human Cd exposure routes. → Measured Cd levels provide limited added exposure insight over dispersion models. - Measured and modelled environmental cadmium concentrations provide limited additional explanation of human urinary cadmium concentrations.

  2. Dynamic assessment of exposure to air pollution using mobile phone data.

    Science.gov (United States)

    Dewulf, Bart; Neutens, Tijs; Lefebvre, Wouter; Seynaeve, Gerdy; Vanpoucke, Charlotte; Beckx, Carolien; Van de Weghe, Nico

    2016-04-21

    Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments. In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach). The mean exposure to NO2 increases with 1.27 μg/m(3) (4.3%) during the week and with 0.12 μg/m(3) (0.4%) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations. It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones).

  3. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States.

    Science.gov (United States)

    Johnson-Restrepo, Boris; Kannan, Kurunthachalam

    2009-07-01

    Polybrominated diphenyl ethers (PBDEs) are ubiquitous in the indoor environment, owing to their use in consumer products ranging from electronics to mattresses, furniture, and carpets. People are exposed to PBDEs through inhalation of indoor air and ingestion, and dermal absorption of dust particles present in the air. In this study, concentrations of PBDEs were determined in indoor air and house dust collected from homes in Albany, New York, USA. Based on the measured concentrations of PBDEs in indoor air and dust, we estimated daily exposure dose (DED) of PBDEs. In addition, we used previously published PBDE concentrations reported for breast milk from Massachusetts, USA [Johnson-Restrepo, B., Addink, R., Wong, C., Arcaro, K., Kannan, K., 2007. Polybrominated diphenyl ethers and organochlorine pesticides in human breast milk from Massachusetts. USA. J. Environ. Monitor. 9, 1205-1212] and foodstuffs collected from Texas and Florida, USA [Schecter, A., Päpke, O., Harris, T.R., Tung, K.C., Musumba, A., Olson, J., Birnbaum, L., 2006. Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of U.S. food and estimated PBDE dietary intake by age and sex. Environ. Health Perspect. 114, 1515-1520, Johnson-Restrepo, B., Kannan, K., Addink, R., Adams, D.H., 2005b. Polybrominated diphenyl ethers and polychlorinated biphenyls in a marine foodweb of coastal Florida. Environ. Sci. Technol. 39, 8243-8250], in an estimation of dietary exposure to PBDEs. The exposure assessment was performed for five age groups: infants (accounting for, on average, 56-77% of the total PBDE intake.

  4. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    Science.gov (United States)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  5. Relative significance of natural irradiation vs all human exposures

    International Nuclear Information System (INIS)

    Jammet, H.

    1985-01-01

    A review is made of the fundamentals allowing to quantitatively express the importance of the various sources of human exposure by an individual or collective approach. Following a summary of the components of normal exposure to natural sources, the various human actions at the origin of enhanced exposure are studied: 1) those modifying the relationship between natural sources and man (dwelling conditions, coal burning, geothermal energy production, exploitation of phosphate rock); 2) those creating new artificial sources (nuclear explosions in the atmosphere, nuclear power production, medical use of radiation and radionuclides). The effective dose equivalent commitments for these sources are compared with those necessarily involved by continuous normal exposure to the natural sources of exposure [fr

  6. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  7. Assessment and comparison of total RF-EMF exposure in femtocell and macrocell base station scenarios

    OpenAIRE

    Aerts, Sam; Plets, David; Verloock, Leen; Martens, Luc; Joseph, Wout

    2014-01-01

    The indoor coverage of a mobile service can be drastically improved by deployment of an indoor femtocell base station (FBS). However, the impact of its proximity on the total exposure of the human body to radio-frequency (RF) electromagnetic fields (EMFs) is unknown. Using a framework designed for the combination of near-field and far-field exposure, the authors assessed and compared the RF-EMF exposure of a mobile-phone (MP) user that is either connected to an FBS or a conventional macrocell...

  8. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    OpenAIRE

    Ellis, James K; Athersuch, Toby J; Thomas, Laura DK; Teichert, Friederike; Pérez-Trujillo, Miriam; Svendsen, Claus; Spurgeon, David J; Singh, Rajinder; Järup, Lars; Bundy, Jacob G; Keun, Hector C

    2012-01-01

    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers...

  9. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Buys, E. M.

    2017-01-01

    and irrigation water E. coli isolates was previously reported. This stochastic modeling was aimed at quantitatively assessing human exposure to ESBL/AmpC bearing E. coli through lettuce attributable to irrigation water and subsequent horizontal gene transfer. Modular process risk approach was used.......15), and prevalence of E. coli in irrigation water (ρ=0.16) had highest influence on consumer exposure. The most effective single methods in reducing consumer exposure were reduction in irrigation water microbial quality variation (87.4% reduction), storage period (49.9-87.4% reduction) and growth rate reduction...... irrigation water quality variation. The exposure levels may impose higher consumer risk than acceptable for irrigation water risk. E. coli contamination and growth related measures, as well as measures to reduce contamination with antimicrobial resistant E. coli from lettuce production environment...

  10. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn M

    2011-11-01

    Triclocarban and triclosan, two antimicrobials widely used in consumer products, can adversely affect ecosystems and potentially impact human health. The application of biosolids to agricultural fields introduces triclocarban and triclosan to soil and water resources. This research examined the phytoaccumulation of antimicrobials, effects of plant growth on migration of antimicrobials to water resources, and relevance of phytoaccumulation in human exposure to antimicrobials. Pumpkin, zucchini, and switch grass were grown in soil columns to which biosolids were applied. Leachate from soil columns was assessed every other week for triclocarban and triclosan. At the end of the trial, concentrations of triclocarban and triclosan were determined for soil, roots, stems, and leaves. Results indicated that plants can reduce leaching of antimicrobials to water resources. Pumpkin and zucchini growth significantly reduced soil concentrations of triclosan to less than 0.001 mg/kg, while zucchini significantly reduced soil concentrations of triclocarban to 0.04 mg/kg. Pumpkin, zucchini, and switch grass accumulated triclocarban and triclosan in mg per kg (dry) concentrations. Potential human exposure to triclocarban from consumption of pumpkin or zucchini was substantially less than exposure from product use, but was greater than exposure from drinking water consumption. Consequently, research indicated that pumpkin and zucchini may beneficially impact the fate of antimicrobials in agricultural fields, while presenting minimal acute risk to human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Human mutagens: evidence from paternal exposure

    International Nuclear Information System (INIS)

    Narod, S.A.; Douglas, G.R.; Nestmann, E.R.; Blakey, D.H.

    1988-01-01

    The importance of inherited mutations as a cause of human disease has been established clearly through examples of well-defined genetic anomalies, such as Down syndrome and retinoblastoma. Furthermore, it is suspected that environmental contaminants induce mutations resulting in increased risk for such defects in subsequent generations of persons exposed. The present lack of direct evidence for induced inherited genetic disorders in human beings hampers the development of risk estimation techniques for extrapolation from animal models. The most extensive prospective epidemiologic studies of inherited genetic effects have involved survivors of atomic bomb detonations and patients treated with cancer chemotherapy. In neither case has a significant elevation in inherited genetic effects or cancer been detected in the offspring of exposed individuals. Epidemiologic studies of subjects receiving chronic exposure may be confounded by the effect of maternal exposure during pregnancy. Consideration of only paternal exposure can minimize the confounding influence of teratogenicity, enhancing the resolving power of studies for inherited effects. Using this approach, retrospective (case-control) studies of childhood cancer patients have provided limited but suggestive evidence for inheritance of induced effects. Endpoints, such as congenital malformations and spontaneous abortion following paternal exposure, can also be considered as indicators of heritable mutagenic effects. For example, there is limited evidence suggesting that paternal exposure to anaesthetic gases may cause miscarriage and congenital abnormalities as a result of induced male germ cell mutations. 104 references

  12. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    Science.gov (United States)

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  13. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    Science.gov (United States)

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  14. Video exposure monitoring as part of a strategy to assess exposure to nanoparticles

    NARCIS (Netherlands)

    Beurskens-Comuth, P.A.W.V.; Verbist, K.; Brouwer, D.

    2011-01-01

    Objectives: There is a growing awareness of the potential risks for human health of exposure to ultrafine particles or nanoparticles. In that context, workplace air measurements become important, and various strategies have been developed to monitor exposure. In addition, observations and

  15. Numerical evaluation of human exposure to WiMax patch antenna in tablet or laptop.

    Science.gov (United States)

    Siervo, Beatrice; Morelli, Maria Sole; Landini, Luigi; Hartwig, Valentina

    2018-04-30

    The use of wireless communication devices, such as tablets or laptops, is increasing among children. Only a few studies assess specific energy absorption rate (SAR) due to exposure from wireless-enabled tablets and laptops, in particular with Worldwide Interoperability for Microwave Access (WiMax) technology. This paper reports the estimation of the interaction between an E-shaped patch antenna (3.5 GHz) and human models, by means of finite-difference time-domain (FDTD) method. Specifically, four different human models (young adult male, young adult female, pre-teenager female, male child) in different exposure conditions (antenna at different distances from the human model, in different positions, and orientations) were considered and whole-body, 10 and 1 g local SAR and magnetic field value (Bmax) were evaluated. From our results, in some worst-case scenarios involving male and female children's exposure, the maximum radiofrequency energy absorption (hot spots) is located in more sensitive organs such as eye, genitals, and breast. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Human systemic exposure to [¹⁴C]-paraphenylenediamine-containing oxidative hair dyes: Absorption, kinetics, metabolism, excretion and safety assessment.

    Science.gov (United States)

    Nohynek, Gerhard J; Skare, Julie A; Meuling, Wim J A; Wehmeyer, Kenneth R; de Bie, Albertus Th H J; Vaes, Wouter H J; Dufour, Eric K; Fautz, Rolf; Steiling, Winfried; Bramante, Mario; Toutain, Herve

    2015-07-01

    Systemic exposure was measured in humans after hair dyeing with oxidative hair dyes containing 2.0% (A) or 1.0% (B) [(14)C]-p-phenylenediamine (PPD). Hair was dyed, rinsed, dried, clipped and shaved; blood and urine samples were collected for 48 hours after application. [(14)C] was measured in all materials, rinsing water, hair, plasma, urine and skin strips. Plasma and urine were also analysed by HLPC/MS/MS for PPD and its metabolites (B). Total mean recovery of radioactivity was 94.30% (A) or 96.21% (B). Mean plasma Cmax values were 132.6 or 97.4 ng [(14)C]-PPDeq/mL, mean AUC(0-∞) values 1415 or 966 ng [(14)C]-PPDeq/mL*hr in studies A or B, respectively. Urinary excretion of [(14)C] mainly occurred within 24 hrs after hair colouring with a total excretion of 0.72 or 0.88% of applied radioactivity in studies A or B, respectively. Only N,N'-diacetylated-PPD was detected in plasma and the urine. A TK-based human safety assessment estimated margins of safety of 23.3- or 65-fold relative to respective plasma AUC or Cmax values in rats at the NOAEL of a toxicity study. Overall, hair dyes containing PPD are unlikely to pose a health risk since they are used intermittently and systemic exposure is limited to the detoxified metabolite N,N'-diacetyl-PPD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cumulative risk assessment of phthalate exposure of Danish children and adolescents using the hazard index approach

    DEFF Research Database (Denmark)

    Søeborg, T; Frederiksen, H; Andersson, Anna-Maria

    2012-01-01

    Human risk assessment of chemicals is traditionally presented as the ratio between the actual level of exposure and an acceptable level of exposure, with the acceptable level of exposure most often being estimated by appropriate authorities. This approach is generally sound when assessing the risk...... of individual chemicals. However, several chemicals may concurrently target the same receptor, work through the same mechanism or in other ways induce the same effect(s) in the body. In these cases, cumulative risk assessment should be applied. The present study uses biomonitoring data from 129 Danish children...... and adolescents and resulting estimated daily intakes of four different phthalates. These daily intake estimates are used for a cumulative risk assessment with anti-androgenic effects as the endpoint using Tolerable Daily Intake (TDI) values determined by the European Food Safety Authorities (EFSA) or Reference...

  18. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.

    Science.gov (United States)

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-11-01

    Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Retrospective Occupational Exposure Assessment in Community-Based Studies Made Easier

    International Nuclear Information System (INIS)

    Fritschi, L.; Girschik, J.; Friesen, M.C.; Glass, D.; Monash, G.B.; Sadkowsky, T.

    2010-01-01

    Occ DEAS Assessing occupational exposure in retrospective community-based case-control studies is difficult as measured exposure data are very seldom available. The expert assessment method is considered the most accurate way to attribute exposure but it is a time consuming and expensive process and may be seen as subjective, non reproducible, and non transparent. In this paper, we describe these problems and outline our solutions as ope rationalized in a web-based software application (Occ DEAS). The novel aspects of Occ DEAS are combining all steps in the assessment into one software package; enmeshing the process of assessment into the development of questionnaires; selecting the exposure(s) of interest; specifying rules for exposure assignment; allowing manual or automatic assessments; ensuring that circumstances in which exposure is possible for an individual are highlighted for review; providing reports to ensure consistency of assessment. Development of this application has the potential to make high-quality occupational assessment more efficient and accessible for epidemiological studies

  20. Assessment of predictive dermal exposure to chemicals in the work environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Jankowska

    2017-08-01

    Full Text Available Assessment of dermal exposure to chemicals in the work environment is problematic, mainly as a result of the lack of measurement data on occupational exposure to chemicals. Due to common prevalence of occupational skin exposure and its health consequences it is necessary to look for efficient solutions allowing for reliable exposure assessment. The aim of the study is to present predictive models used to assess non-measured dermal exposure, as well as to acquaint Polish users with the principles of the selected model functioning. This paper presents examples of models to assist the employer in the the assessment of occupational exposure associated with the skin contact with chemicals, developed in European Union (EU countries, as well as in countries outside the EU. Based on the literature data dermal exposure models EASE (Estimation and Assessment of Substance Exposure, COSHH Essentials (Control of Substances Hazardous to Health Regulations, DREAM (Dermal Exposure Assessment Method, Stoffenmanager , ECETOC TRA (European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment, MEASE (Metal’s EASE, PHED (Pesticide Handlers Exposure Database, DERM (Dermal Exposure Ranking Method and RISKOFDERM (Risk Assessment of Occupational Dermal Exposure to Chemicals were briefly described. Moreover the characteristics of RISKOFDERM, guidelines for its use, information on input and output data were further detailed. Problem of full work shift dermal exposure assessment is described. An example of exposure assessment using RISKOFDERM and effectiveness evaluation to date were also presented. When no measurements are available, RISKOFDERM allows dermal exposure assessment and thus can improve the risk assessment quality and effectiveness of dermal risk management. Med Pr 2017;68(4:557–569

  1. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    Science.gov (United States)

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  2. Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment

    Science.gov (United States)

    Estimation of susceptibility differences in human health risk assessment (HHRA) has been challenged by a lack of available susceptibility and variability data after exposure to a specific environmental chemical or pharmaceutical. With the increasingly large number of available da...

  3. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment.

    Science.gov (United States)

    Balbus, John M; Boxall, Alistair B A; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Copyright © 2012 SETAC.

  4. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    International Nuclear Information System (INIS)

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B.

    2007-01-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells

  5. Wishful Thinking? Inside the Black Box of Exposure Assessment.

    Science.gov (United States)

    Money, Annemarie; Robinson, Christine; Agius, Raymond; de Vocht, Frank

    2016-05-01

    Decision-making processes used by experts when undertaking occupational exposure assessment are relatively unknown, but it is often assumed that there is a common underlying method that experts employ. However, differences in training and experience of assessors make it unlikely that one general method for expert assessment would exist. Therefore, there are concerns about formalizing, validating, and comparing expert estimates within and between studies that are difficult, if not impossible, to characterize. Heuristics on the other hand (the processes involved in decision making) have been extensively studied. Heuristics are deployed by everyone as short-cuts to make the often complex process of decision-making simpler, quicker, and less burdensome. Experts' assessments are often subject to various simplifying heuristics as a way to reach a decision in the absence of sufficient data. Therefore, investigating the underlying heuristics or decision-making processes involved may help to shed light on the 'black box' of exposure assessment. A mixed method study was conducted utilizing both a web-based exposure assessment exercise incorporating quantitative and semiqualitative elements of data collection, and qualitative semi-structured interviews with exposure assessors. Qualitative data were analyzed using thematic analysis. Twenty-five experts completed the web-based exposure assessment exercise and 8 of these 25 were randomly selected to participate in the follow-up interview. Familiar key themes relating to the exposure assessment exercise emerged; 'intensity'; 'probability'; 'agent'; 'process'; and 'duration' of exposure. However, an important aspect of the detailed follow-up interviews revealed a lack of structure and order with which participants described their decision making. Participants mostly described some form of an iterative process, heavily relying on the anchoring and adjustment heuristic, which differed between experts. In spite of having undertaken

  6. Relative source contributions for perchlorate exposures in a lactating human cohort

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [University of North Texas Health Sciences Center (United States); Dyke, Jason V. [University of Texas at Arlington (United States); Ohira, Shin-Ichi [Kumamoto University (Japan); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [University of Texas at Arlington (United States)

    2013-01-15

    Perchlorate is an iodine-uptake inhibitor and common contaminant of food and drinking water. Understanding the amount of perchlorate exposure occurring through non-water sources is essential for accurate estimates of human exposure levels, and establishment of drinking water limits for this pervasive contaminant. The study objective was to determine the amount of perchlorate intake derived from diet rather than water. Subjects provided drinking water samples, detailed fluid-intake records, 24 h urine collections and four milk samples for nine days. Samples were analyzed for perchlorate by isotope dilution ion chromatography–tandem mass spectrometry. Amounts of perchlorate derived from drinking water and dietary sources were calculated for each individual. Water of local origin was found to contribute a minor fraction of perchlorate intake. Estimated fraction intake from drinking water ranged from 0 to 36%. The mean and median dose of perchlorate derived from non-water sources by lactating women was 0.18 μg/kg/day (range: 0.06 to 0.36 μg/kg/day.) Lactating women consumed more fluid (mean 2.424 L/day) than has been assumed in recent risk assessments for perchlorate. The data reported here indicate that lactating women may be exposed to perchlorate through dietary sources at markedly higher levels than estimated previously. Exposures to perchlorate from non-water sources may be higher than recent estimates, including those used to develop drinking water standards. - Highlights: ► Residence in an area with perchlorate-contaminated water may be a poor predictor of exposure. ► Exposures to perchlorate from food are likely underestimated. ► The relative contributions for human perchlorate exposures should be weighted more heavily towards non-water sources.

  7. Radiation exposure assessment using cytological and molecular biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, W.F

    2001-07-01

    Chromosome aberration analysis is the conventional means of assessing radiation exposure. The Armed Forces Radiobiological Research Institute recently established an alternative method to measure radiation-induced chromosome aberrations in interphase cells. The method uses commercially available chemical agents to induce premature chromosome condensation in 'resting' G{sub 0} human peripheral blood lymphocytes. Then specific whole-chromosome DNA probes are used with fluorescence in situ hybridisation to detect aberrant cells rapidly over a broad dose range. In new research, the real-time fluorogenic 5'-nuclease, or TaqMan{sup TM}, polymerase chain reaction assay is being used to identify radiation-responsive molecular biomarkers, including gene expression targets and DNA mutations. The goal is to establish rapid, precise, high-throughput assay systems that are practical in a variety of radiation exposure scenarios. The new methodologies that have a number of other applications, together with diagnostic software now in development, could improve the United States military's emergency response capability and medical readiness. (author)

  8. Exposure Assessment Tools by Lifestages and Populations - General Population

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  9. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  10. Biomarcadores para avaliação da exposição humana às micotoxinas Biomarkers for assessment of human exposure to mycotoxins

    Directory of Open Access Journals (Sweden)

    Érika Bando

    2007-06-01

    of biomarkers, which elucidates the cause/effect and dose/effect relation in the evaluation of health risks for clinical and laboratory diagnostic purposes. The MEDLINE review about the use of biomarkers for assessment of aflatoxins, fumonisins, deoxynivalenol and ochratoxin A was carried out from 1981 to 2005. The biomarkers for assessment of human exposure to aflatoxins were the urinary metabolites of aflatoxin B1: aflatoxin M1, aflatoxin P1, aflatoxin Q1, the free aflatoxin in serum or plasma, the AFB-N7-guanine adducts and the albumin adducts or mutation in the tumour suppressor gene p53 present in human biological fluids. As far as fumonisins are concerned, levels of free fumonisin B1 and fumonisin B2, or levels of sphinganine and sphingosin, were quantified in blood and urine. As exposure biomarkers, deoxynivalenol has its own metabolism products and adducts (protein/DNA present in human fluids. As to ochratoxin A exposure, we measure it in biological fluids, once it enables us to prevent or minimize the incidence of deaths or illnesses provoked by chemical exposure.

  11. Safety assessments for potential exposures

    International Nuclear Information System (INIS)

    Dunn, D.I.

    2012-04-01

    Safety Assessment of potential exposures have been carried out in major practices, namely: industrial radiography, gamma irradiators and electron accelerators used in industry and research, and radiotherapy. This paper focuses on reviewing safety assessment methodologies and using developed software to analyse radiological accidents, also review, and discuss these past accidents.The primary objective of the assessment is to assess the adequacy of planned or existing measures for protection and safety and to identify any additional measures that should be put in place. As such, both routine use of the source and the probability and magnitude of potential exposures arising from accidents or incidents should be considered. Where the assessment indicates that there is a realistic possibility of an accident affecting workers or members of the public or having consequences for the environment, the registrant or licensee should prepare a suitable emergency plan. A safety assessment for normal operation addresses all the conditions under which the radiation source operates as expected, including all phases of the lifetime of the source. Due account needs to be taken of the different factors and conditions that will apply during non-operational phases, such as installation, commissioning and maintenance. (author)

  12. Human exposure and risk assessment to airborne pesticides in a rural French community.

    Science.gov (United States)

    Coscollà, Clara; López, Antonio; Yahyaoui, Abderrazak; Colin, Patrice; Robin, Corine; Poinsignon, Quentin; Yusà, Vicent

    2017-04-15

    Outdoor air samples collected during the pesticide agricultural application period (spring and summer) from a rural community in the Centre Region (France) were analyzed to investigate temporal variation of atmospheric pesticide levels (2006-2013) and human inhalation exposure in adults, children and infants. The most frequently detected pesticides were herbicides (trifluralin, pendimethalin), fungicides (chlorothalonil) and insecticides (lindane and α-endosulfan). The three currently-used pesticides most frequently detected presented concentrations ranging from 0.18 to 1128.38ngm -3 ; 0.13 to 117.32ngm -3 and 0.16 to 25.80ngm -3 for chlorothalonil, pendimethalin and trifluralin, respectively. The estimated chronic inhalation risk, expressed as Hazard Quotient (HQ), for adults, children and infants, was exposure for detected organophosphorus and chloroacetamide pesticides, was estimated using the Relative Potency Factor (RPF) and Hazard Index (HI) as metrics, which was indicated that no risk was observed. The cancer risk classified as likely or possibly carcinogen was estimated to be <8.93 E-05 in infants, for the detected pesticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assessing exposure to violence using multiple informants: application of hierarchical linear model.

    Science.gov (United States)

    Kuo, M; Mohler, B; Raudenbush, S L; Earls, F J

    2000-11-01

    The present study assesses the effects of demographic risk factors on children's exposure to violence (ETV) and how these effects vary by informants. Data on exposure to violence of 9-, 12-, and 15-year-olds were collected from both child participants (N = 1880) and parents (N = 1776), as part of the assessment of the Project on Human Development in Chicago Neighborhoods (PHDCN). A two-level hierarchical linear model (HLM) with multivariate outcomes was employed to analyze information obtained from these two different groups of informants. The findings indicate that parents generally report less ETV than do their children and that associations of age, gender, and parent education with ETV are stronger in the self-reports than in the parent reports. The findings support a multivariate approach when information obtained from different sources is being integrated. The application of HLM allows an assessment of interactions between risk factors and informants and uses all available data, including data from one informant when data from the other informant is missing.

  14. Hazard and risk assessment of human exposure to toxic metals using in vitro digestion assay

    Directory of Open Access Journals (Sweden)

    Hani A. Alhadrami

    2016-10-01

    Full Text Available Clean-up targets for toxic metals require that the site be “fit for purpose”. This means that targets are set with respect to defined receptors that reflect intended land-use. In this study, the likely threat of human exposure to toxic metals has been evaluated by simulating the human digestion process in vitro. The effects of key attributes (i.e. sample fraction size, pH, Kd and total metal concentrations on the bioavailability of Cu and Ni were also investigated. Total metal concentration was the key explanatory factor for Cu and Ni bioavailability. A comparative ranking of metal concentrations in the context of tolerable daily intakes for Cu and Ni confirmed that the pH has the greatest impact on metals bioavailability. Rapid screening of key attributes and total toxic metal doses can reveal the relative hazard imposed on human, and this approach should be considered when defining threshold values for human protection.

  15. Naphthalene distributions and human exposure in Southern California

    Science.gov (United States)

    Lu, Rong; Wu, Jun; Turco, Richard P.; Winer, Arthur M.; Atkinson, Roger; Arey, Janet; Paulson, Suzanne E.; Lurmann, Fred W.; Miguel, Antonio H.; Eiguren-Fernandez, Arantzazu

    The regional distribution of, and human exposure to, naphthalene are investigated for Southern California. A comprehensive approach is taken in which advanced models are linked for the first time to quantify population exposure to the emissions of naphthalene throughout Southern California. Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons found in polluted urban environments, and has been detected in both outdoor and indoor air samples. Exposure to high concentrations of naphthalene may have adverse health effects, possibly causing cancer in humans. Among the significant emission sources are volatilization from naphthalene-containing products, petroleum refining, and combustion of fossil fuels and wood. Gasoline and diesel engine exhaust, with related vaporization from fuels, are found to contribute roughly half of the daily total naphthalene burden in Southern California. As part of this study, the emission inventory for naphthalene has been verified against new field measurements of the naphthalene-to-benzene ratio in a busy traffic tunnel in Los Angeles, supporting the modeling work carried out here. The Surface Meteorology and Ozone Generation (SMOG) airshed model is used to compute the spatial and temporal distributions of naphthalene and its photooxidation products in Southern California. The present simulations reveal a high degree of spatial variability in the concentrations of naphthalene-related species, with large diurnal and seasonal variations as well. Peak naphthalene concentrations are estimated to occur in the early morning hours in the winter season. The naphthalene concentration estimates obtained from the SMOG model are employed in the Regional Human Exposure (REHEX) model to calculate population exposure statistics. Results show average hourly naphthalene exposures in Southern California under summer and winter conditions of 270 and 430 ng m -3, respectively. Exposure to significantly higher concentrations

  16. [Assessment of a risk from exposure to atmosphere bus industrial emissions].

    Science.gov (United States)

    Stepkin, Iu I; Kuzmichev, M K

    2009-01-01

    The carcinogenic and noncarcinogenic risks to health were estimated in accordance with the requirements stated in the guide P 2.1.10.1920-04 "Guidelines for assessing the health risk in the population exposed to the chemicals polluting the environment" (approved by G. G. Onishchenko, state sanitary inspector on March 5, 2004) and comprised four successive steps: 1) identification of a hazard; 2) estimation of a dose-response relationship; 3) evaluation of exposure of the population to chemical substances; 4) characterization of a risk, by calculating the individual carcinogenic risk, hazard coefficients and indices characterizing the noncarcinogenic risk. The performed assessment of the health risk to the population living in the area exposed to the ambient air pollutant emissions by the AOA "Shinnyi Kompleks Amtel-Chenozymye" (Amtel-Chernozem Tyre Complex) allowed determination of priority pollutants, by taking into account their effect on human health. The individual carcinogenic risk to health has been found to be higher than the acceptable (safe) level (10-4) was due to the probable exposure to a 2-heptane fraction (nefras ChS 94/99) and hexavalent chromium. The highest non-carcinogenic risk to human was also due to the heptane fraction (nefras ChS 94/99) (hazard coefficient > 1).

  17. Toxicity levels to humans during acute exposure to hydrogen fluoride - An update

    International Nuclear Information System (INIS)

    Halton, D.M.

    1995-09-01

    In March 1993, the Atomic Energy Control Board (AECB) commissioned and update of a 1984 review on the acute toxicity of hydrogen fluoride (HF). The study places particular emphasis on the effects of inhalation of gaseous HF and is divided into two main parts: a literature review and a lethal concentration (LC) estimation. The literature review summarizes data under four categories: animal studies, controlled human studies, community exposure, and industrial exposure. Data in these areas were critically reviewed for their relevance to lethal concentrations at LC LO , LC 10 and LC 50 levels that were derived in the 1984 report. In the last ten years, only one relevant animal study has been published. No new controlled human studies were found but a community exposure incident was reported. There were three new industrial/accidental exposures reported since 1984. Evaluation of new data does not change the lethal concentration estimates made in the 1984 report, but does indicate the absence of appropriate models to estimate the lethality of irritant and corrosive gases. In the last 10 years, much literature on the evaluation of major hazards has been published and suggests that such assessments are of growing political, economic and social importance. Numerous articles have been published on the acute toxicity of HF from skin contact and chronic toxicity from repeated airborne exposure. These publications offer important insights into the nature of HF toxicity. Several avenues of investigative research are suggested. (author). 55 refs., 4 tabs

  18. Toxicity levels to humans during acute exposure to hydrogen fluoride - An update

    Energy Technology Data Exchange (ETDEWEB)

    Halton, D M

    1995-09-01

    In March 1993, the Atomic Energy Control Board (AECB) commissioned and update of a 1984 review on the acute toxicity of hydrogen fluoride (HF). The study places particular emphasis on the effects of inhalation of gaseous HF and is divided into two main parts: a literature review and a lethal concentration (LC) estimation. The literature review summarizes data under four categories: animal studies, controlled human studies, community exposure, and industrial exposure. Data in these areas were critically reviewed for their relevance to lethal concentrations at LC{sub LO}, LC{sub 10} and LC{sub 50} levels that were derived in the 1984 report. In the last ten years, only one relevant animal study has been published. No new controlled human studies were found but a community exposure incident was reported. There were three new industrial/accidental exposures reported since 1984. Evaluation of new data does not change the lethal concentration estimates made in the 1984 report, but does indicate the absence of appropriate models to estimate the lethality of irritant and corrosive gases. In the last 10 years, much literature on the evaluation of major hazards has been published and suggests that such assessments are of growing political, economic and social importance. Numerous articles have been published on the acute toxicity of HF from skin contact and chronic toxicity from repeated airborne exposure. These publications offer important insights into the nature of HF toxicity. Several avenues of investigative research are suggested. (author). 55 refs., 4 tabs.

  19. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer.

    Science.gov (United States)

    Njage, P M K; Buys, E M

    2017-01-02

    The contribution of the fresh produce production environment to human exposure with bacteria bearing extended spectrum β-lactamases and AmpC β-lactamases (ESBL/AmpC) has not been reported. High prevalence of ESBLs/AmpC bearing E. coli as well as a high gene transfer efficiency of lettuce and irrigation water E. coli isolates was previously reported. This stochastic modeling was aimed at quantitatively assessing human exposure to ESBL/AmpC bearing E. coli through lettuce attributable to irrigation water and subsequent horizontal gene transfer. Modular process risk approach was used for the quantitative exposure assessment and models were constructed in Ms. Excel spreadsheet with farm to consumption chain accounted for by primary production, processing, retail and consumer storage. Probability distributions were utilised to take into account the variability of the exposure estimates. Exposure resulting from ESBL/AmpC positive E. coli and gene transfer was taken into account. Monte Carlo simulation was carried out using @Risk software followed by sensitivity and scenario analysis to assess most effective single or combinations of mitigation strategies for the ESBL/AmpC positive E. coli events from farm to fork. Three percent of South African lettuce consumers are exposed to lettuce contaminated with about 10 6.4 ±10 6.7 (95% CI: 10 5.1 -10 7 ) cfu of ESBL/AmpC positive E. coli per serving. The contribution of originally positive isolates and conjugative genetic transfer was 10 6 ±10 6.7 (95% CI: 10 5 -10 7 ) and 10 5.2 ±10 5.6 (95% CI: 10 3.9 -10 5.8 ) cfu per serving respectively. Proportion of ESBL/AmpC positive E. coli (Spearman's correlation coefficient (ρ)=0.85), conjugative gene transfer (ρ=0.05-0.14), washing in chlorine water (ρ=0.18), further rinsing (ρ=0.15), and prevalence of E. coli in irrigation water (ρ=0.16) had highest influence on consumer exposure. The most effective single methods in reducing consumer exposure were reduction in irrigation

  20. DNA fragmentation dynamics allows the assessment of cryptic sperm damage in human: Evaluation of exposure to ionizing radiation, hyperthermia, acidic pH and nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiso, Rebeca; Tamayo, Maria [Laboratorio de Genetica Molecular y Radiobiologia, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruna (CHUAC), As Xubias, 84, 15006-A Coruna (Spain); Gosalvez, Jaime [Genetics Unit, Facultad de Biologia, Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid (Spain); Johnston, Steve [School of Agriculture and Food Science, University of Queensland, Gatton 4343 (Australia); Marino, Alfonso [Servicio de Oncologia Radioterapica, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Fernandez, Carlos; Losada, Carlos [Servicio de Radiofisica, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Fernandez, Jose Luis, E-mail: Jose.Luis.Fernandez.Garcia@sergas.es [Laboratorio de Genetica Molecular y Radiobiologia, Centro Oncologico de Galicia, Doctor Camilo Veiras 1, 15009-A Coruna (Spain); Genetics Unit, INIBIC-Complejo Hospitalario Universitario A Coruna (CHUAC), As Xubias, 84, 15006-A Coruna (Spain)

    2012-06-01

    Sperm DNA fragmentation (SDF) is not a static seminal parameter, since the longevity of sperm DNA decreases progressively with time following ejaculation or thawing. While the dynamics of SDF is a species-specific characteristic, in the case of humans, there is still significant variation within patients. To evaluate the suitability of the dynamic SDF assay to assess the adverse effects of agents that cause genetic damage, fresh semen samples from different donors were exposed in vitro to (1) increasing acute doses of ionizing radiation, (2) elevated temperature (41 Degree-Sign C and 45 Degree-Sign C), (3) acidic pH (pH 4) and (4) the nitric oxide (NO) donor sodium nitroprusside (SNP). Sperm DNA fragmentation was analyzed after an incubation period of chronic (24 h), or acute (1 h) exposure to each treatment followed by incubation at 37 Degree-Sign C over a period of 24 h. SDF was assessed using the sperm chromatin dispersion (SCD) test. Dynamic SDF for each treatment was analyzed using Kaplan-Meier survival curves. All agents, except for ionizing radiation, accelerated SDF kinetics following chronic exposure over a 24 h period. Transient exposure to NO and heat but not acidic pH increased the basal (T0) level of SDF. Despite the removal of the three toxicants, the remaining sperm following acute exposure showed a decrease in their expected DNA longevity. It is concluded that the assessment of sperm DNA fragmentation dynamics is an effective methodological approach for revealing latent damage associated with toxicants that is not initially expressed following a single initial observation of SDF.

  1. CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-10-01

    CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

  2. Estimation of human exposure to chemical substances and radiation. State of the art of the research projects of the Dutch National Institute of Public Health and Environmental Protection (RIVM)

    International Nuclear Information System (INIS)

    Vermeire, T.G.; Van Veen, M.P.; Janssen, M.P.M.; Smetsers, R.C.G.M.

    1997-03-01

    In 1994, the Sector Substances and Risks of RIVM decided to strengthen strategically its research into risk assessment methodology. In this report the research area of human exposure assessment at the RIVM is outlined. A representative selection of human exposure assessment models for both chemical substances and radiation is analysed with regard to aim, principle, degree of model analyses and values of default parameter. For comparison, a model to assess human exposure to micro-organisms is included as well. All models are operational or nearly so in the production of risk assessments in the Sector Substances and Risks and also in the Sectors Public Health Research and Environmental Research. The models discussed all have a defined area of application and support risk management. The research areas of exposure assessment for substances and radiation are compared and many methodological analogies are apparent. However, at the level of models and parameters an in-depth analysis of analogies and explained or unexplained differences is lacking. A detailed examination of organisation aspects and RIVM-models for human exposure assessment learns that all relevant areas of interest are covered. For all routes of exposure the reach of the actual risk and exposure assessment methodology is large. A more uniform coverage is attained for radiation than for chemical substances. For both areas the estimation and registration of emissions can be improved. The development of risk assessment systems and related harmonisation proJects have already attention for many years (e.g. CSOIL, USES, RIBRON). It is concluded that the RIVM requires a broad, up-to-date range of instruments for exposure assessment and active involvement in all kinds of national and international relevant networks. The RIVM should also remain involved in the development and evaluation of methodology and in projects aiming at harmonisation. 2 figs., 9 tabs., 64 refs

  3. Potential human health risk assessment of heavy metals intake via ...

    African Journals Online (AJOL)

    Potential human health risk assessment of heavy metals intake via consumption of some leafy vegetables obtained from four market in Lagos Metropolis, Nigeria. ... This result reflected the risk associated with exposure for the period of life expectancy considered, and the inhabitants are highly exposed to health risks ...

  4. Analysis of Cigarette Smoke Deposition Within an In Vitro Exposure System for Simulating Exposure in the Human Respiratory Tract

    Directory of Open Access Journals (Sweden)

    Ishikawa Shinkichi

    2016-01-01

    Full Text Available For the risk assessment of airborne chemicals, a variety of in vitro direct exposure systems have been developed to replicate airborne chemical exposure in vivo. Since cells at the air-liquid interface are exposed to cigarette smoke as an aerosol in direct exposure systems, it is possible to reproduce the situation of cigarette smoke exposure in the human respiratory system using this device. However it is difficult to know whether the exposed cigarette smoke in this system is consistent with the smoke retained in the human respiratory tract. The purpose of this study is to clarify this point using the CULTEX® RFS module which is a recently developed direct exposure system. For this purpose, solanesol and acetaldehyde were respectively chosen as the particulate and gas/vapor phase representatives of smoke constituents, and their deposition and balance per unit area of cell culture surface of the RFS module were measured (dosimetry. We also conducted human retention studies to compare with the dosimetry data. By comparing inhaled smoke and exhaled smoke under three inhalation conditions, we estimated the regional retention and balance of each representative per unit surface area of the respiratory tract (mouth, bronchi, and alveoli separately. The deposition of solanesol and acetaldehyde per unit area of cell culture surface in the RFS module decreased dependent on the dilution flow rate and ranged from 0.26-0.0076%/cm2 in our experimental conditions. The ratio of deposited acetaldehyde to deposited solanesol ranged from 0.96-1.96 in the RFS module. The retention of solanesol and acetaldehyde per unit surface area in the mouth and the bronchi ranged from 0.095-0.0083%/cm2 in this study. The retention per unit surface area of alveoli was far lower than in the other two regions (0.0000063%/cm2. The ratio of retained acetaldehyde to retained solanesol ranged from 0.54-1.97. From these results, we concluded that the CULTEX® RFS module can simulate

  5. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks

    International Nuclear Information System (INIS)

    Suciu, Nicoleta; Tediosi, Alice; Ciffroy, Philippe; Altenpohl, Annette; Brochot, Céline; Verdonck, Frederik; Ferrari, Federico; Giubilato, Elisa; Capri, Ettore; Fait, Gabriella

    2016-01-01

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. - Highlights: • Exposure and risk evaluation of chemicals • Coupling environmental exposure and pharmacokinetic models • MERLIN-expo as a higher tier exposure tool • MERLIN-expo potential application in EU chemical regulations • EU legislations and policies related to risk assessment and management of chemicals

  6. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Suciu, Nicoleta, E-mail: nicoleta.suciu@unicatt.it [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy); Tediosi, Alice [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Ciffroy, Philippe [Electricité de France (EDF) R& D, National Hydraulic and Environment Laboratory, 6 quai Watier, 78400 Chatou (France); Altenpohl, Annette [Österreichisches Normungsinstitut/Austrian Standards Institute, Heinestraße 38, 1020 Wien (Austria); Brochot, Céline [INERIS, Parc ALATA, BP2, 60550 Verneuil en Halatte (France); Verdonck, Frederik [ARCHE cvba, Liefkensstraat 35d, 9032 Gent-Wondelgem (Belgium); Ferrari, Federico [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Giubilato, Elisa [University Ca Foscari Venice, Department of Environmental Sciences, Informatics and Statistics, via Torino 155, 30172 Mestre-Venice (Italy); Capri, Ettore [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy); Fait, Gabriella [EFSA, via Carlo Magno 1/a, 43126 Parma (Italy)

    2016-08-15

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. - Highlights: • Exposure and risk evaluation of chemicals • Coupling environmental exposure and pharmacokinetic models • MERLIN-expo as a higher tier exposure tool • MERLIN-expo potential application in EU chemical regulations • EU legislations and policies related to risk assessment and management of chemicals.

  7. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.

    Science.gov (United States)

    Mushak, Paul

    2003-02-15

    This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.

  8. Agent Orange Exposure and 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) in Human Milk.

    Science.gov (United States)

    Scialli, Anthony R; Watkins, Deborah K; Ginevan, Michael E

    2015-06-01

    Agent Orange was sprayed in parts of southern Vietnam during the U.S.-Vietnam war and was a mixture of two chlorophenoxy herbicides. The mixture was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD and other dioxins and furans are measurable in the milk of Vietnamese women. We explored whether the TCDD in milk from these women was from Agent Orange and whether lactational exposure can be a mode of transgenerational effects of TCDD from Agent Orange. A review of the world's literature on milk concentrations of polychlorinated compounds showed the presence of TCDD and other dioxins and furans in all countries that have been assessed. The congener profile of these chemicals, that is, the proportion of different congeners in the sample, can be used to assess the source of milk contamination. Measurements in most countries, including contemporary measurements in Vietnam, are consistent with non-Agent Orange exposure sources, including industrial activities and incineration of waste. Models and supporting human data suggest that TCDD from breastfeeding does not persist in a child past adolescence and that the adult body burden of TCDD is independent of whether the individual was breast- or bottle-fed as a child. These findings suggest that exposure to Agent Orange in Vietnam did not result in persistent transgenerational exposure through human milk. © 2015 Wiley Periodicals, Inc.

  9. Assessment of chemical exposures: calculation methods for environmental professionals

    National Research Council Canada - National Science Library

    Daugherty, Jack E

    1997-01-01

    ... on by scientists, businessmen, and policymakers. Assessment of Chemical Exposures: Calculation Methods for Environmental Professionals addresses the expanding scope of exposure assessments in both the workplace and environment...

  10. Risk assessment and management of radiofrequency radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dabala, Dana [Railways Medical Clinic Cluj-Napoca, Occupational Medicine Department, 16-20 Bilascu Gheorghe St., 400015 Cluj-Napoca (Romania); Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  11. Risk assessment and management of radiofrequency radiation exposure

    International Nuclear Information System (INIS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-01-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management

  12. NASA Human System Risk Assessment Process

    Science.gov (United States)

    Francisco, D.; Romero, E.

    2016-01-01

    NASA utilizes an evidence based system to perform risk assessments for the human system for spaceflight missions. The center of this process is the multi-disciplinary Human System Risk Board (HSRB). The HSRB is chartered from the Chief Health and Medical Officer (OCHMO) at NASA Headquarters. The HSRB reviews all human system risks via an established comprehensive risk and configuration management plan based on a project management approach. The HSRB facilitates the integration of human research (terrestrial and spaceflight), medical operations, occupational surveillance, systems engineering and many other disciplines in a comprehensive review of human system risks. The HSRB considers all factors that influence human risk. These factors include pre-mission considerations such as screening criteria, training, age, sex, and physiological condition. In mission factors such as available countermeasures, mission duration and location and post mission factors such as time to return to baseline (reconditioning), post mission health screening, and available treatments. All of the factors influence the total risk assessment for each human risk. The HSRB performed a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30, where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research and, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit for 6 and 12 months, deep space for 30 days and 1 year, a lunar mission for 1 year, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary

  13. A quantitative screening-level approach to incorporate chemical exposure and risk into alternative assessment evaluations.

    Science.gov (United States)

    Arnold, Scott M; Greggs, Bill; Goyak, Katy O; Landenberger, Bryce D; Mason, Ann M; Howard, Brett; Zaleski, Rosemary T

    2017-11-01

    As the general public and retailers ask for disclosure of chemical ingredients in the marketplace, a number of hazard screening tools were developed to evaluate the so-called "greenness" of individual chemical ingredients and/or formulations. The majority of these tools focus only on hazard, often using chemical lists, ignoring the other part of the risk equation: exposure. Using a hazard-only focus can result in regrettable substitutions, changing 1 chemical ingredient for another that turns out to be more hazardous or shifts the toxicity burden to others. To minimize the incidents of regrettable substitutions, BizNGO describes "Common Principles" to frame a process for informed substitution. Two of these 6 principles are: "reduce hazard" and "minimize exposure." A number of frameworks have emerged to evaluate and assess alternatives. One framework developed by leading experts under the auspices of the US National Academy of Sciences recommended that hazard and exposure be specifically addressed in the same step when assessing candidate alternatives. For the alternative assessment community, this article serves as an informational resource for considering exposure in an alternatives assessment using elements of problem formulation; product identity, use, and composition; hazard analysis; exposure analysis; and risk characterization. These conceptual elements build on practices from government, academia, and industry and are exemplified through 2 hypothetical case studies demonstrating the questions asked and decisions faced in new product development. These 2 case studies-inhalation exposure to a generic paint product and environmental exposure to a shampoo rinsed down the drain-demonstrate the criteria, considerations, and methods required to combine exposure models addressing human health and environmental impacts to provide a screening level hazard and exposure (risk) analysis. This article informs practices for these elements within a comparative risk context

  14. Assessment of risk of potential exposures on facilities industries; Estimativa do risco de exposicao potencial em instalacoes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Leocadio, Joao Carlos

    2007-03-15

    This work develops a model to evaluate potential exposures on open facilities of industrial radiography in Brazil. This model will decisively contribute to optimize operational, radiological protection and safety procedures, to prevent radiation accidents and to reduce human errors in industrial radiography. The probabilistic safety assessment (PSA) methodology was very useful to assess potential exposures. The open facilities of industrial radiography were identified as the scenario to be analyzed in what concerns the evaluation of potential exposures, due to their high accidents indices. The results of the assessment of potential exposures confirm that the industrial radiography in Brazil is a high-risk practice as classified by the IAEA. The risk of potential exposure was estimated to be 40,5 x 10{sup -2} per year in Brazil, having as main consequences injuries to the workers' hands and arms. In the world scene, the consequences are worst, leading to fatalities of people, thus emphasizing the high risk of industrial radiography. (author)

  15. Assessment of risk of potential exposures on facilities industries; Estimativa do risco de exposicao potencial em instalacoes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Leocadio, Joao Carlos

    2007-03-15

    This work develops a model to evaluate potential exposures on open facilities of industrial radiography in Brazil. This model will decisively contribute to optimize operational, radiological protection and safety procedures, to prevent radiation accidents and to reduce human errors in industrial radiography. The probabilistic safety assessment (PSA) methodology was very useful to assess potential exposures. The open facilities of industrial radiography were identified as the scenario to be analyzed in what concerns the evaluation of potential exposures, due to their high accidents indices. The results of the assessment of potential exposures confirm that the industrial radiography in Brazil is a high-risk practice as classified by the IAEA. The risk of potential exposure was estimated to be 40,5 x 10{sup -2} per year in Brazil, having as main consequences injuries to the workers' hands and arms. In the world scene, the consequences are worst, leading to fatalities of people, thus emphasizing the high risk of industrial radiography. (author)

  16. Wood smoke in a controlled exposure experiment with human volunteers

    DEFF Research Database (Denmark)

    Riddervold, Ingunn Skogstad; Bønløkke, Jakob Hjort; Mølhave, Lars

    2011-01-01

    Exposure to wood smoke in the general population is increasing and concurrently, also our awareness. This article describes a wood-smoke generating system for studying human exposure to wood smoke and symptoms related to this exposure. Twenty nonsmoking atopic human participants with normal lung...... function and normal bronchial reactivity were randomly exposed for 3h at three different exposure conditions; clean filtered air (control exposure) and wood smoke with a characteristic particulate matter (PM) concentration of 200 µg/m3 (low) and 400 µg/m3 (high) under controlled environmental conditions.......0007), “irritative body perceptions” (p = 0.0127), “psychological/neurological effects” (p = 0.0075) and “weak inflammatory responses” (p = 0.0003). Furthermore, significant effects (p = 0.0192) on self-reported general mucosa irritation were found. In conclusion, exposure to wood smoke affected symptom rating...

  17. Assessment and improvement of biotransfer models to cow’s milk and beef used in exposure assessment tools for organic pollutants

    OpenAIRE

    Takaki, Koki; Wade, Andrew J.; Collins, Christopher D.

    2015-01-01

    The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish ...

  18. Dermal Exposure Assessment to Pesticides in Farming Systems in Developing Countries: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Camilo Lesmes Fabian

    2015-04-01

    Full Text Available In the field of occupational hygiene, researchers have been working on developing appropriate methods to estimate human exposure to pesticides in order to assess the risk and therefore to take the due decisions to improve the pesticide management process and reduce the health risks. This paper evaluates dermal exposure models to find the most appropriate. Eight models (i.e., COSHH, DERM, DREAM, EASE, PHED, RISKOFDERM, STOFFENMANAGER and PFAM were evaluated according to a multi-criteria analysis and from these results five models (i.e., DERM, DREAM, PHED, RISKOFDERM and PFAM were selected for the assessment of dermal exposure in the case study of the potato farming system in the Andean highlands of Vereda La Hoya, Colombia. The results show that the models provide different dermal exposure estimations which are not comparable. However, because of the simplicity of the algorithm and the specificity of the determinants, the DERM, DREAM and PFAM models were found to be the most appropriate although their estimations might be more accurate if specific determinants are included for the case studies in developing countries.

  19. Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository.

    Science.gov (United States)

    Nedveckaite, T; Gudelis, A; Vives i Batlle, J

    2013-05-01

    This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.

  20. Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Nedveckaite, T.; Gudelis, A. [Institute of Physics, Center for Physical Sciences and Technology, Vilnius (Lithuania); Vives i Batlle, J. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium)

    2013-05-15

    This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified {sup 3}H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination. (orig.)

  1. Exposure scenario libraries as a tool for exposure assessment

    International Nuclear Information System (INIS)

    Jiménez, Araceli Sánchez; Rashid, Shahzad; Van Tongeren, Martie; Brouwer, Derk; Fransman, Wouter; Fito, Carlos; Boulougouris, George

    2015-01-01

    The development of nanotechnology has reached a point where it is being widely applied, and numerous nanomaterials and nano-enabled products are handled across a broad range of industrial sectors. Exposure extends beyond occupational settings as products containing nanomaterials are used by different consumer groups.Despite the knowledge on their toxic effects is growing there is still not OEL for most NMS and therefore the precautionary approach is still used where levels are kept as low as possible Therefore there is a need to assess workers and consumers exposure. (paper)

  2. Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China.

    Science.gov (United States)

    Wang, Gang; Gong, Yu; Zhu, Yi-Xin; Miao, Ai-Jun; Yang, Liu-Yan; Zhong, Huan

    2017-05-12

    Recent studies have revealed that not only fish but also rice consumption may significantly contribute to human exposure to mercury (Hg) in Asian countries. It is therefore essential to assess dietary exposure to Hg in rice and its associated health risk. However, risk assessments of Hg in rice in non-contaminated areas are generally lacking in Asian countries. In the present study, Hg concentrations were measured in rice samples collected from markets and supermarkets in Suzhou, a typical city in Eastern China. In addition, the rice ingestion rates (IR) were assessed via a questionnaire-based survey of Suzhou residents. The data were then used to assess the risk of Hg exposure associated with rice consumption, by calculating the hazard quotient (HQ). Hg contents in rice samples were well below the national standard (20 μg/kg), ranging from 1.46 to 8.48 ng/g. They were also significantly ( p > 0.05) independent of the area of production and place of purchase (markets vs. supermarkets in the different districts). Our results indicate a low risk of Hg exposure from rice in Suzhou (HQ: 0.005-0.05), despite the generally high personal IR (0.05-0.4 kg/day). The risk of Hg associated with rice consumption for Suzhou residents was not significantly affected by the age or sex of the consumer ( p > 0.05). Overall, our results provide a study of human exposure to Hg in rice in Chinese cities not known to be contaminated with Hg. Future studies should examine Hg exposure in different areas in China and in potentially vulnerable major food types.

  3. The Human Exposure Potential from Propylene Releases to the Environment

    Directory of Open Access Journals (Sweden)

    David A. Morgott

    2018-01-01

    Full Text Available A detailed literature search was performed to assess the sources, magnitudes and extent of human inhalation exposure to propylene. Exposure evaluations were performed at both the community and occupational levels for those living or working in different environments. The results revealed a multitude of pyrogenic, biogenic and anthropogenic emission sources. Pyrogenic sources, including biomass burning and fossil fuel combustion, appear to be the primary contributors to atmospheric propylene. Despite a very short atmospheric lifetime, measurable levels could be detected in highly remote locations as a result of biogenic release. The indoor/outdoor ratio for propylene has been shown to range from about 2 to 3 in non-smoking homes, which indicates that residential sources may be the largest contributor to the overall exposure for those not occupationally exposed. In homes where smoking takes place, the levels may be up to thirty times higher than non-smoking residences. Atmospheric levels in most rural regions are typically below 2 ppbv, whereas the values in urban levels are much more variable ranging as high as 10 ppbv. Somewhat elevated propylene exposures may also occur in the workplace; especially for firefighters or refinery plant operators who may encounter levels up to about 10 ppmv.

  4. Measurement and human exposure assessment of brominated flame retardants in household products from South China.

    Science.gov (United States)

    Chen, She-Jun; Ma, Yun-Juan; Wang, Jing; Tian, Mi; Luo, Xiao-Jun; Chen, Da; Mai, Bi-Xian

    2010-04-15

    Brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and decabromodiphenyl ethane (DBDPE) were examined in household products in the Pearl River Delta, South China, including electronic appliances, furniture and upholstery, car interiors, and raw materials for electronics. The concentrations of PBDEs derived from penta-BDE mixture were much lower (electronic products and their reuse might be also a potential important source of discontinued PBDEs to the environment. DBDPE was found in 20.0% of all the samples, ranging from 311 to 268,230 ng/g. PBDE congener profiles in both the household products and raw materials suggest that some less brominated BDEs in the environment may be derived from the decomposition of higher brominated PBDEs in PBDE-containing products in process of the manufacturing, use and/or recycling. Human exposure to PBDEs from household products via inhalation ranged from 175 to 612 pg/kg bw day, accounting for a small proportion of the total daily exposure via indoor inhalation. Despite the low deleterious risk associated with household products with regard to PBDEs, they are of special concern because of the relatively higher exposures observed for young children and further work is required. 2009 Elsevier B.V. All rights reserved.

  5. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  6. A translatable predictor of human radiation exposure.

    Science.gov (United States)

    Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  7. A translatable predictor of human radiation exposure.

    Directory of Open Access Journals (Sweden)

    Joseph Lucas

    Full Text Available Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB and humans treated with total body irradiation (TBI. Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  8. Exposure assessment of mobile phone base station radiation in an outdoor environment using sequential surrogate modeling.

    Science.gov (United States)

    Aerts, Sam; Deschrijver, Dirk; Joseph, Wout; Verloock, Leen; Goeminne, Francis; Martens, Luc; Dhaene, Tom

    2013-05-01

    Human exposure to background radiofrequency electromagnetic fields (RF-EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF-EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km(2) for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling. Copyright © 2013 Wiley Periodicals, Inc.

  9. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  10. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants

    DEFF Research Database (Denmark)

    Möller, Lennart; Schuetzle, Dennis; Autrup, Herman

    1994-01-01

    of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification......This paper presents key conclusions and future research needs from a Workshop on the Risk Assessment of Urban Air, Emissions, Exposure, Risk Identification, and Quantification, which was held in Stockholm during June 1992 by 41 participants from 13 countries. Research is recommended in the areas...... techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out...

  11. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    OpenAIRE

    Zhao Dong; Michael S. Bank; John D. Spengler

    2015-01-01

    Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure...

  12. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures

    International Nuclear Information System (INIS)

    Bhattacharyya, Maryka H.

    2009-01-01

    Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure, within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.

  13. Probabilistic risk assessment of exposure to leucomalachite green residues from fish products.

    Science.gov (United States)

    Chu, Yung-Lin; Chimeddulam, Dalaijamts; Sheen, Lee-Yan; Wu, Kuen-Yuh

    2013-12-01

    To assess the potential risk of human exposure to carcinogenic leucomalachite green (LMG) due to fish consumption, the probabilistic risk assessment was conducted for adolescent, adult and senior adult consumers in Taiwan. The residues of LMG with the mean concentration of 13.378±20.56 μg kg(-1) (BFDA, 2009) in fish was converted into dose, considering fish intake reported for three consumer groups by NAHSIT (1993-1996) and body weight of an average individual of the group. The lifetime average and high 95th percentile dietary intakes of LMG from fish consumption for Taiwanese consumers were estimated at up to 0.0135 and 0.0451 μg kg-bw(-1) day(-1), respectively. Human equivalent dose (HED) of 2.875 mg kg-bw(-1) day(-1) obtained from a lower-bound benchmark dose (BMDL10) in mice by interspecies extrapolation was linearly extrapolated to oral cancer slope factor (CSF) of 0.035 (mgkg-bw(-1)day(-1))(-1) for humans. Although, the assumptions and methods are different, the results of lifetime cancer risk varying from 3×10(-7) to 1.6×10(-6) were comparable to those of margin of exposures (MOEs) varying from 410,000 to 4,800,000. In conclusions, Taiwanese fish consumers with the 95th percentile LADD of LMG have greater risk of liver cancer and need to an action of risk management in Taiwan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    Science.gov (United States)

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment.

    Science.gov (United States)

    Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H

    2017-07-01

    For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.

  16. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Pouech, Charlène; Kiss, Agneta; Lafay, Florent; Léonard, Didier; Wiest, Laure; Cren-Olivé, Cécile; Vulliet, Emmanuelle

    2015-12-04

    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Advanced REACH tool: A Bayesian model for occupational exposure assessment

    NARCIS (Netherlands)

    McNally, K.; Warren, N.; Fransman, W.; Entink, R.K.; Schinkel, J.; Van Tongeren, M.; Cherrie, J.W.; Kromhout, H.; Schneider, T.; Tielemans, E.

    2014-01-01

    This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational setting; the methodology underpins a freely available web-based application for exposure assessment, the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate

  18. Exposure assessment strategies for non-routine work operations (NORWO)

    International Nuclear Information System (INIS)

    Lew, V.; Cohen, J.; Chiusano, S.; McGann, C.; McLouth, L.

    1993-09-01

    The DOE Office of Health and Office of Safety and Health Oversight are collaborating to address special problems related to assessment of worker exposures associated with nonroutine work operations (NORWO), such as hazardous waste operations. Both off ices have formed a single working group of industrial hygiene specialists from the DOE, fts contractors, and other interested organizations which held its first meeting July 1993. The DOE Canter of Excellence for Exposure Assessment, maintained at Lawrence Livermore National Laboratory, is assisting in developing reasonable policies and guidance on exposure assessment strategies for NORWO. The DOE EA Center will research this subject to assist the DOE in formulating guidance documents for conduct of EA for NORWO that are consistent with the DOE draft EAS technical standard. This report presents an outline for a section on NORWO intended for inclusion in the DOE technical guidance documents for EAS and Hazardous Waste Operations Emergency Response (HAZWOPER) currently under development by the DOE Industrial Hygiene Division (EH-412), and EM-23. Also presented is a review of the July 21--23 meeting and a proposed workplan for developing NORWO exposure assessment procedures. Appendices include: (A) David Weitzman's memo on NORWO, (B) Draft annotated outline of the technical standard for the Assessment of Employee Exposure to Hazardous Chemical Agents, (C) ORC proposed EAS standard, (D) program for the October 31--November 3, 1993 ACGIH Conference on Occupational Exposure Databases, (E) agenda for the July 15, 1993 DOE meeting on NORWO, (F) viewgraphs used in formal presentations at this meeting, (G) Hanford Exposure Assessment Program Plan, and (H) a list of attendees and invitees to the July DOE -- NORWO meeting

  19. EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING

    Science.gov (United States)

    Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....

  20. Exposure monitoring and risk assessment of biphenyl in the workplace.

    Science.gov (United States)

    Kim, Hyeon-Yeong; Shin, Sae-Mi; Ham, Miran; Lim, Cheol-Hong; Byeon, Sang-Hoon

    2015-05-13

    This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable maximum exposure and were shown to be 0.03 and 0.12 mg/m³, respectively. In addition, the carcinogenic risk of biphenyl as determined by risk assessment was 0.14 × 10⁻⁴ (central tendency exposure) and 0.56 × 10⁻⁴ (reasonable maximum exposure), which is below the acceptable risk value of 1.0 × 10⁻⁴. Furthermore, the central tendency exposure and reasonable maximum exposure hazard quotients were 0.01 and 0.06 for oral toxicity, 0.05 and 0.23 for inhalation toxicity, and 0.08 and 0.39 for reproduction toxicity, respectively, which are all lower than the acceptable hazard quotient of 1.0. Therefore, exposure to biphenyl was found to be safe in current workplace environments. Because occupational exposure limits are based on socioeconomic assessment, they are generally higher than true values seen in toxicity experiments. Based on the results of exposure monitoring of biphenyl, the current occupational exposure limits in Korea could be reviewed.

  1. Exposure Monitoring and Risk Assessment of Biphenyl in the Workplace

    Directory of Open Access Journals (Sweden)

    Hyeon-Yeong Kim

    2015-05-01

    Full Text Available This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable maximum exposure and were shown to be 0.03 and 0.12 mg/m3, respectively. In addition, the carcinogenic risk of biphenyl as determined by risk assessment was 0.14 × 10−4 (central tendency exposure and 0.56 × 10−4 (reasonable maximum exposure, which is below the acceptable risk value of 1.0 × 10−4. Furthermore, the central tendency exposure and reasonable maximum exposure hazard quotients were 0.01 and 0.06 for oral toxicity, 0.05 and 0.23 for inhalation toxicity, and 0.08 and 0.39 for reproduction toxicity, respectively, which are all lower than the acceptable hazard quotient of 1.0. Therefore, exposure to biphenyl was found to be safe in current workplace environments. Because occupational exposure limits are based on socioeconomic assessment, they are generally higher than true values seen in toxicity experiments. Based on the results of exposure monitoring of biphenyl, the current occupational exposure limits in Korea could be reviewed.

  2. Exposure to Hedione Increases Reciprocity in Humans

    Directory of Open Access Journals (Sweden)

    Sebastian Berger

    2017-05-01

    Full Text Available Cooperation among unrelated humans is frequently regarded as a defining feature in the evolutionary success of our species. Whereas, much research has addressed the strategic and cognitive mechanisms that underlie cooperation, investigations into chemosensory processes have received very limited research attention. To bridge that gap, we build on recent research that has identified the chemically synthesized odorant Hedione (HED as a ligand for the putative human pheromone receptor (VN1R1 expressed in the olfactory mucosa, and hypothesize that exposure to HED may increase reciprocity. Applying behavioral economics paradigms, the present research shows that exposure to the ligand causes differentiated behavioral effects in reciprocal punishments (Study 1 as well as rewards (Study 2, two types of behaviors that are frequently regarded as essential for the development and maintenance of cooperation.

  3. Exposure to Hedione Increases Reciprocity in Humans

    Science.gov (United States)

    Berger, Sebastian; Hatt, Hanns; Ockenfels, Axel

    2017-01-01

    Cooperation among unrelated humans is frequently regarded as a defining feature in the evolutionary success of our species. Whereas, much research has addressed the strategic and cognitive mechanisms that underlie cooperation, investigations into chemosensory processes have received very limited research attention. To bridge that gap, we build on recent research that has identified the chemically synthesized odorant Hedione (HED) as a ligand for the putative human pheromone receptor (VN1R1) expressed in the olfactory mucosa, and hypothesize that exposure to HED may increase reciprocity. Applying behavioral economics paradigms, the present research shows that exposure to the ligand causes differentiated behavioral effects in reciprocal punishments (Study 1) as well as rewards (Study 2), two types of behaviors that are frequently regarded as essential for the development and maintenance of cooperation. PMID:28512400

  4. Final report to Halifax Harbour Cleanup Inc. on human health risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This assessment evaluates the potential of the proposed Halifax Harbor primary sewage treatment plant to meet the objective of the protection and improvement of human health. The assessment was made of a plant which would include an outfall within the inner harbor and a series of outlets designed to handle high flow conditions due to storm events. The assessment focuses on the potential human health effects of microbiological pathogenic organisms, chemical elements, and chemical compounds for three principal uses of the harbor: recreational use in which people have direct contact with the water; consumption of shellfish; and consumption of lobster. The assessment includes hazard characterization, exposure assessment, dose-response assessment, risk characterization, a discussion of the assumptions used and their implications, and a prediction of the sewage treatment facility performance.

  5. Evaluation of biomonitoring data from the CDC National Exposure Report in a risk assessment context: perspectives across chemicals.

    Science.gov (United States)

    Aylward, Lesa L; Kirman, Christopher R; Schoeny, Rita; Portier, Christopher J; Hays, Sean M

    2013-03-01

    Biomonitoring data reported in the National Report on Human Exposure to Environmental Chemicals [NER; Centers for Disease Control and Prevention (2012)] provide information on the presence and concentrations of > 400 chemicals in human blood and urine. Biomonitoring Equivalents (BEs) and other risk assessment-based values now allow interpretation of these biomonitoring data in a public health risk context. We compared the measured biomarker concentrations in the NER with BEs and similar risk assessment values to provide an across-chemical risk assessment perspective on the measured levels for approximately 130 analytes in the NER. We identified available risk assessment-based biomarker screening values, including BEs and Human Biomonitoring-I (HBM-I) values from the German Human Biomonitoring Commission. Geometric mean and 95th percentile population biomarker concentrations from the NER were compared to the available screening values to generate chemical-specific hazard quotients (HQs) or cancer risk estimates. Most analytes in the NER show HQ values of chemicals, benzene, xylene, several metals, di-2(ethylhexyl)phthalate, and some legacy organochlorine pesticides) approach or exceed HQ values of 1 or cancer risks of > 1 × 10-4 at the geometric mean or 95th percentile, suggesting exposure levels may exceed published human health benchmarks. This analysis provides for the first time a means for examining population biomonitoring data for multiple environmental chemicals in the context of the risk assessments for those chemicals. The results of these comparisons can be used to focus more detailed chemical-specific examination of the data and inform priorities for chemical risk management and research.

  6. A 21st century roadmap for human health risk assessment.

    Science.gov (United States)

    Pastoor, Timothy P; Bachman, Ammie N; Bell, David R; Cohen, Samuel M; Dellarco, Michael; Dewhurst, Ian C; Doe, John E; Doerrer, Nancy G; Embry, Michelle R; Hines, Ronald N; Moretto, Angelo; Phillips, Richard D; Rowlands, J Craig; Tanir, Jennifer Y; Wolf, Douglas C; Boobis, Alan R

    2014-08-01

    The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources.

  7. Assessing human health risks from pesticide use in conventional and innovative cropping systems with the BROWSE model.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Kennedy, Marc C; Barriuso, Enrique; Alletto, Lionel; Justes, Eric; Munier-Jolain, Nicolas; Mamy, Laure

    2017-08-01

    Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency

  8. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    Science.gov (United States)

    Straub, Jürg Oliver

    2013-01-01

    An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured environmental concentrations (MECs) from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs) were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC) and risk graphs, there is no significant risk to surface waters. PMID:27029296

  9. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    Directory of Open Access Journals (Sweden)

    Jürg Oliver Straub

    2013-03-01

    Full Text Available An environmental risk assessment (ERA for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP, comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs are compared with measured environmental concentrations (MECs from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC and risk graphs, there is no significant risk to surface waters.

  10. A changing climate: impacts on human exposures to O3 using ...

    Science.gov (United States)

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur

  11. DREAM: a method for semi-quantitative dermal exposure assessment

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Brouwer, D.H.; Kromhout, H.; Hemmen, J.J. van

    2003-01-01

    This paper describes a new method (DREAM) for structured, semi-quantitative dermal exposure assessment for chemical or biological agents that can be used in occupational hygiene or epidemiology. It is anticipated that DREAM could serve as an initial assessment of dermal exposure, amongst others,

  12. Exposure assessment of tetrafluoroethylene and ammonium perfluorooctanoate 1951-2002.

    Science.gov (United States)

    Sleeuwenhoek, Anne; Cherrie, John W

    2012-03-01

    To develop a method to reconstruct exposure to tetrafluoroethylene (TFE) and ammonium perfluorooctanoate (APFO) in plants producing polytetrafluoroethylene (PTFE) in the absence of suitable objective measurements. These data were used to inform an epidemiological study being carried out to investigate possible risks in workers employed in the manufacture of PTFE and to study trends in exposure over time. For each plant, detailed descriptions of all occupational titles, including tasks and changes over time, were obtained during semi-structured interviews with key plant personnel. A semi-quantitative assessment method was used to assess inhalation exposure to TFE and inhalation plus dermal exposure to APFO. Temporal trends in exposure to TFE and APFO were investigated. In each plant the highest exposures for both TFE and APFO occurred in the polymerisation area. Due to the introduction of control measures, increasing process automation and other improvements, exposures generally decreased over time. In the polymerisation area, the annual decline in exposure to TFE varied by plant from 3.8 to 5.7% and for APFO from 2.2 to 5.5%. A simple method for assessing exposure was developed which used detailed process information and job descriptions to estimate average annual TFE and APFO exposure on an arbitrary semi-quantitative scale. These semi-quantitative estimates are sufficient to identify relative differences in exposure for the epidemiological study and should good data become available, they could be used to provide quantitative estimates for all plants across the whole period of operation. This journal is © The Royal Society of Chemistry 2012

  13. Human exposure to soil contaminants in subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Ellen Stephanie Reyes

    2015-05-01

    Full Text Available Background: Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective: Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design: A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT, other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods: Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling from 3 plots (A, B, and C in Fort Albany (on the mainland, subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results: The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusions: Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  14. CAirTOX, An inter-media transfer model for assessing indirect exposures to hazardous air contaminants

    International Nuclear Information System (INIS)

    McKone, T.E.

    1994-01-01

    Risk assessment is a quantitative evaluation of information on potential health hazards of environmental contaminants and the extent of human exposure to these contaminants. As applied to toxic chemical emissions to air, risk assessment involves four interrelated steps. These are (1) determination of source concentrations or emission characteristics, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization. These steps can be carried out with assistance from analytical models in order to estimate the potential risk associated with existing and future releases. CAirTOX has been developed as a spreadsheet model to assist in making these types of calculations. CAirTOX follows an approach that has been incorporated into the CalTOX model, which was developed for the California Department of Toxic Substances Control, With CAirTOX, we can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The capacity to explicitly address uncertainty has been incorporated into the model in two ways. First, the spreadsheet form of the model makes it compatible with Monte-Carlo add-on programs that are available for uncertainty analysis. Second, all model inputs are specified in terms of an arithmetic mean and coefficient of variation so that uncertainty analyses can be carried out

  15. Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization

    NARCIS (Netherlands)

    Voet, van der H.; Slob, W.

    2007-01-01

    A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a

  16. Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs.

    Science.gov (United States)

    Villanueva, Cristina M; Kogevinas, Manolis; Cordier, Sylvaine; Templeton, Michael R; Vermeulen, Roel; Nuckols, John R; Nieuwenhuijsen, Mark J; Levallois, Patrick

    2014-03-01

    Safe drinking water is essential for well-being. Although microbiological contamination remains the largest cause of water-related morbidity and mortality globally, chemicals in water supplies may also cause disease, and evidence of the human health consequences is limited or lacking for many of them. We aimed to summarize the state of knowledge, identify gaps in understanding, and provide recommendations for epidemiological research relating to chemicals occurring in drinking water. Assessing exposure and the health consequences of chemicals in drinking water is challenging. Exposures are typically at low concentrations, measurements in water are frequently insufficient, chemicals are present in mixtures, exposure periods are usually long, multiple exposure routes may be involved, and valid biomarkers reflecting the relevant exposure period are scarce. In addition, the magnitude of the relative risks tends to be small. Research should include well-designed epidemiological studies covering regions with contrasting contaminant levels and sufficient sample size; comprehensive evaluation of contaminant occurrence in combination with bioassays integrating the effect of complex mixtures; sufficient numbers of measurements in water to evaluate geographical and temporal variability; detailed information on personal habits resulting in exposure (e.g., ingestion, showering, swimming, diet); collection of biological samples to measure relevant biomarkers; and advanced statistical models to estimate exposure and relative risks, considering methods to address measurement error. Last, the incorporation of molecular markers of early biological effects and genetic susceptibility is essential to understand the mechanisms of action. There is a particular knowledge gap and need to evaluate human exposure and the risks of a wide range of emerging contaminants. Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P. 2014. Assessing

  17. Hazard assessment of metals in invasive fish species of the Yamuna River, India in relation to bioaccumulation factor and exposure concentration for human health implications.

    Science.gov (United States)

    Singh, Atul K; Srivastava, Sharad C; Verma, Pankaj; Ansari, Abubakar; Verma, Ambrish

    2014-06-01

    Monitoring of heavy metals was conducted in the Yamuna River considering bioaccumulation factor, exposure concentration, and human health implications which showed contamination levels of copper (Cu), lead (Pb), nickel (Ni), and chromium (Cr) and their dispersion patterns along the river. Largest concentration of Pb in river water was 392 μg L(-1); Cu was 392 μg L(-1) at the extreme downstream, Allahabad and Ni was 146 μg L(-1) at midstream, Agra. Largest concentration of Cu was 617 μg kg(-1), Ni 1,621 μg kg(-1) at midstream while Pb was 1,214 μg kg(-1) at Allahabad in surface sediment. The bioconcentration of Cu, Pb, Ni, and Cr was observed where the largest accumulation of Pb was 2.29 μg kg(-1) in Oreochromis niloticus and 1.55 μg kg(-1) in Cyprinus carpio invaded at Allahabad while largest concentration of Ni was 174 μg kg(-1) in O. niloticus and 124 μg kg(-1) in C. carpio in the midstream of the river. The calculated values of hazard index (HI) for Pb was found more than one which indicated human health concern. Carcinogenic risk value for Ni was again high i.e., 17.02 × 10(-4) which was larger than all other metals studied. The results of this study indicated bioconcentration in fish due to their exposures to heavy metals from different routes which had human health risk implications. Thus, regular environmental monitoring of heavy metal contamination in fish is advocated for assessing food safety since health risk may be associated with the consumption of fish contaminated through exposure to a degraded environment.

  18. Human biomonitoring of phthalate exposure in Austrian children and adults and cumulative risk assessment.

    Science.gov (United States)

    Hartmann, Christina; Uhl, Maria; Weiss, Stefan; Koch, Holger M; Scharf, Sigrid; König, Jürgen

    2015-07-01

    Phthalates are a class of chemicals widely used as plasticisers in a multitude of common consumer products. Through contact with such products, people are regularly exposed to phthalates, which are suspected to contribute to adverse health effects, particularly in the reproductive system. In the present study, 14 urinary phthalate metabolites of 10 parent phthalates were analysed by HPLC-MS/MS among the Austrian population aged 6-15 and 18-81 years in order to assess phthalate exposure. In the total study population, ranges of urinary phthalate metabolite concentrations were n.d.-2,105 μg/l (median 25 μg/l) for monoethyl phthalate (MEP), n.d.-88 μg/l (10 μg/l) for mono-n-butyl phthalate (MnBP), n.d.-248 μg/l (28 μg/l) for mono-isobutyl phthalate (MiBP), n.d.-57 μg/l (1.8 μg/l) for mono-benzyl phthalate (MBzP), n.d.-20 μg/l (n.d.) for mono-(2-ethylhexyl) phthalate (MEHP), n.d.-80 μg/l (2.6 μg/l) for mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), n.d.-57 μg/l (1.9 μg/l) for mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), n.d.-219 μg/l (11 μg/l) for mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), n.d.-188 μg/l (1.6 μg/l) for 3-carboxy-mono-proply phthalate (3 cx-MPP), n.d.-5.5 μg/l (n.d.) for mono-cyclohexyl phthalate (MCHP), n.d.-4.5 μg/l (n.d.) for mono-n-pentyl phthalate (MnPeP), n.d.-3.4 μg/l (n.d.) for mono-n-octyl phthalate (MnOP), n.d.-13 μg/l (n.d.) for mono-isononyl phthalate (MiNP), and n.d.-1.1 μg/l (n.d.) for mono-isodecyl phthalate (MiDP). Generally, children exhibited higher levels of exposure to the majority of investigated phthalates, except to MEP, which was found in higher concentrations in adults and senior citizens at a maximum concentration of 2,105 μg/l. Individual daily intakes were estimated based on urinary creatinine and urinary volume excretion and were then compared to acceptable exposure levels, leading to the identification of exceedances of mainly the Tolerable Daily Intakes (TDI), especially among

  19. Overall human mortality and morbidity due to exposure to air pollution.

    Science.gov (United States)

    Samek, Lucyna

    2016-01-01

    Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  20. Overall human mortality and morbidity due to exposure to air pollution

    Directory of Open Access Journals (Sweden)

    Lucyna Samek

    2016-06-01

    Full Text Available Objectives: Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10 and diameter ≤ 2.5 mm (PM2.5 as well as nitrogen dioxide (NO2 have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005–2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ software was successfully applied. Material and Methods: The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS in Kraków, was used in this study. Results: Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. Conclusions: The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems.

  1. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    Science.gov (United States)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  2. Cea-Expo: A facility exposure matrix to assess passed exposure to chemical carcinogens and radionuclides of nuclear workers

    International Nuclear Information System (INIS)

    Telle-Lamberton, M.; Bouville, P.; Bergot, D.; Gagneau, M.; Marot, S.; Telle-Lamberton, M.; Giraud, J.M.; Gelas, J.M.

    2005-01-01

    A 'Facility-Exposure Matrix' (FEM) is proposed to assess exposure to chemical carcinogens and radionuclides in a cohort of nuclear workers. Exposures are to be attributed in the following way: a worker reports to an administrative unit and/or is monitored for exposure to ionising radiation in a specific workplace. These units are connected with a list of facilities for which exposure is assessed through a group of experts. The entire process of the FEM applied in one of the nuclear centres included in the study shows that the FEM is feasible: exposure durations as well as groups of correlated exposures are presented but have to be considered as possible rather than positive exposures. Considering the number of facilities to assess (330), ways to simplify the method are proposed: (i) the list of exposures will be restricted to 18 chemical products retained from an extensive bibliography study; (ii) for each of the following classes of facilities: nuclear reactors, fuel fabrication, high-activity laboratories and radiation chemistry, accelerators and irradiators, waste treatment, biology, reprocessing, fusion, occupational exposure will be deduced from the information already gathered by the initial method. Besides taking into account confusion factors in the low doses epidemiological study of nuclear workers, the matrix should help in the assessment of internal contamination and chemical exposures in the nuclear industry. (author)

  3. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.

    Science.gov (United States)

    Warheit, David B; Donner, E Maria

    2015-11-01

    The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale

  4. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations.

    Science.gov (United States)

    Heringa, Minne B; Geraets, Liesbeth; van Eijkeren, Jan C H; Vandebriel, Rob J; de Jong, Wim H; Oomen, Agnes G

    2016-12-01

    Titanium dioxide white pigment consists of particles of various sizes, from which a fraction is in the nano range (food as additive E 171 as well as in other products, such as food supplements and toothpaste. Here, we assessed whether a human health risk can be expected from oral ingestion of these titanium dioxide nanoparticles (TiO 2 NPs), based on currently available information. Human health risks were assessed using two different approaches: Approach 1, based on intake, i.e. external doses, and Approach 2, based on internal organ concentrations using a kinetic model in order to account for accumulation over time (the preferred approach). Results showed that with Approach 1, a human health risk is not expected for effects in liver and spleen, but a human health risk cannot be excluded for effects on the ovaries. When based on organ concentrations by including the toxicokinetics of TiO 2 NPs (Approach 2), a potential risk for liver, ovaries and testes is found. This difference between the two approaches shows the importance of including toxicokinetic information. The currently estimated risk can be influenced by factors such as absorption, form of TiO 2 , particle fraction, particle size and physico-chemical properties in relation to toxicity, among others. Analysis of actual particle concentrations in human organs, as well as organ concentrations and effects in liver and the reproductive system after chronic exposure to well-characterized TiO 2 (NPs) in animals are recommended to refine this assessment.

  5. Post exposure prophylaxis against human immunodeficiency virus ...

    African Journals Online (AJOL)

    Objective: To determine the level of awareness, knowledge and practice of human immunodeficiency virus post exposure prophylaxis (HIV PEP) among paediatricians in Nigeria. Methodology: The study was a cross sectional questionnairebased survey conducted among paediatrcians that attended the Paediatric ...

  6. Assessment of complex microwaves occupational exposure in radar maintenance activity

    International Nuclear Information System (INIS)

    Danulescu, R.

    1996-01-01

    The modern of the society teas determined the increase of thousand times greater than the natural fond of the humankind exposure to a complex combination of electromagnetic man-made fields and radiations of extremely various strength and frequencies. A special contribution to this environmental change has had in the last decade the appearance and the explosive development of the microwaves generating appliances such as radars used in a great variety of military and civilian applications and which essentially contributes to the electromagnetic pollution. In the above mentioned content which firstly interests the occupational environment, it is necessary to improve the exposure limits, as well as, the emission standards, in order to better protect the human health and well-being. From this point of view, the estimation of the microwave occupational exposure risk constitutes, alongside the health status assessment, one of the priorities of the Occupational Health because the theoretical and practical problems related to the bioeffects of this kind of radiations are far to be clarified. Our study has been carried out in a factory where one performs research, production and especially maintenance of microwaves generating devices. (author)

  7. An improved procedure to accurately assess the variability of the exposure to electromagnetic radiation emitted by GSM base station antennas

    International Nuclear Information System (INIS)

    Bechet, Paul; Miclaus, Simona

    2013-01-01

    Long-term human exposure around Global System for Mobile Communications (GSM) base station antennas has not yet been precisely established; this is of interest from human health and epidemiological perspectives. Actual exposure is difficult to assess accurately, mainly because there is a lack of technical information directly from the GSM operators. The in situ measurement standards available at present provide only a worst-case prediction method; the present work goes beyond this and proposes a methodology that, without the need for data from operators, allows a reliable way to express real exposure with a greater accuracy than all other methods proposed to date. The method is based on dual measurements of the signal strengths in the frequency domain and the time domain and takes into consideration the instantaneous traffic in GSM channels. In addition, it allows a channel-individualized exposure assessement, by making possible the separate analysis of the electric field level in the two types of channel of the GSM standard—the traffic channels and the control channels. (paper)

  8. Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment.

    Science.gov (United States)

    Chaudhari, Umesh; Nemade, Harshal; Wagh, Vilas; Gaspar, John Antonydas; Ellis, James K; Srinivasan, Sureshkumar Perumal; Spitkovski, Dimitry; Nguemo, Filomain; Louisse, Jochem; Bremer, Susanne; Hescheler, Jürgen; Keun, Hector C; Hengstler, Jan G; Sachinidis, Agapios

    2016-11-01

    The currently available techniques for the safety evaluation of candidate drugs are usually cost-intensive and time-consuming and are often insufficient to predict human relevant cardiotoxicity. The purpose of this study was to develop an in vitro repeated exposure toxicity methodology allowing the identification of predictive genomics biomarkers of functional relevance for drug-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs were incubated with 156 nM doxorubicin, which is a well-characterized cardiotoxicant, for 2 or 6 days followed by washout of the test compound and further incubation in compound-free culture medium until day 14 after the onset of exposure. An xCELLigence Real-Time Cell Analyser was used to monitor doxorubicin-induced cytotoxicity while also monitoring functional alterations of cardiomyocytes by counting of the beating frequency of cardiomyocytes. Unlike single exposure, repeated doxorubicin exposure resulted in long-term arrhythmic beating in hiPSC-CMs accompanied by significant cytotoxicity. Global gene expression changes were studied using microarrays and bioinformatics tools. Analysis of the transcriptomic data revealed early expression signatures of genes involved in formation of sarcomeric structures, regulation of ion homeostasis and induction of apoptosis. Eighty-four significantly deregulated genes related to cardiac functions, stress and apoptosis were validated using real-time PCR. The expression of the 84 genes was further studied by real-time PCR in hiPSC-CMs incubated with daunorubicin and mitoxantrone, further anthracycline family members that are also known to induce cardiotoxicity. A panel of 35 genes was deregulated by all three anthracycline family members and can therefore be expected to predict the cardiotoxicity of compounds acting by similar mechanisms as doxorubicin, daunorubicin or mitoxantrone. The identified gene panel can be applied in the safety

  9. [Indoor dust as a pathway of human exposure to polybrominated diphenyl ethers (PBDEs)].

    Science.gov (United States)

    Góralczyk, Katarzyna; Struciński, Paweł; Hernik, Agnieszka; Czaja, Katarzyna; Korcz, Wojciech; Minorczyk, Maria; Ludwicki, Jan K

    2012-01-01

    The brominated diphenyl ethers (PBDEs) belong to a class of synthetic, additive brominated flame retardants (BFRs). PBDEs are used to reduce the flammability of commercial and household products such as textiles, various plastic polymers, furnishing foam, and electronic equipment. People spend a large percentage of their life-time indoors at home, in offices and cars, etc, providing many opportunities for lengthy exposure to PBDEs from residential settings and commercial products in an indoor environment. In recent time, the foodstuffs, mainly food of animal origin, have been indicated as the main pathway of human exposure to PBDEs. However, many studies have shown that the indoor environment, mainly indoor dust, can be also a significant source of exposure to PBDEs, especially for younger children (toddlers) because of their behavioral patterns, eg. putting fingers, toys, and other items in their mouth. Numerous studies show that the median intakes of PBDEs via dust for adult range from 1.41 to 277 ng x day(-1) is lower than that via food which range from 135 to 333 ng x day-', while the median intake of these compounds via indoor dust for children range from 101 to 404 ng x day(-1) is much higher than via food: 77-190 ng x day(-1). The congener pattern observed in the indoor dust is different to that found in food. The indoor dust is dominated by the congener BDE-209 vs. food where the most dominated congeners are BDE-47 and BDE-99. Human exposure to PBDEs and other brominated flame retardants (BFRs) is widely widespread throughout the world and it depends on a country range of usage, production and legislation concerning these chemicals as well as a citizen's behavior. Generally, human exposure has been found higher in North America than in Europe and Asia. Within European countries the significant highest concentrations in dust have been found in the United Kingdom. It should be noted that many uncertainty factors such as personal habits, dietary preferences

  10. Cumulative health risk assessment: integrated approaches for multiple contaminants, exposures, and effects

    International Nuclear Information System (INIS)

    Rice, Glenn; Teuschler, Linda; MacDonel, Margaret; Butler, Jim; Finster, Molly; Hertzberg, Rick; Harou, Lynne

    2007-01-01

    Available in abstract form only. Full text of publication follows: As information about environmental contamination has increased in recent years, so has public interest in the combined effects of multiple contaminants. This interest has been highlighted by recent tragedies such as the World Trade Center disaster and hurricane Katrina. In fact, assessing multiple contaminants, exposures, and effects has long been an issue for contaminated sites, including U.S. Department of Energy (DOE) legacy waste sites. Local citizens have explicitly asked the federal government to account for cumulative risks, with contaminants moving offsite via groundwater flow, surface runoff, and air dispersal being a common emphasis. Multiple exposures range from ingestion and inhalation to dermal absorption and external gamma irradiation. Three types of concerns can lead to cumulative assessments: (1) specific sources or releases - e.g., industrial facilities or accidental discharges; (2) contaminant levels - in environmental media or human tissues; and (3) elevated rates of disease - e.g., asthma or cancer. The specific initiator frames the assessment strategy, including a determination of appropriate models to be used. Approaches are being developed to better integrate a variety of data, extending from environmental to internal co-location of contaminants and combined effects, to support more practical assessments of cumulative health risks. (authors)

  11. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    Science.gov (United States)

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  12. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste

    International Nuclear Information System (INIS)

    Wilson, James C; Towler, George; Thorne, Michael C; Norris, Simon

    2011-01-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source–pathway–receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  13. Human Physiological Responses to Acute and Chronic Cold Exposure

    Science.gov (United States)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  14. Assessment of human exposure to fumonisin B1

    NARCIS (Netherlands)

    Nijs, M. de; Egmond, H.P. van; Nauta, M.; Rombouts, F.M.; Notermans, S.H.W.

    1998-01-01

    Fumonisin B1 is currently regarded as the most significant mycotoxin produced by Fusarium spp. It has carcinogenic properties and may play a role in the etiology of human esophageal cancer. The human population is exposed to fumonisin B1 primarily by intake of fumonisin B1-contaminated maize. Maize

  15. Human systemic exposure to [14C]-paraphenylenediamine-containing oxidative hair dyes: Absorption, kinetics, metabolism, excretion and safety assessment

    NARCIS (Netherlands)

    Nohynek, G.J.; Skare, J.A.; Meuling, W.J.A.; Wehmeyer, K.R.; Bie, A.T.H.J. de; Vaes, W.H.J.; Dufour, E.K.; Fautz, R.; Steiling, W.; Bramante, M.; Toutain, H.

    2015-01-01

    Systemic exposure was measured in humans after hair dyeing with oxidative hair dyes containing 2.0% (A) or 1.0% (B) [14C]-p-phenylenediamine (PPD). Hair was dyed, rinsed, dried, clipped and shaved; blood and urine samples were collected for 48 hours after application. [14C] was measured in all

  16. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment.

    Science.gov (United States)

    Liao, Chung-Min; Chio, Chia-Pin; Chen, Wei-Yu; Ju, Yun-Ru; Li, Wen-Hsuan; Cheng, Yi-Hsien; Liao, Vivian Hsiu-Chuan; Chen, Szu-Chieh; Ling, Min-Pei

    2011-06-15

    Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition fraction and internal organic-specific PAHs doses. A probabilistic risk assessment framework was developed to estimate potential lung cancer risk. We reanalyzed particle size distribution, total-PAHs, particle-bound benzo(a)pyrene (B[a]P) and PM concentrations. A dose-response profile describing the relationships between external B[a]P concentration and lung cancer risk response was constructed based on population attributable fraction (PAF). We found that 90% probability lung cancer risks ranged from 10(-5) to 10(-4) for traffic-related nano and ultrafine particle-bound PAHs, indicating a potential lung cancer risk. The particle size-specific PAF-based excess annual lung cancer incidence rate due to PAHs exposure was estimated to be less than 1 per 100,000 population, indicating a mild risk factor for lung cancer. We concluded that probabilistic risk assessment linked PAF for limiting cumulative PAHs emissions to reduce lung cancer risk plays a prominent role in future government risk assessment program. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Measurement and human exposure assessment of brominated flame retardants in household products from South China

    International Nuclear Information System (INIS)

    Chen Shejun; Ma Yunjuan; Wang Jing; Tian Mi; Luo Xiaojun; Chen Da; Mai Bixian

    2010-01-01

    Brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and decabromodiphenyl ethane (DBDPE) were examined in household products in the Pearl River Delta, South China, including electronic appliances, furniture and upholstery, car interiors, and raw materials for electronics. The concentrations of PBDEs derived from penta-BDE mixture were much lower (<111 ng/g) than those for octa- and deca-BDE commercially derived PBDEs, with maximum values of 15,107 and 1,603,343 ng/g, respectively, in all the household products. Our findings suggest the recycling of old electronic products and their reuse might be also a potential important source of discontinued PBDEs to the environment. DBDPE was found in 20.0% of all the samples, ranging from 311 to 268,230 ng/g. PBDE congener profiles in both the household products and raw materials suggest that some less brominated BDEs in the environment may be derived from the decomposition of higher brominated PBDEs in PBDE-containing products in process of the manufacturing, use and/or recycling. Human exposure to PBDEs from household products via inhalation ranged from 175 to 612 pg/kg bw day, accounting for a small proportion of the total daily exposure via indoor inhalation. Despite the low deleterious risk associated with household products with regard to PBDEs, they are of special concern because of the relatively higher exposures observed for young children and further work is required.

  18. Measurement and human exposure assessment of brominated flame retardants in household products from South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shejun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ma Yunjuan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhuhai Environmental Moniorting Center, Zhuhai 519000 (China); Wang Jing; Tian Mi [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Luo Xiaojun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Da [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Mai Bixian, E-mail: nancymai@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-04-15

    Brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and decabromodiphenyl ethane (DBDPE) were examined in household products in the Pearl River Delta, South China, including electronic appliances, furniture and upholstery, car interiors, and raw materials for electronics. The concentrations of PBDEs derived from penta-BDE mixture were much lower (<111 ng/g) than those for octa- and deca-BDE commercially derived PBDEs, with maximum values of 15,107 and 1,603,343 ng/g, respectively, in all the household products. Our findings suggest the recycling of old electronic products and their reuse might be also a potential important source of discontinued PBDEs to the environment. DBDPE was found in 20.0% of all the samples, ranging from 311 to 268,230 ng/g. PBDE congener profiles in both the household products and raw materials suggest that some less brominated BDEs in the environment may be derived from the decomposition of higher brominated PBDEs in PBDE-containing products in process of the manufacturing, use and/or recycling. Human exposure to PBDEs from household products via inhalation ranged from 175 to 612 pg/kg bw day, accounting for a small proportion of the total daily exposure via indoor inhalation. Despite the low deleterious risk associated with household products with regard to PBDEs, they are of special concern because of the relatively higher exposures observed for young children and further work is required.

  19. The assessment of the aircrew exposure

    International Nuclear Information System (INIS)

    Tommasino, L.

    2002-01-01

    In 1991 ICRP first included exposure of aircraft crew to cosmic radiation as occupational exposure. The European Dosimetry Group (EURADOS) established a working group in 1992 to address this issue. The report 'Exposure of Air Crew to Cosmic Radiation' was published in the European Commission's Radiation Protection series as report 85. The first section of the report assesses the existing data on radiation exposure, describes the radiation environment at civil aviation altitudes and summarizes the computational models that have been developed to describe the cosmic ray radiation field in the atmosphere. The second section describes the quantities used to assess the radiation doses. It is clear that conventional radiation protection dosimetry as applied on the ground is not quite applicable to the situation for air crews. A multinational European research project was launched to investigate the problem of cosmic rays and dosimetry at aviation altitudes. The major objective was to measure the flux and energy spectra of neutrons and charged particles over a wide energy interval at aviation altitudes and compare the results with those calculated with various computer codes. Within the project much progress was made in different areas, for instance the determination of the fundamental physical characteristics of the cosmic radiation field at aircraft altitudes, development of instrumentation, measurements of dose rates and route doses and application of routine radiation protection. Surveys of air crew exposure have been carried out with different advanced dosimetric systems and comparisons were made between passive and real-time detector systems

  20. Mercury risk assessment combining internal and external exposure methods for a population living near a municipal solid waste incinerator.

    Science.gov (United States)

    Deng, Chunyan; Xie, Han; Ye, Xuejie; Zhang, Haoran; Liu, Maodian; Tong, Yindong; Ou, Langbo; Yuan, Wen; Zhang, Wei; Wang, Xuejun

    2016-12-01

    Risk assessments for human health have been conducted for municipal solid waste incinerators (MSWIs) in many western countries, whereas only a few risk assessments have been performed for MSWIs in developing countries such as China where the use of waste incineration is increasing rapidly. To assess the mercury exposure risks of a population living near the largest MSWI in South China, we combined internal exposure and external exposure assessment with an individual-specific questionnaire. The mercury concentrations in air, soil, and locally collected food around the MSWI were assessed. The total mercury (T-Hg) and methylmercury (MeHg) of 447 blood samples from a control group, residential exposure group, and MSWI workers were measured. The internal and external exposures of the subject population were analyzed. Significant difference in MeHg concentrations was observed between the control group and the exposed group, between the control group and the MSWI workers, and between the exposed group and the MSWI workers (median levels: 0.70 μg/L, 0.81 μg/L, and 1.02 μg/L for the control group, exposed group, and MSWI workers, respectively). The MeHg/T-Hg ratio was 0.51 ± 0.19, 0.59 ± 0.17 and 0.58 ± 0.25, respectively. Multiple linear regression analysis indicated that MeHg concentrations were positively correlated with the gaseous mercury in the air. Combining internal and external exposure assessment showed that the direct contribution of MSWI emissions was minor compared with the dietary contribution. The external and internal exposures were well matched with each other. This study also suggested that an integrated method combining internal and external exposure assessment with an individual-specific questionnaire is feasible to assess the risks for a population living near a MSWI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Assessment of gold exposure and contamination in galvanizing workplace by neutron activation analysis

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Amaral, A.M.; Maia, E.C.P.; Albinati, C.C.B.

    2007-01-01

    Gold is not included in the current list of elements considered essential to humans and there are many controversies related to its toxicity. According to the chemical characteristics of the element, Au 1+ is favored for binding at sites with S donor, such as sulfhydryl group (-SH) in proteins in biological systems. This tendency raises the possibility of health-related risk, mainly linked to a long-term exposure to high and low levels of gold. This paper highlights the determination of gold by instrumental neutron activation analysis (INAA) during the assessment of exposure levels to metals and possible workers' contamination in three galvanizing factories applying the same processes. This assessment is aimed at giving support to Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, Minas Gerais, Brazil. INAA, mix of k 0 and monostandard methods was applied to air filter, hair and toenail samples, and to urine samples. Solvent extraction of gold was carried out followed by comparative INAA. The results revealed that gold was present in all matrixes, indicating the exposure in the workplace and suggesting endogenous contamination. Is gold playing a role as a toxic element? (author)

  2. Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils

    Science.gov (United States)

    Wei, Yanyan; Zheng, Xiaoman; Shohag, Md. Jahidul Islam; Gu, Minghua

    2017-01-01

    In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities. PMID:28850097

  3. Case definitions for human poisonings postulated to palytoxins exposure.

    Science.gov (United States)

    Tubaro, A; Durando, P; Del Favero, G; Ansaldi, F; Icardi, G; Deeds, J R; Sosa, S

    2011-03-01

    A series of case reports and anecdotal references describe the adverse effects on human health ascribed to the marine toxin palytoxin (PLTX) after different exposure routes. They include poisonings after oral intake of contaminated seafood, but also inhalation and cutaneous/systemic exposures after direct contact with aerosolized seawater during Ostreopsis blooms and/or through maintaining aquaria containing cnidarian zoanthids. The symptoms commonly recorded during PLTX intoxication are general malaise and weakness, associated with myalgia, respiratory effects, impairment of the neuromuscular apparatus and abnormalities in cardiac function. Systemic symptoms are often recorded together with local damages whose intensity varies according to the route and length of exposure. Gastrointestinal malaise or respiratory distress is common for oral and inhalational exposure, respectively. In addition, irritant properties of PLTX probably account for the inflammatory reactions typical of cutaneous and inhalational contact. Unfortunately, the toxin identification and/or quantification are often incomplete or missing and cases of poisoning are indirectly ascribed to PLTXs, according only to symptoms, anamnesis and environmental/epidemiological investigations (i.e. zoanthid handling or ingestion of particular seafood). Based on the available literature, we suggest a "case definition of PLTX poisonings" according to the main exposure routes, and, we propose the main symptoms to be checked, as well as, hemato-clinical analysis to be carried out. We also suggest the performance of specific analyses both on biological specimens of patients, as well as, on the contaminated materials responsible for the poisoning. A standardized protocol for data collection could provide a more rapid and reliable diagnosis of palytoxin-poisoning, but also the collection of necessary data for the risk assessment for this family of toxins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jie Ji

    Full Text Available Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents.In this study, we successfully established a combination of an exposure system (XposeALI with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC and fibroblast at air-liquid interface (ALI. Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd nanoparticles which sized 6-10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system.Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM and apical lavage medium (AM were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM.This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.

  5. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles.

    Science.gov (United States)

    Ji, Jie; Hedelin, Anna; Malmlöf, Maria; Kessler, Vadim; Seisenbaeva, Gulaim; Gerde, Per; Palmberg, Lena

    2017-01-01

    Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents. In this study, we successfully established a combination of an exposure system (XposeALI) with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC) and fibroblast at air-liquid interface (ALI). Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER) measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd) nanoparticles which sized 6-10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system. Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM) and apical lavage medium (AM) were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM. This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.

  6. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  7. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm

    International Nuclear Information System (INIS)

    Munoz, Ivan; Martinez Bueno, Maria J.; Agueera, Ana; Fernandez-Alba, Amadeo R.

    2010-01-01

    In this work the risk posed to seawater organisms, predators and humans is assessed, as a consequence of exposure to 12 organic micro-pollutants, namely metronidazole, trimethoprim, erythromycin, simazine, flumequine, carbaryl, atrazine, diuron, terbutryn, irgarol, diphenyl sulphone (DPS) and 2-thiocyanomethylthiobenzothiazole (TCMTB). The risk assessment study is based on a 1-year monitoring study at a Spanish marine fish farm, involving passive sampling techniques. The results showed that the risk threshold for irgarol concerning seawater organisms is exceeded. On the other hand, the risk to predators and especially humans through consumption of fish is very low, due to the low bioconcentration potential of the substances assessed. - Exposure and effects of twelve organic micro-pollutants are evaluated at a Spanish fish farm.

  8. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Ivan, E-mail: ivanmuno@ual.e [Departamento de Hidrogeologia y Quimica Analitica, Universidad de Almeria, 04120 Almeria (Spain); Martinez Bueno, Maria J., E-mail: mjbueno@ual.e [Departamento de Hidrogeologia y Quimica Analitica, Universidad de Almeria, 04120 Almeria (Spain); Agueera, Ana, E-mail: aaguera@ual.e [Departamento de Hidrogeologia y Quimica Analitica, Universidad de Almeria, 04120 Almeria (Spain); Fernandez-Alba, Amadeo R., E-mail: amadeo@ual.e [Departamento de Hidrogeologia y Quimica Analitica, Universidad de Almeria, 04120 Almeria (Spain)

    2010-05-15

    In this work the risk posed to seawater organisms, predators and humans is assessed, as a consequence of exposure to 12 organic micro-pollutants, namely metronidazole, trimethoprim, erythromycin, simazine, flumequine, carbaryl, atrazine, diuron, terbutryn, irgarol, diphenyl sulphone (DPS) and 2-thiocyanomethylthiobenzothiazole (TCMTB). The risk assessment study is based on a 1-year monitoring study at a Spanish marine fish farm, involving passive sampling techniques. The results showed that the risk threshold for irgarol concerning seawater organisms is exceeded. On the other hand, the risk to predators and especially humans through consumption of fish is very low, due to the low bioconcentration potential of the substances assessed. - Exposure and effects of twelve organic micro-pollutants are evaluated at a Spanish fish farm.

  9. The Future of Exposure Assessment: Perspectives from the ...

    Science.gov (United States)

    The British Occupational Hygiene Society, in collaboration with the Institute of Occupational Medicine, the University of Manchester, the UK Health and Safety Executive, and the University of Aberdeen hosted the 7th International Conference on the Science of Exposure Assessment (X2012) on 2 July–5 July 2012 in Edinburgh, UK. The conference ended with a special session at which invited speakers from government, industry, independent research institutes, and academia were asked to reflect on the conference and discuss what may now constitute the important highlights or drivers of future exposure assessment research. This article summarizes these discussions with respect to current and future technical and methodological developments. For the exposure science community to continue to have an impact in protecting public health, additional efforts need to be made to improve partnerships and cross-disciplinary collaborations, although it is equally important to ensure that the traditional occupational exposure themes are still covered as these issues are becoming increasingly important in the developing world. To facilitate this the ‘X’ conferences should continue to retain a holistic approach to occupational and non-occupational exposures and should actively pursue collaborations with other disciplines and professional organizations to increase the presence of consumer and environmental exposure scientists. The National Exposure Research Laboratory′s (NERL′

  10. Assessment of cancer and noncancer health risks from exposure to PAHs in street dust in the Tamale Metropolis, Ghana.

    Science.gov (United States)

    Obiri, Samuel; Cobbina, Samuel J; Armah, Frederick A; Luginaah, Isaac

    2013-01-01

    This study is part of a broader initiative to characterize, quantify and assess the human health risk associated with exposure to polycyclic aromatic hydrocarbons (PAHs) in street dust along the Trans-ECOWAS highway in West Africa. In the first part, PAHs were characterized and quantified in low- and high-traffic zones. In this study, cancer and noncancer human health risks from exposure to (PAHs) in street dust in the Tamale metropolis, Ghana were assessed in accordance with the USEPA risk assessment guidelines. The results of the study as obtained from inhalation of benzo [a] anthracene (BaA), benzo [a] pyrene (BaP), benzo [k] fluoranthene (BkF) and chrysene via central tendency exposure parameters (CTE) by trespassers (street hawkers including children and adults) in street dust within low traffic zones in the Tamale metropolis are 1.6E-02, 4.7E-02, 1.8E-03, and 1.6E-04 respectively. For reasonable maximum exposure parameters (RME), risk values of 1.2E-01, 3.5E-01, 1.3E-02 and 1.2E-03 respectively were obtained for benzo [a] anthracene, benzo [a] pyrene, benzo [k] fluoranthene and chrysene. Hazard index for acenaphthene, anthracene, fluoranthene, fluorine, naphthalene and pyrene in the CTE and RME scenarios were 2.2, 3.E-01, 2.6, 2.6, 100, 38 and 12, 1.7,15, 14, 550, 210 respectively. Generally, the cancer health risk associated with inhalation of benzo [a] anthracene, benzo [a] pyrene, benzo [k] fluoranthene and chrysene revealed that resident adults and children in the Tamale metropolis are at risk from exposure to these chemicals. The results of this preliminary assessment that quantified PAH related health risks along this part of the Trans-ECOWAS highway revealed that, there is the need for regulatory agencies to put in comprehensive measures to mitigate the risks posed to these categories of human receptors.

  11. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants.

    Science.gov (United States)

    Bardet, Gaëlle; Achard, Sophie; Loret, Thomas; Desauziers, Valérie; Momas, Isabelle; Seta, Nathalie

    2014-08-17

    Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol. Copyright © 2014. Published by Elsevier Ireland Ltd.

  12. Assessment of human health hazard due to metal uptake via fish ...

    African Journals Online (AJOL)

    Assessment of human health hazard due to metal uptake via fish consumption from coastal area of Tanzania. ... The result shows that the concentration and THQ of As in all fish samples ranges from 1.173 – 2.325 which is > 1, hence signified that a daily exposure at this level are in risk of cancer during a person lifetime.

  13. Quantitative self-assessment of exposure to solvents among shoe repair men

    NARCIS (Netherlands)

    Hertsenberg, S.; Brouwer, D.; Lurvink, M.; Rubingh, C.; Rijnders, E.; Tielemans, E.

    2007-01-01

    Self-assessment of exposure (SAE) refers to any exposure assessment methodology wherein the worker takes an active role in establishing his or her exposure status. The objective of this study was to investigate the reliability and feasibility of SAE approaches among shoe repair workers collecting

  14. Technical Overview of Ecological Risk Assessment - Analysis Phase: Exposure Characterization

    Science.gov (United States)

    Exposure Characterization is the second major component of the analysis phase of a risk assessment. For a pesticide risk assessment, the exposure characterization describes the potential or actual contact of a pesticide with a plant, animal, or media.

  15. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  16. Human mercury exposure associated with small-scale gold mining in Burkina Faso.

    Science.gov (United States)

    Tomicic, Catherine; Vernez, David; Belem, Tounaba; Berode, Michèle

    2011-06-01

    In Burkina Faso, gold ore is one of the main sources of income for an important part of the active population. Artisan gold miners use mercury in the extraction, a toxic metal whose human health risks are well known. The aim of the present study was to assess mercury exposure as well as to understand the exposure determinants of gold miners in Burkinabe small-scale mines. The examined gold miners' population on the different selected gold mining sites was composed by persons who were directly and indirectly related to gold mining activities. But measurement of urinary mercury was performed on workers most susceptible to be exposed to mercury. Thus, occupational exposure to mercury was evaluated among ninety-three workers belonging to eight different gold mining sites spread in six regions of Burkina Faso. Among others, work-related exposure determinants were taken into account for each person during urine sampling as for example amalgamating or heating mercury. All participants were medically examined by a local medical team in order to identify possible symptoms related to the toxic effect of mercury. Mercury levels were high, showing that 69% of the measurements exceeded the ACGIH (American Conference of Industrial Hygienists) biological exposure indice (BEI) of 35 μg per g of creatinine (μg/g-Cr) (prior to shift) while 16% even exceeded 350 μg/g-Cr. Basically, unspecific but also specific symptoms related to mercury toxicity could be underlined among the persons who were directly related to gold mining activities. Only one-third among the studied subpopulation reported about less than three symptoms possibly associated to mercury exposure and nearly half of them suffered from at least five of these symptoms. Ore washers were more involved in the direct handling of mercury while gold dealers in the final gold recovery activities. These differences may explain the overexposure observed in gold dealers and indicate that the refining process is the major source

  17. Personal and ambient PM2.5 exposure assessment in the city of Agra

    Directory of Open Access Journals (Sweden)

    M. Habil

    2016-03-01

    Full Text Available Human exposure to fine particles can have significant harmful effects on the respiratory and cardiovascular system. To investigate daily exposure characteristics to PM2.5 with ambient concentrations in an urban environment, a personal exposure measurements were conducted for school children, office workers and at their residents, in the city of Taj ‘Agra’, India. In order to account for all the sources of particulate matter exposure, measurements on several different days during December 2013 to February 2014 were carried out. Personal environment monitors (PEM and APM 550 were used to measure PM2.5 concentration. The research findings provide insight into possible sources and their interaction with human activities in modifying the human exposure levels. Keywords: Personal exposure, PM2.5, Ambient concentration, Correlation analysis, Health effects

  18. Standardizing measurement, sampling and reporting for public exposure assessments

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R. [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Av. Salvador Allende s/No. CEP 22780-160 Rio de Janeiro, RJ (Brazil)], E-mail: elaine@ird.gov.br

    2008-11-15

    UNSCEAR assesses worldwide public exposure from natural and man-made sources of ionizing radiation based on information submitted to UNSCEAR by United Nations Member States and from peer reviewed scientific literature. These assessments are used as a basis for radiation protection programs of international and national regulatory and research organizations. Although UNSCEAR describes its assessment methodologies, the data are based on various monitoring approaches. In order to reduce uncertainties and improve confidence in public exposure assessments, it would be necessary to harmonize the methodologies used for sampling, measuring and reporting of environmental results.

  19. Assessment of soil lead exposure in children in Shenyang, China

    International Nuclear Information System (INIS)

    Ren, H.M.; Wang, J.D.; Zhang, X.L.

    2006-01-01

    Soil lead pollution is serious in Shenyang, China. The paper brings together the soil work, the bioaccessibility, and the blood lead data to assess the soil lead exposure in children in Shenyang, China. Approximately 15.25% of the samples were above China Environment Protection Agency guideline concentration for soil Pb to protect human from health risk (350 mg kg -1 ). Pb concentrations varied among use scenarios. The main lead contamination sources are industry emission and automobile exhaust. Bioaccessibility also varied among use scenarios. Children, who ingested soil from industrial area, public parks, kindergarten playground, and commercial area, are more susceptible to soil lead toxicity. The industrial area soil samples presented higher bioaccessibility compared to the other use scenario soil samples contaminated by automobile exhaust. The result also suggested a most significant linear relationship between the level of Pb contamination and the amount of Pb mobilized from soil into ingestion juice. Soil pH seemed to have insignificant influence on bioaccessibility in the present study. Bioaccessibility was mainly controlled by other factors that are not investigated in this study. A linear relationship between children blood lead and soil intestinal bioaccessibility was present in the study. Children who are 4-5 years old are more likely to demonstrate the significant relationship between soil lead bioaccessibility and blood lead as their behaviors place them at greatest risk of soil lead toxicity, and their blood lead levels are more likely to represent recent exposure. - Children were exposed to soil lead and the exposure was assessed by bioaccessibility using in vitro digestion model in a modified version

  20. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Hamed Rezaeejam

    2015-01-01

    Full Text Available Understanding of cellular responses to ionizing radiation (IR is essential for the development of predictive markers useful for assessing human exposure. Biological markers of exposure to IR in human populations are of great interest for assessing normal tissue injury in radiation oncology and for biodosimetry in nuclear incidents and accidental radiation exposures. Traditional radiation exposure biomarkers based on cytogenetic assays (biodosimetry, are time-consuming and do not provide results fast enough and requires highly trained personnel for scoring. Hence, the development of rapid biodosimetry methods is one of the highest priorities. Exposure of cells to IR activates multiple signal transduction pathways, which result in complex alterations in gene-expression. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in monitoring the specific genes with more accurately and sensitively. This review evaluates the RT-qPCR as a biodosimetry method and we investigated the papers from 2000 up to now, which identified the genes-expression related the DNA repair, cell cycle checkpoint, and apoptosis induced by ionization radiation in peripheral blood and determined as biodosimeters. In conclusion, it could be say that RT-qPCR technique for determining the specific genes as biodosimeters could be a fully quantitative reliable and sensitive method. Furthermore, the results of the current review will help the researchers to recognize the most expressed genes induced by ionization radiation.

  1. Using exposure bands for rapid decision making in the ...

    Science.gov (United States)

    The ILSI Health and Environmental Sciences Institute (HESI) Risk Assessment in the 21st Century (RISK21) project was initiated to address and catalyze improvements in human health risk assessment. RISK21 is a problem formulation-based conceptual roadmap and risk matrix visualization tool, facilitating transparent evaluation of both hazard and exposure components. The RISK21 roadmap is exposure-driven, i.e. exposure is used as the second step (after problem formulation) to define and focus the assessment. This paper describes the exposure tiers of the RISK21 matrix and the approaches to adapt readily available information to more quickly inform exposure at a screening level. In particular, exposure look-up tables were developed from available exposure tools (European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) Targeted Risk Assessment (TRA) for worker exposure, ECETOC TRA, European Solvents Industry Group (ESIG) Generic Exposure Scenario (GES) Risk and Exposure Tool (EGRET) for consumer exposure, and USEtox for indirect exposure to humans via the environment) were tested in a hypothetical mosquito bed netting case study. A detailed WHO risk assessment for a similar mosquito net use served as a benchmark for the performance of the RISK21 approach. The case study demonstrated that the screening methodologies provided suitable conservative exposure estimates for risk assessment. The results of this effort showed that the RISK21 approach is useful f

  2. A new perspective on human health risk assessment: Development of a time dependent methodology and the effect of varying exposure durations

    International Nuclear Information System (INIS)

    Siirila, Erica R.; Maxwell, Reed M.

    2012-01-01

    We present a new Time Dependent Risk Assessment (TDRA) that stochastically considers how joint uncertainty and inter-individual variability (JUV) associated with human health risk change as a function of time. In contrast to traditional, time independent assessments of risk, this new formulation relays information on when the risk occurs, how long the duration of risk is, and how risk changes with time. Because the true exposure duration (ED) is often uncertain in a risk assessment, we also investigate how varying the magnitude of fixed size durations (ranging between 5 and 70 years) of this parameter affects the distribution of risk in both the time independent and dependent methodologies. To illustrate this new formulation and to investigate these mechanisms for sensitivity, an example of arsenic contaminated groundwater is used in conjunction with two scenarios of different environmental concentration signals resulting from rate dependencies in geochemical reactions. Cancer risk is computed and compared using environmental concentration ensembles modeled with sorption as 1) a linear equilibrium assumption (LEA) and 2) first order kinetics (Kin). Results show that the information attained in the new time dependent methodology reveals how the uncertainty in other time-dependent processes in the risk assessment may influence the uncertainty in risk. We also show that individual susceptibility also affects how risk changes in time, information that would otherwise be lost in the traditional, time independent methodology. These results are especially pertinent for forecasting risk in time, and for risk managers who are assessing the uncertainty of risk. - Highlights: ► A human health, Time Dependent Risk Assessment (TDRA) methodology is presented. ► TDRA relays information on the magnitude, duration, and fluxes of risk in time. ► Kinetic and equilibrium concentration signals show sensitivity in TDRA results. ► In the TDRA results, individual susceptibility

  3. A new perspective on human health risk assessment: Development of a time dependent methodology and the effect of varying exposure durations

    Energy Technology Data Exchange (ETDEWEB)

    Siirila, Erica R., E-mail: esiirila@mymail.mines.edu [Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Maxwell, Reed M., E-mail: rmaxwell@mines.edu [Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Integrated Groundwater Modeling Center (IGWMC), Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2012-08-01

    We present a new Time Dependent Risk Assessment (TDRA) that stochastically considers how joint uncertainty and inter-individual variability (JUV) associated with human health risk change as a function of time. In contrast to traditional, time independent assessments of risk, this new formulation relays information on when the risk occurs, how long the duration of risk is, and how risk changes with time. Because the true exposure duration (ED) is often uncertain in a risk assessment, we also investigate how varying the magnitude of fixed size durations (ranging between 5 and 70 years) of this parameter affects the distribution of risk in both the time independent and dependent methodologies. To illustrate this new formulation and to investigate these mechanisms for sensitivity, an example of arsenic contaminated groundwater is used in conjunction with two scenarios of different environmental concentration signals resulting from rate dependencies in geochemical reactions. Cancer risk is computed and compared using environmental concentration ensembles modeled with sorption as 1) a linear equilibrium assumption (LEA) and 2) first order kinetics (Kin). Results show that the information attained in the new time dependent methodology reveals how the uncertainty in other time-dependent processes in the risk assessment may influence the uncertainty in risk. We also show that individual susceptibility also affects how risk changes in time, information that would otherwise be lost in the traditional, time independent methodology. These results are especially pertinent for forecasting risk in time, and for risk managers who are assessing the uncertainty of risk. - Highlights: Black-Right-Pointing-Pointer A human health, Time Dependent Risk Assessment (TDRA) methodology is presented. Black-Right-Pointing-Pointer TDRA relays information on the magnitude, duration, and fluxes of risk in time. Black-Right-Pointing-Pointer Kinetic and equilibrium concentration signals show

  4. Human Bisphenol A Exposure and the “Diabesity Phenotype”

    Science.gov (United States)

    Leone, Alessandro; Battezzati, Alberto

    2015-01-01

    Bisphenol A (BPA), a known endocrine disruptor, is a food contaminant suspected of being a contributing factor to the present-day increase in obesity, diabetes, and cardiovascular disease. This issue is of increasing interest in the field of diabetes research and has become a matter of concern for regulatory agencies and food industries. Recently, the number of studies involving BPA has increased exponentially, but there are still many gaps in the knowledge of the relationship between actual BPA exposure and cardiometabolic risk and of the modalities of food intake exposure, all of which prevents sound judgments concerning the risks to human health. This review focuses on the association between human exposure to BPA and obesity, thyroid function, diabetes, insulin resistance, metabolic syndrome, cardiovascular diseases, and BPA content in food. Many cross-sectional studies support, sometimes contradictorily, an adverse effect of BPA exposure on obesity, diabetes, and cardiovascular diseases. Few prospective studies support an adverse effect of BPA exposure on such pathologies. Moreover, no intervention studies have been conducted to evaluate the causality of such associations. This is mainly due to lack of an appropriate database of BPA content in foods, thus hindering any estimation of the usual dietary BPA intake. PMID:26858585

  5. Assessing the human health impacts of exposure to disinfection by-products--a critical review of concepts and methods.

    Science.gov (United States)

    Grellier, James; Rushton, Lesley; Briggs, David J; Nieuwenhuijsen, Mark J

    2015-05-01

    Understanding the public health implications of chemical contamination of drinking water is important for societies and their decision-makers. The possible population health impacts associated with exposure to disinfection by-products (DBPs) are of particular interest due to their potential carcinogenicity and their widespread occurrence as a result of treatments employed to control waterborne infectious disease. We searched the literature for studies that have attempted quantitatively to assess population health impacts and health risks associated with exposure to DBPs in drinking water. We summarised and evaluated these assessments in terms of their objectives, methods, treatment of uncertainties, and interpretation and communication of results. In total we identified 40 studies matching our search criteria. The vast majority of studies presented estimates of generic cancer and non-cancer risks based on toxicological data and methods that were designed with regulatory, health-protective purposes in mind, and therefore presented imprecise and biased estimates of health impacts. Many studies insufficiently addressed the numerous challenges to DBP risk assessment, failing to evaluate the evidence for a causal relationship, not appropriately addressing the complex nature of DBP occurrence as a mixture of chemicals, not adequately characterising exposure in space and time, not defining specific health outcomes, not accounting for characteristics of target populations, and not balancing potential risks of DBPs against the health benefits related with drinking water disinfection. Uncertainties were often poorly explained or insufficiently accounted for, and important limitations of data and methods frequently not discussed. Grave conceptual and methodological limitations in study design, as well as erroneous use of available dose-response data, seriously impede the extent to which many of these assessments contribute to understanding the public health implications of

  6. A structured observational method to assess dermal exposure to manufactured nanoparticles: DREAM as an initial assessment tool

    NARCIS (Netherlands)

    Duuren-Stuurman, B. van; Pelzer, J.; Moehlmann, C.; Berges, M.; Bard, D.; Wake, D.; Mark, D.; Jankowska, E.; Brouwer, D.

    2010-01-01

    Preliminary results of inventories of exposure scenarios for nanomaterials have indicated possible dermal exposure. Within the NANOSH project focused on occupational safety and health aspects of nanotechnology a shortened version of the observational DeRmal Exposure AssessMent (DREAM) method was

  7. Task-based exposure assessment of nanoparticles in the workplace

    International Nuclear Information System (INIS)

    Ham, Seunghon; Yoon, Chungsik; Lee, Euiseung; Lee, Kiyoung; Park, Donguk; Chung, Eunkyo; Kim, Pilje; Lee, Byoungcheun

    2012-01-01

    Although task-based sampling is, theoretically, a plausible approach to the assessment of nanoparticle exposure, few studies using this type of sampling have been published. This study characterized and compared task-based nanoparticle exposure profiles for engineered nanoparticle manufacturing workplaces (ENMW) and workplaces that generated welding fumes containing incidental nanoparticles. Two ENMW and two welding workplaces were selected for exposure assessments. Real-time devices were utilized to characterize the concentration profiles and size distributions of airborne nanoparticles. Filter-based sampling was performed to measure time-weighted average (TWA) concentrations, and off-line analysis was performed using an electron microscope. Workplace tasks were recorded by researchers to determine the concentration profiles associated with particular tasks/events. This study demonstrated that exposure profiles differ greatly in terms of concentrations and size distributions according to the task performed. The size distributions recorded during tasks were different from both those recorded during periods with no activity and from the background. The airborne concentration profiles of the nanoparticles varied according to not only the type of workplace but also the concentration metrics. The concentrations measured by surface area and the number concentrations measured by condensation particle counter, particulate matter 1.0, and TWA mass concentrations all showed a similar pattern, whereas the number concentrations measured by scanning mobility particle sizer indicated that the welding fume concentrations at one of the welding workplaces were unexpectedly higher than were those at workplaces that were engineering nanoparticles. This study suggests that a task-based exposure assessment can provide useful information regarding the exposure profiles of nanoparticles and can therefore be used as an exposure assessment tool.

  8. Using hair, nail and urine samples for human exposure assessment of legacy and emerging per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Wang, Yuan; Shi, Yali; Vestergren, Robin; Zhou, Zhen; Liang, Yong; Cai, Yaqi

    2018-09-15

    Non-invasive samples present ethical and practical benefits for investigating human exposure to hazardous contaminants, but analytical challenges and difficulties to interpret the results limit their application in biomonitoring. Here we investigated the potential for using hair, nail and urine samples as a measure of internal exposure to an array of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in two populations with different exposure conditions. Paired urine-serum measurements of PFASs from a group of highly exposed fishery employees displayed strong correlations for PFASs with three to eight perfluorinated carbons (ρ > 0.653; p < 0.01). Consistent statistical correlations and transfer ratios in nails and hair from both populations demonstrated that these non-invasive samples can be used as a measure of internal exposure to perfluorooctane sulfonic acid and C8 chlorinated polyfluoralkyl ether sulfonic acid (C8 Cl-PFESA). Contrastingly, the infrequent detections and/or lack of consistent transfer ratios for perfluorooctanoic acid, perfluorononanoic acid and short-chain PFASs in hair and nail samples indicate passive uptake from the external environment rather than uptake and internal distribution. Collectively, the study supports the use of urine samples as a valid measure of internal exposure for a range of short- and medium-chain PFASs, while the validity of nail and hair samples as a measure of internal exposure may vary for different PFASs and populations. The ubiquitous detection of C8 Cl-PFESA in all sample matrices from both populations indicates widespread exposure to this contaminant of emerging concern in China. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Bioaccessibility and human health risk assessment of lead in soil from Daye City

    Science.gov (United States)

    Li, Q.; Li, F.; Xiao, M. S.; Cai, Y.; Xiong, L.; Huang, J. B.; Fu, J. T.

    2018-01-01

    Lead (Pb) in soil from 4 sampling sites of Daye City was studied. Bioaccessibilities of Pb in soil were determined by the method of simplified bioaccessible extraction test (SBET). Since traditional health risk assessment was built on the basis of metal total content, the risk may be overestimated. Modified human health risk assessment model considering bioaccessibility was built in this study. Health risk of adults and children exposure to Pb based on total contents and bioaccessible contents were evaluated. The results showed that bioaccessible content of Pb in soil was much lower than its total content, and the average bioaccessible factor (BF) was only 25.37%. The hazard indexes (HIs) for adults and children calculated by two methods were all lower than 1. It indicated that there were no no-carcinogenic risks of Pb for human in Daye. By comparing with the results, the average bioaccessible HIs for adults and children were lower than the total one, which was due to the lower hazard quotient (HQ). Proportions of non-carcinogenic risk exposure to Pb via different pathways have also changed. Particularly, the most main risk exposure pathway for adults turned from the oral ingestion to the inhalation.

  10. Level changes and human dietary exposure assessment of halogenated flame retardant levels in free-range chicken eggs: A case study of a former e-waste recycling site, South China.

    Science.gov (United States)

    Huang, Chen-Chen; Zeng, Yan-Hong; Luo, Xiao-Jun; Tang, Bin; Liu, Yin-E; Ren, Zi-He; Mai, Bi-Xian

    2018-04-06

    To assess the impacts of e-waste regulations on environmental pollution, we built on a previous study from 2010 to investigate the levels and human dietary exposure of halogenated flame retardants (HFRs) in free-range chicken eggs from Baihe village in 2013 and 2016. The concentrations of PBDEs, PBBs, HBCDs, and DBDPE showed a significant decrease (pexposure estimates suggested high dietary intake of HFRs via home-produced eggs. As for PBDEs, considering the worst situation (highly polluted eggs were consumed), the margin of exposure (MOE) of BDE99 for both adults and children were 1.5 and 0.3 in 2013, and 1.1 and 0.2 in 2016, respectively, which were below 2.5. According to the CONTAM panel, an MOE larger than 2.5 indicates no health concern. Therefore, these MOE values represent a significant potential health concern due to the adverse impacts of PBDEs on human neurodevelopment and fertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  12. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment

    DEFF Research Database (Denmark)

    Ryberg, Morten Walbech; Rosenbaum, Ralph K.; Mosqueron, Luc

    2018-01-01

    Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders...... magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural...... to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation...

  13. An historical overview of the activities in the field of exposure and risk assessment of non-ionizing radiation in Bulgaria.

    Science.gov (United States)

    Israel, Michel

    2015-09-01

    The exposure and risk evaluation process in Bulgaria concerning non-ionizing radiation health and safety started in the early 1970s. Then, the first research laboratory "Electromagnetic fields in the working environment" was founded in the framework of the Centre of Hygiene, belonging to the Medical Academy, Sofia. The main activities were connected with developing legislation, new equipment for measurement of electromagnetic fields, new methods for measurement and exposure assessment, in vivo and human studies for developing methods, studying the effect of non-ionizing radiation on human body, developing exposure limits. Most of the occupations as metal industry, plastic welding, energetics, physiotherapy, broadcasting, telephone stations, computer industry, etc., have been covered by epidemiological investigations and risk evaluation. In 1986, the ANSI standard for safe use of lasers has been implemented as national legislation that gave the start for studies in the field of risk assessment concerning the use of lasers in industry and medicine. The environmental exposure studies started in 1991 following the very fast implementation of the telecommunication technologies. Now, funds for research are very insignificant, and studies in the field of risk assessment are very few. Nevertheless, Bulgaria has been an active member of the WHO International EMF Project, since 1997, and that gives good opportunity for collaboration with other Member states, and for implementation of new approach in the EMF policy for workers and people's protection against non-ionizing radiation exposure.

  14. Assessment of Industrial Exposure to Magnetic Fields (invited paper)

    International Nuclear Information System (INIS)

    Chadwick, P.

    1999-01-01

    Magnetic field strengths produced by industrial processes can be very large, but they often exhibit a marked spatial variation. Whilst there may be the potential for exposures of workers to be high, actual exposure will be determined to a great extent by working practices. Possible metrics for epidemiological studies might be based on the temporal variability of exposure as well as maximum operator exposure or time-weighted average exposure and, whilst it might be possible to estimate these quantities from spot magnetic field strength measurements and observed working practices, this might be very difficult to achieve in practice. An alternative would be the use of a logging dosemeter: this paper describes some of the results of exposure assessments carried out in industrial environments with a modified EMDEX II magnetic field dosemeter. Magnetic fields in industrial environments often have waveforms which are not purely sinusoidal. Distortion can be introduced by the magnetic saturation of transformer and motor cores, by rectification, by poor matching between oscillator circuits and loads and when thyristors are used to control power. The resulting repetitive but non-sinusoidal magnetic field waveforms can be recorded and analysed; the spectral data may be incorporated into possible exposure metrics. It is also important to ensure that measurement instrumentation is responding appropriately in a non-sinusoidal field and this can only be done if the spectral content of the field is characterised fully. Some non-sinusoidal magnetic field waveforms cannot be expressed as a harmonic series. Specialist instrumentation and techniques are needed to assess exposure to such fields. Examples of approaches to the assessment of exposure to repetitive and non-repetitive magnetic fields are also discussed. (author)

  15. Existing Default Values and Recommendations for Exposure Assessment - A Nordic Exposure Group Project 2011

    DEFF Research Database (Denmark)

    Höglund, Lena; Räisänen, Jouni; Hämäläinen, Anne-Maija

    range of more or less well-documented values originating from many different sources. The purpose of this report is to give an overview and to evaluate exposure factors that are currently used by the authorities and industry in the exposure assessments for both adults (occupational and consumer exposure......) and children in relation to REACH. Another important purpose of the report is to contribute towards a further harmonisation of exposure factors by giving recommendations of most valid and representative defaults. These recommendations can be used besides REACH also in biocide's and plant protection product...

  16. Spatio-temporal earthquake risk assessment for the Lisbon Metropolitan Area - A contribution to improving standard methods of population exposure and vulnerability analysis

    Science.gov (United States)

    Freire, Sérgio; Aubrecht, Christoph

    2010-05-01

    The recent 7.0 M earthquake that caused severe damage and destruction in parts of Haiti struck close to 5 PM (local time), at a moment when many people were not in their residences, instead being in their workplaces, schools, or churches. Community vulnerability assessment to seismic hazard relying solely on the location and density of resident-based census population, as is commonly the case, would grossly misrepresent the real situation. In particular in the context of global (climate) change, risk analysis is a research field increasingly gaining in importance whereas risk is usually defined as a function of hazard probability and vulnerability. Assessment and mapping of human vulnerability has however generally been lagging behind hazard analysis efforts. Central to the concept of vulnerability is the issue of human exposure. Analysis of exposure is often spatially tied to administrative units or reference objects such as buildings, spanning scales from the regional level to local studies for small areas. Due to human activities and mobility, the spatial distribution of population is time-dependent, especially in metropolitan areas. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective risk analysis and emergency management. Therefore, accounting for the spatio-temporal dynamics of human vulnerability correlates with recent recommendations to improve vulnerability analyses. Earthquakes are the prototype for a major disaster, being low-probability, rapid-onset, high-consequence events. Lisbon, Portugal, is subject to a high risk of earthquake, which can strike at any day and time, as confirmed by modern history (e.g. December 2009). The recently-approved Special Emergency and Civil Protection Plan (PEERS) is based on a Seismic Intensity map, and only contemplates resident population from the census as proxy for human exposure. In the present work we map and analyze the spatio-temporal distribution of

  17. Retrospective internal radiation exposure assessment in occupational epidemiology

    International Nuclear Information System (INIS)

    Neton, J.W.; Flora, J.T.; Spitz, H.B.; Taulbee, T.D.

    2000-01-01

    Epidemiologic studies of workers at U.S. Department of Energy facilities are being conducted by the U.S. National Institute for Occupational Safety and Health to evaluate the health risk associated with exposure to sources of external and internal ionizing radiation. While exposure to external sources of radiation can be estimated from personal dosimeter data, reconstruction of exposure due to internally deposited radioactivity is more challenging because bioassay monitoring data is frequently less complete. Although comprehensive monitoring was provided for workers with the highest internal exposures, the majority of workers were monitored relatively infrequently. This monitoring was conducted to demonstrate compliance with regulations rather than to evaluate exposure for use in epidemiologic studies. Attributes of past internal monitoring programs that challenge accurate exposure assessment include: incomplete characterization of the workplace source term; a lack of timely measurements; insensitive and/or nonspecific bioassay measurements; and the presence of censored data. In spite of these limitations, many facilities have collected a large amount of worker and workplace monitoring information that can be used to evaluate internal exposure while minimizing worker misclassification. This paper describes a systematic approach for using the available worker and workplace monitoring data that can lead to either a qualitative or quantitative retrospective assessment of internal exposures. Various aspects of data analysis will be presented, including the evaluation of minimum detectable dose, the treatment of censored data, and the use of combinations of bioassay and workplace data to characterize exposures. Examples of these techniques applied to a cohort study involving chronic exposure scenarios to uranium are provided. A strategy for expressing exposure or dose in fundamental, unweighted units related to the quantity of radiation delivered to an organ will also

  18. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance

    DEFF Research Database (Denmark)

    Ashbolt, Nicholas J.; Amézquita, Alejandro; Backhaus, Thomas

    2013-01-01

    to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. Methods: The authors participated in a workshop held 4-8 March 2012 in Québec, Canada, to define the scope and objectives...... of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development "hot spots," exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. Discussion: Various...... novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b...

  19. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans.

    Science.gov (United States)

    Grill, Alex E; Schmitt, Thaddeus; Gates, Leah A; Lu, Ding; Bandyopadhyay, Dipankar; Yuan, Jian-Min; Murphy, Sharon E; Peterson, Lisa A

    2015-07-20

    Furan, a possible human carcinogen, is found in heat treated foods and tobacco smoke. Previous studies have shown that humans are capable of converting furan to its reactive metabolite, cis-2-butene-1,4-dial (BDA), and therefore may be susceptible to furan toxicity. Human risk assessment of furan exposure has been stymied because of the lack of mechanism-based exposure biomarkers. Therefore, a sensitive LC-MS/MS assay for six furan metabolites was applied to measure their levels in urine from furan-exposed rodents as well as in human urine from smokers and nonsmokers. The metabolites that result from direct reaction of BDA with lysine (BDA-N(α)-acetyllysine) and from cysteine-BDA-lysine cross-links (N-acetylcysteine-BDA-lysine, N-acetylcysteine-BDA-N(α)-acetyllysine, and their sulfoxides) were targeted in this study. Five of the six metabolites were identified in urine from rodents treated with furan by gavage. BDA-N(α)-acetyllysine, N-acetylcysteine-BDA-lysine, and its sulfoxide were detected in most human urine samples from three different groups. The levels of N-acetylcysteine-BDA-lysine sulfoxide were more than 10 times higher than that of the corresponding sulfide in many samples. The amount of this metabolite was higher in smokers relative to that in nonsmokers and was significantly reduced following smoking cessation. Our results indicate a strong relationship between BDA-derived metabolites and smoking. Future studies will determine if levels of these biomarkers are associated with adverse health effects in humans.

  20. Internal Dose Conversion Coefficients of Domestic Reference Animal and Plants for Dose Assessment of Non-human Species

    International Nuclear Information System (INIS)

    Keum, Dong Kwon; Jun, In; Lim, Kwang Muk; Choi, Yong Ho

    2009-01-01

    Traditionally, radiation protection has been focused on a radiation exposure of human beings. In the international radiation protection community, one of the recent key issues is to establish the methodology for assessing the radiological impact of an ionizing radiation on non-human species for an environmental protection. To assess the radiological impact to non-human species dose conversion coefficients are essential. This paper describes the methodology to calculate the internal dose conversion coefficient for non-human species and presents calculated internal dose conversion coefficients of 25 radionuclides for 8 domestic reference animal and plants

  1. Vulnerability assessment of atmospheric environment driven by human impacts.

    Science.gov (United States)

    Zhang, Yang; Shen, Jing; Ding, Feng; Li, Yu; He, Li

    2016-11-15

    Atmospheric environment quality worsening is a substantial threat to public health worldwide, and in many places, air pollution due to the intensification of the human activity is increasing dramatically. However, no studies have been investigated the integration of vulnerability assessment and atmospheric environment driven by human impacts. The objective of this study was to identify and prioritize the undesirable environmental changes as an early warning system for environment managers and decision makers in term of human, atmospheric environment, and social economic elements. We conduct a vulnerability assessment method of atmospheric environment associated with human impact, this method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators under the Exposure-Sensitivity- Adaptive Capacity (ESA) framework. Decision makers can find out relevant vulnerability assessment results with different vulnerable attitudes. In the Beijing-Tianjin-Hebei (BTH) region, China, we further applied this developed method and proved it to be reliable and consistent with the China Environmental Status Bulletin. Results indicate that the vulnerability of atmospheric environment in the BTH region is not optimistic, and environment managers should do more about air pollution. Thus, the most appropriate strategic decision and development program of city or state can be picked out assisting by the vulnerable results. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Inhale while Dreaming: Human Exposure to Pollutants while Sleeping

    DEFF Research Database (Denmark)

    Corsi, Richard; Spilak, Michal; Boor, E., Brandon

    2012-01-01

    of indoor pollutants, e.g., flame retardants to isocyanates. As such, there is a need for increased dialogue on this subject, end-point relevant research, and action to reduce exposures to high-risk contaminants for most of humanity. This workshop will involve an opening 5–minute presentation related...... discussion related to practical implications of new findings as well as past studies, geographic variations in emissions from mattresses and beddings, methods for reducing population exposures, and suggestions for future research that has practical endpoints and that can lead to reduced exposures....

  3. Assessment of occupational exposure to radiofrequency fields and radiation

    International Nuclear Information System (INIS)

    Cooper, T. G.; Allen, S. G.; Blackwell, R. P.; Litchfield, I.; Mann, S. M.; Pope, J. M.; Van Tongeren, M. J. A.

    2004-01-01

    The use of personal monitors for the assessment of exposure to radiofrequency fields and radiation in potential future epidemiological studies of occupationally exposed populations has been investigated. Data loggers have been developed for use with a commercially available personal monitor and these allowed personal exposure records consisting of time-tagged measurements of electric and magnetic field strength to be accrued over extended periods of the working day. The instrumentation was worn by workers carrying out tasks representative of some of their typical daily activities at a variety of radio sites. The results indicated significant differences in the exposures of workers in various RF environments. A number of measures of exposure have been examined with a view to assessing possible exposure metrics for epidemiological studies. There was generally a good correlation between a given measure of electric field strength and the same measure of magnetic field strength. (authors)

  4. Categorization framework to aid exposure assessment of nanomaterials in consumer products

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Michelson, Evan S.; Kamper, Anja

    2008-01-01

    Exposure assessment is crucial for risk assessment for nanomaterials. We propose a framework to aid exposure assessment in consumer products. We determined the location of the nanomaterials and the chemical identify of the 580 products listed in the inventory maintained by the Woodrow Wilson Inte...

  5. Elevated personal exposure to particulate matter from human activities in a residence.

    Science.gov (United States)

    Ferro, Andrea R; Kopperud, Royal J; Hildemann, Lynn M

    2004-01-01

    Continuous laser particle counters collocated with time-integrated filter samplers were used to measure personal, indoor, and outdoor particulate matter (PM) concentrations for a variety of prescribed human activities during a 5-day experimental period in a home in Redwood City, CA, USA. The mean daytime personal exposures to PM(2.5) and PM(5) during prescribed activities were 6 and 17 times, respectively, as high as the pre-activity indoor background concentration. Activities that resulted in the highest exposures of PM(2.5), PM(5), and PM(10) were those that disturbed dust reservoirs on furniture and textiles, such as dry dusting, folding clothes and blankets, and making a bed. The vigor of activity and type of flooring were also important factors for dust resuspension. Personal exposures to PM(2.5) and PM(5) were 1.4 and 1.6 times, respectively, as high as the indoor concentration as measured by a stationary monitor. The ratio of personal exposure to the indoor concentration was a function of both particle size and the distance of the human activity from the stationary indoor monitor. The results demonstrate that a wide variety of indoor human resuspension activities increase human exposure to PM and contribute to the "personal cloud" effect.

  6. Combined Toxic Exposures and Human Health: Biomarkers of Exposure and Effect

    Directory of Open Access Journals (Sweden)

    Johan Högberg

    2011-02-01

    Full Text Available Procedures for risk assessment of chemical mixtures, combined and cumulative exposures are under development, but the scientific database needs considerable expansion. In particular, there is a lack of knowledge on how to monitor effects of complex exposures, and there are few reviews on biomonitoring complex exposures. In this review we summarize articles in which biomonitoring techniques have been developed and used. Most examples describe techniques for biomonitoring effects which may detect early changes induced by many chemical stressors and which have the potential to accelerate data gathering. Some emphasis is put on endocrine disrupters acting via epigenetic mechanisms and on carcinogens. Solid evidence shows that these groups of chemicals can interact and even produce synergistic effects. They may act during sensitive time windows and biomonitoring their effects in epidemiological studies is a challenging task.

  7. Early androgen exposure and human gender development.

    Science.gov (United States)

    Hines, Melissa; Constantinescu, Mihaela; Spencer, Debra

    2015-01-01

    During early development, testosterone plays an important role in sexual differentiation of the mammalian brain and has enduring influences on behavior. Testosterone exerts these influences at times when the testes are active, as evidenced by higher concentrations of testosterone in developing male than in developing female animals. This article critically reviews the available evidence regarding influences of testosterone on human gender-related development. In humans, testosterone is elevated in males from about weeks 8 to 24 of gestation and then again during early postnatal development. Individuals exposed to atypical concentrations of testosterone or other androgenic hormones prenatally, for example, because of genetic conditions or because their mothers were prescribed hormones during pregnancy, have been consistently found to show increased male-typical juvenile play behavior, alterations in sexual orientation and gender identity (the sense of self as male or female), and increased tendencies to engage in physically aggressive behavior. Studies of other behavioral outcomes following dramatic androgen abnormality prenatally are either too small in their numbers or too inconsistent in their results, to provide similarly conclusive evidence. Studies relating normal variability in testosterone prenatally to subsequent gender-related behavior have produced largely inconsistent results or have yet to be independently replicated. For studies of prenatal exposures in typically developing individuals, testosterone has been measured in single samples of maternal blood or amniotic fluid. These techniques may not be sufficiently powerful to consistently detect influences of testosterone on behavior, particularly in the relatively small samples that have generally been studied. The postnatal surge in testosterone in male infants, sometimes called mini-puberty, may provide a more accessible opportunity for measuring early androgen exposure during typical development. This

  8. Human reproductive system disturbances and pesticide exposure in Brazil

    Directory of Open Access Journals (Sweden)

    Koifman Sergio

    2002-01-01

    Full Text Available The observation of reproductive disturbances in humans and in the wildlife has been reported in the last decade in different countries. Exposure to different chemicals possibly acting in the endocrine system or endocrine disruptors, including pesticides, has been a hypothesis raised to explain the observed changes. This paper aimed to present results of an epidemiological ecologic study carried out to explore population data on pesticides exposure in selected Brazilian states in the eighties and human reproductive outcomes in the nineties. Pearson correlation coefficients were ascertained between available data pesticides sales in eleven states in Brazil in 1985 and selected further reproductive outcomes or their surrogates. Moderate to high correlations were observed to infertility, testis, breast, prostate and ovarian cancer mortality. Despite the restrains of ecologic studies to establish cause-effect relationships, the observed results are in agreement with evidence supporting a possible association between pesticides exposure and the analyzed reproductive outcomes.

  9. Occupational exposure assessment: Practices in Malaysian nuclear agency

    Energy Technology Data Exchange (ETDEWEB)

    Sarowi, S. Muhd, E-mail: suzie@nuclearmalaysia.gov.my; Ramli, S. A.; Kontol, K. Mohamad [Radiation Safety & Health Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Rahman, N. A. H. Abd. [Faculty of Science & Mathematics, Sultan Idris of Education Universit, 35900, Tanjong Malim, Perak Darul Ridzuan (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H{sub 0}) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)

  10. Occupational exposure assessment: Practices in Malaysian nuclear agency

    Science.gov (United States)

    Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.

    2016-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H₀) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304).

  11. Occupational exposure assessment: Practices in Malaysian nuclear agency

    International Nuclear Information System (INIS)

    Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.

    2016-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H 0 ) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)

  12. Foetal exposure to food and environmental carcinogens in human beings.

    Science.gov (United States)

    Myöhänen, Kirsi; Vähäkangas, Kirsi

    2012-02-01

    Exposure to many different chemicals during pregnancy through maternal circulation is possible. Transplacental transfer of xenobiotics can be demonstrated using human placental perfusion. Also, placental perfusion can give information about the placental kinetics as well as metabolism and accumulation in the placenta because it retains the tissue structure and function. Although human placental perfusion has been used extensively to study the transplacental transfer of drugs, the information on food and environmental carcinogens is much more limited. This review deals with the foetal exposure to food and environmental carcinogens in human beings. In particular, human transplacental transfer of the food carcinogens such as acrylamide, glycidamide and nitrosodimethylamine are in focus. Because these carcinogens are genotoxic, the functional capacity of human placenta to induce DNA adduct formation or metabolize these above mentioned CYP2E1 substrates is of interest in this context. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  13. Exposure Monitoring and Risk Assessment of Biphenyl in the Workplace

    OpenAIRE

    Kim, Hyeon-Yeong; Shin, Sae-Mi; Ham, Miran; Lim, Cheol-Hong; Byeon, Sang-Hoon

    2015-01-01

    This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable ma...

  14. Human Mercury Exposure in Yanomami Indigenous Villages from the Brazilian Amazon.

    Science.gov (United States)

    Vega, Claudia M; Orellana, Jesem D Y; Oliveira, Marcos W; Hacon, Sandra S; Basta, Paulo C

    2018-05-23

    In the Brazilian Amazon, where the majority of Yanomami villages are settled, mercury (Hg) exposure due to artisanal small-scale gold mining (ASGM) has been reported since the 1980s. This study assessed mercury exposure in the Yanomami reserve and whether the level of contamination was related to the ASGM geographical location. It was conducted using a cross-sectional study of 19 villages. Direct interviews were performed and hair samples were used as a bioindicator of Hg exposure. The Prevalence-Ratio (PR) was estimated as an indicator of association between ASGM geographical locations and human exposure to mercury. Mercury levels (239 hair samples) ranged between 0.4 and 22.1 μg·g -1 and presented substantial differences amongst the villages. In the Waikas-Aracaça region, where current ASGM was reported, we observed the highest Hg concentrations (median = 15.5 μg·g -1 ). Almost all participants presented with hair-Hg levels >6 μg·g -1 (prevalence = 92.3%). In the Paapiu region, we observed the lowest concentrations (median = 3.2 μg·g -1 ; prevalence = 6.7%). Our findings showed that the Waikas Ye'kuana and Waikas Aracaca villages presented with 4.4 (PR = 4.4; Confidence Interval (CI) 95% = 2.2⁻9.0) and 14.0 (PR = 14.0; CI 95% = 7.9⁻24.9) times higher prevalence of hair-Hg concentration, respectively, compared with Paapiu. Considering seasonal variation of Hg-exposure, the lowest concentrations were observed during the wet season (June⁻September) and the highest in the dry season (December⁻April). Our study suggests that there is an association between mercury exposure and ASGM geographical locations.

  15. The impact of environmental conditions on human performance: A handbood of environmental exposures. Volume 1

    International Nuclear Information System (INIS)

    Echeverria, D.; Barnes, V.; Bittner, A.

    1994-09-01

    A comprehensive review of the technical literature was conducted regarding the impact of environmental conditions on hyman performance applicable to nuclear power plant workers. The environmental conditions considered were vibration, noise, heat, cold, and light. Research staff identified potential human performance deficits (e.g., decreased dexterity, impaired vision, hearing loss, memory deficiency) along a continuum of increasing occupational exposure, ranging from exposures that result in no deficit to exposures that resulted in significant performance problems. Specific deficits were included in the report if there was sound scientific evidence that environmental exposure resulted in those performance deficits. The levels associated with each deficit were then compared to the protection afforded by existing occupational exposure standards. Volume 1 is a handbook for use by NRC inspectors to help them determine the impact of specific environmental conditions on licensee personnel performance. it discusses the units used to measure each condition, discusses the effects of the condition on task performance, presents an example of the assessment of each condition in a nuclear power plant, and discusses potential methods for reducing the effects of

  16. Human exposure to low level ionising radiation

    International Nuclear Information System (INIS)

    Paix, David

    1988-01-01

    This paper describes the low-level radiation sources and their effects on human populations, from a global perspective. 'Low-level' means exposures in the range of the natural background to which everybody is exposed. The quoted values are whole-world averages, but individual variations are mentioned in a few cases. (author). 22 refs

  17. Exposure Assessment to Environmental Chemicals in Children from Ciudad Juarez, Chihuahua, Mexico.

    Science.gov (United States)

    Ochoa-Martinez, Angeles C; Orta-Garcia, Sandra T; Rico-Escobar, Edna M; Carrizales-Yañez, Leticia; Del Campo, Jorge D Martin; Pruneda-Alvarez, Lucia G; Ruiz-Vera, Tania; Gonzalez-Palomo, Ana K; Piña-Lopez, Iris G; Torres-Dosal, Arturo; Pérez-Maldonado, Ivan N

    2016-05-01

    It has been demonstrated that the human biomonitoring of susceptible populations is a valuable method for the identification of critical contaminants. Therefore, the purpose of this study was to assess the exposure profile for arsenic (As), lead (Pb), mercury (Hg), 1-hydroxypyrene (1-OHP), 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in children living in Ciudad Juarez, Chihuahua, Mexico (a major manufacturing center in Mexico). In 2012, we evaluated a total of 135 healthy children living in Ciudad Juarez since birth. The total PBDEs levels ranged from nondetectable (exposure levels to chemicals analyzed in the children living in the study community. Therefore, a biomonitoring program for the surveillance of the child population in Ciudad Juarez is necessary.

  18. Consolidated Human Activity Database (CHAD) for use in human exposure and health studies and predictive models

    Science.gov (United States)

    EPA scientists have compiled detailed data on human behavior from 22 separate exposure and time-use studies into CHAD. The database includes more than 54,000 individual study days of detailed human behavior.

  19. INFLUENCE OF EXPOSURE ASSESSMENT METHOD IN AN EPIDEMIOLOGIC STUDY OF TRIHALOMETHANE EXPOSURE AND SPONTANEOUS ABORTION

    Science.gov (United States)

    Trihalomethanes are common contaminants of chlorinated drinking water. Studies of their health effects have been hampered by exposure misclassification, due in part to limitations inherent in using utility sampling records. We used two exposure assessment methods, one based on ut...

  20. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    Directory of Open Access Journals (Sweden)

    Zhao Dong

    2015-01-01

    Full Text Available Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al, arsenic (As, cadmium (Cd, lead (Pb, mercury (Hg, and selenium (Se in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure. Multivariate regressions and spatial analyses were performed to evaluate the relative importance of different routes of exposures. The metal concentrations in blood or hair samples of our study participants were comparable to the U.S. general or regional population. Smoking contributed significantly to Cd and Pb exposures, and seafood consumption contributed significantly to Hg and As exposures, while variables related to the cement plant were not significantly associated with metal concentrations. Our results suggest that our study population was not at elevated health risk due to metal exposures, and that the contribution of the cement plant to metal exposures in the surrounding community was minimal.

  1. Assessment of personal exposures to optical radiation in large entertainment venues

    International Nuclear Information System (INIS)

    Bonner, R.; O'Hagan, J. B.; Khazova, M.

    2012-01-01

    Workplace exposure to optical radiation from artificial sources is regulated in Europe under the Artificial Optical Radiation Directive 2006/25/EC implemented in the UK as The Control of Artificial Optical Radiation at Work Regulations 2010. The entertainment environment often presents an extremely complex situation for the assessment of occupational exposures. Multiple illumination sources, continuously changing illumination conditions and people moving during performances add further complexity to the assessment. This document proposes a methodology for assessing the risks arising from exposure to optical radiation and presents detailed case studies of practical assessment for two large entertainment venues. (authors)

  2. Use of human milk in the assessment of toxic metal exposure and essential element status in breastfeeding women and their infants in coastal Croatia.

    Science.gov (United States)

    Grzunov Letinić, Judita; Matek Sarić, Marijana; Piasek, Martina; Jurasović, Jasna; Varnai, Veda Marija; Sulimanec Grgec, Antonija; Orct, Tatjana

    2016-12-01

    Pregnant and lactating women and infants are vulnerable population groups for adverse effects of toxic metals due to their high nutritional needs and the resultant increased gastrointestinal absorption of both, essential and toxic elements. Although breastfeeding is recommended for infants worldwide, as human milk is the best source of nutrients and other required bioactive factors, it is also a pathway of maternal excretion of toxic substances including toxic metals and thus a source of infant exposure. The aim of this research was to assess health risks in breastfeeding women in the coastal area of the Republic of Croatia and their infants (N=107) due to maternal exposure to Cd and Pb via cigarette smoking, and Hg via seafood and dental amalgam fillings, and their interaction with essential elements. Biological markers of exposure were the concentrations of main toxic metals Pb, Cd and Hg in maternal blood and three types of breast milk throughout lactation stages. Biological markers of effects were the levels of essential elements Ca, Fe, Cu, Zn and Se in maternal serum and breast milk. With regard to cigarette smoking as a source of exposure to Cd and Pb, there were effects of smoking on Cd concentration in blood and correlations between the smoking index and Cd concentrations in maternal blood (ρ=0.593; Pexposure in both breastfeeding women and their infants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Fate and Transport of Mercury in Environmental Media and Human Exposure

    Science.gov (United States)

    Kim, Moon-Kyung

    2012-01-01

    Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans. PMID:23230463

  4. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    Science.gov (United States)

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  5. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes.

    Science.gov (United States)

    Danese, Elisa; Lippi, Giuseppe; Buonocore, Ruggero; Benati, Marco; Bovo, Chiara; Bonaguri, Chiara; Salvagno, Gian Luca; Brocco, Giorgio; Roggenbuck, Dirk; Montagnana, Martina

    2017-07-01

    The use of mobile phones has been associated with an increased risk of developing certain type of cancer, especially in long term users. Therefore, this study was aimed to investigate the potential genotoxic effect of mobile phone radiofrequency exposure on human peripheral blood mononuclear cells in vitro. The study population consisted in 14 healthy volunteers. After collection of two whole blood samples, the former was placed in a plastic rack, 1 cm from the chassis of a commercial mobile phone (900 MHz carrier frequency), which was activated by a 30-min call. The second blood sample was instead maintained far from mobile phones or other RF sources. The influence of mobile phone RF on DNA integrity was assessed by analyzing γ-H2AX foci in lymphocytes using immunofluorescence staining kit on AKLIDES. No measure of γ-H2AX foci was significantly influenced by mobile phone RF exposure, nor mobile phone exposure was associated with significant risk of genetic damages in vitro (odds ratio comprised between 0.27 and 1.00). The results of this experimental study demonstrate that exposure of human lymphocytes to a conventional 900 MHz RF emitted by a commercial mobile phone for 30 min does not significantly impact DNA integrity.

  6. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Directory of Open Access Journals (Sweden)

    Ellis James K

    2012-06-01

    Full Text Available Abstract Background The 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods High-resolution 1H NMR spectroscopy (metabonomics was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid or one-carbon metabolism (dimethylglycine, creatinine, creatine, were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental

  7. Exposure assessment of 3-monochloropropane-1, 2-diol esters from edible oils and fats in China.

    Science.gov (United States)

    Li, Chang; Nie, Shao-Ping; Zhou, Yong-Qiang; Xie, Ming-Yong

    2015-01-01

    3-monochoropropane-1, 2-diol (3-MCPD) esters from edible oils are considered to be a possible risk factor for adverse effects in human. In the present study, the exposure assessment of 3-MCPD esters to Chinese population was performed. A total of 143 edible oil and fat samples collected from Chinese markets were determined for the concentrations of 3-MCPD esters. The concentration data together with the data of fats consumed were analyzed by the point evaluation and probabilistic assessment for the exposure assessment. The point evaluation showed that the mean daily intake (DI) of 3-MCPD esters were lower than the value of provisional maximum tolerable daily intake (PMTDI) of 3-MCPD (2 µg/kg BW/d). The mean DI values in different age groups obtained from probabilistic assessment were similar to the results of the point evaluation. However, in high percentiles (95th, 97.5th, 99th), the DI values in all age groups were undesirably higher than the value of PMTDI. Overall, the children and adolescents exposed more to 3-MCPD esters than the adults. Uncertainty was also analyzed for the exposure assessment. Decreasing the level of 3-MCPD esters in edible oils and consuming less oil were top priority to minimize the risk of 3-MCPD esters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nano-metal oxides: Exposure and engineering control assessment.

    Science.gov (United States)

    Garcia, Alberto; Eastlake, Adrienne; Topmiller, Jennifer L; Sparks, Christopher; Martinez, Kenneth; Geraci, Charles L

    2017-09-01

    In January 2007, the National Institute for Occupational Safety and Health (NIOSH) conducted a field study to evaluate process specific emissions during the production of ENMs. This study was performed using the nanoparticle emission assessment technique (NEAT). During this study, it was determined that ENMs were released during production and cleaning of the process reactor. Airborne concentrations of silver, nickel, and iron were found both in the employee's personal breathing zone and area samples during reactor cleaning. At the completion of this initial survey, it was suggested that a flanged attachment be added to the local exhaust ventilation system.  NIOSH re-evaluated the facility in December 2011 to assess worker exposures following an increase in production rates. This study included a fully comprehensive emissions, exposure, and engineering control evaluation of the entire process. This study made use of the nanoparticle exposure assessment technique (NEAT 2.0). Data obtained from filter-based samples and direct reading instruments indicate that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentration decreased, creating a concentration gradient with respect to the reactor. The results of this study confirm that the flanged attachment on the local exhaust ventilation system served to decrease exposure potential.  Given the available toxicological data of the metals evaluated, caution is warranted. One should always keep in mind that occupational exposure levels were not developed specifically for nanoscale particles. With data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source

  9. Toxicity levels to humans during acute exposure to hydrogen fluoride

    International Nuclear Information System (INIS)

    Halton, D.M.; Dranitsaris, P.; Baynes, C.J.

    1984-11-01

    A literature review was conducted of the acute toxicity of hydrogen fluoride (HF) with emphasis on the effects of inhalation of gaseous HF. The data and findings of the relevant references were summarized under four categories: animal studies, controlled human studies, community exposure and industrial exposure. These were critically reviewed and then lethal concentration-time relationships were developed for humans, corresponding to LCsub(LO), LCsub(10) and LCsub(50) levels. The effects of age, health and other physiological variables on the sensitivity to HF were discussed, as well as antagonistic and synergistic effects with other substances

  10. Tritium β-radiation induction of chromosomal damage: a calibration curve for low dose, low dose rate exposures of human cells to tritiated water

    International Nuclear Information System (INIS)

    Morrison, D.P.; Gale, K.L.; Lucas, J.N.

    1997-01-01

    Radiation exposures from tritium contribute to the occupational radiation exposures associated with CANDU reactors. Tritiated water is of particular interest since it is readily taken up by human cells and its elimination from the body, and, consequently, the radiation exposure of the cells, is spread over a period of days. Occupational exposures to tritiated water result in what are effectively chronic β-radiation exposures. The doses and dose rates ordinarily used in the definition of cellular responses to radiation in vitro, for use in biological dosimetry (the assessment of radiation exposures based on the observed levels of changes in the cells of exposed individuals), are usually much higher than for most occupational exposures and involve radiations other than tritium β-rays. As a result, their use in assessing the effects from tritiated water exposures may not be appropriate. We describe here an in vitro calibration curve for chronic tritium β-radiation induction of reciprocal chromosomal translocations in humn peripheral blood lymphocytes (PBLs) for use in biodosimetry. (author)

  11. Generic Assessment Criteria for human health risk assessment of potentially contaminated land in China.

    Science.gov (United States)

    Cheng, Yuanyuan; Nathanail, Paul C

    2009-12-20

    Generic Assessment Criteria (GAC) are derived using widely applicable assumptions about the characteristics and behaviour of contaminant sources, pathways and receptors. GAC provide nationally consistent guidance, thereby saving money and time. Currently, there are no human health based Generic Assessment Criteria (GAC) for contaminated sites in China. Protection of human health is therefore difficult to ensure and demonstrate; and the lack of GAC makes it difficult to tell if there is potential significant risk to human health unless site-specific criteria are derived. This paper derived Chinese GAC (GAC) for five inorganic and eight organic substances for three regions in China for three land uses: urban residential without plant uptake, Chinese cultivated land, and commercial/industrial using the SNIFFER model. The SNIFFER model has been further implemented with a dermal absorption algorithm and the model default input values have been changed to reflect the Chinese exposure scenarios. It is envisaged that the modified SNIFFER model could be used to derive GAC for more contaminants, more Regions, and more land uses. Further research to enhance the reliability and acceptability of the GAC is needed in regional/national surveys in diet and working patterns.

  12. Population-Based Assessment of Exposure to Risk Behaviors in Motion Pictures.

    Science.gov (United States)

    Sargent, James D; Worth, Keilah A; Beach, Michael; Gerrard, Meg; Heatherton, Todd F

    2008-01-01

    The aim of most population-based studies of media is to relate a specific exposure to an outcome of interest. A research program has been developed that evaluates exposure to different components of movies in an attempt of assess the association of such exposure with the adoption of substance use during adolescence. To assess exposure to movie substance use, one must measure both viewing time and content. In developing the exposure measure, the study team was interested in circumventing a common problem in exposure measurement, where measures often conflate exposure to media with attention to media. Our aim in this paper is to present a validated measure of exposure to entertainment media, the Beach method, which combines recognition of a movie title with content analysis of the movie for substance use, to generate population based measures of exposure to substance use in this form of entertainment.

  13. Assessment of exposure to shiftwork mechanisms in the general population: the development of a new job-exposure matrix.

    Science.gov (United States)

    Fernandez, Renae C; Peters, Susan; Carey, Renee N; Davies, Michael J; Fritschi, Lin

    2014-10-01

    To develop a job-exposure matrix (JEM) that estimates exposure to eight variables representing different aspects of shiftwork among female workers. Occupational history and shiftwork exposure data were obtained from a population-based breast cancer case-control study. Exposure to light at night, phase shift, sleep disturbances, poor diet, lack of physical activity, lack of vitamin D, and graveyard and early morning shifts, was calculated by occupational code. Three threshold values based on the frequency of exposure were considered (10%, 30% and 50%) for use as cut-offs in determining exposure for each occupational code. JEM-based exposure classification was compared with that from the OccIDEAS application (job-specific questionnaires and assessment by rules) by assessing the effect on the OR for phase shift and breast cancer. Using data from the Australian Workplace Exposure Study, the specificity and sensitivity of the threshold values were calculated for each exposure variable. 127 of 413 occupational codes involved exposure to one or more shiftwork variables. Occupations with the highest probability of exposure shiftwork included nurses and midwives. Using the 30% threshold, the OR for the association between phase shift exposure and breast cancer was decreased and no longer statistically significant (OR=1.14, 95% CI 0.92 to 1.42). The 30% cut-off point demonstrated best specificity and sensitivity, although results varied between exposure variables. This JEM provides a set of indicators reflecting biologically plausible mechanisms for the potential impact of shiftwork on health and may provide an alternative method of exposure assessment in the absence of detailed job history and exposure data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Toxicity assessment of unintentional exposure to multiple chemicals

    International Nuclear Information System (INIS)

    Mumtaz, M.M.; Ruiz, P.; De Rosa, C.T.

    2007-01-01

    Typically exposure to environmental chemicals is unintentional, and often the exposure is to chemical mixtures, either simultaneously or sequentially. When exposure occurs, in public health practice, it is prudent to ascertain if thresholds for harmful health effects are exceeded, whether by individual chemicals or by chemicals in combination. Three alternative approaches are available for assessing the toxicity of chemical mixtures. Each approach, however, has shortcomings. As the procedures of each approach are described in this paper, at various steps research needs are identified. Recently, reliance has increased on computational toxicology methods for predicting toxicological effects when data are limited. Advances in molecular biology, identification of biomarkers, and availability of accurate and sensitive methods allow us to more precisely define the relationships between multiple chemical exposures and health effects, both qualitatively and quantitatively. Key research needs are best fulfilled through collaborative research. It is through such collaborations that resources are most effectively leveraged to further develop and apply toxicity assessment methods that advance public health practices in vulnerable communities

  15. EVALUATION OF EMF EXPOSURE OF MOBILE PHONES ON HUMAN HEAD

    Directory of Open Access Journals (Sweden)

    N. I. Vtornikova

    2017-01-01

    Full Text Available Introduction. Mobile phones are worldwide spread nowadays. Smartphones penetration is growing year after year. Numerous studies indicate the negative effect of EMF exposure of these devices on humans. Therefore, it is important to study the peculiarities of their influence on the target organ-the brain. It is important for solving this problem to find out the real situation of the distribution of energy flux density (EFD of EMF exposure near the front panel of the apparatus.The aim of the study is to determine and compare EMF exposure from smartphones and classic mobile phones on human head.Material and methods. The original method patented in the Russian Federation was used in this study. The used original measuring setup is also patented, developed and assembled by the authors of the study. The object of the study was classical mobile phones and smartphones widespread at the time of work.Results. We got the graphic of matrices of distribution of energy flux density (EFD of EMF exposure in the plane against the front panel of 10 apparatus corresponding to the topography of a human head. The study revealed peculiarities of this distribution in smartphones and the classic mobile phones and got the values of energy flux density (EFD of EMF exposure in the investigated devices acting primarily on the brain.Conclusions. The design of smartphones and mobile phones determines the overall picture of distribution of EFD of EMF exposure in the plane against the front panel for devices of a particular type. This picture must be taken into account when planning epidemiological and experimental studies to obtain comparable results. Progress in the development of mobile communication technologies has led to an increase in the electromagnetic load on users of modern devices.

  16. The American Petroleum Institute's Decision Support System for performing exposure and risk assessments

    International Nuclear Information System (INIS)

    Spence, L.R.

    1994-01-01

    The author has developed the American Petroleum Institute's (API) Exposure and Risk Assessment Decision Support System (DSS) to assist environmental professionals in estimating human exposure and risk from sites contaminated with petroleum hydrocarbons. The DSS is a valuable, user-friendly tool that can be used to (1) estimate site-specific risks, (2) identify the need for site remediation, (3) develop and negotiate site-specific cleanup levels with regulatory agencies, and (4) efficiently and effectively evaluate the effect of parameter uncertainty and variability on estimated risk. API DSS Version 1.0 consists of four modules. Specifically, the Development of Risk Scenario module allows the user to develop a conceptual model for estimating the risk. The Fate and Transport module includes a number of contaminant fate and transport models to estimate receptor point concentrations using site-specific hydrogeological and meteorological data entered by the user. The Chemical Intake and Risk Calculation module uses estimated or user-entered receptor point concentrations to estimate chemical intake by a human receptor for several different exposure routes. Finally, the Risk Presentation module allows the user to view the results of the analysis in tabular and graphical formats. The DSS includes chemical databases for 25 hydrocarbons containing transport and toxicity information. These databases may be expanded to include many additional (non-hydrocarbon) chemicals. The computational modules of the DSS can be implemented in either a deterministic or a Monte Carlo simulation mode. The latter is used to quantify the uncertainty in the exposure and risk results due to uncertainty in the input parameters

  17. New approaches to assessing the effects of mutagenic agents on the integrity of the human genome

    International Nuclear Information System (INIS)

    Elespuru, R.K.; Sankaranarayanan, K.

    2007-01-01

    Heritable genetic alterations, although individually rare, have a substantial collective health impact. Approximately 20% of these are new mutations of unknown cause. Assessment of the effect of exposures to DNA damaging agents, i.e. mutagenic chemicals and radiations, on the integrity of the human genome and on the occurrence of genetic disease remains a daunting challenge. Recent insights may explain why previous examination of human exposures to ionizing radiation, as in Hiroshima and Nagasaki, failed to reveal heritable genetic effects. New opportunities to assess the heritable genetic damaging effects of environmental mutagens are afforded by: (1) integration of knowledge on the molecular nature of genetic disorders and the molecular effects of mutagens; (2) the development of more practical assays for germline mutagenesis; (3) the likely use of population-based genetic screening in personalized medicine

  18. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - Implications for Human Space Exploration

    Science.gov (United States)

    Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2018-01-01

    New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.

  19. Probabilistic assessment of exposure to hair cosmetic products by the French population.

    Science.gov (United States)

    Ficheux, A S; Bernard, A; Chevillotte, G; Dornic, N; Roudot, A C

    2016-06-01

    Cosmetic exposure data are limited in Europe and especially in France. The aim of this study was to assess the exposure to hair cosmetics using recent consumption data (percentage of users, frequency of use and amount per use) generated for the French population (Ficheux et al., 2015, 2016). Exposure was assessed using a probabilistic method for eleven hair products: liquid shampoo, dry shampoo, conditioner, hair mask, hair serum, hair oil, styling lacquer, styling gel, styling foam, styling wax and styling spray. Exposure was assessed by sex and by age classes in adults and children. Pregnant women were also studied. For liquid shampoo, conditioner and some styling products (gel, lacquer and foam), the levels of exposure were higher than the values currently used by the Scientific Committee on Consumer Safety (SCCS). Exposure values found for styling wax and styling spray were lower than SCCS values. Exposure was assessed for the first time for dry shampoo, hair mask, hair serum and hair oil products. These new French exposure values will be useful for safety assessors and for safety agencies in order to protect the general population and these at-risk populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Carcinogen biomonitoring in human exposures and laboratory research: validation and application to human occupational exposures.

    Science.gov (United States)

    Talaska, Glenn; Maier, Andrew; Henn, Scott; Booth-Jones, Angela; Tsuneoka, Yutaka; Vermeulen, Roel; Schumann, Brenda L

    2002-08-05

    A multiple biomarker approach is required to integrate for metabolism, temporal response and exposure-response kinetics, biological relevance, and positive predictive value. Carcinogen DNA adduct analysis can be used in animal and in vitro studies to detect absorption permutations caused by mixture interactions, and to control metabolic variation when specific CYP450 genes (1A1 or 1A2) are knocked out. These enzymes are not critical to the metabolic activation of model Polycyclic Aromatic Compounds (PAC) and aromatic amines, respectively, as suggested by in vitro analysis. Several human studies have been carried out where multiple biomarkers have been measured. In a study of benzidine workers, the similarities in elimination kinetics between urinary metabolites and mutagenicity is likely responsible for a better correlation between these markers than to BZ-DNA adducts in exfoliated cells. In a study of rubber workers, the relationship between specific departments, urinary 1 HP and DNA adducts in exfoliated cells coincided with the historical urinary bladder cancer risk in these departments; the same relationship did not hold for urinary mutagenicity. In a study of automotive mechanics, biomarkers were used to monitor the effectiveness of exposure interventions. These data reinforce the notion that carcinogen biomarkers are useful to monitor exposure, but that a complementary approaches involving effect and perhaps susceptibility biomarkers is necessary to obtain the necessary information.

  1. Bioaccessibility and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils.

    Science.gov (United States)

    Wei, Yanyan; Zheng, Xiaoman; Shohag, Md Jahidul Islam; Gu, Minghua

    2017-08-29

    In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi ( Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0-87.6% and 20.1-82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9-71.8% for Cd bioaccessibility and 16.1-59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg -1 bw day -1 , BEDI of As < 3 μg kg -1 bw day -1 ) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co

  2. Assessing the impact of in-utero exposures: potential effects of paracetamol on male reproductive development.

    Science.gov (United States)

    Kilcoyne, Karen R; Mitchell, Rod T

    2017-12-01

    Human male reproductive disorders (cryptorchidism, hypospadias, testicular cancer and low sperm counts) are common and some may be increasing in incidence worldwide. These associated disorders can arise from subnormal testosterone production during fetal life. This has resulted in a focus on in-utero environmental influences that may result in reproductive effects on the offspring in later life. Over recent years, there has been a dramatic increase in the scientific literature describing associations between in-utero environmental exposures (eg, industrial chemicals and pharmaceuticals) and subsequent reproductive outcomes in male offspring. This includes studies investigating a potential role for in-utero analgesic exposure(s) on the fetal testis; however, providing definitive evidence of such effects presents numerous challenges. In this review, we describe an approach to assessing the potential clinical relevance of in-utero (and postnatal) environmental exposures on subsequent male reproductive function using exposure to the analgesic paracetamol as an example. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Performance of GPS-devices for environmental exposure assessment.

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Huss, Anke; Vermeulen, Roel

    2013-01-01

    Integration of individual time-location patterns with spatially resolved exposure maps enables a more accurate estimation of personal exposures to environmental pollutants than using estimates at fixed locations. Current global positioning system (GPS) devices can be used to track an individual's location. However, information on GPS-performance in environmental exposure assessment is largely missing. We therefore performed two studies. First, a commute-study, where the commute of 12 individuals was tracked twice, testing GPS-performance for five transport modes and two wearing modes. Second, an urban-tracking study, where one individual was tracked repeatedly through different areas, focused on the effect of building obstruction on GPS-performance. The median error from the true path for walking was 3.7 m, biking 2.9 m, train 4.8 m, bus 4.9 m, and car 3.3 m. Errors were larger in a high-rise commercial area (median error=7.1 m) compared with a low-rise residential area (median error=2.2 m). Thus, GPS-performance largely depends on the transport mode and urban built-up. Although ~85% of all errors were 50 m. Modern GPS-devices are useful tools for environmental exposure assessment, but large GPS-errors might affect estimates of exposures with high spatial variability.

  4. Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology.

    NARCIS (Netherlands)

    Ven, P. van de; Fransman, W.; Schinkel, J.; Rubingh, C.; Warren, N.; Tielemans, E.

    2010-01-01

    The web-based tool "Stoffenmanager" was initially developed to assist small- and medium-sized enterprises in the Netherlands to make qualitative risk assessments and to provide advice on control at the workplace. The tool uses a mechanistic model to arrive at a "Stoffenmanager score" for exposure.

  5. Uncertainties in human health risk assessment of environmental contaminants: A review and perspective.

    Science.gov (United States)

    Dong, Zhaomin; Liu, Yanju; Duan, Luchun; Bekele, Dawit; Naidu, Ravi

    2015-12-01

    Addressing uncertainties in human health risk assessment is a critical issue when evaluating the effects of contaminants on public health. A range of uncertainties exist through the source-to-outcome continuum, including exposure assessment, hazard and risk characterisation. While various strategies have been applied to characterising uncertainty, classical approaches largely rely on how to maximise the available resources. Expert judgement, defaults and tools for characterising quantitative uncertainty attempt to fill the gap between data and regulation requirements. The experiences of researching 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) illustrated uncertainty sources and how to maximise available information to determine uncertainties, and thereby provide an 'adequate' protection to contaminant exposure. As regulatory requirements and recurring issues increase, the assessment of complex scenarios involving a large number of chemicals requires more sophisticated tools. Recent advances in exposure and toxicology science provide a large data set for environmental contaminants and public health. In particular, biomonitoring information, in vitro data streams and computational toxicology are the crucial factors in the NexGen risk assessment, as well as uncertainties minimisation. Although in this review we cannot yet predict how the exposure science and modern toxicology will develop in the long-term, current techniques from emerging science can be integrated to improve decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Pre-exposure Prophylaxis Against Human Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Güle ÇINAR

    2018-03-01

    Full Text Available According to the Center for Disease Control and Prevention (CDC, there were 2.1 million new human immunodeficiency virus (HIV cases reported worldwide in 2015, which shows that siginificant work needs to be done to prevent the transmission of HIV. Research to date has focused mainly on high-risk men who have sex with men, but many women around the world are also at a high risk for HIV transmissions. In studies conducted, the incidence of HIV infection in high-risk individuals decreases over 90% when high-risk individuals use pre-exposure prophylaxis (PreP HIV, tenofovir disoproxil fumarate-emtricitabine (TDF-FTC safely. Current data and studies on pre-exposure prophylaxis were discussed in this review.

  7. Human Mercury Exposure in Yanomami Indigenous Villages from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Claudia M. Vega

    2018-05-01

    Full Text Available In the Brazilian Amazon, where the majority of Yanomami villages are settled, mercury (Hg exposure due to artisanal small-scale gold mining (ASGM has been reported since the 1980s. This study assessed mercury exposure in the Yanomami reserve and whether the level of contamination was related to the ASGM geographical location. It was conducted using a cross-sectional study of 19 villages. Direct interviews were performed and hair samples were used as a bioindicator of Hg exposure. The Prevalence-Ratio (PR was estimated as an indicator of association between ASGM geographical locations and human exposure to mercury. Mercury levels (239 hair samples ranged between 0.4 and 22.1 μg·g−1 and presented substantial differences amongst the villages. In the Waikas-Aracaça region, where current ASGM was reported, we observed the highest Hg concentrations (median = 15.5 μg·g−1. Almost all participants presented with hair-Hg levels >6 μg·g−1 (prevalence = 92.3%. In the Paapiu region, we observed the lowest concentrations (median = 3.2 μg·g−1; prevalence = 6.7%. Our findings showed that the Waikas Ye’kuana and Waikas Aracaca villages presented with 4.4 (PR = 4.4; Confidence Interval (CI 95% = 2.2–9.0 and 14.0 (PR = 14.0; CI 95% = 7.9–24.9 times higher prevalence of hair-Hg concentration, respectively, compared with Paapiu. Considering seasonal variation of Hg-exposure, the lowest concentrations were observed during the wet season (June–September and the highest in the dry season (December–April. Our study suggests that there is an association between mercury exposure and ASGM geographical locations.

  8. Framework for Multi-Pathway Cumulative Exposure for Comparative Assessments

    DEFF Research Database (Denmark)

    McKone, Tom; Fantke, Peter

    2016-01-01

    in comparative risk assessment, life-cycle assessment (LCA), and chemical alternatives assessment (CAA), multimedia fate and exposure models synthesize information about partitioning, reaction, and intermedia-transport properties of chemicals in a representative (local to regional) or generic (continental...

  9. A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects

    Science.gov (United States)

    Slob, Wout

    2015-01-01

    Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk

  10. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China.

    Science.gov (United States)

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan; Murphy, Margaret Burkhardt; Lam, Paul Kwan Sing

    2013-07-01

    Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.

  11. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants

    DEFF Research Database (Denmark)

    Möller, Lennart; Schuetzle, Dennis; Autrup, Herman

    1994-01-01

    of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification...... techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out...

  12. Assessment of dermal exposure to chemicals

    NARCIS (Netherlands)

    Hemmen, J.J. van; Brouwer, D.H.

    1995-01-01

    The methods for the dermal exposure assessment vary in their complexity and are in some sense complementary to each other. The most easy-to-use methods involve a pseudo-skin-approach, such as gloves and removal by washing. In some cases generic modelling appears to be possible. The experimental

  13. Human exposure, biomarkers, and fate of organotins in the environment.

    Science.gov (United States)

    Okoro, Hussein K; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Snyman, Reinette G; Opeolu, Beatrice

    2011-01-01

    Organotin compounds result from the addition of organic moieties to inorganic tin.Thus, one or more tin-carbon bonds exist in each organotin molecule. The organo-tin compounds are ubiquitous in the environment. Organotin compounds have many uses, including those as fungicides and stabilizers in plastics, among others in industry. The widespread use of organotins as antifouling agents in boat paints has resulted in pollution of freshwater and marine ecosystems. The presence of organotin compounds in freshwater and marine ecosystems is now understood to be a threat, because of the amounts found in water and the toxicity of some organotin compounds to aquatic organisms, and perhaps to humans as well. Organotin com-pounds are regarded by many to be global pollutants of a stature similar to biphenyl,mercury, and the polychlorinated dibenzodioxins. This stature results from the high toxicity, persistence, bioaccumulation, and endocrine disruptive features of even very low levels of selected organotin compounds.Efforts by selected governmental agencies and others have been undertaken to find a global solution to organotin pollution. France was the first country to ban the use of the organotins in 1980. This occurred before the international maritime organization (IMO) called for a global treaty to ban the application of tributyltin (TBT)-based paints. In this chapter, we review the organotin compounds with emphasis on the human exposure, fate, and distribution of them in the environment. The widespread use of the organotins and their high stability have led to contamination of some aquatic ecosystems. As a result, residues of the organotins may reach humans via food consumption. Notwithstanding the risk of human exposure, only limited data are available on the levels at which the organotins exist in foodstuffs consumed by humans. Moreover, the response of marine species to the organotins, such as TBT, has not been thoroughly investigated. Therefore, more data on the

  14. A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.

    Science.gov (United States)

    Chiu, Weihsueh A; Slob, Wout

    2015-12-01

    When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. We developed a unified framework for probabilistic dose-response assessment. We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes. Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.

  15. Human exposure to unconventional natural gas development: A public health demonstration of periodic high exposure to chemical mixtures in ambient air.

    Science.gov (United States)

    Brown, David R; Lewis, Celia; Weinberger, Beth I

    2015-01-01

    hydraulic fracturing stage. Over one year, compressor station emissions created 118 peak exposure levels and a gas processing plant produced 99 peak exposures over one year. The screening model identified the periods during the day and the specific weather conditions when the highest potential exposures would occur. The periodicity of occurrence of extreme exposures is similar to the episodic nature of the health complaints reported in Washington County and in the literature. This study demonstrates the need to determine the aggregate quantitative impact on health when multiple facilities are placed near residences, schools, daycare centers and other locations where people are present. It shows that understanding the influence of air stability and wind direction is essential to exposure assessment at the residential level. The model can be applied to other emissions and similar sites. Profiles such as this will assist health providers in understanding the frequency and intensity of the human exposures when diagnosing and treating patients living near unconventional natural gas development.

  16. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-Hours Post-Exposure: Results Compendium

    National Research Council Canada - National Science Library

    Obringer, John

    2004-01-01

    .... We assessed the sublethal insult to human retinal pigment epithelial cells using a cadaver organ donor explant system for genes differentially expressed 12 and 24 hours post- exposure using gene...

  17. Toxicokinetics of perfluorooctane sulfonate in rabbits under environmentally realistic exposure conditions and comparative assessment between mammals and birds.

    Science.gov (United States)

    Tarazona, J V; Rodríguez, C; Alonso, E; Sáez, M; González, F; San Andrés, M D; Jiménez, B; San Andrés, M I

    2016-01-22

    This article describes the toxicokinetics of perfluorooctane sulfonate (PFOS) in rabbits under low repeated dosing, equivalent to 0.085μg/kg per day, and the observed differences between rabbits and chickens. The best fitting for both species was provided by a simple pseudo monocompartmental first-order kinetics model, regulated by two rates, and accounting for real elimination as well as binding of PFOS to non-exchangeable structures. Elimination was more rapid in rabbits, with a pseudo first-order dissipation half-life of 88 days compared to the 230 days observed for chickens. By contrast, the calculated assimilation efficiency for rabbits was almost 1, very close to full absorption, significantly higher than the 0.66 with confidence intervals of 0.64 and 0.68 observed for chickens. The results confirm a very different kinetics than that observed in single-dose experiments confirming clear dose-related differences in apparent elimination rates in rabbits, as previously described for humans and other mammals; suggesting the role of a capacity-limited saturable process resulting in different kinetic behaviours for PFOS in high dose versus environmentally relevant low dose exposure conditions. The model calculations confirmed that the measured maximum concentrations were still far from the steady state situation, and that the different kinetics between birds and mammals should may play a significant role in the biomagnifications assessment and potential exposure for humans and predators. For the same dose regime, the steady state concentration was estimated at about 36μg PFOS/L serum for rabbits, slightly above one-half of the 65μg PFOS/L serum estimated for chickens. The toxicokinetic parameters presented here can be used for higher-tier bioaccumulation estimations of PFOS in rabbits and chickens as starting point for human health exposure assessments and as surrogate values for modeling PFOS kinetics in wild mammals and bird in exposure assessment of predatory

  18. Assessment of the potential human health risks from exposure to complex substances in accordance with REACH requirements. "White spirit" as a case study.

    Science.gov (United States)

    McKee, Richard H; Tibaldi, Rosalie; Adenuga, Moyinoluwa D; Carrillo, Juan-Carlos; Margary, Alison

    2018-02-01

    The European chemical control regulation (REACH) requires that data on physical/chemical, toxicological and environmental hazards be compiled. Additionally, REACH requires formal assessments to ensure that substances can be safely used for their intended purposes. For health hazard assessments, reference values (Derived No Effect levels, DNELs) are calculated from toxicology data and compared to estimated exposure levels. If the ratio of the predicted exposure level to the DNEL, i.e. the Risk Characterization Ratio (RCR), is less than 1, the risk is considered controlled; otherwise, additional Risk Management Measures (RMM) must be applied. These requirements pose particular challenges for complex substances. Herein, "white spirit", a complex hydrocarbon solvent, is used as an example to illustrate how these procedures were applied. Hydrocarbon solvents were divided into categories of similar substances. Representative substances were identified for DNEL determinations. Adjustment factors were applied to the no effect levels to calculate the DNELs. Exposure assessments utilized a standardized set of generic exposure scenarios (GES) which incorporated exposure predictions for solvent handling activities. Computer-based tools were developed to automate RCR calculations and identify appropriate RMMs, allowing consistent communications to users via safety data sheets. Copyright © 2017 ExxonMobil Biomedical Sciences Inc. Published by Elsevier Inc. All rights reserved.

  19. Mercury contamination in fish and human hair from Hainan Island, South China Sea: Implication for human exposure.

    Science.gov (United States)

    Liu, Jin-Ling; Xu, Xiang-Rong; Yu, Shen; Cheng, Hefa; Peng, Jia-Xi; Hong, Yi-Guo; Feng, Xin-Bin

    2014-11-01

    Hair has long been recognized as a good biomarker for human exposure to Hg. The mercury concentrations in 14 species of marine fish and hair samples from 177 coastal residents in Hainan, South China Sea were investigated to assess the status of mercury exposure associated with marine fish consumption. Concentrations of total Hg (THg) and methylmercury (MeHg) in the fish muscles were 0.094 ± 0.008 and 0.066 ± 0.006 μg/gww, respectively, which were far below the limit considered safe for consumption (0.5 μg/g). The average THg concentrations in hair of adults (1.02 ± 0.92 μg/g) were lower than the provisional tolerable weekly intake (PTWI) level of 2.2 μg/g. However, 23.7% of children had a hair THg level exceeding the RfD level of 1μg/g, indicating a great risk of Hg exposure to children via fish consumption. The concentration of THg in hair was significantly correlated with fish consumption but not with gender-specific fish intake. With higher fish consumption frequency, the fishermen had significantly elevated hair Hg levels compared to the students and the other general public, who had similar hair THg levels but different fish consumption patterns, indicating the existence of other sources of Hg exposure to the residents of Hainan Island. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Acrylonitrile exposure assessment in the emergency responders of a major train accident in Belgium: a human biomonitoring study.

    Science.gov (United States)

    Van Nieuwenhuyse, A; Fierens, S; De Smedt, T; De Cremer, K; Vleminckx, C; Mertens, B; Van Overmeire, I; Bader, M; De Paepe, P; Göen, T; Nemery, B; Schettgen, T; Stove, C; Van Oyen, H; Van Loco, J

    2014-12-15

    On May 4, 2013, a train transporting chemicals derailed in Wetteren, Belgium. Several tanks loaded with acrylonitrile (ACN) exploded, resulting in a fire and a leakage of ACN. To determine exposure to ACN and to assess discriminating factors for ACN exposure in the emergency responders involved in the on-site management of the train accident. The study population consisted of 841 emergency responders. Between May 21 and June 28, they gave blood for the determination of N-2-cyanoethylvaline (CEV) hemoglobin adducts and urine for the measurement of cotinine. They also filled in a short questionnaire. 163 (26%) non-smokers and 55 (27%) smokers showed CEV concentrations above the reference values of 10 and 200 pmol/g globin, respectively. The 95th percentile in the non-smokers was 73 pmol/g globin and the maximum was 452 pmol/g globin. ACN exposure among the non-smokers was predicted by (1) the distance to the accident, (2) the duration of exposure, and (3) the occupational function. Emergency responders involved in the on-site management of the train accident were clearly exposed to ACN from the accident. However, the extent of exposure remained relatively moderate with CEV concentrations staying within the ranges described in literature as background for a smoking population. Moreover, the exposure was less pronounced in the emergency responders as compared to that in the local population. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. Characterizing the impact of projected changes in climate and air quality on human exposures to ozone.

    Science.gov (United States)

    Dionisio, Kathie L; Nolte, Christopher G; Spero, Tanya L; Graham, Stephen; Caraway, Nina; Foley, Kristen M; Isaacs, Kristin K

    2017-05-01

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O 3 ) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O 3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O 3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O 3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O 3 are much larger than the impacts of changing demographics. These results indicate the potential for future changes in O 3 exposure as a result of changes in climate that could impact human health.

  2. Assessment of exposures to 131I in the continental United States resulting from the Nevada atmospheric nuclear tests

    International Nuclear Information System (INIS)

    Bouville, A.; Wachholz, B.W.; Dreicer, M.

    1991-01-01

    The National Cancer Institute (NCI) is conducting an assessment of the exposure to 131 I that the American people received from the fallout resulting from the atmospheric bomb tests carried out at the Nevada Test Site (NTS). It is estimated that about 5 EBq of 131 I were released into the atmosphere as a result of approximately 100 tests carried out mainly in the 1950s. The most important source of human exposure from fallout 131 I was due to the ingestion of cows' milk but other routes of exposure (ingestion of goats' milk, leafy vegetables, eggs, and cottage cheese as well as inhalation) are also considered. The exposure to 131 I are assessed on a test-by-test and county-by-county basis. In order to make these estimates for locations throughout the United States, it is necessary to determine: The activities of 131 I deposited on soil and vegetation, the amount of 131 I consumed by dairy cows and the resulting 131 I concentrations in cow's milk, and the 131 I ingested by people. The overall methodology currently used in the assessment of the 131 I exposures is presented. Particular attention is devoted to the methodology developed to estimate the intake of contaminated pasture by dairy cows, milk production, and milk distribution for each county of the continental United States during the 1950s

  3. Clean Slate transportation and human health risk assessment

    International Nuclear Information System (INIS)

    1997-02-01

    Public concern regarding activities involving radioactive material generally focuses on the human health risk associated with exposure to ionizing radiation. This report describes the results of a risk analysis conducted to evaluate risk for excavation, handling, and transport of soil contaminated with transuranics at the Clean Slate sites. Transportation risks were estimated for public transport routes from the Tonopah Test Range (TTR) to the Envirocore disposal facility or to the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for both radiological risk and risk due to traffic accidents. Human health risks were evaluated for occupational and radiation-related health effects to workers. This report was generated to respond to this public concern, to provide an evaluation of the risk, and to assess feasibility of transport of the contaminated soil for disposal

  4. Human bromethalin exposures reported to a U.S. Statewide Poison Control System.

    Science.gov (United States)

    Huntington, Serena; Fenik, Yelena; Vohra, Rais; Geller, Richard J

    2016-03-01

    Bromethalin is an increasingly used alternative to long-acting anticoagulant and cholecalciferol rodenticides. There are few reports of human exposures, and no existing professional society guidelines on medical management of bromethalin ingestions. The aim of this retrospective data review is to characterize bromethalin exposures reported to the California Poison Control System (CPCS) between 1997 and 2014. This is an observational retrospective case review of our statewide poison control system's electronic medical records. Following Institutional Board Review and Research Committee approvals, poison center exposures related to bromethalin were extracted using substance code and free text search strategies. Case notes of bromethalin exposures were reviewed for demographic, clinical, laboratory, and outcome information; inclusion criteria for the study was single-substance, human exposure to bromethalin. There were 129 calls related to human bromethalin exposures (three cases met exclusion criteria). The age range of cases was 7 months-90 years old, with the majority of exposures (89 cases; 70.6%), occurring in children younger than 5 years of age (median age of 2 years). Most exposures occurred in the pediatric population as a result of exploratory oral exposure. One hundred and thirteen patients (89.7%) had no effects post exposure, while 10 patients (7.9%) had a minor outcome. Adverse effects were minor, self-limited, and mostly gastrointestinal upset. There were no moderate, major, or fatal effects in our study population. The approximate ingested dose, available in six cases, ranged from 0.067 mg/kg to 0.3 mg/kg (milligrams of bromethalin ingested per kilogram of body weight), and no dose-symptom threshold could be established from this series. Exposures were not confirmed through urine or serum laboratory testing. The prognosis for most accidental ingestions appears to be excellent. However, bromethalin exposures may result in a higher number of

  5. Framework for human health risk assessment of non-cancer effects resulting from short-duration and intermittent exposures to chemicals.

    Science.gov (United States)

    Haber, Lynne T; Sandhu, Reena; Li-Muller, Angela; Mohapatra, Asish; Petrovic, Sanya; Meek, M E Bette

    2016-09-01

    Durations of exposure to chemicals, whether for single, repeated or intermittent periods, may vary from those upon which most guidance values are normally based. Because it is presently not feasible to conduct toxicity studies or develop toxicity reference values (TRVs) specific to each scenario of interest, methods are needed to address these various durations, drawing as much as possible on existing TRVs. A working framework was developed to address the potential for non-cancer effects resulting from continuous short-duration and intermittent exposures to chemicals. The framework presents an integrated, tiered approach that assists the user in identifying when existing TRVs can be applied directly, and the adaptations needed to assess the acceptability of short-duration or intermittent exposure scenarios. Descriptions of when and how toxicokinetic and toxicodynamic aspects need to be taken into consideration are also presented. The framework incorporates the use of TRVs based on exposure periods as similar as possible to the "actual" exposure periods and application of dose averaging under limited, specified conditions. This framework has been developed to aid in improving the scientific basis for the evaluation of short-duration and intermittent exposures in a variety of settings. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Harmonizing exposure metrics and methods for sustainability assessments of food contact materials

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Niero, Monia

    2016-01-01

    ) and Cradle to Cradle to support packaging design. Each assessment has distinct context and goals, but can help manage exposure to toxic chemicals and other environmental impacts. Metrics a nd methods to quantify and characterize exposure to potentially toxic chemicals specifically in food packaging are......, however, notably lacking from such assessments. Furthermore, previous case studies demonstrated that sustainable packaging design focuses, such as decreasing greenhouse gas emissions or resource consumption, can increase exposure to toxic chemicals through packaging. Thereby, developing harmonized methods...... for quantifying exposure to chemicals in food packaging is critical to ensure ‘sustainable packages’ do not increase exposure to toxic chemicals. Therefore we developed modelling methods suitable for first-tier risk screening and environmental assessments. The modelling framework was based on the new product...

  7. Exposure to perfluorinated compounds and human semen quality in Arctic and European populations

    DEFF Research Database (Denmark)

    Toft, G; Jönsson, B A G; Lindh, C H

    2012-01-01

    Perfluorinated compounds (PFCs) have been suspected to adversely affect human reproductive health. The aim of this study was to investigate the associations between PFC exposure and male semen quality.......Perfluorinated compounds (PFCs) have been suspected to adversely affect human reproductive health. The aim of this study was to investigate the associations between PFC exposure and male semen quality....

  8. 77 FR 52025 - Notification of a Public Teleconference of the Science Advisory Board; Exposure and Human Health...

    Science.gov (United States)

    2012-08-28

    ... Science Advisory Board; Exposure and Human Health Committee AGENCY: Environmental Protection Agency (EPA... Office announces a public teleconference of the SAB Exposure and Human Health Committee to discuss its... hereby given that the SAB Exposure and Human Health Committee (EHHC) will hold a public teleconference to...

  9. Assessment of health impacts of radon exposures in Florida

    International Nuclear Information System (INIS)

    Vonstille, W.T.; Sacarello, H.L.A.

    1990-01-01

    This paper reports on residential radon levels, from a statewide Florida survey, that were used in an analysis of over 150,000 medically treated episodes of malignancies and other serious illnesses and conditions in whites, blacks and Hispanics from all counties in the state. No evidence of an increased percentage of cancer was found in any sex or ethnic group from the areas with the highest radon exposure levels. Age adjustment of data did not affect the results. The highest radon exposures were associated with some of the lowest cancer rates and contradict the risk assessment hypothesis based on extrapolation from exposures in mining. Points for DOE and EPA errors in risk assessment methods are reviewed; predictions from risk assessment should be empirically tested as in the case of any other scientific hypothesis before being used as a basis for public policy. Thus, the authors find that cancer risks of residential radon have been vastly overstated

  10. Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic

    Science.gov (United States)

    Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja

    2015-01-01

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201

  11. Climate change impacts on environmental and human exposure to mercury in the arctic.

    Science.gov (United States)

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  12. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives

    International Nuclear Information System (INIS)

    Dorne, J.L.C.M.; Fink-Gremmels, J.

    2013-01-01

    Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ► Principles of human and animal health risk assessment. ► Data gaps for each step of animal health risk assessment. ► Implications of animal risk assessment on human risk assessment. ► Future perspectives on chemical risk assessment

  13. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Dorne, J.L.C.M., E-mail: jean-lou.dorne@efsa.europa.eu [Emerging Risk Unit, Via Carlo Magno 1A, 43126 Parma (Italy); Fink-Gremmels, J. [Utrecht University, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584 CM Utrecht (Netherlands)

    2013-08-01

    Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ► Principles of human and animal health risk assessment. ► Data gaps for each step of animal health risk assessment. ► Implications of animal risk assessment on human risk assessment. ► Future perspectives on chemical risk assessment.

  14. The ethics of human volunteer studies involving experimental exposure to pesticides: unanswered dilemmas

    Directory of Open Access Journals (Sweden)

    London Leslie

    2010-08-01

    Full Text Available Abstract The controversy about the use of data from human volunteer studies involving experimental exposure to pesticides as part of regulatory risk assessment has been widely discussed, but the complex and interrelated scientific and ethical issues remain largely unresolved. This discussion paper, generated by authors who comprised a workgroup of the ICOH Scientific Committee on Rural Health, reviews the use of human experimental studies in regulatory risk assessment for pesticides with a view to advancing the debate as to when, if ever, such studies might be ethically justifiable. The discussion is based on three elements: (a a review of discussion papers on the topic of human testing of pesticides and the positions adopted by regulatory agencies in developed countries; (b an analysis of published and unpublished studies involving human testing with pesticides, both in the peer-reviewed literature and in the JMPR database; and (c application of an ethical analysis to the problem. The paper identifies areas of agreement which include general principles that may provide a starting point on which to base criteria for judgements as to the ethical acceptability of such studies. However, the paper also highlights ongoing unresolved differences of opinion inherent in ethical analysis of contentious issues, which we propose should form a starting point for further debate and the development of guidelines to achieve better resolution of this matter.

  15. The ethics of human volunteer studies involving experimental exposure to pesticides: unanswered dilemmas.

    Science.gov (United States)

    London, Leslie; Coggon, David; Moretto, Angelo; Westerholm, Peter; Wilks, Martin F; Colosio, Claudio

    2010-08-18

    The controversy about the use of data from human volunteer studies involving experimental exposure to pesticides as part of regulatory risk assessment has been widely discussed, but the complex and interrelated scientific and ethical issues remain largely unresolved. This discussion paper, generated by authors who comprised a workgroup of the ICOH Scientific Committee on Rural Health, reviews the use of human experimental studies in regulatory risk assessment for pesticides with a view to advancing the debate as to when, if ever, such studies might be ethically justifiable. The discussion is based on three elements: (a) a review of discussion papers on the topic of human testing of pesticides and the positions adopted by regulatory agencies in developed countries; (b) an analysis of published and unpublished studies involving human testing with pesticides, both in the peer-reviewed literature and in the JMPR database; and (c) application of an ethical analysis to the problem. The paper identifies areas of agreement which include general principles that may provide a starting point on which to base criteria for judgements as to the ethical acceptability of such studies. However, the paper also highlights ongoing unresolved differences of opinion inherent in ethical analysis of contentious issues, which we propose should form a starting point for further debate and the development of guidelines to achieve better resolution of this matter.

  16. The ethics of human volunteer studies involving experimental exposure to pesticides: unanswered dilemmas

    Science.gov (United States)

    2010-01-01

    The controversy about the use of data from human volunteer studies involving experimental exposure to pesticides as part of regulatory risk assessment has been widely discussed, but the complex and interrelated scientific and ethical issues remain largely unresolved. This discussion paper, generated by authors who comprised a workgroup of the ICOH Scientific Committee on Rural Health, reviews the use of human experimental studies in regulatory risk assessment for pesticides with a view to advancing the debate as to when, if ever, such studies might be ethically justifiable. The discussion is based on three elements: (a) a review of discussion papers on the topic of human testing of pesticides and the positions adopted by regulatory agencies in developed countries; (b) an analysis of published and unpublished studies involving human testing with pesticides, both in the peer-reviewed literature and in the JMPR database; and (c) application of an ethical analysis to the problem. The paper identifies areas of agreement which include general principles that may provide a starting point on which to base criteria for judgements as to the ethical acceptability of such studies. However, the paper also highlights ongoing unresolved differences of opinion inherent in ethical analysis of contentious issues, which we propose should form a starting point for further debate and the development of guidelines to achieve better resolution of this matter. PMID:20718963

  17. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Yungang; Liu, Yufei; Liang, Boheng; Zhou, Hongwei; Li, Yingyue; Zhang, Yuhua; Huang, Jie; Yu, Chao; Chen, Kuncai

    2018-03-20

    Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile) cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4) μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW), accounting for 57.6% of the provisional tolerable monthly intake (PTMI). Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption) was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile) was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary.

  18. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2018-03-01

    Full Text Available Cadmium and its compounds are human carcinogens with severe organ toxicity, and their contamination of agricultural soil in China has been frequently reported; however, the dietary exposure to cadmium in residents and the relevant health risk have seldom been reported. In this study, the concentration of cadmium in various types of food collected from 2013 to 2015 were analyzed using graphite furnace atomic absorption spectrometry, and the dietary exposure to cadmium assessed based on a dietary survey in 2976 Guangzhou residents. In total, 3074 out of 4039 food samples had cadmium levels above the limit of detection. The mean ± standard deviation (50th, 95th percentile cadmium content in all samples was 159.0 ± 112.7 (8.6, 392.4 μg/kg, with levels ranging from 1.0 to 7830 μg/kg. Using the mean cadmium concentrations, the average monthly dietary exposure of Guangzhou residents to cadmium was 14.4 (μg/kg body weight (BW, accounting for 57.6% of the provisional tolerable monthly intake (PTMI. Rice, laver, vegetables, and live aquatic products were the main sources of cadmium intake, on average accounting for 89% of the total value. The dietary cadmium exposure in high consumers (95th percentile food consumption was 41.0 μg/kg·BW/month, accounting for 163% of the PTMI. Additionally, dietary cadmium exposure at mean consumption but high cadmium food concentration (95th percentile was 32.3 μg/kg·BW/month, corresponding to 129% of the PTMI. The level of dietary exposure to cadmium in most Guangzhou residents was within the safety limit, thus increased health risk from dietary cadmium exposure is low at present. However, continued efforts by local governments to monitor the levels of cadmium in the four main food categories contributing to exposure are necessary.

  19. Assessment of body doses from photon exposures using human voxel models

    International Nuclear Information System (INIS)

    Zankl, M.; Fill, U.; Petoussi-Henss, N.; Regulla, D.

    2000-01-01

    For the scope of risk assessment in protection against ionising radiation (occupational, environmental and medical) it is necessary to determine the radiation dose to specific body organs and tissues. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body. Most of the computational body models in use are so-called mathematical models; the most famous is the MIRD-5 phantom developed at Oak Ridge National Laboratory. In the 1980s, a new generation of human body models was introduced at GSF, constructed from whole body CT data. Due to being constructed from image data of real persons, these 'voxel models' offer an improved realism of external and internal shape of the body and its organs, compared to MIRD-type models. Comparison of dose calculations involving voxel models with respective dose calculations for MIRD-type models revealed that the deviation of the individual anatomy from that described in the MIRD-type models indeed introduces significant deviations of the calculated organ doses. Specific absorbed fractions of energy released in a source organ due to incorporated activity which are absorbed in target organs may differ by more than an order of magnitude between different body models; for external photon irradiation, the discrepancies are more moderate. (author)

  20. Defining product intake fraction to quantify and compare exposure to consumer products

    DEFF Research Database (Denmark)

    Jolliet, Oliver; Ernstoff, Alexi; Csiszar, Susan A.

    2015-01-01

    There is a growing consciousness that exposure studies need to better cover near-field exposure associated with products use. To consistently and quantitatively compare human exposure to chemicals in consumer products, we introduce the concept of product intake fraction, as the fraction...... of a chemical within a product that is eventually taken in by the human population. This metric enables consistent comparison of exposures during consumer product use for different product-chemical combinations, exposure duration, exposure routes and pathways and for other life cycle stages. We present example...... modalities within life cycle assessment and risk assessment contexts. The product intake fraction helps to provide a clear interface between the life cycle inventory and impact assessment phases, to identify best suited sentinel products and to calculate overall exposure to chemicals in consumer products...