WorldWideScience

Sample records for human exploration project

  1. Project Explorer

    Science.gov (United States)

    Dannenberg, K. K.; Henderson, A.; Lee, J.; Smith, G.; Stluka, E.

    1984-01-01

    PROJECT EXPLORER is a program that will fly student-developed experiments onboard the Space Shuttle in NASA's Get-Away Special (GAS) containers. The program is co-sponsored by the Alabama Space and Rocket Center, the Alabama-Mississippi Section of the American Institute of Aeronautics and Astronautics, Alabama A&M University and requires extensive support by the University of Alabama in Huntsville. A unique feature of this project will demonstrate transmissions to ground stations on amateur radio frequencies in English language. Experiments Nos. 1, 2, and 3 use the microgravity of space flight to study the solidification of lead-antimony and aluminum-copper alloys, the growth of potassium-tetracyanoplatinate hydrate crystals in an aqueous solution, and the germination of radish seeds. Flight results will be compared with Earth-based data. Experiment No. 4 features radio transmission and will also provide timing for the start of all other experiments. A microprocessor will obtain real-time data from all experiments as well as temperature and pressure measurements taken inside the canister. These data will be transmitted on previously announced amateur radio frequencies after they have been converted into the English language by a digitalker for general reception.

  2. Human Exploration Telerobotics (HET2): Robonaut 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Robonaut 2 Project will focus on advancing the capabilities of the Robonaut series of humanoid robots to perform both IVA and EVA on the ISS including legged...

  3. Exploring human autonomy effectiveness: Project logic and its effects on individual autonomy

    NARCIS (Netherlands)

    D.R. Gasper (Des); M.R. Muñiz Castillo (Mirtha)

    2009-01-01

    textabstractWe have proposed elsewhere an alternative analytical framework for project evaluation and a criterion of ‘human autonomy effectiveness’ to examine the effects of aid projects on the lives, opportunities and capacities of participants (Muñiz Castillo & Gasper, 2009). A project is human-au

  4. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  5. Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999

    Science.gov (United States)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.

  6. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    Science.gov (United States)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  7. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  8. Avionics Architecture for Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Avionics Architectures for Exploration Project team will develop a system level environment and architecture that will accommodate equipment from multiple...

  9. Composites for Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will devise test and development approaches to support development of large scale composite payload fairing structures, including conducting tests and...

  10. Building "Bob": A Project Exploring the Human Body at Western Illinois University Preschool Center

    Science.gov (United States)

    Brouette, Scott

    2008-01-01

    When the children at Western Illinois University Preschool Center embarked on a study of human bodies, they decided to build a life-size model of a body, organ by organ from the inside out, to represent some of the things they were learning. This article describes the building of "Bob," the human body model, highlighting the children's…

  11. Human Support Issues and Systems for the Space Exploration Initiative: Results from Project Outreach

    Science.gov (United States)

    1991-01-01

    The NCRP limits are based on data and epidemological analysis that were available to the council before the July 31, 1989, publication date of Report...appropriate levels of risk after receiving a range of projections (rather than a point estimate) from the NCRP based on the best scientific and epidemologic

  12. The design explorer project

    DEFF Research Database (Denmark)

    Pejtersen, Annelise Mark; Sonnenwald, Diane H.; Buur, Jacob;

    1997-01-01

    , or categories, of domain information which need to be available for a system or product designer/design team in order to determine the characteristics of the artefact, or object of design. These dimensions include information about the different work domains in which the product plays a role during its lifetime......, and various related task spaces, domain activities, decision-making activities, division and coordination of work, and social organization. The framework is the result of a generalization of experiences from field studies in and design of support systems for a variety of modern work domains, such as process......It is widely recognized that the increasingly dynamic and competitive business environment requires the exploration and integration of specialized knowledge from different domains in order to create innovative and competitive artefacts and reduce design and development costs. This paper presents...

  13. Human assisted robotic exploration

    Science.gov (United States)

    Files, B. T.; Canady, J.; Warnell, G.; Stump, E.; Nothwang, W. D.; Marathe, A. R.

    2016-05-01

    In support of achieving better performance on autonomous mapping and exploration tasks by incorporating human input, we seek here to first characterize humans' ability to recognize locations from limited visual information. Such a characterization is critical to the design of a human-in-the-loop system faced with deciding whether and when human input is useful. In this work, we develop a novel and practical place-recognition task that presents humans with video clips captured by a navigating ground robot. Using this task, we find experimentally that human performance does not seem to depend on factors such as clip length or familiarity with the scene and also that there is significant variability across subjects. Moreover, we find that humans significantly outperform a state-of-the-art computational solution to this problem, suggesting the utility of incorporating human input in autonomous mapping and exploration techniques.

  14. Robotics for Human Exploration

    Science.gov (United States)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  15. The Global Discourse on Human Trafficking and the Construction of a Standard of Civilization: Explored through The CNN Freedom Project

    OpenAIRE

    Larsen, Line Liblik

    2014-01-01

    This thesis is an integrated research study in two study programs cultural encounters and global studies. The thesis performs a critical discourse analysis of a mass media humanitarian campaign called The CNN Freedom Project and the broader global discourse on human trafficking in which the campaign is situated. The complexity of the issue of human trafficking is owed to the plethora of competing and influential elements, where various definitions, understandings, statistics, and ideologies e...

  16. HUMAN CONNECTOME PROJECT (HCP)

    OpenAIRE

    Shashank Shekhar Tiwari*, Shivani Joshi, Tanvi Mittal, Shruti Jain

    2016-01-01

    This project deals with the nervous system and its function in brain. Here connectome means the microscopic neural connectivity and its mapping between all the neurons present in the brain which further represents their graphical representation on the visual screen also which will further help us to zoom into a region to explore the cells and the functions depending on it and taking this one step ahead the memory implementation in human brain so it will be used as a memory unit except the fac...

  17. Human Power Empirically Explored

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, A.J.

    2011-01-18

    Harvesting energy from the users' muscular power to convert this into electricity is a relatively unknown way to power consumer products. It nevertheless offers surprising opportunities for product designers; human-powered products function independently from regular power infrastructure, are convenient and can be environmentally and economically beneficial. This work provides insight into the knowledge required to design human-powered energy systems in consumer products from a scientific perspective. It shows the developments of human-powered products from the first introduction of the BayGen Freeplay radio in 1995 till current products and provides an overview and analysis of 211 human-powered products currently on the market. Although human power is generally perceived as beneficial for the environment, this thesis shows that achieving environmental benefit is only feasible when the environmental impact of additional materials in the energy conversion system is well balanced with the energy demands of the products functionality. User testing with existing products showed a preference for speeds in the range of 70 to 190 rpm for crank lengths from 32 to 95 mm. The muscular input power varied from 5 to 21 W. The analysis of twenty graduation projects from the Faculty of Industrial Design Engineering in the field of human-powered products, offers an interesting set of additional practice based design recommendations. The knowledge based approach of human power is very powerful to support the design of human-powered products. There is substantial potential for improvements in the domains energy conversion, ergonomics and environment. This makes that human power, when applied properly, is environmentally and economically competitive over a wider range of applications than thought previously.

  18. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    Science.gov (United States)

    Kidd, Luanne; Morris, Kenneth B.; Self, Tim

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.

  19. Exploration Medical System Demonstration Project

    Science.gov (United States)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  20. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  1. Human Document Project

    NARCIS (Netherlands)

    Vries, de J.; Abelmann, L.; Manz, A.; Elwenspoek, M.C.

    2012-01-01

    “The Human Document Project” is a project which tries to answer all of the questions related to preserving information about the human race for tens of generations of humans to come or maybe even for a future intelligence which can emerge in the coming thousands of years. This document mainly focuss

  2. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  3. Human Power Empirically Explored

    NARCIS (Netherlands)

    Jansen, A.J.

    2011-01-01

    Harvesting energy from the users’ muscular power to convert this into electricity is a relatively unknown way to power consumer products. It nevertheless offers surprising opportunities for product designers; human-powered products function independently from regular power infrastructure, are conven

  4. Visible Human Project

    Science.gov (United States)

    ... Library of Medicine thanks the men and the women who will their body to science, thereby enabling medical research and development. Further Information General Information A description of The Visible Human Project ® image data and how to obtain it (includes license ...

  5. Hispanic Vocational Exploration Project. Final Report.

    Science.gov (United States)

    Centro De La Comunidad, Inc., New London, CT.

    During its second year, the Hispanic Vocational Exploration Project recruited eighth and ninth grade Hispanic youth for a four-week cycle, after-school, career exploratory program at Southeastern Regional Vocational Technical School, Groton, Connecticut. A series of career education workshops was the other major project activity. Supportive…

  6. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  7. Robots and Humans: Synergy in Planetary Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  8. The Human Variome Project.

    Science.gov (United States)

    Burn, John; Watson, Michael

    2016-06-01

    The practical realization of genomics has meant a growing realization that variant interpretation is a major barrier to practical use of DNA sequence data. The late Professor Dick Cotton devoted his life to innovation in molecular genetics and was a prime mover in the international response to the need to understand the "variome." His leadership resulted in the launch first of the Human Genetic Variation Society and then, in 2006, an international agreement to launch the Human Variome Project (HVP), aimed at data integration enabled by standards and infrastructure of the databases of variants being identified in families with a range of inherited disorders. The project attracted a network of affiliates across 81 countries and earned formal recognition by UNESCO, which now hosts its biennial meetings. It has also signed a Memorandum of Understanding with the World Health Organization. Future progress will depend on longer term secure funding and integration with the efforts of the genomics community where the rapid advances in sequencing technology have enabled variant capture on a previously unimaginable scale. Efforts are underway to integrate the efforts of HVP with those of the Global Alliance for Genomics and Health to provide a lasting legacy of Dick Cotton's vision.

  9. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  10. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  11. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  12. Robotic Recon for Human Exploration

    Science.gov (United States)

    Deans, Matthew; Fong, Terry; Ford, Ken; Heldmann, Jennifer; Helper, Mark; Hodges, Kip; Landis, Rob; Lee, Pascal; Schaber, Gerald; Schmitt, Harrison H.

    2009-01-01

    Robotic reconnaissance has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon may increase crew productivity and reduce operational risk for exploration. However, additional research, development and field-testing is needed to mature robot and ground control systems, refine operational protocols, and specify detailed requirements. When the new lunar surface campaign begins around 2020, and before permanent outposts are established, humans will initially be on the Moon less than 10% of the time. During the 90% of time between crew visits, robots will be available to perform surface operations under ground control. Understanding how robotic systems can best address surface science needs, therefore, becomes a central issue Prior to surface missions, lunar orbiters (LRO, Kaguya, Chandrayyan-1, etc.) will map the Moon. These orbital missions will provide numerous types of maps: visible photography, topographic, mineralogical and geochemical distributions, etc. However, remote sensing data will not be of sufficient resolution, lighting, nor view angle, to fully optimize pre-human exploration planning, e.g., crew traverses for field geology and geophysics. Thus, it is important to acquire supplemental and complementary surface data. Robotic recon can obtain such data, using robot-mounted instruments to scout the surface and subsurface at resolutions and at viewpoints not achievable from orbit. This data can then be used to select locations for detailed field activity and prioritize targets to improve crew productivity. Surface data can also help identify and assess terrain hazards, and evaluate alternate routes to reduce operational risk. Robotic recon could be done months in advance, or be part of a continuing planning process during human missions.

  13. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; Busto, J.; Cohen, B.; Caldwell, B.; Jones, A. J. P.; Johnson, S.; Kobayashi, L.; Colaprete, A.

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  14. Exploring overlay journals: the RIOJA project

    CERN Document Server

    CERN. Geneva

    2007-01-01

    Researchers in cosmology and astrophysics depend on the arXiv repository for the registration and dissemination of their work, as well as for current awareness, yet they continue to submit papers to journals for review. Could rapid quality certification be overlaid directly onto the arXiv repository? This presentation introduces the RIOJA (Repository Interface to Overlaid Journal Archives) project, on which a group of cosmology researchers from the UK is working with UCL Library Services and Cornell University. The project is creating a tool to support the overlay of journals onto repositories, and will demonstrate a cosmology journal overlaid on top of arXiv. RIOJA will also work with the cosmology community to explore the social and economic aspects of journal overlay in this discipline: what other value, besides the quality stamp, does journal publication typically add? What are the costs of the ideal overlay journal for this community, and how could those costs be recovered? Would researchers real...

  15. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  16. Exploring Supernova Remnants with the SPIES Project

    Science.gov (United States)

    Frank, Kari A.; Burrows, David N.; Dwarkadas, Vikram

    2017-01-01

    X-ray observations provide a key window into supernova remnants, providing measurements of a plethora of physical properties that are critical for understanding SNRs, their environments, their progenitors, and the SNe that created them. However, characterizing the entire volume of shocked plasma in a SNR is difficult, due to their complicated three dimensional morphologies and spectra. The SPIES project aims to address this problem by applying a novel X-ray analysis method, Smoothed Particle Inference (SPI), to XMM observations of 12 SNRs. SPI is a Bayesian modeling process that fits a population of gas blobs ("smoothed particles") such that their superposed emission reproduces the observed spatial and spectral distribution of photons. Emission-weighted distributions and maps of plasma properties, such as abundances and temperatures, are then extracted from the properties of the individual blobs. Additionally, because the collection of blobs is a multi-dimensional representation of the shocked plasma, we can carry out a more detailed exploration of plasma properties by extracting any subset of the blobs (e.g. those with the highest temperatures) and investigating its properties (e.g. map the abundances). Here we present preliminary results from SPI analyses of the first 6 remnants in the SPIES project.

  17. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  18. Future Visions for Scientific Human Exploration

    Science.gov (United States)

    Garvin, James

    2005-01-01

    stumbling block to moving humans on site as deep-space explorers, delivering the masses required for human spaceflight systems to LEO or other Earth orbital vantage points using the existing or projected fleet of Earth-to-orbit (ETO) launch vehicles. Without a return to Saturn V-class boosters or an alternate path, one cannot imagine emplacing the masses that would be required for any deep-space voyage without a prohibitive number of Shuttle-class launches. One futurist solution might involve mass launch systems that could be used to move the consumables, including fuel, water, food, and building materials, to LEO in pieces rather than launching integrated systems. This approach would necessitate the development of robotic assembly and fuel-storage systems in Earth orbit, but could provide for a natural separation of low-value cargo (e.g., fuel, water).

  19. [Projective identification in human relations].

    Science.gov (United States)

    Göka, Erol; Yüksel, Fatih Volkan; Göral, F Sevinç

    2006-01-01

    Melanie Klein, one of the pioneers of Object Relations Theory, first defined "projective identification", which is regarded as one of the most efficacious psychoanalytic concepts after the discovery of the "unconscious". Examination of the literature on "projective identification" shows that there are various perspectives and theories suggesting different uses of this concept. Some clinicians argue that projective identification is a primitive defense mechanism observed in severe psychopathologies like psychotic disorder and borderline personality disorder, where the intra-psychic structure has been damaged severely. Others suggest it to be an indispensable part of the transference and counter-transference between the therapist and the patient during psychotherapy and it can be used as a treatment material in the therapy by a skillful therapist. The latter group expands the use of the concept through normal daily relationships by stating that projective identification is one type of communication and part of the main human relation mechanism operating in all close relationships. Therefore, they suggest that projective identification has benign forms experienced in human relations as well as malign forms seen in psychopathologies. Thus, discussions about the definition of the concept appear complex. In order to clarify and overcome the complexity of the concept, Melanie Klein's and other most important subsequent approaches are discussed in this review article. Thereby, the article aims to explain its important function in understanding the psychopathologies, psychotherapeutic relationships and different areas of normal human relations.

  20. Morpheus: Advancing Technologies for Human Exploration

    Science.gov (United States)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  1. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  2. Human space exploration the next fifty years.

    Science.gov (United States)

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.

  3. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  4. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    Science.gov (United States)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  5. Robotic Tool Changer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions will require compact, lightweight robotic manipulators for handling a variety of tools & instruments without increasing the...

  6. Intelligent Spectrometry for Robotic Explorers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our aim in this project is to apply the state-of-the-art in science autonomy, including the PI's recent work at Carnegie Mellon in areas of automatic spectrometer...

  7. Sensor Array Analyzer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future planetary exploration missions such as those planned by NASA and other space agencies over the next few decades require advanced chemical and biological...

  8. AGATE: Autonomous Go and Touch Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation (AGATE, for Autonomous Go And Touch Exploration) will enable single-sol "go and touch" instrument placement from distances of up to five meters for...

  9. PERISCOPE: PERIapsis Subsurface Cave OPtical Explorer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar sub-surface exploration has been a topic of discussion since the Lunar Reconnaissance Orbiter identified openings (cave skylights) on the surface of the moon...

  10. Enabling Tethered Exploration on Mars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong science motivations exist for exploring hard to reach terrain on Mars and the leading systems proposed to do so require tethers. While tethers are used...

  11. Humanity in God's Image: An Interdisciplinary Exploration

    DEFF Research Database (Denmark)

    Welz, Claudia

    How can we, in our times, understand the biblical concept that human beings have been created in the image of an invisible God? This is a perennial but increasingly pressing question that lies at the heart of theological anthropology. Humanity in God's Image: An Interdisciplinary Exploration....... Claudia Welz offers an interdisciplinary exploration of theological and ethical 'visions' of the invisible. By analysing poetry and art, Welz exemplifies human self-understanding in the interface between the visual and the linguistic. The content of the imago Dei cannot be defined apart from the image...

  12. Robotic Follow-Up for Human Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Deans, Matthew C.; Adams, Byron; Allan, Mark; Altobelli, Martha; Bouyssounouse, Xavier; Cohen, Tamar; Flueckiger, Lorenzo; Garber, Joshua; Palmer, Elizabeth; Heggy, Essam; Jurgens, Frank; Kennedy, Tim; Kobayashi, Linda; Lee, Pascal; Lee, Susan Y.; Lees, David; Lundy, Mike; Park, Eric; Pedersen, Liam; Smith, Trey; To, Vinh; Utz, Hans; Wheeler, Dawn

    2010-01-01

    We are studying how "robotic follow-up" can improve future planetary exploration. Robotic follow-up, which we define as augmenting human field work with subsequent robot activity, is a field exploration technique designed to increase human productivity and science return. To better understand the benefits, requirements, limitations and risks associated with this technique, we are conducting analog field tests with human and robot teams at the Haughton Crater impact structure on Devon Island, Canada. In this paper, we discuss the motivation for robotic follow-up, describe the scientific context and system design for our work, and present results and lessons learned from field testing.

  13. Multi-Robot Planetary Exploration Architectures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space policy direction is shifting, particularly with respect to human goals. Given the uncertainty of future missions to the moon, Mars, and other bodies, a tool...

  14. Thermal Design Overview of the Mars Exploration Rover Project

    Science.gov (United States)

    Tsuyuki, Glenn

    2001-01-01

    This slide presentation reviews the thermal design for the Mars exploration rover project. It includes information on the spacecraft configuration, the cruise scenario, landing scenario, instrument package, thermal environment, and spacecraft schematics.

  15. Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada.

    Science.gov (United States)

    1980-05-01

    Dral. Iron Ore Deposits of Nevada . Part A: Geology and Iron Ore Deposits of the Buena Vista Hills, Chur- chill and Pershing Counties , Nevada . Nevada ...tumber) Geothermal Potential Naval Air Station, Fallon, Nevada Fallon Exploration Project 20. ABSTRACT (Coawu en reverse aide It neeeen end $doaft...UNCLASSIFIED ICUMTY CLASSIFICATION OF THIS PAat L tmb Doe aneem (U) Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada , Interim Report

  16. Exploration Medical Capability (ExMC) Projects

    Science.gov (United States)

    Wu, Jimmy; Watkins, Sharmila; Baumann, David

    2010-01-01

    During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.

  17. Graphical Visualization of Human Exploration Capabilities

    Science.gov (United States)

    Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex

    2016-01-01

    NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description

  18. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Genome Resources Access to the full human sequence All About The Human Genome Project (HGP) The Human ... an international research effort to sequence and map all of the genes - together known as the genome - ...

  19. Connecting Robots and Humans in Mars Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned

  20. Cryogenics and the Human Exploration of Mars

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  1. Astrobiological benefits of human space exploration.

    Science.gov (United States)

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  2. Getting Ready for the Human Phenome Project

    DEFF Research Database (Denmark)

    Oetting, William S; Robinson, Peter N; Greenblatt, Marc S

    2013-01-01

    A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project". Understanding the genetic contribution to both rare si...

  3. Adaptive bio-inspired navigation for planetary exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Exploration of planetary environments with current robotic technologies relies on human control and power-hungry active sensors to perform even the most elementary...

  4. Adaptive bio-inspired navigation for planetary exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface exploration of planetary environments with current robotic technologies relies heavily on human control and power-hungry active sensors to perform even the...

  5. The Role of Lunar Development in Human Exploration of the Solar System

    Science.gov (United States)

    Mendell, Wendell W.

    1999-01-01

    Human exploration of the solar system can be said to have begun with the Apollo landings on the Moon. The Apollo Project was publicly funded with the narrow technical objective of landing human beings on the Moon. The transportation and life support systems were specialized technical designs, developed in a project management environment tailored to that objective. Most scenarios for future human exploration assume a similar long-term commitment of public funds to a narrowly focused project managed by a large, monolithic organization. Advocates of human exploration of space have not yet been successful in generating the political momentum required to initiate such a project to go to the Moon or to Mars. Alternative scenarios of exploration may relax some or all of the parameters of organizational complexity, great expense, narrow technical focus, required public funding, and control by a single organization. Development of the Moon using private investment is quite possibly a necessary condition for alternative scenarios to succeed.

  6. Characterize Human Forward Contamination Project

    Science.gov (United States)

    Rucker, Michelle

    2015-01-01

    Let's face it: wherever we go, we will inevitably carry along the little critters that live in and on us. Conventional wisdom has long held that it's unlikely those critters could survive the space environment, but in 2007 microscopic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the International Space Station (ISS). But what about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen-and how might they mutate with long-duration exposure? Unlike the Mars rovers that we cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? This project has four technical objectives: 1. TEST: Develop a test plan to leverage existing equipment (i.e. ISS) to characterize the kinds of organisms we can reasonably expect pressurized, crewed volumes to vent or leak overboard; as part of testing, we'll need to develop an Extravehicular Activity (EVA)-compatible tool that can withstand the pressure and temperature extremes of space, as well as collect, separate, and store multiple samples; 2. ANALYSIS: Develop an analysis plan to study those organisms in relevant destination environments, including spacecraft-induced conditions; 3. MODEL: Develop a modeling plan to model organism transport mechanisms in relevant destination environments; 4. SHARE: Develop a plan to disseminate findings and integrate recommendations into exploration requirements & ops. In short, we propose a system engineering approach to roadmap the necessary experiments, analysis, and modeling up front--rather than try to knit together disparate chunks of data into a sensible conclusion after the fact.

  7. Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities

    OpenAIRE

    Aubert, André E.; André E. Larina, Irina; Momken, Iman; Blanc, Stéphane; White, Olivier; Prisk, Kim; Linnarsson, Dag

    2016-01-01

    International audience; The THESEUS project (Towards Human Exploration of Space: aEUropean Strategy) was initiated within the seventh FrameworkProgramme by the European Commission. This project aimed toprovide a cross-cutting, life science-based roadmap for Europe’sstrategy towards human exploration of space, especially for deepspace missions and its relevance to applications on Earth. Toaddress these challenges, relevance of space research on thecardiovascular system, the lungs and kidneys, ...

  8. Exploring the application of interactive video projection in Physical Education

    NARCIS (Netherlands)

    S.I. (Sanne) de Vries; Danica Mast; Jeroen de Krom

    2015-01-01

    This paper describes explorations into related technology and research regarding the application of interactive video projection within physical education and the gym of the future. We discuss the application of exergaming in physical education, spatial augmented reality as a technology and

  9. Research on Human-Robot Joint System for Lunar Exploration

    Science.gov (United States)

    Zhang, Wei

    The lunar exploration in China is in progress. In order to reduce human workload and costs, and conduct researches more effectively and efficiently, human-robot joint systems are necessary for lunar exploration. The concept of human-robot joint system for lunar exploration is studied in this paper. The possible collaborative ways between human and robots and the collaborative activities which can be conducted for lunar exploration are discussed. Moreover, the preliminary configuration of a human-robot joint system is presented.

  10. Exploring Human Capital and Hybrid Entrepreneurship

    DEFF Research Database (Denmark)

    Klyver, Kim; Lomberg, Carina; Steffens, Paul

    2016-01-01

    An individual’s human capital affects their choice to become and entrepreneur and also their likely success as a nascent entrepreneur. This paper explores how hybrid employment—entrepreneur opportunities impact these dynamics. Drawing on insights from decision theory, we argue that an individual...... longitudinal dataset of individuals facing career transition as nascent entrepreneurs, job seekers or both, we find that while hybrid nascent entrepreneurship (trying to start a business while being employed) has a positive influence on outcomes, hybrid search (concurrent job search while trying to start...

  11. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  12. Exploring quantum physics through hands-on projects

    CERN Document Server

    Prutchi, David

    2012-01-01

    Build an intuitive understanding of the principles behind quantum mechanics through practical construction and replication of original experiments With easy-to-acquire, low-cost materials and basic knowledge of algebra and trigonometry, Exploring Quantum Physics through Hands-on Projects takes readers step by step through the process of re-creating scientific experiments that played an essential role in the creation and development of quantum mechanics. From simple measurements of Planck's constant to testing violations of Bell's inequalities using entangled photons, Exploring Quantum Physics through Hands-on Projects not only immerses readers in the process of quantum mechanics, it provides insight into the history of the field--how the theories and discoveries apply to our world not only today, but also tomorrow. By immersing readers in groundbreaking experiments that can be performed at home, school, or in the lab, this first-ever, hands-on book successfully demystifies the world of quantum physics for...

  13. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil

  14. The UNSIN Project: Exploring the Molecular Physiology of Sins

    Science.gov (United States)

    Naji, Faysal; Salci, Lauren; Hoit, Graeme; Rangachari, P. K.

    2012-01-01

    Although active learning works, promoting it in large undergraduate science classes is difficult. Here, three students (F. Naji, L. Salci, and G. Hoit) join their teacher (P. K. Rangachari) in describing one such attempt. Two cohorts in a first-year undergraduate biology course explored the molecular underpinnings of human misbehavior. Students…

  15. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  16. Human-Systems Integration Processes (HSIP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In FY12, this project removed the commercial-specific content from the Commercial Human-Systems Integration Design Processes (CHSIP), identified gaps in the...

  17. The Human Genome Diversity (HGD) Project. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  18. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    Science.gov (United States)

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  19. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    Science.gov (United States)

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  20. Understanding Predictability and Exploration in Human Mobility

    CERN Document Server

    Cuttone, Andrea; González, Marta C

    2016-01-01

    Predictive models for human mobility have important applications in many fields such as traffic control, ubiquitous computing and contextual advertisement. The predictive performance of models in literature varies quite broadly, from as high as 93% to as low as under 40%. In this work we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users for periods between 3 months and one year. We show that it is easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover we demonstrate how the temporal and spatial resolution of the data can have strong influence on the accuracy of prediction. Finally we uncover that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our abili...

  1. Human Factors Evaluation Mentor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To obtain valid and reliable data, Human Factors Engineering (HFE) evaluations are currently conducted by people with specialized training and experience in HF. HFE...

  2. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  3. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  4. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  5. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  6. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  7. Research on Chinese Visible Human Project

    Institute of Scientific and Technical Information of China (English)

    ZhangShaoxiang

    2003-01-01

    “Visible Human Project (VHP)” was initiated by US National Library of Medicine in 1989, and in August 1991, the library signed a contract with Health Science Center of the University of Col-orado to formally carry out the project. According-ly, research team at the University of Colorado col-lected a structural data set of human body after obtaining successive sectiona/ images. A digital image data set of a complete human male cadaver was acquired and made available for public use in November 1994, which aroused worldwide enthu-siasm in this field, and remarkable social and eco-nomic benefit has been gained. Thereafter, some countries initiated their visible human project one after another. Korea started 5-year“Visible Kore-an Human (VKH)” project (Mar. 2000--Feb.2005) in 2000, and the first data set derived from apatient with cerebroma was acquired in 2001. Chi-na began its project in 1999. The first data set of Chinese visible human was obtained at The Third Military Medical University in October 2002. Before that, by utilizing data made public by US VHP, Chi-nese scientists in informatics had exerted them-selves on preliminary work to pave the way for fur-ther achievement. Now that VHP research is such a promising scientific field to meet the need of digital era and will be increasingly common in many areas related with structure and function of human body,the deployment of Chinese Visible Human Project(CVHP) is of great strategic significance with re-gard to science and technology.

  8. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    Science.gov (United States)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  9. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    Science.gov (United States)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  10. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  11. [Human genomic project and human genomic haplotype map project: opportunitiy, challenge and strategy in stomatology].

    Science.gov (United States)

    Wu, Rui-qing; Zeng, Xin; Wang, Zhi

    2010-08-01

    The human genomic project and the international HapMap project were designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases, thus lead to molecular diagnosis and personnel therapy. The article briefly reviewed the creation, target and achievement of those two projects. Furthermore, the authors have given four suggestions in facing to the opportunities and challenges brought by the two projects, including cultivation improvement of elites, cross binding of multi-subjects, strengthening construction of research base and initiation of natural key scientific project.

  12. Benefits of Microalgae for Human Space Exploration

    Science.gov (United States)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  13. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  14. Exuberant innovation: The Human Genome Project

    CERN Document Server

    Gisler, Monika; Woodard, Ryan

    2010-01-01

    We present a detailed synthesis of the development of the Human Genome Project (HGP) from 1986 to 2003 in order to test the "social bubble" hypothesis that strong social interactions between enthusiastic supporters of the HGP weaved a network of reinforcing feedbacks that led to a widespread endorsement and extraordinary commitment by those involved in the project, beyond what would be rationalized by a standard cost-benefit analysis in the presence of extraordinary uncertainties and risks. The vigorous competition and race between the initially public project and several private initiatives is argued to support the social bubble hypothesis. We also present quantitative analyses of the concomitant financial bubble concentrated on the biotech sector. Confirmation of this hypothesis is offered by the present consensus that it will take decades to exploit the fruits of the HGP, via a slow and arduous process aiming at disentangling the extraordinary complexity of the human complex body. The HGP has ushered other...

  15. ENGINES: exploring single nucleotide variation in entire human genomes

    Directory of Open Access Journals (Sweden)

    Salas Antonio

    2011-04-01

    Full Text Available Abstract Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs, population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs, as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart

  16. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Mark A.

    2013-04-25

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  17. PEMEX exploration and production (E and P) projects

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, H. (PEMEX Exploracion y Produccion, Mexico City (Mexico))

    1999-01-01

    The investment that PEMEX's exploration and production (PEP) has made in Mexico's energy sector was discussed. PEP has invested more than US$7 billion over the last two years. Capital expenditures have been driven by market forces. This will provide opportunities for several companies, particularly those in NAFTA (North American Free Trade Agreement) countries. The implications of Canadian companies doing business in Mexico were also discussed. PEMEX's operating companies were listed along with a PEP ranking for 1997. Crude oil and gas production charts show a gradual increase in production for both, from 1995 to 1998. Capital expenditures have increased from US$ 2.2 billion in 1996 to US$ 4.0 billion in 1998. The megaprojects currently underway in Mexico include the Cantarell, Burgos, and the Delta del Grijalva projects. A comparison in investment for onshore and offshore projects was presented. It was concluded that in order to help Canadian companies invest in the Mexican E and P services sector, it would be helpful to have a transparent bidding process guaranteed by the existing institutional framework. 1 tab., 9 figs.

  18. PEMEX exploration and production (E and P) projects

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, H. [PEMEX Exploracion y Produccion, Mexico City (Mexico)

    1999-10-01

    The investment that PEMEX`s exploration and production (PEP) has made in Mexico`s energy sector was discussed. PEP has invested more than US$7 billion over the last two years. Capital expenditures have been driven by market forces. This will provide opportunities for several companies, particularly those in NAFTA (North American Free Trade Agreement) countries. The implications of Canadian companies doing business in Mexico were also discussed. PEMEX`s operating companies were listed along with a PEP ranking for 1997. Crude oil and gas production charts show a gradual increase in production for both, from 1995 to 1998. Capital expenditures have increased from US$ 2.2 billion in 1996 to US$ 4.0 billion in 1998. The megaprojects currently underway in Mexico include the Cantarell, Burgos, and the Delta del Grijalva projects. A comparison in investment for onshore and offshore projects was presented. It was concluded that in order to help Canadian companies invest in the Mexican E and P services sector, it would be helpful to have a transparent bidding process guaranteed by the existing institutional framework. 1 tab., 9 figs.

  19. Relational and Transcendental Humanism: Exploring the Consequences of a Thoroughly Pragmatic Humanism

    Science.gov (United States)

    Hansen, James T.

    2007-01-01

    The relational and transcendental elements of humanism are considered. Although the relational component of humanism is extraordinarily valuable, the author argues that the transcendental portion of humanism should be abandoned. The implications of a thoroughly pragmatic humanism are explored.

  20. Relational and Transcendental Humanism: Exploring the Consequences of a Thoroughly Pragmatic Humanism

    Science.gov (United States)

    Hansen, James T.

    2007-01-01

    The relational and transcendental elements of humanism are considered. Although the relational component of humanism is extraordinarily valuable, the author argues that the transcendental portion of humanism should be abandoned. The implications of a thoroughly pragmatic humanism are explored.

  1. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  2. Exploring care for human service profession

    DEFF Research Database (Denmark)

    Høy, Bente

    2015-01-01

    maintain their dignity, it is important to explore, how dignity is maintained in such situations. Views of dignity and factors influencing dignity have been studied from both the nursing homes residents´ and the care providers´ perspective. However, little is known about how the residents’ experience...

  3. UNEXMIN H2020 Project: an underwater explorer for flooded mines

    Science.gov (United States)

    Lopes, Luís; Zajzon, Norbert; Bodo, Balázs; Henley, Stephen; Žibret, Gorazd; Almeida, José; Vörös, Csaba; Horvath, Janos; Dizdarevič, Tatjana; Rossi, Claudio; McLoughlin, Mike

    2017-04-01

    UNEXMIN (Underwater Explorer for Flooded Mines, Grant Agreement No. 690008, www.unexmin.eu) is a project funded by the European Commission's HORIZON2020 Framework Programme. The project is developing a multi-platform robotic system for the autonomous exploration and mapping of Europe's flooded mines. The robotic system - UX-1 - will use non-invasive methods for the 3D mapping of abandoned flooded mines, bringing new important geological and mineralogical data that cannot be currently obtained by any other means. This technology will allow the development or update of geological models at local and regional levels. The data collected will then be used to consider new exploration scenarios for the possible re-opening of some of Europe's abandoned mines which may still contain valuable resources of strategic minerals. The deployment of a multi-robotic system in such a confined environment poses challenges that must be overcome so that the robots can work autonomously, without damaging the equipment and the mine itself. Key challenges are related to the i) structural design for robustness and resilience, ii) localization, navigation and 3D mapping, iii) guidance, propulsion and control, iv) autonomous operation and supervision, v) data processing, interpretation and evaluation. The scientific instrument array is currently being tested, built and tailored for the submersible: pH, electrical conductivity, pressure and temperature analyzers and a water sampler (water sampling methods), a magnetic field analyzer, a gamma-ray counter and a sub-bottom profiler (geophysical methods) and a multispectral and UV fluorescence imaging units (optical observation methods). The instruments have been selected to generate data of maximum geoscientific interest, considering the limiting factors of the submerged underground environment, the necessary robotic functions, the size for the robot and other constraints. Other crucial components for the robot's functionality (such as movement

  4. Human exploration of space and power development

    Science.gov (United States)

    Cohen, Aaron

    The possible role of Solar Power Satellites (SPS) in advancing the goals of the Space Exploration Initiative is considered. Three approaches are examined: (1) the use of lunar raw materials to construct a large SPS in GEO, (2) the construction of a similar system on the lunar surface, and (3) a combination of (1) and (2). Emphasis is given to the mining of He-3 from the moon and its use by the SPS.

  5. Exploring Data in Human Resources Big Data

    Directory of Open Access Journals (Sweden)

    Adela BARA

    2016-01-01

    Full Text Available Nowadays, social networks and informatics technologies and infrastructures are constantly developing and affect each other. In this context, the HR recruitment process became complex and many multinational organizations have encountered selection issues. The objective of the paper is to develop a prototype system for assisting the selection of candidates for an intelligent management of human resources. Such a system can be a starting point for the efficient organization of semi-structured and unstructured data on recruitment activities. The article extends the research presented at the 14th International Conference on Informatics in Economy (IE 2015 in the scientific paper "Big Data challenges for human resources management".

  6. Interaction Challenges in Human-Robot Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  7. The design explorer project: Using a cognitive framework to support knowledge exploration

    DEFF Research Database (Denmark)

    Pejtersen, A. M.; Sonnenwald, D.H.; Buur, J.;

    1997-01-01

    , or categories, of domain information which need to be available for a system or product designer/design team in order to determine the characteristics of the artefact, or object of design. These dimensions include information about the different work domains in which the product plays a role during its lifetime...... the 'Design Explorer' research project whose goal is to specify requirements for an information system that will effectively help design team members from different domains and organizational cultures to locate and utilize diverse information sources and interact more effectively throughout the design process......, and various related task spaces, domain activities, decisionmaking activities, division and coordination of work, and social organization. The framework is the result of a generalization of experiences from field studies in and design of support systems for a variety of modern work domains, such as process...

  8. Exploring human inactivity in computer power consumption

    Science.gov (United States)

    Candrawati, Ria; Hashim, Nor Laily Binti

    2016-08-01

    Managing computer power consumption has become an important challenge in computer society and this is consistent with a trend where a computer system is more important to modern life together with a request for increased computing power and functions continuously. Unfortunately, previous approaches are still inadequately designed to handle the power consumption problem due to unpredictable workload of a system caused by unpredictable human behaviors. This is happens due to lack of knowledge in a software system and the software self-adaptation is one approach in dealing with this source of uncertainty. Human inactivity is handled by adapting the behavioral changes of the users. This paper observes human inactivity in the computer usage and finds that computer power usage can be reduced if the idle period can be intelligently sensed from the user activities. This study introduces Control, Learn and Knowledge model that adapts the Monitor, Analyze, Planning, Execute control loop integrates with Q Learning algorithm to learn human inactivity period to minimize the computer power consumption. An experiment to evaluate this model was conducted using three case studies with same activities. The result show that the proposed model obtained those 5 out of 12 activities shows the power decreasing compared to others.

  9. Exploring leadership in self-managed project teams in Malaysia

    Directory of Open Access Journals (Sweden)

    Zaleha Yazid

    2015-01-01

    Full Text Available This paper focuses on a longitudinal approach in exploring leadership in Self-Managed Project Teams (SMPT. SMPT has been known to contribute to organizations by improving productivity and increasing organizational performance. Therefore, understanding the dynamics of leadership in this type of team can be seen as one of the important factors to ensure the success of organizations. Leading a team which manages itself is a challenge as increased autonomy and control is given to the team which eliminates the existence of a leader. It is important to understand the extent of how the external leader is involved within SMPT and whether the external leader approaches highlighted in the literature are applicable in such a situation and how these approaches change during work processes. This study comprises of evidence collected through semi-structured interviews in two small and medium sized organizations in Malaysia. Weekly telephone interviews as well as face-to-face interviews were conducted which provides contextual data for the research. In this research, the evidence suggested that SMPT transform from self-managed toward leader-managed resulting from several factors, such as conflict handling strategies. Specifically, it was found that avoiding conflicts, rather than confronting, transform the team into being leader dependent.

  10. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project

    Science.gov (United States)

    Firstenberg, Henry; Rutger, Lyle L.; Mukunda, Meera; Bartram, Bart W.

    2004-02-01

    The National Aeronautics and Space Administration's Mars Exploration Rover (MER) 2003 project is designed to place two mobile laboratories (Rovers) on Mars to remotely characterize a diversity of rocks and soils. Milestones accomplished so far include two successful launches of identical spacecraft (the MER-A and MER-B missions) from Cape Canaveral Air Force Station, Florida on June 10 and July 7, 2003. Each Rover uses eight Light Weight Radioisotope Heater Units (LWRHUs) fueled with plutonium-238 dioxide to provide local heating of Rover components. The LWRHUs are provided by the U.S. Department of Energy. In addition, small quantities of radioactive materials in sealed sources are used in scientific instrumentation on the Rover. Due to the radioactive nature of these materials and the potential for accidents, a formal Launch Approval Process requires the preparation of a Final Safety Analysis Report (FSAR) for submittal to and independent review by an Interagency Nuclear Safety Review Panel. This paper presents a summary of the FSAR in terms of potential accident scenarios, probabilities, source terms, radiological consequences, mission risks, and uncertainties in the reported results.

  11. Exploring Data in Human Resources Big Data

    OpenAIRE

    Adela BARA; Iuliana BOTHA; Anda BELCIU (VELICANU); Bogdan NEDELCU

    2016-01-01

    Nowadays, social networks and informatics technologies and infrastructures are constantly developing and affect each other. In this context, the HR recruitment process became complex and many multinational organizations have encountered selection issues. The objective of the paper is to develop a prototype system for assisting the selection of candidates for an intelligent management of human resources. Such a system can be a starting point for the efficient organization of semi-structured an...

  12. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    The human genome project and the future of medical practice. ... the planning stages of the human genome project, the technology and sequence data ... the quality of healthcare available in the resource-rich and the resource-poor countries.

  13. Space Exploration as a Human Enterprise: The Scientific Interest

    Science.gov (United States)

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  14. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  15. A Low Cost Spacecraft Architecture for Robotic Lunar Exploration Projects

    Science.gov (United States)

    Lemke, Lawrence G.; Gonzales, Andrew A.

    2006-01-01

    A program of frequent, capable, but affordable lunar robotic missions prior to return of humans to the moon can contribute to the Vision for Space Exploration (VSE) NASA is tasked to execute. The Lunar Reconnaissance Orbiter (LRO) and its secondary payload are scheduled to orbit the moon, and impact it, respectively, in 2008. It is expected that the sequence of missions occurring for approximately the decade after 2008 will place an increasing emphasis on soft landed payloads. These missions are requited to explore intrinsic characteristics of the moon, such as hydrogen distribution in the regolith, and levitated dust, to demonstrate the ability to access and process in-situ resources, and to demonstrate functions critical to supporting human presence, such as automated precision navigation and landing. Additional factors governing the design of spacecraft to accomplish this diverse set of objectives are: operating within a relatively modest funding profile, the need tb visit multiple sites (both polar and equatorial) repeatedly, and to use the current generation of launch vehicles. In the US, this implies use of the Evolved Expendable Launch Vehicles, or EELVs, although this design philosophy may be extended to launch vehicles of other nations, as well. Many of these factors are seemingly inconsistent with each other. For example, the cost of a spacecraft usually increases with mass; therefore the desire to fly frequent, modestly priced spacecraft seems to imply small spacecraft (autonomous navigation and soft landing) also usually increases cost. A strategy for spacecraft design that meets these conflicting requirements is presented. Taken together, spacecraft structure and propulsion subsystems constitute the majority of spacecraft mass; saving development and integration cost on these elements is critical to controlling cost. Therefore, a low cost, modular design for spacecraft structure and propulsion subsystems is presented which may be easily scaled up or

  16. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  17. The Need to Explore: Nonexperimental Science Fair Projects.

    Science.gov (United States)

    McNay, Margaret

    1985-01-01

    For the sake of grade school entrants in particular, nonexperimental science fair projects should be encouraged and accepted for science fairs. Support for this approach is given along with several suggestions for projects. Guidelines for judging nonexperimental projects are also included. (DH)

  18. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  19. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  20. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    Science.gov (United States)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  1. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    Science.gov (United States)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  2. Multi-Robot Systems for Subsurface Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a heterogeneous multi-robot team developed as a platform for effective subsurface planetary exploration. State-of-art robotic exploration...

  3. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  4. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  5. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk...... factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review...... of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography-mass spectrometry (LC-MS/MS)’. A catalogue...

  6. Integrating Human Factors into Crew Exploration Vehicle Design

    Science.gov (United States)

    Whitmore, Mihriban; Baggerman, Susan; Campbell, paul

    2007-01-01

    With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup

  7. Human life support for advanced space exploration.

    Science.gov (United States)

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  8. Human exploration and settlement of Mars - The roles of humans and robots

    Science.gov (United States)

    Duke, Michael B.

    1991-01-01

    The scientific objectives and strategies for human settlement on Mars are examined in the context of the Space Exploration Initiative (SEI). An integrated strategy for humans and robots in the exploration and settlement of Mars is examined. Such an effort would feature robotic, telerobotic, and human-supervised robotic phases.

  9. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  10. The Stonehenge Riverside Project: exploring the Neolithic landscape of Stonehenge

    Directory of Open Access Journals (Sweden)

    Mike Parker Pearson

    2008-12-01

    Full Text Available The Stonehenge Riverside Project is a collaborative enterprise directed by six academics from five UK universities, investigating the place of Stonehenge within its contemporary landscape. In this contribution, a series of novel approaches being employed on the project are outlined, before the results of investigations at the Greater Stonehenge Cursus, Woodhenge, the Cuckoo Stone and Durrington Walls are discussed.

  11. Non-Toxic Ionic Liquid Fuels for Exploration Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Challenges arise in the propulsion systems for the new exploration architecture. The currently operational and proven storable hypergolic systems raise toxicity...

  12. Choosing to Serve? An Exploration of Student Self-Selection of Service Learning Projects

    Science.gov (United States)

    Weber, Paula S.; Schneider, Kenneth R.; Weber, James E.

    2008-01-01

    This study explores student selection of service learning projects in lieu of traditional library research projects. One hundred fifty-four strategic management students completed surveys exploring their tolerance of ambiguity, time pressure, attitudes toward civic participation, self-efficacy toward service, political conservatism, and the role…

  13. Enabling technologies for space exploration systems: The STEPS project results and perspectives

    Science.gov (United States)

    Messidoro, Piero; Perino, Maria Antonietta; Boggiatto, Dario

    2013-05-01

    The project STEPS (Sistemi e Tecnologie per l'EsPlorazione Spaziale) is a joint development of technologies and systems for Space Exploration supported by Regione Piemonte, the European Regional Development Fund (E.R.D.F.) 2007-2013, Thales Alenia Space Italia (TAS-I), SMEs, Universities and public Research Centres belonging to the network "Comitato Distretto Aerospaziale del Piemonte" the Piedmont Aerospace District (PAD) in Italy. The project first part terminated in May 2012 with a final demonstration event that summarizes the technological results of research activities carried-out during a period the three years and half. The project developed virtual and hardware demonstrators for a range of technologies for the descent, soft landing and surface mobility of robotic and manned equipment for Moon and Mars exploration. The two key hardware demonstrators—a Mars Lander and a Lunar Rover—fit in a context of international cooperation for the exploration of Moon and Mars, as envisaged by Space Agencies worldwide. The STEPS project included also the development and utilization of a system of laboratories equipped for technology validation, teleoperations, concurrent design environments, and virtual reality simulation of the Exploration Systems in typical Moon and Mars environments. This paper presents the reached results in several technology domains like: vision-based GNC for the last portion of Mars Entry, Descent and Landing sequence, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on the determination of the terrain morphology by a stereo camera; Mobility and Mechanisms providing an Integrated Ground Mobility System, Rendezvous and Docking equipment, and protection from Environment effects; innovative Structures such as Inflatable, Smart and Multifunction Structures, an Active Shock Absorber for safe landing, balance restoring and walking; Composite materials Modelling and Monitoring; Human-machine interface features of a

  14. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  15. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  16. Role of Fundamental Physics in Human Space Exploration

    Science.gov (United States)

    Turyshev, Slava

    2004-01-01

    This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.

  17. Exploration of Exploitation Approaches of European Projects on ICT and Foreign Language Learning: the CEFcult project case

    NARCIS (Netherlands)

    Rusman, Ellen; Rajagopal, Kamakshi; Stoyanov, Slavi; Van Maele, Jan

    2011-01-01

    Rusman, E., Rajagopal, K., Stoyanov, S., & Van Maele, J. (2011, 20-21 October). Exploration of Exploitation Approaches of European Projects on ICT and Foreign Language Learning: the CEFcult project case. Paper presented at the 4th International Conference ICT for Language Learning, Florence, Italy.

  18. Exploration of Exploitation Approaches of European Projects on ICT and Foreign Language Learning: the CEFcult project case

    NARCIS (Netherlands)

    Rusman, Ellen; Rajagopal, Kamakshi; Stoyanov, Slavi; Van Maele, Jan

    2011-01-01

    Rusman, E., Rajagopal, K., Stoyanov, S., & Van Maele, J. (2011, 20 October). Exploration of Exploitation Approaches of European Projects on ICT and Foreign Language Learning: the CEFcult project case. Presentation at the 4th International Conference ICT for Language Learning, Florence, Italy.

  19. Targeting Cislunar Near Rectilinear Halo Orbits for Human Space Exploration

    Science.gov (United States)

    Williams, Jacob; Lee, David E.; Whitley, Ryan J.; Bokelmann, Kevin A.; Davis, Diane C.; Berry, Christopher F.

    2017-01-01

    Part of the challenge of charting a human exploration space architecture is finding locations to stage missions to multiple destinations. To that end, a specific subset of Earth-Moon halo orbits, known as Near Rectilinear Halo Orbits (NRHOs) are evaluated. In this paper, a systematic process for generating full ephemeris based ballistic NRHOs is outlined, different size NRHOs are examined for their favorability to avoid eclipses, the performance requirements for missions to and from NRHOs are calculated, and disposal options are evaluated. Combined, these studies confirm the feasibility of cislunar NRHOs to enable human exploration in the cislunar proving ground.

  20. Atmospheric Breathing Electric Thruster for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will investigate the development of an atmosphere-breathing electric propulsion solar-powered vehicle to explore planets such as Mars. The vehicle would...

  1. Technologies Enabling Exploration of Skylights, Lava Tubes and Caves Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Missions to date have orbited and roved, but sub-planetary worlds elude exploration. This investigation proposes to develop technology for venturing underground and...

  2. Super Ball Bot - Structures for Planetary Landing and Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals for our solar system. Ideally teams of dozens or even...

  3. One-Meter Class Drilling for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robotic planetary exploration missions will need to perform in-situ analysis of rock and/or regolith samples or returning samples back to earth. Obtaining and...

  4. Fast Solar Sailing for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical spinning solar sail architectures will be needed to meet low areal densities and large areas required for the most challenging science and exploration...

  5. Autonomous Multi-Robot Exploration using UWB Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single multi-sensor teleoperated systems are not optimal for NASA exploratory missions because they limit the coverage area and scope of exploration and create a...

  6. Multi-Modal Neurodiagnostic Tool for Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a critical requirement for a neurodiagnostic tool that can be used to monitor the behavioral health of the crew during long duration exploration missions....

  7. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  8. Super Ball Bot - Structures for Planetary Landing and Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible robots, weighing...

  9. DDESC: Dragon database for exploration of sodium channels in human

    Directory of Open Access Journals (Sweden)

    Radovanovic Aleksandar

    2008-12-01

    Full Text Available Abstract Background Sodium channels are heteromultimeric, integral membrane proteins that belong to a superfamily of ion channels. The mutations in genes encoding for sodium channel proteins have been linked with several inherited genetic disorders such as febrile epilepsy, Brugada syndrome, ventricular fibrillation, long QT syndrome, or channelopathy associated insensitivity to pain. In spite of these significant effects that sodium channel proteins/genes could have on human health, there is no publicly available resource focused on sodium channels that would support exploration of the sodium channel related information. Results We report here Dragon Database for Exploration of Sodium Channels in Human (DDESC, which provides comprehensive information related to sodium channels regarding different entities, such as "genes and proteins", "metabolites and enzymes", "toxins", "chemicals with pharmacological effects", "disease concepts", "human anatomy", "pathways and pathway reactions" and their potential links. DDESC is compiled based on text- and data-mining. It allows users to explore potential associations between different entities related to sodium channels in human, as well as to automatically generate novel hypotheses. Conclusion DDESC is first publicly available resource where the information related to sodium channels in human can be explored at different levels. This database is freely accessible for academic and non-profit users via the worldwide web http://apps.sanbi.ac.za/ddesc.

  10. Exploring delay causes of road construction projects in

    Directory of Open Access Journals (Sweden)

    Remon F. Aziz

    2016-06-01

    Full Text Available Construction delays are a common phenomenon in civil engineering projects in Egypt including road construction projects. Therefore, it is essential to study and analyze causes of road construction delays. This paper studied a list of construction delay causes gathered from literature having different types of construction, different countries, different periods and different numbers of delay causes and delay groups. A questionnaire and personal interviews have formed the basis of this paper listing 293 delay causes. The questionnaire survey was distributed to 500 construction participants and 389 were received who represent consultants, contractors and site/design engineers excluding the owner representing the government in road projects as one party only. Relative Importance Index (RII is calculated and according to the highest values the top twenty and the least twenty delay causes of construction projects in Egypt are determined. A case study is analyzed and compared to the most important delay causes in the paper. The test results reveal good correlation of causes and groups between contractors and site/design engineers and between consultants and site design engineers and a somewhat low correlation between contractors and consultants. So there are no root causes that can be taking for granted to be most or least effective delay causes. Proposed model for predicting actual road construction project duration was developed; a real case study tested the accuracy of proposed model. According to the analysis of case study, the most contributing causes and groups to delays were discussed, and some future recommendations were proposed in order to control and minimize delays in road construction projects. These findings can be helpful for project managers to mitigate the road construction delays in Egypt. In order to effectively overcome the road construction delays in developing countries, suggestions are made for fundamental and large

  11. Human haptic perception is interrupted by explorative stops of milliseconds.

    Science.gov (United States)

    Grunwald, Martin; Muniyandi, Manivannan; Kim, Hyun; Kim, Jung; Krause, Frank; Mueller, Stephanie; Srinivasan, Mandayam A

    2014-01-01

    The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these "explorative stops" (ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: (a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration. Five different Experiments were used. The first two Experiments were classical recognition tasks of unknown haptic stimuli (A) and of common objects (B). In Experiment C space-position information of angle legs had to be perceived and reproduced. For Experiments D and E the PHANToM haptic device was used for the exploration of virtual (D) and real (E) sunken reliefs. In each Experiment we observed explorative stops of different average durations. For Experiment A: 329.50 ms, Experiment B: 67.47 ms, Experiment C: 189.92 ms, Experiment D: 186.17 ms and Experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory.

  12. Human haptic perception is interrupted by explorative stops of milliseconds

    Directory of Open Access Journals (Sweden)

    Martin eGrunwald

    2014-04-01

    Full Text Available Introduction: The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these explorative stops (ES during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: a between mean exploration time and duration of ES, b between certain stimulus features and ES frequency, and c the duration of ES during the course of exploration. Methods: Five different experiments were used. The first two experiments were classical recognition tasks of unknown haptic stimuli (A and of common objects (B. In experiment C space-position information of angle legs had to be perceived and reproduced. For experiments D and E the PHANToM haptic device was used for the exploration of virtual (D and real (E sunken reliefs. Results: In each experiment we observed explorative stops of different average durations. For experiment A: 329.50 ms, experiment B: 67.47 ms, experiment C: 189.92 ms, experiment D: 186.17 ms and experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. Conclusions: We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory.

  13. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    Science.gov (United States)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  14. Exploring misery discourses: problematized Roma in labour market projects

    Directory of Open Access Journals (Sweden)

    Viktor Vesterberg

    2016-03-01

    Full Text Available The aim of this article is to analyse learning practices in labour market projects cofinanced by the European Social Fund (ESF targeting unemployed Roma in Sweden. The empirical material consists of 18 project descriptions from ESF projects, as well as national and European policy documents concerned with the inclusion of the Roma in contemporary Europe. The contemporary empirical material is analysed in relation to a government report from 1956 concerning the 'Roma issue' in Sweden. The analytical perspective of the study is governmentality, and the analysis focuses on different kinds of problematizations and the discursive positioning of the Roma subjects. One of the main findings is that unemployed Roma are situated in various discourses of misery and constructed as in need of reshaping their subjectivities in order to become educable as well as employable.

  15. The CAVES Project - Exploring Virtual Data Concepts for Data Analysis

    CERN Document Server

    Bourilkov, D

    2004-01-01

    The Collaborative Analysis Versioning Environment System (CAVES) project concentrates on the interactions between users performing data and/or computing intensive analyses on large data sets, as encountered in many contemporary scientific disciplines. In modern science increasingly larger groups of researchers collaborate on a given topic over extended periods of time. The logging and sharing of knowledge about how analyses are performed or how results are obtained is important throughout the lifetime of a project. Here is where virtual data concepts play a major role. The ability to seamlessly log, exchange and reproduce results and the methods, algorithms and computer programs used in obtaining them enhances in a qualitative way the level of collaboration in a group or between groups in larger organizations. The CAVES project takes a pragmatic approach in assessing the needs of a community of scientists by building series of prototypes with increasing sophistication. In extending the functionality of existi...

  16. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  17. Exploring Digital Literacy in Student-Teacher ICT Projects

    Science.gov (United States)

    Allen, Christopher; Richardson, David

    2012-01-01

    This paper reports on the evaluation of student teacher information and communications technology (ICT) projects in English language didactics in accordance with recently proposed frameworks of digital literacy in both language-teaching and wider working and educational contexts (Dudeney, Hockly, & Pegrum, forthcoming; Hockly, 2012; Pegrum,…

  18. Major research project to explore mineralization in South China landmass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Supported by the National Basic Research Program (dubbed "973" Program), a research project on intracontinental metallogenesis on the South China block recently kicked off. The launching meeting was held on 19 to 20 October, 2007, in Guiyang, capital of southwest China's Guizhou Province.

  19. Exploring International Investment through a Classroom Portfolio Simulation Project

    Science.gov (United States)

    Chen, Xiaoying; Yur-Austin, Jasmine

    2013-01-01

    A rapid integration of financial markets has prevailed during the last three decades. Investors are able to diversify investment beyond national markets to mitigate return volatility of a "pure domestic portfolio." This article discusses a simulation project through which students learn the role of international investment by managing…

  20. Exploring International Investment through a Classroom Portfolio Simulation Project

    Science.gov (United States)

    Chen, Xiaoying; Yur-Austin, Jasmine

    2013-01-01

    A rapid integration of financial markets has prevailed during the last three decades. Investors are able to diversify investment beyond national markets to mitigate return volatility of a "pure domestic portfolio." This article discusses a simulation project through which students learn the role of international investment by managing…

  1. Comparison of Human Exploration Architecture and Campaign Approaches

    Science.gov (United States)

    Goodliff, Kandyce; Cirillo, William; Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary

    2015-01-01

    As part of an overall focus on space exploration, National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). In addition, various external organizations are studying options for beyond LEO exploration. Recent studies include NASA's Evolvable Mars Campaign and Design Reference Architecture (DRA) 5.0, JPL's Minimal Mars Architecture; the Inspiration Mars mission; the Mars One campaign; and the Global Exploration Roadmap (GER). Each of these potential exploration constructs applies unique methods, architectures, and philosophies for human exploration. It is beneficial to compare potential approaches in order to better understand the range of options available for exploration. Since most of these studies were conducted independently, the approaches, ground rules, and assumptions used to conduct the analysis differ. In addition, the outputs and metrics presented for each construct differ substantially. This paper will describe the results of an effort to compare and contrast the results of these different studies under a common set of metrics. The paper will first present a summary of each of the proposed constructs, including a description of the overall approach and philosophy for exploration. Utilizing a common set of metrics for comparison, the paper will present the results of an evaluation of the potential benefits, critical challenges, and uncertainties associated with each construct. The analysis framework will include a detailed evaluation of key characteristics of each construct. These will include but are not limited to: a description of the technology and capability developments required to enable the construct and the uncertainties associated with these developments; an analysis of significant operational and programmatic risks associated with that construct; and an evaluation of the extent to which exploration is enabled by the construct, including the destinations

  2. A large human centrifuge for exploration and exploitation research

    NARCIS (Netherlands)

    J.J.W.A. van Loon; J.P. Baeyens; J. Berte; S. Blanc; L. ter Braak; K. Bok; J. Bos; R. Boyle; N. Bravenoer; M. Eekhoff; A. Chouker; G. Clement; P. Cras; E. Cross; M.A. Cusaud; M. De Angelis; C. de Dreu; T. Delavaux; R. Delfos; C. Poelma; P. Denise; D. Felsenberg; K. Fong; C. Fuller; S. Grillner; E. Groen; J. Harlaar; M. Heer; N. Heglund; H. Hinghofer-Szalkay; N. Goswami; M. Hughes-Fulford; S. Iwase; J.M. Karemaker; B. Langdahl; D. Linarsson; C. Lüthen; M. Monici; E. Mulder; M. Narici; P. Norsk; W. Paloski; G.K. Prisk; M. Rutten; P. Singer; D. Stegeman; A. Stephan; G.J.M. Stienen; P. Suedfeld; P. Tesch; O. Ullrich; R. van den Berg; P. Van de Heyning; A. Delahaye; J. Veyt; L. Vico; E. Woodward; L.R. Young; F. Wuyts

    2012-01-01

    This paper addresses concepts regarding the development of an Altered Gravity Platform (AGP) that will serve as a research platform for human space exploration. Space flight causes a multitude of physiological problems, many of which are due to gravity level transitions. Going from Earth’s gravity t

  3. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  4. Global Exploration Roadmap Derived Concept for Human Exploration of the Moon

    Science.gov (United States)

    Whitley, Ryan; Landgraf, Markus; Sato, Naoki; Picard, Martin; Goodliff, Kandyce; Stephenson, Keith; Narita, Shinichiro; Gonthier, Yves; Cowley, Aiden; Hosseini, Shahrzad; hide

    2017-01-01

    Taking advantage of the development of Mars-forward assets in cislunar space, a human lunar surface concept is proposed to maximize value for both lunar exploration and future deep space missions. The human lunar surface missions will be designed to build upon the cislunar activities that precede them, providing experience in planetary surface operations that cannot be obtained in cislunar space. To enable a five-mission limited campaign to the surface of the Moon, two new elements are required: a human lunar lander and a mobile surface habitat. The human lunar lander will have been developed throughout the cislunar phase from a subscale demonstrator and will consist of a descent module alongside a reusable ascent module. The reusable ascent module will be used for all five human lunar surface missions. Surface habitation, in the form of two small pressurized rovers, will enable 4 crew to spend up to 42 days on the lunar surface.

  5. Multi-Robot Planetary Exploration Command and Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences, The MIT Manned Vehicle Laboratory (MVL), and the MIT Humans and Automation Laboratory (HAL) together propose to adapt existing software,...

  6. Human collective intelligence under dual exploration-exploitation dilemmas.

    Directory of Open Access Journals (Sweden)

    Wataru Toyokawa

    Full Text Available The exploration-exploitation dilemma is a recurrent adaptive problem for humans as well as non-human animals. Given a fixed time/energy budget, every individual faces a fundamental trade-off between exploring for better resources and exploiting known resources to optimize overall performance under uncertainty. Colonies of eusocial insects are known to solve this dilemma successfully via evolved coordination mechanisms that function at the collective level. For humans and other non-eusocial species, however, this dilemma operates within individuals as well as between individuals, because group members may be motivated to take excessive advantage of others' exploratory findings through social learning. Thus, even though social learning can reduce collective exploration costs, the emergence of disproportionate "information scroungers" may severely undermine its potential benefits. We investigated experimentally whether social learning opportunities might improve the performance of human participants working on a "multi-armed bandit" problem in groups, where they could learn about each other's past choice behaviors. Results showed that, even though information scroungers emerged frequently in groups, social learning opportunities reduced total group exploration time while increasing harvesting from better options, and consequentially improved collective performance. Surprisingly, enriching social information by allowing participants to observe others' evaluations of chosen options (e.g., Amazon's 5-star rating system in addition to choice-frequency information had a detrimental impact on performance compared to the simpler situation with only the choice-frequency information. These results indicate that humans groups can handle the fundamental "dual exploration-exploitation dilemmas" successfully, and that social learning about simple choice-frequencies can help produce collective intelligence.

  7. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of

  8. A Monolithic, Non-Field-Widened Spatial Heterodyne Spectrometer for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to produce a monolithic Spatial Heterodyne Spectrometer (a Fourier Transform Interferometer) for use in Solar System exploration. In...

  9. OVERVIEW ABOUT THE MANAGEMENT OF THE HUMAN RESOURCE IN PROJECTS

    Directory of Open Access Journals (Sweden)

    Catalin Drob

    2015-07-01

    Full Text Available The purpose of this study is to emphasize the main aspects regarding the management of the human resource in projects. This study tries to present in the comparative manner, different approaches of several guidelines, international standards and methodologies regarding the management of the human resource in projects (the PMBOK ® Guide elaborated by the Project Management Institute and the PRINCE method elaborated by the British Office of Government Commerce. The PMBOK® Guide describes four elements (processes of human resource management: human resource planning, acquire project team, develop project team and manage project team. The PMBOK approach regarding human resource management is focused on utilizing the people involved in the project in the best way. According the PRINCE method the management of the human resource is focused on the roles and responsibilities of the human resource within the project. In this standard, the responsibilities are viewed like a roles. Everybody involved in the project can have one or more roles and a role can be fulfilled by several persons.

  10. Promoting Human Development through the Global Poverty Project

    OpenAIRE

    Franklin Obeng-Odoom

    2010-01-01

    The Global Poverty Project has been launched in Australia with the aim of promoting human development through the eradication of global poverty. Enjoying the support of the Australian government and the UN, the project has been enthusiastically covered by the media. Franklin Obeng-Odoom asks how the project proposes to end global poverty and questions the effectiveness of its framework?

  11. Implementation of Safety and Human-Rating on Lockheed Martin's Crew Exploration Vehicle

    Science.gov (United States)

    Saemisch, Michael K.

    2005-12-01

    Lockheed Martin leads an industry and academic team to develop requirements and the design of NASA's Crew Exploration Vehicle (CEV) in support of the United States' Vision for Space Exploration. This paper discusses the safety and human-rating requirements, challenges, and approaches taken by the team focusing on safety and human-rating design decisions and trade- offs. Examples of these requirements are failure- tolerance, crew abort/escape, "design for minimum risk", computer-based control, all reviewed by a new NASA human-rating process. NASA allowed contractors freedom in the approaches they could pursue, which offered the opportunity for safety and human-rating goals to influence the basic concepts and major design decisions made early in the program, which drive the major safety features (and limitations) of the CEV project. The paper discusses the method developed by Lockheed Martin, HazComp, to evaluate hazards of proposed concept options, without the benefit of detailed design data used to provide a hazard-based "safety figure of merit" and substantiating data to the trade study decision process. The importance of a well- developed preliminary hazard analysis to support these evaluations is discussed. Major NASA safety and human-rating requirements and their evolution are also discussed along with issues, concerns and recommendations for future human space exploration safety requirements and safety focus.

  12. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Shervais, John W. [Utah State Univ., Logan, UT (United States); Evans, James P. [Utah State Univ., Logan, UT (United States); Liberty, Lee M. [Boise State Univ., ID (United States); Schmitt, Douglas R. [University of Alberta, Canada; Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  13. Micro-Logistics Analysis for Human Space Exploration

    Science.gov (United States)

    Cirillo, William; Stromgren, Chel; Galan, Ricardo

    2008-01-01

    Traditionally, logistics analysis for space missions has focused on the delivery of elements and goods to a destination. This type of logistics analysis can be referred to as "macro-logistics". While the delivery of goods is a critical component of mission analysis, it captures only a portion of the constraints that logistics planning may impose on a mission scenario. The other component of logistics analysis concerns the local handling of goods at the destination, including storage, usage, and disposal. This type of logistics analysis, referred to as "micro-logistics", may also be a primary driver in the viability of a human lunar exploration scenario. With the rigorous constraints that will be placed upon a human lunar outpost, it is necessary to accurately evaluate micro-logistics operations in order to develop exploration scenarios that will result in an acceptable level of system performance.

  14. Stochastic modelling of human exposure to food chemicals and nutrients within the "Montecarlo" project: an exploration of the influence of brand loyalty and market share on intake estimates of intense sweeteners from sugar-free soft drinks.

    Science.gov (United States)

    Leclercq, Catherine; Arcella, Davide; Le Donne, Cinzia; Piccinelli, Raffaela; Sette, Stefania; Soggiu, Maria Eleonora

    2003-04-11

    To get a more realistic view of exposure to food chemicals, risk managers are getting more interested in stochastic modelling as an alternative to deterministic approaches based on conservative assumptions. It allows to take into account all the available information in the concentration of the chemical present in foods and in food consumption patterns. Within the EC-funded "Montecarlo" project, a comprehensive set of mathematical algorithms was developed to take into account all the necessary components for stochastic modelling of a variety of food chemicals, nutrients and ingredients. An appropriate computer software is being developed. Since the concentration of food chemicals may vary among different brands of the same product, consumer behaviour with respect to brands may have an impact on exposure assessments. Numeric experiments were carried out on different ways of incorporating indicators of market share and brand loyalty in the mathematical algorithms developed within the stochastic model of exposure to intense sweeteners from sugar-free beverages. The 95th percentiles of intake were shown to vary according to the inclusion/exclusion of these indicators. The market share should be included in the model especially if the market is not equitably distributed between brands. If brand loyalty data are not available, the model may be run under theoretical scenarios.

  15. Integrating Information Literacy Instruction (ILI) through Resource-Based School Projects: An Interpretive Exploration

    Science.gov (United States)

    Yu, Halida; Noordin, Siti Arpah; Mokhtar, Sobariah Awang; Abrizah, A.

    2011-01-01

    Resource-based school projects have good potential to be an effective approach in information literacy instruction (ILI). These projects offer the opportunity for students to engage in information problem-solving learning activities and employ various learning skills, including information literacy (IL). The researchers seek to explore ILI through…

  16. Exploring Students' Computational Thinking Skills in Modeling and Simulation Projects: : A Pilot Study

    NARCIS (Netherlands)

    Grgurina, Natasa; van Veen, Klaas; Barendsen, Erik; Zwaneveld, Bert; Suhre, Cor; Gal-Ezer, Judith; Sentance, Sue; Vahrenhold, Jan

    2015-01-01

    Computational Thinking (CT) is gaining a lot of attention in education. We explored how to discern the occurrences of CT in the projects of 12th grade high school students in the computer science (CS) course. Within the projects, they constructed models and ran simulations of phenomena from other (S

  17. Factors of human capital related to project success in health care work units.

    Science.gov (United States)

    Suhonen, Marjo; Paasivaara, Leena

    2011-03-01

    To explore factors of human capital related to project success that employees expect from nurse managers. Human capital refers to those resources that managers working with projects possess, such as abilities, knowledge and qualities of character. The data were collected by open interviews (n=14) with nurses, public health nurses and nurse managers working in primary health care and a hospital. Data analysis was carried out using qualitative content analysis. The main factors of human capital related to project success proved to be as follows: (1) management of enthusiastic project culture, (2) management of regeneration and (3) management of emotional intelligence. Future research is needed on the kind of means nurse managers use in human capital management in projects and how they see their possibilities in managing human capital. Human capital management skills should be underlined as an important competence area when recruiting a nurse manager. The success of health care projects cannot be improved only through education or by training of nurse managers; in addition, projects need nurse managers who understand workplace spirituality and have high emotional intelligence. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  18. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, Brian D. [Nevada Geothermal Power Company, Vancouver (Canada); Smith, Nicole [Nevada Geothermal Power Company, Vancouver (Canada)

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  19. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  20. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  1. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  2. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation

  3. The Ares Project: Building an Exploration Culture from the Inside Up

    Science.gov (United States)

    Cook, Stephan A.

    2008-01-01

    NASA is building its first new human-rated space exploration vehicles in nearly 40 years. This marks an important operational and cultural change from the Space Shuttle. In the wake of the Columbia disaster, the agency and the nation realized that NASA's goals and culture needed to change. The Ares Project, which is building the launch vehicles that will power human beings to the Moon, Mars, and beyond, is taking a page from the Saturn playbook by having NASA lead both the overall integration and the development of the Ares I upper stage. Ares is also creating a new culture of cooperation, openness, and informed risk taking as we set our sights on other worlds. Ares has established a team environment where issues can be discussed, information is shared, fun and teamwork are encouraged, and constructive conflict and accountability are expected. Following a "One NASA" philosophy, Ares is taking steps to strengthen cooperation among space centers, contractor partners, engineering and scientific communities, and headquarters personnel. As we learn lessons from things that went wrong with the Space Shuttle, we are also borrowing best practices from what has gone right with that program and others. All of these cultural elements will be necessary as we take the next steps beyond Earth orbit.

  4. The Ares Projects Office: Building an Exploration Culture from the Inside Up

    Science.gov (United States)

    Leahy, Bartholomew

    2008-01-01

    NASA is building its first new human-rated space exploration vehicles in nearly 40 years. This marks an important operational and cultural change from the Space Shuttle. In the wake of the Columbia disaster, the agency and the nation realized that NASA's goals and culture needed to change. The Ares Projects Office (APO), which is building the launch vehicles that will power human beings to the Moon, Mars, and beyond, is taking a page from the Saturn playbook by having NASA lead both the overall integration and the development of the Ares I upper stage. APO is also creating a new culture of cooperation, openness, and informed risk taking as we set our sights on other worlds. APO has established a team environment where issues can be discussed, information is shared, fun and teamwork are encouraged, and constructive conflict and accountability are expected. Following a "One NASA" philosophy, APO is taking steps to strengthen cooperation among space centers, contractor partners, engineering and scientific communities, and headquarters personnel. As we learn lessons from things that Went wrong with the Space Shuttle, we are also borrowing best practices from what has gone right with that program and others. All of these cultural elements will be necessary as we take the next steps beyond Earth orbit.

  5. Spatial augmented reality based high accuracy human face projection

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  6. Human Genome Diversity Project. Summary of planning workshop 3(B): Ethical and human-rights implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The third planning workshop of the Human Genome Diversity Project was held on the campus of the US National Institutes of Health in Bethesda, Maryland, from February 16 through February 18, 1993. The second day of the workshop was devoted to an exploration of the ethical and human-rights implications of the Project. This open meeting centered on three roundtables, involving 12 invited participants, and the resulting discussions among all those present. Attendees and their affiliations are listed in the attached Appendix A. The discussion was guided by a schedule and list of possible issues, distributed to all present and attached as Appendix B. This is a relatively complete, and thus lengthy, summary of the comments at the meeting. The beginning of the summary sets out as conclusions some issues on which there appeared to be widespread agreement, but those conclusions are not intended to serve as a set of detailed recommendations. The meeting organizer is distributing his recommendations in a separate memorandum; recommendations from others who attended the meeting are welcome and will be distributed by the meeting organizer to the participants and to the Project committee.

  7. Human-Robot Teamwork in USAR Environments: The TRADR Project

    NARCIS (Netherlands)

    Greeff, J. de; Hindriks, K.; Neerincx, M.A.; Kruijff-Korbayova, I.

    2015-01-01

    The TRADR project aims at developing methods and models for human-robot teamwork, enabling robots to operate in search and rescue environments alongside humans as teammates, rather than as tools. Through a user-centered cognitive engineering method, human-robot teamwork is analyzed, modeled, impleme

  8. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  9. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  10. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  11. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  12. Exploring host-microbiota interactions in animal models and humans.

    Science.gov (United States)

    Kostic, Aleksandar D; Howitt, Michael R; Garrett, Wendy S

    2013-04-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host-microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host-microbiota interactions and explore recent human microbiome studies.

  13. Integrated Network Architecture for Sustained Human and Robotic Exploration

    Science.gov (United States)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  14. Groundbreaking Mars Sample Return for Science and Human Exploration

    Science.gov (United States)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  15. Exploring the existence and potential underpinnings of dog-human and horse-human attachment bonds.

    Science.gov (United States)

    Payne, Elyssa; DeAraugo, Jodi; Bennett, Pauleen; McGreevy, Paul

    2016-04-01

    This article reviews evidence for the existence of attachment bonds directed toward humans in dog-human and horse-human dyads. It explores each species' alignment with the four features of a typical attachment bond: separation-related distress, safe haven, secure base and proximity seeking. While dog-human dyads show evidence of each of these, there is limited alignment for horse-human dyads. These differences are discussed in the light of the different selection paths of domestic dogs and horses as well as the different contexts in which the two species interact with humans. The role of emotional intelligence in humans as a potential mediator for human-animal relationships, attachment or otherwise, is also examined. Finally, future studies, which may clarify the interplay between attachment, human-animal relationships and emotional intelligence, are proposed. Such avenues of research may help us explore the concepts of trust and bonding that are often said to occur at the dog-human and horse-human interface.

  16. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    Science.gov (United States)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  17. Human resource management in the project-oriented organization

    NARCIS (Netherlands)

    J.R. Turner; M. Huemann; A. Keegan

    2008-01-01

    Human Resource Management (HRM) in project-oriented organizations is a relatively unexplored topic though it is essential to the success of the organization and its competitive advantage. Project-oriented organizations operate differently from classic business organizations in that they adopt tempor

  18. Human resource management in the project-oriented organization

    NARCIS (Netherlands)

    Turner, J.R.; Huemann, M.; Keegan, A.

    2008-01-01

    Human Resource Management (HRM) in project-oriented organizations is a relatively unexplored topic though it is essential to the success of the organization and its competitive advantage. Project-oriented organizations operate differently from classic business organizations in that they adopt

  19. Design Projects in Human Anatomy & Physiology

    Science.gov (United States)

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  20. TRACE-ing human trafficking : Project Findings

    NARCIS (Netherlands)

    Rijken, Conny; Pijnenburg, Annick

    2016-01-01

    Human trafficking is one of the largest criminal enterprises in the world. It is a multi-billion-dollar crime of global scale. This is because human trafficking as a criminal enterprise continues to evolve as a high profit-low risk business for perpetrators and challenges policy makers, law enforcem

  1. Design Projects in Human Anatomy & Physiology

    Science.gov (United States)

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  2. Issues of exploration: human health and wellbeing during a mission to Mars

    Science.gov (United States)

    White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.

    2003-01-01

    Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  3. Human Exploration of the Solar System by 2100

    Science.gov (United States)

    Litchford, Ronald J.

    2017-01-01

    It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.

  4. The In-Situ Resource Utilization Project Under the New Exploration Enterprise

    Science.gov (United States)

    Larson, William E.; Sanders, Gerald B.

    2010-01-01

    The In Situ Resource Utilization Project under the Exploration Technology Development Program has been investing in technologies to produce Oxygen from the regolith of the moon for the last few years. Much of this work was demonstrated in a lunar analog field demonstration in February of 2010. This paper will provide an overview of the key technologies demonstrated at the field demonstration will be discussed a long with the changes expected in the ISRU project as a result of the new vision for Space Exploration proposed by the President and enacted by the Congress in the NASA Authorization Act of2010.

  5. Metrological analysis of the human foot: 3D multisensor exploration

    Science.gov (United States)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  6. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES

  7. 78 FR 42805 - NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting

    Science.gov (United States)

    2013-07-17

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration Operations Committee; Research... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the Human Exploration and Operations Committee (HEOC) of the NASA Advisory Council (NAC). This Subcommittee reports...

  8. Torrefaction Processing of Human Fecal Waste Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New technology is needed to collect, stabilize, safen, recover useful materials, and store human fecal waste for long duration missions. The current SBIR Phase I...

  9. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  10. Exploring human disease using the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R.; Tutaj, Marek; Petri, Victoria; Hayman, G. Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R.

    2016-01-01

    ABSTRACT Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases. PMID:27736745

  11. Technical costs and economics of some typical oil and gas exploration and development projects

    Energy Technology Data Exchange (ETDEWEB)

    Kassler, P.

    1984-04-01

    Information from a number of actual projects, mainly located outside the Middle East region, analyzes the technical costs and economics of past, present, and future oil and gas exploration and development projects. The article identifies various cost components, and notes that these costs reflect the behavior of international and local markets for the resources concerned. Technical costs show a strong tendency to increase with time, the growth rate depending on the complexity of recovery of development and the need for enhanced recovery methods. Besides technical costs and taxes, potential investors should also consider energy values in evaluating a project. 1 figure, 1 table.

  12. Mission Opportunities for Human Exploration of Nearby Planetary Bodies

    CERN Document Server

    Foster, Cyrus

    2016-01-01

    We characterize mission profiles for human expeditions to near-Earth asteroids, Venus, and Mars. Near-Earth objects (NEOs) are the closest destinations beyond cis-lunar space and present a compelling target with capabilities already under development by NASA and its partners. We present manned NEO mission options that would require between 90 days and one year. We next consider planetary flyby missions for Venus along the lines of plans that were first drafted during the Apollo program for human exploration of Venus. We also characterize a Mars flyby, and a double-flyby variant that would include close passes to both Venus and Mars. Finally, we consider orbital missions to Venus and Mars with capability for rendezvous with Phobos or Deimos. This would be a truly new class of mission for astronauts and could serve as a precursor to a human landing on Mars. We present launch opportunities, transit time, requisite {\\Delta}V, and approximate radiation environment parameters for each mission class. We find that {\\...

  13. Results of the First Astronaut-Rover (ASRO) Field Experiment: Lessons and Directions for the Human Exploration of Mars

    Science.gov (United States)

    Cabrol, N. A.; Kosmo, J. J.; Trevino, R. C.; Thomas, H.; Eppler, D.; Bualat, M. G.; Baker, K.; Huber, E.; Sierhuis, M.; Grin, E. A.

    1999-01-01

    The first Astronaut-Rover Interaction field experiment (hereafter designated as the ASRO project) took place Feb. 22-27, 1999, in Silver Lake, Mojave Desert, CA. The ASRO project is the result of a joint project between NASA Ames Research Center and Johnson Space Center. In the perspective of the Human Exploration and Development of Space (HEDS) of the Solar System, this interaction - the astronaut and the rover as a complementary and interactive team - in the field is critical to assess but had never been tested before the Silver Lake experiment. Additional information is contained in the original extended abstract.

  14. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    Science.gov (United States)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  15. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  16. ISRU in the Context of Future European Human Mars Exploration

    Science.gov (United States)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  17. Planning the Human Variome Project : The Spain Report

    NARCIS (Netherlands)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D.; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Bloecker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Diaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosario N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G. E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Moeslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O'Leary, James C.; Oller de Ramirez, Ana Maria; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, Maria-Jesus; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Toepel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data

  18. Planning the human variome project: the Spain report.

    NARCIS (Netherlands)

    Kaput, J.; Cotton, R.G.; Hardman, L.; Watson, M.; Aqeel, A.I. Al; Al-Aama, J.Y.; Al-Mulla, F.; Alonso, S.; Aretz, S.; Auerbach, A.D.; Bapat, B.; Bernstein, I.T.; Bhak, J.; Bleoo, S.L.; Blocker, H.; Brenner, S.E.; Burn, J.; Bustamante, M.; Calzone, R.; Cambon-Thomsen, A.; Cargill, M.; Carrera, P.; Cavedon, L.; Cho, Y.S.; Chung, Y.J.; Claustres, M.; Cutting, G.; Dalgleish, R.; Dunnen, J.T. den; Diaz, C.; Dobrowolski, S.; Santos, M.R. dos; Ekong, R.; Flanagan, S.B.; Flicek, P.; Furukawa, Y.; Genuardi, M.; Ghang, H.; Golubenko, M.V.; Greenblatt, M.S.; Hamosh, A.; Hancock, J.M.; Hardison, R.; Harrison, T.M.; Hoffmann, R.; Horaitis, R.; Howard, H.J.; Barash, C.I.; Izagirre, N.; Jung, J.; Kojima, T.; Laradi, S.; Lee, Y.S.; Lee, J.Y.; Gil-da-Silva-Lopes, V.L.; Macrae, F.A.; Maglott, D.; Marafie, M.J.; Marsh, S.G.; Matsubara, Y.; Messiaen, L.M.; Moslein, G.; Netea, M.G.; Norton, M.L.; Oefner, P.J.; Oetting, W.S.; O'Leary, J.C.; Ramirez, A.M. de; Paalman, M.H.; Parboosingh, J.; Patrinos, G.P.; Perozzi, G.; Phillips, I.R.; Povey, S.; Prasad, S.; Qi, M.; Quin, D.J.; Ramesar, R.S.; Richards, C.S.; Savige, J.; Scheible, D.G.; Scott, R.J.; Seminara, D.; Shephard, E.A.; Sijmons, R.H.; Smith, T.D.; Sobrido, M.J.; Tanaka, T.; Tavtigian, S.V.; Taylor, G.R.; Teague, J.; Topel, T.; Ullman-Cullere, M.; Utsunomiya, J.; Kranen, H.J. van; Vihinen, M.; Webb, E.; Weber, T.K.; Yeager, M.

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data

  19. Planning the human variome project: the Spain report.

    NARCIS (Netherlands)

    Kaput, J.; Cotton, R.G.; Hardman, L.; Watson, M.; Aqeel, A.I. Al; Al-Aama, J.Y.; Al-Mulla, F.; Alonso, S.; Aretz, S.; Auerbach, A.D.; Bapat, B.; Bernstein, I.T.; Bhak, J.; Bleoo, S.L.; Blocker, H.; Brenner, S.E.; Burn, J.; Bustamante, M.; Calzone, R.; Cambon-Thomsen, A.; Cargill, M.; Carrera, P.; Cavedon, L.; Cho, Y.S.; Chung, Y.J.; Claustres, M.; Cutting, G.; Dalgleish, R.; Dunnen, J.T. den; Diaz, C.; Dobrowolski, S.; Santos, M.R. dos; Ekong, R.; Flanagan, S.B.; Flicek, P.; Furukawa, Y.; Genuardi, M.; Ghang, H.; Golubenko, M.V.; Greenblatt, M.S.; Hamosh, A.; Hancock, J.M.; Hardison, R.; Harrison, T.M.; Hoffmann, R.; Horaitis, R.; Howard, H.J.; Barash, C.I.; Izagirre, N.; Jung, J.; Kojima, T.; Laradi, S.; Lee, Y.S.; Lee, J.Y.; Gil-da-Silva-Lopes, V.L.; Macrae, F.A.; Maglott, D.; Marafie, M.J.; Marsh, S.G.; Matsubara, Y.; Messiaen, L.M.; Moslein, G.; Netea, M.G.; Norton, M.L.; Oefner, P.J.; Oetting, W.S.; O'Leary, J.C.; Ramirez, A.M. de; Paalman, M.H.; Parboosingh, J.; Patrinos, G.P.; Perozzi, G.; Phillips, I.R.; Povey, S.; Prasad, S.; Qi, M.; Quin, D.J.; Ramesar, R.S.; Richards, C.S.; Savige, J.; Scheible, D.G.; Scott, R.J.; Seminara, D.; Shephard, E.A.; Sijmons, R.H.; Smith, T.D.; Sobrido, M.J.; Tanaka, T.; Tavtigian, S.V.; Taylor, G.R.; Teague, J.; Topel, T.; Ullman-Cullere, M.; Utsunomiya, J.; Kranen, H.J. van; Vihinen, M.; Webb, E.; Weber, T.K.; Yeager, M.

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data f

  20. Planning the Human Variome Project : The Spain Report

    NARCIS (Netherlands)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D.; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Bloecker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Diaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosario N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G. E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Moeslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O'Leary, James C.; Oller de Ramirez, Ana Maria; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, Maria-Jesus; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Toepel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data f

  1. Planning the Human Variome Project : The Spain Report

    NARCIS (Netherlands)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D.; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Bloecker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Diaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosario N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G. E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Moeslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O'Leary, James C.; Oller de Ramirez, Ana Maria; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, Maria-Jesus; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Toepel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data f

  2. Planning the human variome project: the Spain report

    DEFF Research Database (Denmark)

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of dat...

  3. Exploring Life Support Architectures for Evolution of Deep Space Human Exploration

    Science.gov (United States)

    Anderson, Molly S.; Stambaugh, Imelda C.

    2015-01-01

    Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.

  4. The Ethanol Project: Exploring Alternative Energy with Role-Play and Writing

    Science.gov (United States)

    Winter, Julia

    2013-01-01

    This article describes a project that includes a two-week series of researching, essay writing, and speaking lessons exploring the broader implications of using ethanol as a fuel. The author, a chemistry teacher, describes how she uses a senate hearing discussion of ethanol fuel subsidies as the forum for a role-play. The four components of the…

  5. Exploring the role of instant messaging in a global software development project

    DEFF Research Database (Denmark)

    Dittrich, Y.; Giuffrida, Rosalba

    2011-01-01

    Communication plays a vital role in software devel- opment projects. Globally distributed teams use a mix of dif- ferent communication channels to get the work done. In this paper, we report on an empirical study of a team distributed across Denmark and India. This paper explores the integration...

  6. Exploring the Role of Social Software in Global Software Development Projects

    DEFF Research Database (Denmark)

    Giuffrida, Rosalba; Dittrich, Y.

    2011-01-01

    We present a PhD project that investigates the use of Social Software (SoSo) in Global Software Development (GSD) teams. Since SoSo in unstructured and informal in its own nature, we explore how informal communication, which is challenging in GSD, is supported by SoSo in distributed teams and how...

  7. Exploring the Present and Projecting the Future: People with Severe Mental Illness Speaking for Themselves

    Science.gov (United States)

    Vilà, Montserrat; Pallisera, Maria; Fullana, Judit

    2016-01-01

    The participation of people with mental illness in research is key to their empowerment and provides them with a highly meaningful experience. The aim of this article was to explore the perspectives, views and experiences of people with severe mental illness (SMI) regarding their present life and projection of the future (desires, expectations…

  8. Project innovation through exploration and exploitation: requirements practice in large-scale IS development environments

    NARCIS (Netherlands)

    Hansen, S.; Lyytinen, K.; Avital, M.

    2009-01-01

    The exploration of new opportunities and the exploitation of existing competencies represent two competing logics for innovation and change within organizations. IS projects seeking to foster innovation need to balance these forces, and recognize the distinct role that each plays. Through its

  9. Exploring the Present and Projecting the Future: People with Severe Mental Illness Speaking for Themselves

    Science.gov (United States)

    Vilà, Montserrat; Pallisera, Maria; Fullana, Judit

    2016-01-01

    The participation of people with mental illness in research is key to their empowerment and provides them with a highly meaningful experience. The aim of this article was to explore the perspectives, views and experiences of people with severe mental illness (SMI) regarding their present life and projection of the future (desires, expectations…

  10. Exploring the Effects of Technology Overload on the Outcomes of Enterprise Resource Planning (ERP) Implementation Projects

    Science.gov (United States)

    Kates, Earl B.

    2016-01-01

    Despite significant investments made by organizations to implement ERP systems and prior research that explored contributing factors of ERP failure, the ERP implementation success rate continues to remain low in practice. Increased technology usage in the workplace coupled with higher dependency on technology to complete project tasks often leads…

  11. Towards managed structuration : Exploring bridging mechanisms for IS enabled change in multi-site implementation projects

    NARCIS (Netherlands)

    Hage, Eveline; van Offenbeek, Marjolein; Boonstra, Albert

    2015-01-01

    This paper aims to enhance our understanding of the bridging mechanisms underlying information system (IS) enabled change in multi-site implementation projects, and explore opportunities for intentionally shaping such change. To achieve this, we develop and empirically demonstrate the added value of

  12. The Ethanol Project: Exploring Alternative Energy with Role-Play and Writing

    Science.gov (United States)

    Winter, Julia

    2013-01-01

    This article describes a project that includes a two-week series of researching, essay writing, and speaking lessons exploring the broader implications of using ethanol as a fuel. The author, a chemistry teacher, describes how she uses a senate hearing discussion of ethanol fuel subsidies as the forum for a role-play. The four components of the…

  13. Exploring the Effects of Technology Overload on the Outcomes of Enterprise Resource Planning (ERP) Implementation Projects

    Science.gov (United States)

    Kates, Earl B.

    2016-01-01

    Despite significant investments made by organizations to implement ERP systems and prior research that explored contributing factors of ERP failure, the ERP implementation success rate continues to remain low in practice. Increased technology usage in the workplace coupled with higher dependency on technology to complete project tasks often leads…

  14. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  15. Human Activity Recognition in AAL Environments Using Random Projections

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2016-01-01

    Full Text Available Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject’s body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL, for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD data are presented.

  16. Towards human exploration of space: The THESEUS review series on immunology research priorities

    DEFF Research Database (Denmark)

    Jean-Pol, Frippiat; Crucian, Brian E; de Quervain, Dominique

    2016-01-01

    to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent......Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able...... to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer...

  17. Project Columbiad: Reestablishment of human presence on the Moon

    Science.gov (United States)

    Shea, Joseph; Weiss, Stanley; Alexander, Harold; Belobaba, Peter; Loboda, Greg; Berry, Maresi; Bower, Mark; Bruen, Charles; Cazeau, Patrick; Clarke, Michael

    1992-01-01

    In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted missions have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mecanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.

  18. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  19. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  20. An Integrated Human System Interaction (HSI) Framework for Human-Agent Team Collaboration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA commitment to a human presence in space exploration results in the interaction of humans with challenging environments in space, on lunar, and on planetary...

  1. Human Outer Solar System Exploration via Q-Thruster Technology

    Science.gov (United States)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  2. NASA Human Health and Performance Center: Open innovation successes and collaborative projects

    Science.gov (United States)

    Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-11-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).

  3. A Quantitative ADME-base Tool for Exploring Human ...

    Science.gov (United States)

    Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It

  4. Environmental effects of human exploration of the Moon

    Science.gov (United States)

    Mendell, Wendell

    Aerospace engineers use the term Environment to designate a set of externally imposed bound-ary conditions under which a device must operate. Although the parameters may be time-varying, the engineer thinks of the operating environment as being fixed. Any effect the device might have on the environment generally is neglected. In the case where the device is intended to measure the environment, its effect on the measured quantities must be considered. For example, a magnetometer aboard a spacecraft must be extended on a boom to minimize the disturbing influence of the spacecraft on the magnetic field, particularly if the field is weak. In contrast, Environment has taken on political and even ethical connotations in modern Western society, referring to human-induced alterations to those aspects of the terrestrial environment that are required for a healthy and productive life. The so-called Green Movement takes preservation of the environment as its mantra. Scientists are at the center of the debate on environmental issues. However, the concern of scientists over irreversible consequences of hu-man activity extend beyond ecology to preservation of cultural artifacts and to effects that alter the ability to conduct investigations such as light pollution in astronomy. The policy of Planetary Protection applied to science and exploration missions to other bodies in the solar system arises from the concern for deleterious effects in terrestrial ecology from hypothetical extraterrestrial life forms as well as overprints of extraterrestrial environments by terrestrial biology. Some in the scientific community are advocating extension of the planetary protection concept beyond exobiology to include fragile planetary environments by might be permanently altered by human activity e.g., the lunar exosphere. Beyond the scientific community, some environmentalists argue against any changes to the Moon at all, including formation of new craters or the alteration of the natural

  5. Cislunar Near Rectilinear Halo Orbit for Human Space Exploration

    Science.gov (United States)

    Whitley, Ryan; Martinez, Roland; Condon, Gerald; Williams, Jacob; Lee, David; Davis, Diane; Barton, Gregg; Bhatt, Sagar; Jang, Jiann-Woei; Clark, Fred; Hinkel, Heather

    2016-01-01

    In order to conduct sustained human exploration beyond Low Earth Orbit (LEO), spacecraft systems are designed to operate in a series of missions of increasing complexity. Regardless of the destination, Moon, Mars, asteroids or beyond, there is a substantial set of common objectives that must be met. Many orbit characterization studies have endeavored to evaluate the potential locations in cislunar space that are favorable for meeting common human exploration objectives in a stepwise approach. Multiple studies, by both NASA and other international space agencies, have indicated that Earth-­-moon libration point orbits are attractive candidates for staging operations in the proving ground and beyond. In particular, the Near Rectilinear Orbit (NRO) has been demonstrated to meet multi-­-mission and multi-­-destination architectural constraints. However, a human mission to a selected NRO presents a variety of new challenges for mission planning. While a growing number of robotic missions have completed successful operations to various specific libration point orbits, human missions have never been conducted to orbits of this class. Human missions have unique challenges that differ significantly from robotic missions, including a lower tolerance for mission risk and additional operational constraints that are associated only with human spacecraft. In addition, neither robotic nor human missions have been operated in the NRO regime specifically, and NROs exhibit dynamical characteristics that can differ significantly as compared to other halo orbits. Finally, multi-­-body orbits, such as libration point orbits, are identified to exist in a simplified orbit model known as the Circular Restricted Three Body Problem (CRTBP) and must then be re-­-solved in the full ephemeris model. As a result, the behavior of multi-­-body orbits cannot be effectively characterized within the classical two-­-body orbit dynamics framework more familiar to the human spaceflight community

  6. A LARGE HUMAN CENTRIFUGE FOR EXPLORATION AND EXPLOITATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Jack J.W.A. van Loon

    2012-06-01

    Full Text Available This paper addresses concepts regarding the development of an Altered Gravity Platform (AGP that will serve as a research platform for human space exploration. Space flight causes a multitude of physiological problems, many of which are due to gravity level transitions. Going from Earth's gravity to microgravity generates fluid shifts, space motion sickness, cardiovascular deconditioning among other changes, and returning to a gravity environment again puts the astronauts under similar stressors. A prolonged stay in microgravity provokes additional deleterious changes such as bone loss, muscle atrophy and loss of coordination or specific psychological stresses. To prepare for future manned space exploration missions, a ground-based research test bed for validating countermeasures against the deleterious effects of g-level transitions is needed. The proposed AGP is a large rotating facility (diameter > 150 m, where gravity levels ranging from 1.1 to 1.5g are generated, covering short episodes or during prolonged stays of weeks or even months. On this platform, facilities are built where a crew of 6 to 8 humans can live autonomously. Adaptation from 1 g to higher g levels can be studied extensively and monitored continuously. Similarly, re-adaptation back to 1 g, after a prolonged period of altered g can also be investigated. Study of the physiological and psychological adaptation to changing g-levels will provide instrumental and predictive knowledge to better define the ultimate countermeasures that are needed for future successful manned space exploration missions to the Moon, Mars and elsewhere. The AGP initiative will allow scientific top experts in Europe and worldwide to investigate the necessary scientific, operational, and engineering inputs required for such space missions. Because so many different physiological systems are involved in adaptation to gravity levels, a multidisciplinary approach is crucial. One of the final and crucial

  7. Human Life and American Values Projection

    Science.gov (United States)

    2013-03-01

    student academic research paper are those of the author and do not reflect the official policy or position of the Department of the Army...Education and the Council for Higher Education Accreditation. The views expressed in this student academic research paper are those of the author...who is residing in the womb of another living human being.” 44 J. Hernandez, “Doctor Sued For Malpractice For Failure to Monitor Fetal Vital Signs

  8. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  9. Microbial Impact on Success of Human Exploration Missions

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark; Groves, T. O.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The purpose of this study is to identify microbiological risks associated with space exploration and identify potential countermeasures available. Identification of microbial risks associated with space habitation requires knowledge of the sources and expected types of microbial agents. Crew data along with environmental data from water, surfaces, air, and free condensate are utilized in risk examination. Data from terrestrial models are also used. Microbial risks to crew health include bacteria, fungi, protozoa, and viruses. Adverse effects of microbes include: infections, allergic reactions, toxin production, release of volatiles, food spoilage, plant disease, material degradation, and environmental contamination. Risk is difficult to assess because of unknown potential changes in microbes (e.g., mutation) and the human host (e.g., immune changes). Prevention of adverse microbial impacts is preferred over remediation. Preventative measures include engineering measures (e.g., air filtration), crew microbial screening, acceptability standards, and active verification by onboard monitoring. Microbiological agents are important risks to human health and performance during space flight and risks increase with mission duration. Acceptable risk level must be defined. Prevention must be given high priority. Careful screening of crewmembers and payloads is an important element of any risk mitigation plan. Improved quantitation of microbiological risks is a high priority.

  10. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    Science.gov (United States)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; Stone, L. S.

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  11. Final Report: Fire Prevention, Detection, and Suppression Project, Exploration Technology Development Program

    Science.gov (United States)

    Ruff, Gary A.

    2011-01-01

    The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.

  12. [The Human Genome Project and the right to intellectual property].

    Science.gov (United States)

    Cambrón, A

    2000-01-01

    The Human Genome Project was designed to achieve two objectives. The scientific goal was the mapping and sequencing of the human genome and the social objective was to benefit the health and well-being of humanity. Although the first objective is nearing successful conclusion, the same cannot be said for the second, mainly because the benefits will take some time to be applicable and effective, but also due to the very nature of the project. The HGP also had a clear economic dimension, which has had a major bearing on its social side. Operating in the midst of these three dimensions is the right to intellectual property (although not just this right), which has facilitated the granting of patents on human genes. Put another way, the carrying out of the HGP has required the privatisation of knowledge of the human genome, and this can be considered an attack on the genetic heritage of mankind.

  13. Cooperation and dialogical modeling for designing a safe Human space exploration mission to Mars

    Science.gov (United States)

    Grès, Stéphane; Tognini, Michel; Le Cardinal, Gilles; Zalila, Zyed; Gueydan, Guillaume

    2014-11-01

    This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.

  14. Project management for humans helping people get things done

    CERN Document Server

    Harned, Brett

    2017-01-01

    Project management—it’s not just about following a template or using a tool, but rather developing personal skills and intuition to find a method that works for everyone. Whether you’re a designer or a manager, Project Management for Humans will help you estimate and plan tasks, scout and address issues before they become problems, and communicate with and hold people accountable.

  15. EXPLORING THE POLITICS OF LOCAL PARTICIPATION IN RURAL DEVELOPMENT PROJECTS: SMALL DAMS REHABILITATION PROJECT IN ZIMBABWE

    Directory of Open Access Journals (Sweden)

    Jacob Tagarirofa

    2013-02-01

    Full Text Available The study sought to evaluate the effectiveness of community participation in rural development projects in Zimbabwe testing the credibility of the popularized supposition that almost all contemporary development efforts characteristically embrace local participation. Public participation is widely assumed to be an essential ingredient for the fruition of rural development efforts. The research made use of quantitative and qualitative research methodologies in which unstructured interviews, focus group discussions and questionnaires were used as data gathering instruments. The analysis of data was enabled by the use of People-Centered Development (PCD as a conceptual framework. Findings revealed that the level of community participation in the district is not only minimal, but it is also top down. This has much to do with the negative perceptions by facilitating agents viewing local people as passive recipients of externally crafted models of development and other factors such as the power dynamics within and between the community and other stakeholders. The research also found preferential treatment of other tribal groups by the facilitating agent, intra group conflicts and bureaucratic and political influence as obstacles militating against effective participation. Based on these findings, and consistent with the wider literature, recommendation are that the nature of community engagement should be based on the principle of equal partnership among all stakeholders as this would encourage full cooperation and thus effective participation.

  16. Projecting human development and CO2 emissions

    CERN Document Server

    Costa, Luís; Kropp, Jürgen P

    2012-01-01

    We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

  17. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  18. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  19. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  20. Human Resourcing Challenges of The Smart Grids Deployment Projects in Russia

    Directory of Open Access Journals (Sweden)

    Chmykhalo Alexander Y.

    2017-01-01

    Full Text Available The article addresses the issue of the causes of human resources gaps for the implementation of projects for the deployment of intelligent electricity grids. The “focus group” research technique used in Tomsk Polytechnic University enabled to identify numerous barriers encountered by present-day engineering students in Russia on the path of their professional development. The barriers explored impede greatly the creation and introduction of state-of-the-art technological systems, Smart Grid being one of them. The elimination of those barriers will accelerate the accomplishment of the Smart Grid project.

  1. Exploring an innovation project as source of change in organization design

    DEFF Research Database (Denmark)

    Brix, Jacob; Peters, Lois S.

    2015-01-01

    This study builds new empirically based theory on how the processing of an innovation project with a high degree of uncertainty induces change in key components in organization design. By using an embedded case study as our research strategy and organisation design theory as our analytical lens, we...... construct ten propositions that determine how the organization design of our case organization was influenced because of their innovation project. These changes represent: a) improved competencies for exploration activities, b) improved competencies for exploiting new knowledge, and c) increased readiness...

  2. Exploring an Innovation Project as a Source of Change in Organization Design

    Directory of Open Access Journals (Sweden)

    Jacob Brix

    2015-04-01

    Full Text Available This study builds new empirically based theory on how the processing of an innovation project with a high degree of uncertainty induces change in key components in organization design. By using an embedded case study as our research strategy and organization design theory as our analytical lens, we construct ten propositions that determine how the organization design of our case organization was influenced because of their innovation project. These changes represent: a improved competencies for exploration activities, b improved competencies for exploiting new knowledge, and c increased readiness for change.

  3. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  4. Life in our hands? Some ethical perspectives on the human genome and human genome diversity projects

    Directory of Open Access Journals (Sweden)

    Cornelius W. du Toit

    2014-01-01

    Full Text Available The article dealt with implications of the human genome and the human genome diversity project. It examined some theological implications, such as: humans as the image of God, God as the creator of life, the changed role of miracles and healings in religion, the sacredness of nature, life and the genome. Ethical issues that were addressed include eugenics, germline intervention, determinism and the human genome diversity project. Economic and legal factors that play a role were also discussed. Whilst positive aspects of genome research were considered, a critical stance was adopted towards patenting the human genome and some concluding guidelines were proposed.

  5. Visual exploration and analysis of human-robot interaction rules

    Science.gov (United States)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  6. Exploring the impact of climate on human longevity.

    Science.gov (United States)

    Robine, Jean-Marie; Herrmann, François R; Arai, Yasumichi; Willcox, D Craig; Gondo, Yasuyuki; Hirose, Nobuyoshi; Suzuki, Makoto; Saito, Yasuhiko

    2012-09-01

    The purpose of this study was to examine the impact of physical geographic factors and climate conditions on human longevity. The centenarian rate (CR) in 2005 was computed for Japan's 47 prefectures, whose geography and climate vary greatly. Several pathways, such as excess winter mortality, land use and agricultural production, possibly linking physical and climate factors with extreme longevity, were explored. The probability of becoming a centenarian varies significantly among the Japanese prefectures. In particular, the computation of CR(70) demonstrated that the actual probability for individuals 70 years old in 1975 of becoming centenarians in 2005 was 3 times higher, on average, in Okinawa, both for males and females, than in Japan as a whole. About three quarters of the variance in CR(70) for females and half for males is explained by the physical environment and land use, even when variations in the level of socio-economic status between prefectures are controlled. Our analysis highlighted two features which might have played an important role in the longevity observed in Okinawa. First, there is virtually no winter in Okinawa. For instance, the mean winter temperature observed in 2005 was 17.2°C. Second, today, there is almost no rice production in Okinawa compared to other parts of Japan. In the past, however, production was higher in Okinawa. If we consider that long term effects of harsh winters can contribute to the mortality differential in old age and if we consider that food availability in the first part of the 20th century was mainly dependent on local production, early 20th century birth cohorts in Okinawa clearly had different experiences in terms of winter conditions and in terms of food availability compared to their counterparts in other parts of Japan. This work confirms the impact of climate conditions on human longevity, but it fails to demonstrate a strong association between longevity and mountainous regions and/or air quality.

  7. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates

    Science.gov (United States)

    Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B

    2012-01-01

    Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light

  8. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    Science.gov (United States)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  9. Incremental Scheduling Engines for Human Exploration of the Cosmos

    Science.gov (United States)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.

  10. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    Science.gov (United States)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  11. Luna-Glob project in the context of the past and present lunar exploration in Russia

    Indian Academy of Sciences (India)

    E M Galimov

    2005-12-01

    The Russian Luna-Glob project has been conceived with a view to understand the origin of the Earth –Moon system.The objectives and main features of the Luna-Glob mission,which will mainly study the internal structure of the Moon by seismic instruments,are described in the context of the past and current program of lunar exploration in Russia.

  12. Advanced Solid State Lighting for Human Evaluation Project

    Science.gov (United States)

    Zeitlin, Nancy; Holbert, Eirik

    2015-01-01

    Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.

  13. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  14. Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoa T. [Univ. of Utah, Salt Lake City, UT (United States); Stone, Daithi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different case studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.

  15. Exploring an experiential learning project through Kolb's Learning Theory using a qualitative research method

    Science.gov (United States)

    Yuk Chan, Cecilia Ka

    2012-08-01

    Experiential learning pedagogy is taking a lead in the development of graduate attributes and educational aims as these are of prime importance for society. This paper shows a community service experiential project conducted in China. The project enabled students to serve the affected community in a post-earthquake area by applying their knowledge and skills. This paper documented the students' learning process from their project goals, pre-trip preparations, work progress, obstacles encountered to the final results and reflections. Using the data gathered from a focus group interview approach, the four components of Kolb's learning cycle, the concrete experience, reflection observation, abstract conceptualisation and active experimentation, have been shown to transform and internalise student's learning experience, achieving a variety of learning outcomes. The author will also explore how this community service type of experiential learning in the engineering discipline allowed students to experience deep learning and develop their graduate attributes.

  16. 77 FR 33774 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2012-06-07

    ... Agency Information Collection Activities: Comment Request; Education and Human Resources Project... of Collection: Education and Human Resources Project Monitoring Clearance. OMB Approval Number: 3145... States and internationally. The Directorate for Education and Human Resources (EHR), a unit within NSF...

  17. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  18. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  19. Human Genome Project and cystic fibrosis--a symbiotic relationship.

    Science.gov (United States)

    Tolstoi, L G; Smith, C L

    1999-11-01

    When Watson and Crick determined the structure of DNA in 1953, a biological revolution began. One result of this revolution is the Human Genome Project. The primary goal of this international project is to obtain the complete nucleotide sequence of the human genome by the year 2005. Although molecular biologists and geneticists are most enthusiastic about the Human Genome Project, all areas of clinical medicine and fields of biology will be affected. Cystic fibrosis is the most common, inherited, lethal disease of white persons. In 1989, researchers located the cystic fibrosis gene on the long arm of chromosome 7 by a technique known as positional cloning. The most common mutation (a 3-base pair deletion) of the cystic fibrosis gene occurs in 70% of patients with cystic fibrosis. The knowledge gained from genetic research on cystic fibrosis will help researchers develop new therapies (e.g., gene) and improve standard therapies (e.g., pharmacologic) so that a patient's life span is increased and quality of life is improved. The purpose of this review is twofold. First, the article provides an overview of the Human Genome Project and its clinical significance in advancing interdisciplinary care for patients with cystic fibrosis. Second, the article includes a discussion of the genetic basis, pathophysiology, and management of cystic fibrosis.

  20. Benefits of human-centred design in open innovation projects

    NARCIS (Netherlands)

    Steen, M.G.D.; Aarts, O.A.J.; Broekman, C.C.M.T.

    2012-01-01

    Human-centred design (HCD) is a form of open innovation in which researchers and designers cooperate with (potential) users or customers, e.g. in co-design workshops, interviews, user tests and trials. Based on a case study of two open innovation projects in which HCD activities were organized (TA2

  1. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  2. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    2003-01-01

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  3. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... working with cells derived from one individual or animal species, only to eventually learn that the cells..., morphology, pathologic or disease-state, hybrid or mixed culture, feeder cells, date of origin, etc), the STR... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National...

  4. A Public Policy Advocacy Project to Promote Food Security: Exploring Stakeholders' Experiences.

    Science.gov (United States)

    Atkey, Kayla M; Raine, Kim D; Storey, Kate E; Willows, Noreen D

    2016-09-01

    To achieve food security in Canada, comprehensive approaches are required, which involve action at the public policy level. This qualitative study explored the experiences of 14 stakeholders engaging in a 9-month participatory public policy advocacy project to promote community food security in the province of Alberta through the initiation of a campaign to develop a Universal School Food Strategy. Through this exploration, four main themes were identified; a positive and open space to contribute ideas, diversity and common ground, confidence and capacity, and uncertainty. Findings from this study suggest that the participatory advocacy project provided a positive and open space for stakeholders to contribute ideas, through which the group was able to narrow its focus and establish a goal for advocacy. The project also seems to have contributed to the group's confidence and capacity to engage in advocacy by creating a space for learning and knowledge sharing, though stakeholders expressed uncertainty regarding some aspects of the project. Findings from this study support the use of participatory approaches as a strategy for facilitating engagement in public policy advocacy and provide insight into one group's advocacy experience, which may help to inform community-based researchers and advocates in the development of advocacy initiatives to promote community food security elsewhere.

  5. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Science.gov (United States)

    2013-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Research... and fact-finding with respect to the research activities within the Human Exploration and Operations... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the Human...

  6. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    Science.gov (United States)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  7. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    Science.gov (United States)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    presents the results of the analyses performed, the potential changes to mission architectures and campaigns that result, and the general trends that are more broadly applicable to any element design or mission planning for human exploration.

  8. The contamination impact of human exploration to a subterranean environment and the implications for further crewed space exploration

    Science.gov (United States)

    Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa

    2016-07-01

    The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.

  9. A new metaphor for projection-based visual analysis and data exploration

    Science.gov (United States)

    Schreck, Tobias; Panse, Christian

    2007-01-01

    In many important application domains such as Business and Finance, Process Monitoring, and Security, huge and quickly increasing volumes of complex data are collected. Strong efforts are underway developing automatic and interactive analysis tools for mining useful information from these data repositories. Many data analysis algorithms require an appropriate definition of similarity (or distance) between data instances to allow meaningful clustering, classification, and retrieval, among other analysis tasks. Projection-based data visualization is highly interesting (a) for visual discrimination analysis of a data set within a given similarity definition, and (b) for comparative analysis of similarity characteristics of a given data set represented by different similarity definitions. We introduce an intuitive and effective novel approach for projection-based similarity visualization for interactive discrimination analysis, data exploration, and visual evaluation of metric space effectiveness. The approach is based on the convex hull metaphor for visually aggregating sets of points in projected space, and it can be used with a variety of different projection techniques. The effectiveness of the approach is demonstrated by application on two well-known data sets. Statistical evidence supporting the validity of the hull metaphor is presented. We advocate the hull-based approach over the standard symbol-based approach to projection visualization, as it allows a more effective perception of similarity relationships and class distribution characteristics.

  10. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  11. ADP Analysis project for the Human Resources Management Division

    Science.gov (United States)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  12. Planning the human variome project: the Spain report.

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut; Brenner, Steven E; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M Rosário N; Ekong, Rosemary; Flanagan, Simon B; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V; Greenblatt, Marc S; Hamosh, Ada; Hancock, John M; Hardison, Ross; Harrison, Terence M; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L; Macrae, Finlay A; Maglott, Donna; Marafie, Makia J; Marsh, Steven G E; Matsubara, Yoichi; Messiaen, Ludwine M; Möslein, Gabriela; Netea, Mihai G; Norton, Melissa L; Oefner, Peter J; Oetting, William S; O'Leary, James C; de Ramirez, Ana Maria Oller; Paalman, Mark H; Parboosingh, Jillian; Patrinos, George P; Perozzi, Giuditta; Phillips, Ian R; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J; Ramesar, Rajkumar S; Richards, C Sue; Savige, Judith; Scheible, Dagmar G; Scott, Rodney J; Seminara, Daniela; Shephard, Elizabeth A; Sijmons, Rolf H; Smith, Timothy D; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V; Taylor, Graham R; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K; Yeager, Meredith; Yeom, Young I; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-04-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008.

  13. Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots

    National Research Council Canada - National Science Library

    Yang, Xiping; Zhao, Zhiyuan; Lu, Shiwei

    2016-01-01

    Understanding human mobility patterns provides us with knowledge about human mobility in an urban context, which plays a critical role in urban planning, traffic management and the spread of disease...

  14. The roles of humans and robots in exploring the solar system

    Science.gov (United States)

    Mendell, W. W.

    2004-07-01

    Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.

  15. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    Science.gov (United States)

    Race, Margaret; Conley, Catharine

    discussed by the study participants to date have set the agenda for additional work that will continue for at least another year, culminating in a final report that should be useful to current and new nations and partnerships in planning human missions beyond LEO. In addition, over the past two years, NASA has made progress in integrating planetary protection considerations into mission designs along with other important human, environmental and science needs. Details about planetary protection have also been incorporated into the latest Addendum of the Design Reference Architecture (DRA) for human missions to Mars. Other ongoing studies of Mars human mission architecture, technologies and operations have likewise been integrating PP requirements and guidelines into cross-cutting measures of various types. An important objective of all these studies is to proactively gather and communicate PP information to the broad community of planners, engineers and assorted partners who are facing the challenges of future human exploration missions. By analyzing ways to integrate PP provisions effectively into early mission phases in synergism with other needs, these projects and studies will help ensure that all institutions and organizations avoid releasing harmful contamination on bodies with biological potential, thereby ensuring protection of the Earth and astronauts throughout their missions and safeguarding the integrity of science exploration—all in compliance with the 1967 Outer Space Treaty.

  16. NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.

  17. Exploring the dynamics of ownership in community-oriented design projects

    DEFF Research Database (Denmark)

    Light, Ann; Hansen, Nicolai Brodersen; Halskov, Kim

    2013-01-01

    : what motivates ownership; how ownership transitions; structures to support ownership; and facilitating efficacy among participants. Specifically, we study the contribution of a Danish research team to the production of a media façade for a Swedish municipality and how British researchers engaged......This paper contributes an exploration of ownership as a dynamic process in community-oriented projects. We use case study accounts of two design projects to consider participation in contexts where social structure is relevant to design outcomes. In studying these dynamics, we consider four aspects...... community groups in making internet radio podcasts to share insight. We examine the complexity of the social process involved and trace patterns of change, before concluding with pragmatic and ethical reasons for technology design to pay attention to ownership issues....

  18. Evidence from neuroimaging to explore brain plasticity in humans during an ultra-endurance burden

    Directory of Open Access Journals (Sweden)

    Perrey Stéphane

    2012-12-01

    Full Text Available Abstract Physical activity, likely through induction of neuroplasticity, is a promising intervention to promote brain health. In athletes it is clear that training can and does, by physiological adaptations, extend the frontiers of performance capacity. The limits of our endurance capacity lie deeply in the human brain, determined by various personal factors yet to be explored. The human brain, with its vast neural connections and its potential for seemingly endless behaviors, constitutes one of the final frontiers of medicine. In a recent study published in BMC Medicine, the TransEurope FootRace Project followed 10 ultra-endurance runners over around 4,500 km across Europe and recorded a large data collection of brain imaging scans. This study indicates that the cerebral atrophy amounting to a reduction of approximately 6% throughout the two months of the race is reversed upon follow-up. While this study will contribute to advances in the limits of human performance on the neurophysiological processes in sports scientists, it will also bring important understanding to clinicians about cerebral atrophy in people who are vulnerable to physical and psychological stress long term. See related research article http://www.biomedcentral.com/1741-7015/10/170

  19. Project NO REST: Addressing Human Trafficking in North Carolina.

    Science.gov (United States)

    Duncan, Dean F

    Project NO REST (North Carolina Organizing and Responding to the Exploitation and Sexual Trafficking of Children) is a 5-year effort funded by the US Children's Bureau to address the trafficking of individuals age 25 years and younger in North Carolina. The project aims to increase awareness of human trafficking affecting children and youth, especially those in the child welfare system; to reduce the number of these youth who are trafficked; and to improve outcomes for those who are trafficked. In the project's first year, nearly 100 stakeholders statewide developed a comprehensive plan to address trafficking. Later, 5 communities were recruited to implement the plan at the local level. Their experiences will be used to develop a toolkit for future anti-trafficking efforts.

  20. Exploring the intramolecular phosphorylation sites in human Chk2

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Larsen, Martin R; Boldyreff, Brigitte;

    2008-01-01

    A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time....... Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except...... for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria....

  1. Prevalence of cervical enamel projection in human molars

    Directory of Open Access Journals (Sweden)

    Maria Regina Lima de Souza

    2014-01-01

    Full Text Available Introduction : One of the developmental anomalies of dental enamel is cervical enamel projection (CEP. The aim of this study was to assess the prevalence of CEP in maxillary and mandibular human teeth. Materials and Methods: A total of 234 human molars obtained from the tooth bank of the State University of Amazonas were used in the present study. CEP was classified as Grade 0 (absence of projection, Grade I (discrete extension of cementoenamel junction toward the furcation, Grade II (closer to furcation without invasion, and Grade III (extending to the furcation area. The evaluation was performed using macroscopic inspection of teeth faces (buccal, lingual/palatal, mesial, and distal with at least one-third of the crown on each face. Results: It was found that 17.1% of the teeth evaluated had CEP, but neither of the projections occurred on the proximal faces. Higher prevalence of CEP was found on the buccal faces and the most commonly grade of CEP found was Grade I (10.3%. Conclusions: It may be concluded that CEP occurs more frequently in mandibular molars and its diagnosis is extremely important since these projections may difficult bacterial plaque removal, leading to an inflammatory process and unnecessary endodontic treatment.

  2. Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots

    Directory of Open Access Journals (Sweden)

    Xiping Yang

    2016-07-01

    Full Text Available Understanding human mobility patterns provides us with knowledge about human mobility in an urban context, which plays a critical role in urban planning, traffic management and the spread of disease. Recently, the availability of large-scale human-sensing datasets enables us to analyze human mobility patterns and the relationships between humans and their living environments on an unprecedented spatial and temporal scale to improve decision-making regarding the quality of life of citizens. This study aims to characterize the urban spatial-temporal dynamic from the perspective of human mobility hotspots by using mobile phone location data. We propose a workflow to identify human convergent and dispersive hotspots that represent the status of human mobility in local areas and group these hotspots into different classes according to clustering their temporal signatures. To illustrate our proposed approach, a case study of Shenzhen, China, has been conducted. Six typical spatial-temporal patterns in the city are identified and discussed by combining the spatial distribution of these identified patterns with urban functional areas. The findings enable us to understand the human dynamics in a different area of the city, which can serve as a reference for urban planning and traffic management.

  3. 77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Science.gov (United States)

    2012-02-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Administration announces a meeting of the Human Exploration and Operations Committee of the NASA Advisory Council..., 300 E Street SW., Washington, DC 20546, 202-358-2245; bette.siegel@nasa.gov . SUPPLEMENTARY...

  4. Exploration of Human Rights by Chinese Communist Pioneers

    Institute of Scientific and Technical Information of China (English)

    LU SHUANGXI

    2011-01-01

    The Communist Party of China (CPC) ascended the stage of history holding high the banner of human fights.From the moment of its establishment,the Party has inscribed manifestly on its banner the principle of striving for human fights for the public.

  5. Solar Power System Evaluated for the Human Exploration of Mars

    Science.gov (United States)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  6. Assessing human rights impacts in corporate development projects

    Energy Technology Data Exchange (ETDEWEB)

    Salcito, Kendyl, E-mail: kendyl.salcito@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel (Switzerland); University of Basel, P.O. Box, CH-4003 Basel (Switzerland); NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202 (United States); NewFields, LLC, Denver, CO 80202 (United States); Utzinger, Jürg, E-mail: juerg.utzinger@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel (Switzerland); University of Basel, P.O. Box, CH-4003 Basel (Switzerland); Weiss, Mitchell G., E-mail: Mitchell-g.Weiss@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel (Switzerland); University of Basel, P.O. Box, CH-4003 Basel (Switzerland); Münch, Anna K., E-mail: annak.muench@gmail.com [Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610 (United States); Singer, Burton H., E-mail: bhsinger@epi.ufl.edu [Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610 (United States); Krieger, Gary R., E-mail: gkrieger@newfields.com [NewFields, LLC, Denver, CO 80202 (United States); Wielga, Mark, E-mail: wielga@nomogaia.org [NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202 (United States); NewFields, LLC, Denver, CO 80202 (United States)

    2013-09-15

    Human rights impact assessment (HRIA) is a process for systematically identifying, predicting and responding to the potential impact on human rights of a business operation, capital project, government policy or trade agreement. Traditionally, it has been conducted as a desktop exercise to predict the effects of trade agreements and government policies on individuals and communities. In line with a growing call for multinational corporations to ensure they do not violate human rights in their activities, HRIA is increasingly incorporated into the standard suite of corporate development project impact assessments. In this context, the policy world's non-structured, desk-based approaches to HRIA are insufficient. Although a number of corporations have commissioned and conducted HRIA, no broadly accepted and validated assessment tool is currently available. The lack of standardisation has complicated efforts to evaluate the effectiveness of HRIA as a risk mitigation tool, and has caused confusion in the corporate world regarding company duties. Hence, clarification is needed. The objectives of this paper are (i) to describe an HRIA methodology, (ii) to provide a rationale for its components and design, and (iii) to illustrate implementation of HRIA using the methodology in two selected corporate development projects—a uranium mine in Malawi and a tree farm in Tanzania. We found that as a prognostic tool, HRIA could examine potential positive and negative human rights impacts and provide effective recommendations for mitigation. However, longer-term monitoring revealed that recommendations were unevenly implemented, dependent on market conditions and personnel movements. This instability in the approach to human rights suggests a need for on-going monitoring and surveillance. -- Highlights: • We developed a novel methodology for corporate human rights impact assessment. • We piloted the methodology on two corporate projects—a mine and a plantation.

  7. Teaching exploration and practice of the human body structure course

    Institute of Scientific and Technical Information of China (English)

    Feng LI; Ming-feng CHEN; Wen-long DING

    2015-01-01

    In the 21 st century,the medical model has transformed from the biological model to the biopsycho-social medical model. The transformation of medical model raises higher requirements for the training of medical staff. Comprehensive promotion of the reform of medical education has become the consensus and trend,which breeds the integrated medical teaching that is based on modules and organ systems. As one of eight integrated modules,the human body structure course of Shanghai Jiao Tong University School of Medicine introduces morphological structures of normal human organs according to function systems( such as locomotor system,digestive system,angiological system,and nervous system) of human organs and parts of human body. This course endeavors to integrate theories with practices,contents of disciplines of basic medicine,and basic medicine with clinical medicine. The human body structure course combines basic medicine with clinical medicine and is an important part of medical science.

  8. Research and innovation in the `exploring our world´ project (6-12. The example of `exploring current and historical societies´ in initial teacher education

    Directory of Open Access Journals (Sweden)

    Jesús Estepa Giménez

    2012-04-01

    Full Text Available In this paper the authors present how they research and innovate in Initial Teacher Education programmes throught the `Exploring our world´ project (6-12. Along the article aspects related to the why, what for and how to teach of the curricular project are analysed by means of the example of `Exploring current and historical societies´. Trainees´ productions on this Field of Research are presented, in which they deal with the three afore-mentioned elements throught the design of didactic units that form part, like a portfolio, of the group reseach file.

  9. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    Science.gov (United States)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  10. Teachers' Pedagogical Perspectives and Teaching Practices on Human Rights in Cyprus: An Empirical Exploration and Implications for Human Rights Education

    Science.gov (United States)

    Zembylas, Michalinos; Charalambous, Constadina; Charalambous, Panayiota

    2016-01-01

    This paper describes a qualitative study that explored the understandings of human rights, pedagogical perspectives and practices in human rights teaching of three Greek-Cypriot elementary teachers. The study revealed some significant challenges in human rights teaching that seemed to be common for all three participating teachers. First, all of…

  11. Exploring the Cytoskeleton During Intracytoplasmic Sperm Injection in Humans

    Science.gov (United States)

    Rawe, Vanesa Y.; Chemes, Héctor

    Understanding the cellular events during fertilization in mammals is a major challenge that can contribute to the improvement of future infertility treatments in humans and reproductive performance in farm animals. Of special interest is the role of the oocyte and sperm cytoskeleton during the initial interaction between gametes. The aim of this chapter is to describe methods for studying cytoskeletal features during in vitro fertilization after intracytoplasmic sperm injection (ICSI) in humans. The following protocols will provide a detailed description of how to perform immunodetection and imaging of human eggs, zygotes, and sperm by fluorescence (confocal and epifluorescence) and electron microscopy.

  12. Human-Robot Site Survey and Sampling for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  13. Evaluation and improvement of methods to quantify the exploration risk of geothermal projects

    Science.gov (United States)

    Ganz, Britta; Schellschmidt, Rüdiger; Schulz, Rüdiger; Thomas, Rüdiger

    2015-04-01

    The quantification of exploration risks is of major importance for geothermal project planning. The exploration risk is defined as the risk of not successfully achieving a geothermal reservoir with minimum levels of thermal water production and reservoir temperatures (UNEP 2004). A simple method to quantify the probability of success (POS) for geothermal wells is to determine the single risks for temperature and flow rate and calculate the overall probability by multiplying the individual probabilities (SCHULZ et al. 2010). Since 2002, over 50 expert studies to evaluate the exploration risk of geothermal projects in Germany were carried out based on this method. The studies are requested as a basis for insurance contracts covering the risk of not achieving the necessary parameters. The estimated probabilities for temperature and flow rate in the expert reports were now compared with the parameters actually reached in meanwhile realised projects. The results are used for an improvement of the method. The probability of success for a given temperature was calculated using local temperature information in the vicinity of the planned well location. The greater significance of nearby temperature data was considered by inverse distance weighting. In highly productive deep aquifers, which are of major interest for geothermal projects, temperature gradients often strongly decrease due to an intense vertical mixing of the thermal water. Thus, the top of the considered aquifer was used as the reference point of the temperature assessment. As still some positive gradient can be expected within the aquifer, this is a conservative estimation. The evaluation of the reports should therefore especially answer the question, whether this approach has led to a systematic underestimation of the temperature. To calculate the probability of success for hydraulic parameters, the theoretical drawdown at a given flow rate was calculated for existing wells from hydraulic test data. The

  14. Relevance of the Human Genome Project to inherited metabolic disease.

    Science.gov (United States)

    Burn, J

    1994-01-01

    The Human Genome Project is an international effort to identify the complete structure of the human genome. HUGO, the Human Genome Organization, facilitates international cooperation and exchange of information while the Genome Data Base will act as the on-line information retrieval and storage system for the huge amount of information being accumulated. The clinical register MIM (Mendelian Inheritance in Man) established by Victor McKusick is now an on-line resource that will allow biochemists working with inborn errors of metabolism to access the rapidly expanding body of knowledge. Biochemical and molecular genetics are complementary and should draw together to find solutions to the academic and clinical problems posed by inborn errors of metabolism.

  15. Taking a "Giant Tour" to Explore the Human Body

    Science.gov (United States)

    Davies, Dan

    2013-01-01

    Helping children to visualise what is inside them and how their bodies work can be a challenge, since teachers are often reliant on secondary sources or investigations that can only measure outward signs (such as pulse rate). Another way is to involve the children in an imaginative role-play exercise where they explore the insides of a…

  16. Organizational Effectiveness: Exploring What It Means in Human Resource Development

    Science.gov (United States)

    Abston, Kristie A.; Stout, Vickie J.

    2006-01-01

    The literature on organizational effectiveness was reviewed to explore the various definitions and terminology used as well as to identify the criteria, correlates, theories and/or models, and measurement/assessment methods. AHRD Conference Proceedings for 2004 and 2005 were analyzed for usage of the phrase. Results indicated that researchers and…

  17. RAP: a computer program for exploring similarities in behavior sequences using random projections.

    Science.gov (United States)

    Quera, Vicenç

    2008-02-01

    A computer program (RAP, for random projection) for exploring similarities between and within sequences of behavior is presented. Given a time window of a sequence, the program calculates a signature, a real-valued vector that is a random projection of the contents of the window (i.e., the codes occurring within it and their relative location, or onset and offset times) into an arbitrary K-dimensional space. Then, given two different time windows from the same sequence or from different sequences, their similarity is computed as an inverse function of the Euclidean distance between their respective signatures. By defining moving (overlapped or not overlapped) windows along each sequence and calculating similarities between every pair of windows from the two sequences, a map of similarities or possible recurrent patterns is obtained; the RAP program represents them as gray-level lattices, which are displayed as mouse-sensitive images in an HTML file. Computation of similarities is based on the random projection method, as presented by Mannila and Seppänen (2001), for the analysis of sequences of events. The program reads sequence data files in Sequential Data Interchange Standard (SDIS) format (Bakeman Quera, 1992,1995a).

  18. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  19. Plans, Projections and Practitioners: Engaging with Communities to Explore Adaptation Strategies for Transportation Infrastructure

    Science.gov (United States)

    Picketts, I. M.

    2015-12-01

    Transportation infrastructure is a significant climate change adaptation concern because it is: costly; designed for long operational lives; susceptible to both episodic and seasonal deterioration; and a significant safety concern. While examples of adaptation exist in transportation design, many communities do not have the capacity to incorporate climate change considerations into infrastructure planning and management. This presentation will overview the process and outcomes of research conducted in collaboration with the communities of Prince George and Squamish, both located in British Columbia (BC), Canada. Previous research in Prince George (in northern BC) involved applying downscaled climate projection information to assess local climate impacts, and identified transportation infrastructure as the top priority for ongoing study. In Prince George the adaptation process was oriented toward determining how the City could plan, design, and maintain roads and other structures to account for climate change. A local steering committee was formed, and created and evaluated 23 potential research topics. Two focus areas were selected for further investigation and explored during a workshop with practitioners, researchers, consultants and other representatives. The workshop precipitated additional modelling of projected impacts of climate change on road maintenance and road safety, and plans to explore the viability of alternative paving techniques. Outcomes of the case study provide insights regarding how researchers can 'combine' top down and bottom up approaches by using modelling information as part of an engagement process with local experts to explore adaptation. Ongoing research in Squamish seeks to apply lessons learned from the Prince George case study (both related to process and the application of modelling information) to a more temperate coastal region with a more climate-concerned population. In Squamish there also lies an opportunity to explicitly focus

  20. Exploring Teacher Professional Learning for Future-Oriented Schooling: Working Paper 1 from the Back to the Future Project

    Science.gov (United States)

    Gilbert, Jane; Bull, Ally

    2014-01-01

    This working paper sets out some of the early findings from a pilot project to explore the qualities that future-oriented teachers might need and how those qualities might be developed. The work began under a New Zealand Council for Educational Research (NZCER) project called Back to the Future and is now part of a Teaching & Learning Research…

  1. Exploring Marine Ecosystems with Elementary School Portuguese Children: Inquiry-Based Project Activities Focused on "Real-Life" Contexts

    Science.gov (United States)

    Guilherme, Elsa; Faria, Cláudia; Boaventura, Diana

    2016-01-01

    The purpose of the study was to investigate how young students engage in an inquiry-based project driven by real-life contexts. Elementary school children were engaged in a small inquiry project centred on marine biodiversity and species adaptations. All activities included the exploration of an out-of-school setting as a learning context. A total…

  2. Exploring Marine Ecosystems with Elementary School Portuguese Children: Inquiry-Based Project Activities Focused on "Real-Life" Contexts

    Science.gov (United States)

    Guilherme, Elsa; Faria, Cláudia; Boaventura, Diana

    2016-01-01

    The purpose of the study was to investigate how young students engage in an inquiry-based project driven by real-life contexts. Elementary school children were engaged in a small inquiry project centred on marine biodiversity and species adaptations. All activities included the exploration of an out-of-school setting as a learning context. A total…

  3. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  4. The Thai-Canadian nuclear human resources development linkage project

    Energy Technology Data Exchange (ETDEWEB)

    Sumitra, Tatchai; Chankow, Nares [Chulalongkorn university (Thailand); Bradley, K.; Bereznai, G. [Atomic Energy of Canada Limited (Canada)

    1998-07-01

    The Thai-Canadian Nuclear Human Resources Development Linkage Project (the ''Project'') was initiated in 1994 in order to develop the engineering and scientific expertise needed for Thailand to decide whether and how the country can best benefit from the establishment of a nuclear power program. The Project was designed to upgrade current academics and people in industry, and to develop an adequate supply of new technical personnel for academic, industry, utility, regulatory and other government institutions. The key Project objectives included the establishment of a Chair in Nuclear Engineering at Chulalongkorn University, the upgrading of the current Masters level curriculum, the establishment of undergraduate and doctorate level curricula, development and delivery of an industrial training program for people in industry and government, exchanges of Thai and Canadian academics and industry experts to establish common research programs and teaching interests, and a public education program that was to test in Thailand some of the techniques that have been successfully used in Canada. (author)

  5. Safety Characteristics in System Application Software for Human Rated Exploration

    Science.gov (United States)

    Mango, E. J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development.

  6. Advanced Exploration Systems Program

    Data.gov (United States)

    National Aeronautics and Space Administration — AES consists of more than 35 projects that target high-priority capabilities needed for human exploration such as crew mobility, deep-space habitation, vehicle...

  7. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  8. Supporting Human Activities - Exploring Activity-Centered Computing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Bardram, Jakob

    2002-01-01

    In this paper we explore an activity-centered computing paradigm that is aimed at supporting work processes that are radically different from the ones known from office work. Our main inspiration is healthcare work that is characterized by an extreme degree of mobility, many interruptions, ad...... objects. We also present an exploratory prototype design and first implementation and present some initial results from evaluations in a healthcare environment....

  9. [Affective computing--a mysterious tool to explore human emotions].

    Science.gov (United States)

    Li, Xin; Li, Honghong; Dou, Yi; Hou, Yongjie; Li, Changwu

    2013-12-01

    Perception, affection and consciousness are basic psychological functions of human being. Affection is the subjective reflection of different kinds of objects. The foundation of human being's thinking is constituted by the three basic functions. Affective computing is an effective tool of revealing the affectiveness of human being in order to understand the world. Our research of affective computing focused on the relation, the generation and the influent factors among different affections. In this paper, the affective mechanism, the basic theory of affective computing, is studied, the method of acquiring and recognition of affective information is discussed, and the application of affective computing is summarized as well, in order to attract more researchers into this working area.

  10. Exploring human breast milk composition by NMR-based metabolomics.

    Science.gov (United States)

    Praticò, Giulia; Capuani, Giorgio; Tomassini, Alberta; Baldassarre, Maria Elisabetta; Delfini, Maurizio; Miccheli, Alfredo

    2014-01-01

    Breast milk is a complex fluid evolutionarily adapted to satisfy the nutritional requirements of growing infants. In addition, milk biochemical and immunological components protect newborns against infective agents in the new environment. Human milk oligosaccharides, the third most abundant component of breast milk, are believed to modulate the microbiota composition, thus influencing a wide range of physiological processes of the infant. Human milk also contains a number of other bioactive compounds, the functional role of which has not yet been clearly elucidated. In this scenario, NMR-based metabolic profiling can provide a rapid characterisation of breast milk composition, thus allowing a better understanding of its nutritional properties.

  11. Retrospect to Human Deep Space Exploration History and Its Prospect in China

    Institute of Scientific and Technical Information of China (English)

    Ye Peijian; Peng Jing

    2006-01-01

    The definition, goal and impacts of deep space exploration are summarized. After a retrospect to past deep exploration activities of human being to date, both recent deep space missions and future missions in 5 years are also listed. There are also brief introductions about the future strategic plans of NASA, ESA,RAKA, JAXA and ISRO. Then authors analyze some important features of global deep space exploration scheme. Key technologies of deep space exploration are also determined. The status of China deep exploration plan is introduced including CE-1 lunar orbiter, the subsequent China Lunar Exploration Program, especially proposal for the second stage of China Lunar Exploration Program, Mars exploration program of China with Russia Kuafu mission, Hard X-Ray Modulated Telescope, Space Solar Telescope. At the end, some suggestions for China future deep space exploration are made.

  12. Development and Execution of Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration

    Science.gov (United States)

    Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.

    2013-01-01

    Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and

  13. Development and Execution of Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration

    Science.gov (United States)

    Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.

    2013-01-01

    Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and

  14. NASA'S Solar System Exploration Research Virtual Institute: An international approach toward bringing science and human exploration together for mutual benefit

    Science.gov (United States)

    Schmidt, Gregory

    2016-07-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and

  15. Exploring human brain lateralization with molecular genetics and genomics.

    Science.gov (United States)

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions. © 2015 New York Academy of Sciences.

  16. Exploring the Relevance of Holocaust Education for Human Rights Education

    Science.gov (United States)

    Eckmann, Monique

    2010-01-01

    Can Holocaust education be considered a tool for human rights education? If so, to what extent? These questions elicit discussions among a wide range of educators, and interest among politicians, educational planners, and ministries in charge of memorials. At first glance the obvious answer seems to be yes; both educators and students have strong…

  17. NASA Planetary Science Division Vision 2050 Through Human Exploration

    Science.gov (United States)

    Yun, P. Y.

    2017-02-01

    Next 34 years PSD should play the role of the 21st century-version Lewis and Clark expedition to gather critical information about carefully chosen target celestial bodies in our solar system. PSD missions and human missions will benefit each other.

  18. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    Science.gov (United States)

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  19. The human genome project: Prospects and implications for clinical medicine

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.D.; Waterston, R.H. (Washington Univ., St. Louis, MO (United States))

    1991-10-09

    The recently initiated human genome project is a large international effort to elucidate the genetic architecture of the genomes of man and several model organisms. The initial phases of this endeavor involve the establishment of rough blueprints (maps) of the genetic landscape of these genomes, with the long-term goal of determining their precise nucleotide sequences and identifying the genes. The knowledge gained by these studies will provide a vital tool for the study of many biologic processes and will have a profound impact on clinical medicine.

  20. Quantum Physics Exploring Gravity in the Outer Solar System: The Sagas Project

    CERN Document Server

    Wolf, P; Clairon, A; Duchayne, L; Landragin, A; Lemonde, P; Santarelli, G; Ertmer, W; Rasel, E; Cataliotti, F S; Inguscio, M; Tino, G M; Gill, P; Klein, H; Reynaud, S; Salomon, C; Peik, E; Bertolami, O; Gil, P; Páramos, J; Jentsch, C; Johann, U; Rathke, A; Bouyer, P; Cacciapuoti, L; Izzo, D; De Natale, P; Christophe, B; Touboul, P; Turyshev, S G; Anderson, J D; Tobar, M E; Schmidt-Kaler, F; Vigué, J; Madej, A; Marmet, L; Angonin, M-C; Delva, P; Tourrenc, P; Metris, G; Müller, H; Walsworth, R; Lu, Z H; Wang, L; Bongs, K; Toncelli, A; Tonelli, M; Dittus, H; Lämmerzahl, C; Galzerano, G; Laporta, P; Laskar, J; Fienga, A; Roques, F; Sengstock, K

    2007-01-01

    We summarise the scientific and technological aspects of the SAGAS (Search for Anomalous Gravitation using Atomic Sensors) project, submitted to ESA in June 2007 in response to the Cosmic Vision 2015-2025 call for proposals. The proposed mission aims at flying highly sensitive atomic sensors (optical clock, cold atom accelerometer, optical link) on a Solar System escape trajectory in the 2020 to 2030 time-frame. SAGAS has numerous science objectives in fundamental physics and Solar System science, for example numerous tests of general relativity and the exploration of the Kuiper belt. The combination of highly sensitive atomic sensors and of the laser link well adapted for large distances will allow measurements with unprecedented accuracy and on scales never reached before. We present the proposed mission in some detail, with particular emphasis on the science goals and associated measurements.

  1. Science with the EXTraS Project: Exploring the X-ray Transient and variable Sky

    CERN Document Server

    De Luca, A; Tiengo, A; D'Agostino, D; Watson, M G; Haberl, F

    2015-01-01

    The EXTraS project (Exploring the X-ray Transient and variable Sky) will characterise the temporal behaviour of the largest ever sample of objects in the soft X-ray range (0.1-12 keV) with a complex, systematic and consistent analysis of all data collected by the European Photon Imaging Camera (EPIC) instrument onboard the ESA XMM-Newton X-ray observatory since its launch. We will search for, and characterize variability (both periodic and aperiodic) in hundreds of thousands of sources spanning more than nine orders of magnitude in time scale and six orders of magnitude in flux. We will also search for fast transients, missed by standard image analysis. Our analysis will be completed by multiwavelength characterization of new discoveries and phenomenological classification of variable sources. All results and products will be made available to the community in a public archive, serving as a reference for a broad range of astrophysical investigations.

  2. Belonging, occupation, and human well-being: an exploration.

    Science.gov (United States)

    Hammell, Karen R Whalley

    2014-02-01

    Researchers identify the importance of belonging to human well-being and provide evidence-based support for occupation as a medium for expressing and achieving a sense of belonging and connectedness. The purpose of this article is to highlight the imperative for occupational therapy theory and practice to address occupations concerned with belonging needs. Dominant occupational therapy models emphasise doing self-care, productive, and leisure occupations, thereby ignoring occupations undertaken to contribute to the well-being of others, occupations that foster connections to nature and ancestors, collaborative occupations, and those valued for their social context and potential to strengthen social roles. Belonging, connectedness, and interdependence are positively correlated with human well-being, are prioritized by the majority of the world's people, and inform the meanings attributed to and derived from the occupations of culturally diverse people. If occupational therapy is to address meaningful occupations, attention should be paid to occupations concerned with belonging, connecting, and contributing to others.

  3. Boots on Mars: Earth Independent Human Exploration of Mars

    Science.gov (United States)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  4. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  5. Exploring possible human influences on the evolution of Darwin's finches.

    Science.gov (United States)

    De León, Luis Fernando; Raeymaekers, Joost A M; Bermingham, Eldredge; Podos, Jeffrey; Herrel, Anthony; Hendry, Andrew P

    2011-08-01

    Humans are an increasingly common influence on the evolution of natural populations. Potential arenas of influence include altered evolutionary trajectories within populations and modifications of the process of divergence among populations. We consider this second arena in the medium ground finch (Geospiza fortis) on Santa Cruz Island, Galápagos, Ecuador. Our study compared the G. fortis population at a relatively undisturbed site, El Garrapatero, to the population at a severely disturbed site, Academy Bay, which is immediately adjacent to the town of Puerto Ayora. The El Garrapatero population currently shows beak size bimodality that is tied to assortative mating and disruptive selection, whereas the Academy Bay population was historically bimodal but has lost this property in conjunction with a dramatic increase in local human population density. We here evaluate potential ecological-adaptive drivers of the differences in modality by quantifying relationships between morphology (beak and head dimensions), functional performance (bite force), and environmental characteristics (diet). Our main finding is that associations among these variables are generally weaker at Academy Bay than at El Garrapatero, possibly because novel foods are used at the former site irrespective of individual morphology and performance. These results are consistent with the hypothesis that the rugged adaptive landscapes promoting and maintaining diversification in nature can be smoothed by human activities, thus hindering ongoing adaptive radiation.

  6. Simulation technology used for risky assessment in deep exploration project in China

    Science.gov (United States)

    jiao, J.; Huang, D.; Liu, J.

    2013-12-01

    Deep exploration has been carried out in China for five years in which various heavy duty instruments and equipments are employed for gravity, magnetic, seismic and electromagnetic data prospecting as well as ultra deep drilling rig established for obtaining deep samples, and so on. The deep exploration is a large and complex system engineering crossing multiple subjects with great investment. It is necessary to employ advanced technical means technology for verification, appraisal, and optimization of geographical prospecting equipment development. To reduce risk of the application and exploration, efficient and allegeable management concept and skills have to be enhanced in order to consolidate management measure and workflow to benefit the ambitious project. Therefore, evidence, prediction, evaluation and related decision strategies have to be taken into accouter simultaneously to meet practical scientific requests and technique limits and extendable attempts. Simulation technique is then proposed as a tool that can be used to carry out dynamic test on actual or imagined system. In practice, it is necessary to combine the simulation technique with the instruments and equipment to accomplish R&D tasks. In this paper, simulation technique is introduced into the R&D process of heavy-duty equipment and high-end engineering project technology. Based on the information provided by a drilling group recently, a digital model is constructed by combination of geographical data, 3d visualization, database management, and visual reality technologies together. It result in push ahead a R&D strategy, in which data processing , instrument application, expected result and uncertainty, and even operation workflow effect environment atmosphere are simulated systematically or simultaneously, in order to obtain an optimal consequence as well as equipment updating strategy. The simulation technology is able to adjust, verify, appraise and optimize the primary plan due to changing in

  7. Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA

  8. Human relationships: an exploration of loneliness and touch.

    Science.gov (United States)

    Playfair, Catherine

    The aim of this article is to provide a cursory review of some of the literature relating to loneliness, existentialism and touch. With reference to the critical incident analysis (see Box 1), a reflection on the learning that has been achieved both intrapersonally and interpersonally will also be provided. A consideration of how exactly this experience of structured reflection may be used to enhance and develop practice will also be explored. The review will analyze the key concepts of loneliness, existentialism, the therapeutic relationship and touch within the realms of nursing practice, specifically in relation to death and dying. This article seeks to highlight the importance of having an understanding of loneliness in nursing, particularly when caring for patients who are dying.

  9. GAIA: A Project for Exploring Risks and Policy Implications of Climate Change

    Science.gov (United States)

    Simpkins, S.; Paxton, L. J.; Babin, S. M.; Pikas, C. K.; Schaefer, R. K.; Swartz, W. H.; Weiss, M.; Darrin, A.

    2010-12-01

    The Johns Hopkins University Applied Physics Laboratory is bringing resources together to create a support environment to address the impact of climate change on national interests with the Global Assimilation of Information for Action (GAIA) project. GAIA is meant to explore consequences, gaps, and resolutions for specific issues that arise from consequences of climate change. For looking at national issues, the usual approach is to 'map' a problem space and 'explore' a solution space, often from the perspective of one sponsoring agency. However, a multi-use application such as GAIA is meant to be responsive to all requests from a myriad of potential perspectives. Symposia and seminars are helpful in scoping issues and gathering information from assembled subject matter experts (SMEs). At APL we have been researching the efficacy of collaborative event designs which provide more robust data collection than the typical seminar, involve more diversity within the community of practice and provide quantitative analysis to underpin subjective conclusions. Participants will be asked to incorporate risk mitigation and behavioral economics into derived recommendations. APL has developed unique data capture methodologies that lend themselves to discovering innovative practices and allowing for deliberate selection of beneficial but less than ideal options; this is seen when the ideal solution has low probability of success or is impractical. The result is a balanced strategy developed by an informed cadre. It is through this process that APL intends to generate robust understanding of community requirements for GAIA and inform an application capable of examining climate change solution space.

  10. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    2009-12-01

    Full Text Available Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere

  11. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    Science.gov (United States)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  12. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one...... or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific...... background weathering of P); global freshwater use (system change (

  13. A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia

    Science.gov (United States)

    Gallegos, Z. E.; Newsom, H. E.

    2015-10-01

    This abstract highlights a previously unexplored area in the Hellas Planitia region of Mars. The exploration zone proposed offers scientifically compelling regions of interest, as well as abundant resources for reoccurring human missions.

  14. Exploration of Multifocal Rod Electroretinograms Recording in Human

    Institute of Scientific and Technical Information of China (English)

    Changzheng Chen; Lezheng Wu; De-Zheng Wu; Shixian Long; Jiongji Liang; Futian Jiang; Libing Jiang

    2002-01-01

    Purpose:To test the feasibility of recording rod multifocal electroretinograms (ERG) in humans and observe appropriate recording conditions.Methods: Multifocal rod ERG were recorded using a stimulus array of 61 equalsized hexagons in two normal subjects after the dark adaptation. Flashes were blue (W47B). Blank frames between two successive flashes of hexagons varied from 0 to 14. Length of the m-sequence, bandwidth, flash frequency, flash intensities and background intensities were changed to obtain appropriate recording conditions for the clinical use.Results:Multifocal rod ERG were clearly recordable and well formed. They had an early implicit time, very small negative wave and a late implicit time, large positive wave. The positive wave was bimodal, whose timing and waveform were similar to the full-field rod ERG. The local response amplitudes can be suppressed with increase in flash frequency or background intensity, decrease in flash intensity or the size of stimulus elements.Conclusions: Multifocal rod ERG can be recorded in human and can provide topographical maps of retinal function that have clinical usage. 212-1 m-sequence length, 3F blank frames and 3~ 300 Hz bandwidth were suggested to appropriate recording conditions.

  15. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Science.gov (United States)

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  16. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Directory of Open Access Journals (Sweden)

    Saike He

    Full Text Available Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  17. Exploring the world of human development and reproduction.

    Science.gov (United States)

    Red-Horse, Kristy; Drake, Penelope M; Fisher, Susan

    2014-01-01

    Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation.

  18. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  19. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    Science.gov (United States)

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  20. Pesticides and human diabetes: a link worth exploring?

    Science.gov (United States)

    Swaminathan, K

    2013-11-01

    It is no exaggeration to claim that the 'diabetes epidemic' has become a 'runaway train' causing huge health and economic consequences, especially in the developing nations. Traditionally, the risk factors for diabetes have largely focused on genetics and lifestyle. Great emphasis is placed on lifestyle measures and finding novel pharmacological treatment options to combat diabetes, but there is increasing evidence linking environmental pollutants, especially pesticides, to the development of insulin resistance and Type 2 diabetes. Pesticide use has increased dramatically worldwide and the effects of pesticides on glucose metabolism are too significant for a possible diabetogenic link to be dismissed. The aim of this review article was to assess the links between pesticides and human diabetes with the goal of stimulating further research in this area. © 2013 The Author. Diabetic Medicine © 2013 Diabetes UK.

  1. Exploring Intrinsic and Extrinsic Motivations to Participate in a Crowdsourcing Project to Support Blind and Partially Sighted Students.

    Science.gov (United States)

    Layas, Fatma; Petrie, Helen

    2016-01-01

    There have been a number of crowdsourcing projects to support people with disabilities. However, there is little exploration of what motivates people to participate in such crowdsourcing projects. In this study we investigated how different motivational factors can affect the participation of people in a crowdsourcing project to support visually disabled students. We are developing "DescribeIT", a crowdsourcing project to support blind and partially students by having sighted people describe images in digital learning resources. We investigated participants' behavior of the DescribeIT project using three conditions: one intrinsic motivation condition and two extrinsic motivation conditions. The results showed that participants were significantly intrinsically motivated to participate in the DescribeIT project. In addition, participants' intrinsic motivation dominated the effect of the two extrinsic motivational factors in the extrinsic conditions.

  2. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    Science.gov (United States)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  3. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    Science.gov (United States)

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  4. Seeking Asylum: Adolescents Explore the Crossroads of Human Rights Education and Cosmopolitan Critical Literacy

    Science.gov (United States)

    Dunkerly-Bean, Judith; Bean, Thomas; Alnajjar, Khaled

    2014-01-01

    The purpose of this study was to explore middle school (grade 6-8) students' understanding and interpretation of human rights issues with local and global implications as they engaged in the process of creating a film after reading print and multimedia texts and participating in human rights education activities. As the students explored…

  5. Seeking Asylum: Adolescents Explore the Crossroads of Human Rights Education and Cosmopolitan Critical Literacy

    Science.gov (United States)

    Dunkerly-Bean, Judith; Bean, Thomas; Alnajjar, Khaled

    2014-01-01

    The purpose of this study was to explore middle school (grade 6-8) students' understanding and interpretation of human rights issues with local and global implications as they engaged in the process of creating a film after reading print and multimedia texts and participating in human rights education activities. As the students explored…

  6. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    Science.gov (United States)

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  7. Exploring current and projected tradeoffs between hydropower profitability and reliability of supply in the Alps

    Science.gov (United States)

    Anghileri, D.; Castelletti, A.; Burlando, P.

    2015-12-01

    The recent spreading of renewable energy across Europe and the associated production variability and uncertainty are emerging challenges for hydropower system operation. Widely distributed and highly intermittent solar and wind power generation systems, along with feed-in-tariffs, at which they are remunerated, are threating the operation of traditional hydropower systems. For instance, in countries where the transition to a larger production by means of renewable power systems is a novel process, e.g. Switzerland, many hydropower companies are operating their reservoirs with low or no profits, claiming for a revision of the entire energy market system. This situation goes along with the problem of ensuring energy supply both nowadays and in the future, with changing energy demand and available water resources. In this work, we focus on a hydropower system in the Swiss Alps to explore how different operating policies can cope with both adequate energy supply and profitable operation under current and future climate and socio-economic conditions. We investigate the operation of the Mattmark reservoir in South-West Switzerland. Mattmark is a pumped reservoir of 98 106 m3 fed by a natural catchment of 37 km2 and contributing catchments, summing up to 51 km2, connected by several diversion channels. The hydrological regime, snow- and ice-melt dominated, has already experienced changes in the last decades due to glacier retreat and is expected to be strongly impacted by climate change in the future. We use Multi-Objective optimization techniques to explore current tradeoffs between profitability and secure supply. We then investigate how tradeoffs may evolve in time under different climate change projections and energy market scenarios. Results inform on the co-evolution of climate- and socio-economic induced variations, thus unveiling potential co-benefit situations to hydropower generation and providing insights to future energy market design.

  8. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Science.gov (United States)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  9. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  10. Voices of American Teens Project Helps Young Adolescents Explore Cultural Diversity

    Science.gov (United States)

    Linder, Roberta

    2009-01-01

    This article describes the Voices of American Teens project in which seventh grade reading students were engaged with multicultural short stories. The steps taken to select texts and prepare materials for the projects are explained, and the project's implementation is described. Examples from students' projects and written responses demonstrate…

  11. The lawful uses of knowledge from the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Grad, F.P.

    1994-04-15

    Part I of this study deals with the right to know or not to know personal genetic information, and examines available legal protections of the right of privacy and the adverse effect of the disclosure of genetic information both on employment and insurance interests and on self esteem and protection of personal integrity. The study examines the rationale for the legal protection of privacy as the protection of a public interest. It examines the very limited protections currently available for privacy interests, including genetic privacy interests, and concludes that there is a need for broader, more far-reaching legal protections. The second part of the study is based on the assumption that as major a project as the Human Genome Project, spending billions of dollars on science which is health related, will indeed be applied for preventive and therapeutic public health purposes, as it has been in the past. It also addresses the recurring fear that public health initiatives in the genetic area must evolve a new eugenic agenda, that we must not repeat the miserable discriminatory experiences of the past.

  12. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Science.gov (United States)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  13. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  14. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Science.gov (United States)

    2011-03-24

    ...; Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology (NIST...) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All... for Biotechnology Information (NCBI) and will be used to differentiate among cell lines, as...

  15. Human Genome Teacher Networking Project, Final Report, April 1, 1992 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Debra

    1999-10-01

    Project to provide education regarding ethical legal and social implications of Human Genome Project to high school science teachers through two consecutive summer workshops, in class activities, and peer teaching workshops.

  16. Exploring the uncertainties of early detection results: model-based interpretation of mayo lung project

    Directory of Open Access Journals (Sweden)

    Berman Barbara

    2011-03-01

    Full Text Available Abstract Background The Mayo Lung Project (MLP, a randomized controlled clinical trial of lung cancer screening conducted between 1971 and 1986 among male smokers aged 45 or above, demonstrated an increase in lung cancer survival since the time of diagnosis, but no reduction in lung cancer mortality. Whether this result necessarily indicates a lack of mortality benefit for screening remains controversial. A number of hypotheses have been proposed to explain the observed outcome, including over-diagnosis, screening sensitivity, and population heterogeneity (initial difference in lung cancer risks between the two trial arms. This study is intended to provide model-based testing for some of these important arguments. Method Using a micro-simulation model, the MISCAN-lung model, we explore the possible influence of screening sensitivity, systematic error, over-diagnosis and population heterogeneity. Results Calibrating screening sensitivity, systematic error, or over-diagnosis does not noticeably improve the fit of the model, whereas calibrating population heterogeneity helps the model predict lung cancer incidence better. Conclusions Our conclusion is that the hypothesized imperfection in screening sensitivity, systematic error, and over-diagnosis do not in themselves explain the observed trial results. Model fit improvement achieved by accounting for population heterogeneity suggests a higher risk of cancer incidence in the intervention group as compared with the control group.

  17. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  18. Joint Industry-Funded R and D Projects in Exploration and Production

    Energy Technology Data Exchange (ETDEWEB)

    Guerillot, D.; Eschard, R.; Malla, M.; Van Buchem, F.; Baghbani, D.; Granjeon, D.; Wolf, S.; Callot, J.P.; Jardin, A.; Kirkwood, D.; Rodriguez, S.; Abadi, A.; Roure, F.; Ghandriche, F.; Prinzhofer, A.; Moretti, I.; Le Melinaire, P.; Vizika, O.; Bekri, S.; Zinszner, B.; Lucet, N.; Rasologosaon, P.; Duquet, B.; Tonellot, T.; Nivlet, P.; Le Ravalec, M.; Bennis, C.; Barroux, C.; Hu, L.Y.; Doligez, B.; Vidal-Gilbert, S.; Zabalza-Mezghani, I.; Caillabet, Y.; Sarda, S.; Ricois, O.; Mouchel, R.; Behar, E.; Nabzar, L.; Zaitoun, A.; Audibert-Hayet, A.; Sauvant, V.; Chauchot, P.; Ropital, F.; Sinquin, A.; Decarre, S.; Larsen, R.; Biolley, F.; Brucy, F.; Charron, Y.; Averbuch, D.; Perrin, G.; Falcimaigne, J.; Roux, P.; Paen, D.; Broutin, P.; Renard, G.; Egermann, P.; Lombard, J.M.; Le Thiez, P.; Fries, G.

    2005-07-01

    IFP, the French Institute of Petroleum, spends more than 40% of its R and D budget on Exploration and Production. Part of this program is open to participation in the form of Joint Industry-Funded Projects (JIPs). This gives companies an opportunity to take part in the latest advances in research sponsoring the projects with others. They can steer their programs according to their needs and evaluate the practical contribution of these new technologies improving exploration and production. This document gathers the transparencies of the presentations given at the 2005 JIP seminar. Content: Opening Address; Session 1: Exploration and Petroleum System Evaluation: Berkine Gas with Sonatrach: an Evaluation of the Gas Potential of the Berkine Basin (Algeria), MEC with National Iran Oil Company: Middle East Cretaceous Sequence Stratigraphy Study, Dionisos: 3D Multi-lithological Stratigraphic Modeling for Basin and Reservoir, Scopes: Southern Cordillera Petroleum System Appraisal, Gaspe with Laval University (Quebec): Integrated Geophysical and Geological Study of the Gaspe Fold and Thrust Belt (Canada), Deep Sirt with the Petroleum Research Center (Libya): Deep Seismic Investigation in the Sirt Basin, Tell-offshore with Sonatrach: Petroleum Re-appraisal of North Algeria, Gong: Isotope Geochemistry of Natural Gases, Industrial JIP: Kine 3D Industrial with Earth Decision System: Putting Structural Geology Back into Structure Modeling; - Session 2: Petro-physics and Reservoir Characterization: PNM Car: Pore Scale Network Modeling for Carbonate Rocks, Pacs: Petro-acoustics of Carbonate Rocks for 4D Seismic Feasibility Studies, Safe: Seismic Analysis of Fracture Networks, Borneo 4D: 4D Time Lapse Seismic Modeling, Presti: Pre-stack Stratigraphic Inversion, Paris: Pseudo-Wells Applied to Reservoir Oriented Interpretation of Seismic Data, Muscat: Multi-scale Reservoir Description on Flexible Grids with Up-scaling and Down-scaling Techniques; - Session 3, Reservoir Engineering

  19. Joint Industry-Funded R and D Projects in Exploration and Production

    Energy Technology Data Exchange (ETDEWEB)

    Guerillot, D.; Eschard, R.; Malla, M.; Van Buchem, F.; Baghbani, D.; Granjeon, D.; Wolf, S.; Callot, J.P.; Jardin, A.; Kirkwood, D.; Rodriguez, S.; Abadi, A.; Roure, F.; Ghandriche, F.; Prinzhofer, A.; Moretti, I.; Le Melinaire, P.; Vizika, O.; Bekri, S.; Zinszner, B.; Lucet, N.; Rasologosaon, P.; Duquet, B.; Tonellot, T.; Nivlet, P.; Le Ravalec, M.; Bennis, C.; Barroux, C.; Hu, L.Y.; Doligez, B.; Vidal-Gilbert, S.; Zabalza-Mezghani, I.; Caillabet, Y.; Sarda, S.; Ricois, O.; Mouchel, R.; Behar, E.; Nabzar, L.; Zaitoun, A.; Audibert-Hayet, A.; Sauvant, V.; Chauchot, P.; Ropital, F.; Sinquin, A.; Decarre, S.; Larsen, R.; Biolley, F.; Brucy, F.; Charron, Y.; Averbuch, D.; Perrin, G.; Falcimaigne, J.; Roux, P.; Paen, D.; Broutin, P.; Renard, G.; Egermann, P.; Lombard, J.M.; Le Thiez, P.; Fries, G.

    2005-07-01

    IFP, the French Institute of Petroleum, spends more than 40% of its R and D budget on Exploration and Production. Part of this program is open to participation in the form of Joint Industry-Funded Projects (JIPs). This gives companies an opportunity to take part in the latest advances in research sponsoring the projects with others. They can steer their programs according to their needs and evaluate the practical contribution of these new technologies improving exploration and production. This document gathers the transparencies of the presentations given at the 2005 JIP seminar. Content: Opening Address; Session 1: Exploration and Petroleum System Evaluation: Berkine Gas with Sonatrach: an Evaluation of the Gas Potential of the Berkine Basin (Algeria), MEC with National Iran Oil Company: Middle East Cretaceous Sequence Stratigraphy Study, Dionisos: 3D Multi-lithological Stratigraphic Modeling for Basin and Reservoir, Scopes: Southern Cordillera Petroleum System Appraisal, Gaspe with Laval University (Quebec): Integrated Geophysical and Geological Study of the Gaspe Fold and Thrust Belt (Canada), Deep Sirt with the Petroleum Research Center (Libya): Deep Seismic Investigation in the Sirt Basin, Tell-offshore with Sonatrach: Petroleum Re-appraisal of North Algeria, Gong: Isotope Geochemistry of Natural Gases, Industrial JIP: Kine 3D Industrial with Earth Decision System: Putting Structural Geology Back into Structure Modeling; - Session 2: Petro-physics and Reservoir Characterization: PNM Car: Pore Scale Network Modeling for Carbonate Rocks, Pacs: Petro-acoustics of Carbonate Rocks for 4D Seismic Feasibility Studies, Safe: Seismic Analysis of Fracture Networks, Borneo 4D: 4D Time Lapse Seismic Modeling, Presti: Pre-stack Stratigraphic Inversion, Paris: Pseudo-Wells Applied to Reservoir Oriented Interpretation of Seismic Data, Muscat: Multi-scale Reservoir Description on Flexible Grids with Up-scaling and Down-scaling Techniques; - Session 3, Reservoir Engineering

  20. Human pluripotent stem cell differentiation into authentic striatal projection neurons.

    Science.gov (United States)

    Delli Carri, Alessia; Onorati, Marco; Castiglioni, Valentina; Faedo, Andrea; Camnasio, Stefano; Toselli, Mauro; Biella, Gerardo; Cattaneo, Elena

    2013-08-01

    Here we present the principles and steps of a protocol that we have recently developed for the differentiation of hES/iPS cells into the authentic human striatal projection medium spiny neurons (MSNs) that die in Huntington's Disease (HD). Authenticity is judged by the convergence of multiple features within individual cells. Our procedure lasts 80 days and couples neural induction via BMP/TGF-β inhibition with exposure to the developmental factors sonic hedgehog (SHH) and dickkopf1 (DKK-1) to drive ventral telencephalic specification, followed by terminal differentiation [1]. Authenticity of the resulting neuronal population is monitored by the appearance of FOXG1(+)/GSX2(+) progenitor cells of the lateral ganglionic eminence (LGE) at day 15-25 of differentiation, followed by appearance of CTIP2-, FOXP1- and FOXP2-positive cells at day 45. These precursor cells then mature into MAP2(+)/GABA(+) neurons with 20 % of them ultimately co-expressing the DARPP-32 and CTIP2 diagnostic markers and carrying electrophysiological properties expected for fully functional MSNs.The protocol is characterized by its replicability in at least three human pluripotent cell lines. Altogether this protocol defines a useful platform for in vitro developmental neurobiology studies, drug screening, and regenerative medicine approaches.

  1. Compilation Of An Econometric Human Resource Efficiency Model For Project Management Best Practices

    OpenAIRE

    Van Zyl, G.; P Venier

    2006-01-01

    The aim of the paper is to introduce a human resource efficiency model in order to rank the most important human resource driving forces for project management best practices. The results of the model will demonstrate how the human resource component of project management acts as the primary function to enhance organizational performance, codified through improved logical end-state programmes, work ethics and process contributions. Given the hypothesis that project management best practices i...

  2. Exploring interventions and tools used by REScoops to lower householders’ energy consumption and stimulate investment in RES projects

    NARCIS (Netherlands)

    Hoppe, Thomas; Coenen, Frans

    2016-01-01

    REScoops are well positioned to spur energy savings among householders and generate investment in renewable energy projects. As compared to other agents in energy markets they have many benefits, particularly their embeddedness in local, social structures. In this paper we explore in which ways, and

  3. Project scheduling: A multi-objective evolutionary algorithm that optimizes the effectiveness of human resources and the project makespan

    Science.gov (United States)

    Yannibelli, Virginia; Amandi, Analía

    2013-01-01

    In this article, the project scheduling problem is addressed in order to assist project managers at the early stage of scheduling. Thus, as part of the problem, two priority optimization objectives for managers at that stage are considered. One of these objectives is to assign the most effective set of human resources to each project activity. The effectiveness of a human resource is considered to depend on its work context. The other objective is to minimize the project makespan. To solve the problem, a multi-objective evolutionary algorithm is proposed. This algorithm designs feasible schedules for a given project and evaluates the designed schedules in relation to each objective. The algorithm generates an approximation to the Pareto set as a solution to the problem. The computational experiments carried out on nine different instance sets are reported.

  4. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  5. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  6. Exploring the Project Portfolio Manager's Role: Between a Data Manager and a Strategic Advisor

    NARCIS (Netherlands)

    Filippov, S.; Van der Weg, R.; Van Ogtrop, F.; Beelen, P.; Mooi, H.

    2014-01-01

    Many companies adopt project portfolio management processes to manage multi-project environments effectively and efficiently. One of the key roles in this process is assigned to the project portfolio manager. This role is formally defined in various guidelines and standards of portfolio management.

  7. Exploring the Project Portfolio Manager's Role: Between a Data Manager and a Strategic Advisor

    NARCIS (Netherlands)

    Filippov, S.; Van der Weg, R.; Van Ogtrop, F.; Beelen, P.; Mooi, H.

    2014-01-01

    Many companies adopt project portfolio management processes to manage multi-project environments effectively and efficiently. One of the key roles in this process is assigned to the project portfolio manager. This role is formally defined in various guidelines and standards of portfolio management.

  8. Project-Method Fit: Exploring Factors That Influence Agile Method Use

    Science.gov (United States)

    Young, Diana K.

    2013-01-01

    While the productivity and quality implications of agile software development methods (SDMs) have been demonstrated, research concerning the project contexts where their use is most appropriate has yielded less definitive results. Most experts agree that agile SDMs are not suited for all project contexts. Several project and team factors have been…

  9. Decision models in explorative and exploitative innovation projects: a case study

    NARCIS (Netherlands)

    Wolbers, Michiel; Hofman, Erwin; Halman, Johannes I.M.

    2013-01-01

    Innovation processes are seen as collections of decisions that are made in the context of a single innovation project. Those decisions determine the course and the final success of an innovation project. There is, however, a lack of literature on how decisions are made in innovation projects. In

  10. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  11. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    Science.gov (United States)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; Dickson, J. T.; Elphic, R. C.; Eppler, D. B.; Fernandez-Remolar, D. C.; Head, J. W.; Helper, M.; Gruener, J. E.; Heldmann, J.; Hipkin, V.; Lane, M. D.; Levy, J.; Moersch, J.; Ori, G. G.; Peach, L.; Poulet, F.

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  12. Uncertainty surrounding projections of the long-term impact of ivermectin treatment on human onchocerciasis.

    Directory of Open Access Journals (Sweden)

    Hugo C Turner

    Full Text Available BACKGROUND: Recent studies in Mali, Nigeria, and Senegal have indicated that annual (or biannual ivermectin distribution may lead to local elimination of human onchocerciasis in certain African foci. Modelling-based projections have been used to estimate the required duration of ivermectin distribution to reach elimination. A crucial assumption has been that microfilarial production by Onchocerca volvulus is reduced irreversibly by 30-35% with each (annual ivermectin round. However, other modelling-based analyses suggest that ivermectin may not have such a cumulative effect. Uncertainty in this (biological and other (programmatic assumptions would affect projected outcomes of long-term ivermectin treatment. METHODOLOGY/PRINCIPAL FINDINGS: We modify a deterministic age- and sex-structured onchocerciasis transmission model, parameterised for savannah O. volvulus-Simulium damnosum, to explore the impact of assumptions regarding the effect of ivermectin on worm fertility and the patterns of treatment coverage compliance, and frequency on projections of parasitological outcomes due to long-term, mass ivermectin administration in hyperendemic areas. The projected impact of ivermectin distribution on onchocerciasis and the benefits of switching from annual to biannual distribution are strongly dependent on assumptions regarding the drug's effect on worm fertility and on treatment compliance. If ivermectin does not have a cumulative impact on microfilarial production, elimination of onchocerciasis in hyperendemic areas may not be feasible with annual ivermectin distribution. CONCLUSIONS/SIGNIFICANCE: There is substantial (biological and programmatic uncertainty surrounding modelling projections of onchocerciasis elimination. These uncertainties need to be acknowledged for mathematical models to inform control policy reliably. Further research is needed to elucidate the effect of ivermectin on O. volvulus reproductive biology and quantify the patterns of

  13. Integrated Medium for Planetary Exploration (IMPEx): a new EU FP7-SPACE project

    Science.gov (United States)

    Khodachenko, M. L.; Genot, V. N.; Kallio, E. J.; Alexeev, I. I.; Modolo, R.; Al-Ubaidi, T.; André, N.; Gangloff, M.; Schmidt, W.; Belenkaya, E. S.; Topf, F.; Stoeckler, R.

    2011-12-01

    The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) has started in June 2011. It will create an interactive framework for exploitation of space missions' data. Data analysis and visualization will be based on the advanced computational models of the planetary environments. Specifically, the 'modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis, http://cdpp-amda.cesr.fr/) which provides cross-linked visualization and operation of experimental and numerical modelling data, 2/ 3DView which will propose 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ "CLWeb" software which enables computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will bring the data and models outside of the mission teams and specialized modelling groups making them accessible and useful for a broad planetary science community.

  14. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    Science.gov (United States)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  15. Human factors research as part of a Mars exploration analogue mission on Devon Island

    Science.gov (United States)

    Binsted, Kim; Kobrick, Ryan L.; Griofa, Marc Ó.; Bishop, Sheryl; Lapierre, Judith

    2010-06-01

    Human factors research is a critical element of space exploration as it provides insight into a crew's performance, psychology and interpersonal relationships. Understanding the way humans work in space-exploration analogue environments permits the development and testing of countermeasures for and responses to potential hazardous situations, and can thus help improve mission efficiency and safety. Analogue missions, such as the one described here, have plausible mission constraints and operational scenarios, similar to those that a real Mars crew would experience. Long duration analogue studies, such as those being conducted at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada, offer an opportunity to study mission operations and human factors in a semi-realistic environment, and contribute to the design of missions to explore the Moon and Mars. The FMARS XI Long Duration Mission (F-XI LDM) was, at four months, the longest designed analogue Mars mission conducted to date, and thus provides a unique insight into human factors issues for long-duration space exploration. Here, we describe the six human factors studies that took place during F-XI LDM, and give a summary of their results, where available. We also present a meta-study, which examined the impact of the human-factors research itself on crew schedule and workload. Based on this experience, we offer some lessons learnt: some aspects (perceived risk and crew motivation, for example) of analogue missions must be realistic for study results to be valid; human factors studies are time-consuming, and should be fully integrated into crew schedules; and crew-ground communication and collaboration under long-term exploration conditions can present serious challenges.

  16. Japan's Exploration of Holes and Caves on the Moon and Mars — UZUME Project

    Science.gov (United States)

    Haruyama, J.; Kawano, I.; Iwata, T.; Nishibori, T.; Yamamoto, Y.; Otsuki, M.; Shimada, K.; Sakurai, M.

    2015-10-01

    Many Japanese scientists and engineers are discussing an exploration program of the lunar and Martian holes and caverns. The name of the program is Unprecedented Zipangu Underworld of the Moon Exploration (UZUME; after a Japanese goddess).

  17. 地勘项目管理研究%Research on the Management of Geological Exploration Projects

    Institute of Scientific and Technical Information of China (English)

    侯敏; 陈海峰

    2013-01-01

    Geological exploration project management is the direct index for measuring the management level of the geological exploration unit. And the innovation in project management pattern is the motive force for promoting the project management level unceasingly improved. Three dimensions of project management pattern is the management for management elements and carrying information body from the period of geological exploration project, the elements of project management and the process information;as well as the different project stages. This pattern sorts out the key points and major constraints of each project stage, and help the geological prospecting projects reach the dynamic and comprehensive management. This paper also points out that the successful i mplementation of three dimensions of project management pattern needs establishing database platform, a flat project structure, and reasonable allocation of team members.%  地勘项目管理是衡量地勘单位管理水平的直接指标,而项目管理模式创新是推动项目管理水平不断提高的原动力。三维度的项目管理模式是从地勘项目周期、项目管理要素及地勘项目过程信息三个方向,通过不同项目阶段对管理要素和承载信息体两个维度的管理,梳理出每个项目阶段的重点和主要制约因素,帮助地勘项目实现动态的、全面的管理。三维度的地勘项目管理模式能够顺利实施,需要建立数据库平台的支撑,需要项目组织结构偏平化,需要合理的配置团队成员。

  18. Issues related to handling Exploration Seismic data within the EU FP7 GeoSeas project

    Science.gov (United States)

    Diviacco, Paolo; Cox, Simon

    2010-05-01

    GeoSeas is a sibling of the SeaDataNet initiative, aiming at creating an e-infrastructure where users will be able to identify, locate and access pan-European, harmonized and federated marine Geological and Geophysical data. GeoSeas adopts many of the technologies developed within SeaDataNet. While for most of the designated data types, only minor tuning is required, the case of Exploration Seismics poses several issues needing specific solutions. The main issue is the sampling strategy, where the technologies, practices and the legacies of exploration geophysics differ considerably from those found in Oceanography (the original research field considered by SeaDataNet). Specific extensions to the SeaDataNet framework were required at many levels. The most significant interventions concerned the Common Data Index (CDI) metadatabase and data access mechanisms. The primary feature of interest in marine exploration geophysics is the seismic line (in the 2D case) or the seismic volume (3D). For various reasons seismic lines are often segmented, which poses serious problems to the one-to-one correspondence between the CDI and data files. Furthermore, common practice is for positioning and the observation data to be managed separately. Another issue is that the catalogue of metadata items needed for Seismic data discovery and browsing needs parameters that are not available in the standard CDI. However, in the context of data discovery a common framework for all data types is preferable, so we should avoid unnecessary customization for this data type. Both of these issues have been addressed using the framework provided by the OGC Observations and Measurements standard (O&M - see Cox, this conference). O&M provides a structure for observation metadata, allowing the description of the feature of interest, observation procedure, sampling features and the relationships between them, while still allowing the original encoding of the actual observation result. Thus, the

  19. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  20. Exploring School Ethos: An Investigation of Children's Human Rights in Two Secondary Institutions in Hong Kong

    Science.gov (United States)

    Lo, Yan Lam; Leung, Yan Wing; Yuen, Wai Wa

    2015-01-01

    From 2009 to 2011, the authors launched the Basic Law Education Project: Education for Human Rights and the Rule of Law in Hong Kong. This article focuses on a subset of the overarching data-set and discusses the findings that resulted from a comparative analysis of two participating schools. A survey was deployed to assess the extent to which a…

  1. Exploring School Ethos: An Investigation of Children's Human Rights in Two Secondary Institutions in Hong Kong

    Science.gov (United States)

    Lo, Yan Lam; Leung, Yan Wing; Yuen, Wai Wa

    2015-01-01

    From 2009 to 2011, the authors launched the Basic Law Education Project: Education for Human Rights and the Rule of Law in Hong Kong. This article focuses on a subset of the overarching data-set and discusses the findings that resulted from a comparative analysis of two participating schools. A survey was deployed to assess the extent to which a…

  2. Data Dictionary Services in XNAT and the Human Connectome Project

    Directory of Open Access Journals (Sweden)

    Rick eHerrick

    2014-07-01

    Full Text Available The XNAT informatics platform is an open source data management tool used by biomedical imaging researchers around the world. An important feature of XNAT is its highly extensible architecture: users of XNAT can add new data types to the system to capture the imaging and phenotypic data generated in their studies. Until recently, XNAT has had limited capacity to broadcast the meaning of these data extensions to users, other XNAT installations, and other software.We have implemented a data dictionary service for XNAT, which is currently being used on ConnectomeDB, the Human Connectome Project (HCP public data sharing website. The data dictionary service provides a framework to define key relationships between data elements and structures across the XNAT installation. This includes not just core data representing medical imaging data or subject or patient evaluations, but also taxonomical structures, security relationships, subject groups, and research protocols. The data dictionary allows users to define metadata for data structures and their properties, such as value types (e.g. textual, integers, floats and valid value templates, ranges, or field lists. The service provides compatibility and integration with other research data management services by enabling easy migration of XNAT data to standards-based formats such as RDF, JSON, and XML. It also facilitates the conversion of XNAT’s native data schema into standard neuroimaging ontology structures and provenances.

  3. The minimal preprocessing pipelines for the Human Connectome Project.

    Science.gov (United States)

    Glasser, Matthew F; Sotiropoulos, Stamatios N; Wilson, J Anthony; Coalson, Timothy S; Fischl, Bruce; Andersson, Jesper L; Xu, Junqian; Jbabdi, Saad; Webster, Matthew; Polimeni, Jonathan R; Van Essen, David C; Jenkinson, Mark

    2013-10-15

    The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space. These pipelines are specially designed to capitalize on the high quality data offered by the HCP. The final standard space makes use of a recently introduced CIFTI file format and the associated grayordinate spatial coordinate system. This allows for combined cortical surface and subcortical volume analyses while reducing the storage and processing requirements for high spatial and temporal resolution data. Here, we provide the minimum image acquisition requirements for the HCP minimal preprocessing pipelines and additional advice for investigators interested in replicating the HCP's acquisition protocols or using these pipelines. Finally, we discuss some potential future improvements to the pipelines.

  4. Explore, Understand, Share and Show How: Four ways to use hermeneutic phenomenology to inspire human-centred creativity in engineering design

    DEFF Research Database (Denmark)

    Coxon, Ian Robert

    2014-01-01

    At our engineering research centre we have been applying hermeneutic phenomenology in a broad spectrum of projects for understanding everyday human experience. Through our work, we have experimented with and explored creative ways to 'get into' the lives of participants within the health, pharmac......At our engineering research centre we have been applying hermeneutic phenomenology in a broad spectrum of projects for understanding everyday human experience. Through our work, we have experimented with and explored creative ways to 'get into' the lives of participants within the health...... (as best we can), understanding hidden 'meaning structures' contained within them at the most primordial level, and communicating these insights experientially are the goals that drive us. In this paper we share some examples of how we have combined design thinking with hermeneutic phenomenology...

  5. The Shaky Legal Foundations of the Global Human Rights Education Project

    Science.gov (United States)

    Vlaardingerbroek, Barend

    2015-01-01

    School students should be taught about the law and this includes rights education. The global human rights education (HRE) project focuses on universal human rights and has a strongly utopian orientation, drawing as it does on international declarations and principles of human rights law. International human rights law is, however, at best a…

  6. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram

    2013-01-01

    of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical......Summary: Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development......–protein interactions have been enriched with a quality-scored human protein–protein interaction network, a protein–protein association network and a chemical–chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment...

  7. Exploration on the new pattern of horizontal project management in colleges and universites

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Along with the horizontal project volume raising, lots of problems have been exposed during the course of practice, which affect its comprehensive value in colleges and universities. According to the investigation on the current situation of horizontal projects, it was found that the main factors which affect the quality of horizontal project management are operational management, funds management and evaluation mechanism. In order to prevent the horizontal projects from being marginalized, the management model should be more adapted to the market economy, with flexible and precise regulations of funds, and be more valued in the personnel evaluation system. Besides, education is another useful resource which has a great effect on the horizontal projects. With the improvement of management, the horizontal projects will be able to further the development of research and technology promotion in universities.

  8. The Human Genome Project: Information access, management, and regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  9. Atmosphere Resource Recovery & Environmental Monitoring (ARREM) for Long Duration Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project focuses on key physico-chemical process technologies for Atmosphere Revitalization Systems (ARS) that increase reliability, capability, and consumable...

  10. Prototype Application of Portable Augmented Reality Technology for Enhancement of Space and Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project, several different augmentation techniques for locating ground articles from distance through an augmented live view were investigated....

  11. The ambiguity of human ashes: Exploring encounters with cremated remains in the Netherlands

    NARCIS (Netherlands)

    Mathijssen, B.M.H.P.

    2016-01-01

    This article explores cremation and disposal practices in the Netherlands, focusing on the attitudes and experiences of bereaved Dutch people in relation to cremated remains. In academic and professional narratives, human ashes are commonly described as “important,” as “sacred,” and as a vehicle to

  12. Guides to Sustainable Connections? Exploring Human-Nature Relationships among Wilderness Travel Leaders

    Science.gov (United States)

    Grimwood, Bryan S. R.; Haberer, Alexa; Legault, Maria

    2015-01-01

    This paper explores and critically interprets the role wilderness travel may play in fostering environmental sustainability. The paper draws upon two qualitative studies that sought to understand human-nature relationships as experienced by different groups of wilderness travel leaders in Canada. According to leaders involved in the studies,…

  13. Shijun Ma: keeping on exploring new areas to meet the challenge of human and social demands

    Institute of Scientific and Technical Information of China (English)

    Le Kang; Ming Li

    2011-01-01

    @@ Professor Shijun Ma (1915-1991) is a renowned Chinese ecologist.Shijun, literally in Chinese, means the finest horse,which also perfectly describes his academic lifc 50 years of non-stop traveling and exploring new areas, from insects to human being, from experimental science to systematic science, from ecology to environmental science, and from nature to society.

  14. Human Body Explorations: Hands-On Investigations of What Makes Us Tick.

    Science.gov (United States)

    Kalumuck, Karen E.

    This book presents science activities on the human body with materials that can be purchased in a grocery store or pharmacy. Each activity includes an explorer and facilitator guide. Activities include: (1) "Naked Egg"; (2) "Cellular Soap Opera"; (3) "Acid in Your Stomach"; (4) "How Much Do You C?"; (5)…

  15. 76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Science.gov (United States)

    2011-10-13

    ... Status Space Launch System/Multi-Purpose Crew Vehicle Status Overall Human Exploration and Operations (HEO) Mission Directorate Status Status of Commercial Orbital Transportation Services and Commercial... will need to show valid, officially-issued picture identification such as a driver's license to...

  16. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    Science.gov (United States)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  17. Exploring the Strategic Role of Human Resource Development in Organizational Crisis Management

    Science.gov (United States)

    Wang, Jia; Hutchins, Holly M.; Garavan, Thomas N.

    2009-01-01

    Crisis management has been a largely overlooked territory in human resource development (HRD) despite the increasingly recognized impact of organizational crises on the individual and organizational performance. This article explores the strategic role of HRD in the context of organizational crisis management using Garavan's strategic HRD model as…

  18. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  19. Decision Analysis Methods Used to Make Appropriate Investments in Human Exploration Capabilities and Technologies

    Science.gov (United States)

    Williams-Byrd, Julie; Arney, Dale C.; Hay, Jason; Reeves, John D.; Craig, Douglas

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond Earth for extended periods of time. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Prudent investments in capability and technology developments, based on mission need, are critical for enabling a campaign of human exploration missions. There are a wide variety of capabilities and technologies that could enable these missions, so it is a major challenge for NASA's Human Exploration and Operations Mission Directorate (HEOMD) to make knowledgeable portfolio decisions. It is critical for this pioneering initiative that these investment decisions are informed with a prioritization process that is robust and defensible. It is NASA's role to invest in targeted technologies and capabilities that would enable exploration missions even though specific requirements have not been identified. To inform these investments decisions, NASA's HEOMD has supported a variety of analysis activities that prioritize capabilities and technologies. These activities are often based on input from subject matter experts within the NASA community who understand the technical challenges of enabling human exploration missions. This paper will review a variety of processes and methods that NASA has used to prioritize and rank capabilities and technologies applicable to human space exploration. The paper will show the similarities in the various processes and showcase instances were customer specified priorities force modifications to the process. Specifically

  20. Exploring the Degree of Support by PMOs for New Project Management Techniques and Methods

    Science.gov (United States)

    Lopez, Kathleen P.

    2012-01-01

    An organization tends to seek out the best set of practices in order to achieve project success. Many organizations are implementing a Project Management Office (PMO) to serve as a central post for organizing and disseminating best practices. The PMO responsibilities in part is to examine all practices, old and new, to best determine which…

  1. Exploring the Relationship between Authentic Leadership and Project Outcomes and Job Satisfaction with Information Technology Professionals

    Science.gov (United States)

    Fischer, Mark A.

    2014-01-01

    One of the most important issues for organizations and information technology (IT) professionals is measuring the success or failure of information technology projects. How we understand the value and usefulness of IT projects is critical to how information technology executives evaluate and decide on technology investments. In a 2009 CHAOS…

  2. Exploring the Degree of Support by PMOs for New Project Management Techniques and Methods

    Science.gov (United States)

    Lopez, Kathleen P.

    2012-01-01

    An organization tends to seek out the best set of practices in order to achieve project success. Many organizations are implementing a Project Management Office (PMO) to serve as a central post for organizing and disseminating best practices. The PMO responsibilities in part is to examine all practices, old and new, to best determine which…

  3. Reasons for contract changes in implementing Dutch transportation infrastructure projects: An empirical exploration

    NARCIS (Netherlands)

    S. Verweij (Stefan); I.F. van Meerkerk (Ingmar); I.A. Korthagen (Iris)

    2015-01-01

    markdownabstract__Abstract__ An important contributor to cost overruns of infrastructure projects is contract changes after the construction contract has been concluded. Using mainly descriptive statistics and non-parametric tests, real project data were analyzed from forty-five Dutch

  4. Exploring the Relationship between Authentic Leadership and Project Outcomes and Job Satisfaction with Information Technology Professionals

    Science.gov (United States)

    Fischer, Mark A.

    2014-01-01

    One of the most important issues for organizations and information technology (IT) professionals is measuring the success or failure of information technology projects. How we understand the value and usefulness of IT projects is critical to how information technology executives evaluate and decide on technology investments. In a 2009 CHAOS…

  5. Explorative Insight of Methods and Factors to Manage the Execution of Collaborative Research Projects

    OpenAIRE

    Pla Puigvert, Mònica

    2009-01-01

    UniReserach is a company that assists companies and research institutes with their project management. For this company an assignment could be done in which an inventory will be made on the monitoring and control methods during project execution, based on which recommendations for improvement have to be generated.

  6. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates

    DEFF Research Database (Denmark)

    Garcia, Raquel A.; Burgess, Neil David; Cabeza, Mar

    2012-01-01

    projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17...

  7. Compilation Of An Econometric Human Resource Efficiency Model For Project Management Best Practices

    Directory of Open Access Journals (Sweden)

    G. van Zyl

    2006-11-01

    Full Text Available The aim of the paper is to introduce a human resource efficiency model in order to rank the most important human resource driving forces for project management best practices. The results of the model will demonstrate how the human resource component of project management acts as the primary function to enhance organizational performance, codified through improved logical end-state programmes, work ethics and process contributions. Given the hypothesis that project management best practices involve significant human resource and organizational changes, one would reasonably expect this process to influence and resonate throughout all the dimensions of an organisation.

  8. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    Science.gov (United States)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  9. REVIEW OF INTERNATIONAL PROJECTS IN А FIELD OF HUMAN MICROBIAL ECOLOGY AND CONSTRUCTION OF PROBIOTICS

    Directory of Open Access Journals (Sweden)

    S. A. Starovoitova

    2013-06-01

    Full Text Available Modern huge and world-wide known projects concerning studying of human microbial ecology and construction of probiotics, particularly: Society for Microbial Ecology and Disease, Probiotics & Health Targeted Initiative of International Science and Technology Center (TI PROBIO ISTC, Human Microbiome Project of National Institutes of Health, MetaHIT Project (Metagenomics of the Human Intestinal Tract of European Commission, Human Metabolome Project of Canadian University of Alberta and some more else were characterized in the article. Brief historical information and reference to official sites of every discussed project were given. Main goals and tasks of every project were described. Short characteristic of discussed projects and also modern accessible results of researches were given. Importance of every examined project for widening scientific knowledge in the field of human microbial ecology and also for improvement and/or for construction of modern effective probiotics on basis of human normal intestinal microflora were paid attention. Close interaction of scientific data received by realization of every discussed project was shown.

  10. 391 Ways to Explore Arts and Humanities Careers: Classroom Activities in Dance, Music, Theater and Media, Visual Arts and Crafts, Writing, Humanities.

    Science.gov (United States)

    Hansen, Mary Lewis; And Others

    One of a series of 11 arts and humanities career exploration guides for grade 7-12 teachers, counselors, and students, this curriculum guide is intended to help teachers help students explore arts and humanities careers in regular grade 7-12 arts and humanities courses. Focus throughout the four sections is on augmenting, rather than replacing,…

  11. Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Similar to the concept seen in recent ‘Transformers’ movies, this work explores how reconfigurability can enable mobility across diverse, uncertain...

  12. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.

    Science.gov (United States)

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W

    2017-08-30

    The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17,008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 (https://hupo.org/Guidelines), up from 13,664 in 2012-12 and 16,518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15,173 canonical proteins, accounting for nearly all of the 15,290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10,492 highly-curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.

  13. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  14. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  15. Human resource allocation management in multiple projects using sociometric techniques

    OpenAIRE

    Ballesteros-Pérez, Pablo; González-Cruz, M. C.; Fernández-Diego, M.

    2012-01-01

    This article describes a new application of key psychological concepts in the area of Sociometry for the selection of workers within organizations in which projects are developed. The project manager can use a new procedure to determine which individuals should be chosen from a given pool of resources and how to combine them into one or several simultaneous groups/projects in order to assure the highest possible overall work efficiency from the standpoint of social interaction. The optimizati...

  16. The Second Life Researcher Toolkit - An Exploration of Inworld Tools, Methods and Approaches for Researching Educational Projects in Second Life

    Science.gov (United States)

    Moschini, Elena

    Academics are beginning to explore the educational potential of Second LifeTM (SL) by setting up inworld educational activities and projects. Given the relative novelty of the use of virtual world environments in higher education many such projects are still at pilot stage. However the initial pilot and experimentation stage will have to be followed by a rigorous evaluation process as for more traditional teaching projects. The chapter addresses issues about SL research tools and research methods. It introduces a "researcher toolkit" that includes: the various stages in the evaluation of SL educational projects and the theoretical framework that can inform such projects; an outline of the inworld tools that can be utilised or customised for academic research purposes; a review of methods for collecting feedback from participants and of the main ethical issues involved in researching virtual world environments; a discussion on the technical skills required to operate a research project in SL. The chapter also offers an indication of the inworld opportunities for the dissemination of SL research findings.

  17. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  18. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    into account. This may require investments in new project management technologies. Originality/value – This paper adds to the literatures on project temporalities and stakeholder theory by connecting them to the question of non-human stakeholders and to project management technologies.......Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...

  19. MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Yang, Sunmo; Marcotte, Edward M; Lee, Insuk

    2014-07-01

    Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin.

  20. Performance of humans vs. exploration algorithms on the Tower of London Test.

    Directory of Open Access Journals (Sweden)

    Eric Fimbel

    Full Text Available The Tower of London Test (TOL used to assess executive functions was inspired in Artificial Intelligence tasks used to test problem-solving algorithms. In this study, we compare the performance of humans and of exploration algorithms. Instead of absolute execution times, we focus on how the execution time varies with the tasks and/or the number of moves. This approach used in Algorithmic Complexity provides a fair comparison between humans and computers, although humans are several orders of magnitude slower. On easy tasks (1 to 5 moves, healthy elderly persons performed like exploration algorithms using bounded memory resources, i.e., the execution time grew exponentially with the number of moves. This result was replicated with a group of healthy young participants. However, for difficult tasks (5 to 8 moves the execution time of young participants did not increase significantly, whereas for exploration algorithms, the execution time keeps on increasing exponentially. A pre-and post-test control task showed a 25% improvement of visuo-motor skills but this was insufficient to explain this result. The findings suggest that naive participants used systematic exploration to solve the problem but under the effect of practice, they developed markedly more efficient strategies using the information acquired during the test.

  1. Exploring the dynamics of formal and informal networks in complex multi-team development projects

    DEFF Research Database (Denmark)

    Kratzer, Jan; Gemünden, Hans Georg; Lettl, Christopher

    The increasing number of complex multi-team projects and the scarcity of knowledge about how to run them successfully, create a need for systematic empirical studies. We attempt to lessen this empirical gap by examining the overlap and structure of formally ascribed design interfaces and informal...... communication networks is associated with increases in the effectiveness, however, it negatively impacts the team's efficiency....... communication networks between participating teams in two complex multi-team projects in the space industry. We study the two projects longitudinally throughout the design and integration phases of product development. There are three major findings. First, formally ascribed design interfaces and informal......The increasing number of complex multi-team projects and the scarcity of knowledge about how to run them successfully, create a need for systematic empirical studies. We attempt to lessen this empirical gap by examining the overlap and structure of formally ascribed design interfaces and informal...

  2. Exploring the dynamics of formal and informal networks in complex multi-team development projects

    DEFF Research Database (Denmark)

    Kratzer, J.; Gemuenden, H. G.; Lettl, Christopher

    2007-01-01

    The increasing number of complex multi-team projects and the scarcity of knowledge about how to run them successfully, create a need for systematic empirical studies. We attempt to lessen this empirical gap by examining the overlap and structure of formally ascribed design interfaces and informal...... communication networks is associated with increases in the effectiveness, however, it negatively impacts the team's efficiency....... communication networks between participating teams in two complex multi-team projects in the space industry. We study the two projects longitudinally throughout the design and integration phases of product development. There are three major findings. First, formally ascribed design interfaces and informal......The increasing number of complex multi-team projects and the scarcity of knowledge about how to run them successfully, create a need for systematic empirical studies. We attempt to lessen this empirical gap by examining the overlap and structure of formally ascribed design interfaces and informal...

  3. Projection effects on the FP thickness: a Monte-Carlo exploration

    CERN Document Server

    Lanzoni, B

    2003-01-01

    We study the contribution of projection effects to the intrinsic thickness of the Fundamental Plane (FP) of elliptical galaxies. The Monte-Carlo mapping technique between model properties and observed quantities, introduced by Bertin, Ciotti, and Del Principe (2002), is extended to oblate, two-integrals galaxy models, with non-homologous density profiles, adjustable flattening, variable amount of ordered rotational support, and for which all the relevant projected dynamical quantities can be expressed in fully analytical way. In agreement with previous works, it is found that projection effects move models not exactly parallel to the edge-on FP, by an amount that can be as large as the observed FP thickness. The statistical contribution of projection effects to the FP thickness is however marginal, and the estimated physical FP rms thickness is ~90% of the observed one (when corrected for measurement errors).

  4. Anatomic pathways of peripancreatic fluid draining to mediastinum in recurrent acute pancreatitis: visible human project and CT study.

    Directory of Open Access Journals (Sweden)

    Haotong Xu

    Full Text Available BACKGROUND: In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. METHODS: We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. PRINCIPAL FINDINGS: All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. CONCLUSION: This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body.

  5. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  6. Outline for a human-based assessment methodology of urban projects. The case of Polis Gondomar

    Directory of Open Access Journals (Sweden)

    Paolo Marcolin

    2015-06-01

    Full Text Available This paper presents the results of a preliminary research project proposing an assessment methodology for the actual impacts of urban projects on city development[1]. At this stage, the research has focused on the identification of indicators about the success of urban projects according to the accomplishment, functioning and use of public spaces. A case study is presented as a means for exploring these indicators: the intervention made by the Polis Programme at Gondomar.

  7. Exploring Community-Oriented Approaches in Demand Side Management Projects in Europe

    Directory of Open Access Journals (Sweden)

    Anna Mengolini

    2016-12-01

    Full Text Available This paper seeks to investigate if the theoretical and political trends towards a more collective dimension of energy use are reflected in the design and development of demand side management (DSM pilot projects in Europe. Specifically, the paper analyses DSM projects in the database of the Joint Research Centre (JRC of the European Commission to capture signs of a new attention towards the wider context in which consumers live and towards the social dimension associated with energy consumption. To this end, the paper investigates the projects’ scope (in terms of project’s partners, end-use sectors and targeted services as well as the consumer engagement strategies that projects use. These elements reflect the projects’ consideration for the socio-economic dimension of the community where the pilots take place and their inclination to build on community dynamics. The analysis shows that DSM projects in the EU are increasingly being designed and developed with a collegial approach to energy consumption in mind, although an integrated approach is still missing. In addition, research is still needed to link the use of this innovative approach to project results. A closer look at the developments and results of these projects can help to identify what works and what doesn’t in real life experiences, thus supporting effective policy making at the EU and national level.

  8. Assessing corporate project impacts in changeable contexts: A human rights perspective

    Energy Technology Data Exchange (ETDEWEB)

    Salcito, Kendyl, E-mail: kendyl.salcito@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel (Switzerland); University of Basel, P.O. Box, CH-4003 Basel (Switzerland); NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202 (United States); NewFields, LLC, Denver, CO 80202 (United States); Singer, Burton H., E-mail: bhsinger@epi.ufl.edu [Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610 (United States); Krieger, Gary R., E-mail: gkrieger@newfields.com [NewFields, LLC, Denver, CO 80202 (United States); Weiss, Mitchell G., E-mail: mitchell-g.weiss@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel (Switzerland); University of Basel, P.O. Box, CH-4003 Basel (Switzerland); Wielga, Mark, E-mail: wielga@nomogaia.org [NomoGaia, 1900 Wazee Street, Suite 303, Denver, CO 80202 (United States); NewFields, LLC, Denver, CO 80202 (United States); Utzinger, Jürg, E-mail: juerg.utzinger@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel (Switzerland); University of Basel, P.O. Box, CH-4003 Basel (Switzerland)

    2014-07-01

    Project-level impact assessment was originally conceived as a snapshot taken in advance of project implementation, contrasting current conditions with a likely future scenario involving a variety of predicted impacts. Current best practice guidance has encouraged a shift towards longitudinal assessments from the pre-project stage through the implementation and operating phases. Experience and study show, however, that assessment of infrastructure-intensive projects rarely endures past the project's construction phase. Negative consequences for environmental, social and health outcomes have been documented. Such consequences clarify the pressing need for longitudinal assessment in each of these domains, with human rights impact assessment (HRIA) as an umbrella over, and critical augmentation of, environmental, social and health assessments. Project impacts on human rights are more closely linked to political, economic and other factors beyond immediate effects of a company's policy and action throughout the project lifecycle. Delineating these processes requires an adequate framework, with strategies for collecting longitudinal data, protocols that provide core information for impact assessment and guidance for adaptive mitigation strategies as project-related effects change over time. This article presents general principles for the design and implementation of sustained, longitudinal HRIA, based on experience assessing and responding to human rights impact in a uranium mining project in Malawi. The case study demonstrates the value of longitudinal assessment both for limiting corporate risk and improving human welfare. - Graphical abstract: Assessing changes in human rights condition as affected by both project and context, over time. - Highlights: • Corporate capital projects affect human rights in myriad ways. • Ongoing, longitudinal impact assessment techniques are needed. • We present an approach for conducting longitudinal human rights impact

  9. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    Science.gov (United States)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; Lawrence, James; Seibert, Marc; Schier, Jim; Frank, Jeremy; Alexander, Leslie; Ruff, Gary; Soeder, Jim; Guinn, Joseph; Stafford, Matthew

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant

  10. Exploration Architecture with Quantum Inertial Gravimetry and In Situ ChipSat Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This will study an exploration architecture combining remote survey with in situ sampling, with example missions to Europa and a Near Earth Object. In particular for...

  11. Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Variable Vector Countermeasure Suit (V2Suit) is a specialized spacesuit designed to keep astronauts healthy during long-duration space exploration missions and...

  12. Non-Radioisotope Power Systems For Sunless Solar System Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Description: explore mission architectures to the Moon's southern Aitken Basin, the surface of Saturn’s moon, Titan, and the surface of Venus that do not...

  13. Dual-mode Propulsion System Enabling CubeSat Exploration of the Solar System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the cost of planetary exploration rising and budgets for such missions declining newer, cheaper, i.e. low mass, systems must be developed to perform...

  14. High Measurement Channel Density Sensor Array Impedance Analyzer for Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary exploration missions, such as those planned by NASA and other space agencies over the next few decades, require advanced chemical and biological marker...

  15. Technology under Astrbiology Science and Technology for Exploring Planets (ASTEP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In collaboration with other Directorates and agencies, ASTEP supports investigations focused on exploring the Earth?s extreme environments in order to develop a...

  16. High-Efficiency Reliable Stirling Generator for Space Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs advanced power-conversion technologies to improve the efficiency and reliability of power conversion for space exploration missions. We propose to develop...

  17. Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this effort is to develop a mission architecture that allows the systematic and affordable in situ exploration of small Solar System bodies (such...

  18. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  19. Prospects for the Chinese Human Genome Project (HGP)at the beginning of next century

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chinese Human Genome Project (CHGP) as part of the international human genome research has achieved significant progress and created a solid foundation for further development. While participating in the human genome sequencing and gene discovery, the emphasis of CHGP in the next century will be laid on functional genomics. The strategy, resources and some policy issues will be addressed.

  20. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    NARCIS (Netherlands)

    Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.; Campbell, J.; FitzPatrick, D.R.; Eppig, J.T.; Jackson, A.P.; Freson, K.; Girdea, M.; Helbig, I.; Hurst, J.A.; Jahn, J.; Jackson, L.G.; Kelly, A.M.; Ledbetter, D.H.; Mansour, S.; Martin, C.L.; Moss, C.; Mumford, A.; Ouwehand, W.H.; Park, S.M.; Riggs, E.R.; Scott, R.H.; Sisodiya, S.; Vooren, S. van der; Wapner, R.J.; Wilkie, A.O.; Wright, C.F.; Silfhout, A.T. van; Leeuw, N. de; Vries, B. de; Washingthon, N.L.; Smith, C.L.; Westerfield, M.; Schofield, P.; Ruef, B.J.; Gkoutos, G.V.; Haendel, M.; Smedley, D.; Lewis, S.E.; Robinson, P.N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have d

  1. 77 FR 74517 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2012-12-14

    ... FOUNDATION Agency Information Collection Activities: Comment Request; Education and Human Resources Project...: Education and Human Resources Program Monitoring Clearance. OMB Approval Number: 3145-NEW. Type of Request... parts of the United States and internationally. The Directorate for Education and Human Resources (EHR...

  2. The software analysis project for the Office of Human Resources

    Science.gov (United States)

    Tureman, Robert L., Jr.

    1994-01-01

    There were two major sections of the project for the Office of Human Resources (OHR). The first section was to conduct a planning study to analyze software use with the goal of recommending software purchases and determining whether the need exists for a file server. The second section was analysis and distribution planning for retirement planning computer program entitled VISION provided by NASA Headquarters. The software planning study was developed to help OHR analyze the current administrative desktop computing environment and make decisions regarding software acquisition and implementation. There were three major areas addressed by the study: current environment new software requirements, and strategies regarding the implementation of a server in the Office. To gather data on current environment, employees were surveyed and an inventory of computers were produced. The surveys were compiled and analyzed by the ASEE fellow with interpretation help by OHR staff. New software requirements represented a compilation and analysis of the surveyed requests of OHR personnel. Finally, the information on the use of a server represents research done by the ASEE fellow and analysis of survey data to determine software requirements for a server. This included selection of a methodology to estimate the number of copies of each software program required given current use and estimated growth. The report presents the results of the computing survey, a description of the current computing environment, recommenations for changes in the computing environment, current software needs, management advantages of using a server, and management considerations in the implementation of a server. In addition, detailed specifications were presented for the hardware and software recommendations to offer a complete picture to OHR management. The retirement planning computer program available to NASA employees will aid in long-range retirement planning. The intended audience is the NASA civil

  3. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.

    Science.gov (United States)

    Korostil, Igor A; Peters, Gareth W; Cornebise, Julien; Regan, David G

    2013-05-20

    A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordinary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6, HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group. Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed and common sexually transmitted infection with more than 100 types currently known. The two types studied in this paper, types 6 and 11, are causing about 90% of anogenital warts. We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes the sexual interactions between members of the population under study and relies on several quantities that are a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic model parameters as well as unknown sexual mixing matrix parameters related to assortativity. Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain methods. We conclude with simulation studies on synthetic and recent actual data.

  4. Humanities data in R exploring networks, geospatial data, images, and text

    CERN Document Server

    Arnold, Taylor

    2015-01-01

    This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social scientists. Exploring Humanities Data Types with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. The book’s data, code, appendix with 100 basic programming exercises and solutions, and dedicated website are valuable resources for readers. The methodology will have wide application in classrooms and self-study for the humanities, but also for use...

  5. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  6. Perspectives on human genetic variation from the HapMap Project.

    Science.gov (United States)

    McVean, Gil; Spencer, Chris C A; Chaix, Raphaelle

    2005-10-01

    The completion of the International HapMap Project marks the start of a new phase in human genetics. The aim of the project was to provide a resource that facilitates the design of efficient genome-wide association studies, through characterising patterns of genetic variation and linkage disequilibrium in a sample of 270 individuals across four geographical populations. In total, over one million SNPs have been typed across these genomes, providing an unprecedented view of human genetic diversity. In this review we focus on what the HapMap Project has taught us about the structure of human genetic variation and the fundamental molecular and evolutionary processes that shape it.

  7. Safety Characteristics in System Application of Software for Human Rated Exploration Missions for the 8th IAASS Conference

    Science.gov (United States)

    Mango, Edward J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development. The GFAS system integrates the flight software packages of the Orion and SLS with the ground systems and launch countdown sequencers through the 'agile' software development process. A unique approach is needed to develop the GFAS project capabilities within this agile process. NASA has defined the software development process through a set of standards. The standards were written during the infancy of the so-called industry 'agile development' movement and must be tailored to adapt to the highly integrated environment of human exploration systems. Safety of the space systems and the eventual crew on board is paramount during the preparation of the exploration flight systems. A series of software safety characteristics have been incorporated into the development and certification efforts to ensure readiness for use and compatibility with the space systems. Three underlining factors in the exploration architecture require the GFAS system to be unique in its approach to ensure safety for the space systems, both the flight as well as the ground systems. The first are the missions themselves, which are exploration in nature, and go far beyond the comfort of low Earth orbit operations. The second is the current exploration

  8. 工程造价控制探析%Exploration of the Project Cost Control

    Institute of Scientific and Technical Information of China (English)

    曹静

    2013-01-01

    In recent years, with the rapid development of Ch-inese economic construction, the development of construction industry is also extremely fast. The project cost as an important part of construction projects, which gradual y became a topic of concern. This article elaborates the current issues and appr-opriate measures of the construction project cost control.%近年来,随着我国经济建设的快速发展,建筑行业的发展也异常迅速。工程造价作为建筑工程的重要部分,逐渐成为了人们关注的话题。本文阐述了当前建筑工程造价控制的相关问题及相应措施。

  9. Anthony Pro - Human Automation Interaction in Aerospace Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project aims to demonstrate the feasibility and utility of a data mining system designed to facilitate the interpretation of information obtained from...

  10. Towards a developmental ethology: exploring Deleuze's contribution to the study of health and human development.

    Science.gov (United States)

    Duff, Cameron

    2010-11-01

    This article explores the work of French thinker Gilles Deleuze and argues for the application of his central ideas to the study of health and human development. Deleuze's work furnishes a host of ontological and epistemological resources for such analysis, ushering in new methods and establishing new objects of inquiry. Of principal interest are the inventive conceptualizations of affect, multiplicity and relationality that Deleuze proposes, and the novel reading of subjectivity that these concepts support. This article introduces a developmental ethology in exploring Deleuze's contributions to the study of human development and its varied courses and processes. Taken from a Deleuzean perspective, human development will be characterized as a discontinuous process of affective and relational encounters. It will be argued further that human development is advanced in the provision of new affective sensitivities and new relational capacities. This course is broadly consistent with existing approaches to human development--particularly those associated with Amartya Sen's capabilities model--with the considerable advantage of offering a more viable working theory of the ways in which developmental capacities are acquired, cultivated and maintained. A provisional research agenda consistent with this developmental ethology is offered by way of conclusion.

  11. Development of Carbon Dioxide Removal Systems for NASA's Deep Space Human Exploration Missions 2016-2017

    Science.gov (United States)

    Knox, James C.

    2017-01-01

    NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.

  12. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee

    2001-12-01

    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  13. Using Big Data to Understand the Human Condition: The Kavli HUMAN Project.

    Science.gov (United States)

    Azmak, Okan; Bayer, Hannah; Caplin, Andrew; Chun, Miyoung; Glimcher, Paul; Koonin, Steven; Patrinos, Aristides

    2015-09-01

    Until now, most large-scale studies of humans have either focused on very specific domains of inquiry or have relied on between-subjects approaches. While these previous studies have been invaluable for revealing important biological factors in cardiac health or social factors in retirement choices, no single repository contains anything like a complete record of the health, education, genetics, environmental, and lifestyle profiles of a large group of individuals at the within-subject level. This seems critical today because emerging evidence about the dynamic interplay between biology, behavior, and the environment point to a pressing need for just the kind of large-scale, long-term synoptic dataset that does not yet exist at the within-subject level. At the same time that the need for such a dataset is becoming clear, there is also growing evidence that just such a synoptic dataset may now be obtainable-at least at moderate scale-using contemporary big data approaches. To this end, we introduce the Kavli HUMAN Project (KHP), an effort to aggregate data from 2,500 New York City households in all five boroughs (roughly 10,000 individuals) whose biology and behavior will be measured using an unprecedented array of modalities over 20 years. It will also richly measure environmental conditions and events that KHP members experience using a geographic information system database of unparalleled scale, currently under construction in New York. In this manner, KHP will offer both synoptic and granular views of how human health and behavior coevolve over the life cycle and why they evolve differently for different people. In turn, we argue that this will allow for new discovery-based scientific approaches, rooted in big data analytics, to improving the health and quality of human life, particularly in urban contexts.

  14. Restorative urban open space: Exploring the spatial configuration of human emotional fulfilment in urban open space

    OpenAIRE

    Thwaites, K.; Helleur, E.; Simkins, I.M.

    2005-01-01

    The capacity of outdoor settings to benefit human well being is well established by research. Examples of restorative settings can be found throughout history and are still applied today in health-care facilities, as healing or restorative gardens for the sick, but their wider significance in the urban public realm remains insufficiently explored. A conceptual framework for restorative urban open space based on mosaics of linked and nested spaces woven into the urban fabric is presented. The ...

  15. Core Flight Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The mission of the CFS project is to provide reusable software in support of human space exploration programs.   The top-level technical approach to...

  16. Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework.

    Science.gov (United States)

    Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G

    2016-08-02

    Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.

  17. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    Science.gov (United States)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  18. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  19. Exploring Contributions of Project-Based Learning to Health and Wellbeing in Secondary Education

    Science.gov (United States)

    Allison, Pete; Gray, Shirley; Sproule, John; Nash, Christine; Martindale, Russell; Wang, John

    2015-01-01

    Regardless of the aims and purposes of education, recent trends in pedagogy suggest an increasing popularity of project-based learning (PBL) and a focus on interdisciplinary approaches to learning, however ill-defined they may be. Connections between PBL, curriculum trends and health and wellbeing are reviewed, as well as potential value of…

  20. Exploring the Effects of Project-Based Learning in Secondary Mathematics Education

    Science.gov (United States)

    Holmes, Vicki-Lynn; Hwang, Yooyeun

    2016-01-01

    This mixed-method, longitudinal study investigated the benefits of project-based learning (PBL) on secondary-mathematics students' academic skill development and motivated strategies for learning (i.e., cognitive, social, and motivational). The focus of this study was academic skill development (algebra- and geometry-assessment scores) and other…

  1. Exploring the use of computer-mediated video communication in engineering projects in South Africa

    Directory of Open Access Journals (Sweden)

    Meyer, Izak P.

    2016-08-01

    Full Text Available Globally-expanding organisations that are trying to capitalise on distributed skills are increasingly using virtual project teams to shorten product development time and increase quality. These virtual teams, which are distributed across countries, cultures, and time zones, are required to use faster and better ways of interacting. Past research has shown that virtual teams that use computer-mediated communication (CMC instead of face-to-face communication are less cohesive because they struggle with mistrust, controlling behaviour , and communication breakdowns. This study aims to determine whether project practitioners in South Africa perceive virtual teams that use videoconferencing as suffering from the same CMC disadvantages described in past research in other environments; and if they do, what the possible causes could be. This paper reports on a survey of 106 project practitioners in South Africa. The results show that these project practitioners prefer face- to-face communication over CMC, and perceive virtual teams using videoconferencing to be less cohesive and to suffer from mistrust and communication breakdowns, but not from increased conflict and power struggles. The perceived shortcomings of videoconferencing might result from virtual teams that use this medium having less time to build interpersonal relationships.

  2. Exploring an Alternative Science Teaching Approach. Learning in Science Project (Primary). Working Paper No. 109.

    Science.gov (United States)

    Biddulph, Fred; Roger, Juliet

    An alternative teaching model has been proposed by the Learning in Science Project (Primary)--LISP(P). The model uses a six-step approach (outlined in an appendix) which fosters an environment in which children can ask questions about a situation, offer explanations, carry out investigations, and report their findings. This paper reports on the…

  3. An Action Research Project Exploring the Psychology Curriculum and Transitions to Employment

    Science.gov (United States)

    McMurray, Isabella; Roberts, Pat; Robertson, Ian; Teoh, Kevin

    2011-01-01

    Within the UK, traditional subject-specific areas are increasingly being complemented by the provision of opportunities to foster students' personal development planning as an aide to support their future employment and lifelong learning. This paper describes an action research project which examined employability skills within a psychology…

  4. A Software Framework for Coordinating Human-Robot Teams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots are expected to fulfill an important role in manned exploration operations. They can reduce the risk of crew EVA and improve crew productivity on routine...

  5. Human Robotic Systems (HRS): Space Robotics Challenge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2013 and 2015, the DARPA Robotics Challenge explored through a competition the tasks and technologies for robots to operate in a natural and man-made...

  6. A Software Framework for Coordinating Human-Robot Teams Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots are expected to fulfill an important role in manned exploration operations. They will perform precursor missions to pre-position resources for manned...

  7. A study of the IC~2 Culture Exploring Project of Shanghai Jiao Tong University(SJTU) Library

    Institute of Scientific and Technical Information of China (English)

    CHEN; Youhua; CHEN; Jin

    2009-01-01

    The paper analyzes the environments confronted with academic libraries and the evolving characteristics of Shanghai Jiao Tong University that give shape to the conception and implementation of an IC2Culture Exploring Project.This innovative model of SJTU Library operation is not only in concert with the strategic goals of SJTU but also with two other conspicuous developmental trends in the larger academic library circle;namely,1)a trend toward the deepening of library service support in academic arena on the one hand and 2)the trend of diversifying library outreach services on the other hand.Based on our first-hand involvement in all phases and aspects of this project and its subsequent review and analysis undertakings,this paper expatiates upon the IC2Culture Exploring Project of SJTU Library in terms of its vision,its specific mission objectives,its program design,its unique characteristics,its launching process,its salient case studies,its initial results and its strategies for a sustainable development in the future.

  8. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    Energy Technology Data Exchange (ETDEWEB)

    Matlick, Skip [Ormat Nevada, Inc., Reno, NV (United States); Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Rhodes, Greg [Ormat Nevada, Inc., Reno, NV (United States); Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States)

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  9. Human Engineering Modeling and Performance Lab Study Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  10. Semantic Language and Tools for Reporting Human Factors Incidents Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Incidents related to impaired human performance in space operations can be caused by environmental conditions, situational challenges, and operational deficiencies....

  11. Semantic Language and Tools for Reporting Human Factors Incidents Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Incidents related to impaired human performance in space operations can be caused by environmental conditions, situational challenges, and operational deficiencies....

  12. 78 FR 8192 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2013-02-05

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION Agency Information Collection Activities: Comment Request; Education and Human Resources Project... study will assess the implementation of resources, models, and technologies to determine how and why...

  13. Exploring the Relationships among Creativity, Engineering Knowledge, and Design Team Interaction on Senior Engineering Design Projects

    Science.gov (United States)

    Ibrahim, Badaruddin

    2012-01-01

    In the 21st century, engineers are expected to be creative and work collaboratively in teams to solve or design new products. Research in the past has shown how creativity and good team communication, together with knowledge, can impact the outcomes in the organization. The purpose of this study was to explore the relationships among creativity,…

  14. Defining Factors of Successful University-Community Collaborations: An Exploration of One Healthy Marriage Project

    Science.gov (United States)

    Carlton, Erik L.; Whiting, Jason B.; Bradford, Kay; Dyk, Patricia Hyjer; Vail, Ann

    2009-01-01

    This study explored university-community collaborations by examining the workings of 1 healthy marriage initiative. An ethnographic case study research strategy was used to study the process of this initiative, specifically looking at how participants worked through and overcame traditional university-community collaboration challenges. Data…

  15. Exploration with Garbage. [Project ECOLogy ELE Pak, Lund and Wolff Pak].

    Science.gov (United States)

    Lund, Cherie; Wolff, Chanelle

    This is one of a series of units for environmental education developed by the Highline Public Schools. This unit is concerned with the topic of garbage. The eleven lessons explore what garbage is, problems of littering, ways to reduce garbage, and ways to use garbage. The materials were designed to be used with kindergarten pupils, but could be…

  16. NEEMO 15: Evaluation of human exploration systems for near-Earth asteroids

    Science.gov (United States)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2013-08-01

    The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on evaluating techniques for exploring near-Earth asteroids (NEAs). It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of "far-field survey" approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of objectives developed by the science team. These objectives were based on review and discussion of previous related marine science research, including previous marine science saturation missions conducted at the Aquarius habitat. AUV data were used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the "near-field survey" approach that is expected to be performed by a Multi-Mission Space Exploration Vehicle (MMSEV) during a human mission to a NEA before extravehicular activities (EVAs) are conducted. In addition to the science objectives that were pursued, the NEEMO 15 traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the "near-field survey" in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crew members, tools, and equipment that could be

  17. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  18. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    Science.gov (United States)

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.

  19. 关于水利工程生态效应探索%Explore the ecological effects on water projects

    Institute of Scientific and Technical Information of China (English)

    杨娜

    2014-01-01

    With the rapid development of China’s economy,the rising level of technology,ecological issues be-come the focus of today’s survival and development of all walks of life,water conservancy project is no excep-tion.Articles in the current situation of water conservancy projects mainly through the development of ecologi-cal effects start to be a systematic exposition of the exploration of the ecological effects of water projects ,in-cluding adverse effects on water conservancy projects and solutions proposed.In short ,the application of the e-cological effects of water projects,able to promote the construction of water conservancy projects and applica-tions can be sustainable and effective development.%随着我国经济的快速发展,科技水平的日益提升,生态问题成为当今各行各业生存发展的焦点问题,水利工程也不例外。文章中主要是通过对水利工程生态效应发展的现状入手,对水利工程生态效应的探索予以系统化的阐述,包含对水利工程的负面效应和解决对策的提出。总之,水利工程生态效应的应用,能够推动我国水利工程的建设与应用可以得到持续性的有效发展。

  20. Human resource management in the project-oriented organization: Employee well-being and ethical treatment

    NARCIS (Netherlands)

    Turner, R.; Huemann, M.; Keegan, A.

    2008-01-01

    As part of a wider study into human resource management (HRM) practices in project-oriented organizations, we investigated the issue of employee well-being. Project-oriented organizations adopt temporary work processes to deliver products and services to clients. This creates a dynamic work environm