WorldWideScience

Sample records for human erythrocyte metabolism

  1. [AGGREGATION OF METABOLICALLY DEPLETED HUMAN ERYTHROCYTES].

    Science.gov (United States)

    Sheremet'ev, Yu A; Popovicheva, A N; Rogozin, M M; Levin, G Ya

    2016-01-01

    An aggregation of erythrocytes in autologous plasma after blood storage for 14 days at 4 °C was studied using photometry and light microscopy. The decrease of ATP content, the formation of echinocytes and spheroechinocytes, the decrease of rouleaux form of erythrocyte aggregation were observed during the storage. On the other hand the aggregates of echinocytes were formed in the stored blood. The addition of plasma from the fresh blood didn't restore the normal discocytic shape and aggregation of erythrocytes in the stored blood. The possible mechanisms of erythrocytes and echinocytes aggregation are discussed.

  2. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  3. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration

    Science.gov (United States)

    Travis, Susan F.; Morrison, Anthony D.; Clements, Rex S.; Winegrad, Albert I.; Oski, Frank A.

    1971-01-01

    Human erythrocytes incubated in medium containing 50 mM glucose have increased intracellular sorbitol and fructose concentrations as compared with samples incubated with 5 mM glucose. Increased medium glucose concentration did not significantly alter total glucose consumption or lactate production. However, the intracellular lactate:pyruvate ratio rose, the concentrations of fructose diphosphate, and triose phosphates increased, and the 2,3-diphosphoglycerate concentration fell. [14C]O2 production from glucose-1-14C also increased with increased medium glucose concentration. These changes are believed to reflect changes in the redox states of the diphosphopyridine nucleotide/reduced form of diphosphopyridine nucleotide (NAD/NADH) and nicotinamide—adenine dinucleotide phosphate/reduced form of nicotinamide—adenine dinucleotide phosphate (NADP/NADPH) couples resulting from increased activity of the polyol pathway. Addition of pyruvate to the incubation media prevented these changes. These studies illustrate that an increase in the red cell's normal substrate, glucose, can produce changes in red cell metabolism. PMID:4398937

  4. The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes

    Directory of Open Access Journals (Sweden)

    F. Misiti

    2003-12-01

    Full Text Available Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC of intact human red blood cells to doxorubicinol (40 µM and to aglycone derivatives of doxorubicin (40 µM induced, compared with untreated red cells: i a ~2-fold stimulation of the pentose phosphate pathway (PPP and ii a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20% and superoxide dismutase (~60%. In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35% and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22% in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.

  5. Abnormal erythrocyte metabolism in hepatic disease.

    Science.gov (United States)

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1975-12-01

    Erythrocyte (RBC) metabolic studies were done on 114 patients with severe hepatic disease. Heinz body formation after incubation of RBCs with acetyl phenylhydrazine was found to be significantly higher in patients than in controls. RBC-reduced glutathione levels were lower than those of controls both before and after incubation with acetyl phenylhydrazine, and patients with the highest Heinz body counts had the lowest reduced glutathione levels. RBC methylene blue-stimulated hexose monophosphate (HMP) shunt metabolism and glucose recycling through the shunt were significantly lower in patients with active hepatic disease than in controls. There was no difference in resting HMP shunt activity or in resting recycling of glucose. Despite impairment of shunt metabolism, total glucose consumption was greater in patients than in controls. The patients with the lowest stimulated HMP shunt metabolism and glucose recycling had the highest Heinz body counts, lowest reduced glutathione, and highest total glucose consumption. A continuum of abnormal shunt metabolism was seen, from a mild reduction of stimulated HMP shunt activity to a severe combined decrease in both the HMP shunt and glucose recycling. When measured, glutathione reductase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, and transketolase were normal or increased. Sequential studies were done on 11 patients who had abnormal metabolic studies. Coincident with improvement of HMP shunt metabolism, the Heinz body counts became lower, reduced glutathione higher, hematocrit higher, and liver function improved. Impaired HMP shunt metabolism appears to be a common, acquired RBC abnormality in patients with severe, active liver disease.

  6. Spectrin, human erythrocyte shapes, and mechanochemical properties.

    OpenAIRE

    Stokke, B T; Mikkelsen, A.; Elgsaeter, A

    1986-01-01

    Physical studies of human erythrocyte spectrin indicate that isolated spectrin dimers and tetramers in solution are worm-like coils with a persistence length of approximately 20 nm. This finding, the known polyelectrolytic nature of spectrin, and other structural information about spectrin and the membrane skeleton molecular organization have lead us to the hypothesis that the human erythrocyte membrane skeleton constitutes a two-dimensional ionic gel (swollen ionic elastomer). This concept i...

  7. [Lysophosphatidic acid and human erythrocyte aggregation].

    Science.gov (United States)

    Sheremet'ev, Iu A; Popovicheva, A N; Levin, G Ia

    2014-01-01

    The effects of lysophosphatidic acid on the morphology and aggregation of human erythrocytes has been studied. Morphology of erythrocytes and their aggregates were studied by light microscopy. It has been shown that lysophosphatidic acid changes the shape of red blood cells: diskocyte become echinocytes. Aggregation of red blood cells (rouleaux) was significantly reduced in autoplasma. At the same time there is a strong aggregation of echinocytes. This was accompanied by the formation of microvesicles. Adding normal plasma to echinocytes restores shape and aggregation of red blood cells consisting of "rouleaux". A possible mechanism of action of lysophosphatidic acid on erythrocytes is discussed.

  8. Structurafand metabolic peculiarities of erythrocytes in patients with systemic vasculitis

    Directory of Open Access Journals (Sweden)

    M M Faslyev

    2004-01-01

    Full Text Available Obyective. To assess of functional , structural and metabolic changes of RBC in patients with systemic vasculitis. To estimate influence of RBC abnormalities on blood viscosity and hemostasis. Materials and methods. Blood samples of 75 pis with Henoch-Schonlein Purpura (HSP and 15 pts with microscopic polyarteritis (MPA were tested. The levels of ATP transporting enzymes and lipid peroxide oxidation (LPO in erythrocyte's membranes were assessed. The degree of erythrocyte membrane stability was estimated by test of osmotic and acidic membrane resistance. Results. Suppression of Na +, K +, Ca + activated ATP transporting enzyme in pts with MPA and renal form of HSP was found. This group of patients was also characterized by LPO activation, decreased osmotic and their acidic resistance of erythrocytes and their marked hyperaggregation. Conclusion. The assessment of structural and functional changes of erythrocytes helps to estimate abnormalities of blood viscosity and wo adjust management and predict prognosis in pts with systemic vasculitis.

  9. Saquinavir Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Sabrina Waibel

    2015-11-01

    Full Text Available Background/Aims: The antiretroviral protease inhibitor saquinavir is used for the treatment of HIV infections. Effects of saquinavir include induction of apoptosis, the suicidal death of nucleated cells. Saquinavir treatment may further lead to anemia. In theory, anemia could result from accelerated erythrocyte loss by enhanced suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress with increase of reactive oxygen species (ROS and ceramide. The present study explored, whether and how saquinavir induces eryptosis. Methods: To this end, flow cytometry was employed to estimate erythrocyte volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ROS abundance from DCFDA fluorescence and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to saquinavir significantly decreased forward scatter (≥ 5 µg/ml, significantly increased the percentage of annexin-V-binding cells (≥ 10 µg/ml, significantly increased Fluo3-fluorescence (15 µg/ml, significantly increased DCFDA fluorescence (15 µg/ml, but did not significantly modify ceramide abundance. The effect of saquinavir on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Saquinavir triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation and Ca2+ entry.

  10. Transformation of Human Erythrocyte Shape by Endotoxic Lipopolysaccharide

    OpenAIRE

    1983-01-01

    Human erythrocytes were observed to undergo a discocyte to echinocyte to spheroechinocyte shape transformation during brief incubation with endotoxic lipopolysaccharide. It was concluded that lipopolysaccharide-membrane interactions alter the curvature of erythrocyte membranes.

  11. Transformation of human erythrocyte shape by endotoxic lipopolysaccharide.

    Science.gov (United States)

    Warren, J R; Harris, A S; Wallas, C H

    1983-01-01

    Human erythrocytes were observed to undergo a discocyte to echinocyte to spheroechinocyte shape transformation during brief incubation with endotoxic lipopolysaccharide. It was concluded that lipopolysaccharide-membrane interactions alter the curvature of erythrocyte membranes.

  12. Quantitative evaluation of respiration induced metabolic oscillations in erythrocytes

    DEFF Research Database (Denmark)

    Hald, Bjørn; Madsen, Mads F; Danø, Sune;

    2009-01-01

    The changes in the partial pressures of oxygen and carbon dioxide (P(O(2)) and P(CO(2))) during blood circulation alter erythrocyte metabolism, hereby causing flux changes between oxygenated and deoxygenated blood. In the study we have modeled this effect by extending the comprehensive kinetic mo...

  13. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects.

    Science.gov (United States)

    Dudzinska, Wioleta; Suska, M; Lubkowska, A; Jakubowska, K; Olszewska, M; Safranow, K; Chlubek, D

    2017-04-21

    This study aimed at evaluating the concentration of erythrocyte purine nucleotides (ATP, ADP, AMP, IMP) in trained and sedentary subjects before and after maximal physical exercise together with measuring the activity of purine metabolism enzymes as well as the concentration of purine (hypoxanthine, xanthine, uric acid) and pyrimidine (uridine) degradation products in blood. The study included 15 male elite rowers [mean age 24.3 ± 2.56 years; maximal oxygen uptake (VO2max) 52.8 ± 4.54 mL/kg/min; endurance and strength training 8.2 ± 0.33 h per week for 6.4 ± 2.52 years] and 15 sedentary control subjects (mean age 23.1 ± 3.41 years; VO2max 43.2 ± 5.20 mL/kg/min). Progressive incremental exercise testing until refusal to continue exercising was conducted on a bicycle ergometer. The concentrations of ATP, ADP, AMP, IMP and the activities of adenine phosphoribosyltransferase (APRT), hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and phosphoribosyl pyrophosphate synthetase (PRPP-S) were determined in erythrocytes. The concentrations of hypoxanthine, xanthine, uric acid and uridine were determined in the whole blood before exercise, after exercise, and 30 min after exercise testing. The study demonstrated a significantly higher concentration of ATP in the erythrocytes of trained subjects which, in part, may be explained by higher metabolic activity on the purine re-synthesis pathway (significantly higher PRPP-S, APRT and HGPRT activities). The ATP concentration, just as the ATP/ADP ratio, as well as an exercise-induced increase in this ratio, correlates with the VO2max level in these subjects which allows them to be considered as the important factors characterising physical capacity and exercise tolerance. Maximal physical exercise in the group of trained subjects results not only in a lower post-exercise increase in the concentration of hypoxanthine, xanthine and uric acid but also in that of uridine. This indicates the possibility of

  14. Effect of alkali-treated lipopolysaccharide on the intracellular cations of human erythrocytes.

    Science.gov (United States)

    Warren, J R; Kowalski, M M; Wallas, C H

    1977-08-01

    The adsorption to human erythrocytes of Escherichia coli lipopolysaccharide treated by mild alkaline hydrolysis (h-LPS) stimulated an increase in the intracellular Na+ concentration and a decrease in the intracellular K+ concentration of the erythrocytes. Erythrocytes treated by h-LPS remained responsive to the membrane adenosine triphosphatase inhibitors ouabain and ethacrynic acid, indicating that hLPS did not alter erythrocyte cations be depleting energy intermediates or uncoupling energy metabolism from active cation transport. The h-LPS-treated erythrocytes became non-agglutinable by the lectin concanavalin A prior to the development of changes in intracellular cations. In addition, h-LPS-treated erythrocytes demonstrated a three-fold greater cation response to ethacrynic acid than the untreated erythrocytes; this greater response was probably due to local membrane effects by h-LPS on the ethacrynic acid-sensitive adenosine triphosphatase. It is suggested that the h-LPS-induced alteration of erythrocyte cation content was secondary to an increase in ion permeability localized to the concanavalin A receptor regions of the erythrocyte membrane, possibly combined with indirect effects of membrane-bound h-LPS on ethacrynic acid-sensitive adenosine triphosphatase.

  15. Abnormal erythrocyte metabolism in hepatic disease: effect of NADP repletion.

    Science.gov (United States)

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1979-01-01

    Erythrocytes from ten patients with severe liver disease displayed low methylene blue-stimulated hexose monophosphate (HMP) shunt activity and glucose recycling despite elevated total glucose consumption when compared to controls. Heinz body formation was increased and reduced glutathione concentration significantly decreased. After hemolysis, no differences in methylene-blue estimulated HMP shunt activity or glucose recycling could be demonstrated between patients and controls. The addition of 2- and 4-mM NADP to the hemolysates produced significantly greater HMP shunt activity and glucose recycling in the patients' hemolysates. The addition of NADPH to the incubation mixture produced no significant stimulation of either HMP shunt activity or glucose recycling, unless methylene blue was also added. Omission of NAD or phosphate from the incubation mixture produced no change in shunt metabolism. The absence of supplemental ATP resulted in extremely low shunt metabolism and refractoriness to NADP stimulation in both patients and controls. In the absence of additional magnesium, a reduction of shunt metabolism was noted. These data suggest that the defect in stimulated shunt metabolism in the intact erythrocytes of patients with hepatic disease does not result from an absolute enzyme deficiency, but rather from an unavailability of NADP or other cofactor.

  16. Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Hatade, Keijiro; Sookwong, Phumon; Arai, Hiroyuki; Miyazawa, Teruo

    2009-11-01

    Peroxidised phospholipid-mediated cytotoxity is involved in the pathophysiology of many diseases; for example, phospholipid hydroperoxides (PLOOH) are abnormally increased in erythrocytes of dementia patients. Dietary carotenoids (especially xanthophylls, polar carotenoids such as lutein) have gained attention as potent inhibitors against erythrocyte phospholipid hydroperoxidation, thereby making them plausible candidates for preventing diseases (i.e. dementia). To evaluate these points, we investigated whether orally administered lutein is distributed to human erythrocytes, and inhibits erythrocyte PLOOH formation. Six healthy subjects took one capsule of food-grade lutein (9.67 mg lutein per capsule) once per d for 4 weeks. Before and during the supplementation period, carotenoids and PLOOH in erythrocytes and plasma were determined by our developed HPLC technique. The administered lutein was incorporated into human erythrocytes, and erythrocyte PLOOH level decreased after the ingestion for 2 and 4 weeks. The antioxidative effect of lutein was confirmed on erythrocyte membranes, but not in plasma. These results suggest that lutein has the potential to act as an important antioxidant molecule in erythrocytes, and it thereby may contribute to the prevention of dementia. Therefore future biological and clinical studies will be required to evaluate the efficacy as well as safety of lutein in models of dementia with a realistic prospect of its use in human therapy.

  17. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Miyazawa, Taiki; Carpentero Burdeos, Gregor; Kimura, Fumiko; Satoh, Akira; Miyazawa, Teruo

    2011-06-01

    Phospholipid hydroperoxides (PLOOH) accumulate abnormally in the erythrocytes of dementia patients, and dietary xanthophylls (polar carotenoids such as astaxanthin) are hypothesised to prevent the accumulation. In the present study, we conducted a randomised, double-blind, placebo-controlled human trial to assess the efficacy of 12-week astaxanthin supplementation (6 or 12 mg/d) on both astaxanthin and PLOOH levels in the erythrocytes of thirty middle-aged and senior subjects. After 12 weeks of treatment, erythrocyte astaxanthin concentrations were higher in both the 6 and 12 mg astaxanthin groups than in the placebo group. In contrast, erythrocyte PLOOH concentrations were lower in the astaxanthin groups than in the placebo group. In the plasma, somewhat lower PLOOH levels were found after astaxanthin treatment. These results suggest that astaxanthin supplementation results in improved erythrocyte antioxidant status and decreased PLOOH levels, which may contribute to the prevention of dementia.

  18. Atomic force microscopic observation of surface-supported human erythrocytes

    Science.gov (United States)

    Ho, Mon-Shu; Kuo, Feng-Jia; Lee, Yu-Siang; Cheng, Chao-Min

    2007-07-01

    The nanomechanical characteristics of the membrane cytoskeleton of human erythrocytes were studied using atomic force microscopy (AFM). The self-assembly, fine structure, cell diameter, thickness, and reticulate cytoskeleton of erythrocytes on the mica surface were investigated. The adhesive forces that correspond to the membrane elasticity of various parts of the erythrocyte membrane surface were measured directly by AFM to be 0.64±0.14nN for cell indentation, 4.2±0.7nN for cell hump, and 11.5nN for side waist, respectively. The deformation of erythrocytes was discussed. Standing waves on the membrane that were set up by increased AFM amplitude were observed. The propagating velocity on the erythrocyte membrane was estimated to be ˜2.02×10-2m/s. Liquid physiological conditions were considered throughout.

  19. [Erythrocytes infected by Plasmodium falciparum activate human platelets].

    Science.gov (United States)

    Polack, B; Peyron, F; Sheick Zadiuddin, I; Kolodié, L; Ambroise-Thomas, P

    1990-01-01

    Blood platelets are involved in Plasmodium falciparum malaria pathology as shown by thrombocytopenia and increased plasma level of two alpha granule proteins: beta thromboglobulin (beta TG) and platelet factor 4 (PF4). In this study we demonstrate that Plasmodium falciparum parasitized erythrocytes activate directly the secretion of beta TG and PF4 by human platelets. This secretion is related to parasitemia and occurs immediately after contact. Treatment of parasited erythrocytes by trypsin and diffusion chamber experiments suggest that platelet activation is triggered by parasitic substances shed on erythrocyte membrane and released in the culture medium.

  20. Oxidative effects in human erythrocytes caused by some oximes and hydroxylamine.

    Science.gov (United States)

    Palmen, N G; Evelo, C T

    1998-04-01

    Both oximes and hydroxylamine (HYAM) are compounds with known oxidative capacity. We tested in vitro whether acetaldoxime (AAO), cyclohexanone oxime (CHO), methyl ethyl ketoxime (MEKO) or HYAM affect haemoglobin oxidation (into HbFe3+), formation of thiobarbituric acid reactive substances (TBARS), and glutathione (GT) depletion in human haemolysate, erythrocytes or blood. All these parameters are known to be related to oxidative stress. Glutathione S-transferase (GST) activity was measured as it may be affected by oxygen radicals. All three oximes caused a low degree of HbFe3+ accumulation in erythrocytes. This was higher in haemolysates indicating that membrane transport may be limiting or that protective mechanisms within erythrocytes are more effective. HbFe3+ accumulation was lower for the oximes than for HYAM. AAO and HYAM caused TBARS formation in blood. For HYAM this was expected as free radicals are known to be generated during HbFe3+ formation. Free radical generation by AAO and HYAM in erythrocytes was confirmed by the inhibition of GST. For the other two oximes (CHO and MEKO) some special effects were found. CHO did inhibit erythrocyte GST while it did not cause TBARS formation. MEKO was the least potent oxime as it caused no TBARS formation, little HbFe3+ accumulation and little GST inhibition in erythrocytes. However, GT depletion was more pronounced for MEKO than for the other oximes, indicating that glutathione conjugation occurs. TBARS formation, GT depletion and GST modulation caused by the oximes and HYAM were also tested in rat hepatocytes. However, no effects were found in hepatocytes. This suggests that a factor present in erythrocytes is necessary for free radical formation. Studies with proposed metabolites of the oximes (i.e. cyclohexanone, acetaldehyde or methylethyl ketone) and addition of rat liver preparations to the erythrocyte incubations with oximes, suggest that metabolism is not a limiting factor in erythrocyte toxicity.

  1. Formation of gamma-glutamylpropargylglycylglycine from propargylglycine in human blood and erythrocytes.

    Directory of Open Access Journals (Sweden)

    Nagamine N

    1999-02-01

    Full Text Available Gamma-Glutamylpropargylglycylglycine (gamma-Glu-PPG-Gly was isolated as a metabolite of propargylglycine (2-amino-4-pentynoic acid, a natural and synthetic inhibitor of cystathionine gamma-lyase from human blood incubated with D,L-propargylglycine in the presence of L-glutamate and glycine, and identified by fast-atom-bombardment mass spectrometry, indicating that human blood can metabolize propargylglycine to gamma-Glu-PPG-Gly. When whole blood was incubated with 2 mM D,L-propargylglycine in the presence of 10 mM L-glutamate and 10 mM glycine at 37 degrees C for 16h, 0.094+/-0.013 micromol of gamma-Glu-PPG-Gly was formed per ml of whole blood. When erythrocytes were incubated under the same conditions for 16h, 0.323+/-0.060 micromol of gamma-Glu-PPG-Gly was formed per ml of erythrocytes, suggesting a large contribution of erythrocytes to gamma-Glu-PPG-Gly formation in whole blood. The apparent Km value of gamma-Glu-PPG-Gly formation in human erythrocytes for D,L-propargylglycine was 0.32 mM. The observed rate of gamma-Glu-PPG-Gly formation and the Km value for D,L-propargylglycine suggest that metabolism of propargylglycine to gamma-Glu-PPG-Gly can play a definite biological role in human subjects who are loaded with propargylglycine.

  2. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.

    Science.gov (United States)

    Lux, S E; John, K M; Ukena, T E

    1978-03-01

    We measured spectrin "extractability" in erythrocytes which were metabolically depleted by incubation at 37 degrees C in plasma or glucose-free buffers. Membranes were extracted with 1 mM EDTA (pH 8, 40 h, 4 degrees C) and analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This procedure solubilized 85--90% of the spectrin, actin, and residual hemoglobin from ghosts of fresh erythrocytes. In incubated erythrocytes, inextractable spectrin rapidly accumulated when ATP concentrations fell below 0--15% of normal. In severely depleted cells, 60--90% of the total ghost spectrin became inextractable. Inextractability was not abolished by physically disrupting the ghost before extraction, but was reversed when erythrocyte ATP was replenished with adenosine. The accumulation of inextractable spectrin correlated temporally with the increase in apparent membrane deformability and the increases in erythrocyte vicosity, calcium content, sodium gain, and potassium loss characteristic of ATP-depleted erythrocytes. No change in integral membrane protein topography (assessed by the distribution of intramembranous particles and concanavalin A surface-binding sites) was detected in depleted cells. Analogous changes were observed in erythrocytes exposed to extremes of pH and temperature. When the pH in the erythrocyte interior fell below 5.5, a pH where spectrin was aggregated and isoelectrically precipitated, erythrocyte and ghost viscosity increased coincident with a marked decrease in spectrin extractability. Similarly above 49 degrees C, a temperature where spectrin was denatured and precipitated, erythrocyte viscosity rose as inextractable spectrin accumulated. These observations provide direct evidence of a change in the physical state of spectrin associated with a change in erythrocyte shape and deformability. They support the concept that erythrocyte shape and deformability are largely determined by the shape and deformability of the spectrin

  3. Metabolism of tritiated D-glucose in rat erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J. (Laboratory of Experimental Medicine, Brussels Free University (Belgium))

    1991-09-01

    The metabolism of D-(U-14C)glucose, D-(1-14C)glucose, D-(6-14C)glucose, D-(1-3H)glucose, D-(2-3H)glucose, D-(3-3H)glucose, D-(3,4-3H)glucose, D-(5-3H)glucose, and D-(6-3H)glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-(3-3H)glucose and D-(5-3H)glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-(U-14C)glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-(3,4-3H)glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-(6-3H)glucose, a phenomenon possibly attributable to the detritiation of (3-3H)pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-(2-3H)glucose was lower than that from D-(5-3H)glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-(1-3H)glucose largely exceeded that of 14CO2 from D-(1-14C)glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-(1-3H)glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.

  4. Effect of Copper on l-Cysteine/l-Cystine Influx in Normal Human Erythrocytes and Erythrocytes of Wilson's Disease.

    Science.gov (United States)

    Mandal, Nabarun; Bhattacharjee, Debojyoti; Rout, Jayanta Kumar; Dasgupta, Anindya; Bhattacharya, Gorachand; Sarkar, Chandan; Gangopadhyaya, Prasanta Kumar

    2016-10-01

    Wilson's disease is a disease of abnormal copper metabolism in which free serum copper level is raised. The objective of the study was to determine, whether in Wilson disease, l-cysteine/l-cystine influx into RBC was decreased or not and the specific amino acid transporter affected by copper in normal human RBC. For l-cysteine/l-cystine influx, ten untreated cases, ten treated cases and ten age and sex matched healthy controls were recruited. To study the effect of copper on l-cysteine/l-cystine influx in RBC, 15 healthy subjects were selected. RBC GSH and l-cysteine/l-cystine influx were estimated by Beautler's and Yildiz's method respectively. In untreated cases, l-cysteine/l-cystine influx and erythrocyte GSH level were decreased showing that elevated level of free copper in serum or media decreased l-cysteine/l-cystine influx in human RBC. Copper treatment inhibited L amino acid transporter in normal RBC specifically.

  5. An iron stable isotope comparison between human erythrocytes and plasma.

    Science.gov (United States)

    von Blanckenburg, Friedhelm; Oelze, Marcus; Schmid, Dietmar G; van Zuilen, Kirsten; Gschwind, Hans-Peter; Slade, Alan J; Stitah, Sylvie; Kaufmann, Daniel; Swart, Piet

    2014-11-01

    We present precise iron stable isotope ratios measured by multicollector-ICP mass spectrometry (MC-ICP-MS) of human red blood cells (erythrocytes) and blood plasma from 12 healthy male adults taken during a clinical study. The accurate determination of stable isotope ratios in plasma first required substantial method development work, as minor iron amounts in plasma had to be separated from a large organic matrix prior to mass-spectrometric analysis to avoid spectroscopic interferences and shifts in the mass spectrometer's mass-bias. The (56)Fe/(54)Fe ratio in erythrocytes, expressed as permil difference from the "IRMM-014" iron reference standard (δ(56/54)Fe), ranges from -3.1‰ to -2.2‰, a range typical for male Caucasian adults. The individual subject erythrocyte iron isotope composition can be regarded as uniform over the 21 days investigated, as variations (±0.059 to ±0.15‰) are mostly within the analytical precision of reference materials. In plasma, δ(56/54)Fe values measured in two different laboratories range from -3.0‰ to -2.0‰, and are on average 0.24‰ higher than those in erythrocytes. However, this difference is barely resolvable within one standard deviation of the differences (0.22‰). Taking into account the possible contamination due to hemolysis (iron concentrations are only 0.4 to 2 ppm in plasma compared to approx. 480 ppm in erythrocytes), we model the pure plasma δ(56/54)Fe to be on average 0.4‰ higher than that in erythrocytes. Hence, the plasma iron isotope signature lies between that of the liver and that of erythrocytes. This difference can be explained by redox processes involved during cycling of iron between transferrin and ferritin.

  6. The effect of copper on human erythrocyte glutathione reductase

    NARCIS (Netherlands)

    Flikweert, J.P.; Hoorn, R.K.J.; Staal, Gerard E.J.

    1974-01-01

    1. 1. The influence of copper on purified human erythrocyte glutathione reductase (E.C. 1.6.4.2) was studied. The holoenzyme was inhibited at low oxidized glutathione (GSSG) concentrations. At a glutathione concentration of 1 mM and higher no inhibition at all was found. The inhibition was independe

  7. Signal transduction pathways in erythrocyte nitric oxide metabolism under high fibrinogen levels

    Science.gov (United States)

    Saldanha, Carlota; Freitas, T.; Lopez de Almeida, J. P.; Silva-Herdade, A.

    2014-05-01

    Previous studies show that the fibrinogen molecule modulates the metabolism of nitric oxide (NO) in erythrocyte. The in vitro induced hiperfibrinogenemia interferes in the metabolism of the NO in the erythrocyte in dependence of the phosphorylation degree of the band 3. The soluble form of fibrinogen binds into CD47 protein present in the erythrocyte membrane. The soluble thrombomodulin is an inflammatory marker that binds to the erythrocyte CD47 in a site with a sequence peptide known as 4N1K. A study done in vitro shows that when hiperfibrinogenemia was induced in the presence of the peptide 4N1K agonist of CD47 it were observed variations in the efflux of NO from erythrocyte and an increase in the concentrations of GSNO, peroxinitrite, nitrite and nitrate of the erythrocytes. The aim of this work was to study the influence of the peptide 4N1K, on the metabolism of NO in the erythrocyte under high fibrinogen concentration and in the presence of inhibitors of the status of phosphorylation of protein band 3. In this in vitro study, whole blood samples were harvested from healthy subjects and NO, peroxynitrite, nitrite, nitrate and S-nitro-glutathione (GSNO) were determined in presence of 4N1K, calpeptine, Syk inhibitor and under high fibrinogen concentrations. The results obtained in erythrocytes under high fibrinogen levels when 4N1K is present with the Syk inhibitor or with calpeptine, showed in relation to the control samples increased significant concentrations of efflux of NO and of peroxynitrite, nitrite, nitrate and GSNO. In conclusion it was verified that in the in vitro model of hiperfibrinogenemia the peptide 4N1K, agonist of CD47, induces mobilization of NO in the erythrocyte in dependence of the status of phosphorylation of protein band 3.

  8. Metallic mercury uptake by catalase Part 1 In Vitro metallic mercury uptake by various kind of animals' erythrocytes and purified human erythrocyte catalase

    OpenAIRE

    劒持,堅志

    1980-01-01

    The uptake of metallic mercury was studied using erythrocytes with different catalase activities taken from various kind of animals. The results were: 1) The uptake of metallic mercury by erythrocytes paralleled the activity of catalase in the erythrocytes with and without hydrogen peroxide, suggesting that the erythrocyte catalase activity is related to the uptake of metallic mercury. 2) The uptake of metallic mercury occurred not only with purified human erythrocyte catalase but also with h...

  9. Red wine activates plasma membrane redox system in human erythrocytes.

    Science.gov (United States)

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  10. The effect of bromfenvinphos and its impurities on human erythrocyte.

    Science.gov (United States)

    Szatkowska, Bozena; Bukowska, Bozena; Huras, Bogumiła

    2011-02-01

    Bromfenvinphos - (E,Z)-O,O-diethyl-O-[1-(2,4-dichlorophenyl)-2-bromovinyl] phosphate (BFVF) is the insecticide elaborated in Poland, which has been used against Varroa destructor causing honey bees disease called as varroosis. The substances that are formed as a result of bromfenvinphos synthesis are dihydro-bromfenvinphos (O,O-diethyl O-[1-(2,4-dichlorophenyl)vinyl] phosphate); dibromo-bromfenvinphos (O,O-diethyl O-[1-(2,4-dichlorophenyl)-2,2-dibromovinyl] phosphate); 2,4-dichlorophenacyl bromide; 2,4-dichlorophenacylidene bromide and 2,4-dichlorophenacylidyne bromide. In this work, we evaluated the effect of these compounds on hemolysis and hemoglobin oxidation (met-Hb formation) in human erythrocytes. Moreover, the changes in the size (FSC-A) and the shape (SSC-A) of red blood cells were assessed using flow cytometry and phase contrast microscopy. It was proven that bromfenvinphos at concentrations ranging from 0.5 to 250 μM during 1h incubation did not change the parameters examined in human erythrocytes. Similarly, most of bromfenvinphos impurities did not increase hemolysis and methemoglobin level nor changed the size and shape of the erythrocytes. The exception was dibromo-bromfenvinphos, which changed the FSC-A and SSC-A parameters, as well as 2,4-dichlorophenacyl bromide which induced hemolysis, increased the level of met-Hb and changed erythrocytes morphology.

  11. Functional and structural changes of human erythrocyte catalase induced by cimetidine: proposed model of binding.

    Science.gov (United States)

    Yazdi, Fatemeh; Minai-Tehrani, Dariush; Jahngirvand, Mahboubeh; Almasirad, Ali; Mousavi, Zahra; Masoud, Masoudeh; Mollasalehi, Hamidreza

    2015-06-01

    In erythrocyte, catalase plays an important role to protect cells from hydrogen peroxide toxicity. Hydrogen peroxide is a byproduct compound which is produced during metabolic pathway of cells. Cimetidine, a histamine H2 receptor antagonist, is used for gastrointestinal tract diseases and prevents the extra release of gastric acid. In this study, the effect of cimetidine on the activity of human erythrocyte catalase was investigated. Erythrocytes were broken by hypotonic solution. The supernatant was used for catalase assay and kinetics study. Lineweaver-Burk plot was performed to determine the type of inhibition. The kinetics data revealed that cimetidine inhibited the catalase activity by mixed inhibition. The IC50 (1.54 μM) and Ki (0.45 μM) values of cimetidine determined that the drug was bound to the enzyme with high affinity. Circular dichroism and fluorescence measurement showed that the binding of cimetidine to the enzyme affected the content of secondary structure of the enzyme as well as its conformational changes. Docking studies were carried out to detect the site in which the drug was bound to the enzyme. Molecular modeling and energy calculation of the binding showed that the cyanoguanidine group of the drug connected to Asp59 via two hydrogen bonds, while the imidazole group of the drug interacted with Phe64 in the enzyme by a hydrophobic interaction. In conclusion, cimetidine could bind to human erythrocyte catalase, and its interaction caused functional and conformational changes in the enzyme.

  12. Association of erythrocyte deformability with red blood cell distribution width in metabolic diseases and thalassemia trait.

    Science.gov (United States)

    Vayá, Amparo; Alis, Rafael; Suescún, Marta; Rivera, Leonor; Murado, Julian; Romagnoli, Marco; Solá, Eva; Hernandez-Mijares, Antonio

    2015-01-01

    Increased red blood distribution width (RDW) in anemia is related to disturbances in the cellular surface/volume ratio, usually accompanied by morphological alterations, while it has been shown in inflammatory diseases that the activity of pro-inflammatory cytokines disturbing erythropoiesis increases RDW. Recently it has been reported that higher RDW is related with decreased erythrocyte deformability, and that it could be related with the association of RDW and increased risk of cardiovascular diseases. In order to analyze the influence of morphological alterations and proinflammatory status on the relationship between RDW and erythrocyte deformability, we analyzed erythrocyte deformability along with RDW and other hematological and biochemical parameters in 36 α-thalassemia, 20 β-thalassemia, 20 δβ-thalassemia trait carriers, 61 metabolic syndrome patients and 76 morbidly obese patients. RDW correlated inversely with erythrocyte deformability in minor β-thalassemia (r =-0.530, p thalassemia is often accompanied by more marked cell-shaped perturbations than other thalassemia traits. This could be the reason for this negative association only in this setting. Higher anisocytosis seems to be associated with greater morphologic alterations (shape/volume), which reduce erythrocyte deformability. The proinflammatory profile in metabolic patients can be related to the positive association of RDW with erythrocyte deformability found in these patients. However, further research is needed to explain the mechanisms underlying this association.

  13. Purification and properties of enolase of human erythrocytes

    NARCIS (Netherlands)

    Hoorn, R.K.J.; Flikweert, J.P.; Staal, Gerard E.J.

    1974-01-01

    1. 1. Human erythrocyte enolase (2-phospho-D-glycerate hydrolyase, EC 4.2.1.11) was purified I000-fold. 2. 2. The pH-optimum was at pH 6.5. The molecular weight, estimated by gel filtration, was found to be 95,000 ± 5,000. 3. 3. Electrophoresis on agar-agarose at pH 8.5 and 6.4 showed only one ban

  14. The erythrocyte membrane in human muscular dystrophy

    NARCIS (Netherlands)

    W. Ruitenbeek (Willem)

    1979-01-01

    textabstractMore than 250 different forms of human neuromuscular diseases are known. They differ in age of onset, severity of weakness, rate of progression, type of inheritance, groups of muscles affected, frequency of incidence. Sometimes the clinical symptoms are not restricted to nervous and/or m

  15. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol into human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Max Kurlbaum

    Full Text Available Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl-γ-valerolactone (M1, that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.

  16. Effects of Plant Lectins on Human Erythrocyte Agglutination

    Directory of Open Access Journals (Sweden)

    Zubcevic Nadja

    2016-09-01

    Full Text Available Plant lectins are carbohydrate binding proteins or phytohaemagglutinins present in most plants, especially seeds and tubers, which include cereals, potatoes and beans. Lectins have great significance in the diet because of their involvement in gastrointestinal difficulties and erythrocyte agglutination. Blood agglutination activity against A, B, AB and O groups was shown after exposing blood to extracts obtained from 55% of tested plants, while in 45% of plants, agglutination was absent. The results of our study have shown that in humans, 40% of plant extracts exhibited activity against A, 40% of plant extracts exhibited activity against B, and 50% of plant extracts exhibited activity against AB and O groups in humans. The concentration of plant lectins depends on the part of the plant. Lectins from the seeds of certain plants cause the greatest percentage of erythrocyte agglutination, while the lowest agglutination was caused by plant bulbs and leaves. However, lectins derived from all plant species of the family Fabaceae agglutinated erythrocytes of all blood types to some extent.

  17. LIN28A expression reduces sickling of cultured human erythrocytes.

    Science.gov (United States)

    de Vasconcellos, Jaira F; Fasano, Ross M; Lee, Y Terry; Kaushal, Megha; Byrnes, Colleen; Meier, Emily R; Anderson, Molly; Rabel, Antoinette; Braylan, Raul; Stroncek, David F; Miller, Jeffery L

    2014-01-01

    Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes.

  18. Transport of 3-bromopyruvate across the human erythrocyte membrane.

    Science.gov (United States)

    Sadowska-Bartosz, Izabela; Soszyński, Mirosław; Ułaszewski, Stanisław; Ko, Young; Bartosz, Grzegorz

    2014-06-01

    3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0-8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin.

  19. Biorheological action of Ascaris lumbricoides larvae on human erythrocytes.

    Science.gov (United States)

    de León, Patricia Ponce; Del Balzo, Gonzalo; Riquelme, Bibiana

    2013-03-01

    Previous studies have shown that A. lumbricoides extracts capture sialic acid (SA) from human red blood cells (RBC). The aim of this work was to study hemorheological alterations in vitro caused by parasite larvae. The biorheological action of three larva concentrates of first and second larval stage on group O erythrocytes was analyzed by incubating the erythrocyte packed together with an equal volume of larvae (treated RBC) and PBS (control RBC). Distribution and parameters of aggregation (digital image analysis), aggregation kinetics (erythroaggregameter), and viscoelasticity (erythrodeformeter) were measured. The digital image analysis showed that all the larvae diminished the isolated cells percentage and increased the size of the formed aggregates. The aggregate formation velocity was lower in the treated than in the control. The deformability index (ID) values of treated RBC did not present variations with respect to those of the control, but a decrease in the erythrocyte elastic modulus (μ(m)) and membrane surface viscosity (η(m)) values was observed, indicating that the larvae not only induced a diminution in the membrane surface viscosity of RBC but also altered the dynamic viscoelasticity of the membrane. Experiments carried out in vitro support the conclusion that the contact between larvae and RBC produces hemorheological alterations.

  20. Cesium's Affects on Morphological Changes of Human Erythrocytes%Cesium's Affects on Morphological Changes of Human Erythrocytes

    Institute of Scientific and Technical Information of China (English)

    Feng, Yunxiao; La, Ming

    2012-01-01

    Cesium could play a toxic role in several pathological processes. Atomic force microscopy (AFM) was used to study morphological changes of human erythrocytes after incubating with different concentrations of CsCI, and the Raman spectra were used to study the effects of CsCl on the chemistry components of erythrocyte membrane. The AFM images showed that the "domain structures" that appeared after incubation with higher concentration of CsCl (150 mmol-L-1), are featured by the particles aggregated to form ranges and the separations among them enlarged to gorges, and this change may increase the permeability of cell membranes. The Raman results showed that the polar part of membrane phospholipid become more order and with the increasing of the concentration of CsCl, the longitudinal order of nonpolar parts first decreased and then increased. It is concluded that the aggregation of mem- brane proteins and the order changes of the phospholipid cause a change in the distribution and conformation of the phospholipid membrane. And the effects of CsCl on the erythrocyte membrane are mainly dependent on its concentration.

  1. Plasmodium falciparum Malaria: Band 3 as a Possible Receptor during Invasion of Human Erythrocytes

    Science.gov (United States)

    Okoye, Vincent C. N.; Bennett, Vann

    1985-01-01

    Human erythrocyte band 3, a major membrane-spanning protein, was purified and incorporated into liposomes. These liposomes, at nanomolar concentrations of protein, inhibited invasion of human erythrocytes in vitro by the malaria parasite Plasmodium falciparum. Liposomes containing human band 3 were ten times more effective in inhibiting invasion than those with pig band 3 and six times more effective than liposomes containing human erythrocyte glycophorin. Liposomes alone or liposomes containing erythrocyte glycolipids did not inhibit invasion. These results suggest that band 3 participates in the invasion process in a step involving a specific, high-affinity interaction between band 3 and some component of the parasite.

  2. Hyperphenylalaninemia and pterin metabolism in serum and erythrocytes.

    Science.gov (United States)

    Ponzone, A; Guardamagna, O; Spada, M; Ponzone, R; Sartore, M; Kierat, L; Heizmann, C W; Blau, N

    1993-07-16

    The relationship between blood phenylalanine concentrations and serum and erythrocyte biopterin and neopterin concentrations was investigated in 20 phenylketonuric patients with different dietary compliance. At serum phenylalanine concentrations ranging from 43 to 1004 mumol/l, a good correlation was found with serum biopterin (r = 0.76, P < 0.001) and with red blood cell biopterin (r = 0.62, P < 0.001). A similar correlation was found between serum neopterin and phenylalanine (r = 0.60, P < 0.001). The correlation between red blood cell neopterin and serum phenylalanine was less evident, however (r = 0.47, P < 0.005). After oral loading with phenylalanine (100 mg/kg body weight), serum and red blood cell biopterin concentrations increased in patients with classical phenylketonuria as well as in one patient with dihydropteridine reductase deficiency in response to the induced acute hyperphenylalaninemia. One patient suffering from 6-pyruvoyl tetrahydropterin synthase deficiency was loaded orally with tetrahydrobiopterin (20 mg/kg body weight). The kinetics of administered cofactor confirmed its rapid absorption, with early increase of serum concentrations followed by its transport into the red blood cells. The half-life of biopterin was approximately 7 h in serum and 15 h in red blood cells. Because both values are less than the half-life of phenylalanine (20-30 h) in serum, biopterin measurement offers no advantage in monitoring dietary control in hyperphenylalaninemic patients.

  3. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jefferson Muniz de Lima

    2015-01-01

    Full Text Available Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4 D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  4. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes.

    Science.gov (United States)

    de Lima, Jefferson Muniz; Sarmento, Ronaldo Rodrigues; de Souza, Joelma Rodrigues; Brayner, Fábio André; Feitosa, Ana Paula Sampaio; Padilha, Rafael; Alves, Luiz Carlos; Porto, Isaque Jerônimo; Batista, Roberta Ferreti Bonan Dantas; de Oliveira, Juliano Elvis; de Medeiros, Eliton Souto; Bonan, Paulo Rogério Ferreti; Castellano, Lúcio Roberto

    2015-01-01

    Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L(-1). The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  5. Relationship between chronic disturbance of 2,3-diphosphoglycerate metabolism in erythrocytes and Alzheimer disease.

    Science.gov (United States)

    Kosenko, Elena A; Aliev, Gjumrakch; Kaminsky, Yury G

    2016-01-01

    Alzheimer disease (AD) is one of the most common neurodegenerative disorders widely occurring among the elderly. The pathogenic mechanisms involved in the development of this disease are still unknown. In AD, in addition to brain, a number of peripheral tissues and cells are affected, including erythrocytes. In this study, we analyzed glycolytic energy metabolism, antioxidant status, glutathione, adenylate and proteolytic systems in erythrocytes from patients with AD and compared with those from age-matched controls and young adult controls. Glycolytic enzymes hexokinase, phosphofructokinase, bisphosphoglycerate mutase and bisphosphoglycerate phosphatase displayed lower activities in agematched controls, and higher activities in AD patients, as compared to those in young adult control subjects. In both aging and AD, oxidative stress is increased in erythrocytes whereas elevated concentrations of hydrogen peroxide and organic hydroperoxides as well as decreased glutathione/glutathione disulfide ratio and glutathione transferase activity can be detected. These oxidative disturbances are also accompanied by reductions in ATP levels, adenine nucleotide pool size and adenylate energy charge. Caspase-3 and calpain activities in age-matched controls and AD patients were about three times those of young adult controls. 2,3-diphosphoglycerate levels were significantly decreased in AD patients. Taken together these data suggest that AD patients are associated with chronic disturbance of 2,3-diphosphoglycerate metabolism in erythrocytes. These defects may play a central role in pathophysiological processes predisposing elderly subjects to dementia.

  6. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    Science.gov (United States)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  7. Acute dark chocolate ingestion is beneficial for hemodynamics via enhancement of erythrocyte deformability in healthy humans.

    Science.gov (United States)

    Radosinska, Jana; Horvathova, Martina; Frimmel, Karel; Muchova, Jana; Vidosovicova, Maria; Vazan, Rastislav; Bernatova, Iveta

    2017-03-01

    Erythrocyte deformability is an important property of erythrocytes that considerably affects blood flow and hemodynamics. The high content of polyphenols present in dark chocolate has been reported to play a protective role in functionality of erythrocytes. We hypothesized that chocolate might influence erythrocytes not only after repeated chronic intake, but also immediately after its ingestion. Thus, we determined the acute effect of dark chocolate and milk (with lower content of biologically active substances) chocolate intake on erythrocyte deformability. We also focused on selected factors that may affect erythrocyte deformability, specifically nitric oxide production in erythrocytes and total antioxidant capacity of plasma. We determined posttreatment changes in the mentioned parameters 2hours after consumption of chocolate compared with their levels before consumption of chocolate. In contrast to milk chocolate intake, the dark chocolate led to a significantly higher increase in erythrocyte deformability. Nitric oxide production in erythrocytes was not changed after dark chocolate intake, but significantly decreased after milk chocolate. The plasma total antioxidant capacity remained unaffected after ingestion of both chocolates. We conclude that our hypothesis was confirmed. Single ingestion of dark chocolate improved erythrocyte deformability despite unchanged nitric oxide production and antioxidant capacity of plasma. Increased deformability of erythrocytes may considerably improve rheological properties of blood and thus hemodynamics in humans, resulting in better tissue oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. LIN28A expression reduces sickling of cultured human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Jaira F de Vasconcellos

    Full Text Available Induction of fetal hemoglobin (HbF has therapeutic importance for patients with sickle cell disease (SCD and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+ sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE increased HbF, reduced beta (sickle-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes.

  9. Biochemically altered human erythrocytes as a carrier for targeted delivery of primaquine: an in vitro study.

    Science.gov (United States)

    Alanazi, Fars K; Harisa, Gamal El-Din I; Maqboul, Ahmad; Abdel-Hamid, Magdi; Neau, Steven H; Alsarra, Ibrahim A

    2011-04-01

    The aim of this study was to investigate human erythrocytes as a carrier for targeted drug delivery of primaquine (PQ). The process of PQ loading in human erythrocytes, as well as the effect of PQ loading on the oxidative status of erythrocytes, was also studied. At PQ concentrations of 2, 4, 6, and 8 mg/mL and an incubation time of 2 h, the ratios of the concentrations of PQ entrapped in erythrocytes to that in the incubation medium were 0.515, 0.688, 0.697 and 0.788, respectively. The maximal decline of erythrocyte reduced glutathione content was observed at 8 mg/mL of PQ compared with native erythrocytes p erythrocytes was increased in comparison with unloaded cells. Electron microscopy revealed spherocyte formation with PQ carrier erythrocytes. PQ-loaded cells showed sustained drug release over a 48 h period. Erythrocytes were loaded with PQ successfully, but there were some biochemical as well as physiological changes that resulted from the effect of PQ on the oxidative status of drug-loaded erythrocytes. These changes may result in favorable targeting of PQ-loaded cells to reticulo-endothelial organs. The relative impact of these changes remains to be explored in ongoing animal studies.

  10. Estimation of cell membrane properties and erythrocyte red-ox balance in patients with metabolic syndrome

    OpenAIRE

    Kowalczyk, Edward; Kowalski, Jan; Błaszczyk, Jan; Gwoździński, Łukasz; Ciećwierz, Julita; Sienkiewicz, Monika

    2012-01-01

    Metabolic syndrome (MS) is associated with occurrence of the many cardiovascular risk factors such as atherogenic dyslipidemia, visceral fat distribution, arterial hypertension and pro-thrombotic and pro-inflammatory status. In our study the effect of disorders that appear in MS on red-ox balance and erythrocyte cell membrane properties were estimated. The study comprised 50 patients with diagnosed MS and in 25 healthy subjects. Content of thiobarbituric acid reactive substances (TBARS) and c...

  11. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.

    Science.gov (United States)

    van Meer, G; de Kruijff, B; op den Kamp, J A; van Deenen, L L

    1980-02-15

    1. Fresh human erythrocytes were treated with lytic and non-lytic combinations of phospholipases A2, C and sphingomyelinase. The 31P-NMR spectra of ghosts derived from such erythrocytes show that, in all cases, the residual phospholipids and lysophospholipids remain organized in a bilayer configuration. 2. A bilayer configuration of the (lyso)phospholipids was also observed after treatment of erythrocyte ghosts with various phospholipases even in the case that 98% of the phospholipid was converted into lysophospholipid (72%) and ceramides (26%). 3. A slightly decreased order of the phosphate group of phospholipid molecules, seen as reduced effective chemical shift anisotropy in the 31P-NMR spectra, was found following the formation of diacyglycerols and ceramides in the membrane of intact erythrocytes. Treatment of ghosts always resulted in an extensive decrease in the order of the phosphate groups. 4. The results allow the following conclusions to made: a. Hydrolysis of phospholipids in intact red cells and ghosts does not result in the formation of non-bilayer configuration of residual phospholipids and lysophospholipids. b. Haemolysis, which is obtained by subsequent treatment of intact cells with sphingomyelinase and phospholipase A2, or with phospholipase C, cannot be ascribed to the formation of non-bilayer configuration of phosphate-containing lipids. c. Preservation of bilayer structure, even after hydrolysis of all phospholipid, shows that other membrane constitutents, e.g. cholesterol and/or membrane proteins play an important role in stabilizing the structure of the erythrocyte membrane. d. A major prerequisite for the application of phospholipases in lipid localization studies, the preservation of a bilayer configuration during phospholipid hydrolysis, is met for the erythrocyte membrane.

  12. Estimation of cell membrane properties and erythrocyte red-ox balance in patients with metabolic syndrome.

    Science.gov (United States)

    Kowalczyk, Edward; Kowalski, Jan; Błaszczyk, Jan; Gwoździński, Łukasz; Ciećwierz, Julita; Sienkiewicz, Monika

    2012-12-01

    Metabolic syndrome (MS) is associated with occurrence of the many cardiovascular risk factors such as atherogenic dyslipidemia, visceral fat distribution, arterial hypertension and pro-thrombotic and pro-inflammatory status. In our study the effect of disorders that appear in MS on red-ox balance and erythrocyte cell membrane properties were estimated. The study comprised 50 patients with diagnosed MS and in 25 healthy subjects. Content of thiobarbituric acid reactive substances (TBARS) and catalase, superoxide dismutase and glutathione peroxidase activity were estimated in red blood cells. Moreover, conformation status of membrane proteins, membrane fluidity and osmotic fragility were evaluated. MS was found to manifest: (1) the increase of the concentration of TBARS in erythrocytes with no statistically significant differences in antioxidant enzymes activity, (2) disorders in the structure of erythrocyte cytoskeleton proteins, (3) the increase in membrane lipids fluidity at the depth of 5th and 12th carbon atom of fatty acid hydrocarbon chain and significantly decreased fluidity at the depth of 16th carbon atom, (4) increased erythrocyte osmotic fragility.

  13. Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes.

    Science.gov (United States)

    Nikolić-Kokić, Aleksandra; Oreščanin-Dušić, Zorana; Spasojević, Ivan; Slavić, Marija; Mijušković, Ana; Paškulin, Roman; Miljević, Čedo; Spasić, Mihajlo B; Blagojević, Duško P

    2015-04-22

    Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. Some of the effects of ibogaine seem to be mediated through

  14. Human autologous and allogeneic rosettes with erythrocytes of the Bombay type.

    Science.gov (United States)

    Lang, J M; Bigel, P; Mayer, S

    1977-06-01

    Human red blood cells of the Bombay type which lack ABH group substances can bind to allogeneic lymphocytes just as well as erythrocytes of any other type. A much lower percentage of auto-rosettes between erythrocytes and lymphocytes from the Bombay donor was observed, a result which may be due at least partially to some T lymphocyte defect in the Bombay donor.

  15. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    Directory of Open Access Journals (Sweden)

    Elena Matteucci

    2007-01-01

    Full Text Available Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na+/H+ exchange and HC3 -/Cl- anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore damaged proteins, it is equipped with high activity of protective enzymes. Redox changes in the cell initiate various signalling pathways. Plasma membrane oxido-reductases (PMORs are transmembrane electron transport systems that have been found in the membranes of all cells and have been extensively characterized in the human erythrocyte. Erythrocyte PMORs transfer reducing equivalents from intracellular reductants to extracellular oxidants, thus their most important role seems to be to enable the cell respond to changes in intra- and extra-cellular redox environments.So far the activity of erythrocyte PMORs in disease states has not been systematically investigated. This review summarizes present knowledge on erythrocyte electron transfer activity in humans (health, type 1 diabetes, diabetic nephropathy, and chronic uremia and hypothesizes an integrated model of the functional organization of erythrocyte plasma membrane where electron pathways work in parallel with transport metabolons to maintain redox homeostasis.

  16. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    Science.gov (United States)

    Matteucci, Elena; Giampietro, Ottavio

    2007-09-17

    Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na(+)/H(+) exchange and HC(3) (-)/Cl(-) anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore damaged proteins, it is equipped with high activity of protective enzymes. Redox changes in the cell initiate various signalling pathways. Plasma membrane oxido-reductases (PMORs) are transmembrane electron transport systems that have been found in the membranes of all cells and have been extensively characterized in the human erythrocyte. Erythrocyte PMORs transfer reducing equivalents from intracellular reductants to extracellular oxidants, thus their most important role seems to be to enable the cell respond to changes in intra- and extra-cellular redox environments.So far the activity of erythrocyte PMORs in disease states has not been systematically investigated. This review summarizes present knowledge on erythrocyte electron transfer activity in humans (health, type 1 diabetes, diabetic nephropathy, and chronic uremia) and hypothesizes an integrated model of the functional organization of erythrocyte plasma membrane where electron pathways work in parallel with transport metabolons to maintain redox homeostasis.

  17. Diffusion properties of band 3 in human erythrocytes

    Science.gov (United States)

    Spector, Jeffrey O.

    The plasma membrane of the human erythrocyte (RBC) is a six fold symmetric network held together at various pinning points by several multi-protein complexes. This unique architecture is what gives the RBC its remarkable material properties and any disruptions to the network can have severe consequences for the cell. Band 3 is a major transmembrane protein that plays the role of linking the fluid lipid bilayer to the cytoskeletal network. To interrogate the structural integrity of the RBC membrane we have tracked individual band 3 molecules in RBCs displaying a variety of pathologies that are all a consequence of membrane or network related defects. These diseases are spherocytosis, elliptocytosis, and pyropokilocytosis. We have also investigated the protein related diseases sickle cell, and south east asian ovalocytosis. To assess the impact that the network has on the dynamic organization of the cell we have also studied the mobility of band 3 in RBC progenitor cells. Individual band 3 molecules were imaged at 120 frames/second and their diffusion coefficients and compartment sizes recorded. The distributions of the compartment sizes combined with the information about the short and long time diffusion of band 3 has given us insight into the architecture of the membrane in normal and diseased cells. The observation that different membrane pathologies can be distinguished, even to the point of different molecular origins of the same disease, implies that the mobility of transmembrane proteins may be a useful tool for characterizing the "health" of the membrane.

  18. Effects of the local anesthetic benzocaine on the human erythrocyte membrane and molecular models.

    Science.gov (United States)

    Suwalsky, Mario; Schneider, Carlos; Villena, Fernando; Norris, Beryl; Cárdenas, Hernán; Cuevas, Francisco; Sotomayor, Carlos P

    2004-04-01

    The interaction of the local anesthetic benzocaine with the human erythrocyte membrane and molecular models is described. The latter consisted of isolated unsealed human erythrocyte membranes (IUM), large unilamellar vesicles (LUV) of dimyristoylphospatidylcholine (DMPC), and phospholipid multilayers of DMPC and dimyristoylphospatidyletanolamine (DMPE), representatives of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Optical and scanning electron microscopy of human erythrocytes revealed that benzocaine induced the formation of echinocytes. Experiments performed on IUM and DMPC LUV by fluorescence spectroscopy showed that benzocaine interacted with the phospholipid bilayer polar groups and hydrophobic acyl chains. X-ray diffraction analysis of DMPC confirmed these results and showed that benzocaine had no effects on DMPE. The effect on sodium transport was also studied using the isolated toad skin. Electrophysiological measurements indicated a significant decrease in the potential difference (PD) and in the short-circuit current (Isc) after the application of benzocaine, reflecting inhibition of active ion transport.

  19. Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models

    Energy Technology Data Exchange (ETDEWEB)

    Suwalsky, Mario, E-mail: msuwalsk@udec.cl [Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile); Zambrano, Pablo; Mennickent, Sigrid [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Villena, Fernando [Faculty of Biological Sciences, University of Concepcion, Concepcion (Chile); Sotomayor, Carlos P.; Aguilar, Luis F. [Instituto de Quimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Bolognin, Silvia [CNR-Institute for Biomedical Technologies, University of Padova, Padova (Italy)

    2011-03-18

    Research highlights: {yields} PPA is a common ingredient in cough-cold medication and appetite suppressants. {yields} Reports on its effects on human erythrocytes are very scarce. {yields} We found that PPA induced in vitro morphological changes to human erythrocytes. {yields} PPA interacted with isolated unsealed human erythrocyte membranes. {yields} PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 {mu}M; (c) X-ray diffraction studies showed that PPA in the 0.1-0.5 m

  20. Deoxygenation Affects Composition of Membrane-Bound Proteins in Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Oksana G. Luneva

    2016-06-01

    Full Text Available Background/Aims: ATP release from erythrocyte plays a key role in hypoxia-induced elevation of blood flow in systematic circulation. We have previously shown that hemolysis contributes to erythrocyte ATP release triggered by several stimuli, including hypoxia, but the molecular mechanisms of hypoxia-increased membrane fragility remain unknown. Methods: In this study, we compared the action of hypoxia on hemolysis, ATP release and the composition of membrane-bound proteins in human erythrocytes. Results: Twenty minutes incubation of human erythrocytes in the oxygen-free environment increased the content of extracellular hemoglobin by ∼1.5 fold. Paired measurements of hemoglobin and ATP content in the same samples, showed a positive correlation between hemolysis and ATP release. Comparative analysis of SDS-PAGE electrophoresis of erythrocyte ghosts obtained under control and deoxygenated conditions revealed a ∼2-fold elevation of the content of membrane-bound protein with Mr of ∼60 kDa. Conclusion: Deoxygenation of human erythrocytes affects composition of membrane-bound proteins. Additional experiments should be performed to identify the molecular origin of 60 kDa protein and its role in the attenuation of erythrocyte integrity and ATP release in hypoxic conditions.

  1. A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro

    Directory of Open Access Journals (Sweden)

    Suarez Jorge E

    2000-01-01

    Full Text Available The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720 which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD were found to be critical for peptide binding to erythrocytes.

  2. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    Directory of Open Access Journals (Sweden)

    Neha Qasim

    Full Text Available Creatine (Cr is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane dihydrochloride (AAPH and hydrogen peroxide (H2O2 in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their

  3. Acetylsalicylic acid (aspirin) and salicylic acid interaction with the human erythrocyte membrane bilayer induce in vitro changes in the morphology of erythrocytes.

    Science.gov (United States)

    Suwalsky, Mario; Belmar, Jessica; Villena, Fernando; Gallardo, María José; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2013-11-01

    Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures.

  4. Pyridine nucleotide metabolism in the erythrocyte of South African blacks with primary hepatoma

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Y.K.; Hankes, L.V.; Wessels, L.M.

    1982-01-01

    Erthrocytes from African blacks with primary hepatoma were incubated with physiological amounts of nicotinamide-/sup 14/C (NM-/sup 14/C) and it was found that these erythrocytes could synthesize NAD from NM. After 3-hr incubation with NM-/sup 14/C, a large percentage of the /sup 14/C was found in NMN, nicotinamide riboside (NR) and NAD, but was undetectable in nicotinic acid nucleotides (NAMN and NAAD). This suggested that the NAD synthesized from NM was not through the Preiss-Handler pathway. After 6-plus hr incubation, the /sup 14/C found in NAMN and NAAD suggested the NAD synthesized was being broken down and reutilized through Preiss-Handler pathway for synthesis of NAD. This reutilization pathway was confirmed by incubating nicotinic acid-/sup 14/C (NA-/sup 14/C) with erythrocytes. Apparently the metabolites from the breakdown of NAD were deaminated. The metabolism of NM-/sup 14/C was slower than NA-/sup 14/C. However, after 24 hr incubation with NM-/sup 14/C, 72.26% of /sup 14/C was found in NAD. A high percentage of /sup 14/C in NR at the initial incubation and a later drop suggested that NR was another intermediate in the pathway.

  5. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Suwalsky, Mario, E-mail: msuwalsk@udec.cl [Faculty of Chemical Sciences, University of Concepcion, Casilla 160C, Concepcion (Chile); Gonzalez, Raquel [Faculty of Chemical Sciences, University of Concepcion, Casilla 160C, Concepcion (Chile); Villena, Fernando [Faculty of Biological Sciences, University of Concepcion, Concepcion (Chile); Aguilar, Luis F.; Sotomayor, Carlos P. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Bolognin, Silvia; Zatta, Paolo [CNR Center on Metalloproteins, University of Padova, Padova (Italy)

    2010-06-25

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl{sub 3} was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 {mu}M; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 {mu}M concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 {mu}m-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 {mu}M to 100 {mu}M.

  6. Effect of carbofuran on some biochemical indices of human erythrocytes in vitro.

    Science.gov (United States)

    Sharma, R K; Jaiswal, S K; Siddiqi, N J; Sharma, B

    2012-12-22

    Pesticides are used in agriculture to protect crops. Its widespread use in agriculture represents a threat not only to the environment but also to human populations exposed to them. Erythrocytes serve as an excellent model system to study the interaction of pro-oxidants. Organocarbamates are known to produce free radical species and to induce toxicity to different body systems resulting into hematological and biochemical perturbations. The information available relating to the effect of organocarbamates on the biochemical indices of human erythrocytes is scanty. Therefore, the present study was carried out to evaluate the impact of carbofuran, a carbamate pesticide, on some key biochemical indices of human erythrocytes' membrane. The oxidative potential of the pesticide was assessed in vitro by monitoring the levels of malondialdehyde (MDA) and reduced glutathione (GSH) in human erythrocytes exposed to different sub-acute concentrations (0, 2.5, 5, 10, 25 and 50μM) of carbofuran for different time intervals; maximally up to 120 min. It was observed that the level of MDA was elevated and that of GSH was significantly decreased after treatment of erythrocytes with carbofuran. The results indicated the negative impact of carbofuran in concentration and time dependent manner. Carbofuran was also found to sharply inhibit the activity of membrane bound Na(+)K(+)-ATPase at higher carbofuran concentrations (10, 25 and 50μM). Further, carbofuran at aforesaid concentrations was also found to cause significant rise in the osmotic fragility of human erythrocytes indicating adverse effect on membrane fluidity. The results of present study suggested that carbofuran was able to alter the oxidative balance and the stability of human erythrocytes membrane.

  7. Short-Term Effects of Chlorpromazine on Oxidative Stress in Erythrocyte Functionality: Activation of Metabolism and Membrane Perturbation

    Directory of Open Access Journals (Sweden)

    Silvana Ficarra

    2016-01-01

    Full Text Available The purpose of this paper is to focus on the short-term effects of chlorpromazine on erythrocytes because it is reported that the drug, unstable in plasma but more stable in erythrocytes, interacts with erythrocyte membranes, membrane lipids, and hemoglobin. There is a rich literature about the side and therapeutic effects or complications due to chlorpromazine, but most of these studies explore the influence of long-term treatment. We think that evaluating the short-term effects of the drug may help to clarify the sequence of chlorpromazine molecular targets from which some long-term effects derive. Our results indicate that although the drug is primarily intercalated in the innermost side of the membrane, it does not influence band 3 anionic flux, lipid peroxidation, and protein carbonylation processes. On the other hand, it destabilizes and increases the autooxidation of haemoglobin, induces activation of caspase 3, and, markedly, influences the ATP and reduced glutathione levels, with subsequent exposure of phosphatidylserine at the erythrocyte surface. Overall our observations on the early stage of chlorpromazine influence on erythrocytes may contribute to better understanding of new and interesting characteristics of this compound improving knowledge of erythrocyte metabolism.

  8. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    Science.gov (United States)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  9. Influence of Cocoa Flavanols and Procyanidins on Free Radical-induced Human Erythrocyte Hemolysis

    Directory of Open Access Journals (Sweden)

    Qin Yan Zhu

    2005-01-01

    Full Text Available Cocoa can be a rich source of antioxidants including the flavan-3-ols, epicatechin and catechin, and their oligomers (procyanidins. While these flavonoids have been reported to reduce the rate of free radical-induced erythrocyte hemolysis in experimental animal models, little is known about their effect on human erythrocyte hemolysis. The major objective of this work was to study the effect of a flavonoid-rich cocoa beverage on the resistance of human erythrocytes to oxidative stress. A second objective was to assess the effects of select purified cocoa flavonoids, epicatechin, catechin, the procyanidin Dimer B2 and one of its major metabolites, 3ʹ-O-methyl epicatechin, on free radical-induced erythrocyte hemolysis in vitro. Peripheral blood was obtained from 8 healthy subjects before and 1, 2, 4 and 8 h after consuming a flavonoid-rich cocoa beverage that provided 0.25 g/kg body weight (BW, 0.375 or 0.50 g/kg BW of cocoa. Plasma flavanol and dimer concentrations were determined for each subject. Erythrocyte hemolysis was evaluated using a controlled peroxidation reaction. Epicatechin, catechin, 3ʹ-O-methyl epicatechin and (--epicatechin-(4β > 8epicatechin (Dimer B2 were detected in the plasma within 1 h after the consumption of the beverage. The susceptibility of erythrocytes to hemolysis was reduced significantly following the consumption of the beverages. The duration of the lag time, which reflects the capacity of cells to buffer free radicals, was increased. Consistent with the above, the purified flavonoids, epicatechin, catechin, Dimer B2 and the metabolite 3ʹ-O-methyl epicatechin, exhibited dose-dependent protection against AAPH-induced erythrocyte hemolysis at concentrations ranging from 2.5 to 20 μM. Erythrocytes from subjects consuming flavonoid-rich cocoa show reduced susceptibility to free radical-induced hemolysis (p < 0.05.

  10. Aquaporin-1-Mediated Effects of Low Level He-Ne Laser Irradiation on Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Gang-Yue Luo

    2012-01-01

    Full Text Available The role of membrane aquaporin-1 (APQ-1 in the photobiomodulation (PBM on erythrocyte deformability will be studied in this paper with human dehydrated erythrocytes as echinocytic shape alterations lead to decreased cellular deformability. Human dehydrated erythrocytes were irradiated with low intensity He-Ne laser irradiation (LHNL at 0.9, 1.8, 2.7, and 4.4 mW/cm2 for 5, 15, and 30 min, respectively, and APQ-1 inhibitor, 0.2 μmol/L HgCl2, was used to study the role of APQ-1 in mediating PBM with LHNL at 4.4 mW/cm2 for 5 min. Comprehensive morphological parameters of an intact cell such as contact area, perimeter, roundness and erythrocyte elongation index (EEI were measured to characterize erythrocyte deformability with fast micro multi-channel spectrophotometer. It was observed that the dosage of LHNL improvement of the morphological parameters of dehydrated erythrocytes was morphological-parameter-dependent, but the Bunsen-Roscoe rule did not hold for roundness. The LHNL at 4.4 mW/cm2 for 5 min significantly improved the contact area (P<0.05 and EEI (P<0.05 of the dehydrated erythrocytes, but the improvement was significantly inhibited by 0.2 μmol/L HgCl2 (P<0.05. It was concluded that AQP-1 might mediate the effects of LHNL on erythrocyte deformability, which supports the membranotropic mechanism of PBM.

  11. Increased cation conductance in human erythrocytes artificially aged by glycation.

    Science.gov (United States)

    Kucherenko, Yuliya V; Bhavsar, Shefalee K; Grischenko, Valentin I; Fischer, Uwe R; Huber, Stephan M; Lang, Florian

    2010-06-01

    Excessive glucose concentrations foster glycation and thus premature aging of erythrocytes. The present study explored whether glycation-induced erythrocyte aging is paralleled by features of suicidal erythrocyte death or eryptosis, which is characterized by cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface and cell shrinkage. Both are triggered by increases of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which may result from activation of Ca(2+) permeable cation channels. Glycation was accomplished by exposure to high glucose concentrations (40 and 100 mM), phosphatidylserine exposure estimated from annexin binding, cell shrinkage from decrease of forward scatter, and [Ca(2+)](i) from Fluo3-fluorescence in analysis via fluorescence-activated cell sorter. Cation channel activity was determined by means of whole-cell patch clamp. Glycation of total membrane proteins, immunoprecipitated TRPC3/6/7, and immunoprecipitated L-type Ca(2+) channel proteins was estimated by Western blot testing with polyclonal antibodies used against advanced glycation end products. A 30-48-h exposure of the cells to 40 or 100 mM glucose in Ringer solution (at 37 degrees C) significantly increased glycation of membrane proteins, hemoglobin (HbA(1c)), TRPC3/6/7, and L-type Ca(2+) channel proteins, enhanced amiloride-sensitive, voltage-independent cation conductance, [Ca(2+)](i), and phosphatidylserine exposure, and led to significant cell shrinkage. Ca(2+) removal and addition of Ca(2+) chelator EGTA prevented the glycation-induced phosphatidylserine exposure and cell shrinkage after glycation. Glycation-induced erythrocyte aging leads to eryptosis, an effect requiring Ca(2+) entry from extracellular space.

  12. Absence of erythrocyte sequestration in a case of babesiosis in a splenectomized human patient

    Directory of Open Access Journals (Sweden)

    Joyce Alina J

    2006-08-01

    Full Text Available Abstract Background The importance of vascular occlusion in the pathogenesis of human haemoprotozoal disease is unresolved. Methods Giemsa-stained tissue sections from a human case of Babesia microti infection in a splenectomized patient with chronic lymphocytic leukaemia and colon cancer were examined to ascertain the distribution of parasitized erythrocytes within the vascular lumen. Results No evidence of sequestration was observed. Conclusion This first report on the vascular location of B. microti in human tissue suggests that severe multi-organ failure due to babesiosis is independent of sequestration of parasitized erythrocytes. A similar pathogenesis may also cause multi-organ failure in other intraerythrocytic protozoal infections, including falciparum malaria.

  13. Metabolomic analysis of normal and sickle cell erythrocytes.

    Science.gov (United States)

    Darghouth, D; Koehl, B; Junot, C; Roméo, P-H

    2010-09-01

    Metabolic signatures of specialized circulating hematopoietic cells in physiological or human hematological diseases start to be described. We use a simple and highly reproductive extraction method of erythrocytes metabolites coupled with a liquid chromatography-mass spectrometry based metabolites profiling method to determine metabolomes of normal and sickle cell erythrocytes. Sickle cell erythrocytes and normal erythrocytes metabolomes display major differences in glycolysis, in glutathione, in ascorbate metabolisms and in metabolites associated to membranes turnover. In addition, the amounts of metabolites derived from urea cycle and NO metabolism that partly take place within erythrocyte were different between normal and sickle cell erythrocytes. These results show that metabolic profiling of red blood cell diseases can now be determined and might indicate new biomarkers that can be used for the follow-up of sickle cell patients.

  14. Oxidative stress biomarkers and acetylcholinesterase activity in human erythrocytes exposed to clomazone (in vitro).

    Science.gov (United States)

    Santi, Adriana; Menezes, Charlene; Duarte, Marta Maria F; Leitemperger, Jossiele; Lópes, Thais; Loro, Vania L

    2011-09-01

    The aim of this study was to investigate the effect of clomazone herbicide on oxidative stress biomarkers and acetylcholinesterase activity in human erythrocytes in in vitro conditions. The activity of catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE), as well as the levels of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were measured in human erythrocytes exposed (in vitro) to clomazone at varying concentrations in the range of 0, 100, 250 and 500 µg/L for 1 h at 37 °C.TBARS levels were significantly higher in erythrocytes incubated with clomazone at 100, 250 and 500 µg/L. However, erythrocyte CAT and AChE activities were decreased at all concentrations tested. SOD activity was increased only at 100 µg/L of clomazone. GSH levels did not change with clomazone exposure. These results clearly showed clomazone to induce oxidative stress and AChE inhibition in human erythrocytes (in vitro). We, thus, suggest a possible role of ROS on toxicity mechanism induced by clomazone in humans.

  15. [The effect of antitumor polychemotherapy on the structural, metabolic, and functional status of erythrocytes in patients with head and neck tumors].

    Science.gov (United States)

    Stepovaia, E A; Novitskiĭ, V V; Gol'dberg, V E; Riazantseva, N V; Tkachenko, S B; Kolosova, M V

    2004-01-01

    The structure, metabolic status, and functional properties of erythrocytes in patients with stage III-IV head and neck tumors in the course of antineoplastic cytostatic chemotherapy (platidiam, 5-fluorouracil, methotrexate) were studied. In the course of this treatment, disorders of the morphology and functional state of erythrocytes (reduced dry mass, decreased content of sulfohydryl grups and lipoproteins, increased number of transformed cells and the cells with violated ultrastructure, enhanced reversible aggregation of erythrocytes) were retained or became more pronounced.

  16. Effects of lanthanide ions on hydrolysis of phosphatidylin- ositol in human erythrocyte membranes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of lanthanides on the hydrolysis of phosphatidylinositol in human erythrocyte membranes were studied. 3H-inositol labeling chromatography and HPLC were used to determine inositol 1, 4, 5-triphosphate and diacylglycerol separately, the hydrolytic products of phos-phatidylinositol due to the reaction of lanthanide ions with human erythrocyte membranes. The unhydrolyzed phospha-tidylinositol in membranes was also determined. The results indicate that the hydrolysis of phosphatidylinositol can be promoted by lanthanides (La3+, Ce3+, Y3+, Tb3+) and the ef-fects of La3+ and Ce3+ are stronger than those of Y3+ and Tb3+.

  17. Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Antonyuk Marina V

    2011-05-01

    Full Text Available Abstract Background Disturbances of the fatty acids composition in plasma and red blood cells and eicosanoid synthesis play an important role in the metabolic syndrome (MS formation. Methods The observation group included 61 people with metabolic syndrome (30 patients with MS and normal levels of insulin, 31 people with MS and insulin resistance - IR. The parameters of carbohydrate and lipid metabolism in blood serum were examined. The composition of nonesterified fatty acids (NEFA, fatty acid (FA of red blood cells lipids was analyzed by gas-liquid chromatography. Eicosanoids level in MS patients blood serum was studied by enzyme immunoassay. Results In MS patients in the absence of glucose-insulin homeostasis disturbances and in patients with IR the accumulation of polyunsaturated fatty acids (18:2 n6, 18:3 n3, 22:4 n6 and lower pool of saturated FA (12:0, 14:0, 16: 0, 17:0 in plasma were discovered. A deficit of polyunsaturated FA (18:3 n3, 20:4 n6 with a predominance of on-saturated FA (14:0, 18:0 in erythrocyte membranes was revealed. In MS patients regardless of the carbohydrate metabolism status high levels of leukotriene B4 and 6-keto-prostaglandin-F1α in serum were found. The development of IR in MS patients leads to increased synthesis of thromboxane A2. Conclusion The results revealed a disturbance in nonesterified fatty acids of plasma lipids and red blood cells, eicosanoid synthesis in MS patients. The breach of the plasma and cell membranes fatty acids compositions, synthesis of vasoactive and proinflammatory eicosanoids is an important pathogenetic part of the MS development.

  18. Alcohol drinking, mean corpuscular volume of erythrocytes, and alcohol metabolic genotypes in drunk drivers.

    Science.gov (United States)

    Pavanello, Sofia; Snenghi, Rossella; Nalesso, Alessandro; Sartore, Daniela; Ferrara, Santo Davide; Montisci, Massimo

    2012-02-01

    Regular and irregular abuse of alcohol are global health priorities associated with diseases at multiple sites, including cancer. Mechanisms of diseases induced by alcohol are closely related to its metabolism. Among conventional markers of alcohol abuse, the mean corpuscular volume (MCV) of erythrocytes is prognostic of alcohol-related cancer and its predictivity increases when combined with functional polymorphisms of alcohol dehydrogenase (ADH1B [rs1229984] and ADH1C [rs698]) and the mitochondrial aldehyde dehydrogenase (ALDH2 [rs671]). Whether these genetic variants can influence abuse in alcohol drinking and MCV has never been examined in drunk-driving traffic offenders. We examined 149 drunk drivers, diagnosed as alcohol abusers according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth edition Text Revision (DSM-IV-TR) and enrolled in a probation program, and 257 social drinkers (controls), all Caucasian males. Alcohol intake was assessed according to self-reported drink-units/d and MCV unadjusted and adjusted for age, smoking, and body mass index. Multivariable models were used to compute MCV adjusted means. Genotype analyses were performed by PCR on DNA from blood. The adjusted MCV mean was higher in drunk-driving abusers than in controls (92 vs. 91fL; Palcohol drinking, and MCV enlargement. This suggests that drunk drivers with augmented MCV modulated by the alcohol metabolic ADH1B*1/*1 genotype may be at higher risk of driving incapability and of alcohol-related cancer.

  19. Cross-reactivity of anti-H pylori antibodies with membrane antigens of human erythrocytes

    Institute of Scientific and Technical Information of China (English)

    Feng-Hua Guo; Fan-Ling Meng; Jian-Zhong Zhang; Xiao-Mei Yan; Chun-Xiang Fan; Fei Zhao; Yuan Hu; Di Xiao; Xun Zeng; Mao-Jun Zhang; Li-Hua He

    2007-01-01

    AIM: To investigate whether anti-H pylori antibodies have cross-reaction with antigens of erythrocyte membrane.METHODS: Blood samples were collected from 14 volunteers (8 positive and 6 negative for H pylori detected by 13C-urea breath test) of the general population. Erythrocyte membrane proteins of the subjects were examined by Western blot using antiH pylori serum. The proteins related to the positive bands were identified by mass spectrum analysis.RESULTS: Anti-H pylori antibodies had cross-reaction with the proteins of about 50 kDa of erythrocyte membranes in all samples independent of H pylori infection. One protein in the positive band was identified as Chain S, the crystal structure of the cytoplasmic domain of human erythrocyte Band-3 protein.CONCLUSION: Anti-H pylori antibodies cross-react with some antigens of human erythrocyte membrane, which may provide a clue for the relationship between H pylori infection and vascular disorders.

  20. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S;

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...

  1. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were us...

  2. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Xia Dong

    2009-05-01

    Full Text Available Abstract Background Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC. Methods Metabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI. 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. Results 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. Conclusion Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P

  3. Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes.

    Science.gov (United States)

    Prajitha, V; Thoppil, J E

    2017-02-01

    The present study examined the apoptosis inducing effects of Amaranthus spinosus L. aqueous extract in Allium cepa root meristematic cells and human erythrocytes. Cytogenetic assay revealed many apoptosis inducing cytogenetic aberrations viz., cytoplasmic breakage, cytoplasmic disintegration, cytoplasmic shrinkage, receding of cytoplasm, cytoplasmic vacuolation, enucleated cell, ghost cell, nuclear vacuolation, nuclear fragmentation and nuclear disintegration. A remarkable modification of red blood cell surface morphology was observed in the result of RBC assay. The treated RBCs show membrane blebbing and shrinkage, features typical for apoptosis in nucleated cells. Significant induction of cell death was observed in treated Allium root tip cells after Evans blue staining, disclosing the membrane damage potential of the plant extract. TTC assay results in reduced mitochondrial/metabolic activity in Allium root tip cells after treatment, designating the adverse effect of plant extract on mitochondrial respiratory chain. These results confirm the apoptosis inducing potential of A. spinosus extract. Confirming the present results by further in vitro studies, it can be effectively targeted against cell proliferation during cancer treatment by inducing apoptosis. Thus from the present investigation it can be concluded that the aqueous extract of A. spinosus exhibited apoptosis induction and cytotoxic activities.

  4. Gas chromatography determination of fatty acids in the human erythrocyte membranes - A review.

    Science.gov (United States)

    Bystrická, Zuzana; Ďuračková, Zdeňka

    2016-12-01

    Blood fatty acid measurements can reflect exogenously consumed fatty acids allowing to resolve some metabolic disorders (e.g. diabetes, anorexia) or mental disorders (e.g. depression, anxiety, schizophrenia). For this purpose, fatty acids can be determined in the whole blood or various blood fractions such as the plasma, serum or erythrocytes. Measurement of fatty acids in the whole blood by dried blood spot technique is becoming increasingly popular and is often used mainly for the screening of newborns due to the use of the small sample volume. The most popular is determination of fatty acids in plasma or serum samples. While the profile of plasma fatty acids fluctuates based on daily dietary intake, the red blood cell membrane composition of fatty acids reflects the 2-3 month dietary intake. Such results can be more reflective in contrast to the plasma/serum and therefore the present review will summarize available information on gas chromatography determination of fatty acids in human red blood cell membranes. Selection of extraction and derivatization reagents as well as presentation of chromatographic conditions will be discussed here. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ATP-dependent Mechanism Protects Spectrin against Glycation in Human Erythrocytes*

    OpenAIRE

    Manno, Sumie; Mohandas, Narla; Takakuwa, Yuichi

    2010-01-01

    Human erythrocytes are continuously exposed to glucose, which reacts with the amino terminus of the β-chain of hemoglobin (Hb) to form glycated Hb, HbA1c, levels of which increase with the age of the circulating cell. In contrast to extensive insights into glycation of hemoglobin, little is known about glycation of erythrocyte membrane proteins. In the present study, we explored the conditions under which glucose and ribose can glycate spectrin, both on the intact membrane and in solution and...

  6. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    Science.gov (United States)

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  7. The action of cobra venom phospholipase A2 isoenzymes towards intact human erythrocytes

    NARCIS (Netherlands)

    Roelofsen, B.; Sibenius Trip, M.; Verheij, H.M.; Zevenbergen, J.L.

    1980-01-01

    1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography. 2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine hydroly

  8. The action of cobra venom phospholipase A2 isoenzymes towards intact human erythrocytes

    NARCIS (Netherlands)

    Roelofsen, B.; Sibenius Trip, M.; Verheij, H.M.; Zevenbergen, J.L.

    1980-01-01

    1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography. 2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine hydroly

  9. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glutathione reductase activity.

    Science.gov (United States)

    Sahin, Ali; Senturk, Murat; Akkemik, Ebru; Ciftci, Mehmet

    2012-01-01

    The aim of the study was to evaluate the inhibitory effects of thallium-201 ((201)Tl) solution on human erythrocyte glutathione reductase (GR) activity. Erythrocyte GR was initially purified by 2',5'-adenosine diphosphate Sepharose-4B affinity and Sephadex G-200 gel filtration chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the (201)Tl solution including Tl(+), Fe(+3) and Cu(+2) metals and the in vitro effects of the radiation effect of the (201)Tl solution and nonradioactive Tl(+), Fe(+3) and Cu(+2) metals on human erythrocyte GR enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at (+)4 °C. Glutathione reductase was purified 2033-fold at a yield of 28.17%. (201)Tl solution and radiation exposure had inhibitory effects on the enzyme activity. Besides, effects of nonradioactive Tl(+), Fe(+3) and Cu(+2) were studied on enzyme activity in vitro. Furthermore, seven human patients were also used for in vivo studies of (201)Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte GR enzyme is inhibited due to the radiation effect of (201)Tl solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    Science.gov (United States)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  11. Fish intake, erythrocyte n-3 fatty acid status and metabolic health in Danish adolescent girls and boys

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Harsløf, Laurine B. S.; Hellgren, Lars

    2012-01-01

    Marine n-3 long-chain PUFA (n-3 LCPUFA) may have a beneficial effect on several aspects of the metabolic syndrome (dyslipidaemia, insulin resistance, hypertension and abdominal obesity). The metabolic syndrome is increasing in prevalence during adolescence, but only few studies have investigated...... the effects of n-3 LCPUFA in adolescence. The present study examines associations between fish intake (assessed by a 7 d pre-coded food diary), erythrocyte (RBC) DHA status (analysed by GC) and metabolic syndrome measures (anthropometry, blood pressure and plasma lipids, insulin and glucose) in 109 17-year......-old children from the Copenhagen Birth Cohort Study. Of the children, 8% were overweight or obese and few showed signs of the metabolic syndrome, but all the metabolic syndrome variables were correlated. Median fish intake was 10·7 (interquartile range 3·6–21·2) g/d. Boys tended to have a higher fish intake (P...

  12. Human metabolic atlas: an online resource for human metabolism.

    Science.gov (United States)

    Pornputtapong, Natapol; Nookaew, Intawat; Nielsen, Jens

    2015-01-01

    Human tissue-specific genome-scale metabolic models (GEMs) provide comprehensive understanding of human metabolism, which is of great value to the biomedical research community. To make this kind of data easily accessible to the public, we have designed and deployed the human metabolic atlas (HMA) website (http://www.metabolicatlas.org). This online resource provides comprehensive information about human metabolism, including the results of metabolic network analyses. We hope that it can also serve as an information exchange interface for human metabolism knowledge within the research community. The HMA consists of three major components: Repository, Hreed (Human REaction Entities Database) and Atlas. Repository is a collection of GEMs for specific human cell types and human-related microorganisms in SBML (System Biology Markup Language) format. The current release consists of several types of GEMs: a generic human GEM, 82 GEMs for normal cell types, 16 GEMs for different cancer cell types, 2 curated GEMs and 5 GEMs for human gut bacteria. Hreed contains detailed information about biochemical reactions. A web interface for Hreed facilitates an access to the Hreed reaction data, which can be easily retrieved by using specific keywords or names of related genes, proteins, compounds and cross-references. Atlas web interface can be used for visualization of the GEMs collection overlaid on KEGG metabolic pathway maps with a zoom/pan user interface. The HMA is a unique tool for studying human metabolism, ranging in scope from an individual cell, to a specific organ, to the overall human body. This resource is freely available under a Creative Commons Attribution-NonCommercial 4.0 International License.

  13. Redesigned Human Metabolic Simulator

    Science.gov (United States)

    Duffield, Bruce; Jeng, Frank; Lange, Kevin

    2008-01-01

    A design has been formulated for a proposed improved version of an apparatus that simulates atmospheric effects of human respiration by introducing controlled amounts of carbon dioxide, water vapor, and heat into the air. Denoted a human metabolic simulator (HMS), the apparatus is used for testing life-support equipment when human test subjects are not available. The prior version of the HMS, to be replaced, was designed to simulate the respiratory effects of as many as four persons. It exploits the catalytic combustion of methyl acetate, for which the respiratory quotient (the molar ratio of carbon dioxide produced to oxygen consumed) is very close to the human respiratory quotient of about 0.86. The design of the improved HMS provides for simulation of the respiratory effects of as many as eight persons at various levels of activity. The design would also increase safety by eliminating the use of combustion. The improved HMS (see figure) would include a computer that would exert overall control. The computer would calculate the required amounts of oxygen removal, carbon dioxide addition, water addition, and heat addition by use of empirical equations for metabolic profiles of respiration and heat. A blower would circulate air between the HMS and a chamber containing a life-support system to be tested. With the help of feedback from a mass flowmeter, the blower speed would be adjusted to regulate the rate of flow according to the number of persons to be simulated and to a temperature-regulation requirement (the air temperature would indirectly depend on the rate of flow, among other parameters). Oxygen would be removed from the circulating air by means of a commercially available molecular sieve configured as an oxygen concentrator. Oxygen, argon, and trace amounts of nitrogen would pass through a bed in the molecular sieve while carbon dioxide, the majority of nitrogen, and other trace gases would be trapped by the bed and subsequently returned to the chamber. If

  14. Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension.

    Science.gov (United States)

    Bowles, Elizabeth A; Moody, Gina N; Yeragunta, Yashaswini; Stephenson, Alan H; Ellsworth, Mary L; Sprague, Randy S

    2015-01-01

    Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.

  15. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  16. Amphiphile dependency of the monomeric and dimeric forms of acetylcholinesterase from human erythrocyte membrane.

    Science.gov (United States)

    Ott, P; Brodbeck, U

    1984-08-08

    Human erythrocyte membrane-bound acetylcholinesterase was converted to a monomeric species by treatment of ghosts with 2-mercaptoethanol and iodoacetic acid. After solubilization with Triton X-100, the reduced and alkylated enzyme was partially purified by affinity chromatography and separated from residual dimeric enzyme by sucrose density gradient centrifugation in a zonal rotor. Monomeric and dimeric acetylcholinesterase showed full enzymatic activity in presence of Triton X-100 whereas in the absence of detergent, activity was decreased to approx. 20% and 15%, respectively. Preformed egg phosphatidylcholine vesicles fully sustained activity of the monomeric species whereas the dimer was only 80% active. The results suggest that a dimeric structure is not required for manifestation of amphiphile dependency of membrane-bound acetylcholinesterase from human erythrocytes. Furthermore, monomeric enzyme appears to be more easily inserted into phospholipid bilayers than the dimeric species.

  17. Ultrastructural study of adhesion of enterotoxigenic Escherichia coli to erythrocytes and human intestinal epithelial cells.

    OpenAIRE

    1984-01-01

    The adhesion to erythrocytes and human intestinal epithelial cells of enterotoxigenic Escherichia coli strains H10407, B2C, and H10407P, expressing colonization factor antigen I (CFA/I), CFA/II, and type 1 fimbriae, respectively, was examined by electron microscopy. CFA and type 1 fimbriae were visualized by negative staining in thin sections after en bloc staining with ruthenium red and by immune labeling with antisera raised against purified fimbriae. By negative and ruthenium red staining,...

  18. Characterization of peptide fluxes into human erythrocytes. A proton-n.m.r. study.

    Science.gov (United States)

    Odoom, J E; Campbell, I D; Ellory, J C; King, G F

    1990-04-01

    A new protocol for measuring cellular uptake of dipeptides was developed in which the problem of peptide hydrolysis is obviated by introduction into the cell suspension of a membrane-permeant peptidase inhibitor. The uptake of unlabelled dipeptide is readily monitored so long as some analytical technique is available for measuring the intracellular peptide concentration; in this study we used n.m.r. spectroscopy. Using this protocol, we demonstrated that dipeptide uptake by human erythrocytes occurs by simple diffusion through the lipid bilayer and not via a high-capacity protein-mediated transport system. Substantiating evidence includes demonstration that: (a) the fluxes are slow compared with known protein-mediated transport processes in human erythrocytes; (b) the uptake is not stereospecific; (c) the uptake does not display saturation kinetics; (d) the fluxes are significantly enhanced by butanol; (e) a distinct correlation exists between the size-corrected permeability coefficients of the dipeptides and their calculated n-octanol/water partition coefficients. It is calculated that under normal physiological conditions the diffusive fluxes of circulating plasma peptides into human erythrocytes are too small for these cells to play a significant role in dipeptide catabolism.

  19. Agglutination of human O erythrocytes by influenza A(H1N1) viruses freshly isolated from patients.

    Science.gov (United States)

    Murakami, T; Haruki, K; Seto, Y; Kimura, T; Minoshiro, S; Shibe, K

    1991-04-01

    The hemagglutinin titers of 10 influenza A (H1N1) viruses were examined using the erythrocytes of several species. Human O erythrocytes showed the highest agglutination titer to the viruses, whereas chicken erythrocytes showed a low titer. These findings were noted for at least 10 passages by serial dilutions of the viruses in Madin-Darby canine kidney (MDCK) cells. All influenza A(H1N1) viruses, plaque-cloned directly from throat-washing specimens of patients, also agglutinated human O but not chicken erythrocytes. The results of a hemadsorption test indicated that chicken erythrocytes possess less affinity to MDCK cells infected with the A/Osaka City/2/88(H1N1) stain than to those infected with the A/Yamagata/120/86(H1N1) strain which is used as an inactivated influenza vaccine in Japan. However, there were no significant differences between the A/Osaka City/2/88 and the A/Yamagata/120/86 strains in the hemagglutination inhibition test. Since human O erythrocytes have high agglutination activity to influenza A(H1N1) and also to A(H3N2) and B viruses in MDCK cells, these erythrocytes may be useful for the serological diagnosis of influenza.

  20. Identification of novel allosteric regulators of human-erythrocyte pyruvate kinase.

    Science.gov (United States)

    Kharalkar, Shilpa S; Joshi, Gajanan S; Musayev, Faik N; Fornabaio, Micaela; Abraham, Donald J; Safo, Martin K

    2007-11-01

    Erythrocyte pyruvate kinase (PK) is an important glycolytic enzyme, and manipulation of its regulatory behavior by allosteric modifiers is of interest for medicinal purposes. Human-erythrocyte PK was expressed in Rosetta cells and purified on an Ni-NTA column. A search of the small-molecules database of the National Cancer Institute (NCI), using the UNITY software, led to the identification of several compounds with similar pharmacophores as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the human kinases. The compounds were subsequently docked into the FBP binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates, compounds 1-7, were obtained from the NCI, and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK). The allosteric effectors discovered in this study could prove to be lead compounds for developing medications for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction.

  1. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Ingrid Rossouw

    2015-05-01

    Full Text Available Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  2. Evaluation of the effect of Uncaria tomentosa extracts on the size and shape of human erythrocytes (in vitro).

    Science.gov (United States)

    Bors, Milena; Sicińska, Paulina; Michałowicz, Jaromir; Wieteska, Paulina; Gulewicz, Krzysztof; Bukowska, Bożena

    2012-03-01

    In this study, we continued our investigations concerning the interaction of Uncaria tomentosa extracts with the human erythrocytes. The analysis of the size and shape of the erythrocytes by means of flow cytometry and phase contrast microscopy was performed. We executed our experiments using ethanolic and aqueous extracts from the leaves and bark of U. tomentosa. Disturbances were observed in the size and shape of the erythrocytes incubated with ethanolic and aqueous extracts at the concentrations of 100 μg/mL and 250 μg/mL, respectively. The observed changes were probably related to the entry of polyphenolic compounds contained in U. tomentosa extracts into erythrocyte membrane. Externalization of phosphatidylserine on the erythrocytic surfaces was also noticed during incubation with extracts at concentration of 250 μg/mL. We concluded that all of the extracts examined induced changes in the erythrocyte membrane properties, whereas ethanolic extracts from bark induced the most significant changes. The possible binding of polyphenols to the erythrocyte surface may have accounted for the protective properties of extracts against haemolysis of RBCs, which was observed in our previous study (Bors et al., 2011), but considerable incorporation of polyphenols into cell membranes can result in disturbance of phosphatidylserine transport and changes in erythrocyte shape. Nevertheless the results of the investigations showed that considerable morphological changes appear only as a result of erythrocyte exposure to high concentrations (50 ppm and 100 ppm) of the extracts studied, thus they should not lead to clinical erythrocytic damage if recommended doses of U. tomentosa preparations are administrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.

    Science.gov (United States)

    Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V

    2016-03-21

    Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia.

  4. Inhibition of Probimane on Lipid Peroxidation of Rabbit and Human Erythrocytes

    Institute of Scientific and Technical Information of China (English)

    卢大用; 陈恩鸿; 曹静铭; 金巍; 田芳; 丁健

    2003-01-01

    Lipid peroxide (LPO) plays pivotal roles in the process and development of many diseases. In this work, we studied the inhibitory effect of probimane (Pro), a Chinese anticancer agent, on erythrocyte LPO and the interaction of Pro with sialic acids (sia).Malondialdehyde (MDA) of erythrocytes activated by hydrogen peroxide was measured. Pro was found to inhibit the product of LPO induced by hydrogen peroxide in a non-enzyme system of both rabbit and human erythrocytes in the absence of doxorubicin. Sia were found to enhance LPO production and the activity of Nglycolylneuraminic acid (NenGc) was about 5 times higher than that of Nacetylneuraminic acid (5AcNeu) at equivalent concentrations. Pro inhibited the increased LPO production induced by sia and the activity of Pro against LPO with 5AcNeu was almost twofold higher than that of Pro alone. It suggests that Pro be an inhibitor of LPO (free radicals) and as a functional modulator of sia in body.

  5. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Wai-Hong Tham

    2015-12-01

    Full Text Available The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL and reticulocyte binding-like (Rh protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.

  6. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes

    OpenAIRE

    Sidhaye, AA; Bhuran, KC; Zambare, S; Abubaker, M; Nirmalan, NJ; Singh, KK

    2016-01-01

    Background: The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin(HSA), into parasitized erythrocytes(pRBCs). We have designed HSA-based nanoparticles as a potential drugdelivery\\ud option for antimalarials. \\ud Methods: Artemether-loaded nanoparticles(AAN) were designed and antimalarial activity evaluated in-vitro/in-vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. \\ud Results: Selective...

  7. Camalexin-Induced Cell Membrane Scrambling and Cell Shrinkage in Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Mustafa Almasry

    2017-02-01

    Full Text Available Background/Aims: The thaliana phytoalexin Camalexin has been proposed for the treatment of malignancy. Camalexin counteracts tumor growth in part by stimulation of suicidal death or apoptosis of tumor cells. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms contributing to the complex machinery executing eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress, ceramide, protein kinase C and caspases. The present study explored, whether Camalexin induces eryptosis and, if so, to shed light on mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo-3 fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Camalexin significantly increased the percentage of annexin-V-binding cells (≥ 10 µg/ml, significantly decreased forward scatter (≥ 5 µg/ml and significantly increased Fluo-3-fluorescence (≥ 10 µg/ml, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of Camalexin on annexin-V-binding was significantly blunted by removal of extracellular Ca2+, by kinase inhibitors staurosporine (1 µM and chelerythrine (10 µM, as well as by caspase inhibitors zVAD (10 µM and zIETD-fmk (50 µM. Conclusions: Camalexin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part depending on Ca2+ entry, as well as staurosporine and chelerythrine sensitive kinase(s as well as zVAD and zIETD-fmk sensitive caspase(s.

  8. Fructosamine 3-kinase-related protein and deglycation in human erythrocytes

    Science.gov (United States)

    2004-01-01

    Fructosamine 3-kinase (FN3K), an enzyme initially identified in erythrocytes, catalyses the phosphorylation of fructosamines on their third carbon, leading to their destabilization and their removal from protein. We show that human erythrocytes also contain FN3K-related protein (FN3K-RP), an enzyme that phosphorylates psicosamines and ribulosamines, but not fructosamines, on the third carbon of their sugar moiety. Protein-bound psicosamine 3-phosphates and ribulosamine 3-phosphates are unstable, decomposing at pH 7.1 and 37 °C with half-lives of 8.8 h and 25 min respectively, as compared with 7 h for fructosamine 3-phosphates. NMR analysis indicated that 1-deoxy-1-morpholinopsicose (DMP, a substrate for FN3K and FN3K-RP), like 1-deoxy-1-morpholinofructose (DMF, a substrate of FN3K), penetrated erythrocytes and was converted into the corresponding 3-phospho-derivative. Incubation of erythrocytes with 50 mM allose, 200 mM glucose or 10 mM ribose for 24 h resulted in the accumulation of glycated haemoglobin, and this accumulation was approx. 1.9–2.6-fold higher if DMP, a competitive inhibitor of both FN3K and FN3K-RP, was present in the incubation medium. Incubation with 50 mM allose or 200 mM glucose also caused the accumulation of ketoamine 3-phosphates, which was inhibited by DMP. By contrast, DMF, a specific inhibitor of FN3K, only affected the glucose-dependent accumulation of glycated haemoglobin and ketoamine 3-phosphates. These data indicate that FN3K-RP can phosphorylate intracellular, protein-bound psicosamines and ribulosamines, thus leading to deglycation. PMID:15137908

  9. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    William P Clafshenkel

    Full Text Available Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP, may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidylsuberate (BS3. A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  10. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    Science.gov (United States)

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes.

  11. The use of cis-parinaric acid to determine lipid peroxidation in human erythrocyte membranes. Comparison of normal and sickle erythrocyte membranes.

    Science.gov (United States)

    Van den Berg, J J; Kuypers, F A; Qju, J H; Chiu, D; Lubin, B; Roelofsen, B; Op den Kamp, J A

    1988-09-15

    The recently developed parinaric acid assay is shown to offer possibilities for studying peroxidation processes in biological membrane systems. Taking the human erythrocyte membrane as a model, several initiating systems were investigated, as well as the effect of residual hemoglobin in ghost membrane preparations. The effectivity of a radical generating system appeared to be strongly dependent upon whether radicals are generated at the membrane level or in the water phase. Thus, cumene hydroperoxide at concentrations of 1.0-1.5 mM was found to be a very efficient initiator of peroxidation in combination with submicromolar levels of hemin-Fe3+ as membrane-bound cofactor. In combination with cumene hydroperoxide, membrane-bound hemoglobin appeared to be about 6-times more effective in promoting peroxidation than hemoglobin in the water phase. Results comparing the behaviour of normal and sickle erythrocyte ghost suspensions in the peroxidation assay suggest that the increased oxidative stress on sickle erythrocyte membranes could be due to enhanced membrane binding of sickle hemoglobin, but also partly to a characteristically higher capability of sickle hemoglobin to promote peroxidation. The order of peroxidation-promoting capabilities that could be derived from the experiments was hemin greater than sickle hemoglobin greater than normal hemoglobin.

  12. Dimethoate-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitro.

    Science.gov (United States)

    Abdallah, Fatma Ben; Gargouri, Bochra; Bejaoui, Hafedh; Lassoued, Saloua; Ammar-Keskes, Leila

    2011-06-01

    Organophosphorus insecticides may induce oxidative stress leading to the generation of free radicals and alteration in the antioxidant system. The aim of this study was to examine the potency of Dimethoate (Dim) to induce oxidative stress response in human erythrocyte in vitro and the role of Vitamins C (Vit C) and E (Vit E) in alleviating the cytotoxic effects. Erythrocytes were divided into three groups. The first group, erythrocytes were incubated for 4 h at 37 °C with different concentrations (0, 20, 40, 60, 80, and 100 mM) of Dim. The second and third groups were preincubated with Vit C or Vit E, respectively, for 30 min and followed by Dim incubation for 4 h at 37 °C. Following in vitro exposure, Dim caused a significant increase in malondialdehyde (MDA) levels, superoxide dismutase (SOD), and catalase (CAT) in erythrocytes at different concentrations. Vit E or Vit C pretreated erythrocytes showed a significant protection against the cytotoxic effects inducted by Dim on the studied parameters. In conclusion, antioxidant Vit E and C could protect against Dim-induced oxidative stress by decreasing lipid peroxidation and hyperactivity of SOD and CAT in human erythrocytes.

  13. Uptake of sialic acid by human erythrocyte. Characterization of a transport system.

    Science.gov (United States)

    Bulai, Tatiana; Bratosin, Daniela; Artenie, Vlad; Montreuil, Jean

    2003-01-01

    Upon incubation of human red blood cells (RBC) with [4-9-14C] N-acetylneuraminic acid, the cells incorporated this sugar, as demonstrated by the identification of labelled N-acetylmannosamine in the cytosol, as a result of the action of the sialic acid pyruvate-lyase we discovered previously (Biochimie 84 (2002) 655). The mechanism is saturable and indicates the presence of a limited number of transporter molecules in the RBC membrane. This transport process may have relevance to the desialylation of membrane glycoconjugates which occurs during ageing of erythrocytes.

  14. Protective effects of Emblica officinalis (Amla) on metal-induced lipid peroxidation in human erythrocytes.

    Science.gov (United States)

    Krishnamoorthy, Vijay Kumar; Rather, Irfan Ahmad

    2016-05-01

    The protective potential of Emblica officinalis (amla) was investigated on metal-induced lipid per oxidation in human erythrocytes. Increases in the levels of MDA and catalase activity were assessed as lipid per oxidation. In addition, glutathione peroxidase (GPX), glutathione (GSH), and ascorbic acid levels were assessed as antioxidant indices. Preliminary investigation of the extract exhibited a significant reduction in lipid per oxidation and an increase in antioxidant abilities, such as a decrease in MDA, GPx and GSH (Pamla extract (Pamla extract has significant protective potential against lipid per oxidation.

  15. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  16. Metabolism of phthalates in humans

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Skakkebaek, Niels E; Andersson, Anna-Maria

    2007-01-01

    on the foetal testis and they are similar to those seen in humans with testicular dysgenesis syndrome. Therefore, exposure of the human foetus and infants to phthalates via maternal exposure is a matter of concern. The metabolic pathways of phthalate metabolites excreted in human urine are partly known for some......Phthalates are synthetic compounds widely used as plasticisers, solvents and additives in many consumer products. Several animal studies have shown that some phthalates possess endocrine disrupting effects. Some of the effects of phthalates seen in rats are due to testosterone lowering effects...... phthalates, but our knowledge about metabolic distribution in the body and other biological fluids, including breast milk, is limited. Compared to urine, human breast milk contains relatively more of the hydrophobic phthalates, such as di-n-butyl phthalate and the longer-branched, di(2-ethylhexyl) phthalate...

  17. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    Science.gov (United States)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-01-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases. PMID:28233788

  18. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes.

    Science.gov (United States)

    Gutiérrez-Salinas, José; García-Ortíz, Liliana; Morales González, José A; Hernández-Rodríguez, Sergio; Ramírez-García, Sotero; Núñez-Ramos, Norma R; Madrigal-Santillán, Eduardo

    2013-01-01

    The aim of this paper was to describe the in vitro effect of sodium fluoride (NaF) on the specific activity of the major erythrocyte antioxidant enzymes, as well as on the membrane malondialdehyde concentration, as indicators of oxidative stress. For this purpose, human erythrocytes were incubated with NaF (0, 7, 28, 56, and 100 μg/mL) or NaF (100 μg/mL) + vitamin E (1, 2.5, 5 and 10 μg/mL). The malondialdehyde (MDA) concentration on the surface of the erythrocytes was determined, as were the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GlPx). Our results demonstrated that erythrocytes incubated with increasing NaF concentrations had an increased MDA concentration, along with decreased activity of antioxidant enzymes. The presence of vitamin E partially reversed the toxic effects of NaF on erythrocytes. These findings suggest that NaF induces oxidative stress in erythrocytes in vitro, and this stress is partially reversed by the presence of vitamin E.

  19. Production and characterization of antibodies against irradiated human erythrocytes membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Amancio, Francisco F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]|[Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia; Andrade Junior, Heitor F. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Inst. de Medicina Tropical

    1997-12-01

    Gamma irradiation affects people in several situations, with few if any sensitive biological assay of its action. Nucleic acids and proteins are affected by radiation, but only the former was used in most dosimetric techniques. The irradiation of proteins promotes structural modifications attributed to free radicals from water radiolysis. Theoretically, antibodies induced by irradiated proteins could recognize these radical-related new epitopes, allowing their use as a probe. Human erythrocyte membrane proteins (HEMP), few and well defined molecules, are certainly exposed to radiation, being the ideal target. With this rationale, we study the production of antibodies in mice immunized with {sup 60} Co irradiated HEMPs. Menbranes from hypotonic lysis with differential centrifugation of A+ erythrocytes, were irradiated in a Gammacell 220 with 400, 800 and 1600 Gy, and used as immunogen for Balb/c mice, after SDS-PAGE. Irradiated HEMP induced antibodies recognize only irradiated human erthrocytes in an intact cell indirect immunofluorescence assay (ICIIFA). When used in Wester-blot against non-irradiated HEMPs, those sera recognize most proteins, suggesting a pool of abs directed both to native, as detected by Western Blot, or irradiated, as detected by ICIFA, HEMPs. Those data confirmed our assumptions, allowing the use of those abs in the search for a method of biological dosimetry. (author). 18 refs., 3 figs.

  20. Acetylcholinesterase from Human Erythrocytes as a Surrogate Biomarker of Lead Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Gupta

    2015-01-01

    Full Text Available Lead induced neurotoxicity in the people engaged in different occupations has received wide attention but very little studies have been carried out to monitor occupational neurotoxicity directly due to lead exposure using biochemical methods. In the present paper an endeavour has been made in order to assess the lead mediated neurotoxicity by in vitro assay of the activity of acetylcholinesterase (AChE from human erythrocytes in presence of different concentrations of lead. The results suggested that the activity of this enzyme was localized in membrane bound fraction and it was found to be highly stable up to 30 days when stored at −20°C in phosphate buffer (50 mM, pH 7.4 containing 0.2% Triton X-100. The erythrocyte’s AChE exhibited Km for acetylcholinesterase to be 0.1 mM. Lead caused sharp inhibition of the enzyme and its IC50 value was computed to be 1.34 mM. The inhibition of the enzyme by lead was found to be of uncompetitive type (Ki value, 3.6 mM which negatively influenced both the Vmax and the enzyme-substrate binding affinity. Taken together, these results indicate that AChE from human erythrocytes could be exploited as a surrogate biomarker of lead induced neurotoxicity particularly in the people occupationally exposed to lead.

  1. Metabolism of phthalates in humans

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Skakkebaek, Niels E; Andersson, Anna-Maria

    2007-01-01

    phthalates, but our knowledge about metabolic distribution in the body and other biological fluids, including breast milk, is limited. Compared to urine, human breast milk contains relatively more of the hydrophobic phthalates, such as di-n-butyl phthalate and the longer-branched, di(2-ethylhexyl) phthalate...

  2. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence.

    Science.gov (United States)

    May, J M; Qu, Z C; Beechem, J M

    1993-09-21

    The conformation of the human erythrocyte glucose transport protein has been shown to determine its susceptibility to enzymatic cleavage on a large cytoplasmic loop. We took the converse approach and investigated the effects of tryptic digestion on the conformational structure of this protein. Exhaustive tryptic digestion of protein-depleted erythrocyte ghosts decreased the affinity of the residual transporter for cytochalasin B by 3-fold but did not affect the total number of binding sites. Tryptic digestion also increased the affinity of the residual transporter for D-glucose and inward-binding sugar phenyl beta-D-glucopyranoside but decreased that for the outward-binding 4,6-O-ethylidene glucose. These results suggest that tryptic cleavage stabilized the remaining transporter in an inward-facing conformation, but one with decreased affinity for cytochalasin B. The steady-state fluorescence emission scan of the purified reconstituted glucose transport protein was unaffected by tryptic digestion. Addition of increasing concentrations of potassium iodide resulted in linear Stern-Volmer plots, which were also unaffected by prior tryptic digestion. The tryptophan oxidant N-bromosuccinimide was investigated to provide a more sensitive measure of tryptophan environment. This agent irreversibly inhibited 3-O-methylglucose transport in intact erythrocytes and cytochalasin B binding in protein-depleted ghosts, with a half-maximal effect observed for each activity at about 0.3-0.4 nM. Treatment of purified glucose transport protein with N-bromosuccinimide resulted in a time-dependent quench of tryptophan fluorescence, which was resolved into two components by nonlinear regression using global analysis. Tryptic digestion retarded the rate of oxidation of the more slowly reacting class of tryptophans. (ABSTRACT TRUNCATED AT 250 WORDS)

  3. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity.

    Science.gov (United States)

    Sahin, Ali; Senturk, Murat; Ciftci, Mehmet; Varoglu, Erhan; Kufrevioglu, Omer Irfan

    2010-04-01

    The inhibitory effects of thallium-201 ((201)Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the (201)Tl solution including Tl(+), Fe(+3) and Cu(+2) metals and the in vitro effects of the radiation effect of the (201)Tl solution and non-radioactive Tl(+), Fe(+3) and Cu(+2) metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 degrees C. (201)Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC(50) value of (201)Tl solution was 36.86 microl ([Tl(+)]: 0.0036 microM, [Cu(+2)]: 0.0116 microM, [Fe(+3)]: 0.0132 microM), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of (201)Tl solution. Furthermore, non-radioactive Tl(+), Fe(+3) and Cu(+2) were found not to have influenced the enzyme in vitro. Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg (201)Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of (201)Tl solution. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Metabolic hypothesis for human altriciality.

    Science.gov (United States)

    Dunsworth, Holly M; Warrener, Anna G; Deacon, Terrence; Ellison, Peter T; Pontzer, Herman

    2012-09-18

    The classic anthropological hypothesis known as the "obstetrical dilemma" is a well-known explanation for human altriciality, a condition that has significant implications for human social and behavioral evolution. The hypothesis holds that antagonistic selection for a large neonatal brain and a narrow, bipedal-adapted birth canal poses a problem for childbirth; the hominin "solution" is to truncate gestation, resulting in an altricial neonate. This explanation for human altriciality based on pelvic constraints persists despite data linking human life history to that of other species. Here, we present evidence that challenges the importance of pelvic morphology and mechanics in the evolution of human gestation and altriciality. Instead, our analyses suggest that limits to maternal metabolism are the primary constraints on human gestation length and fetal growth. Although pelvic remodeling and encephalization during hominin evolution contributed to the present parturitional difficulty, there is little evidence that pelvic constraints have altered the timing of birth.

  5. Zinc, copper, manganese, and selenium metabolism in patients with human growth hormone deficiency or acromegaly.

    Science.gov (United States)

    Aihara, K; Nishi, Y; Hatano, S; Kihara, M; Ohta, M; Sakoda, K; Uozumi, T; Usui, T

    1985-08-01

    This study was designed to evaluate trace metal metabolism in patients with known abnormalities of human growth hormone (hGH). The mean concentration of zinc in plasma and urine decreased in patients with hGH deficiency after hGH injection, whereas, after adenomectomy, in patients with acromegaly, zinc increased in plasma, remained the same in erythrocytes, and decreased in urine. There was a negative correlation between plasma zinc and serum hGH levels and a positive correlation between urinary zinc excretion and serum hGH levels in acromegaly. In hGH deficiency, the copper content remained unchanged in plasma and erythrocytes and rose in urine after treatment; however, in acromegaly, the copper content increased in plasma and remained unchanged in erythrocytes and urine after surgery. The mean concentration of erythrocyte manganese did not change significantly after treatment in patients with hGH deficiency or acromegaly, but the pre-hGH treatment level of erythrocyte manganese in hGH deficiency was lower than in the controls. Plasma selenium concentrations were decreased in hGH deficiency and increased in acromegaly patients after therapy. These results suggest that hGH affects the metabolism of zinc, copper, manganese, and selenium.

  6. Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes.

    Science.gov (United States)

    Manrique-Moreno, Marcela; Londoño-Londoño, Julián; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Villena, Fernando; Avello, Marcia; Suwalsky, Mario

    2014-01-01

    This report presents evidence that the following Solanum steroids: solasodine, diosgenin and solanine interact with human erythrocytes and molecular models of their membranes as follows: a) X-ray diffraction studies showed that the compounds at low molar ratios (0.1-10.0mol%) induced increasing structural perturbation to dimyristoylphosphatidylcholine bilayers and to a considerable lower extent to those of dimyristoylphosphatidylethanolamine; b) differential scanning calorimetry data showed that the compounds were able to alter the cooperativity of dimyristoylphosphatidylcholine, dimyristoylphosphatidylethanolamine and dimyristoylphosphatidylserine phase transitions in a concentration-dependent manner; c) in the presence of steroids, the fluorescence of Merocyanine 540 incorporated to the membranes decreased suggesting a fluidization of the lipid system; d) scanning electron microscopy observations showed that all steroids altered the normal shape of human erythrocytes inducing mainly echinocytosis, characterized by the formation of blebs in their surfaces, an indication that their molecules are located into the outer monolayer of the erythrocyte membrane.

  7. Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton

    Indian Academy of Sciences (India)

    Annarita Ciana; Cesare Balduini; Giampaolo Minetti

    2005-06-01

    In cell membranes, local inhomogeneity in the lateral distribution of lipids and proteins is thought to exist in vivo in the form of lipid ‘rafts’, microdomains enriched in cholesterol and sphingolipids, and in specific classes of proteins, that appear to play specialized roles for signal transduction, cell-cell recognition, parasite or virus infection, and vesicular trafficking. These structures are operationally defined as membranes resistant to solubilization by nonionic detergents at 4°C (detergent-resistant membranes, DRMs). This definition appears to be necessary and sufficient, although additional manoeuvres, not always described with sufficient detail, may be needed to ensure isolation of DRMs, like mechanical homogenization, and changes in the pH and/or ionic strength of the solubilization medium. We show here for the human erythrocyte that the different conditions adopted may lead to the isolation of qualitatively and quantitatively different DRM fractions, thus contributing to the complexity of the notion itself of lipid raft. A significant portion of erythrocyte DRMs enriched in reported lipid raft markers, such as flotillin-1, flotillin-2 and GM1, is anchored to the spectrin membrane-skeleton via electrostatic interactions that can be disrupted by the simultaneous increase in pH and ionic strength of the solubilization medium.

  8. Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton

    Indian Academy of Sciences (India)

    Annarita Ciana; Cesare Balduini; Giampaolo Minetti

    2005-09-01

    In cell membranes, local inhomogeneity in the lateral distribution of lipids and proteins is thought to exist in vivo in the form of lipid ‘rafts’, microdomains enriched in cholesterol and sphingolipids, and in specific classes of proteins, that appear to play specialized roles for signal transduction, cell-cell recognition, parasite or virus infection, and vesicular trafficking. These structures are operationally defined as membranes resistant to solubilization by nonionic detergents at 4°C (detergent-resistant membranes, DRMs). This definition appears to be necessary and sufficient, although additional manoeuvres, not always described with sufficient detail, may be needed to ensure isolation of DRMs, like mechanical homogenization, and changes in the pH and/or ionic strength of the solubilization medium. We show here for the human erythrocyte that the different conditions adopted may lead to the isolation of qualitatively and quantitatively different DRM fractions, thus contributing to the complexity of the notion itself of lipid raft. A significant portion of erythrocyte DRMs enriched in reported lipid raft markers, such as flotillin-1, flotillin-2 and GM1, is anchored to the spectrin membrane-skeleton via electrostatic interactions that can be disrupted by the simultaneous increase in pH and ionic strength of the solubilization medium.

  9. Effects of some drugs on human erythrocyte glucose 6-phosphate dehydrogenase: an in vitro study.

    Science.gov (United States)

    Akkemik, Ebru; Budak, Harun; Ciftci, Mehmet

    2010-12-01

    Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of human have been investigated. For this purpose, at the beginning, erythrocyte glucose 6-phosphate dehydrogenase was purified 2256 times in a yield of 44.22% by using ammonium sulphate precipitation and 2', 5'-ADP Sepharose 4B affinity gel. Temperature of +4°C was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. This method was utilized for all kinetic studies. Ketotifen, dacarbazine, thiocolchicoside, meloxicam, methotrexate, furosemide, olanzapine, methylprednizolone acetate, paricalcitol, ritodrine hydrochloride, and gadobenate-dimeglumine were used as drugs. All the drugs indicated the inhibitory effects on the enzyme. Ki constants for glucose 6-phosphate dehydrogenase were found by means of Lineweaver-Burk graphs. While methylprednizolone acetate showed competitive inhibition, the others displayed non-competitive inhibition. In addition, IC(50) values of the drugs were determined by plotting Activity% vs [I].

  10. A kinetic model for the effects of vanadate on human erythrocyte membrane

    Institute of Scientific and Technical Information of China (English)

    张天蓝; 王夔

    1999-01-01

    The effects of vanadate on human erythrocyte membrane have been investigated with stopped-flow and equilibrium fluorescence quenching techniques. The equilibrium study showed a half-quenching concentration (K1/2) of 0.27 mmol·L-1. The stopped-flow experiment exhibited a fast rise (t1、2f~1s) and a slow drop (t1/2s 1~2 min) in fluorescence. Based on the results and that from the across membrane transport of vanadate, a kinetic model is proposed which suggests that the membrane proteins experience a series of conformational changes before and during the quenching of the intrinsic fluorescence. These changes are induced mainly by three kinds of interactions: (i) the long-distance, non-specific interaction between the vanadate and the erythrocyte membrane surface, (ⅱ) the charge interaction between the vanadate and parts of the membrane proteins, and(ⅲ) the binding of the vanadate to some membrane proteins.

  11. Energy metabolism during human pregnancy.

    Science.gov (United States)

    Forsum, Elisabet; Löf, Marie

    2007-01-01

    This review summarizes information regarding how human energy metabolism is affected by pregnancy, and current estimates of energy requirements during pregnancy are presented. Such estimates can be calculated using either increases in basal metabolic rate (BMR) or increases in total energy expenditure (TEE). The two modes of calculation give similar results for a complete pregnancy but different distributions of energy requirements in the three trimesters. Recent information is presented regarding the effect of pregnancy on BMR, TEE, diet-induced thermogenesis, and physical activity. The validity of energy intake (EI) data recently assessed in well-nourished pregnant women was evaluated using information regarding energy metabolism during pregnancy. The results show that underreporting of EI is common during pregnancy and indicate that additional longitudinal studies, taking the total energy budget during pregnancy into account, are needed to satisfactorily define energy requirements during the three trimesters of gestation.

  12. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane

    Science.gov (United States)

    Sousa, Leilismara; Garcia, Israel J. P.; Costa, Tamara G. F.; Silva, Lilian N. D.; Renó, Cristiane O.; Oliveira, Eneida S.; Tilelli, Cristiane Q.; Santos, Luciana L.; Cortes, Vanessa F.; Santos, Herica L.; Barbosa, Leandro A.

    2015-01-01

    Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1), iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5%) than in women and was associated with an increase (446%) in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS) and an increase (327%) in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132%) in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels. PMID:26197432

  13. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  14. [The effect of exogenous antioxidants on the antioxidant status of erythrocytes and hepcidin content in blood of patients with disorders of iron metabolism regulation].

    Science.gov (United States)

    Shcherbinina, S P; Levina, A A; Lisovskaia, I L; Ataullakhanov, F I

    2013-01-01

    In many diseases associated with impairments in iron metabolism, erythrocytes exhibit an increased sensitivity to oxidative stress induced in vitro. In this study, we have examined the antioxidant status of erythrocytes from healthy donors and from 12 patients with disorders of iron homeostasis by measuring the extent of t-BHP-induced hemolysis in vitro. The extent of hemolysis observed with patient erythrocytes was significantly higher than that observed in experiment with normal cells. After therapeutic infusions of the antioxidants mexidol or emoxypin, oxidative hemolysis in patients was restored to normal values and blood hepcidin content increased significantly. A significant correlation was observed between hepcidin concentration after treatment and t-BHP-induced hemolysis before treatment. These data suggest that antioxidants may exert a favorable effect under pathological conditions associated with iron overload disease.

  15. Optimization of an in vitro system to study the exo-erythrocytic stage of the human malaria parasite, Plasmodium falciparum

    CSIR Research Space (South Africa)

    Rossouw, C

    2010-02-01

    Full Text Available scaffold and harvesting cells via the temperature change is currently being scaled up and a prototype bioreactor has been developed. Optimization of an in vitro system to study the exo-erythrocytic stage of the human Malaria Parasite, Plasmodium... hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. American Journal of Tropical Medicine and Hygeine 74:708-715. [4] Shor L, Güçeri S, Wen X, Gandhi M, Sun W. 2007...

  16. Comparison study of trapped water in human erythrocytes by EPC and DSC method and its application

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Gang; HE; Liqun; GUO; Xiaojie; LIU; Zhong; LUO; Dawei

    2004-01-01

    The novel differential scanning calorimetry method for determining trapped water volume of human red blood cell during freezing process has been reexamined. Results show that the final erythrocyte volume is 53% of its isotonic volume after freezing to -40℃. An electronic particle counter (MultisizerTM III, Beckman Coulter Inc., USA) was used to measure cell volume changes in response to hypertonic solution. Using this approach, when extracellular solution was 3186 mOsm, the equilibrium cell volume was found to be 57% of its isotonic value. Both results indicate that 34%-40% of intracellular water is trapped and cannot respond to osmotic difference between intra- and extracellular solution. These findings are consistent with the published data: at least 20%-32% of the isotonic cell water volume is retained within RBCs during freezing. Some applications of the values of trapped water are addressed.

  17. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. (State Univ. of New York, Buffalo (USA))

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  18. Metabolism of phthalates in humans.

    Science.gov (United States)

    Frederiksen, Hanne; Skakkebaek, Niels E; Andersson, Anna-Maria

    2007-07-01

    Phthalates are synthetic compounds widely used as plasticisers, solvents and additives in many consumer products. Several animal studies have shown that some phthalates possess endocrine disrupting effects. Some of the effects of phthalates seen in rats are due to testosterone lowering effects on the foetal testis and they are similar to those seen in humans with testicular dysgenesis syndrome. Therefore, exposure of the human foetus and infants to phthalates via maternal exposure is a matter of concern. The metabolic pathways of phthalate metabolites excreted in human urine are partly known for some phthalates, but our knowledge about metabolic distribution in the body and other biological fluids, including breast milk, is limited. Compared to urine, human breast milk contains relatively more of the hydrophobic phthalates, such as di-n-butyl phthalate and the longer-branched, di(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl phthalate (DiNP); and their monoester metabolites. Urine, however, contains relatively more of the secondary metabolites of DEHP and DiNP, as well as the monoester phthalates of the more short-branched phthalates. This differential distribution is of special concern as, in particular, the hydrophobic phthalates and their metabolites are shown to have adverse effects following in utero and lactational exposures in animal studies.

  19. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    DEFF Research Database (Denmark)

    Brekke, O. L.; Hellerud, B. C.; Christiansen, D.

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant ......-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood. (C) 2011 Elsevier Ltd. All rights reserved.......The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant...... were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor...

  20. Rapid degradation of D- and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Momand, J.; Clarke, S.

    1987-12-01

    The authors have been interested in the metabolic fate of proteins containing aspartyl succinimide (Asu) residues. These residues can be derived from the spontaneous rearrangement of Asp and Asn residues and from the spontaneous demethylation of enzymatically methylated L-isoAsp and D-Asp residues. Incubation of the synthetic hexapeptide N-Ac-Val-Tyr-Pro-Asu-Gly-Ala with the cytosolic fraction of human erythrocytes resulted in rapid cleavage of the prolyl-aspartyl succinimide bond producing the tripeptide N-Ac-Val-Try-Pro. The rate of this reaction is equal for both L- and D-Asu-containing peptides and is 10-fold greater that the rate of cleavage of a corresponding peptide containing a normal Pro-Asp linkage. When the aspartyl succinimide ring was replaced with an isoaspartyl residue, the cleavage rate was about 5 times that of the normal Pro-Asp peptide. The tripeptide-producing activity copurified on DEAE-cellulose chromatography with an activity that cleaves N-carbobenzoxy-Gly-Pro-4-methylcoumarin-7-amide, a post-proline endopeptidase substrate. These two activities were both inhibited by an antiserum to rat brain post-proline endopeptidase, and it appears that they are catalyzed by the same enzyme. This enzyme has a molecular weight of approximately 80,000 and is covalently labeled and inhibited by (/sup 3/H) diisopropyl fluorophosphate. The facile cleavage of the succinimide- and isoaspartyl-containing peptides by this post-proline endopeptidase suggests that it may play a role in the metabolism of peptides containing altered aspartyl residues.

  1. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    Science.gov (United States)

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  2. A novel method for measuring the ATP-related compounds in human erythrocytes.

    Science.gov (United States)

    Aragon-Martinez, Othoniel Hugo; Galicia, Othir; Isiordia-Espinoza, Mario Alberto; Martinez-Morales, Flavio

    2014-01-01

    The ATP-related compounds in whole blood or red blood cells have been used to evaluate the energy status of erythrocytes and the degradation level of the phosphorylated compounds under various conditions, such as chronic renal failure, drug monitoring, cancer, exposure to environmental toxics, and organ preservation. The complete interpretation of the energetic homeostasis of erythrocytes is only performed using the compounds involved in the degradation pathway for adenine nucleotides alongside the uric acid value. For the first time, we report a liquid chromatographic method using a diode array detector that measures all of these compounds in a small human whole blood sample (125 μL) within an acceptable time of 20 min. The stability was evaluated for all of the compounds and ranged from 96.3 to 105.1% versus the day zero values. The measurement had an adequate sensitivity for the ATP-related compounds (detection limits from 0.001 to 0.097 μmol/L and quantification limits from 0.004 to 0.294 μmol/L). This method is particularly useful for measuring inosine monophosphate, inosine, hypoxanthine, and uric acid. Moreover, this assay had acceptable linearity (r > 0.990), precision (coefficients of variation ranged from 0.1 to 2.0%), specificity (similar retention times and spectra in all samples) and recoveries (ranged from 89.2 to 104.9%). The newly developed method is invaluable for assessing the energetic homeostasis of red blood cells under diverse conditions, such as in vitro experiments and clinical settings.

  3. Effect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability.

    Science.gov (United States)

    Arduini, A; Rossi, M; Mancinelli, G; Belfiglio, M; Scurti, R; Radatti, G; Shohet, S B

    1990-01-01

    In this study we examined the effect of carnitine and acetylcarnitine on the human erythrocyte membrane stability and membrane deformability. Since erythrocyte membranes are impermeable to these compounds, we resealed erythrocyte ghosts in the presence of different concentrations of carnitine or acetylcarnitine. Resealed ghosts can be adequately studied in their cellular deformability and membrane stability properties by means of ektacytometry. Both carnitine and acetylcarnitine alter the membrane stability but not membrane deformability of the red cell membrane. Resealed ghosts containing 20, 50, 150, and 300 microM carnitine had 1.1, 1.6, 0.9, and 0.7 times the normal stability. While resealed ghosts containing 20, 50, 150, and 300 microM acetylcarnitine had 1.1, 1.5, 1.3, and 1.2 times the normal stability. Such changes were found to be reversible. We also conducted SDS PAGE of cytoskeletal membrane proteins from membrane fragments and residual membranes produced during membrane stability analysis, and unsheared resealed membranes in those samples where we observed an increase or a decrease of membrane stability. No changes in the cytoskeletal membrane proteins were noticed, even when the samples, prior SDS PAGE analysis, were treated with or without dithiothreitol. In addition, fluorescence steady state anisotropy of DPH in the erythrocyte membrane treated with carnitine or acetylcarnitine shows no modification of the lipid order parameter. Our results would suggest that both carnitine and its acetyl-ester, at physiological concentrations, may increase membrane stability in mature erythrocytes, most likely via a specific interaction with one or more cytoskeletal proteins, and that this effect would manifest when the erythrocytes are subjected to high shear stress.

  4. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes

    DEFF Research Database (Denmark)

    Beaudet, Julie M; Mansur, Leandra; Joo, Eun Ji;

    2014-01-01

    expressing VAR2CSA on the erythrocyte surface. This protein adheres to a low-sulfated chondroitin sulfate-A found in placental tissue causing great harm to both mother and developing fetus. In rare cases, the localization of infected erythrocytes to the placenta can even result in the vertical transmission...

  5. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles.

    Science.gov (United States)

    Pajnič, Manca; Drašler, Barbara; Šuštar, Vid; Krek, Judita Lea; Štukelj, Roman; Šimundić, Metka; Kononenko, Veno; Makovec, Darko; Hägerstrand, Henry; Drobne, Damjana; Kralj-Iglič, Veronika

    2015-03-28

    We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: the effect of CB nanomaterial was assessed by the average number and distribution of erythrocyte shape types (discocytes, echinocytes, stomatocytes) and of vesicles in test suspensions, with respect to control suspensions. Ensembles of representative images were created and analyzed using computer aided image processing and statistical methods. In a population study, blood of 14 healthy human donors was incubated with CB nanomaterial. Blood cell parameters (concentration of different cell types, their volumes and distributions) were assessed. We found that CB nanomaterial formed micrometer-sized agglomerates in citrated and phosphate buffered saline, in diluted blood and in blood plasma. These agglomerates interacted with erythrocyte membranes but did not affect erythrocyte shape locally or globally. CB nanomaterial agglomerates were found to mediate attractive interaction between blood cells and to present seeds for formation of agglomerate - blood cells complexes. Distortion of disc shape of resting platelets due to incubation with CB nanomaterial was not observed. CB nanomaterial induced bursting of GUVs while the shape of the remaining vesicles was on the average more elongated than in control suspension, indicating indirect osmotic effects of CB nanomaterial. CB nanomaterial interacts with membranes of blood cells but does not have a direct effect on local or global membrane shape in physiological in vitro conditions. Blood cells and GUVs are convenient and ethically acceptable

  6. Agglutination of human erythrocytes by the interaction of Zn(2+)ion with histidine-651 on the extracellular domain of band 3.

    Science.gov (United States)

    Kiyotake, Kento; Ochiai, Hideharu; Yamaguchi, Takeo

    2016-05-01

    Clustering of band 3, chloride/bicarbonate exchanger, has been reported in Zn(2+)-treated human erythrocytes. However, the agglutination of human erythrocytes is also induced by the interaction of Zn(2+)ion with histidine on band 3. Identification of histidine that interacts with Zn(2+)ion remains to be determined. The Zn(2+)-induced agglutination of human erythrocytes was unaffected by chymotrypsin cleavage of the small loop region containing His-547 in the extracellular domain of band 3. On the other hand, papain digestion of the large loop region containing His-651 in band 3 inhibited such Zn(2+)-induced agglutination. Moreover, Zn(2+)-induced erythrocyte agglutination was inhibited by the peptide (ARGWVIHPLG) containing His-651, but not by the peptide such as ARGWVIRPLG, which His-651 was substituted by arginine. Among 10 kinds of animal erythrocytes tested, interestingly, no agglutination by Zn(2+)ions was observed in cow cells only that the forth amino acid in the upstream from His-669 on the large loop of cow band 3 is aspartate (Asp-665) instead of glycine. As expected, the agglutination of human erythrocytes by Zn(2+) ions was inhibited in the presence of aspartate. These data indicate that the interaction of Zn(2+) ion with His-651 residue of band 3 plays an important role in the Zn(2+)-induced agglutination of human erythrocytes.

  7. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  8. Sodium chlorite increases production of reactive oxygen species that impair the antioxidant system and cause morphological changes in human erythrocytes.

    Science.gov (United States)

    Ali, Shaikh Nisar; Mahmood, Riaz

    2017-04-01

    Sodium chlorite (NaClO2 ) is used in the production of chlorine dioxide for bleaching and stripping of textiles, pulp, and paper. It is also used as disinfectant in municipal water treatment and as a component in therapeutic rinses and gels. The effect of NaClO2 on human erythrocytes has been studied under in vitro conditions. Incubation of 5% suspension of erythrocytes with NaClO2 (0.1-2.0 mM) at 37°C for 30 min resulted in marked cell lysis (1.2-3.8 fold) and increased their osmotic fragility. Several parameters were assayed in cell lysates prepared from NaClO2 -treated and -untreated (control) erythrocytes. Compared to controls, exposure to NaClO2 caused significant increase in protein oxidation (1.1-8.07 fold), lipid peroxidation (1.08-4.95 fold) with decrease in total sulfhydryl (-5 to -61%), and glutathione levels (-7 to -86%). Methemoglobin content was tremendously increased, by 5-52 fold when compared to control, while methemoglobin reductase activity decreased (-17 to -93%) upon NaClO2 treatment. NaClO2 enhanced the generation of reactive oxygen species by 3-21 fold and lowered the metal reducing and free radical quenching ability of erythrocytes. It also caused an increase in nitric oxide levels (2.7-15.4 fold) showing generation of nitrosative stress too. The activities of major antioxidant and membrane bound enzymes were significantly altered. Gross morphological changes, from discocytes to echinocytes, were seen in NaClO2 -treated erythrocytes under electron microscope. These results show that NaClO2 induces oxidative stress in human erythrocytes, damages the membrane, and impairs the cellular antioxidant defence system. This oxidative damage can shorten the life span of erythrocytes in blood resulting in red cell senescence. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1343-1353, 2017. © 2016 Wiley Periodicals, Inc.

  9. SO4(=) uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes.

    Science.gov (United States)

    Morabito, Rossana; Remigante, Alessia; Di Pietro, Maria Letizia; Giannetto, Antonino; La Spada, Giuseppina; Marino, Angela

    2017-02-01

    Preconditioning (PC) is an adaptive response to a mild and transient oxidative stress, shown for the first time in myocardial cells and not described in erythrocytes so far. The possible adaptation of human erythrocytes to hydrogen peroxide (H2O2)-induced oxidative stress has been here verified by monitoring one of band 3 protein functions, i.e., Cl(-)/HCO3(-) exchange, through rate constant for SO4(=) uptake measurement. With this aim, erythrocytes were exposed to a mild and transient oxidative stress (30 min to either 10 or 100 μM H2O2), followed by a stronger oxidant condition (300- or, alternatively, 600-μM H2O2 treatment). SO4(=) uptake was measured by a turbidimetric method, and the possible role of catalase (CAT, significantly contributing to the anti-oxidant system in erythrocytes) in PC response has been verified by measuring the rate of H2O2 degradation. The preventive exposure of erythrocytes to 10 μM H2O2, and then to 300 μM H2O2, significantly ameliorated the rate constant for SO4(=) uptake with respect to 300 μM H2O2 alone, showing thus an adaptive response to oxidative stress. Our results show that (i) SO4(=) uptake measurement is a suitable model to monitor the effects of a mild and transient oxidative stress in human erythrocytes, (ii) band 3 protein anion exchange capability is retained after 10 μM H2O2 treatment, (iii) PC response induced by the 10 μM H2O2 pretreatment is clearly detected, and (iv) PC response, elicited by low-concentrated H2O2, is mediated by CAT enzyme and does not involve band 3 protein tyrosine phosphorylation pathways. Erythrocyte adaptation to a short-term oxidative stress may serve as a basis for future studies about the impact of more prolonged oxidative events, often associated to aging, drug consumption, chronic alcoholism, hyperglycemia, or neurodegenerative diseases.

  10. AGING OF HUMAN MATURE ERYTHROCYTES IS LIKE A PROCESS OF APOPTOSIS IN ENUCLEATED CELL

    Institute of Scientific and Technical Information of China (English)

    潘华珍; 冯立明; 卢红; 许彩民; 张平诚; 张之南

    1998-01-01

    Apoptosis of nucleated cells is well known, but bow about the unnucleated cells is still not elucidated.In the present paper, the morphological and biochemical features of the aged eryshrocytes were observed and compared with the characteristic events of apoptosis. Membrane of aged erythrocytes tends to shrink,protrude, from vesicle and lose lipid asymmetry. Aged erythrocytes were removed by phagocytosis. Both of the events are very similar to the apoptotic nucleated cells. The authors suggested that aging of erythrocytes is also a process of apoptosis.

  11. An expanding toolkit for preclinical pre-erythrocytic malaria vaccine development: bridging traditional mouse malaria models and human trials.

    Science.gov (United States)

    Steel, Ryan Wj; Kappe, Stefan Hi; Sack, Brandon K

    2016-12-01

    Malaria remains a significant public health burden with 214 million new infections and over 400,000 deaths in 2015. Elucidating relevant Plasmodium parasite biology can lead to the identification of novel ways to control and ultimately eliminate the parasite within geographic areas. Particularly, the development of an effective vaccine that targets the clinically silent pre-erythrocytic stages of infection would significantly augment existing malaria elimination tools by preventing both the onset of blood-stage infection/disease as well as spread of the parasite through mosquito transmission. In this Perspective, we discuss the role of small animal models in pre-erythrocytic stage vaccine development, highlighting how human liver-chimeric and human immune system mice are emerging as valuable components of these efforts.

  12. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  13. Effect of lead on lipid peroxidation, phospholipids composition, and methylation in erythrocyte of human.

    Science.gov (United States)

    Shafiq-ur-Rehman

    2013-09-01

    Lead (Pb) is one of the most abundant heavy metals on earth considered as number one environmental persistent toxin and health hazard affecting millions of people in all age groups. After entering bloodstream, 99% of Pb is accumulated in erythrocytes and causes poisoning. Toxic Pb effects on erythrocytes membrane's composition of phosphatidyl serine (PS), phosphatidyl ethanolamine (PE), phosphatidyl choline (PC), and sphingomyelin (SM), and phospholipids transmethylation were determined. Lipid peroxidation in Pb-exposed erythrocytes was evaluated as malondialdehyde (MDA) formation in presence of Fe and vitamin E to understand severity of Pb toxicity and its mitigation. Pb (0.5-5.0 μM) degraded PS (12 to 31%, P phospholipids in membranes (34, 41, and 50%, respectively, with 0.5, 2.5, and 5.0 μM). Pb-induced dose-related MDA production (P phospholipids, inhibition of transmethylation, and exasperated phospholipid peroxidative damage are the active phenomena of Pb toxicity in erythrocytes.

  14. Resveratrol up-regulates the erythrocyte plasma membrane redox system and mitigates oxidation-induced alterations in erythrocytes during aging in humans.

    Science.gov (United States)

    Pandey, Kanti Bhooshan; Rizvi, Syed Ibrahim

    2013-06-01

    Reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative damage followed by disturbed cellular homeostasis is involved in aging and related consequences. Lipid peroxidation, post-translational modifications of proteins, and an impaired defense system due to increased oxidative stress jeopardize cell fate and functions, resulting in cell senescence. Resveratrol, a natural stilbene, has extensively been reported to elicit a plethora of health-promoting effects. The present study carried out on 97 healthy human subjects (62 males and 35 females) of both sexes provides experimental evidence that resveratrol confers ability to up-regulate the plasma membrane redox system (PMRS) along with ascorbate free radical reductase, a compensatory system operating in the cell to maintain cellular redox state. Furthermore, resveratrol provided significant protection against lipid peroxidation and protein carbonylation and restored the cellular redox homeostasis measured in terms of glutathione (GSH) and sulfhydryl (-SH) group levels during oxidation injury in erythrocytes of different age groups in humans. Findings suggest a possible role of resveratrol in retardation of age-dependent oxidative stress.

  15. Effect of pH and temperature on the binding of bilirubin to human erythrocyte membranes

    Indian Academy of Sciences (India)

    H Rashid; Mohammad K Ali; S Tayyab

    2000-06-01

    Effect of pH and temperature on the binding of bilirubin to human erythrocyte membranes was studied by incubating the membranes at different pH and temperatures and determining the bound bilirubin. At all pH values, the amount of membrane-bound bilirubin increased with the increase in bilirubin-to-albumin molar ratios (B/As), being highest at lower pH values in all cases. Further, linear increase in bound bilirubin with the increase in bilirubin concentration in the incubate was observed at a constant B/A and at all pH values. However, the slope value increased with the decrease in pH suggesting more bilirubin binding to membranes at lower pH values. Increase in bilirubin binding at lower pH can be explained on the basis of increased free bilirubin concentration as well as more conversion of bilirubin dianion to monoanion. Temperature dependence of bilirubin binding to membranes was observed within the temperature range of 7°–60°C, showing minimum binding at 27°C and 37°C which increased on either side. Increase in bilirubin binding at temperatures lower than 20°C and higher than 40°C can be ascribed to the change in membrane topography as well as bilirubin-albumin interaction.

  16. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Grzyb, Tomasz, E-mail: tgrzyb@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Śniadecki, Zbigniew [Polish Academy of Sciences, Institute of Molecular Physics (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Idzikowski, Bogdan [Polish Academy of Sciences, Institute of Molecular Physics (Poland); Lis, Stefan [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-10-15

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu{sup 3+}- or Tb{sup 3+}-doped GdF{sub 3}-, NaGdF{sub 4}-, and BaGdF{sub 5}-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF{sub 5}-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF{sub 5}-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles’ magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  17. Entamoeba histolytica Phagocytosis of Human Erythrocytes Involves PATMK, a Member of the Transmembrane Kinase Family

    Science.gov (United States)

    Boettner, Douglas R; Huston, Christopher D; Linford, Alicia S; Buss, Sarah N; Houpt, Eric; Sherman, Nicholas E; Petri, William A

    2008-01-01

    Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMKΔ932). Expression of the carboxy-truncation of PATMKΔ932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection. PMID:18208324

  18. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Directory of Open Access Journals (Sweden)

    Douglas R Boettner

    2008-01-01

    Full Text Available Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK, was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i incubation of ameba with anti-PATMK antibodies; (ii PATMK mRNA knock-down using a novel shRNA expression system; and (iii expression of a carboxy-truncation of PATMK (PATMK(delta932. Expression of the carboxy-truncation of PATMK(delta932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  19. Protective role of a novel human erythrocyte-derived depressing factor on blood vessels in rats

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The protective role of a human erythrocyte-derived depressing factor (EDDF) on blood vessels was evaluated. The experiments were carried out on 25male Wistar rats aged 6-8 weeks, which were divided into control (n = 8), calcium overload (n = 8) and NG-L-nitro-arginine hypertensive model groups (L-NNA,n = 9), respectively. The isolated vascular ring perfusion assay, two-photon laser scanning fluorescence microscopy (TPM) and transmitted electron microscope were used to examine the effect of EDDF on vascular function and ultrastructure. Results showed that the contractile response of calcium overload rats and L-NNA rats to phenylephrine (PE) was significantly enhanced compared with that of the control (P < 0.05), and EDDF (10-3 g @mL-1) remarkably decreased the vascular contractile response of control's and calcium overload rats (P < 0.05),while EDDF had no effect on that of L-NNA rats. EDDF also alleviated the ultrastructural lesion of aorta VSMC in calcium overload rats by easing the abnormal in the nucleus, mitochondrion and other organell. It is concluded that EDDF could efficiently protect blood vessels against injury by influencing Ca2+ transport and ameliorating the lesion of VSMC, and further supported the hypothesis that the NO-cGMP pathway might contribute to the vasodilation and partially antihypertensive mechanism of EDDF.``

  20. Immunoaffinity purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes

    Institute of Scientific and Technical Information of China (English)

    Driss Mountassif; Tarik Baibai; Latifa Fourrat; Adnane Moutaouakkil; Abdelghani Iddar; M'Hammed Sa(i)d El Kebbaj; Abdelaziz Soukri

    2009-01-01

    A new procedure utilizing immunoaffinity column chromatography has been used for the purification of glyceraldehyde-3-phosphate dehydrogenase(GAPDH,EC 1.2.1.12)from human erythrocytes.The comparison between this rapid method(one step)and the traditional procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography shows that the new method gives a highest specific activity with a highest yield in a short time.The characterization of the purified GAPDH reveals that the native enzyme is a homotetramer of ~150 kDa with an absolute specificity for the oxidized form of nicotinamide adenine dinucleotide(NAD+).Western blot analysis using purified monospecific poly clonal antibodies raised against the purified GAPDH showed a singie 36 kDa band corresponding to the enzyme subunit.Studies on the effect of temperature and pH on enzyme activity revealed optimal values of about 43℃ and 8.5, respectively.The kinetic par ameters were also calculated:the Vmax was 4.3 U/mg and the Km values against G3P and NAD+ were 20.7and 17.8μM,respectively.The new protocol described represents a simple,economic,and reproducible tool for the purification Of GAPDH and can be used for other proteins.

  1. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    Science.gov (United States)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-10-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu3+- or Tb3+-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  2. Structurally Similar but Functionally Diverse ZU5 Domains in Human Erythrocyte Ankyrin

    Energy Technology Data Exchange (ETDEWEB)

    Yasunaga, Mai; Ipsaro, Jonathan J.; Mondragón, Alfonso (NWU)

    2014-10-02

    The metazoan cell membrane is highly organized. Maintaining such organization and preserving membrane integrity under different conditions are accomplished through intracellular tethering to an extensive, flexible protein network. Spectrin, the principal component of this network, is attached to the membrane through the adaptor protein ankyrin, which directly bridges the interaction between {beta}-spectrin and membrane proteins. Ankyrins have a modular structure that includes two tandem ZU5 domains. The first domain, ZU5A, is directly responsible for binding {beta}-spectrin. Here, we present a structure of the tandem ZU5 repeats of human erythrocyte ankyrin. Structural and biophysical experiments show that the second ZU5 domain, ZU5B, does not participate in spectrin binding. ZU5B is structurally similar to the ZU5 domain found in the netrin receptor UNC5b supramodule, suggesting that it could interact with other domains in ankyrin. Comparison of several ZU5 domains demonstrates that the ZU5 domain represents a compact and versatile protein interaction module.

  3. The hemolytic component of cancer anemia: effects of osmotic and metabolic stress on the erythrocytes of rats bearing multifocal inoculations of the Walker 256 tumor

    Directory of Open Access Journals (Sweden)

    Vido A.A.

    2000-01-01

    Full Text Available Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells. The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats in the absence of bleeding. The development of anemia was correlated (r2 = 0.86 with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01 on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC, the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.

  4. Effects ofPlasmodium falciparum-infected erythrocytes on matrix metalloproteinase-9 regulation in human microvascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Sarah D Alessandro; Nicoletta Basilico; Mauro Prato

    2013-01-01

    Objective:To investigate the regulation of matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in human microvascular endothelium(HMEC-1) exposed to erythrocytes infected by different strains ofPlasmodium falciparum (P. falciparum).Methods:HMEC-1 cells were co-incubated for72 h with erythrocytes infected by late stage trophozoite of D10(chloroquine-sensitive) orW2(chloroquine-resistant)P. falciparum strains.Cell supernatants were then collected and the levels of pro- or active gelatinasesMMP-9 andMMP-2 were evaluated by gelatin zymography and densitometry.The release of pro-MMP-9,MMP-3,MMP-1 andTIMP-1 proteins was analyzed by western blotting and densitometry.Results:Infected erythrocytes inducedde novo proMMP-9 andMMP-9 release.Neither basal levels of proMMP-2 were altered, nor activeMMP-2 was found.MMP-3 andMMP-1 secretion was significantly enhanced, whereas basalTIMP-1 was unaffected.All effects were similar for both strains. Conclusions:P. falciparum parasites, either chloroquine-sensitive or -resistant, induce the release of activeMMP-9 protein from human microvascular endothelium, by impairing balances between proMMP-9 and its inhibitor, and by enhancing the levels of its activators.This work provides new evidence onMMP involvement in malaria, pointing atMMP-9 as a possible target in adjuvant therapy.

  5. Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy.

    Science.gov (United States)

    Etcheverry, Sebastián; Gallardo, María José; Solano, Pablo; Suwalsky, Mario; Mesquita, Oscar N; Saavedra, Carlos

    2012-10-01

    We present a real-time method to measure the amplitude of thermal fluctuations in biological membranes by means of a new treatment of the defocusing microscopy (DM) optical technique. This approach was also applied to study the deformation of human erythrocytes to its echinocyte structure. This was carried out by making three-dimensional shape reconstructions of the cell and measuring the thermal fluctuations of its membrane, as the cell is exposed to the anti-inflammatory drug naproxen and as it recovers its original shape, when it is subsequently cleansed of the drug. The results showed biomechanical changes in the membrane even at low naproxen concentration (0.2 mM). Also, we found that when the cell recovered its original shape, the membrane properties were different compared to the nondrugged initial erythrocyte, indicating that the drug administration-recovery process is not completely reversible.

  6. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes.

    Science.gov (United States)

    Sidhaye, Aditi A; Bhuran, Kanchan C; Zambare, Sneha; Abubaker, Munna; Nirmalan, Niroshini; Singh, Kamalinder K

    2016-10-19

    The intra-erythrocytic development of the malarial parasite is dependent on active uptake of nutrients, including human serum albumin (HSA), into parasitized red blood cells (pRBCs). We have designed HSA-based nanoparticles as a potential drug-delivery option for antimalarials. Artemether-loaded nanoparticles (AANs) were designed and antimalarial activity evaluated in vitro/in vivo using Plasmodium falciparum/Plasmodium berghei species, respectively. Selective internalization of AAN into Plasmodium-infected RBCs in preference to healthy erythrocytes was observed using confocal imaging. In vitro studies showed 50% dose reduction for AAN as compared with drug-only controls to achieve IC50 levels of inhibition. The nanoparticles exhibited twofold higher peak drug concentrations in RBCs with antimalarial activity at 50% of therapeutic doses in P. bergei infected mice. Novel HSA-based nanoparticles offer safe and effective approach for selective targeting of antimalarial drugs.

  7. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the ‘Sinton and Mulligan’ Stipplings in the Cytoplasm of Monkey and Human Erythrocytes

    Science.gov (United States)

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J.

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum. PMID:27732628

  8. Sulphate and Chloride-Dependent Potassium Transport in Human Erythrocytes are Affected by Crude Venom from Nematocysts of the Jellyfish Pelagia noctiluca

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2013-12-01

    Full Text Available Background: It has been reported that biologically active compounds extracted from Cnidaria venom may induce damage by oxidative stress. Erythrocytes are constantly exposed to oxidative stresses, which can contribute to sulphydril (SH- group oxidation and cell membrane deformability accompanied with activation of K-Cl co-transport and inhibition of anion transport. In this regard, Band 3 protein is responsible for mediating the electroneutral exchange of chloride (Cl- for bicarbonate (HCO3-, particularly in erythrocytes, where it is the most abundant membrane protein. The aim of this study was to elucidate the effect of crude venom extracted from Pelagia noctiluca nematocysts on Band 3 -mediated anion transport in human erythrocytes. Methods: Erythrocytes were tested for SO42- uptake, K+ efflux, glutathione (GSH levels and concentration of SH- groups. Results: The rate constant of SO42- uptake decreased progressively to 58% of control with increasing venom doses, and showed a 28% decrease after 2 mM NEM treatment. These effects can be explained by oxidative stress, which was reflected by decreased GSH levels in venom-treated erythrocytes. Hence, the decreased efficiency of anion transport may be due to changes in Band 3 structure caused by SH-group oxidation and reduced GSH concentration. In addition, an increased Cl--dependent K+ efflux was observed in venom-treated erythrocytes. Conclusion: Our results suggest that crude venom from Pelagia noctiluca alters cell membrane transport in human erythrocytes.

  9. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment.

    Science.gov (United States)

    Mambrini, Giovanni; Mandolini, Marco; Rossi, Luigia; Pierigè, Francesca; Capogrossi, Giovanni; Salvati, Patricia; Serafini, Sonja; Benatti, Luca; Magnani, Mauro

    2017-01-30

    Erythrocyte-based drug delivery systems are emerging as potential new solutions for the release of drugs into the bloodstream. The aim of the present work was to assess the performance of a fully automated process (EDS) for the ex-vivo encapsulation of the pro-drug dexamethasone sodium phosphate (DSP) into autologous erythrocytes in compliance with regulatory requirements. The loading method was based on reversible hypotonic hemolysis, which allows the opening of transient pores in the cell membrane to be crossed by DSP. The efficiency of encapsulation and the biochemical and physiological characteristics of the processed erythrocytes were investigated in blood samples from 34 healthy donors. It was found that the processed erythrocytes maintained their fundamental properties and the encapsulation process was reproducible. The EDS under study showed greater loading efficiency and reduced variability compared to previous EDS versions. Notably, these results were confirmed using blood samples from Ataxia Telangiectasia (AT) patients, 9.33±1.40 and 19.41±2.10mg of DSP (mean±SD, n=134) by using 62.5 and 125mg DSP loading quantities, respectively. These results support the use of the new EDS version 3.2.0 to investigate the effect of erythrocyte-delivered dexamethasone in regulatory trials in patients with AT.

  10. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects.

    Directory of Open Access Journals (Sweden)

    Galateja Jordakieva

    Full Text Available BACKGROUND AND AIMS: Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC. METHODS AND RESULTS: BALB/c mice (n = 20 were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10 or the non-specific antigen ovalbumin (OVA (n = 10. A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42 at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. CONCLUSION: Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens

  11. [Pesticide detection in Costarican vegetables based on the inhibition of serum and erythrocytic human cholinesterases].

    Science.gov (United States)

    Nevermann, Karl Schosinsky; Guzmán, Eugenia Quintana

    2004-12-01

    A simple and low cost method able to detect the presence of pesticides, organophosphates and carbamates based on the inhibition of serum and erythrocytic cholinesterases, was used in lettuce (Lactuca sativa), cilantro (Coriandum santivum) and celery (Apium graveolens) obtained from the Ferias del Agricultor from Valle Central of Costa Rica. The percentage inhibition of cholinesterases is related to the presence of plaguicide in the vegetable. Thirteen percent of the analyzed samples were positive for plaguicides using serum cholinesterase and 33% for erythrocytic cholinesterase. Washing and cooking the vegetables does not eliminate the presence of plaguicides but they lower slightly the concentration. Statistical evidence (p = 0.0001) indicates that erythrocytic cholinesterase has higher analytical sensitivity than serum cholinesterase. It is very important to establish the degree of contamination with pesticides in these agricultural products because they are exposed to direct contamination by fumigation, soil contamination and irrigation water, and are products that are often consumed without adequate cooking and washing.

  12. [Regulation of electrokinetic properties of human blood erythrocytes following exposure to emotional stressor].

    Science.gov (United States)

    Matiushichev, V B; Shamratova, V G

    2003-01-01

    Using the factor analysis, we studied the influence of psychoemotional strain, experienced by students under taking examinations, on the electrophoretic mobility of their erythrocytes. Under stress condition, redistribution of shares of cells with different mobility occurs, directed to the maintenance of the optimal value of the index average level in the total pool of erythrocytes of an individual. Under stress, five factors, taken in different combinations, participate in the control of erythrokinetic properties: those of restriction of cell accumulation with abnormal mobility, and of the population quantity heterogeneity control, in addition to factors of total functional condition, emotional tension, and individual psychological steadiness of students before examination. The expression and character of stress influence on the state of erythrocyte population depend on the intensity of the functional load of the organism.

  13. Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8.

    Science.gov (United States)

    Lux, S E; Tse, W T; Menninger, J C; John, K M; Harris, P; Shalev, O; Chilcote, R R; Marchesi, S L; Watkins, P C; Bennett, V

    1990-06-21

    Hereditary spherocytosis (HS) is one of the most common hereditary haemolytic anaemias. HS red cells from both autosound dominant and recessive variants are spectrin-deficient, which correlates with the severity of the disease. Some patients with recessive HS have a mutation in the spectrin alpha-2 domain (S.L.M. et al., unpublished observations), and a few dominant HS patients have an unstable beta-spectrin that is easily oxidized, which damages the protein 4.1 binding site and weakens spectrin-actin interactions. In most patients, however, the cause of spectrin deficiency is unknown. The alpha- and beta-spectrin loci are on chromosomes 1 and 14 respectively. The only other genetic locus for HS is SPH2, on the short arm of chromosome 8 (8p11). This does not correspond to any of the known loci of genes for red cell membrane proteins including protein 4.1 (1p36.2-p34), the anion exchange protein (AE1, band 3; 17q21-qter), glycophorin C (2q14-q21), and beta-actin (7pter-q22). Human erythrocyte ankyrin, which links beta-spectrin to the anion exchange protein, has recently been cloned. We now show that the ankyrin gene maps to chromosome 8p11.2, and that one copy is missing from DNA of two unrelated children with severe HS and heterozygous deletions of chromosome 8 (del(8)(p11-p21.1)). Affected red cells are also ankyrin-deficient. The data suggest that defects or deficiency or ankyrin are responsible for HS at the SPH2 locus.

  14. Effects of darbepoetin injections on erythrocyte membrane transport protein expressions in humans

    DEFF Research Database (Denmark)

    Rentsch, R.; Damsgaard, Rasmus; Lundby, C.

    2006-01-01

    The present study investigated the effects of injected darbepoetin [novel erythropoietin stimulating protein (NESP)] on the density of three erythrocyte membrane transport proteins: the lactate-H+ cotransporter (monocarboxylate transporter 1), the chloride/bicarbonate exchanger 1 (anion exchanger 1......), and the water channel aquaporin 1. Thirteen subjects were injected with NESP once a week for 4 wk. Blood samples were obtained before, during, and after the injection period, and the erythrocyte transport proteins were determined by Western blotting. The NESP injections induced a transient increase...... (maximal increase +15%) (P transporter 1 protein was higher (maximal increase +43%) (P

  15. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes.

    Science.gov (United States)

    Maćczak, Aneta; Bukowska, Bożena; Michałowicz, Jaromir

    2015-01-01

    Bisphenol A (BPA) has been shown to provoke many deleterious impacts on human health, and thus it is now successively substituted by BPA analogues, whose effects have been poorly investigated. Up to now, only one study has been realized to assess the effect of BPA on human erythrocytes, which showed its significant hemolytic and oxidative potential. Moreover, no study has been conducted to evaluate the effect of BPA analogues on red blood cells. The purpose of the present study was to compare the impact of BPA and its selected analogues such as bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on hemolytic and morphological changes and hemoglobin oxidation (methemoglobin formation) of human erythrocytes. The erythrocytes were incubated with different bisphenols concentrations ranging from 0.5 to 500μg/ml for 1, 4 and 24h. The compounds examined caused hemolysis in human erythrocytes with BPAF exhibiting the strongest effect. All bisphenols examined caused methemoglobin formation with BPA inducing the strongest oxidative potential. Flow cytometry analysis showed that all bisphenols (excluding BPS) induced significant changes in erythrocytes size. Changes in red blood cells shape were conducted using phase contrast microscopy. It was noticed that BPA and BPAF induced echinocytosis, BPF caused stomatocytosis, while BPS did not provoke significant changes in shape of red blood cells. Generally, the results showed that BPS, which is the main substituent of bisphenol A in polymers and thermal paper production, exhibited significantly lower disturbance of erythrocyte functions than BPA.

  16. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes.

    Science.gov (United States)

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2016-08-01

    Nitrite/nitrate salts are used in fertilizers and as food preservatives. Human exposure to high levels of nitrite results in its uptake and subsequent entry into blood where it can interact with erythrocytes. We show that treatment of human erythrocytes with sodium nitrite (NaNO2 ) results in a dose-dependent increase in the production of reactive oxygen species. This was accompanied by a decrease in the antioxidant power which lowered the free radical quenching and metal-reducing ability. NaNO2 treatment also inhibited plasma membrane redox system (PMRS) of erythrocytes. These changes increase the susceptibility of erythrocytes to oxidative damage, decrease the antioxidant power of whole blood, and can be a major cause of nitrite-induced cellular toxicity.

  17. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  18. Effect of diet composition and mixture of selected food additives on the erythrocytic system and iron metabolism in peripheral blood of male rats

    Directory of Open Access Journals (Sweden)

    Joanna Sadowska

    2011-12-01

    Full Text Available   Background. Metabolic processes of food additives which are “exogenous xenobiotics” are catalysed, primarily, by enzymes located in microsomes of hepatocytes affiliated to P-450 cytochrome superfamily, containing iron. The aim of the study was to investigate the effect of diet composition and selected food additives on the erythrocyte system and iron metabolism in peripheral blood of male rats. Material and methods. The experiment was carried out on 30 male rats sorted into three equinumerous groups. For drinking animals received pure, settled tap water, animals from group III were receiving additionally an aqueous solution of sodium (nitrate, potassium nitrite, benzoic acid, sorbic acid and monosodium glutamate. Results. Ascertained a significant effect of changes in diet composition on the increase in hematocrit marker value and the count of red blood cells in blood of animals examined. Used food additives diminished hemoglobin concentration, hematocrit value and red blood cell count, diminishing also iron concentration in serum, the total iron binding capacity and transferrin saturation with iron. Conclusions. Analysis of the results allowed ascertain adverse changes in values of the erythrocytic system markers, occurring under the influence of the applied mixture of food additives. Used food additives change the iron metabolism, most likely from the necessity of applied xenobiotics biotransformation by heme-containing monoxygenases of P-450 cytochrome.  

  19. Purification and properties of an abrnomal glutathione reductace from human erythrocytes

    NARCIS (Netherlands)

    Staal, Gerard E.J.; Helleman, P.W.; Wael, J. de; Veeger, C.

    1969-01-01

    1. 1. Glutathione reductase (NAD(P)H: oxidized glutathione oxidoreductase, EC 1.6.4.2) from the erythrocytes of a patient with a decreased activity of the enzyme was purified 10 000 times (specific activity, 20 μmoles NADPH oxidized per min per mg protein) by column chromatography; estimated purity,

  20. Metabolism of red-cell lipids I. Incorporation in vitro of fatty acids into phospholipids from mature erythrocytes

    NARCIS (Netherlands)

    Mulder, E.; Deenen, L.L.M. van

    1965-01-01

    Erythrocytes freed from leucocytes and reticulocytes were demonstrated to incorporate fatty acids into their phosphoglycerides. This ability was decreased in the order rat, rabbit, man, ox and sheep. Lysis of the cells caused an increase of the rate of incorporation thereby abolishing the difference

  1. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    Science.gov (United States)

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop

  2. Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Cora Lilia Alvarez

    Full Text Available In human erythrocytes (h-RBCs various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages. A "3V" mixture containing isoproterenol (β-adrenergic agonist, forskolin (adenylate kinase activator and papaverine (phosphodiesterase inhibitor was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs, t-RBCs (trophozoite-infected RBCs and s-RBCs (schizont-infected RBCs showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ΔATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe] increased nonlinearly with parasitemia (from 2 to 12.5%. Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs showed 3.8-fold higher ΔATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ΔATP1 to 83-87% for h-RBCs and 63-74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300-900 nM and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ΔATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an

  3. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    M Florencia Leal Denis

    Full Text Available The peptide mastoparan 7 (MST7 triggered in human erythrocytes (rbcs the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe, interacting with P (purinergic receptors, can affect cell volume (Vr, we explored the dynamic regulation between Vr and ATPe.We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors.In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40-50% and swelling by 40-60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%.Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.

  4. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Iñigo Angulo-Barturen

    Full Text Available To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/- mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/- mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9 as a reference strain for model development. Pf3D7(0087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.

  5. Metabolic interactions of agrochemicals in humans.

    Science.gov (United States)

    Hodgson, Ernest; Rose, Randy L

    2008-06-01

    Agrochemicals and other xenobiotics are metabolized by xenobiotic-metabolizing enzymes (XMEs) to products that may be more or less toxic than the parent chemical. In this regard, phase-I XMEs such as cytochrome P450s (CYPs) are of primary importance. Interactions at the level of metabolism may take place via either inhibition or induction of XMEs. Such interactions have often been investigated, in vitro, in experimental animals, using subcellular fractions such as liver microsomes, but seldom in humans or at the level of individual XME isoforms. The authors have been investigating the metabolism of a number of agrochemicals by human liver microsomes and recombinant CYP isoforms and have recently embarked on studies of the induction of XMEs in human hepatocytes. The insecticides chlorpyrifos, carbaryl, carbofuran and fipronil, as well as the repellant DEET, are all extensively metabolized by human liver microsomes and, although a number of CYP isoforms may be involved, CYP2B6 and CYP3A4 are usually the most important. Permethrin is hydrolyzed by esterase(s) present in both human liver microsomes and cytosol. A number of metabolic interactions have been observed. Chlorpyrifos and other phosphorothioates are potent inhibitors of the CYP-dependent metabolism of both endogenous substrates, such as testosterone and estradiol, and exogenous substrates, such as carbaryl, presumably as a result of the interaction of highly reactive sulfur, released during the oxidative desulfuration reaction, with the heme iron of CYP. The hydrolysis of permethrin in human liver can be inhibited by chlorpyrifos oxon and by carbaryl. Fipronil can inhibit testosterone metabolism by CYP3A4 and is an effective inducer of CYP isoforms in human hepatocytes.

  6. Human metabolic interactions of environmental chemicals.

    Science.gov (United States)

    Hodgson, Ernest; Rose, Randy L

    2007-01-01

    Investigations utilizing recombinant human xenobiotic-metabolizing enzymes as well as human hepatocytes have revealed a number of interactions not only between different environmental chemicals (ECs) but also between ECs and endogenous metabolites. Organophosphorus insecticides (OPs) are potent inhibitors of the human metabolism of carbaryl, carbofuran, DEET and fipronil, as well as the jet fuel components, nonane and naphthalene. OPs are potent irreversible inhibitors of testosterone metabolism by cytochrome P450 (CYP) 3A4 and of estradiol metabolism by CYP3A4 and CYP1A2. All of these CYP inhibitions are believed to be due to the release of reactive sulfur during CYP-catalyzed oxidative desulfuration. It has also been shown that the esterase(s) responsible for the initial step in permethrin metabolism in human liver is inhibited by both chlorpyrifos oxon and carbaryl. A number of pesticides, including chlorpyrifos, fipronil and permethrin, and the repellent, DEET, have been shown to be inducers of CYP isoforms in human hepatocytes, with fipronil being the most potent. Several agrochemicals, including fipronil and the pyrethroids, permethrin and deltamethrin, show toxicity toward human hepatocytes with fipronil being the most potent in this regard. Endosulfan-alpha, which has shown promise as a model substrate for phenotyping CYP3A4 and CYP2B6 in human liver microsomes, is also an inducer of CYP2B6, acting through the PXR receptor.

  7. Reactive Effect of Low Intensity He-Ne Laser upon Damaged Ultrastructure of Human Erythrocyte Membrane in Fenton System by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    Yanhong CUI; Zhouyi GUO; Yanping ZHAO; Ying ZHENG; Yanfang QIAO; Jiye CAI; Songhao LIU

    2007-01-01

    To find out the mechanism of modulating the deformability of erythrocytes with low intensity He-Ne laser action, we studied the effect of low intensity He-Ne laser on the ultrastructure of human erythrocyte membrane. Erythrocytes were treated with free radicals from a Fenton reaction system before exposing them to low intensity He-Ne laser. The ultrastructure of damaged erythrocyte membrane was examined by atomic force microscopy. The results showed that the erythrocyte membrane became very rough and the molecules on the surface of the membrane congregated into particles of different magnitudes sizes after treating with free radicals. Comparing the degree of congregation of the molecular particles in the non-irradiated group and the He-Ne laser irradiated (9 mW and 18 mW) group, we found the average size of molecular particles in the laser irradiated group was smaller than that in the non-irradiated group, indicating that the low intensity laser had repairing function to the damage of erythrocyte membrane produced by the free radicals.

  8. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study.

    Science.gov (United States)

    Gangwar, Mayank; Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B; Goel, R K; Nath, Gopal

    2014-01-01

    Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  9. Antioxidant Capacity and Radical Scavenging Effect of Polyphenol Rich Mallotus philippenensis Fruit Extract on Human Erythrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mayank Gangwar

    2014-01-01

    Full Text Available Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  10. Further characterization of some heterophile agglutinins reacting with alkali-labile carbohydrate chains of human erythrocyte glycoproteins.

    Science.gov (United States)

    Dahr, W; Uhlenbruck, G; Bird, G W

    1975-01-01

    The nature of the receptor sites for several agglutinins is characterized by hemagglutination inhibition assays. The inhibitory activity of human erythrocytes glycoproteins, from which sialic acid, sialic acid and galactose or alkali-labile oligosaccharides have been removed, is compared to the inhibitory effect of compounds with known structure. It is shown that the lectin from Arachis hypogea and anti-T bind to alkali-labile galactosyl-residues. Agglutinins from Bauhinia purpurea and variegata (non- or N-specific), Maclura aurantiaca, Iberis amara, sempervirens, umbellata hybrida and umbellata nana (M- or nonspecific), Moluccella laevis (A- plus N-specific), Helix pomatia, Helix aspersa, Helix lucorum and Caucasotachea atrolabiata interact with alkali-labile N-acetylgalactosamine. The results obtained with the anti-A agglutinins from various snails suggest that human erythrocyte glycoproteins contain, besides the alkali-labile tetrasaccharide, a peptide-linked sialyl-N-acetyl-galactosaminyl-residue. The investigations do not allow a precise definition of the receptor sites for the lectins having M- or N-specificity.

  11. Mathematical modeling of electro-rotation spectra of small particles in liquid solutions: Application to human erythrocyte aggregates

    Directory of Open Access Journals (Sweden)

    A. Zehe

    2004-02-01

    Full Text Available Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nup is lowest for the largest cell aggregations where the torque shows a maximum.

  12. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    Science.gov (United States)

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (PPiracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis. PMID:15148255

  13. Effects of amino acids and its metabolites on prolidase activity against various iminodipeptides in erythrocytes from normal human and a patient with prolidase deficiency.

    Science.gov (United States)

    Liu, Gang; Nakayama, Kazuko; Awata, Shiro; Wang, Weifang; Yamashita, Koichi; Manabe, Masanobu; Kodama, Hiroyuki

    2004-12-01

    The characteristics of prolidase in erythrocytes from controls and patient with prolidase deficiency were investigated. The erythrocytes were isolated from the heparinized blood of normal human and a patient with prolidase deficiency. Effects of various amino acids and their metabolites on prolidase activity against iminodipeptides in presence of 1 mmol/l MnCl(2) were investigated. Prolidase activity against glycylproline in erythrocytes from normal human was strongly enhanced by glycine, L-alanine, L-serine with MnCl(2), but the activity was strongly inhibited by L-valine, and L-leucine. However, the stereoisomers, D-leucine and D-valine enhanced the activity. The prolidase activity against methionylproline in erythrocytes from the patient with prolidase deficiency was also enhanced by glycine, L-alanine and L-serine. The activity was inhibited by l-leucine, but D-leucine and L-valine enhanced the activity against various iminodipeptides. Prolidase activity against glycylproline in normal human erythrocytes and against methionylproline from the prolidase-deficient patient was enhanced strongly by glycine, alanine and serine with MnCl(2). However, this activity was inhibited by L-leucine, but was enhanced by D-leucine.

  14. Metabolic heterogeneity in human lung tumors

    Science.gov (United States)

    Hensley, Christopher T.; Faubert, Brandon; Yuan, Qing; Lev-Cohain, Naama; Jin, Eunsook; Kim, Jiyeon; Jiang, Lei; Ko, Bookyung; Skelton, Rachael; Loudat, Laurin; Wodzak, Michelle; Klimko, Claire; McMillan, Elizabeth; Butt, Yasmeen; Ni, Min; Oliver, Dwight; Torrealba, Jose; Malloy, Craig R.; Kernstine, Kemp; Lenkinski, Robert E.; DeBerardinis, Ralph J.

    2015-01-01

    SUMMARY Non-small cell lung cancer (NSCLC) is heterogeneous in the genetic and environmental parameters that influence cell metabolism in culture. Here, we assessed the impact of these factors on human NSCLC metabolism in vivo using intra-operative 13C-glucose infusions in nine NSCLC patients to compare metabolism between tumors and benign lung. While enhanced glycolysis and glucose oxidation were common among these tumors, we observed evidence for oxidation of multiple nutrients in each of them, including lactate as a potential carbon source. Moreover, metabolically heterogeneous regions were identified within and between tumors, and surprisingly, our data suggested potential contributions of non-glucose nutrients in well-perfused tumor areas. Our findings not only demonstrate the heterogeneity in tumor metabolism in vivo but also highlight the strong influence of the microenvironment on this feature. PMID:26853473

  15. Characterization of prolidase I and II purified from normal human erythrocytes: comparison with prolidase in erythrocytes from a patient with prolidase deficiency.

    Science.gov (United States)

    Uramatsu, Soichiro; Liu, Gang; Yang, Qing; Uramatsu, Mutsumi; Chi, Haidong; Lu, Jincai; Yamashita, Koichi; Kodama, Hiroyuki

    2009-09-01

    The effect of various sulfur-containing amino acids on the activities of prolidase isoenzymes I and II isolated from erythrocytes of healthy individuals, and erythrocyte lysates from a patient with prolidase deficiency was investigated. The activity of prolidase I against glycylproline was strongly enhanced by D: -methionine. L: -Methionine and D: ,L: -methionine slightly enhanced the activity at low concentration, but N-acetyl-L: -methionine had no effect. D: -Ethionine, L: -ethionine, and D: ,L: -ethionine also enhanced the activity of prolidase I. D: ,L: -Homocysteine enhanced the activity at low concentration, but inhibited the activity at 50 mM: . The activity of prolidase II against methionylproline was enhanced by D: -methionine, D: ,L: -methionine, and L: -methionine, but N-acetyl-L: -methionine had no effect. D: -Ethionine and D: ,L: -ethionine strongly enhanced the activity of prolidase II compared with L: -ethionine; D: ,L: -homocysteine weakly enhanced the activity. D: ,L: -Homocysteine-thiolactone inhibited the activities of prolidase I and II in a concentration-dependent manner. The effect of various sulfur-containing amino acids on prolidase activity against methionylproline in erythrocyte lysates from a patient with prolidase deficiency was almost the same as that on prolidase II. The kinetics of the activities of prolidase I, II, and patient prolidase were also studied. Their K (m) values were changed by adding sulfur-containing amino acids, but V (max) values were unchanged.

  16. Interaction of ferulic acid derivatives with human erythrocytes monitored by pulse field gradient NMR diffusion and NMR relaxation studies.

    Science.gov (United States)

    Anselmi, Cecilia; Bernardi, Francesca; Centini, Marisanna; Gaggelli, Elena; Gaggelli, Nicola; Valensin, Daniela; Valensin, Gianni

    2005-04-01

    Ferulic acid (Fer), a natural anti-oxidant and chemo-protector, is able to suppress experimental carcinogenesis in the forestomach, lungs, skin, tongue and colon. Several Fer derivatives have been suggested as promising candidates for cancer prevention, being the biological activity related also to the capacity of partitioning between aqueous and lipid phases. In the present work, pulsed field gradient (PFG) NMR diffusion measurement and NMR relaxation rates have been adopted for investigating the interaction of three Fer derivatives (Fer-C11, Fer-C12 and Fer-C13) with human erythrocytes. Binding to the erythrocyte membrane has been shown for all derivatives, which displayed a similar interaction mode such that the aromatic moiety and the terminal part of the alkyl chain were the most affected. Quantitative analysis of the diffusion coefficients was used to show that Fer-C12 and Fer-C13 display higher affinity for the cell membrane when compared with Fer-C11. These findings agree with the higher anti-oxidant activity of the two derivatives.

  17. Simultaneous liquid chromatographic assessment of thiamine, thiamine monophosphate and thiamine diphosphate in human erythrocytes: a study on alcoholics.

    Science.gov (United States)

    Mancinelli, Rosanna; Ceccanti, Mauro; Guiducci, Maria Soccorsa; Sasso, Guido Francesco; Sebastiani, Gemma; Attilia, Maria Luisa; Allen, John Paul

    2003-06-15

    An isocratic HPLC procedure for the assessment of thiamine (T), thiamine monophosphate (TMP) and thiamine diphosphate (TDP) in human erythrocytes is described. Several aspects of the procedure make it suitable for both clinical and research purposes: limits of detection and quantification of 1 and 2.5 nmol/l, respectively, recovery of 102% on average (range 93-112%), intra- and inter-day precisions within 5 and 9%, respectively, total elution time 15 min. This analytical methodology was applied to a case-control study on erythrocyte samples from 103 healthy subjects and 36 alcohol-dependent patients at risk of thiamine deficiency. Mean control values obtained were: T=89.6+/-22.7 nmol/l, TMP=4.4+/-6.6 nmol/l and TDP=222.23+/-56.3 nmol/l. T and TDP mean values of alcoholics were significantly lower than those of control cases: T=69.4+/-35.9 nmol/l (Pthiamine was established in the study of alcohol related problems.

  18. The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions

    Directory of Open Access Journals (Sweden)

    Thiele Ines

    2011-10-01

    Full Text Available Abstract Background Metabolic network reconstructions formalize our knowledge of metabolism. Gaps in these networks pinpoint regions of metabolism where biological components and functions are "missing." At the same time, a major challenge in the post genomic era involves characterisation of missing biological components to complete genome annotation. Results We used the human metabolic network reconstruction RECON 1 and established constraint-based modelling tools to uncover novel functions associated with human metabolism. Flux variability analysis identified 175 gaps in RECON 1 in the form of blocked reactions. These gaps were unevenly distributed within metabolic pathways but primarily found in the cytosol and often caused by compounds whose metabolic fate, rather than production, is unknown. Using a published algorithm, we computed gap-filling solutions comprised of non-organism specific metabolic reactions capable of bridging the identified gaps. These candidate solutions were found to be dependent upon the reaction environment of the blocked reaction. Importantly, we showed that automatically generated solutions could produce biologically realistic hypotheses of novel human metabolic reactions such as of the fate of iduronic acid following glycan degradation and of N-acetylglutamate in amino acid metabolism. Conclusions The results demonstrate how metabolic models can be utilised to direct hypotheses of novel metabolic functions in human metabolism; a process that we find is heavily reliant upon manual curation and biochemical insight. The effectiveness of a systems approach for novel biochemical pathway discovery in mammals is demonstrated and steps required to tailor future gap filling algorithms to mammalian metabolic networks are proposed.

  19. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  20. Stepwise isolation of human peripheral erythrocytes, T lymphocytes, and monocytes for blood cell proteomics.

    Science.gov (United States)

    Brosseron, Frederic; May, Caroline; Schoenebeck, Bodo; Tippler, Bettina; Woitalla, Dirk; Kauth, Marion; Brockmann, Kathrin; Meyer, Helmut E; Berg, Daniela; Bufe, Albrecht; Marcus, Katrin

    2012-10-01

    Density gradient centrifugation and magnetic- or fluorescence-activated cell sorting are common and robust techniques for the isolation of different types of blood cells. In this article, we give detailed description of a stepwise application of these methods as one isolation strategy for enrichment of different cell types from one blood sample. The workflow targeted erythrocytes, monocytes, and T lymphocytes. Pancoll® density gradient centrifugation was used together with subsequent MACS™ isolation. Purity of monocytes and T lymphocytes was controlled by fluorescence-activated cell sorting analysis, and cells were used for carrier-ampholine-based 2D-PAGE to confirm compatibility of the procedure to standard proteomic applications. Gradient centrifugation resulted in an average of 125 μL of packed erythrocytes per milliliter blood. MACS™ sorting reached purities of 90 ± 2% (monocytes) and 93 ± 2% (T lymphocytes), with an average yield of 12 × 10(4) monocytes or T lymphocytes. 2D-PAGE of isolated cells showed well-separated spot patterns. A combined isolation holds substantial advantages especially in clinical studies, as it allows for the comparison of findings not only between individuals, but also between different cell types derived from one donor. Our approach ensured high reproducibility, yields, and purities of cells as required for reliable proteome analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Amrita Dawn

    2014-12-01

    Full Text Available All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria.

  2. Thermodynamic Significance of Human Basal Metabolism

    Institute of Scientific and Technical Information of China (English)

    WangCuncheng

    1993-01-01

    The human basal state,a non-equilibrium steady state,is analysed in this paper in the light of the First and Second Laws of Thermodynamics whereby the thermodynamic significance of the basal metabolic rate and its distinction to the dissipation function and exergy loss are identified.The analysis demonstrates the correct expression of the effects of the blood flow on the heat balance in a human-body bio-heat model and the relationship between the basal metabolic rate and the blood perfusion.

  3. Beneficial effect of extracts of Premna integrifolia root on human leucocytes and erythrocytes against hydrogen peroxide induced oxidative damage

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali

    2014-01-01

    Full Text Available Background: Oxidative damage as a result of an increase in the free radical load and/or decrease in the efficiency of the antioxidant systems has been implicated in many human diseases. Premna integrifolia (Verbenaceae is an important woody, medicinal plant and has a prominent place in Ayurvedha, Siddha and Unani system of medicines. Traditionally, it has been used for various antioxidant related disorders. Objective: The objective of the present study was to evaluate the beneficial effect of extracts of P. integrifolia root on human leucocytes and erythrocytes against hydrogen peroxide (H 2 O 2 induced oxidative damage. Materials and Methods: Chloroform:methanol (1:1 extract of P. integrifolia (CMEPI and aqueous extract of P. integrifolia roots were used to accessed catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GPx, glutathione (GSH and lipid peroxidation (LPO levels in H 2 O 2 induced oxidative damage. Results: Results of the present study revealed that, there was an increase in the CAT, SOD, GPx and reduction of the GSH and LPO levels in H 2 O 2 group compared with the control. P. integrifolia root extract treated groups showed the reduction of CAT, SOD, GPx and increased in the GSH and LPO levels as compared with H 2 O 2 group. CMEPI was found to be more effective than aqueous. Conclusion: The present study suggests that, extracts of P. integrifolia root possess beneficial effect on human leucocytes and erythrocytes against H 2 O 2 induced oxidative damage which has substantiated their use in ethnomedicine as an antioxidant. Observed effect can be attributed due to the flavonoid and phenol contents in the plant. Furthermore, in-vitro and in-vivo studies are needed to explore its effects on antioxidant system of the body for proving its clinical safety, reliability and efficacy.

  4. Purine metabolism in response to hypoxic conditions associated with breath-hold diving and exercise in erythrocytes and plasma from bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    del Castillo Velasco-Martínez, Iris; Hernández-Camacho, Claudia J; Méndez-Rodríguez, Lía C; Zenteno-Savín, Tania

    2016-01-01

    In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise.

  5. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    Science.gov (United States)

    Edward, Kert; Farahi, Faramarz

    2014-05-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.

  6. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  7. Growth of plasmodium falciparum in human erythrocytes containing abnormal membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, S. (Albert Einstein Coll. of Medicine and Montefiore Medical Center, Bronx, NY (USA) City Univ. of New York, NY (USA)); Roth, E.F. Jr.; Cheng, B.; Rybicki, A.C.; Sussman, I.I.; Wong, M.; Nagel, R.L.; Schwartz, R.S. (Albert Einstein Coll. of Medicine and Montefiore Medical Center, Bronx, NY (USA)); Wang, W. (St. Judes Children' s Research Hospital, Memphis, TN (USA)); Ranney, H.M. (Univ. of California, San Diego (USA))

    1990-09-01

    To evaluate the role of erythrocyte (RBC) membrane proteins in the invasion and maturation of Plasmodium falciparum, the authors have studied, in culture, abnormal RBCs containing quantitative or qualitative membrane protein defects. These defects included hereditary spherocytosis (HS) due to decreases in the content of spectrin (HS(Sp{sup +})), hereditary elliptocytosis (HE) due to protein 4.1 deficiency (HE(4.1{sup 0})), HE due to a spectrin {alpha}I domain structural variant that results in increased content of spectrin dimers (HE(Sp{alpha}{sup I/65})), and band 3 structural variants. Parasite invasion, measured by the initial uptake of ({sup 3}H)hypoxanthine 18 hr after inoculation with merozoites, was normal in all of the pathologic RBCs. In contrast, RBCs from six HS(Sp{sup +}) subjects showed marked growth inhibition that became apparent after the first or second growth cycle. The extent of decreased parasite growth in HS(Sp{sup +}) RBCs closely correlated with the extent of RBC spectrin deficiency. Homogeneous subpopulations of dense HS RBCs exhibited decreased parasite growth to the same extent as did HS whole blood. RBCs from four HE subjects showed marked parasite growth and development.

  8. Influence of different radiographic contrast media on the echinocyte formation of human erythrocytes.

    Science.gov (United States)

    Mrowietz, C; Franke, R P; Jung, F

    2012-01-01

    Echinocyte formation is associated with a rigidification of the cells that may affect capillary perfusion and, consequently, the tissue oxygen supply. This study examines how many echinocytes appeared after the addition of radiographic contrast media (RCM) (Iodixanol320, Ioversol300, Iopamidol300, and Iomeprol400) compared to red blood cells in autologous plasma and in isotonic saline solution. Isotonic saline solution, Iodixanol, Ioversol, Iopamidol and Iomeprol in concentrations of 10 vol%, 20 vol%, and 40 vol% were added to the plasma of seven healthy subjects. Subsequently, the erythrocytes were resuspended in these plasma/RCM mixtures, incubated for 5 minutes and then examined under the microscope. The concentrations and the RCM in the mixture had a significant effect on the number of discocytes (factor concentration: p < 0.0001; factor RCM: p < 0.0001). The percentage of discocytes for all concentrations depended significantly on the RCM/plasma mixture (concentration × RCM: p < 0.002). Of all RCM/plasma mixtures used, the Iodixanol/plasma mixture showed the most similar discocyte fraction compared to red blood cells in the autologous plasma. Importantly, while Iodixanol differed from all other RCMs, the other RCMs did not differ from one another with respect to the discocyte fraction.

  9. Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-01-01

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system. PMID:24957377

  10. In vitro and in vivo expression of human erythrocyte pyruvate kinase in erythroid cells: a gene therapy approach.

    Science.gov (United States)

    Meza, N W; Quintana-Bustamante, O; Puyet, A; Rio, P; Navarro, S; Diez, A; Bueren, J A; Bautista, J M; Segovia, J C

    2007-06-01

    Human pyruvate kinase deficiency (PKD), an autosomal recessive disorder produced by mutations in the PKLR gene, is the most common cause of chronic nonspherocytic hemolytic anemia. Transduction of wild-type erythroid (R-type) pyruvate kinase (RPK) cDNA into deficient hematopoietic stem cells could be of potential use as rescue therapy in severe clinical cases. In this study, gammaretroviral vectors expressing human RPK were designed as possible gene therapy candidates for this disease. Through real-time quantitative reverse transcriptase-polymerase chain reaction, Western blotting, and flow cytometric analysis, we demonstrate stable RPK expression in both undifferentiated and differentiated murine erythroleukemia cells. In this in vitro assay, the proportion of transduced cells and the intensity of expression of the transgene remained unaltered after 6 months of culture. Moreover, transplanting human RPK-transduced Lin(-)Sca-1(+) mouse cells in myeloablated primary and secondary recipients rendered high proportions of erythroid precursors and mature erythrocytes expressing RPK, without inducing hematopoietic effects. These findings suggest that retroviral vectors could be useful for the delivery and expression of RPK in erythroid cells, and provide evidence of the potential use of gene therapy strategies to phenotypically correct erythroid PKD.

  11. [The mechanism of change in speed of agglutination of human erythrocytes under the influence of adrenaline].

    Science.gov (United States)

    Volodchenko, A I; Tsirkin, V I; Kostiaev, A A

    2014-01-01

    In the study of red blood cells of 80 men found that adrenaline (10(-10) - 10(-6) g/mL) and phenylephrine (10-(10) - 10(-6) g/mL) dose-dependently increase the speed of agglutination of red blood cells, according to the decrease in agglutination of the start time and ginipral (10(-10) - 10(-7) g/mL), on the contrary, decreases it. The effect of adrenaline and phenylephrine is blocked by nicergoline (10(-6) g/mL), increased obzidan (10(-6) g/mL) and does not change under the action ofyohimbine (10(-6) g/mL) and atenolol (10(-6) g/mL). These data indicate that the speed of agglutination increases with activation alpha1-adrenergic receptor (AR) and decreases in the activation of beta2-AR, while the activation of alpha2- and beta1-AR does not affect it. Trifluoperazine (10(-6) g/mL) as the calmodulin antagonist, barium chloride (10(-6) g/mL) as a blocked of Ca(2+)-dependent K(+)-channels and indomethacine (10(-6) g/mL) as an inhibitor of cyclooxygenase and phospholipase A2 inhibit the ability of adrenaline to increases the speed of agglutination of red blood cells. This suggests that the effect of adrenaline caused an increase in erythrocyte entry of Ca2+, activation of calmodulin, cyclooxygenase, phospholipase A2 and the release of K+ from red blood cell through the Ca(2+)-dependent K+ channels, which is regarded as a manifestation of eryptosis. Indirectly, this means that more efficient activation of alpha1-AR and beta2-AR, respectively, increases or, conversely, decreases the rate of eryptosis.

  12. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer.

    Science.gov (United States)

    Rappaz, Benjamin; Barbul, Alexander; Emery, Yves; Korenstein, Rafi; Depeursinge, Christian; Magistretti, Pierre J; Marquet, Pierre

    2008-10-01

    Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.

  13. Human liver microsomal metabolism of (+)-discodermolide.

    Science.gov (United States)

    Fan, Yun; Schreiber, Emanuel M; Day, Billy W

    2009-10-01

    The polyketide natural product (+)-discodermolide is a potent microtubule stabilizer that has generated considerable interest in its synthetic, medicinal, and biological chemistry. It progressed to early clinical oncology trials, where it showed some efficacy in terms of disease stabilization but also some indications of causing pneumotoxicity. Remarkably, there are no reports of its metabolism. Here, we examined its fate in mixed human liver microsomes. Due to limited availability of the agent, we chose a nanoflow liquid chromatography-electrospray ionization-mass spectrometry analytical approach employing quadrupolar ion trap and quadrupole-quadrupole-time-of-flight instruments for these studies. (+)-Discodermolide was rapidly converted to eight metabolites, with the left-side lactone (net oxidation) and the right-side diene (epoxidation followed by hydrolysis, along with an oxygen insertion product) being the most metabolically labile sites. Other sites of metabolism were the allylic and pendant methyl moieties in the C12-C14 region of the molecule. The results provide information on the metabolic soft spots of the molecule and can be used in further medicinal chemistry efforts to optimize discodermolide analogues.

  14. Human adipose dynamics and metabolic health.

    Science.gov (United States)

    Feng, Bin; Zhang, Tracy; Xu, Haiyan

    2013-04-01

    The two types of adipose tissue in humans, white and brown, have distinct developmental origins and functions. Human white adipose tissue plays a pivotal role in maintaining whole-body energy homeostasis by storing triglycerides when energy is in surplus, releasing free fatty acids as a fuel during energy shortage, and secreting adipokines that are important for regulating lipid and glucose metabolism. The size of white adipose mass needs to be kept at a proper set point. Dramatic expansion of white fat mass causes obesity--now become a global epidemic disease--and increases the risk for the development of many life-threatening diseases. The absence of white adipose tissue or abnormal white adipose tissue redistribution leads to lipodystrophy, a condition often associated with metabolic disorders. Brown adipose tissue is a thermogenic organ whose mass is inversely correlated with body mass index and age. Therapeutic approaches targeting adipose tissue have been proven to be effective in improving obesity-related metabolic disorders, and promising new therapies could be developed in the near future. © 2013 New York Academy of Sciences.

  15. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism.

    NARCIS (Netherlands)

    Vlaardingerbroek, H.; Hornstra, G.; Koning, T.J.; Smeitink, J.A.M.; Bakker, H.D.; Klerk, H. de; Rubio-Gozalbo, M.E.

    2006-01-01

    Essential fatty acids (EFAs), and their longer-chain more-unsaturated derivatives (LCPUFAs) in particular, are essential for normal growth and cognitive development during childhood. Children with inborn errors of amino acid metabolism represent a risk population for a reduced LCPUFA status because

  16. Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite

    Directory of Open Access Journals (Sweden)

    Bray Patrick G

    2009-03-01

    Full Text Available Abstract Background Malaria is a global health emergency, and yet our understanding of the energy metabolism of the principle causative agent of this devastating disease, Plasmodium falciparum, remains rather basic. Glucose was shown to be an essential nutritional requirement nearly 100 years ago and since this original observation, much of the current knowledge of Plasmodium energy metabolism is based on early biochemical work, performed using basic analytical techniques (e.g. paper chromatography, carried out almost exclusively on avian and rodent malaria. Data derived from malaria parasite genome and transcriptome studies suggest that the energy metabolism of the parasite may be more complex than hitherto anticipated. This study was undertaken in order to further characterize the fate of glucose catabolism in the human malaria parasite, P. falciparum. Methods Products of glucose catabolism were determined by incubating erythrocyte-freed parasites with D-[1-13C] glucose under controlled conditions and metabolites were identified using 13C-NMR spectroscopy. Results Following a 2 h incubation of freed-P. falciparum parasites with 25 mM D-[1-13C] glucose (n = 4, the major metabolites identified included; [3-13C] lactate, [1,3-13C] glycerol, [3-13C] pyruvate, [3-13C] alanine and [3-13C] glycerol-3-phosphate. Control experiments performed with uninfected erythrocytes incubated under identical conditions did not show any metabolism of D-[1-13C] glucose to glycerol or glycerol-3-phosphate. Discussion The identification of glycerol as a major glucose metabolite confirms the view that energy metabolism in this parasite is more complex than previously proposed. It is hypothesized here that glycerol production by the malaria parasite is the result of a metabolic adaptation to growth in O2-limited (and CO2 elevated conditions by the operation of a glycerol-3-phosphate shuttle for the re-oxidation of assimilatory NADH. Similar metabolic adaptations have

  17. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes.

    Science.gov (United States)

    Mandrell, R E; Griffiss, J M; Macher, B A

    1988-07-01

    We have used mouse mAbs, 3F11 and 06B4, that are specific for highly conserved epitopes of Neisseria gonorrhoeae lipooligosaccharides (LOS) to identify immunochemically similar structures on human erythrocytes. mAb 3F11 agglutinated erythrocytes from all randomly selected adult humans, while mAb 06B4 agglutinated only 80% of the same specimens. The antibodies had an activity with erythrocytes similar to human cold agglutinins in that agglutination occurred at 4 degrees C and decreased with increasing incubation temperature. Human infant erythrocytes were agglutinated less well, but enzymatic treatment of either infant or adult cells resulted in an increase in expression of the 3F11- and 06B4-defined epitopes. Both antibodies bound to a series of neutral glycosphingolipids from human erythrocytes and neutrophils that have a type 2 (Gal beta 1----4GlcNAc) or N-acetyllactosamine structure. Neither antibody bound to glycosphingolipids from human meconium, which have a type 1 (Gal beta 1----3GlcNAc) structure. The antibodies were unable to bind to N-acetyl-lactosamine glycosphingolipids with a nonreducing terminal sialic acid or a Gala1----3Gal disaccharide. Antibody binding also was blocked by the presence of fucose linked to the penultimate glucosamine residue of N-acetyllactosamine glycosphingolipids. Although both antibodies bound to linear and branched-chain N-acetyllactosamine glycosphingolipids, 3F11 had a higher affinity for branched structures than did 06B4. The activity of 3F11 with human adult and infant treated and untreated erythrocytes with N-acetyllactosamine glycosphingolipids, and with LOS was very similar, if not identical, in specificity to 1B2, an mAb prepared from mice inoculated with a linear N-acetyllactosamine glycosphingolipid.

  18. Effects of the olive oil phenol metabolite 3,4-DHPEA-EDAH2 on human erythrocyte oxidative damage.

    Science.gov (United States)

    Paiva-Martins, F; Gonçalves, P; Borges, J E; Przybylska, D; Ibba, F; Fernandes, J; Santos-Silva, A

    2015-07-01

    Red blood cells (RBCs), as anucleated cells, have poor repair and biosynthetic mechanisms, suffering and accumulating oxidative lesions whenever oxidative stress develops. RBCs are particularly exposed to endogenous oxidative damage because of their specific role as oxygen carriers. However, as the most abundant blood cells, RBCs also play an important role in the oxidative status of the whole blood constituents. In previous studies by our group, the most important polyphenolic compounds found in virgin olive oil, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), were shown to significantly protect RBCs from oxidative damage initiated by AAPH and H2O2, with the most active compound being 3,4-DHPEA-EDA. However, the in vivo protective effects of these phenols are dependent on their bioavailability. It has been demonstrated that 3,4-DHPEA-EDA is absorbed by intestinal cells and is then metabolized, yielding a reduced metabolite, 3,4-DHPEA-EDAH2. In order to assess the importance of VOO phenolic compound metabolites for the overall in vivo protective activity, the capacity of this phase I metabolite to protect RBCs in the presence of the radical initiators AAPH or H2O2 was evaluated in the presence and absence of the naturally occurring antioxidant, ascorbic acid. The metabolite was shown to protect RBCs from haemolysis induced by both initiators, in a dose dependent way, after 2 h and 4 h of incubation. The protective effect was however lower than that of the parental compound. The analysis of the membrane proteins of erythrocytes showed that the metabolite can interact with these biological structures.

  19. Architecture of Human IgM in Complex with P. falciparum Erythrocyte Membrane Protein 1

    Directory of Open Access Journals (Sweden)

    Reetesh Raj Akhouri

    2016-02-01

    Full Text Available Plasmodium falciparum virulence is associated with sequestration of infected erythrocytes. Microvascular binding mediated by PfEMP1 in complex with non-immune immunoglobulin M (IgM is common among parasites that cause both severe childhood malaria and pregnancy-associated malaria. Here, we present cryo-molecular electron tomography structures of human IgM, PfEMP1 and their complex. Three-dimensional reconstructions of IgM reveal that it has a dome-like core, randomly oriented Fab2s units, and the overall shape of a turtle. PfEMP1 is a C- shaped molecule with a flexible N terminus followed by an arc-shaped backbone and a bulky C terminus that interacts with IgM. Our data demonstrate that the PfEMP1 binding pockets on IgM overlap with those of C1q, and the bulkiness of PfEMP1 limits the capacity of IgM to interact with PfEMP1. We suggest that P. falciparum exploits IgM to cluster PfEMP1 into an organized matrix to augment its affinity to host cell receptors.

  20. Changes in the activities of some membrane-associated enzymes during in vivo ageing of the normal human erythrocyte.

    Science.gov (United States)

    Kadlubowski, M; Agutter, P S

    1977-09-01

    Human erythrocytes from healthy male donors were fractionated with respect to in vivo age by simple centrifugation in order to characterize changes in the functional integrity of the membrane during the life-span of the cell. The three enzymes, Na/K-ATPase, glyceraldehyde-3-phosphate dehydrogenase and NADH-ferricyanide reductase, were found not to change with age, but significant age-dependent decreases were observed in the cases of acetylcholinesterase, phosphoglycerate kinase, purine nucleoside phosphorylase, adenylate kinase, Mg-ATPase and alkaline phosphatase. The possibility that these changes were attributable to mechanisms other than age-related inactivation, such as reticulocyte contamination, differential resealing and crypticity, was investigated. Only the decrease in acetylcholinesterase could be explained wholly in terms of reticulocyte contamination. A decrease in membrane integrity on ageing was observed, which accounted for approximately half the change in alkaline phosphatase and may have contributed to the other enzyme activity changes. This membrane integrity effect masked a real decrease in the highly cryptic NADH-ferricyanide reductase, this decrease being apparent only after total disaggregation of the membrane with nonionic surfactant.

  1. Second derivative spectrophotometric determination of partition coefficients of phenothiazine derivatives between human erythrocyte ghost membranes and water.

    Science.gov (United States)

    Kitamura, K; Goto, T; Kitade, T

    1998-08-01

    The absorption spectra of six phenothiazine derivatives, chlorpromazine, triflupromazine, promazine, promethazine, trifluoperazine and prochlorperazine, measured in the solutions containing various amounts of human erythrocyte ghosts (HEG) showed bathocromic shifts according to the amount of HEG. Due to the strong background signals caused by HEG, the baseline compensation was incomplete, even though the sample and the reference solutions contained the same amount of HEG, hence further spectral information could not be obtained. The second derivative spectra of these absorption spectra clearly showed the derivative isosbestic points, indicating that the residual background signal effects were entirely eliminated. The derivative intensity differences of the phenothiazines (DeltaD values) before and after the addition of HEG were measured at a specific wavelength. Using the DeltaD values, the partition coefficients (K(p)) of these drugs were calculated and obtained with R.S.D. of below 10 %. The fractions of partitioned phenothiazines calculated from the K(p) values agreed well with the experimental values. The results indicate that the derivative method can be applicable to the determination of partition coefficients of drugs to HEG without any separation procedures.

  2. Towards a multiscale description of microvascular flow regulation: O2-dependent release of ATP from human erythrocytes and the distribution of ATP in capillary networks

    Directory of Open Access Journals (Sweden)

    Daniel eGoldman

    2012-07-01

    Full Text Available Integration of the numerous mechanisms that have been suggested to contribute to optimization of O2 supply to meet O2 need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in vitro studies which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions. Healthy human erythrocytes exposed to low O2 tension release ATP via a well characterized signaling pathway requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release via pannexin 1. A critical control point in this pathway is the level of cAMP which is regulated by pathway-specific phosphodiesterases. Using time constants (~100ms that are consistent with measured erythrocyte ATP release, we have constructed a dynamic model of this pathway. The model predicts levels of ATP release consistent with measurements obtained over a wide range of hemoglobin O2 saturations (sO2. The model further predicts how insulin, at concentrations found in prediabetes, enhances the activity of PDE3 and reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from erythrocytes. The second model, which couples O2 and ATP transport in capillary networks, shows how intravascular ATP and the resulting conducted vasodilation are affected by local sO2, convection and ATP degradation. This model also predicts network-level effects of decreased ATP release resulting from elevated insulin levels. Taken together, these models lay the groundwork for investigating the systems biology of the regulation of microvascular perfusion distribution by

  3. Dietary indicaxanthin from cactus pear (Opuntia ficus-indica L. Mill) fruit prevents eryptosis induced by oxysterols in a hypercholesterolaemia-relevant proportion and adhesion of human erythrocytes to endothelial cell layers.

    Science.gov (United States)

    Tesoriere, Luisa; Attanzio, Alessandro; Allegra, Mario; Livrea, Maria A

    2015-08-14

    Toxic oxysterols in a hypercholesterolaemia-relevant proportion cause suicidal death of human erythrocytes or eryptosis. This process proceeds through early production of reactive oxygen species (ROS), release of prostaglandin (PGE2) and opening of PGE2-dependent Ca channels, membrane phosphatidylserine (PS) externalisation, and cell shrinkage. The present study was the first to reveal that a bioavailable phytochemical, indicaxanthin (Ind) from cactus pear fruit, in a concentration range (1.0-5.0 μM) consistent with its plasma level after a fruit meal, prevents PS externalisation and cell shrinkage in a dose-dependent manner when incubated with isolated healthy human erythrocytes exposed to an oxysterol mixture for 48 h. Dietary Ind inhibited ROS production, glutathione (GSH) depletion, PGE2 release and Ca2+ entry. Ind alone did not modify the erythrocyte redox environment or affect other parameters. Ex vivo spiking of normal human blood with the oxysterol mixture for 48 h induced eryptosis, resulting in the production of ROS and decreased levels of GSH, which was prevented by concurrent exposure to 5 μm-Ind. The adherence of eryptotic erythrocytes to the endothelium causes vascular tissue injury. Erythrocytes isolated from blood incubated with the oxysterol mixture plus 5 μm-Ind did not adhere to endothelial cell monolayers. Eryptotic erythrocytes may contribute to thrombotic complications in hypercholesterolaemia. Our findings suggest the positive effects of diets containing Ind on erythrocytes in hypercholesterolaemic subjects.

  4. Detection and immunolocalization of human erythrocyte spectrin immunoanalogues in Toxoplasma gondii (Protozoan, Parasite).

    Science.gov (United States)

    Ghazali, M; Rodier, M H; el Moudni, B E; Babin, P; Fernandez, B; Jacquemin, J L

    1995-01-01

    We demonstrated here the presence of proteins antigenically related to human erythroid spectrin in the parasitic protozoan Toxoplasma gondii. A high molecular weight doublet (M(r) 245-240,000), present in equimolar ratio, and low molecular weight poly-peptides (M(r) 75,000) were reacted with monoclonal and polyclonal anti-human erythroid spectrin antibodies on electroblotted nitro-cellulose sheets. Indirect immunofluorescence assay clearly showed that these proteins were localized in the anterior pole of the organism. Immunogold staining further revealed specific labeling of conoid, rhoptries, micronemes, and dense granules of the apical complex. The presence of the M(r) 245-240,000 doublet and the M(r) 75,000 spectrin-like proteins in the anterior pole of T. gondii may probably be consistent with a structural stabilizer function in its organelles which are suspected to be involved in the process of host cell invasion.

  5. Protective activity of the Uncaria tomentosa extracts on human erythrocytes in oxidative stress induced by 2,4-dichlorophenol (2,4-DCP) and catechol.

    Science.gov (United States)

    Bors, Milena; Bukowska, Bożena; Pilarski, Radosław; Gulewicz, Krzysztof; Oszmiański, Jan; Michałowicz, Jaromir; Koter-Michalak, Maria

    2011-09-01

    The purpose of this study was to evaluate the effect of the ethanolic and aqueous extracts of Uncaria tomentosa on human erythrocytes and additionally the assessment of protective effect of these extracts on hemolysis induction, hemoglobin oxidation, and changes in the level of reactive oxygen species (ROS) and lipid peroxidation, which were provoked by selected xenobiotics, i.e. 2,4-dichlorophenol (2,4-DCP) and catechol. All tested extracts, even at a very high concentration of 500 μg/ml were not toxic to the erythrocytes because they did not cause lipid peroxidation, increase methemoglobin and ROS levels nor provoked hemolysis. The results of this study also revealed protective effect of extracts of U. tomentosa. The extracts studied depleted the extent of hemoglobin oxidation and lipid peroxidation as well as decreased the level of ROS and hemolysis, which was provoked by 2,4-DCP. No protective activity of the extracts against catechol action, which is a precursor of semiquinones in cell was found. A difference in the effect of the extracts studied was observed. Ethanol-based extracts revealed more pronounced ability to inhibit oxidation processes in human erythrocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Uncaria tomentosa extracts protect human erythrocyte catalase against damage induced by 2,4-D-Na and its metabolites.

    Science.gov (United States)

    Bukowska, Bożena; Bors, Milena; Gulewicz, Krzysztof; Koter-Michalak, Maria

    2012-06-01

    The effect of ethanolic and aqueous extracts from leaves and bark of Uncaria tomentosa was studied, with particular attention to catalase activity (CAT - EC. 1.11.1.6). We observed that all tested extracts, at a concentration of 250 μg/mL were not toxic to erythrocyte catalase because they did not decreased its activity. Additionally, we investigated the protective effect of extracts on changes in CAT activity in the erythrocytes incubated with sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and its metabolites i.e., 2,4-dichlorophenol (2,4-DCP) and catechol. Previous investigations showed that these chemicals decreased activity of erythrocyte catalase (Bukowska et al., 2000; Bukowska and Kowalska, 2004). The erythrocytes were divided into two portions. The first portion was incubated for 1 and 5h at 37°C with 2,4-D-Na, 2,4-DCP and catechol, and second portion was preincubated with extracts for 10 min and then incubated with xenobiotics for 1 and 5h. CAT activity was measured in the first and second portion of the erythrocytes. We found a protective effect of the extracts from U. tomentosa on the activity of catalase incubated with xenobiotics studied. Probably, phenolic compounds contained in U. tomentosa scavenged free radicals, and therefore protected active center (containing -SH groups) of catalase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Nuclear magnetic resonance investigation of human erythrocytes in the presence of manganese ions. Evidence for a thermal transition.

    Science.gov (United States)

    Morariu, V V; Ionescu, M S; Frangopol, M; Grosescu, R; Lupu, M; Frangopol, P T

    1985-05-14

    Water proton transverse relaxation was investigated in whole blood and washed erythrocytes samples, respectively, at various temperatures and manganese concentrations. Water diffusional exchange controls proton relaxation in whole blood samples at higher Mn2+ concentrations (20-30 mM) or in washed erythrocyte samples at low Mn2+ content (1-5 mM). Mn2+ uptake is significant in washed normal erythrocyte samples when its concentration is about 18 mM or higher in the medium, at temperatures below about 26 degrees C. The thermal transition as revealed by the NMR doping method represents a switch from a water exchange process, mainly seen in the higher temperature range, to a paramagnetic ion controlled water proton relaxation in the lower temperature range.

  8. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  9. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  10. AMPD3-deficient mice exhibit increased erythrocyte ATP levels but anemia not improved due to PK deficiency.

    Science.gov (United States)

    Cheng, Jidong; Morisaki, Hiroko; Toyama, Keiko; Ikawa, Masahito; Okabe, Masaru; Morisaki, Takayuki

    2012-11-01

    AMP deaminase (AMPD) catalyzes AMP to IMP and plays an important role in energy charge and nucleotide metabolism. Human AMPD3 deficiency is a type of erythrocyte-specific enzyme deficiency found in individuals without clinical symptoms, although an increased level of ATP in erythrocytes has been reported. To better understand the physiological and pathological roles of AMPD3 deficiency, we established a line of AMPD3-deficient [A3(-/-)] mice. No AMPD activity and a high level of ATP were observed in erythrocytes of these mice, similar to human RBC-AMPD3 deficiency, while other characteristics were unremarkable. Next, we created AMPD3 and pyruvate kinase (PK) double-deficient [PKA(-/-,-/-)] mice by mating A3(-/-) mice with CBA-Pk-1slc/Pk-1slc mice [PK(-/-)], a spontaneous PK-deficient strain showing hemolytic anemia. In PKA(-/-,-/-) mice, the level of ATP in red blood cells was increased 1.5 times as compared to PK(-/-) mice, although hemolytic anemia in those animals was not improved. In addition, we observed osmotic fragility of erythrocytes in A3(-/-) mice under fasting conditions. In contrast, the ATP level in erythrocytes was elevated in A3(-/-) mice as compared to the control. In conclusion, AMPD3 deficiency increases the level of ATP in erythrocytes, but does not improve anemia due to PK deficiency and leads to erythrocyte dysfunction.

  11. Metabolic Signatures of Oxidative Stress and Their Relationship with Erythrocyte Membrane Surface Roughness Among Workers of Manual Materials Handling (MMH).

    Science.gov (United States)

    Ghosh, Subrata; Acharyya, Muktish; Majumder, Titlee; Bagchi, Anandi

    2015-12-01

    Brickfield workers in India perform manual materials handling (MMH) and as a result, are at a high risk of developing oxidative stress. This results in an alteration of the various markers of metabolic oxidative stress at the cellular level. Since red blood cell (RBC) is the central point where oxygen, glucose-6-phosphate dehydrogenase (G-6-PD), and glutathione (GSH) are involved, the surface roughness and its alteration and modeling with respect to workers exposed to MMH may be considered as helpful determinants in predicting early damage to the cell and restoring better health to the exposed population, that is, the worker exposed to stress. Hence, nanometric analysis of the surface roughness of the RBC may serve as an early indicator of the stress-related damage in these individuals. The purpose of the study was to identify early red blood corpuscular surface damage profile in terms of linear modeling correlating various biochemical parameters. Linear modeling has been aimed to be developed in order to demonstrate how individual oxidative stress markers such as malondialdehyde (MDA), G-6-PD, and reduced GSH are related to the RBC surface roughness [root mean square (RMS)]. Conventional analysis of these biochemical responses were evaluated in MMH laborers (age varying between 18 years and 21 years) and a comparable control group of the same age group (with sedentary lifestyles). Peak expiratory flow rate (PEFR) and RBC surface analysis by atomic-force microscopy (AFM) and correlated scanning probe microscopy (SPM-analytical software) with corresponding image analysis were performed immediately after completion of standardized exercise (MMH) at the brickfield. A number of correlated significances and regressive linear models were developed among MDA, G-6-PD, GSH, and RBC surface roughness. It appears that these linear models might be instrumental in predicting early oxidative damages related to specific occupational hazards.

  12. Human KATP channelopathies: diseases of metabolic homeostasis

    Science.gov (United States)

    2009-01-01

    Assembly of an inward rectifier K+ channel pore (Kir6.1/Kir6.2) and an adenosine triphosphate (ATP)-binding regulatory subunit (SUR1/SUR2A/SUR2B) forms ATP-sensitive K+ (KATP) channel heteromultimers, widely distributed in metabolically active tissues throughout the body. KATP channels are metabolism-gated biosensors functioning as molecular rheostats that adjust membrane potential-dependent functions to match cellular energetic demands. Vital in the adaptive response to (patho)physiological stress, KATP channels serve a homeostatic role ranging from glucose regulation to cardioprotection. Accordingly, genetic variation in KATP channel subunits has been linked to the etiology of life-threatening human diseases. In particular, pathogenic mutations in KATP channels have been identified in insulin secretion disorders, namely, congenital hyperinsulinism and neonatal diabetes. Moreover, KATP channel defects underlie the triad of developmental delay, epilepsy, and neonatal diabetes (DEND syndrome). KATP channelopathies implicated in patients with mechanical and/or electrical heart disease include dilated cardiomyopathy (with ventricular arrhythmia; CMD1O) and adrenergic atrial fibrillation. A common Kir6.2 E23K polymorphism has been associated with late-onset diabetes and as a risk factor for maladaptive cardiac remodeling in the community-at-large and abnormal cardiopulmonary exercise stress performance in patients with heart failure. The overall mutation frequency within KATP channel genes and the spectrum of genotype–phenotype relationships remain to be established, while predicting consequences of a deficit in channel function is becoming increasingly feasible through systems biology approaches. Thus, advances in molecular medicine in the emerging field of human KATP channelopathies offer new opportunities for targeted individualized screening, early diagnosis, and tailored therapy. PMID:20033705

  13. Characterizing metabolic changes in human colorectal cancer.

    Science.gov (United States)

    Williams, Michael D; Zhang, Xing; Park, Jeong-Jin; Siems, William F; Gang, David R; Resar, Linda M S; Reeves, Raymond; Hill, Herbert H

    2015-06-01

    Colorectal cancer (CRC) remains a leading cause of cancer death worldwide, despite the fact that it is a curable disease when diagnosed early. The development of new screening methods to aid in early diagnosis or identify precursor lesions at risk for progressing to CRC will be vital to improving the survival rate of individuals predisposed to CRC. Metabolomics is an advancing area that has recently seen numerous applications to the field of cancer research. Altered metabolism has been studied for many years as a means to understand and characterize cancer. However, further work is required to establish standard procedures and improve our ability to identify distinct metabolomic profiles that can be used to diagnose CRC or predict disease progression. The present study demonstrates the use of direct infusion traveling wave ion mobility mass spectrometry to distinguish metabolic profiles from CRC samples and matched non-neoplastic epithelium as well as metastatic and primary tumors at different stages of disease (T1-T4). By directly infusing our samples, the analysis time was reduced significantly, thus increasing the speed and efficiency of this method compared to traditional metabolomics platforms. Partial least squares discriminant analysis was used to visualize differences between the metabolic profiles of sample types and to identify the specific m/z features that led to this differentiation. Identification of the distinct m/z features was made using the human metabolome database. We discovered alterations in fatty acid biosynthesis and oxidative, glycolytic, and polyamine pathways that distinguish tumors from non-malignant colonic epithelium as well as various stages of CRC. Although further studies are needed, our results indicate that colonic epithelial cells undergo metabolic reprogramming during their evolution to CRC, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention. Graphical Abstract

  14. Stem bark and flower extracts of Vismia cauliflora are highly effective antioxidants to human blood cells by preventing oxidative burst in neutrophils and oxidative damage in erythrocytes.

    Science.gov (United States)

    Ribeiro, Alessandra Braga; Berto, Alessandra; Ribeiro, Daniela; Freitas, Marisa; Chisté, Renan Campos; Visentainer, Jesuí Vergílio; Fernandes, Eduarda

    2015-01-01

    Vismia cauliflora A.C.Sm. [Hypericaceae (Clusiaceae)] is an Amazonian plant traditionally used by indigenous population to treat dermatosis and inflammatory processes of the skin. Previous research on V. cauliflora extracts suggests its potential to neutralize cellular oxidative damages related to the production of reactive oxygen and nitrogen species. To determine the activity of stem bark and flower extracts of V. cauliflora on the modulation of oxidative burst in human neutrophils, as well as its potential to inhibit oxidative damage in human erythrocytes. The modulation of neutrophil's oxidative burst by the ethanolic extracts (0.3-1000 µg/mL) was determined by the oxidation of specific probes by reactive species. Additionally, the potential of these extracts to inhibit oxidative damage in human erythrocytes was evaluated by monitoring its biomarkers of oxidative stress. Vismia cauliflora extracts presented remarkable capacity to prevent the oxidative burst in activated human neutrophils (IC50 < 15 µg/mL). However, the maximum percentage of inhibition achieved against hydrogen peroxide was 45%. Concerning the oxidative damage in human erythrocytes, the extracts were able to minimize the tert-butyl hydroperoxide-induced hemoglobin oxidation and lipid peroxidation in a very low concentration range (2.7-18 μg/mL). Furthermore, only stem bark extract (100 µg/mL) was able to inhibit the depletion of glutathione (13%). These results reinforce the therapeutic potential of stem bark and flower extracts of V. cauliflora to heal topical skin disease, namely in the treatment of neutrophil-related dermatosis and skin conditions related to oxidative stress, including skin aging.

  15. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  16. Erythrocyte phospholipid and polyunsaturated fatty acid composition in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Philippe Koehrer

    Full Text Available Long chain polyunsaturated fatty acids (LCPUFAs including docosahexaenoic acid and arachidonic acid are suspected to play a key role in the pathogenesis of diabetes. LCPUFAs are known to be preferentially concentrated in specific phospholipids termed as plasmalogens. This study was aimed to highlight potential changes in the metabolism of phospholipids, and particularly plasmalogens, and LCPUFAs at various stages of diabetic retinopathy in humans.We performed lipidomic analyses on red blood cell membranes from controls and mainly type 2 diabetes mellitus patients with or without retinopathy. The fatty acid composition of erythrocytes was determined by gas chromatography and the phospholipid structure was determined by liquid chromatography equipped with an electrospray ionisation source and coupled with a tandem mass spectrometer (LC-ESI-MS/MS. A significant decrease in levels of docosahexaenoic acid and arachidonic acid in erythrocytes of diabetic patients with or without retinopathy was observed. The origin of this decrease was a loss of phosphatidyl-ethanolamine phospholipids esterified with these LCPUFAs. In diabetic patients without retinopathy, this change was balanced by an increase in the levels of several phosphatidyl-choline species. No influence of diabetes nor of diabetic retinopathy was observed on the concentrations of plasmalogen-type phospholipids.Diabetes and diabetic retinopathy were associated with a reduction of erythrocyte LCPUFAs in phosphatidyl-ethanolamines. The increase of the amounts of phosphatidyl-choline species in erythrocytes of diabetic patients without diabetic retinopathy might be a compensatory mechanism for the loss of LC-PUFA-rich phosphatidyl-ethanolamines.

  17. Studies on the possible biological effects of 50 Hz electric and/or magnetic fields: evaluation of some glycolytic enzymes, glycolytic flux, energy and oxido-reductive potentials in human erythrocytes exposed in vitro to power frequency fields.

    Science.gov (United States)

    Dachà, M; Accorsi, A; Pierotti, C; Vetrano, F; Mantovani, R; Guidi, G; Conti, R; Nicolini, P

    1993-01-01

    An attempt has been made to understand whether 50 Hz electric and magnetic fields (EMFs) are involved in producing bioeffects by exposing human erythrocytes in vitro. The study evaluated some key glycolytic enzymes, glucose consumption, lactate production, energy charge, 2,3-diphosphoglycerate, and reduced glutathione levels, all of which are biochemical parameters significant to erythrocyte function. Cells exposed to individual or superimposed EMFs have not shown any significant difference compared with the controls.

  18. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin.

    Science.gov (United States)

    González-Alonso, José; Mortensen, Stefan P; Dawson, Ellen A; Secher, Niels H; Damsgaard, Rasmus

    2006-04-01

    Blood flow to dynamically contracting myocytes is regulated to match O(2) delivery to metabolic demand. The red blood cell (RBC) itself functions as an O(2) sensor, contributing to the control of O(2) delivery by releasing the vasodilators ATP and S-nitrosohaemoglobin with the offloading of O(2) from the haemoglobin molecule. Whether RBC number is sensed remains unknown. To investigate the role of RBC number, in isolation and in combination with alterations in blood oxygenation, on muscle and systemic perfusion, we measured local and central haemodynamics during one-legged knee-extensor exercise ( approximately 50% peak power) in 10 healthy males under conditions of normocythaemia (control), anaemia, anaemia + plasma volume expansion (PVX), anaemia + PVX + hypoxia, polycythaemia, polycythaemia + hyperoxia and polycythaemia + hypoxia, which changed either RBC count alone or both RBC count and oxyhaemoglobin. Leg blood flow (LBF), cardiac output (Q) and vascular conductance did not change with either anaemia or polycythaemia alone. However, LBF increased with anaemia + PVX (28 +/- 4%) and anaemia + PVX + hypoxia (46 +/- 6%) and decreased with polycythaemia + hyperoxia (18 +/- 5%). LBF and Q with anaemia + PVX + hypoxia (8.0 +/- 0.5 and 15.8 +/- 0.7 l min(-1), respectively) equalled those during maximal knee-extensor exercise. Collectively, LBF and vascular conductance were intimately related to leg arterial-venous (a-v) O(2) difference (r(2)= 0.89-0.93; P < 0.001), suggesting a pivotal role of blood O(2) gradients in muscle microcirculatory control. The systemic circulation accommodated to the changes in muscle perfusion. Our results indicate that, when coping with severe haematological challenges, local regulation of skeletal muscle blood flow and O(2) delivery primarily senses alterations in the oxygenation state of haemoglobin and, to a lesser extent, alterations in the number of RBCs and haemoglobin molecules.

  19. Direct measurement of the rate of glutathione synthesis in 1-chloro-2,4-dinitrobenzene treated human erythrocytes.

    NARCIS (Netherlands)

    Raftos, J.E.; Dwarte, T.M.; Luty, J.F.; Willcock, C.J.

    2006-01-01

    Cell glutathione scavenges free radicals, degrades peroxides, removes damaging electrophiles and maintains the redox state. The aim of this study was to develop an effective and efficient method to measure the rate of glutathione synthesis from its constituent amino acids in whole erythrocytes (RBCs

  20. The relationship between human T-lymphocyte subsets defined by monoclonal antibodies and by avidity differences to sheep erythrocytes

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Heron, I

    1982-01-01

    differences to sheep erythrocytes. Through a correlation was demonstrated between the T4+ (inducer) cells and the high avidity ("active") T cells and between the T8+ (suppressor) cells and low avidity T cells, these subsets were far from identical, and it is concluded that the application of monoclonal...

  1. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    Regulation of glucose metabolism, despite intense research through decades, is still not clear. Skeletal muscle is highly important for maintaining glucose homeostasis. Regulation of skeletal muscle glucose metabolism is influenced by protein signaling and changes in the activity of metabolic enz...... interval exercise). The abundance of signaling proteins and metabolic enzymes are in most cases different in type I and type II muscle fibers, indicating that their glucose metabolism is different.......Regulation of glucose metabolism, despite intense research through decades, is still not clear. Skeletal muscle is highly important for maintaining glucose homeostasis. Regulation of skeletal muscle glucose metabolism is influenced by protein signaling and changes in the activity of metabolic...... enzymes. Skeletal muscle consists of thousands of muscle fibers. These fibers can roughly be classified into type I and type II muscle fibers. The overall aim of this PhD thesis was to investigate the effect of insulin and exercise on human muscle fiber type specific metabolic signaling. The importance...

  2. Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1

    Science.gov (United States)

    Naftalin, Richard J; Afzal, Iram; Cunningham, Philip; Halai, Mansur; Ross, Clare; Salleh, Naguib; Milligan, Stuart R

    2003-01-01

    This study investigates the effects of androgens, the antiandrogen flutamide and green tea catechins on glucose transport inhibition in human erythrocytes. These effects may relate to the antidiabetogenic effects of green tea. Testosterone, 4-androstene-3,17-dione, dehydroepiandrosterone (DHEA) and DHEA-3-acetate inhibit glucose exit from human erythrocytes with half-maximal inhibitions (Ki) of 39.2±8.9, 29.6±3.7, 48.1±10.2 and 4.8±0.98 μM, respectively. The antiandrogen flutamide competitively relieves these inhibitions and of phloretin. Dehydrotestosterone has no effect on glucose transport, indicating the differences between androgen interaction with GLUT1 and human androgen receptor (hAR). Green tea catechins also inhibit glucose exit from erythrocytes. Epicatechin 3-gallate (ECG) has a Ki ECG of 0.14±0.01 μM, and epigallocatechin 3-gallate (EGCG) has a Ki EGCG of 0.97±0.13 μM. Flutamide reverses these effects. Androgen-screening tests show that the green tea catechins do not act genomically. The high affinities of ECG and EGCG for GLUT1 indicate that this might be their physiological site of action. There are sequence homologies between GLUT1 and the ligand-binding domain (LBD) of hAR containing the amino-acid triads Arg 126, Thr 30 and Asn 288, and Arg 126, Thr 30 and Asn 29, with similar 3D topology to the polar groups binding 3-keto and 17-β OH steroid groups in hAR LBD. These triads are appropriately sited for competitive inhibition of glucose import at the external opening of the hydrophilic pore traversing GLUT1. PMID:12970085

  3. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  4. Synthesis and evaluation of the potential deleterious effects of ZnO nanomaterials (nanoneedles and nanoflowers) on blood components, including albumin, erythrocytes and human isolated primary neutrophils

    Science.gov (United States)

    Pastrello, Bruna; Paracatu, Luana Chiquetto; de Carvalho Bertozo, Luiza; Paino, Iêda Maria Martinez; Lisboa-Filho, Paulo Noronha; Ximenes, Valdecir Farias

    2016-07-01

    The application of zinc oxide (ZnO) nanoparticles in biomaterials has increased significantly in the recent years. Here, we aimed to study the potential deleterious effects of ZnO on blood components, including human serum albumin (HSA), erythrocytes and human isolated primary neutrophils. To test the influence of the morphology of the nanomaterials, ZnO nanoneedles (ZnO-nn) and nanoflowers (ZnO-nf) were synthesized. The zeta potential and mean size of ZnO-nf and ZnO-nn suspensions in phosphate-buffered saline were -10.73 mV and 3.81 nm and -5.27 mV and 18.26 nm, respectively. The incubation of ZnO with HSA did not cause its denaturation as verified by the absence of significant alterations in the intrinsic and extrinsic fluorescence and in the circular dichroism spectrum of the protein. The capacity of HSA as a drug carrier was not affected as verified by employing site I and II fluorescent markers. Neither type of ZnO was able to provoke the activation of neutrophils, as verified by lucigenin- and luminol-dependent chemiluminescence and by the extracellular release of hydrogen peroxide. ZnO-nf, but not ZnO-nn, induced the haemolysis of erythrocytes. In conclusion, our results reinforce the concept that ZnO nanomaterials are relatively safe for usage in biomaterials. A potential exception is the capacity of ZnO-nf to promote the lysis of erythrocytes, a discovery that shows the importance of the morphology in the toxicity of nanoparticles.

  5. Effects of cobalt-60 ionizing radiation on human erythrocyte and its membrane proteins; Acao da radiacao ionizante sobre hemacias humanas e suas proteinas de membrana

    Energy Technology Data Exchange (ETDEWEB)

    Amancio, Francisco Fernandes

    1998-07-01

    Ionizing radiation has several uses, as sterilization and radiotherapy, by its effects on living beings. recently, it has been used, at relatively lower doses (25 Gy), on blood for transfusions, mainly to eliminate undesirable graft host reactions, for use in multi transfused or immunocompromised patients. Here, we study the effect of larger doses of cobalt-60 ionizing radiation (25-1600 Gy) on human erythrocytes, by cytometric, physiologic, biochemical and immunological methods, looking for its effects and its detection. The red cells presented a clear dose-dependent increase in this volume, when irradiated in doses higher than 200 Gy, more significant in stored blood, but without hemolysis. Osmotic fragility was increased only after irradiation of more than 400 Gy. By ektacytometry, there was a lower deformability of irradiated red cells, at low stress (0.3 Pa), similar to capillary flow, but without alteration in higher stress (3 Pa), found in cardiac chambers. By SDS-PAGE, it was demonstrated that irradiated isolated erythrocyte membranes had aggregation of spectrin molecules, and decay of bands with lower molecular mass. This effect could be attributed to the radiation-induced hydroxyl radical, by specific scavenger studies. Those modifications were both antigenic and immunogenic in experimental animals, and the induced antibodies recognizes, by ELISA and immunoblot, both native or irradiated membrane proteins. They recognize rather irradiated whole erythrocyte than native ones, by hemagglutination, indirect immunofluorescence or flow cytometry assays. Our data suggests that human red cells could be irradiated at higher doses than those usually employed, with possible effect on other contaminant pathogens, without loss of viability of its use in transfusions. After improvements, irradiation induced epitopes detection could be a new tool in biological dosimetry. (author)

  6. Simple in vitro method of radiolabelling human erythrocytes in whole blood with /sup 113m/In-tropolonate

    Energy Technology Data Exchange (ETDEWEB)

    Osman, S.; Danpure, H.J.

    1987-01-01

    A simple and rapid in vitro procedure has been developed for selectively radiolabelling erythrocytes in whole blood using /sup 113m/In-tropolonate. A maximum labelling efficiency of 97% was achieved, of which 95.5% was on the erythrocytes after only 5 min incubation of whole blodd at room temperature. The optimum amount of tropolone for labelling whole blood was 10 ..mu..g of tropolone per ml of blood using acid-citrate dextrose (ACD) as the anticoagulant and 50 ..mu..g of tropolone per ml of blood using heparin. Under these optimim conditions, only 2.5% of the cell-bound /sup 113m/In was released from the labelled cells during a 1 h in vitro incubation in cell-free plasma, irrespective of the anticoagulant used. These results suggest that /sup 113m/In-tropolonate may prove to be useful in vitro agent for labelling erythrocytes for short-term clinical investigations, especially at centres where /sup 99m/Tc and /sup 111/In are unavailable.

  7. [Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation].

    Science.gov (United States)

    Brazhe, N A; Baĭzhumanov, A A; Parshina, E Iu; Iusipovich, A I; Akhalaia, M Ia; Iarlykova, Iu V; Labetskaia, O I; Ivanova, S M; Morukov, B V; Maksimov, G V

    2011-01-01

    Effects of strict 105-d isolation on blood antioxidant status, erythrocyte membrane processes and oxygen-binding properties of hemoglobin were studied in 6 male volunteers (25 to 40 y.o.) in ground-based simulation of a mission to Mars (experiment Mars-105). The parameters were measured using venous blood samples collected during BDC, on days 35, 70 and 105 of the experiment and on days 7 and 14-15 after its completion. Methods of biochemistry (determination of enzyme activity and thin-layer chromatography) and biophysical (laser interference microscopy, Raman spectroscopy) showed changes in relative content of lipid and phospholipid fractions suggesting growth of membrane microviscosity and increase in TBA-AP (active products of lipids peroxidation interacting with thiobarbituric acid). A significant increase in glucose-6-phosphate dehydrogenase and superoxide dismutase activities against reduction of catalase activity points to both reparative processes in erythrocytes and disbalance between the number of evolving active forms of oxygen and antioxidant protection mechanisms in cells. Hemoglobin sensitivity of oxygen and blood level of oxyhemoglobin were found to increase, too. It is presumed that adaptation of organism to stresses experienced during and after the experiment may destroy balance of the antioxidant protection systems which is conducive to oxidation of membrane phospholipids, alteration of their content, increase of membrane microviscosity and eventual failure of the gas-exchange function of erythrocytes.

  8. Temporal variations of adenosine metabolism in human blood.

    Science.gov (United States)

    Chagoya de Sánchez, V; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yáñez, L; Aguilar-Roblero, R; Oksenberg, A; Vega-González, A; Villalobos, L; Rosenthal, L; Fernández-Cancino, F; Drucker-Colín, R; Díaz-Muñoz, M

    1996-08-01

    Eight diurnally active (06:00-23:00 h) subjects were adapted for 2 days to the room conditions where the experiments were performed. Blood sampling for adenosine metabolites and metabolizing enzymes was done hourly during the activity span and every 30 min during sleep. The results showed that adenosine and its catabolites (inosine, hypoxanthine, and uric acid), adenosine synthesizing (S-adenosylhomocysteine hydrolase and 5'-nucleotidase), degrading (adenosine deaminase) and nucleotide-forming (adenosine kinase) enzymes as well as adenine nucleotides (AMP, ADP, and ATP) undergo statistically significant fluctuations (ANOVA) during the 24 h. However, energy charge was invariable. Glucose and lactate chronograms were determined as metabolic indicators. The same data analyzed by the chi-square periodogram and Fourier series indicated ultradian oscillatory periods for all the metabolites and enzymatic activities determined, and 24-h oscillatory components for inosine, hypoxanthine, adenine nucleotides, glucose, and the activities of SAH-hydrolase, 5'-nucleotidase, and adenosine kinase. The single cosinor method showed significant oscillatory components exclusively for lactate. As a whole, these results suggest that adenosine metabolism may play a role as a biological oscillator coordinating and/or modulating the energy homeostasis and physiological status of erythrocytes in vivo and could be an important factor in the distribution of purine rings for the rest of the organism.

  9. Induction of Suicidal Erythrocyte Death by Cantharidin

    Directory of Open Access Journals (Sweden)

    Kousi Alzoubi

    2015-07-01

    Full Text Available The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i, ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 mg/mL, significantly decreased forward scatter (≥25 mg/mL, significantly increased [Ca2+]i (≥25 mg/mL, but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 mM and slightly decreased by p38 inhibitor skepinone (2 mM. Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone.

  10. Induction of Suicidal Erythrocyte Death by Cantharidin.

    Science.gov (United States)

    Alzoubi, Kousi; Egler, Jasmin; Briglia, Marilena; Fazio, Antonella; Faggio, Caterina; Lang, Florian

    2015-07-28

    The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 mg/mL), significantly decreased forward scatter (≥25 mg/mL), significantly increased [Ca2+]i (≥25 mg/mL), but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 mM) and slightly decreased by p38 inhibitor skepinone (2 mM). Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone.

  11. The Effect of Sepsis on the Erythrocyte.

    Science.gov (United States)

    Bateman, Ryon M; Sharpe, Michael D; Singer, Mervyn; Ellis, Christopher G

    2017-09-08

    Sepsis induces a wide range of effects on the red blood cell (RBC). Some of the effects including altered metabolism and decreased 2,3-bisphosphoglycerate are preventable with appropriate treatment, whereas others, including decreased erythrocyte deformability and redistribution of membrane phospholipids, appear to be permanent, and factors in RBC clearance. Here, we review the effects of sepsis on the erythrocyte, including changes in RBC volume, metabolism and hemoglobin's affinity for oxygen, morphology, RBC deformability (an early indicator of sepsis), antioxidant status, intracellular Ca(2+) homeostasis, membrane proteins, membrane phospholipid redistribution, clearance and RBC O₂-dependent adenosine triphosphate efflux (an RBC hypoxia signaling mechanism involved in microvascular autoregulation). We also consider the causes of these effects by host mediated oxidant stress and bacterial virulence factors. Additionally, we consider the altered erythrocyte microenvironment due to sepsis induced microvascular dysregulation and speculate on the possible effects of RBC autoxidation. In future, a better understanding of the mechanisms involved in sepsis induced erythrocyte pathophysiology and clearance may guide improved sepsis treatments. Evidence that small molecule antioxidants protect the erythrocyte from loss of deformability, and more importantly improve septic patient outcome suggest further research in this area is warranted. While not generally considered a critical factor in sepsis, erythrocytes (and especially a smaller subpopulation) appear to be highly susceptible to sepsis induced injury, provide an early warning signal of sepsis and are a factor in the microvascular dysfunction that has been associated with organ dysfunction.

  12. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes [published erratum appears in J Exp Med 1988 Oct 1;168(4):1517

    OpenAIRE

    1988-01-01

    We have used mouse mAbs, 3F11 and 06B4, that are specific for highly conserved epitopes of Neisseria gonorrhoeae lipooligosaccharides (LOS) to identify immunochemically similar structures on human erythrocytes. mAb 3F11 agglutinated erythrocytes from all randomly selected adult humans, while mAb 06B4 agglutinated only 80% of the same specimens. The antibodies had an activity with erythrocytes similar to human cold agglutinins in that agglutination occurred at 4 degrees C and decreased with in...

  13. [Participation of proteinkinase CK2 in regulation of human erythrocytes plasma membrane redox system activity: relative contribution of ca(2+)-dependent and ca(2+)-independent mechanisms of its activation].

    Science.gov (United States)

    Iakovenko, I N; Zhirnov, V V; Kozachenko, O P; Shablykin, O V; Brovarets', V S

    2012-01-01

    Involvement of protein kinase CK2 (2.7.11.1) in modulation of live cells trans-plasma membrane electron transport was first discovered. Using human erythrocytes a decrease of plasma membrane redox system (PMRS) activity is shown under the action of specific protein kinase CK2 inhibitors. Using inhibitory analysis the activity regulation of human erythrocytes PMRS by Ca(2+)-dependent and Ca(2+)-independent mechanisms were investigated. It was shown that functional Ca(2+)-antagonists (nitrendipine and calmidazolium) significantly increased, and functional Ca(2+)-agonists to some extent reduced or did not affect the trans-plasma membrane electron transport in these cells.

  14. The approximate entropy of the electromyographic signals of tremor correlates with the osmotic fragility of human erythrocytes

    Directory of Open Access Journals (Sweden)

    Penha-Silva Nilson

    2010-06-01

    Full Text Available Abstract Background The main problem of tremor is the damage caused to the quality of the life of patients, especially those at more advanced ages. There is not a consensus yet about the origins of this disorder, but it can be examined in the correlations between the biological signs of aging and the tremor characteristics. Methods This work sought correlations between the osmotic fragility of erythrocytes and features extracted from electromyographic (EMG activity resulting from physiological tremor in healthy patients (N = 44 at different ages (24-87 years. The osmotic fragility was spectrophotometrically evaluated by the dependence of hemolysis, provided by the absorbance in 540 nm (A54o, on the concentration of NaCl. The data were adjusted to curves of sigmoidal regression and characterized by the half transition point (H50, amplitude of lysis transition (dx and values of A540 in the curve regions that characterize the presence of lysed (A1 and preserved erythrocytes (A2. The approximate entropy was estimated from EMG signals detected from the extensor carpi ulnaris muscle during the movement of the hand of subjects holding up a laser pen towards an Archimedes spiral, fixed in a whiteboard. The evaluations were carried out with the laser pen at rest, at the center of the spiral, and in movement from the center to the outside and from outside to the center. The correlations among the parameters of osmotic fragility, tremor and age were tested. Results Negative correlations with age were found for A1 and dx. With the hand at rest, a positive correlation with H50 was found for the approximate entropy. Negative correlations with H50 were found for the entropy with the hand in movement, as from the center to the outside or from the outside to the center of the spiral. Conclusion In healthy individuals, the increase in the erythrocyte osmotic fragility was associated with a decrease in the approximate entropy for rest tremor and with an increase

  15. Uptake of Eudragit Retard L (Eudragit® RL Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats

    Directory of Open Access Journals (Sweden)

    Mosaad A. Abdel-Wahhab

    2014-02-01

    Full Text Available The aim of this study was to prepare Eudragit Retard L (Eudragit RL nanoparticles (ENPs and to determine their properties, their uptake by the human THP-1 cell line in vitro and their effect on the hematological parameters and erythrocyte damage in rats. ENPs showed an average size of 329.0 ± 18.5 nm, a positive zeta potential value of +57.5 ± 5.47 mV and nearly spherical shape with a smooth surface. THP-1 cell lines could phagocyte ENPs after 2 h of incubation. In the in vivo study, male Sprague-Dawley rats were exposed orally or intraperitoneally (IP with a single dose of ENP (50 mg/kg body weight. Blood samples were collected after 4 h, 48 h, one week and three weeks for hematological and erythrocytes analysis. ENPs induced significant hematological disturbances in platelets, red blood cell (RBC total and differential counts of white blood cells (WBCs after 4 h, 48 h and one week. ENP increased met-Hb and Co-Hb derivatives and decreased met-Hb reductase activity. These parameters were comparable to the control after three weeks when administrated orally. It could be concluded that the route of administration has a major effect on the induction of hematological disturbances and should be considered when ENPs are applied for drug delivery systems.

  16. S-(N-dansylaminoethyl)-6-mercaptoguanosine as a fluorescent probe for the uridine transport system in human erythrocytes.

    Science.gov (United States)

    Shohami, E; Koren, R

    1979-02-15

    A fluorescent derivative of 6-mercaptoguanosine, S-(N-dansylaminoethyl)-6-mercaptoguanosine, was synthesized, and found to be a strong inhibitor of the uridine transport system of erythrocyte (Ki approximately 0.3 microM). The emission spectrum of this compound has peaks at 400 and 550 nm. The emission at 550, but not that a 400 nm, in environment-sensitive. A method was devised for preparing a suspension of erythrocyte-membrane fragments with sufficiently low light scattering so that a detailed study could be made of the fluorescence of the probe when bound to membranes. Direct binding measurements showed the existence of a tight binding site, with a dissociation constant of the same order of magnitude as the inhibition constant. Binding of probe and substrate are not mutually exclusive, but the fluorescence and affinity of the bound probe are sensitive to the presence of uridine. The emission spectrum suggests that the bound probe penetrates into the bilayer region of the membrane.

  17. In silico-screening approaches for lead generation: identification of novel allosteric modulators of human-erythrocyte pyruvate kinase.

    Science.gov (United States)

    Tripathi, Ashutosh; Safo, Martin K

    2012-01-01

    Identification of allosteric binding site modulators have gained increased attention lately for their potential to be developed as selective agents with a novel chemotype and targeting perhaps a new and unique binding site with probable fewer side effects. Erythrocyte pyruvate kinase (R-PK) is an important glycolytic enzyme that can be pharmacologically modulated through its allosteric effectors for the treatment of hemolytic anemia, sickle-cell anemia, hypoxia-related diseases, and other disorders arising from erythrocyte PK malfunction. An in-silico screening approach was applied to identify novel allosteric modulators of pyruvate kinase. A small-molecules database of the National Cancer Institute (NCI), was virtually screened based on structure/ligand-based pharmacophore. The virtual screening campaign led to the identification of several compounds with similar pharmacophoric features as fructose-1,6-bisphosphate (FBP), the natural allosteric activator of the kinase. The compounds were subsequently docked into the FBP-binding site using the programs FlexX and GOLD, and their interactions with the protein were analyzed with the energy-scoring function of HINT. Seven promising candidates were obtained from the NCI and subjected to kinetics analysis, which revealed both activators and inhibitors of the R-isozyme of PK (R-PK).

  18. Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes.

    Science.gov (United States)

    Zou, Ying; Zhao, Mouming; Yang, Kun; Lin, Lianzhu; Wang, Yong

    2017-08-15

    The black garlic juice is popular for its nutritive value. Enrichment of antioxidants is needed to make black garlic extract an effective functional ingredient. Five macroporous resins were evaluated for their capacity in adsorbing antioxidants in black garlic juice. XAD-16 resin was chosen for further study due to its high adsorption and desorption ratios. Pseudo-second-order kinetics (qe=625μmol Trolox equiv/g dry resin, k2=0.0001463) and Freundlich isotherm models (ΔH=-10.1547kJ/mol) were suitable for describing the whole exothermic and physical adsorption processes of the antioxidants from black garlic juice on XAD-16 resin. The antioxidants and phenolics were mostly enriched in 40% ethanol fraction by XAD-16 resin column chromatography. The black garlic extract and its fractions could protect erythrocytes against AAPH-induced hemolysis in dose-dependent manners. The pretreatment of AAPH-damaged erythrocytes with 40% ethanol fractions (2.5mg/mL) significantly decreased the hemolysis ratios from 53.58% to 3.79%. The 40% ethanol fraction possessing strong intracellular antioxidant activity could be used as a functional food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans123

    Science.gov (United States)

    Johnston, Jonathan D; Scheer, Frank A; Turek, Fred W

    2016-01-01

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial responses. Recent work has elucidated the metabolic roles of circadian clocks in key metabolic tissues, including liver, pancreas, white adipose, and skeletal muscle. For example, tissue-specific clock disruption in a single peripheral organ can cause obesity or disruption of whole-organism glucose homeostasis. This review explains mechanistic insights gained from transgenic animal studies and how these data are being translated into the study of human genetics and physiology. The principles of chrononutrition have already been demonstrated to improve human weight loss and are likely to benefit the health of individuals with metabolic disease, as well as of the general population. PMID:26980824

  20. Evaluation of the free-radical-scavenging activity of diclofenac acid on the free-radical-induced haemolysis of human erythrocytes.

    Science.gov (United States)

    Tang, You-Zhi; Liu, Zai-Qun

    2006-05-01

    Free-radical-induced peroxidation in-vivo is regarded as the aetiology of some diseases and free-radical-scavenging drugs, also called antioxidants (AH), have been widely used to overcome oxidative stress. An in-vitro experimental method, 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)-induced haemolysis of human erythrocytes can be applied to assess the free-radical-scavenging activity of a drug. The major objectives of this work were focused on three aspects. Firstly, introduction of the chemical kinetic deduction of free-radical-initiating reaction to AAPH-induced haemolysis of human erythrocytes, by which the number of free radicals trapped by an antioxidant, n, can be obtained after finding the quantitative relationship between the inhibition period (t(inh)) and the concentration of the antioxidant, t(inh) = (n/Ri) [AH]. Ri, the free-radical-initiating rate, was initially confirmed by using alpha-tocopherol (VE) whose n was taken as 2. Secondly, the free-radical-scavenging activity of diclofenac acid (DaH) and its sodium salt (DaNaH) was assessed. It has been found that DaH and DaNaH protect human erythrocytes against AAPH-induced haemolysis dose-dependently. In particular, the n values of DaH and DaNaH (4.96 and 3.60) were much higher than some traditional antioxidants, such as 6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox, a water-soluble structural analogue of VE, n = 0.30) and L-ascorbic acid (VC, n = 0.25), and L-ascorbyl-6-laurate (VC-12, a lipophilic structural analogue of VC, n = 1.11). Moreover, the free-radical-scavenging activity of lipophilic antioxidants is higher than the corresponding water-soluble species. Thirdly, the free-radical-scavenging activity of mixed antioxidants, VE + DaH, VC-12 + DaH, Trolox + DaNaH and VC + DaNaH, was revealed. The n value of VC, VC-12, VE and Trolox increase in the case of mixed usage with DaH and DaNaH, implying that diclofenac acid can repair the radical of these antioxidants. Thus, a mutual

  1. Metabolic heat production by human and animal populations in cities

    Science.gov (United States)

    Stewart, Iain D.; Kennedy, Chris A.

    2016-12-01

    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to human and animal metabolism combined is highest in Mumbai—the world's most densely populated megacity—at 6.5 W m-2, surpassing heat production by electricity use in buildings (5.8 W m-2) and fuel combustion in vehicles (3.9 W m-2). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  2. Carbohydrate Metabolism in Bifidobacteria: Human Symbiotic Bacteria

    Science.gov (United States)

    Bifidobacterium ssp. constitute up to 90% of microbial gut flora in the infant colon, but considerably less in adults. Carbohydrate metabolism in these bacteria is highly unusual. Data from four Bifidobacterium genomes indicates genes missing from glycolysis, gluconeogenesis, and the TCA cycle, in...

  3. Alkali ion transport of primycin modified erythrocytes.

    Science.gov (United States)

    Blaskó, K; Györgyi, S

    1981-01-01

    The effects of the antibiotic primycin on alkali cation transport of human erythrocytes were investigated. Primycin selectively increases the permeability of erythrocytes to alkali-cations according to the sequence: Cs+ greater than Rb+ approximately K+ greater than Na+. The time course of the cation effluxes depends on the antibiotic concentration and can be altered by negatively charged SDS. Some evidence is given for the mechanism of primycin-membrane interaction.

  4. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Louise E Ludlow

    Full Text Available HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1(Ba-L infection of monocyte-derived macrophages (MDM on phagocytosis of opsonised P. falciparum infected erythrocytes (IE and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR (10 (0-28 versus (34 (27-108; IE internalised/100 MDM; p = 0.001 and decreased secretion of IL-6 (1,116 (352-3,387 versus 1,552 (889-6,331; pg/mL; p = 0.0078 and IL-1β (16 (7-21 versus 33 (27-65; pg/mL; p = 0.0078. Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.

  5. Glucose-6-phosphate dehydrogenase (G6PD. Response of the human erythrocyte and another cells to the decrease in their activity.

    Directory of Open Access Journals (Sweden)

    Javier Fernando Bonilla

    2009-11-01

    Full Text Available Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway and the main intracellular source of reduced nicotidamineadenine nucleotidephosphate (NADPH, involved in diverse physiological processes such as antioxidant defense, (for instance in the erythrocyte endothelial growth modulation, erithropoyesis, vascularization and phagocitosis. G6PDH deficiency is the most common X-chromosome-linked enzymopathy in human beings. Although it is present in any type cell, its absolute deficiency is incompatible with life. According to WHO, 400 million people are affected by G6PD deficiency in the world but in Colombia, the severe form prevalence is about 3% to 7%. There are no data related to slight and moderate alterations, that also have clinical effects. This paper reviews some G6PD biomolecular aspects, its classification according to activity and electrophoretic mobility, as well as some main clinical aspects related to its activity alteration.

  6. Antithrombin Activity of Erythrocyte Microvesicles.

    Science.gov (United States)

    Levin, G Ya; Sukhareva, E G

    2017-04-01

    Coagulation and optical (based on chromogenic substrate) methods were employed to examine antithrombin activity of erythrocytes and erythrocyte-derived microvesicles isolated days 7, 14, 21, and 28 on erythrocyte storage. The erythrocyte-derived microvesicles decelerated fibrin clot formation from fibrinogen in the presence of exogenous thrombin both with and without heparin. Microvesicles reduced optical density of chromogenic substrate. These data suggest that erythrocyte-derived microvesicles display a prominent antithrombin activity, which significantly increases during erythrocyte storage.

  7. Metabolic Signatures of Exercise in Human Plasma

    Science.gov (United States)

    Lewis, Gregory D.; Farrell, Laurie; Wood, Malissa J.; Martinovic, Maryann; Arany, Zoltan; Rowe, Glenn C; Souza, Amanda; Cheng, Susan; McCabe, Elizabeth L.; Yang, Elaine; Shi, Xu; Deo, Rahul; Roth, Frederick P.; Asnani, Aarti; Rhee, Eugene P.; Systrom, David M.; Semigran, Marc J.; Vasan, Ramachandran S.; Carr, Steven A.; Wang, Thomas J.; Sabatine, Marc S.; Clish, Clary B.; Gerszten, Robert E.

    2010-01-01

    Exercise provides numerous salutary effects, but our understanding of how these occur is limited. To gain a clearer picture of exercise-induced metabolic responses, we have developed comprehensive plasma metabolite signatures by using mass spectrometry to measure over 200 metabolites before and after exercise. We identified plasma indicators of glycogenolysis (glucose-6-phosphate), tricarboxylic acid (TCA) cycle span 2 expansion (succinate, malate, and fumarate), and lipolysis (glycerol), as well as modulators of insulin sensitivity (niacinamide) and fatty acid oxidation (pantothenic acid). Metabolites that were highly correlated with fitness parameters were found in subjects undergoing acute exercise testing, marathon running, and in 302 subjects from a longitudinal cohort study. Exercise-induced increases in glycerol were strongly related to fitness levels in normal individuals and were attenuated in subjects with myocardial ischemia. A combination of metabolites that increased in plasma in response to exercise (glycerol, niacinamide, glucose-6-phosphate, pantothenate, and succinate) upregulated the expression of nur77, a transcriptional regulator of glucose utilization and lipid metabolism genes in skeletal muscle. Plasma metabolic profiles obtained during exercise provide signatures of exercise performance and cardiovascular disease susceptibility, in addition to highlighting molecular pathways that may modulate the salutary effects of exercise. PMID:20505214

  8. Sb(V) and Sb(III) distribution in human erythrocytes: speciation methodology and the influence of temperature, time and anticoagulants.

    Science.gov (United States)

    Quiroz, Waldo; Aguilar, Luis; Barría, Macarena; Veneciano, Jocelyn; Martínez, Daniel; Bravo, Manuel; Lobos, María Gabriela; Mercado, Luis

    2013-10-15

    In this research a new method was developed and optimized for the determination of Sb(V) and Sb(III) in human erythrocytes fractions (plasma and cytoplasm) by high performance liquid chromatography with hydride generation atomic fluorescence spectrometry. The method considers the first step of samples cleaning by protein precipitation by salting out followed by C18 solid phase extraction, EDTA elution, and finally a chromatographic separation by using anion exchange PRPX-100 (100 mm × 4.1mm) and EDTA 20 mmol L(-1) as mobile phase. The method was optimized by experimental design with a recovery of 90% for Sb(V) and 55-75% for Sb(III) approximately. The analytical method was applied to study the distribution of Sb(V) and Sb(III) in human erythrocytes considering temperature and time of incubations and with special attention about the influence of the anticoagulant. Results showed that both Sb(V) and Sb(III) are capable to enter the red blood cell in a proportion of approximately 40-60%. On the other hand, both species are then excreted from the interior of the cell, where the percentage considerably decreased from approximately 60 to less than 30% within the cell. An increase in the culture temperature increases the capacity of Sb(V) and Sb(III) to penetrate the membrane barrier and reach the cytoplasm. In order to preserve the original distribution of Sb in blood, heparin seems to be the best anticoagulant for sample preservation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. New paradigms for metabolic modeling of human cells

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we......, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented....... review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally...

  10. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes.

    Science.gov (United States)

    Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min

    2015-05-01

    The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.

  11. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism

    Directory of Open Access Journals (Sweden)

    Karlstädt Anja

    2012-08-01

    Full Text Available Abstract Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  12. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  13. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  14. Diet-microbiota interactions as moderators of human metabolism.

    Science.gov (United States)

    Sonnenburg, Justin L; Bäckhed, Fredrik

    2016-07-06

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships in people and the prospect of therapeutic interventions such as personalized nutrition.

  15. Metabolic fate of extracted glucose in normal human myocardium.

    OpenAIRE

    Wisneski, J A; Gertz, E W; Neese, R A; Gruenke, L D; D. L. Morris; Craig, J. C.

    1985-01-01

    Glucose is an important substrate for myocardial metabolism. This study was designed to determine the effect of circulating metabolic substrates on myocardial glucose extraction and to determine the metabolic fate of glucose in normal human myocardium. Coronary sinus and arterial catheters were placed in 23 healthy male volunteers. [6-14C]Glucose was infused as a tracer in 10 subjects. [6-14C]Glucose and [U-13C]lactate were simultaneously infused in the other 13 subjects. Simultaneous blood s...

  16. Metabolic state alters economic decision making under risk in humans.

    Directory of Open Access Journals (Sweden)

    Mkael Symmonds

    Full Text Available BACKGROUND: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores. Specifically, animals often express a preference for risky (more variable food sources when below a metabolic reference point (hungry, and safe (less variable food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. METHODOLOGY/PRINCIPAL FINDINGS: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake, and circulating leptin levels (providing an assay of energy reserves. We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. CONCLUSIONS/SIGNIFICANCE: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that

  17. Analyzing the regulation of metabolic pathways in human breast cancer

    Directory of Open Access Journals (Sweden)

    Schramm Gunnar

    2010-09-01

    Full Text Available Abstract Background Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer. Methods For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors. Results Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway. Conclusion We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.

  18. Understanding specificity in metabolic pathways--structural biology of human nucleotide metabolism.

    Science.gov (United States)

    Welin, Martin; Nordlund, Pär

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  19. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Welin, Martin [Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm (Sweden); Nordlund, Paer, E-mail: Par.Nordlund@ki.se [Structural Genomics Consortium, Karolinska Institutet, 17177 Stockholm (Sweden); Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm (Sweden)

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  20. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans

    DEFF Research Database (Denmark)

    Adhikari, Khem B; Laursen, Bente B; Gregersen, Per L;

    2013-01-01

    Scope Benzoxazinoids, which are natural compounds recently identified in mature whole grain cereals and bakery products, have been suggested to have a range of pharmacological properties and health-protecting effects. There are no published reports concerned with the absorption and metabolism...... of bioactive benzoxazinoids in humans. Methods and results The absorption, metabolism, and excretion of ten different dietary benzoxazinoids were examined by LC-MS/MS by analyzing plasma and urine from 20 healthy human volunteers after daily intake of 143 μmol of total benzoxazinoids from rye bread and rye...... glycosides, the reduction of hydroxamic acid glycosides, glucuronidation, and sulfation were the main mechanisms of the absorption and metabolism of benzoxazinoids. Conclusion These results indicate that following ingestion in healthy humans, a range of unmetabolized bioactive dietary benzoxazinoids...

  1. Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2012-10-01

    Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects.

  2. Metabolic heat production by human and animal populations in cities

    Science.gov (United States)

    Stewart, Iain D.; Kennedy, Chris A.

    2017-07-01

    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to world's most densely populated megacity—at 6.5 W m-2, surpassing heat production by electricity use in buildings (5.8 W m-2) and fuel combustion in vehicles (3.9 W m-2). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  3. Model of reticuloendothelial iron metabolism in humans: Abnormal behavior in idiopathic hemochromatosis and in inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Fillet, G.; Beguin, Y.; Baldelli, L. (Univ. of Liege (Belgium))

    1989-08-01

    Iron transport in the reticuloendothelial (RE) system plays a central role in iron metabolism, but its regulation has not been characterized physiologically in vivo in humans. In particular, why serum iron is elevated and RE cells are much less iron-loaded than parenchymal cells in idiopathic hemochromatosis is not known. The processing of erythrocyte iron by the RE system was studied after intravenous (IV) injection of 59Fe heat-damaged RBCs (HDRBCs) and 55Fe transferrin in normal subjects and in patients with iron deficiency, idiopathic hemochromatosis, inflammation, marrow aplasia, or hyperplastic erythropoiesis. Early release of 59Fe by the RE system was calculated from the plasma iron turnover and the 59Fe plasma reappearance curve. Late release was calculated from the ratio of 59Fe/55Fe RBC utilization in 2 weeks. The partitioning of iron between the early (release from heme catabolism) and late (release from RE stores) phases depended on the size of RE iron stores, as illustrated by the inverse relationship observed between early release and plasma ferritin (P less than .001). There was a strong correlation between early release and the rate of change of serum iron levels during the first three hours in normal subjects (r = .85, P less than .001). Inflammation produced a blockade of the early release phase, whereas in idiopathic hemochromatosis early release was considerably increased as compared with subjects with similar iron stores. Based on these results, we describe a model of RE iron metabolism in humans. We conclude that the RE system appears to determine the diurnal fluctuations in serum iron levels through variations in the immediate output of heme iron. In idiopathic hemochromatosis, a defect of the RE cell in withholding iron freed from hemoglobin could be responsible for the high serum iron levels and low RE iron stores.

  4. 肌酐产物导致红细胞溶血机理探讨%The effection and mechanism that products metabolism of creatinine treated erythrocytes

    Institute of Scientific and Technical Information of China (English)

    胡白瑛

    2011-01-01

    Objective: To study the tenacity that metabolite of creatinine treated erythrocytes. Methods: Metabotist of creatinine of uraemia intestinal bacteria was confirmed by HPLC. Klehsiella pneumoniae were incubated with creatinine. It's metabolite and erythrocytes were incubated, hemoly-sis was observed and GSH was determined in erythrocytes. Results.-Metabolist of creatinine was methylamine, which can bring hemolysis of erythro-cytes(P the hemolysis was not reversed. Added up GSH, it was reversed (P<0. 01). Concentration of GSH in erythrocytes of metabolist of creatinine group was decreased (P<0, 001). Concentration of GSH of creatinine group was 2152. 98fimol/L and that of metabolist of creatinine group was 1047. 49μmo!/L, Conclusions: The toxicity to erythrocytes of the metabolite of creatinine is stronger than that of creatinine. The toxicity could be reversed by GSH.%目的:研究肌酐产物对红细胞的毒性作用.方法:用液相色谱仪分析尿毒症患者肠道细菌分解肌酐的产物.用分解肌酐能力最强的肺炎克雷伯菌与肌酐共同培养,取其培养液与健康红细胞孵化,观察溶血情况;并分别加入葡萄糖、ATP(三磷酸腺苷)、GSH(谷胱甘肽),了解以上物质对溶血的纠正情况;并测定红细胞内GSH的浓度.结果:肠道细菌分解肌酐产生甲胺.肌酐组溶血度1.52%,肌酐产物组3.52%,后者较前者的毒性强,加重红细胞溶血(P<0.05);加入葡萄糖、ATP溶血不纠正,加入GSH明显纠正(P<0.001);GSH组溶血度0.252%,正常对照组0.192%,二者差异无显著性.肌酐组红细胞内GSH含量2152.98μmol/L,肌酐产物组1047.96μmol/L,后者红细胞内GSH含量明显降低(P<0.001).结论:肌酐产物导致红细胞溶血,红细胞内GSH含量下降,补充GSH可纠正溶血.

  5. Photodynamic effects of new silicon phthalocyanines: in vitro studies utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources.

    Science.gov (United States)

    Zaidi, S I; Agarwal, R; Eichler, G; Rihter, B D; Kenney, M E; Mukhtar, H

    1993-08-01

    Photodynamic therapy (PDT) of cancer is a modality that relies upon the irradiation of tumors with visible light following selective uptake of a photosensitizer by the tumor tissue. There is considerable emphasis to define new photosensitizers suitable for PDT of cancer. In this study we evaluated six phthalocyanines (Pc) for their photodynamic effects utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources. Of the newly synthesized Pc, two showed significant destruction of cytochrome P-450 and monooxygenase activities, and enhancement of lipid peroxidation, when added to microsomal suspension followed by irradiation with approximately 675 nm light. These two Pc named SiPc IV (HOSiPcOSi[CH3]2[CH2]3N[CH3]2) and SiPc V (HOSiPc-OSi[CH3]2[CH2]3N[CH3]3+I-) showed dose-dependent photodestruction of cytochrome P-450 and monooxygenase activities in liver microsomes, and photoenhancement of lipid peroxidation, lipid hydroperoxide formation and lipid fluorescence in microsomes and erythrocyte ghosts. Compared to chloroaluminum phthalocyanine tetrasulfonate, SiPc IV and SiPc V produced far more pronounced photodynamic effects. Sodium azide, histidine, and 2,5-dimethylfuran, the quenchers of singlet oxygen, afforded highly significant protection against SiPc IV- and SiPc V-mediated photodynamic effects. However, to a lesser extent, the quenchers of superoxide anion, hydrogen peroxide and hydroxyl radical also showed some protective effects. These results suggest that SiPc IV and SiPc V may be promising photosensitizers for the PDT of cancer.

  6. Morphine metabolism in human skin microsomes.

    Science.gov (United States)

    Heilmann, S; Küchler, S; Schäfer-Korting, M

    2012-01-01

    For patients with severe skin wounds, topically applied morphine is an option to induce efficient analgesia due to the presence of opioid receptors in the skin. However, for topical administration it is important to know whether the substance is biotransformed in the skin as this can eventually reduce the concentration of the active agent considerably. We use skin microsomes to elucidate the impact of skin metabolism on the activity of topically applied morphine. We are able to demonstrate that morphine is only glucuronidated in traces, indicating that the biotransformation in the skin can be neglected when morphine is applied topically. Hence, there is no need to take biotransformation into account when setting up the treatment regimen.

  7. In silico prediction of xenobiotic metabolism in humans

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Fangping [Los Alamos National Laboratory

    2009-01-01

    Xenobiotic metabolism in humans is catalyzed by a few enzymes with broad substrate specificities, which provide the overall broad chemical specificity for nearly all xenobiotics that humans encounter. Xenobiotic metabolism are classified into functional group biotransformations. Based on bona fide reactions and negative examples for each reaction class, support vector machine (SVM) classifiers are built. The input to SVM is a set of atomic and molecular features to define the electrostatic, steric, energetic, geometrical and topological environment of the atoms in the reaction center under the molecule. Results show that the overall sensitivity and specificity of classifiers is around 87%.

  8. multicopper oxidases important for human iron metabolism

    Directory of Open Access Journals (Sweden)

    Diana Wierzbicka

    2014-01-01

    Full Text Available Multi-copper oxidases are a group of proteins which demonstrate enzymatic activity and are capable of oxidizing their substrates with the concomitant reduction of dioxygen to two water molecules. For some multi-copper oxidases there has been demonstrated ferroxidase activity which is related to their specific structure characterized by the presence of copper centres and iron-binding sites. Three multi-copper oxidases have been included in this group: ceruloplasmin, hephaestin and zyklopen. Multi copper oxidases which are expressed in different tissues are capable of oxidizing a wide spectrum of substrates. Multi-copper oxidases are capable of oxidizing a wide spectrum of substrates. Ceruloplasmin exhibits antioxidant activity as well as being involved in many other biological processes. The observations of phenotypic effects of absence or low expression of multi-copper ferroxidase-coding genes suggest that the main role of these proteins is taking part in iron metabolism. The main role of ceruloplasmin in iron turnover is oxidizing Fe2+ into Fe3+, a process which is essential for iron binding to transferrin (the main iron-transporting protein, as well as to ferritin (the main iron-storage protein. The function of hephaestin as ferroxidase is essential for iron binding to apotransferrin in the lamina propria of the intestinal mucosa, a process that is important for further transport of iron to the liver by the portal vein. Available data indicate that zyklopen is responsible for the placental iron transport. The presence of three multi-copper oxidases with ferroxidase activity emphasizes the significance of oxidation for iron metabolism. The distribution of multi-copper ferroxidases in many tissues ensures the proper iron turnover in the body as well as preventing toxic effects related to the presence of Fe2+ ions. These ions contribute to generation of free radicals, including the highly reactive hydroxyl radical, through the Fenton and Haber

  9. Mapping of hemoglobin in erythrocytes and erythrocyte ghosts using two photon excitation fluorescence microscopy

    Science.gov (United States)

    Bukara, Katarina; Jovanić, Svetlana; Drvenica, Ivana T.; Stančić, Ana; Ilić, Vesna; Rabasović, Mihailo D.; Pantelić, Dejan; Jelenković, Branislav; Bugarski, Branko; Krmpot, Aleksandar J.

    2017-02-01

    The present study describes utilization of two photon excitation fluorescence (2PE) microscopy for visualization of the hemoglobin in human and porcine erythrocytes and their empty membranes (i.e., ghosts). High-quality, label- and fixation-free visualization of hemoglobin was achieved at excitation wavelength 730 nm by detecting visible autofluorescence. Localization in the suspension and spatial distribution (i.e., mapping) of residual hemoglobin in erythrocyte ghosts has been resolved by 2PE. Prior to the 2PE mapping, the presence of residual hemoglobin in the bulk suspension of erythrocyte ghosts was confirmed by cyanmethemoglobin assay. 2PE analysis revealed that the distribution of hemoglobin in intact erythrocytes follows the cells' shape. Two types of erythrocytes, human and porcine, characterized with discocyte and echinocyte morphology, respectively, showed significant differences in hemoglobin distribution. The 2PE images have revealed that despite an extensive washing out procedure after gradual hypotonic hemolysis, a certain amount of hemoglobin localized on the intracellular side always remains bound to the membrane and cannot be eliminated. The obtained results open the possibility to use 2PE microscopy to examine hemoglobin distribution in erythrocytes and estimate the purity level of erythrocyte ghosts in biotechnological processes.

  10. Enantioselective Metabolism of Flufiprole in Rat and Human Liver Microsomes.

    Science.gov (United States)

    Lin, Chunmian; Miao, Yelong; Qian, Mingrong; Wang, Qiang; Zhang, Hu

    2016-03-23

    The enantioselective metabolism of flufiprole in rat and human liver microsomes in vitro was investigated in this study. The separation and determination were performed using a liquid chromatography system equipped with a triple-quadrupole mass spectrometer and a Lux Cellulose-2 chiral column. The enantioselective metabolism of rac-flufiprole was dramatically different in rat and human liver microsomes in the presence of the β-nicotinamide adenine dinucleotide phosphate regenerating system. The half-lives (t1/2) of flufiprole in rat and human liver microsomes were 7.22 and 21.00 min, respectively, for R-(+)-flufiprole, whereas the values were 11.75 and 17.75 min, respectively, for S-(-)-flufiprole. In addition, the Vmax of R-(+)-flufiprole was about 3-fold that of S-(-)-flufiprole in rat liver microsomes, whereas its value in the case of S-(-)-flufiprole was about 2-fold that of R-(+)-flufiprole in human liver microsomes. The CLint of rac-flufiprole also showed opposite enantioselectivy in rat and human liver microsomes. The different compositions and contents of metabolizing enzyme in the two liver microsomes might be the reasons for the difference in the metabolic behavior of the two enantiomers.

  11. Gastrointestinal metabolization of human milk oligosaccharides

    NARCIS (Netherlands)

    Albrecht, S.A.; Heuvel, van den E.G.H.M.; Gruppen, H.; Schols, H.A.

    2013-01-01

    Breast feeding has a great impact on the growth of infants both physically and psychologically. Human breast milk is beneficial to infant health because it contains the necessary macro- and micro-nutrients for tissue accretion, repair and behavioural developments. The production of milk is a complex

  12. Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-25

    The main purpose of the present study is to evaluate the ability of nanoemulsion entrapping pomegranate peel polyphenol-rich ethyl acetate fraction (EAF) prepared from pomegranate seed oil and medium chain triglyceride to protect human erythrocyte membrane from oxidative damage and to assess preliminary in vitro photosafety. In order to evaluate the phototoxic effect of nanoemulsions, human red blood cells (RBCs) are used as a biological model and the rate of haemolysis and photohaemolysis (5 J cm(-2) UVA) is assessed in vitro. The level of protection against oxidative damage caused by the peroxyl radical generator AAPH in human RBCs as well as its effects on bilayer membrane characteristics such as fluidity, protein profile and RBCs morphology are determined. EAF-loaded nanoemulsions do not promote haemolysis or photohaemolysis. Anisotropy measurements show that nanoemulsions significantly retrain the increase in membrane fluidity caused by AAPH. SDS-PAGE analysis reveals that AAPH induced degradation of membrane proteins, but that nanoemulsions reduce the extension of degradation. Scanning electron microscopy examinations corroborate the interaction between AAPH, nanoemulsions and the RBC membrane bilayer. Our work demonstrates that Punica granatum nanoemulsions are photosafe and protect RBCs against oxidative damage and possible disturbance of the lipid bilayer of biomembranes. Moreover it suggests that these nanoemulsions could be promising new topical products to reduce the effects of sunlight on skin.

  13. Determination of alternative pathway of complement activity in mouse serum using rabbit erythrocytes

    NARCIS (Netherlands)

    Dijk, H. van; Rademaker, P.M.; Willers, J.M.N

    1980-01-01

    Rabbit, mouse and sheep erythrocytes expressing different concentrations of membrane sialic acid were used to study possible modes of activation of the alternative complement (C) pathway in mouse, human and guinea pig serum. Mouse erythrocytes activated only human serum, whereas rabbit erythrocytes

  14. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  15. Hepatic metabolism of toluene after gastrointestinal uptake in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Honoré Hansen, S

    1993-01-01

    The metabolism of toluene and the influence of small doses of ethanol were measured in eight male volunteers after gastrointestinal uptake, the toluene concentration in alveolar air and the urinary excretion of hippuric acid and ortho-cresol being used as the measures of metabolism. During toluene...... exposure to 2 mg.min-1 for 3 h the alveolar toluene concentration was 0.07 (range 0-0.11) mg.m-3; exposure to 6 mg.min-1 for 30 min increased the alveolar concentration to 0.9 (range 0.03-2.6) mg.m-3. Ingestion of 0.08, 0.16, and 0.32 g of ethanol per kilogram of body weight during toluene exposure of 2 mg...... doses of ethanol inhibit toluene metabolism, and the procedure is sensitive enough to measure metabolic interactions between solvents and other xenobiotics in humans....

  16. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    Science.gov (United States)

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Alterations of the Erythrocyte Membrane during Sepsis

    Directory of Open Access Journals (Sweden)

    Yasmina Serroukh

    2012-01-01

    Full Text Available Erythrocytes have been long considered as “dead” cells with transport of oxygen (O2 as their only function. However, the ability of red blood cells (RBCs to modulate the microcirculation is now recognized as an important additional function. This capacity is regulated by a key element in the rheologic process: the RBC membrane. This membrane is a complex unit with multiple interactions between the extracellular and intracellular compartments: blood stream, endothelium, and other blood cells on the one hand, and the intracytoplasmic compartment with possible rapid adaptation of erythrocyte metabolism on the other. In this paper, we review the alterations in the erythrocyte membrane observed in critically ill patients and the influence of these alterations on the microcirculatory abnormalities observed in such patients. An understanding of the mechanisms of RBC rheologic alterations in sepsis and their effects on blood flow and on oxygen transport may be important to help reduce morbidity and mortality from severe sepsis.

  18. A new HPLC-based assay for the measurement of fructosamine-3-kinase (FN3K) and FN3K-related protein activity in human erythrocytes.

    Science.gov (United States)

    Hellwig, Anne; Scherber, Anja; Koehler, Carsta; Hanefeld, Markolf; Henle, Thomas

    2014-01-01

    An impact on glycation, and possibly on diabetic complications, is attributed to fructosamine-3-kinase (FN3K) and its related protein (FN3K-RP) because they degrade Amadori compounds in vivo. Little is known about individual differences in FN3K-RP activity, which might contribute to an individual risk for diabetic complications. An HPLC-based activity assay for FN3K-RP in erythrocytes with the substrate N-α-hippuryl-N-ε-psicosyllysine was developed. The activities of FN3K and FN3K-RP were also analysed in erythrocytes of 103 consecutive participants of a health-care survey amongst a high-risk group for diabetes. The potential associations of these activities with the subjects' health background (anthropometric data, glucose tolerance and HbA1c, blood lipids, history of metabolic diseases in the subjects and their families, and medication) were examined. The interindividual variability of FN3K-RP is less pronounced than that of FN3K [60-135 vs. 2.8-12.5 mU/g haemoglobin (Hb)]. No correlations with age, sex, body weight, blood cholesterol, or plasma glucose in an oral glucose tolerance test were observed. Subjects with kidney disease had higher activity of mainly FN3K-RP [111±15 vs. 98±18 mU/g Hb, mean±standard deviations (SDs), n=16 vs. 87, p=0.009], whereas subjects whose parents or siblings had a stroke showed lower FN3K activity (6.2±1.6 vs. 7.1±1.8 mU/g Hb, mean±SD, n=24 vs. 66, p=0.040). There is a likely impact of FN3K and FN3K-RP on the glycation cascade in vivo with potential positive and negative effects. The new screening method enables further studies to elucidate the function and importance of FN3K-RP.

  19. Bile Acid-Induced Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2016-04-01

    Full Text Available Background/Aims: In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Methods: Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: The exposure of human erythrocytes to glycochenodesoxycholic (GCDC and taurochenodesoxycholic (TCDC acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.

  20. Metabolic costs and evolutionary implications of human brain development.

    Science.gov (United States)

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-09

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  1. Correlation between blood adenosine metabolism and sleep in humans.

    Science.gov (United States)

    Díaz-Muñoz, M; Hernández-Muñoz, R; Suárez, J; Vidrio, S; Yááñez, L; Aguilar-Roblero, R; Rosenthal, L; Villalobos, L; Fernández-Cancino, F; Drucker-Colín, R; Chagoya De Sanchez, V

    1999-01-01

    Blood adenosine metabolism, including metabolites and metabolizing enzymes, was studied during the sleep period in human volunteers. Searching for significant correlations among biochemical parameters found: adenosine with state 1 of slow-wave sleep (SWS); activity of 5'-nucleotidase with state 2 of SWS; inosine and AMP with state 3-4 of SWS; and activity of 5'-nucleotidase and lactate with REM sleep. The correlations were detected in all of the subjects that presented normal hypnograms, but not in those who had fragmented sleep the night of the experiment. The data demonstrate that it is possible to obtain information of complex brain operations such as sleep by measuring biochemical parameters in blood. The results strengthen the notion of a role played by adenosine, its metabolites and metabolizing enzymes, during each of the stages that constitute the sleep process in humans.

  2. Assessing the human gut microbiota in metabolic diseases.

    Science.gov (United States)

    Karlsson, Fredrik; Tremaroli, Valentina; Nielsen, Jens; Bäckhed, Fredrik

    2013-10-01

    Recent findings have demonstrated that the gut microbiome complements our human genome with at least 100-fold more genes. In contrast to our Homo sapiens-derived genes, the microbiome is much more plastic, and its composition changes with age and diet, among other factors. An altered gut microbiota has been associated with several diseases, including obesity and diabetes, but the mechanisms involved remain elusive. Here we discuss factors that affect the gut microbiome, how the gut microbiome may contribute to metabolic diseases, and how to study the gut microbiome. Next-generation sequencing and development of software packages have led to the development of large-scale sequencing efforts to catalog the human microbiome. Furthermore, the use of genetically engineered gnotobiotic mouse models may increase our understanding of mechanisms by which the gut microbiome modulates host metabolism. A combination of classical microbiology, sequencing, and animal experiments may provide further insights into how the gut microbiota affect host metabolism and physiology.

  3. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed...... in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis...

  4. Metabolism and pharmacokinetics of indacaterol in humans.

    Science.gov (United States)

    Kagan, Mark; Dain, Jeremy; Peng, Lana; Reynolds, Christine

    2012-09-01

    The metabolism, pharmacokinetics, and excretion of [(14)C]indacaterol were investigated in healthy male subjects. Although indacaterol is administered to patients via inhalation, the dose in this study was administered orally. This was done to avoid the complications and concerns associated with the administration of a radiolabeled compound via the inhalation route. The submilligram doses administered in this study made metabolite identification and structural elucidation by mass spectrometry especially challenging. In serum, the mean t(max), C(max), and AUC(0-last) values were 1.75 h, 0.47 ng/ml, and 1.81 ng · h/ml for indacaterol and 2.5 h, 1.4 ngEq/ml, and 27.2 ngEq · h/ml for total radioactivity. Unmodified indacaterol was the most abundant drug-related compound in the serum, contributing 30% to the total radioactivity in the AUC(0-24h) pools, whereas monohydroxylated indacaterol (P26.9), the glucuronide conjugate of P26.9 (P19), and the 8-O-glucuronide conjugate of indacaterol (P37) were the most abundant metabolites, with each contributing 4 to 13%. In addition, the N-glucuronide (2-amino) conjugate (P37.7) and two metabolites (P38.2 and P39) that resulted from the cleavage about the aminoethanol group linking the hydroxyquinolinone and diethylindane moieties had a combined contribution of 12.5%. For all four subjects in the study, ≥90% of the radioactivity dose was recovered in the excreta (85% in feces and 10% in urine, mean values). In feces, unmodified indacaterol and metabolite P26.9 were the most abundant drug-related compounds (54 and 17% of the dose, respectively). In urine, unmodified indacaterol accounted for ∼0.3% of the dose, with no single metabolite accounting for >1.3%.

  5. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus...

  6. Aflatoxin B1 transfer and metabolism in human placenta.

    Science.gov (United States)

    Partanen, Heidi A; El-Nezami, Hani S; Leppänen, Jukka M; Myllynen, Päivi K; Woodhouse, Heather J; Vähäkangas, Kirsi H

    2010-01-01

    Aflatoxin B1 (AFB1), a common dietary contaminant, is a major risk factor of hepatocellular carcinoma (HCC). Early onset of HCC in some countries in Africa and South-East Asia indicates the importance of early life exposure. Placenta is the primary route for various compounds, both nutrients and toxins, from the mother to the fetal circulation. Furthermore, placenta contains enzymes for xenobiotic metabolism. AFB1, AFB1-metabolites, and AFB1-albumin adducts have been detected in cord blood of babies after maternal exposure during pregnancy. However, the role that the placenta plays in the transfer and metabolism of AFB1 is not clear. In this study, placental transfer and metabolism of AFB1 were investigated in human placental perfusions and in in vitro studies. Eight human placentas were perfused with 0.5 or 5microM AFB1 for 2-4 h. In vitro incubations with placental microsomal and cytosolic proteins from eight additional placentas were also conducted. Our results from placental perfusions provide the first direct evidence of the actual transfer of AFB1 and its metabolism to aflatoxicol (AFL) by human placenta. In vitro incubations with placental cytosolic fraction confirmed the capacity of human placenta to form AFL. AFL was the only metabolite detected in both perfusions and in vitro incubations. Since AFL is less mutagenic, but putatively as carcinogenic as AFB1, the formation of AFL may not protect the fetus from the toxicity of AFB1.

  7. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships...

  8. Drug-induced erythrocyte membrane internalization.

    Science.gov (United States)

    Ben-Bassat, I; Bensch, K G; Schrier, S L

    1972-07-01

    In vitro erythrocyte membrane internalization, resulting in the formation of membrane-lined vacuoles, can be quantified by a radioisotopic method. A complex of (37)Co-labeled vitamin B(12) and its plasma protein binders is first adsorbed to the cell surface, and after vacuoles are formed, the noninternalized label is removed by washing and trypsin treatment. The residual radioactivity represents trapped label and can be used to measure the extent of membrane internalization. Using this method, it was found that in addition to primaquine, a group of membrane-active drugs, specifically hydrocortisone, vinblastine, and chlorpromazine can induce membrane internalization in erythrocytes. This is a metabolic process dependent on drug concentration, temperature, and pH. Vacuole formation by all agents tested can be blocked by prior depletion of endogenous substrates or by poisoning the erythrocytes with sodium fluoride and sulfhydryl blocking agents. This phenomenon resembles in some respects the previously reported membrane internalization of energized erythrocyte ghosts. It is suggested that membrane internalization is dependent on an ATP-energized state and is influenced by the balance between the concentrations of magnesium and calcium in the membrane. This study provides a basis for proposing a unifying concept of the action of some membrane-active drugs, and for considering the role of erythrocyte membrane internalization in pathophysiologic events.

  9. Storage of Erythrocytes Induces Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2016-07-01

    Full Text Available Background/Aims: Similar to apoptosis of nucleated cells, red blood cells (RBC can undergo suicidal cell death - called eryptosis. It is characterized by cell shrinkage and phosphatidylserine translocation. Eryptosis is triggered by an increase of intracellular calcium concentration due to activation of nonselective cation channels. The cation channels and consequently eryptosis are inhibited by erythropoietin. Eryptotic RBC are engulfed by macrophages and thus rapidly cleared from circulating blood. In this study, we explored whether storage of RBC influences the rate of eryptosis. Methods: Flow cytometry was employed to quantify phosphatidylserine exposing erythrocytes from annexin V binding and cytosolic Ca2+ activity from Fluo-3 fluorescence. Clearance of stored murine RBC was tested by injection of carboxyfluorescein succinimidyl ester (CFSE-labelled erythrocytes. Results: Storage for 42 days significantly increased the percentage of phosphatidylserine exposing and haemolytic erythrocytes, an effect blunted by removal of extracellular calcium. Phosphatidylserine exposure could be inhibited by addition of erythropoietin. Upon transfusion, the clearance of murine CFSE-labelled RBC from circulating blood was significantly higher following storage for 10 days when compared to 2 days of storage. Conclusion: Storage of RBC triggers eryptosis by Ca2+ and erythropoietin sensitive mechanisms.

  10. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  11. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  12. Relevance of the Human Genome Project to inherited metabolic disease.

    Science.gov (United States)

    Burn, J

    1994-01-01

    The Human Genome Project is an international effort to identify the complete structure of the human genome. HUGO, the Human Genome Organization, facilitates international cooperation and exchange of information while the Genome Data Base will act as the on-line information retrieval and storage system for the huge amount of information being accumulated. The clinical register MIM (Mendelian Inheritance in Man) established by Victor McKusick is now an on-line resource that will allow biochemists working with inborn errors of metabolism to access the rapidly expanding body of knowledge. Biochemical and molecular genetics are complementary and should draw together to find solutions to the academic and clinical problems posed by inborn errors of metabolism.

  13. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...... calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug...

  14. Effects of brain evolution on human nutrition and metabolism.

    Science.gov (United States)

    Leonard, William R; Snodgrass, J Josh; Robertson, Marcia L

    2007-01-01

    The evolution of large human brain size has had important implications for the nutritional biology of our species. Large brains are energetically expensive, and humans expend a larger proportion of their energy budget on brain metabolism than other primates. The high costs of large human brains are supported, in part, by our energy- and nutrient-rich diets. Among primates, relative brain size is positively correlated with dietary quality, and humans fall at the positive end of this relationship. Consistent with an adaptation to a high-quality diet, humans have relatively small gastrointestinal tracts. In addition, humans are relatively "undermuscled" and "over fat" compared with other primates, features that help to offset the high energy demands of our brains. Paleontological evidence indicates that rapid brain evolution occurred with the emergence of Homo erectus 1.8 million years ago and was associated with important changes in diet, body size, and foraging behavior.

  15. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  16. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  17. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    Science.gov (United States)

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  18. The Effect in Vitro of Ionizing Irradiation and Small Rises in Temperature on the Uptake and Release of Labelled Lipids by the Human Erythrocyte Membrane

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Karle, H.; Stender, S.

    1978-01-01

    1. The effect of X-irradiation (50 000 rad) and an increase in temperature from 37 to 42° C on the synthesis, uptake and release of labelled lipids by erythrocytes was studied in plasma incubations in vitro. 2. Both irradiation and a rise in temperature resulted in an enhanced synthesis of [32P......]phosphatidic acid in the erythrocytes. 3. The uptake by the erythrocytes of 14C- and 3H-labelled cholesterol, [14C, 32P]phosphatidylethanolamine and [14C, 32P]phosphatidylcholine from plasma lipoproteins was increased by a rise in temperature but not by irradiation. These labelled lipids were apparently taken up...... in the ratio in which they were found in plasma. They were not released from the erythrocytes in the same manner....

  19. The human urinary exosome as a potential metabolic effector cargo.

    Science.gov (United States)

    Bruschi, Maurizio; Ravera, Silvia; Santucci, Laura; Candiano, Giovanni; Bartolucci, Martina; Calzia, Daniela; Lavarello, Chiara; Inglese, Elvira; Petretto, Andrea; Ghiggeri, Gianmarco; Panfoli, Isabella

    2015-08-01

    Exosomes are nanovesicles, derived from the endocytic pathway, released by most cell types and found in many body fluids, including urine. A variety of exosomal functions have been reported, including transfer of RNA, cell communication, control of apoptosis and protein lifespan. Exosomes from mesenchymal stem cells can rescue bioenergetics of injured cells. Here the urinary exosome proteome, non-urinary exosome proteome and urinome are compared. A consistent number of identified proteins cluster to metabolic functions. Cytoscape software analysis based on biological processes gene ontology database shows that metabolic pathways such as aerobic glycolysis and oxidative phosphorylation have a high probability (p ≤ 0.05) of being expressed and therefore functional. A metabolic function appears to be associated with human urinary exosomes, whose relevance experimental studies can assess.

  20. Dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Dynamics of glucose concentration in human organism is an important diagnostic characteristic for it's parameters correlate significantly with the severity of metabolic, vessel and perfusion disorders. 36 patients with stable angina pectoris of II and III functional classes were involved in this study. All of them were men in age range of 45-59 years old. 7 patients hospitalized with acute myocardial infarction (aged from 49 to 59 years old) form the group of compare. Control group (n = 5) was of practically healthy men in comparable age. To all patients intravenous glucose solution (40%) in standard loading dose was injected. Capillary and vein blood samples were withdrawn before, and 5, 60, 120, 180 and 240 minutes after glucose load. At these time points blood pressure and glucose concentration were measured. In prepared blood smears shape, deformability and sizes of erythrocytes, quantity and degree of shear stress resistant erythrocyte aggregates were studied. Received data were approximated by polynomial of high degree to receive concentration function of studied parameters, which first derivative elucidate velocity characteristics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease and practically healthy persons. Received data show principle differences in dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease as a possible mechanism of coronary blood flow destabilization.

  1. Discriminating complement-mediated acute transfusion reaction for type O+ red blood cells transfused into a B+ recipient with the complement hemolysis using human erythrocytes (CHUHE) assay.

    Science.gov (United States)

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Whitley, Pamela H; Goldberg, Corinne L; Fadeyi, Emmanuel A; Maes, Lanne Y

    2016-07-01

    A patient with B+ sickle cell disease received 3 units of red blood cells (RBCs) from two O+ donors and developed fever and hypotension after the first unit, consistent with an acute transfusion reaction (ATR). Anti-B titers in plasma from each O+ donor were markedly elevated and nondiscriminatory. In order to evaluate the potential for the transfused units to produce complement-mediated hemolysis of B+ RBCs, hemolytic complement testing was performed. Plasma from each donor was diluted in veronal buffer and incubated with B+ RBCs, and free hemoglobin was measured by spectrophotometer in the complement hemolysis using human erythrocytes (CHUHE) assay. Peptide inhibitor of complement C1 (PIC1) was used to confirm antibody-initiated complement pathway activation. A 96-fold difference (p = 0.014) in hemolysis was measured between plasma samples from the two O+ donors using the CHUHE assay. The extremely high degree of hemolysis produced by the one plasma was inhibited by PIC1 in a dose-dependent manner. These results indicate that hemolytic complement testing with the CHUHE assay can be used to assess the risk of antibody-initiated, complement-mediated hemolysis from a transfusion beyond what can be achieved with antibody titers alone. © 2016 AABB.

  2. Chemical and enzymological characterization of an Indonesian variant of human erythrocyte carbonic anhydrase II, CAII Jogjakarta (17 Lys leads to Glu).

    Science.gov (United States)

    Jones, G L; Sofro, A S; Shaw, D C

    1982-10-01

    A new variant of human erythrocyte carbonic anhydrase II (CAII) was discovered in a single heterozygous individual during routine screening of blood samples from the island of Java in Indonesia. The normal and variant components of the heterozygous CAII mixture were resolved by isoelectric focusing following purification by a specific affinity matrix. Specific esterase activities and Michaelis-Menten constants were identical. Only very small differences were noted with respect to inhibition by acetazolamide and chloride. Double diffusion analysis showed the immunological identify of the normal and variant enzymes. The variant CAII was considerably less heat stable than the normal enzyme. The variant was slightly more stable than the normal enzyme upon dialysis against the zinc chelator dipicolinic acid (PDCA), indicating a tighter binding of zinc than the normal enzyme. Analysis of tryptic peptides from the normal and variant enzymes indicated that, in the variant, lysine at position 17 from the N terminus had changed to glutamic acid. The differences in physiochemical properties observed for the normal and variant enzyme are discussed in relation to the possible effects of this substitution on the structure of the CAII molecule.

  3. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes.

  4. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins.

    Science.gov (United States)

    Klonk, S; Deuticke, B

    1992-04-29

    Spectrin-depleted inside-out vesicles (IOV's) prepared from human erythrocyte membranes were characterized in terms of size, ground permeability to hydrophilic nonelectrolytes and their sensitivity to modification by SH reagents, DIDS and trypsin. IOV's proved to have the same permeability of their lipid domain to erythritol as native erythrocytes, in contrast to resealed ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 126-136 (Part I in this series)), which have a residual leak. On the other hand, IOV's have a slightly elevated permeability for mannitol and sucrose, nonelectrolytes which are almost (mannitol) or fully (sucrose) impermeant in the native membrane. These increased fluxes, which have a high activation energy and can be stimulated by phloretin, are, however, also much smaller than the corresponding leak fluxes observed in resealed ghosts. In view of these differences, formation of IOV's can be concluded to go along with partial annealing of barrier defects persisting in the erythrocyte membrane after preparation of resealed ghosts. Oxidation of SH groups of the IOV membrane by diamide produces an enhancement of permeability for hydrophilic nonelectrolytes which is much less pronounced than that induced by a similar treatment of erythrocytes or ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 126-136 (Part I in this series)). Moreover, proteolytic treatment of the vesicle membrane, although leading to a marked digestion of integral membrane proteins, only induces a minor, saturating increase of permeability, much lower than that in trypsinized resealed ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 137-142 (Part II of this series)). Since absence of the cytoskeletal proteins, spectrin and actin, is the major difference between IOV's and resealed ghosts, these results may be taken as further evidence for a dependence of the barrier properties of the erythrocyte membrane bilayer domain

  5. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, S H

    1998-01-01

    This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane.......This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane....

  6. Assessing the Metabolic Effects of Aromatherapy in Human Volunteers

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2013-01-01

    Full Text Available Aromatherapy, a form of complementary and alternative medicine (CAM that uses essential oils through inhalation, is believed to enhance physical and spiritual conditions. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of aromatherapy in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive metabolomics study that reveals metabolic changes in people after exposed to aroma inhalation for 10 continuous days. In this study, the metabolic alterations in urine of 31 females with mild anxiety symptoms exposed to aerial diffusion of aromas were measured by GC-TOF-MS and UPLC-Q-TOF-MS analyses. A significant alteration of metabolic profile in subjects responsive to essential oil was found, which is characterized by the increased levels of arginine, homocysteine, and betaine, as well as decreased levels of alcohols, carbohydrates, and organic acids in urine. Notably, the metabolites from tricarboxylic acid (TCA cycle and gut microbial metabolism were significantly altered. This study demonstrates that the metabolomics approach can capture the subtle metabolic changes resulting from exposure to essential oils, which may lead to an improved mechanistic understanding of aromatherapy.

  7. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...... enzymes. Skeletal muscle consists of thousands of muscle fibers. These fibers can roughly be classified into type I and type II muscle fibers. The overall aim of this PhD thesis was to investigate the effect of insulin and exercise on human muscle fiber type specific metabolic signaling. The importance...... of human type I muscle fibers is illustrated by the finding of a positive correlation between the relative distribution of type I fibers in the muscle and whole-body insulin sensitivity. This suggests, that type I muscle fibers are more insulin sensitive than type II muscle fibers. Improved insulin...

  8. APP metabolism regulates tau proteostasis in human cerebral cortex neurons

    OpenAIRE

    Steven Moore; Evans, Lewis D.B.; Therese Andersson; Erik Portelius; James Smith; Tatyana B. Dias; Nathalie Saurat; Amelia McGlade; Peter Kirwan; Kaj Blennow; John Hardy; Henrik Zetterberg; Frederick J. Livesey

    2015-01-01

    This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S2211124715003599. Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, a...

  9. Metabolic thrift and the genetic basis of human obesity

    OpenAIRE

    O’Rourke, Robert W.

    2014-01-01

    Evolution has molded metabolic thrift within humans, a genetic heritage that, when thrust into our modern “obesogenic” environment, creates the current obesity crisis. Modern genetic analysis has identified genetic and epigenetic contributors to obesity, an understanding of which will guide the development of environmental, pharmacologic, and genetic therapeutic interventions. “The voyage was so long, food and water ran out. One hundred of the paddlers died; forty men remained. The voyager...

  10. [Metabolism of mitomycin C by human liver microsomes in vitro].

    Science.gov (United States)

    Hao, Fu-rong; Yan, Min-fen; Hu, Zhuo-han; Jin, Yi-zun

    2007-02-01

    To provide the profiles of metabolism of mitomycin C (MMC) by human liver microsomes in vitro, MMC was incubated with human liver microsomes, then the supernatant component was isolated and detected by HPLC. Types of metabolic enzymes were estimated by the effect of NADPH or dicumarol (DIC) on metabolism of MMC. Standard, reaction, background control (microsomes was inactivated), negative control (no NADPH), and inhibitor group (adding DIC) were assigned, the results were analyzed by Graphpad Prism 4. 0 software. Reaction group compared with background control and negative control groups, 3 NADPH-dependent absorption peaks were additionally isolated by HPLC after MMC were incubated with human liver microsomes. Their retention times were 10. 0, 14. 0, 14. 8 min ( named as Ml, M2, M3) , respectively. Their formation was kept as Sigmoidal dose-response and their Km were 0. 52 (95% CI, 0. 40 - 0.67) mmol x L(-1), 0. 81 (95% CI, 0. 59 - 1. 10) mmol x L(-1), 0. 54 (95% CI, 0. 41 -0. 71) mmol x L(-1) , respectively. The data indicated that the three absorption peaks isolated by HPLC were metabolites of MMC. DIC can inhibit formation of M2, it' s dose-effect fitted to Sigmoidal curve and it' s IC50 was 59. 68 (95% CI, 40. 66 - 87. 61) micromol x L(-1) , which indicated DT-diaphorase could take part in the formation of M2. MMC can be metabolized by human liver microsomes in vitro, and at least three metabolites of MMC could be isolated by HPLC in the experiment, further study showed DT-diaphorase participated in the formation of M2.

  11. Effect of phytic acid on suicidal erythrocyte death.

    Science.gov (United States)

    Eberhard, Matthias; Föller, Michael; Lang, Florian

    2010-02-10

    Phytic acid, an anticarcinogenic food component, stimulates apoptosis of tumor cells. Similar to apoptosis, human erythrocytes may undergo suicidal death or eryptosis, characterized by cell membrane scrambling and cell shrinkage. Triggers of eryptosis include energy depletion. Phytate intake could cause anemia, an effect attributed to iron complexation. The present experiments explored whether phytic acid influences eryptosis. Supernatant hemoglobin concentration was determined to reveal hemolysis, annexin V-binding in FACS analysis was utilized to identify erythrocytes with scrambled cell membrane, forward scatter in FACS analysis was taken as a measure of cell volume, and a luciferin-luciferase assay was employed to determine erythrocyte ATP content. As a result, phytic acid (>or=1 mM) did not lead to significant hemolysis, but significantly increased the percentage of annexin V-binding erythrocytes, significantly decreased forward scatter, and significantly decreased cellular ATP content. In conclusion, phytic acid stimulates suicidal human erythrocyte death, an effect paralleling its proapoptotic effect on nucleated cells.

  12. Full-length CD4 electroinserted in the erythrocyte membrane as a long-lived inhibitor of infection by human immunodeficiency virus

    Energy Technology Data Exchange (ETDEWEB)

    Zeira, M.; Volsky, D.J. (Columbia Univ., New York, NY (United States)); Tosi, P.F.; Mouneimne, Y.; Lazarte, J.; Sneed, L.; Nicolau, C. (Texas A and M Univ., College Station (United States))

    1991-05-15

    Recombinant full-length CD4 expressed in Spodoptera frugiperda 9 cells with the baculovirus system was electroinserted in erythrocyte (RBC) membranes. Of the inserted CD4, 70% was correctly oriented as shown by fluorescence quenching experiments with fluorescein-labeled CD4. The inserted CD4 displayed the same epitopes as the naturally occurring CD4 in human T4 cells. Double-labeling experiments ({sup 125}I-CD4 and {sup 51}Cr-RBC) showed that the half-life of CD4 electroinserted in RBC membrane in rabbits was approximately 7 days. Using the fluorescence dequenching technique with octadecylrhodamine B-labeled human immunodeficiency virus (HIV)-1, the authors showed fusion of the HIV envelope with the plasma membrane of RBC-CD4, whereas no such fusion could be detected with RBC. The dequenching efficiency of RBC-CD4 is the same as that of CEM cells. Exposure to anti-CD4 monoclonal antibody OKT4A, which binds to the CD4 region that attaches to envelope glycoprotein gp120, caused a significant decrease in the dequenching of fluorescence. In vitro infectivity studies showed that preincubation of HIV-1 with RBC-CD4 reduced by 80-90% the appearance of HIV antigens in target cells, the amount of viral reverse transcriptase, and the amount of p24 core antigen produced by the target cells. RBC-CD4, but not RBCs, aggregated with chronically HIV-1-infected T cells and caused formation of giant cells. These data show that the RBC-CD4 reagent is relatively long lived in circulation and efficient in attaching to HIV-1 and HIV-infected cells, and thus it may have value as a therapeutic agent against AIDS.

  13. Aspartate aminotransferase – key enzyme in the human systemic metabolism

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  14. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    Science.gov (United States)

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.

  15. The impact of metabolic disease associated with metabolic syndrome on human pregnancy.

    Science.gov (United States)

    Malek, Antoine

    2014-01-01

    Metabolic diseases induced by metabolic syndrome (MS) have been increased during the past two decades. During healthy pregnancy maternal organs and placenta are challenged to adapt to the increasingly physiological changes. In addition to the increasingly proatherogenic MS, pregnant woman develops a high cardiac output, hypercoagulability, increased inflammatory activity and insulin resistance with dyslipidemia. The MS describes a cluster of metabolic changes associated with an impact on the physiology of many organs. While the metabolic syndrome is directly responsible for the development of atherosclerotic cardiovascular disease, additional impact on human pregnancy like preterm delivery with low-birth-weight infants as well as the development of diseases such as diabetes, preeclampsia and hypertension. Recent evidence suggests that MS is originated in fetal life in association with maternal nutrition during pregnancy and fetal programming which apparently increases the susceptibility for MS in children and later life. This review will describe the MS in association with the origin of the emerging diseases during pregnancy such as diabetes, preeclampsia and others. The influence of perinatal environment and maternal diet and smoking on MS as well as the genetic biomarkers of MS will be described.

  16. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Rodriguez-Mateos, Ana; Sansone, Roberto; Kuhnle, Gunter G C; Thasian-Sivarajah, Sivatharsini; Krenz, Thomas; Horn, Patrick; Krisp, Christoph; Wolters, Dirk; Heiß, Christian; Kröncke, Klaus-Dietrich; Hogg, Neil; Feelisch, Martin; Kelm, Malte

    2012-11-15

    A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.

  17. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1.

    Science.gov (United States)

    Mayer, D C Ghislaine; Cofie, Joann; Jiang, Lubin; Hartl, Daniel L; Tracy, Erin; Kabat, Juraj; Mendoza, Laurence H; Miller, Louis H

    2009-03-31

    In the war against Plasmodium, humans have evolved to eliminate or modify proteins on the erythrocyte surface that serve as receptors for parasite invasion, such as the Duffy blood group, a receptor for Plasmodium vivax, and the Gerbich-negative modification of glycophorin C for Plasmodium falciparum. In turn, the parasite counters with expansion and diversification of ligand families. The high degree of polymorphism in glycophorin B found in malaria-endemic regions suggests that it also may be a receptor for Plasmodium, but, to date, none has been identified. We provide evidence from erythrocyte-binding that glycophorin B is a receptor for the P. falciparum protein EBL-1, a member of the Duffy-binding-like erythrocyte-binding protein (DBL-EBP) receptor family. The erythrocyte-binding domain, region 2 of EBL-1, expressed on CHO-K1 cells, bound glycophorin B(+) but not glycophorin B-null erythrocytes. In addition, glycophorin B(+) but not glycophorin B-null erythrocytes adsorbed native EBL-1 from the P. falciparum culture supernatants. Interestingly, the Efe pygmies of the Ituri forest in the Democratic Republic of the Congo have the highest gene frequency of glycophorin B-null in the world, raising the possibility that the DBL-EBP family may have expanded in response to the high frequency of glycophorin B-null in the population.

  18. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum blood stage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Hansen, H S; Jakobsen, P H;

    1993-01-01

    To examine the effect of n-3 polyunsaturated fatty acids (n-3 PUFA) on the erythrocytic growth of Plasmodium falciparum, serum and erythrocytes were separated from blood of a healthy donor before and after he had taken fish oil capsules for 8 days. Such intake supplied an amount of eicosapentaenoic...... acid (EPA, 20:5n-3) of 3.5 g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre......-s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...

  19. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum bloodstage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y.A.; Hansen, Harald S.; Jakobsen, P.H.;

    1993-01-01

    To examine the effect of n-3 polyunsaturated fatty acids (n-3 PUFA) on the erythrocytic growth of Plasmodium falciparum, serum and erythrocytes were separated from blood of a healthy donor before and after he had taken fish oil capsules for 8 days. Such intake supplied an amount of eicosapentaenoic...... acid (EPA, 20:5n-3) of 3.5g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre......-s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...

  20. Enhanced bilirubin binding to different mammalian erythrocytes in the presence of magnesium ions

    OpenAIRE

    M. K. Ali; Siddiqui, M. U.; Tayyab, S.

    2001-01-01

    Effect of magnesium ions on the binding of bilirubin to erythrocytes of different mammalian species, namely, human, buffalo, goat and sheep was studied. Increase in the concentration of magnesium ions led to a gradual increase in the erythrocyte-bound bilirubin in both human and buffalo erythrocytes whereas in sheep and goat erythrocytes, the pronounced increase was found beyond 2.0 and 2.7 mM MgCl2 concentrations respectively. Percentage increase in erythrocyte-bound bilirubin was found high...

  1. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ogunwole, J.O.A.

    1984-01-01

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-/sup 14/C-pyruvate to /sup 14/CO/sub 2/ in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P < 0.05) increase in food intake (FI) for calorie compensation. Fiber and protein intake had a significant (P < 0.01) effect on IRI and both basal (PDB) and PDS activities of PDH. At all fiber levels, specific percent /sup 125/I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group.

  2. Differential actions of proteinases and neuraminidase on mammalian erythrocyte surface and its impact on erythrocyte agglutination by concanavalin A.

    Science.gov (United States)

    Sharma, Savita; Gokhale, Sadashiv M

    2012-12-01

    Action of proteinases viz. trypsin and chymotrypsin, and neuraminidase on intact erythrocyte membrane proteins and glycophorins (sialoglycoproteins) exposed to cell surface and its impact on lectin (concanavalin A)-mediated agglutination were studied in Homo sapiens (human), Capra aegagrus hircus (goat) and Bubalus bubalis (buffalo). Membrane proteins and glycophorins analysis by SDS-PAGE as visualized by coomassie brilliant blue and periodic acid-schiff stains, respectively, and agglutination behaviour revealed marked differences: 1) there were prominent dissimilarities in the number and molecular weights of glycophorins in human, goat and buffalo erythrocyte membranes; 2) proteinase action(s) on human and buffalo erythrocyte surface membrane proteins and glycophorins showed similarity but was found different in goat; 3) significant differences in erythrocyte agglutinability with concanavalin A can be attributed to differences in membrane composition and alterations in the surface proteins after enzyme treatment; 4) a direct correlation was found between degradation of glycophorins and concanavalin A agglutinability; 5) action of neuraminidase specifically indicated the negative role of cell surface sialic acids in determining concanavalin A agglutinability of goat and buffalo erythrocytes, similar to human. Present studies clearly indicate that there are some basic differences in human, goat and buffalo erythrocyte membrane proteins, especially with respect to glycophorins, which determine the concanavalin A-mediated agglutination in enzyme treated erythrocytes.

  3. Oxidative Hemolysis of Erythrocytes

    Science.gov (United States)

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  4. Oxidative Hemolysis of Erythrocytes

    Science.gov (United States)

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  5. [The binding of iron to normal human erythrocyte membranes and its intracellular penetration as a function of different glucides].

    Science.gov (United States)

    Bouvet, D; Boulard, M; Najean, Y

    1975-04-14

    In vivo intestinal absorption of iron in rat is greatly enhanced by Lactose and D-Xylose. Both sugars are also able to increase the amount of iron bound to the red cell membrane in the animal. Similar effects have been noted when using human normal red cells. Lactose of D-Xylose are able to convert into an active transport curve the linear diffusion curve which is noted when iron is used without any ligand. It is possible to quantify the effect of both sugars on the flux of iron towards the red cell membrane.

  6. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  7. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Science.gov (United States)

    Chaturvedi, Swati; Singh, Ashok K.; Maity, Siddhartha; Sarkar, Srimanta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  8. Using skin to assess iron accumulation in human metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Guinote, I. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Fleming, R. [Imunohaemotherapy Department, Hospital de St. Maria, Lisbon (Portugal); Silva, R. [Dermatology Department, Hospital de St. Maria, Lisbon (Portugal); Filipe, P. [Dermatology Department, Hospital de St. Maria, Lisbon (Portugal); Silva, J.N. [Dermatology Department, Hospital de St. Maria, Lisbon (Portugal); Verissimo, A. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Napoleao, P. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Centro de Fisica Nuclear, Universidade de Lisbon (Portugal); Alves, L.C. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal); Centro de Fisica Nuclear, Universidade de Lisbon (Portugal); Pinheiro, T. [Laboratorio de Feixes de Ioes, Instituto Tecnologico e Nuclear, E.N. 10, 2685-953 Sacavem (Portugal) and Centro de Fisica Nuclear, Universidade de Lisbon (Portugal)]. E-mail: murmur@itn.pt

    2006-08-15

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p < 0.004), serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  9. Using skin to assess iron accumulation in human metabolic disorders

    Science.gov (United States)

    Guinote, I.; Fleming, R.; Silva, R.; Filipe, P.; Silva, J. N.; Veríssimo, A.; Napoleão, P.; Alves, L. C.; Pinheiro, T.

    2006-08-01

    The distribution of Fe in skin was assessed to monitor body Fe status in human hereditary hemochromatosis. The paper reports on data from nine patients with hemochromatosis that were studied along the therapeutic programme. Systemic evaluation of Fe metabolism was carried out by measuring with PIXE technique the Fe concentration in plasma and blood cells, and by determining with biochemical methods the indicators of Fe transport in serum (ferritin and transferrin). The Fe distribution and concentration in skin was assessed by nuclear microscopy and Fe deposits in liver estimated through nuclear magnetic resonance. Elevated Fe concentrations in skin were related to increased plasma Fe (p serum ferritin content (p < 0.01) and Fe deposits in liver (p < 0.004). The relationship of Fe deposits in organs and metabolism markers may help to better understand Fe pools mobilisation and to establish the quality of skin as a marker for the disease progression and therapy efficacy.

  10. Mapping a gene that determines erythrocytic GTP concentration to a region of mouse chromosome 9 which is syntenic to human chromosome 3p

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, F.F.; Jenuth, J.P.; Noy, J.L. [Univ. of Calgary, Alberta (Canada)] [and others

    1994-09-01

    Inbred mouse strains were surveyed for erythrocytic GTP concentration by high performance liquid chromatography and found to fall into two groups. Strains having low GTP levels between 1.4-3.4 nmole/10{sup 9} cells are represented by C3H/HeJ. Strains having high GTP levels between 11.0 - 14.8 nmole/10{sup 9} cells are represented by C57BL/6J. Erythocytic ATP levels did not vary significantly among these strains (63-87 nmole/10{sup 9} cells). Crosses between low and high GTP strains gave F{sub 1} progeny having intermediate levels of GTP. The progeny of F{sub 1}`s backcrossed to paternal strains segregated in a 1:1 ratio for GTP concentration characteristic of the F{sub 1} and parental strain. We designated the GTP concentration-determining trait Gtpc. Typing of the twelve BXH recombinant inbred strains revealed 0/12 strain distribution pattern differences with Gtpc for loci on both chromosomes 5 and 9. Backcross analysis did not provide evidence for linkage of Gtpc to W (dominant white spotting) on chromosome 5 with 15/45 recombinants. Backcross analysis testing for linkage of Gtpc to transferrin (Trf) on chromosome 9 gave evidence for linkage with a recombination frequency of 9.68 {plus_minus} 3.07. DNA-based typing of repeat length polymorphic markers on chromosome 9 gave a map distance of 10.7 {plus_minus} 3.6 between D9 MITl4 and Gtpc and placed Gtpc on the telomeric side of Trf. This region of mouse chromosome 9 is syntenic to human chromosome 3p and encompasses a cluster of G-protein loci.

  11. The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases.

    Science.gov (United States)

    Roelofsen, B; Schatzmann, H J

    1977-01-04

    1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.

  12. Thyroid hormone metabolism and the developing human lung.

    Science.gov (United States)

    Hume, R; Richard, K; Kaptein, E; Stanley, E L; Visser, T J; Coughtrie, M W

    2001-05-01

    Thyroid hormones are involved in the regulation of fetal lung development, and maturation is accelerated in animal models by antepartum exposure to raised concentrations of the receptor-active thyroid hormone triiodothyronine and glucocorticoids. It is essential that the nature of the regulation of the spatial and temporal metabolism of iodothyronines in the human fetus and infant is known before effective therapies can be developed to modify human lung maturation. Thyroid hormone bioavailability to the human fetus is regulated in part by enzymatic deiodination and reversible sulfation of iodothyronines, with contributions from other factors such as fetomaternal and fetoamniotic hormone transfers, fetal thyroid gland production, and the activities of plasma membrane transporters mediating uptake of iodothyronines from plasma into tissues. Copyright 2001 S. Karger AG, Basel.

  13. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: Interactions with human β2 integrins and erythrocytes

    DEFF Research Database (Denmark)

    Reinholdt, Jesper; Poulsen, Knud; Brinkmann, Christel Rothe

    2013-01-01

    Aggregatibacter actinomycetemcomitans is a gram-negative, facultatively anaerobic cocco-bacillus and a frequent member of the human oral flora. It produces a leukotoxin, LtxA, belonging to the repeats-in-toxin (RTX) family of bacterial cytotoxins. LtxA efficiently kills neutrophils and mononuclear...... structure. Here, we describe a protocol for the purification of LtxA from bacterial culture supernatant, which does not involve denaturing procedures. The purified LtxA was monodisperse, well folded as judged by the combined use of synchrotron radiation circular dichroism spectroscopy (SRCD) and in silico...... prediction of the secondary structure content, and free of bacterial lipopolysaccharide. The analysis by SRCD and similarity to a lipase from Pseudomonas with a known three dimensional structure supports the presence of a so-called beta-ladder domain in the C-terminal part of LtxA. LtxA rapidly killed K562...

  14. Interaction of complement-solubilized immune complexes with CR1 receptors on human erythrocytes. The binding reaction

    DEFF Research Database (Denmark)

    Jepsen, H H; Svehag, S E; Jarlbaek, L

    1986-01-01

    showed no binding. IC solubilized in 50% human serum in the presence of autologous RBC bound rapidly to RBC-CR1, with maximal binding within less than 1 min at 37 degrees C. Release of CR1-bound IC under these conditions occurred slowly, requiring more than 30 min. Only binding of 'partially' solubilized...... of an intact classical pathway in preparing the IC for binding to RBC-CR1. C-solubilized IC could be absorbed to solid-phase conglutinin or antibody to C3c and C4c, and these ligands were able to inhibit the binding of solubilized IC to RBC. Heparin also exerted a marked, dose-dependent inhibitory effect...

  15. 急慢性代谢性酸中毒对红细胞内外pH值的影响%Effects of acute or chronic metabolic acidosis on intracellular pH of rat erythrocytes

    Institute of Scientific and Technical Information of China (English)

    王贤东; 袁媛; 王冬; 赫曼; 刘若彬

    2009-01-01

    Objecfive To investigate the effects of acute or chronic metabolic acidosis on intracellular pH of rat erythrocytes.Methods Acute metabolic acidosis in Wistar rats was induced by infusion of 4mmol/kg HCl for 4 hours;Chronic metabolic acidosis rats was induced by addition of 0.28 mol/L NH4CI to drinking water for 7 days.The control groups were given 0.9%NaCl in the same time.At 0,2and 4h after HCl infusion in acute group,and at 0,1,3,5 and 7 days after NH4Cl administration in chronic group,0.5ml blood samples were taken.All blood samples were placed in test tubes with heparin anticoagulant solution.Blood gas was analyzed.Carbonic anhydrase activity in rat erythrocytes was assayed by following the hydration of CO2 according to the method described by Wilbur and Anderson.And after stained by BCECF-AM fluorescent probe,the changes of intracellular pH were observed,and the ability of NHE1 were measured by detected recovery rate of intraeellular pH by laser scanning confocal microscopy.Results Acute metabolic acidosis inhibits NHE1 activity(P<0.05)and no changes in pHi and carbonic anhydrase activity of rat erythrocyte were seen.On the contrast.it was showed increasing activity of NHE 1 and carbonic anhydrase with decreasing phi in rats erythrocytesin chronic metabolic acidosis over five days(P<0.05).Conclusion These results suggest that an acute acid load does not alter pHi while chronic metabolic acidosis does reduce pHi of rat crythrocyte.%目的 观察急性或慢性代谢性酸中毒对大鼠红细胞内pH(pHi)、碳酸酐酶(carbonic and hydrase,CA)和钠-氢交换蛋白Ⅰ(Na+-H+ exchanger Ⅰ,NHE Ⅰ)活性的影响.方法 将24只Wistar大鼠随机分为急性组和慢性组.急性组分为:急性对照组(A组)和急性代谢性酸中毒组(B组);慢性组分为:慢性对照组(C组)和慢性代谢性酸中毒组(D组)(n=6).急性组采用静脉输注4 mmol·kg1-·h-1 HCl 4 h,慢性组采用0.28 mol/L NH4Cl喂饲7 d,构建大鼠急性和慢性代谢性酸

  16. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro

    Directory of Open Access Journals (Sweden)

    Ferreira A.L.A.

    1999-01-01

    Full Text Available The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+ on the normal human red blood cell (RBC antioxidant system was evaluated in vitro by measuring total (GSH and oxidized (GSSG glutathione levels, and superoxide dismutase (SOD, catalase, glutathione peroxidase (GSH-Px and reductase (GSH-Rd activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS. The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a GSH = 3.52 ± 0.27 µM/g Hb; b GSSG = 0.17 ± 0.03 µM/g Hb; c GSH-Px = 19.60 ± 1.96 IU/g Hb; d GSH-Rd = 3.13 ± 0.17 IU/g Hb; e catalase = 394.9 ± 22.8 IU/g Hb; f SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

  17. Human folate metabolism using 14C-accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arjomand, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duecker, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zulim, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogel, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  18. Effect of glucose concentration on formation of AGEs in erythrocytes in vitro.

    Science.gov (United States)

    Nagai, Ryoji; Deemer, Elizabeth K; Brock, Jonathan W; Thorpe, Suzanne R; Baynes, John W

    2005-06-01

    Posttranslational modifications, such as advanced glycoxidation and lipoxidation end products (AGE/ALEs), are implicated in the pathogenesis of diabetic complications and atherosclerosis. Recent studies have demonstrated that AGE/ALEs are generated not only in extracellular matrix proteins, but also in intracellular proteins from metabolic intermediates. In this study we investigate the effect of glucose concentration on the formation of the AGE/ALEs, Nepsilon-(carboxymethyl)lysine (CML), Nepsilon-(carboxyethyl)lysine (CEL), S-(carboxymethyl)cysteine (CMC), and S-(2-succinyl)cysteine (2SC) in erythrocytes as a function of glucose concentration. Human erythrocytes (10% hematocrit) were incubated in Dulbecco's modified Eagle's medium (DMEM) containing 5 mM or 30 mM glucose for 5 days at 37 degrees C. Globin was recovered by precipitation with 0.25 M HCl in acetone. Following acid hydrolysis, amino acids were converted to their trifluoroacetyl methyl ester derivatives and analyzed by GC/MS/MS. The CML and CEL content of globin increased in a time- and glucose-dependent manner and also increased 1.3- and 1.8-fold, respectively, in incubations containing 30 mM glucose; whereas CMC and 2SC content did not change during the five-day incubations. Furthermore, CEL content of globin in erythrocytes incubated with 30 mM was the highest in the other AGEs, indicating that methylglyoxal may play a major role in AGE formation in erythrocytes. The erythrocyte system should be useful for cellular screening of the efficacy of inhibitors of AGE/ALE formation.

  19. Raman spectroscopic study on effect of Danshen injection on human erythrocyte membranes and its mechanism%拉曼光谱研究丹参注射液对人红细胞膜作用及机制讨论

    Institute of Scientific and Technical Information of China (English)

    蔡何青; 赵燕平; 朱伟玲; 余超; 葛姝; 刘颂豪

    2012-01-01

    作为活血化瘀传统中药,丹参具有改善红细胞的变形性的显著临床作用,其对红细胞膜直接作用目前尚不清楚.本研究采用显微共聚焦拉曼技术,测量丹参注射液作用前后人红细胞的拉曼光谱变化.结果显示丹参注射液作用后红细胞膜部分谱线对应的基团构象发生微小变化,归属于磷脂分子脂酰基C-C骨架反式构象的1 064,1 126cm-1谱线强度明显减弱,归属于磷脂分子脂酰基C-C骨架扭曲构象的1 091 cm-1谱线强度明显增强,磷脂链内纵向有序性参数(Strns)明显变小,提示红细胞胞膜在丹参注射液作用下胞膜磷脂分子脂酰基C-C骨架的反式构象转变为扭曲构象,增强红细胞膜磷脂流动性,增强细胞膜的流动性,丹参注射液对红细胞膜结构和功能的改善可为其发挥活血化瘀的中药药理作用的可能内在机制.%Objective: Danshen, as a traditional Chinese medicine for promoting blood circulation and removing blood stasis, is widely applied in improving human erythrocyte deformability in clinics. But its direct effect on erythrocyte membranes is still unclear. Method: In this essay, the confocal Raman technique was adopted to measure the changes in Raman spectra of human erythro-cytes before and after the administration of Danshen injection. Result: The results showed slight changes in group conformations corresponding to erythrocyte membranes after the administration of Danshen injection. Specifically, 1 064, 1 126 cm-1 apectral lines attributed to phospholipid molecule acyl C-C skeleton anti-conformation were obviously weakened, whereas 1 091 cm-1 spectral line attributed to phospholipid molecule acyl C-C skeleton guache conformation notably intensified. Besides, the longitudinal order-parameter in chains ( Strans) of phospholipids was reduced significantly. Conclusion: Danshen injection can transfer erythrocyte membrane phospholipid molecule acyl C-C skeleton anti-conformation to guache

  20. Pre-apoptotic activity of aqueous extracts of Cynanchum sarcomedium Meve & Liede on cells of Allium cepa and human erythrocytes.

    Science.gov (United States)

    Bhagyanathan, Neethu Kannan; Thoppil, John Ernest

    2016-11-01

    Cynanchum sarcomedium Meve & Liede is a member of Apocynaceae, seen in dry and rocky areas. The present study highlights the cytotoxic potential of C. sarcomedium mediated by apoptosis on cells of Allium cepa and human red blood cells (RBCs). Cytogenetic changes in A. cepa and in situ visualization of cell death were revealed through acetocarmine and Evans blue staining techniques. Quantitative estimation of cell death was carried out at 600 nm in a spectrophotometer. Membrane characteristics of RBC in response to the treatment were evaluated by May-Grünwald-Giemsa staining and scanning electron microscopy (SEM). Cell membrane damage is a major factor for assessing apoptosis which is observed in the present study (90.91 %). Cell shrinkage, cytoplasmic fragmentation, condensed chromatin and presence of apoptotic bodies were the common cytological changes in A. cepa associated with apoptosis. Blebs in RBC evidenced by SEM revealed the membrane damage potential of the plant. Results obtained hereby suggest that the plant is an effective source to be used in toxicological studies and anti-cancer therapy.

  1. Evaluation of the Cytotoxicity of α-Cyclodextrin Derivatives on the Caco-2 Cell Line and Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Eszter Róka

    2015-11-01

    Full Text Available Cyclodextrins, even the 6-membered α-cyclodextrin, are approved in the various pharmacopoeias as pharmaceutical excipients for solubilizing and stabilizing drugs as well as for controlling drug release. Recently α-cyclodextrin has also been marketed as health food with beneficial effects on blood lipid profiles. However, the concentration of α-cyclodextrin used may be very high in these cases, and its toxic attributes have to be seriously considered. The objective of this study was to investigate the cytotoxicity of various, differently substituted α-cyclodextrin derivatives and determine relationship between the structures and cytotoxicity. Three different methods were used, viability tests (MTT assay and Real Time Cell Electronic Sensing on Caco-2 cells as well as hemolysis test on human red blood cells. The effect of α-cyclodextrin derivatives resulted in concentration-dependent cytotoxicity, so the IC50 values have been determined. Based on our evaluation, the Real Time Cell Electronic Sensing method is the most accurate for describing the time and concentration dependency of the observed toxic effects. Regarding the cytotoxicity on Caco-2 cells, phosphatidylcholine extraction may play a main role in the mechanism. Our results should provide help in selecting those α-cyclodextrin derivatives which have the potential of being used safely in medical formulations.

  2. Intestinal and hepatic metabolism of glutamine and citrulline in humans.

    Science.gov (United States)

    van de Poll, Marcel C G; Ligthart-Melis, Gerdien C; Boelens, Petra G; Deutz, Nicolaas E P; van Leeuwen, Paul A M; Dejong, Cornelis H C

    2007-06-01

    Glutamine plays an important role in nitrogen homeostasis and intestinal substrate supply. It has been suggested that glutamine is a precursor for arginine through an intestinal-renal pathway involving inter-organ transport of citrulline. The importance of intestinal glutamine metabolism for endogenous arginine synthesis in humans, however, has remained unaddressed. The aim of this study was to investigate the intestinal conversion of glutamine to citrulline and the effect of the liver on splanchnic citrulline metabolism in humans. Eight patients undergoing upper gastrointestinal surgery received a primed continuous intravenous infusion of [2-(15)N]glutamine and [ureido-(13)C-(2)H(2)]citrulline. Arterial, portal venous and hepatic venous blood were sampled and portal and hepatic blood flows were measured. Organ specific amino acid uptake (disposal), production and net balance, as well as whole body rates of plasma appearance were calculated according to established methods. The intestines consumed glutamine at a rate that was dependent on glutamine supply. Approximately 13% of glutamine taken up by the intestines was converted to citrulline. Quantitatively glutamine was the only important precursor for intestinal citrulline release. Both glutamine and citrulline were consumed and produced by the liver, but net hepatic flux of both amino acids was not significantly different from zero. Plasma glutamine was the precursor of 80% of plasma citrulline and plasma citrulline in turn was the precursor of 10% of plasma arginine. In conclusion, glutamine is an important precursor for the synthesis of arginine after intestinal conversion to citrulline in humans.

  3. 吗丙嗪对兔和人红细胞脂质过氧化的抑制%Inhibition of Probimane on Lipid Peroxidation of Rabbit and Human Erythrocytes

    Institute of Scientific and Technical Information of China (English)

    卢大用; 陈恩鸿; 曹静懿; 金巍; 田芳; 丁健

    2003-01-01

    Lipid peroxide (LPO) plays pivotal roles in the process and development of many diseases. In this work, we studied the in-hibitory effect of probimane (Pro), a Chinese anticancer agent, on erythrocyte LPO and the interaction of Pro with sialic acids (sia).Malondialdehyde (MDA) of erythrocytes activated by hydrogen peroxide was measured. Pro was found to inhibit the product of LPOinduced by hydrogen peroxide in a non-enzyme system of both rabbit and human erythrocytes in the absence of doxorubicin. Sia werefound to enhance LPO production and the activity of N-glycolylneuraminic acid (NeuGc) was about 5 times higher than that of N-acetylneuraminic acid (5AcNeu) at equivalent concentrations. Pro inhibited the increased LPO production induced by sia and the activ-ity of Pro against LPO with 5AcNeu was almost twofold higher than that of Pro alone. It suggests that Pro be an inhibitor of LPO (freeradicals) and as a functional modulator of sia in body.

  4. Human Metabolism and Interactions of Deployment-Related Chemicals

    Science.gov (United States)

    2008-08-01

    consisted of the pGL3- CYP3A4, pCDG1-SXR, and pRL-TK plasmids in the amounts of 360, 90, and 10 ng, respectively, along with 540 ng sonicated salmon sperm...oxidative stress in rat brain and liver is prevented by vitamin E or allopurinol. Toxicol. Lett. 2001; 118: 139-146. 34. Li, P., Nijhawan, D...acids, eicosanoids, fat- soluble vitamins /1/. Among fifty-seven CYP isoforms known in humans, fifteen are involved in the metabolism of

  5. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. I. Impairment of resealing and formation of aqueous pores in the ghost membrane after modification of SH groups.

    Science.gov (United States)

    Klonk, S; Deuticke, B

    1992-04-29

    Resealed human erythrocyte ghosts prepared by a two-step procedure were shown to have small residual barrier defects with the properties of aqueous pores, such as size discrimination of hydrophilic nonelectrolytes (erythritol to sucrose), indicative of an apparent pore radius of about 0.7 nm, and a low activation energy (about 12-20 kJ/mol (mannitol, sucrose)) of the leak fluxes. As in other cases (Deuticke et al. (1991) Biochim. Biophys. Acta 1067, 111-122) these leak fluxes can be inhibited by phloretin. Treatment of such resealed ghosts with the mild SH oxidizing agent, diamide, induces additional membrane leaks to the same extent and with the same properties as in native erythrocytes (Deuticke et al. (1983) Biochim. Biophys. Acta 731, 196-210), including reversibility of the leak by SH reducing agents, inhibition by phloretin and stimulation by alkanols. In contrast, resealed ghosts prepared either from diamide-treated erythrocytes or by adding diamide to the 'open' membranes prior to reconstitution of high ionic strength and raising the temperature, exhibit a state of greater leakiness. This leakiness is somewhat different in its origin from the former class of leaks, since it can also be produced by N-ethylmaleimide, which is essentially ineffective when added to the membrane in its 'tight' state. The leaks induced in the 'open' state of the membrane, which can be regarded as a consequence of an impaired resealing, are nevertheless reversible by reducing agents added after resealing and are comparable in many, but not all their characteristics to leaks induced in the 'tight' state of the membrane. Resealing in the presence of the isothiocyanostilbenes DIDS or SITS mimicks the leak forming effect of diamide by modifying a small population of SH groups, while amino groups seem not to be involved. The findings indicate and substantiate an important role of the redox state of membrane skeletal protein sulfhydryls in the maintenance and the re-establishment of the

  6. Effect of Lipophilic Bismuth Nanoparticles on Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rene Hernandez-Delgadillo

    2015-01-01

    Full Text Available Lipophilic bismuth dimercaptopropanol nanoparticles (BisBAL NPs have a very important antimicrobial activity; however their effect on human cells or tissues has not been completely studied. Undesirable effects of bismuth include anemia which could result from suicidal erythrocyte death or eryptosis. The objective of this research was to determine the effect of bismuth dimercaptopropanol nanoparticles on blood cells. The nanoparticles are composed of 53 nm crystallites on average and have a spherical structure, agglomerating into clusters of small nanoparticles. Based on cell viability assays and optical microscopy, cytotoxicity on erythrocytes was observed after growing with 500 and 1000 µM of BisBAL NPs for 24 h. AM Calcein was retained inside erythrocytes when they were exposed to 100 µM (or lower concentrations of BisBAL NPs for 24 h, suggesting the absence of damage in plasmatic membrane. Genotoxic assays revealed no damage to genomic DNA of blood cells after 24 h of exposition to BisBAL NPs. Finally, 100–1000 µM of bismuth nanoparticles promotes apoptosis between blood cells after 24 h of incubation. Hence BisBAL NPs at concentrations lower than 100 µM do not cause damage on blood cells; they could potentially be used by humans without affecting erythrocytes and leukocytes.

  7. DIFFERENCES IN ERYTHROCYTE SODIUM-TRANSPORT BETWEEN HUMAN PLASMA AND ARTIFICIAL MEDIUM - THE ROLE AND CHARACTER OF SODIUM-EFFLUX AND INFLUX STIMULATING PLASMA FACTORS

    NARCIS (Netherlands)

    TEPPER, T; JILDERDA, JF; HUISMAN, RM; VANDERHEM, GK; DEZEEUW, D

    1992-01-01

    The main objective of this study was to further characterize the plasma factor(s) which stimulate sodium efflux from erythrocytes, which we reported previously. Dialysis of plasma against an artificial medium using membranes with varying molecular mass cut-off points revealed relative molecular

  8. Erythroeyte and erythrocyte fnnction

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930160 Erythrocyte deformability in severalhematological disorders.WU Wankun(吴宛堃),et al.Dept Radiation Med,Xinjing Hosp,4th Milit Med Univ.J 4th Milit Med Univ1992;13(5):359-361.The erythrocyte deformability of 29 cases in iron-dificiency anemia(IDA),asplastic anemia(AA)and myelodysplastic syndrome(MDS)was studied by ektacytometry,a laser diffrac-tion method.The blood samples from elbowveins were heparinized.Three fluid stresses act-ing on red blood cells(RBCs)were 54 dyn/cm~2,166 dyn/cm~2 and 309 dyn/cm~2.The changes inlaser diffraction patterns from circularity to el-

  9. Influence of Plasmodium vivax malaria on the relations between the osmotic stability of human erythrocyte membrane and hematological and biochemical variables.

    Science.gov (United States)

    Mascarenhas Netto, Rita de Cássia; Fabbri, Camila; de Freitas, Mariana Vaini; Bernardino Neto, Morun; Garrote-Filho, Mário Silva; Lacerda, Marcus Vinícius Guimarães; Lima, Emerson Silva; Penha-Silva, Nilson

    2014-03-01

    This study evaluated the influence of infection by Plasmodium vivax on the relations between hematological and biochemical variables and the osmotic stability of the erythrocyte membrane in a Brazilian Amazon population. A total of 72 patients with P. vivax malaria were included in the study and invited to return after 14 days, post-treatment with chloroquine and primaquine, for clinical and laboratorial reevaluations. The osmotic stability of the erythrocyte membrane was analyzed by nonlinear regression of the dependency of the absorbance of hemoglobin, released with hemolysis, as a function of the salt concentration, and it was represented by the inverse of the salt concentration at the midpoint of the curve (1/H 50) and by the variation of salt concentration, which promotes lysis (dX). Bivariate and multivariate methods were used in the analysis of the results. Prior to treatment of the disease, the erythrocytes showed greater stability, probably due to the natural selection of young and also more stable erythrocytes. The bivariate analysis showed that 1/H 50 was positively correlated with red cell distribution width (RDW), urea, triglycerides, and very low-density lipoprotein (VLDL)-cholesterol, but negatively associated with albumin, HDL-cholesterol, and indirect bilirubin, while dX was negatively associated with the mean corpuscular hemoglobin concentration. These associations were confirmed by canonical correlation analysis. Stepwise multiple linear regression showed that albumin, urea, triglycerides, and VLDL-cholesterol are the variables with the highest abilities of predicting erythrocyte stability. The bivariate analysis also showed that the hematological index RDW was related to elevated levels of bilirubin and decreased levels of albumin and urea, associated with liver damage resulting from malaria.

  10. Discovery of Infection Associated Metabolic Markers in Human African Trypanosomiasis.

    Science.gov (United States)

    Lamour, Sabrina D; Gomez-Romero, Maria; Vorkas, Panagiotis A; Alibu, Vincent P; Saric, Jasmina; Holmes, Elaine; Sternberg, Jeremy M

    2015-01-01

    Human African trypanosomiasis (HAT) remains a major neglected tropical disease in Sub-Saharan Africa. As clinical symptoms are usually non-specific, new diagnostic and prognostic markers are urgently needed to enhance the number of identified cases and optimise treatment. This is particularly important for disease caused by Trypanosoma brucei rhodesiense, where indirect immunodiagnostic approaches have to date been unsuccessful. We have conducted global metabolic profiling of plasma from T.b.rhodesiense HAT patients and endemic controls, using 1H nuclear magnetic resonance (NMR) spectroscopy and ultra-performance liquid chromatography, coupled with mass spectrometry (UPLC-MS) and identified differences in the lipid, amino acid and metabolite profiles. Altogether 16 significantly disease discriminatory metabolite markers were found using NMR, and a further 37 lipid markers via UPLC-MS. These included significantly higher levels of phenylalanine, formate, creatinine, N-acetylated glycoprotein and triglycerides in patients relative to controls. HAT patients also displayed lower concentrations of histidine, sphingomyelins, lysophosphatidylcholines, and several polyunsaturated phosphatidylcholines. While the disease metabolite profile was partially consistent with previous data published in experimental rodent infection, we also found unique lipid and amino acid profile markers highlighting subtle but important differences between the host response to trypanosome infections between animal models and natural human infections. Our results demonstrate the potential of metabolic profiling in the identification of novel diagnostic biomarkers and the elucidation of pathogenetic mechanisms in this disease.

  11. Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum -infected erythrocytes

    National Research Council Canada - National Science Library

    Przyborski, Jude M; Miller, Susanne K; Rohrbach, Petra; Pfahler, Judith M; Crabb, Brendan S; Henrich, Philipp P; Lanzer, Michael

    2005-01-01

    The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts...

  12. Inhibition of suicidal erythrocyte death by xanthohumol.

    Science.gov (United States)

    Qadri, Syed M; Mahmud, Hasan; Föller, Michael; Lang, Florian

    2009-08-26

    Xanthohumol is a proapoptotic hop-derived beer component with anticancer and antimicrobial activities. Similar to nucleated cells, erythrocytes may undergo suicidal cell death or eryptosis, which is triggered by oxidative stress (tert-butylhydroperoxide, TBOOH) or energy depletion (removal of glucose). The triggers increase cytosolic Ca(2+) concentration, leading to activation of Ca(2+)-sensitive K(+) channels with subsequent cell shrinkage and to cell membrane scrambling with subsequent phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are cleared from the circulating blood, leading to anemia, and may adhere to the vascular wall, thus impeding microcirculation. The present experiments explored whether xanthohumol influences eryptosis using flow cytometry. Exposure of human erythrocytes to 0.3 mM TBOOH or incubation in glucose-free solution significantly increased Fluo3 fluorescence (Ca(2+) concentration) as well as annexin V-binding (cell membrane scrambling) and decreased forward scatter (cell volume), effects significantly blunted by xanthohumol. In conclusion, xanthohumol is a potent inhibitor of suicidal erythrocyte death in vitro.

  13. Stimulation of suicidal erythrocyte death by sulforaphane.

    Science.gov (United States)

    Alzoubi, Kousi; Calabrò, Salvatrice; Faggio, Caterina; Lang, Florian

    2015-03-01

    Sulforaphane, an isothiocyanate from cruciferous vegetable, counteracts malignancy. The effect is at least in part due to the stimulation of suicidal death or apoptosis of tumour cells. Mechanisms invoked in sulforaphane-induced apoptosis include mitochondrial depolarization and altered gene expression. Despite the lack of mitochondria and nuclei, erythrocytes may, similar to apoptosis of nucleated cells, enter eryptosis, a suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i). This study explored whether sulforaphane stimulates eryptosis. Cell volume was estimated from forward scatter, phosphatidylserine exposure at the cell surface from annexin V binding and [Ca(2+)]i from Fluo-3 fluorescence. A 48-hr treatment of human erythrocytes with sulforaphane (50-100 μM) significantly decreased forward scatter, significantly increased the percentage of annexin V binding cells and significantly increased [Ca(2+)]i. The effect of sulforaphane (100 μM) on annexin V binding was significantly blunted but not abrogated by the removal of extracellular Ca(2+). Sulforaphane (100 μM) significantly increased ceramide formation. In conclusion, sulforaphane stimulates suicidal erythrocyte death or eryptosis, an effect at least partially, but not exclusively, due to the stimulation of Ca(2+) entry and ceramide formation. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Electrophoretic mobilities of erythrocytes in various buffers

    Science.gov (United States)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  15. Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Tvarijonaviciute Asta

    2012-08-01

    Full Text Available Abstract Background Recently, metabolic syndrome (MS has gained attention in human metabolic medicine given its associations with development of type 2 diabetes mellitus and cardiovascular disease. Canine obesity is associated with the development of insulin resistance, dyslipidaemia, and mild hypertension, but the authors are not aware of any existing studies examining the existence or prevalence of MS in obese dogs. Thirty-five obese dogs were assessed before and after weight loss (median percentage loss 29%, range 10-44%. The diagnostic criteria of the International Diabetes Federation were modified in order to define canine obesity-related metabolic dysfunction (ORMD, which included a measure of adiposity (using a 9-point body condition score [BCS], systolic blood pressure, fasting plasma cholesterol, plasma triglyceride, and fasting plasma glucose. By way of comparison, total body fat mass was measured by dual-energy X-ray absorptiometry, whilst total adiponectin, fasting insulin, and high-sensitivity C-reactive protein (hsCRP were measured using validated assays. Results Systolic blood pressure (P = 0.008, cholesterol (P = 0.003, triglyceride (P = 0.018, and fasting insulin (P P = 0.001. However, hsCRP did not change with weight loss. Prior to weight loss, 7 dogs were defined as having ORMD, and there was no difference in total fat mass between these dogs and those who did not meet the criteria for ORMD. However, plasma adiponectin concentration was less (P = 0.031, and plasma insulin concentration was greater (P = 0.030 in ORMD dogs. Conclusions In this study, approximately 20% of obese dogs suffer from ORMD, and this is characterized by hypoadiponectinaemia and hyperinsulinaemia. These studies can form the basis of further investigations to determine path genetic mechanisms and the health significance for dogs, in terms of disease associations and outcomes of weight loss.

  16. Fatty acid metabolism studies of human epidermal cell cultures.

    Science.gov (United States)

    Marcelo, C L; Dunham, W R

    1993-12-01

    Adult human epidermal keratinocytes grow rapidly in medium that is essential fatty acid (EFA)-deficient. In this medium they exhibit decreased amounts of the fatty acids, 18:2, 20:3, 20:4, and contain increased amounts of monounsaturated fatty acids. [14C]- and [3H]acetate and radiolabeled fatty acids, 16:0, 18:2, and 20:4 were used to study the fatty acid metabolism of these cells. Label from acetate appeared in 14- to 20-carbon fatty acids, both saturated and monounsaturated. No label was seen in the essential fatty acid 18:2, 18:3, and 20:4. Radiolabel from [9, 10-3H]palmitic acid (16:0) was detected in 16:0, 16:1, 18:0, and 18:1. [14C]linoleic acid (18:2) was converted to 18:3, 20:2, 20:3, and 20:4, demonstrating delta 6 and delta 5 desaturase activity in keratinocytes. Label from acetate, 16:0, or 18:2 was found mostly in the cellular phospholipids while only one third of the label from [14C]arachidonic was found in the phospholipids. [14C]acetate and [14C]18:2 time course data were used to construct a model of the metabolism of these reactants, using coupled, first-order differential equations. The data show that EFA-deficient keratinocytes metabolize fatty acids using pathways previously found in liver; they suggest the positioning of 18:2 desaturase and 18:3 elongase near the plasma membrane; they indicate that for the synthesis of nonessential fatty acids the formation of 18:0 from 16:0 is the rate-determining step; and they show that the conversion of 18:2 to 20:3 is rapid. These experiments demonstrate a method to study lipid enzyme kinetics in living cells.

  17. Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood "Villains" of Human Metabolism

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2004-12-01

    Full Text Available Abstract During very low carbohydrate intake, the regulated and controlled production of ketone bodies causes a harmless physiological state known as dietary ketosis. Ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. In comparison with glucose, the ketone bodies are actually a very good respiratory fuel. Indeed, there is no clear requirement for dietary carbohydrates for human adults. Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. Also, the recent landmark study showed that a very-low-carbohydrate diet resulted in a significant reduction in fat mass and a concomitant increase in lean body mass in normal-weight men. Contrary to popular belief, insulin is not needed for glucose uptake and utilization in man. Finally, both muscle fat and carbohydrate burn in an amino acid flame.

  18. Effect of sodium dodecyl sulfate on immuno-electrosyneresis between normal human erythrocyte membrane and sera of systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    Arimori,Shigeru

    1975-12-01

    Full Text Available An anti-membrane antibody was present in the sera of systemic lupus erythematosus patients in immunoelectrosyneresis with sodium dodecyl sulfate (SDS solubilized erythrocyte membrane as antigen. The SDS bound to protein was detected by chromatography at 10(-3M concentration under U.V. light, at 10(-5M concentration by the distilled water spray method and at 10(-6M concentration by using rosaniline hydrochloride colorimetry. SDS was removed from the membrane protein at a concentration of 10(-3M by the first gel filtration of Sephadex G-25 column and at a concentration of 10(-6M by rechromatography of the same column. More than 99% of SDS in the solubilized erythrocyte membrane was removed by gel filtration. The antigenicity was still positive in the refiltrated fractions of systemic lupus erythematosus patients. Therefore, all precipitates in the gels were antigen-antibody aggregates.

  19. 超声对鸡血与人血红细胞作用的比较研究%Comparson between the effects of ultrasound on chicken and human erythrocytes

    Institute of Scientific and Technical Information of China (English)

    周筠筠; 谭婵媛; 章东; 龚秀芬

    2006-01-01

    Under the 1.17 MHz continuous-wave ultrasound exposure, we make experimental comparisons of hemolysis, osmotic fragility and lipid peroxidation for both human erythrocyte and chicken erythrocyte dilute suspensions. Results demonstrate that ultrasound exposure at low sound intensities leads to slight increases in hemolysis, osmotic fragility and lipid peroxidation due to the effect of shear stress. However, a significant increase of hemolysis and even rupture of cell can be observed as the ultrasound intensity exceeds the cavitation threshold. The level of the cavitation threshold for chicken erythrocyte suspensions is higher than that for human red cell suspensions, suggesting that the cavitation threshold is associated with not only acoustic irradiation parameters, but also cell size and structure.%实验研究了1.17 MHz的连续超声波作用下,人及鸡的血红细胞的溶血率、渗透脆性及膜脂过氧化水平的变化.结果表明,在声压较低时,流体间的剪切张力使得红细胞的溶血率、渗透脆性、脂质过氧化水平随作用时间及作用强度增加缓慢增长;但当声压超过空化阈值时,红细胞的溶血率随作用时间及作用强度的增加而显著增大,直至血红素完全释放细胞完全破裂;鸡红细胞的空化阈值明显高于人红细细胞,空化阈值不仅与声学参数有关,还与细胞体积和结构有关.

  20. Autonomous exoskeleton reduces metabolic cost of human walking.

    Science.gov (United States)

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-11-03

    Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions. The metabolic energy consumption of seven study participants (85 ± 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 ± 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 ± 13 W, which was an improvement of 10 ± 3% (p = 0.023) relative to the control condition of not wearing the exoskeleton. The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.

  1. Glucose metabolism in cultured trophoblasts from human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. (Washington Univ., St. Louis, MO (United States))

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  2. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  3. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  4. Electromagnetic respiratory effort harvester: human testing and metabolic cost analysis.

    Science.gov (United States)

    Shahhaidar, E; Padasdao, B; Romine, R; Stickley, C; Lubecke, O Boric

    2015-03-01

    Remote health monitoring is increasingly recognized as a valuable tool in chronic disease management. Continuous respiratory monitoring could be a powerful tool in managing chronic diseases, however it is infrequently performed because of obtrusiveness and inconvenience of the existing methods. The movements of the chest wall and abdominal area during normal breathing can be monitored and harvested to enable self-powered wearable biosensors for continuous remote monitoring. This paper presents human testing results of a light-weight (30 g), wearable respiratory effort energy harvesting sensor. The harvester output voltage, power, and its metabolic burden, are measured on twenty subjects in two resting and exercise conditions each lasting 5 min. The system includes two off-the-shelf miniature electromagnetic generators harvesting and sensing thoracic and abdominal movements. Modules can be placed in series to increase the output voltage for rectification purposes. Electromagnetic respiratory effort harvester/sensor system can produce up to 1.4 V, 6.44 mW, and harvests 30.4 mJ during a 5-min exercise stage. A statistical paired t-test analysis of the calculated EE confirmed there is no significant change ( P > 0.05 ) in the metabolic rate of subjects wearing the electromagnetic harvester and biosensor.

  5. Focusing and alignment of erythrocytes in a viscoelastic medium

    Science.gov (United States)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  6. Focusing and alignment of erythrocytes in a viscoelastic medium

    Science.gov (United States)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability. PMID:28117428

  7. Erythrocyte hemodynamics in stenotic microvessels: A numerical investigation

    Science.gov (United States)

    Wang, Tong; Xing, Zhongwen

    2014-03-01

    This paper presents a two-dimensional numerical investigation of deformation and motion of erythrocytes in stenotic microvessels using the immersed boundary-fictitious domain method. The erythrocytes were modeled as biconcave-shaped closed membranes filled with cytoplasm. We studied the biophysical characteristics of human erythrocytes traversing constricted microchannels with the narrowest cross-sectional diameter as small as 3 μm. The effects of essential parameters, namely, stenosis severity, shape of the erythrocytes, and erythrocyte membrane stiffness, were simulated and analyzed in this study. Moreover, simulations were performed to discuss conditions associated with the shape transitions of the cells along with the relative effects of radial position and initial orientation of erythrocytes, membrane stiffness, and plasma environments. The simulation results were compared with existing experiment findings whenever possible, and the physical insights obtained were discussed. The proposed model successfully simulated rheological behaviors of erythrocytes in microscale flow and thus is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions. Our study would be helpful for further understanding of pathology of malaria and some other blood disorders.

  8. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  9. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  10. Tuning SERS for living erythrocytes

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Parshina, E.Y.; Khabanova, V.V.;

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (Ag...

  11. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles

    Science.gov (United States)

    Jiang, Lizhen; Yu, Yongbo; Li, Yang; Yu, Yang; Duan, Junchao; Zou, Yang; Li, Qiuling; Sun, Zhiwei

    2016-02-01

    Amorphous silica nanoparticles (SiNPs) have been extensively used in biomedical applications due to their particular characteristics. The increased environmental and iatrogenic exposure of SiNPs gained great concerns on the biocompatibility and hematotoxicity of SiNPs. However, the studies on the hemolytic effects of amorphous SiNPs in human erythrocytes are still limited. In this study, amorphous SiNPs with 58 nm were selected and incubated with human erythrocytes for different times (30 min and 2 h) at various concentrations (0, 10, 20, 50, and 100 μg/mL). SiNPs induced a dose-dependent increase in percent hemolysis and significantly increased the malondialdehyde (MDA) content and decreased the superoxide dismutase (SOD) activity, leading to oxidative damage in erythrocytes. Hydroxyl radical (·OH) levels were detected by electron spin resonance (ESR), and the decreased elimination rates of ·OH showed SiNPs induced low antioxidant ability in human erythrocytes. Na+-K+ ATPase activity and Ca2+-Mg2+ ATPase activity were found remarkably inhibited after SiNP treatment, possibly causing energy sufficient in erythrocytes. Percent hemolysis of SiNPs was significantly decreased in the presence of N-acetyl-cysteine (NAC) and adenosine diphosphate (ADP). It was concluded that amorphous SiNPs caused dose-dependent hemolytic effects in human erythrocytes. Oxidative damage and energy metabolism disorder contributed to the hemolytic effects of SiNPs in vitro.

  12. Dielectric inspection of erythrocyte morphology

    Science.gov (United States)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-05-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  13. High-level, erythroid specific, expression of the human α-globin gene in transgenic mice and the production of human haemoglobin in murine erythrocytes.

    NARCIS (Netherlands)

    O. Hanscombe (Olivia); M. Vidal; J. Kaeda; L. Luzzatto; D.R. Greaves (David); F.G. Grosveld (Frank)

    1989-01-01

    textabstractUsing the dominant control region (DCR) sequences that flank the beta-globin gene locus, we have been able to achieve high-level expression of the human alpha-globin gene in transgenic mice. Expression in fetal liver and blood is copy number dependent and at levels comparable to that of

  14. Genome-scale modeling of human metabolism - a systems biology approach.

    Science.gov (United States)

    Mardinoglu, Adil; Gatto, Francesco; Nielsen, Jens

    2013-09-01

    Altered metabolism is linked to the appearance of various human diseases and a better understanding of disease-associated metabolic changes may lead to the identification of novel prognostic biomarkers and the development of new therapies. Genome-scale metabolic models (GEMs) have been employed for studying human metabolism in a systematic manner, as well as for understanding complex human diseases. In the past decade, such metabolic models - one of the fundamental aspects of systems biology - have started contributing to the understanding of the mechanistic relationship between genotype and phenotype. In this review, we focus on the construction of the Human Metabolic Reaction database, the generation of healthy cell type- and cancer-specific GEMs using different procedures, and the potential applications of these developments in the study of human metabolism and in the identification of metabolic changes associated with various disorders. We further examine how in silico genome-scale reconstructions can be employed to simulate metabolic flux distributions and how high-throughput omics data can be analyzed in a context-dependent fashion. Insights yielded from this mechanistic modeling approach can be used for identifying new therapeutic agents and drug targets as well as for the discovery of novel biomarkers. Finally, recent advancements in genome-scale modeling and the future challenge of developing a model of whole-body metabolism are presented. The emergent contribution of GEMs to personalized and translational medicine is also discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metabolic syndrome in human immunodeficiency virus positive patients

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2013-01-01

    Full Text Available Aims and Objectives : To assess the prevalence of metabolic syndrome (MetS in human immunodeficiency virus (HIV positive patients. Prevalence of MetS was compared in patients who were not on highly active antiretroviral therapy (HAART to patients who were on HAART. Materials and Methods: Seventy HIV positive cases were studied. Pregnant and lactating women, patients on drugs other than HAART known to cause metabolic abnormalities and those having diabetes or hypertension were excluded. Cases were evaluated for MetS by using National Cholesterol Education Program Adult Treatment Panel-III. Results: 47 cases were on HAART and 23 cases were not on HAART. Fasting Blood Glucose ≥100 mg/dl was present in 28.6% cases, out of whom 27.7% were on HAART and 30.4% were not on HAART (P = 0.8089. 12.9% cases had BP ≥130/≥85 mm Hg, out of whom 14.9% were on HAART and 8.7% were not on HAART (P = 0.4666. 42.9% cases had TG ≥150 mg/dl, out of whom 44.7% were on HAART and 39.1% were not on HAART (P = 0.6894. HDL cholesterol was low (males <40 mg/dl, females <50 mg/dl in 50% cases, out of whom 55.3% were on HAART and 39.1% were not on HAART (P = 0.2035. Conclusions: Prevalence of MetS was 20%. Majority of patients had only one component of MetS (32.9%. Low HDL was present in 50%, followed by raised triglycerides in 42.9%. Waist circumference was not increased in any of the patients. There was no statistically significant difference between those on HAART and those not on HAART in distribution of risk factors and individual components of MetS.

  16. Glucose Metabolism of Human Prostate Cancer Mouse Xenografts

    Directory of Open Access Journals (Sweden)

    Hossein Jadvar

    2005-04-01

    Full Text Available We hypothesized that the glucose metabolism of prostate cancer is modulated by androgen. We performed in vivo biodistribution and imaging studies of [F-18] fluorodeoxyglucose (FDG accumulation in androgen-sensitive (CWR-22 and androgen-independent (PC-3 human prostate cancer xenografts implanted in castrated and noncastrated male athymic mice. The growth pattern of the CWR-22 tumor was best approximated by an exponential function (tumor size in mm3 = 14.913 e0.108 × days, R2 = .96, n = 5. The growth pattern of the PC-3 tumor was best approximated by a quadratic function (tumor size in mm3 = 0.3511 × days2 + 49.418 × day −753.33, R2 = .96, n = 3. The FDG accumulation in the CWR-22 tumor implanted in the castrated mice was significantly lower, by an average of 55%, in comparison to that implanted in the noncastrated host (1.27 vs. 2.83, respectively, p < .05. The 3-week maximal standardized uptake value (SUVmax was 0.99 ± 0.43 (mean ± SD for CWR-22 and 1.21 ± 0.32 for PC-3, respectively. The 5-week SUVmax was 1.22 ± 0.08 for CWR-22 and 1.35 ± 0.17 for PC-3, respectively. The background muscle SUVmax was 0.53 ± 0.11. Glucose metabolism was higher in the PC-3 tumor than in the CWR-22 tumor at both the 3-week (by 18% and the 5-week (by 9.6% micro-PET imaging sessions. Our results support the notions that FDG PET may be useful in the imaging evaluation of response to androgen ablation therapy and in the early prediction of hormone refractoriness in men with metastatic prostate cancer.

  17. In vitro metabolism of genistein and tangeretin by human and murine cytochrome p450s

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Rasmussen, Salka; Brøsen, Kim

    2003-01-01

    Recombinant cytochrome P450 (CYP) 1A2, 3A4, 2C9 or 2D6 enzymes obtained from Escherichia coli and human liver microsomes samples were used to investigate the ability of human CYP enzymes to metabolize the two dietary flavonoids, genistein and tangeretin. Analysis of the metabolic profile from...

  18. Immune Evasion Strategies of Pre-Erythrocytic Malaria Parasites

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2014-01-01

    Full Text Available Malaria is a mosquito-borne infectious disease of humans. It begins with a bite from an infected female Anopheles mosquito and leads to the development of the pre-erythrocytic and blood stages. Blood-stage infection is the exclusive cause of clinical symptoms of malaria. In contrast, the pre-erythrocytic stage is clinically asymptomatic and could be an excellent target for preventive therapies. Although the robust host immune responses limit the development of the liver stage, malaria parasites have also evolved strategies to suppress host defenses at the pre-erythrocytic stage. This paper reviews the immune evasion strategies of malaria parasites at the pre-erythrocytic stage, which could provide us with potential targets to design prophylactic strategies against malaria.

  19. Retinal Remodeling And Metabolic Alterations in Human AMD

    Directory of Open Access Journals (Sweden)

    Bryan William Jones

    2016-04-01

    Full Text Available Age-related macular degeneration (AMD is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression.The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this paper is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE, for remodeling of the the neural retina.Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP, a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming in progressive retinal degenerations such as retinitis pigmentosa (RP. We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease.Major findings: 1 Evidence of metabolic instability in RPE in dry-AMD.2 Photoreceptors show clear indications of stress prior to cell death.3 Cone opsin processing by the RPE in AMD retinas may be differentially compromised vs. rod opsin.4 Müller cells in AMD exhibit

  20. METABOLISM OF 3 PHARMACOLOGICALLY ACTIVE-DRUGS IN ISOLATED HUMAN AND RAT HEPATOCYTES - ANALYSIS OF INTERSPECIES VARIABILITY AND COMPARISON WITH METABOLISM IN-VIVO

    NARCIS (Netherlands)

    SANDKER, GW; VOS, RME; DELBRESSINE, LPC; SLOOFF, MJH; MEIJER, DKF; GROOTHUIS, GMM

    1994-01-01

    1. The metabolism of the three drugs (Org GB 94, Org 3770 and Org OD 14) was studied in isolated human and rat hepatocytes. The metabolic profiles in rat and human hepatocytes were compared with the available in vivo data in both species. 2. All three drugs were metabolized extensively under the con

  1. Stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes Estágios da fagocitose in vitro por monócitos humanos de eritrócitos infectados por Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira

    2009-04-01

    Full Text Available Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.Monócitos/macrófagos desempenham uma função crítica nos mecanismos de defesa antiplasmódio e constituem as principais células responsáveis pela eliminação das formas eritrocitárias do plasmódio da circulação sangüínea. Realizamos uma avaliação microscópica dos estágios da fagocitose in vitro de eritrócitos infectados por Plasmodium falciparum por monócitos humanos. Essas células foram obtidas de indivíduos adultos sadios por centrifugação em Percoll e incubadas com eritrócitos infectados por Plasmodium falciparum previamente incubados com um pool de soro imune contra plasmódio. Descrevemos os estágios da fagocitose, desde a aderência dos eritrócitos infectados até sua destruição nos fagolisossomas dos monócitos. Observou-se que eritrócitos infectados por todos os diferentes est

  2. 16.1.Erythrocyte and erythrocyte function

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920363 Characterization and purificationof a glucose-6-phosphate dehydrogenasevariant Gd(-) Zhanjiang in human erythro-cytes.CAI Wangwei (蔡望伟),et al.ZhanjiangMed Coll.Chin J Hematol 1991;12(11):575-577.

  3. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design

    Directory of Open Access Journals (Sweden)

    Hamilton Jill K

    2010-10-01

    Full Text Available Abstract Background Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. Methods/Design The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. Discussion An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may

  4. Signal transduction by erythrocytes on specific binding of doxorubicin immobilized on nanodispersed magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mykhaylyk, Olga [Institute Applied Problems Physics and Biophysics, NAS, Sluzhbova 3, UA-03142 Kyiv (Ukraine)]. E-mail: Olga.Mykhaylyk@gmx.net; Kotzuruba, Anatoliy [Institute of Biochemistry, NAS, Leontovicha 9, UA-01030 Kyiv (Ukraine); Dudchenko, Nataliya [Institute Applied Problems Physics and Biophysics, NAS, Sluzhbova 3, UA-03142 Kyiv (Ukraine); Toerok, Gyula [Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49 (Hungary)

    2005-05-15

    Two specific binding sites for doxorubicin were revealed at the plasma membrane of human erythrocytes on investigation of the binding of doxorubicin magnetic nanoconjugates. Free and conjugated doxorubicins modulated signal transduction in erythrocytes in a similar way. Both up-regulated nitric oxide and cyclic GMP (cGMP) and down-regulated cyclic AMP (cAMP) production and stabilize the membranes of damaged erythrocytes.

  5. Effect of erythrocytes and prostacyclin production in the effect of fructose and sorbitol on platelet activation in human whole blood in vitro.

    Science.gov (United States)

    De la Cruz, J P; Maximo, M A; Blanco, E; Moreno, A; Sánchez de la Cuesta, F

    1997-06-15

    We analyzed the in vitro effects of sorbitol and fructose on platelet function. Sorbitol and fructose increased platelet aggregation induced with adenosine diphosphate (ADP) or collagen in whole blood, but had no effect in platelet-rich plasma. The concentration that increased basal aggregation by 50% with ADP as the inducer was 12.89 +/- 1.55 mmol/L for fructose, and 18.99 +/- 2.01 mmol/L for sorbitol. When collagen was the inducer, these concentrations were 15.02 +/- 0.98 mmol/L for fructose, and 12.94 +/- 1.57 mmol/L for sorbitol. Both sugars increased, in a concentration-dependent way, the proaggregatory effect of erythrocytes, and erythrocyte uptake of adenosine. Time to uptake of 50% adenosine was 2.1 +/- 0.3 min in control samples, 0.14 +/- 0.01 min in the presence of fructose, and 0.23 +/- 0.03 min with sorbitol. Both sugars reduced vascular prostacyclin synthesis, with 50% inhibitory concentrations of 26.48 +/- 1.97 mmol/L for fructose, and 39.53 +/- 2.81 mmol/L for sorbitol. Both sugars also increased arterial lipid peroxidation by 30% (sorbitol) and 23% (fructose). We conclude that these two sugars enhance platelet function and disrupt the thromboxane/prostacyclin ratio.

  6. Metabolic syndrome--psycho neuropathogenesis and human brain evolution.

    Science.gov (United States)

    Perumal, Madhusoothanan Bhagavathi

    2011-01-01

    Metabolic syndrome (MS) is a major risk factor for coronary artery disease. Heightened hypothalamo-pituitary-adrenal axis activity is associated with pathogenesis of MS. Life style, food habits and physical activity also play critical role in the pathogenesis of MS. However, the precise neurophysiology behind chronic stress leading on to such effects is unknown. Review of recent animal and human studies have shown the subtle differences in morphological changes associated with chronic stress between medial prefrontal cortex and amygdaloid complex. The loss of dendritic spines in pyramidal neurons of medial prefrontal cortex, dendritic hypertrophy in basolateral amygdala and dendritic loss in central nucleus of amygdala causes increased basal output from amygdaloid complex to HPA axis and other targets whose networks are evolutionarily well conserved. The increased HPA axis activity, elevated blood pressure and appetite for high calorie diet leads to MS. The evolution of isocortex in primates and associated regression in size of limbic structures predisposed to increased synaptic noise in amygdaloid complex which in turn cause heighetened output from amygdala during chronic stress. Copyright © 2010 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  7. L-carnitine--metabolic functions and meaning in humans life.

    Science.gov (United States)

    Pekala, Jolanta; Patkowska-Sokoła, Bozena; Bodkowski, Robert; Jamroz, Dorota; Nowakowski, Piotr; Lochyński, Stanisław; Librowski, Tadeusz

    2011-09-01

    L-Carnitine is an endogenous molecule involved in fatty acid metabolism, biosynthesized within the human body using amino acids: L-lysine and L-methionine, as substrates. L-Carnitine can also be found in many foods, but red meats, such as beef and lamb, are the best choices for adding carnitine into the diet. Good carnitine sources also include fish, poultry and milk. Essentially, L-carnitine transports the chains of fatty acids into the mitochondrial matrix, thus allowing the cells to break down fat and get energy from the stored fat reserves. Recent studies have started to shed light on the beneficial effects of L-carnitine when used in various clinical therapies. Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart failure, angina and weight loss. For other conditions, such as fatigue or improving exercise performance, L-carnitine appears safe but does not seem to have a significant effect. The presented review of the literature suggests that continued studies are required before L-carnitine administration could be recommended as a routine procedure in the noted disorders. Further research is warranted in order to evaluate the biochemical, pharmacological, and physiological determinants of the response to carnitine supplementation, as well as to determine the potential benefits of carnitine supplements in selected categories of individuals who do not have fatty acid oxidation defects.

  8. Ammonia metabolism during intense dynamic exercise and recovery in humans

    DEFF Research Database (Denmark)

    Graham, T; Bangsbo, Jens; Gollnick, PD

    1990-01-01

     declined immediately on cessation of exercise. Recovery was complete in approximately 20 min. Arterial [NH3] increased less rapidly and reached itsmaximum 2-3 min into recovery. These data demonstrate that NH3 clearance is more sensitive to the cessation of exercise than is NH3 release from skeletal muscle. Muscle [NH......This study examined the dynamics for ammonia (NH3) metabolism in human skeletal muscle during and after intense one-legged exercise. Subjects (n = 8) performed dynamic leg extensor exercise to exhaustion (3.2 min). MuscleNH3 release increased rapidly to a maximum of 314 +/- 42 mumol/min and......3] increased three to fourfold during exercise and represented 74 +/- 8% of the total net NH3 formation. Thus the change in muscle [NH3] alone underestimates the NH3 production. There was no evidence that the muscle-to-venous blood NH3 ratio shifts in accordance with the H+ data. Thus other factors...

  9. Disorders of erythrocyte volume homeostasis.

    Science.gov (United States)

    Glogowska, E; Gallagher, P G

    2015-05-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneities characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis.

  10. Biochemical characterization of human gluconokinase and the proposed metabolic impact of gluconic Acid as determined by constraint based metabolic network analysis

    DEFF Research Database (Denmark)

    Rohatgi, Neha; Nielsen, Tine Kragh; Bjørn, Sara Petersen

    2014-01-01

    and strict specificity towards gluconate out of 122 substrates tested. In order to evaluate the metabolic impact of gluconate in humans we modeled gluconate metabolism using steady state metabolic network analysis. The results indicate that significant metabolic flux changes in anabolic pathways linked......The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Less is known of gluconate metabolism in humans. Human gluconokinase activity was recently identified proposing questions about the metabolic role...... to the hexose monophosphate shunt (HMS) are induced through a small increase in gluconate concentration. We argue that the enzyme takes part in a context specific carbon flux route into the HMS that, in humans, remains incompletely explored. Apart from the biochemical description of human gluconokinase...

  11. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    Science.gov (United States)

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  12. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  13. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  14. Triggering of Suicidal Erythrocyte Death by Psammaplin A

    Directory of Open Access Journals (Sweden)

    Abdulla Al Mamun Bhuyan

    2016-08-01

    Full Text Available Background/Aims: Psammaplin A, a natural product isolated from marine sponges, triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated tumor cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms stimulating eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study explored, whether Psammaplin A induces eryptosis and to possibly shed some light on the underlying mechanisms. Methods: Phosphatidylserine exposing erythrocytes were identified utilizing annexin-V-binding, cell volume was estimated from forward scatter, [Ca2+]i determined utilizing Fluo3-fluorescence, the abundance of reactive oxygen species (ROS quantified with DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface detected with specific antibodies. Results: A 48 hours exposure of human erythrocytes to Psammaplin A (2-8 µg/ml significantly decreased forward scatter and significantly increased the percentage of annexin-V-binding cells. Psammaplin A significantly increased Fluo3-fluorescence, the effect of Psammaplin A on annexin-V-binding and forward scatter was, however, not significantly blunted by removal of extracellular Ca2+. Psammaplin A significantly increased DCFDA fluorescence and ceramide abundance. Conclusions: Psammaplin A triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by increase of [Ca2+]i, induction of oxidative stress and enhanced appearance of ceramide.

  15. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  16. Fetal-maternal erythrocyte distribution

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003407.htm Fetal-maternal erythrocyte distribution To use the sharing features ... unborn baby is leaking into the mother's blood circulation. The more of the baby's cells there are, ...

  17. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  18. Cerebrovascular response to acute metabolic acidosis in humans.

    NARCIS (Netherlands)

    Ven, M.T.P. van de; Colier, W.N.J.M.; Kersten, B.T.P.; Oeseburg, B.; Folgering, H.T.M.

    2003-01-01

    OBJECTIVES: Evaluation of the cerebrovascular response (delta CBV/delta PaCO2) during baseline metabolic conditions and acute metabolic acidosis. METHODS: 15 healthy subjects, 5 m, 10 f, 56 +/- 10 yrs were investigated. For acidification, NH4Cl was given orally. CBV was measured using Near Infrared

  19. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  20. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    During muscle contraction, several mechanisms regulate blood flow to ensure a close coupling between muscle oxygen delivery and metabolic demand. No single factor has been identified to constitute the primary metabolic regulator, yet there are signal transduction pathways between skeletal muscle...

  1. Circadian rhythms, metabolism, and chrononutrition in rodents and humans

    Science.gov (United States)

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial respon...

  2. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE.

    Science.gov (United States)

    Wang, Yuliang; Eddy, James A; Price, Nathan D

    2012-12-13

    Human tissues perform diverse metabolic functions. Mapping out these tissue-specific functions in genome-scale models will advance our understanding of the metabolic basis of various physiological and pathological processes. The global knowledgebase of metabolic functions categorized for the human genome (Human Recon 1) coupled with abundant high-throughput data now makes possible the reconstruction of tissue-specific metabolic models. However, the number of available tissue-specific models remains incomplete compared with the large diversity of human tissues. We developed a method called metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE). mCADRE is able to infer a tissue-specific network based on gene expression data and metabolic network topology, along with evaluation of functional capabilities during model building. mCADRE produces models with similar or better functionality and achieves dramatic computational speed up over existing methods. Using our method, we reconstructed draft genome-scale metabolic models for 126 human tissue and cell types. Among these, there are models for 26 tumor tissues along with their normal counterparts, and 30 different brain tissues. We performed pathway-level analyses of this large collection of tissue-specific models and identified the eicosanoid metabolic pathway, especially reactions catalyzing the production of leukotrienes from arachidnoic acid, as potential drug targets that selectively affect tumor tissues. This large collection of 126 genome-scale draft metabolic models provides a useful resource for studying the metabolic basis for a variety of human diseases across many tissues. The functionality of the resulting models and the fast computational speed of the mCADRE algorithm make it a useful tool to build and update tissue-specific metabolic models.

  3. Disorders of Erythrocyte Volume Homeostasis

    OpenAIRE

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants ...

  4. Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue

    DEFF Research Database (Denmark)

    Petersen, G.; Moesgaard, B.; Hansen, Harald S.

    2005-01-01

    The endogenous levels of the two cannabinoid receptor ligands 2-arachidonoyl glycerol and anandamide, and their respective congeners, monoacyl glycerols and N-acylethanolamines, as well as the phospholipid precursors of N-acylethanolamines, were measured by gas chromatography-mass spectrometry in...... in glioblastoma (WHO grade IV) tissue and meningioma (WHO grade I) tissue and compared with human non-tumour brain tissue. Furthermore, the metabolic turnover of N-acylethanolamines was compared by measurements of the enzymatic activity of N-acyltransferase, N...

  5. Detection of antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry

    DEFF Research Database (Denmark)

    Staalsoe, T; Giha, H A; Dodoo, D;

    1999-01-01

    BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously...... been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias...... with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were...

  6. Erythrocyte: A systems model of the control of aggregation and deformability.

    Science.gov (United States)

    Bazanovas, Antonina N; Evstifeev, Aleksandr I; Khaiboullina, Svetlana F; Sadreev, Ildar I; Skorinkin, Andrey I; Kotov, Nikolay V

    2015-05-01

    Human erythrocytes are highly specialized enucleate cells that are involved in providing efficient gas transport. Erythrocytes have been extensively studied both experimentally and by mathematical modeling in recent years. However, understanding of how aggregation and deformability are regulated is limited. These properties of the erythrocyte are essential for the physiological functioning of the cell. In this work, we propose a novel mathematical model of the molecular system that controls the aggregation and deformability of the erythrocyte. This model is based on the experimental results of previously published studies. Our model suggests fundamentally new mechanisms that regulate aggregation and deformability in a latch-like manner. The results of this work could be used as a general explanation of how the erythrocytes regulate their aggregation and deformability, and are essential in understanding erythrocyte disorders and aging.

  7. [Metabolism, Distribution and Excretion of Recombinant Human Thrombopoietin in Mice

    Science.gov (United States)

    Liu, Xiu-Wen; Tang, Zhong-Ming; Song, Hai-Feng; Dou, Gui-Fang

    2001-12-01

    The metabolism, distribution and excretion profiles of recombinant human thrombopoietin (rhTPO) in mice were studied by means of (125)I-labeled rhTPO ((125)I-rhTPO) combined with size exclusive high performance liquid chromatography (SHPLC) or trichloroacetic acid (TCA) precipitation analysis. (125)I-rhTPO was prepared by iodogen method. Purification was performed on Sephacryl S-200 HR gel. Radioactive-purity of (125)I-rhTPO identified by SHPLC was (96.9 +/- 1.5)% (n = 3). The proliferation effect of TPO dependent cell line (TD-3) and the increase of peripheral platelet counts in mouse by (125)I-rhTPO demonstrated that (125)I-labeled protein maintained the biological activities of TPO both in vitro and in vivo. SHPLC analysis of serum and urine samples taken after sc 1 micro g/mouse (345 kBq/mouse) of (125)I-rhTPO revealed that there were two lower molecular weight (125)I-degradation metabolites ((125)I-MI and (125)I-MII) other than parent molecule. (125)I-MI was mainly found in urine, and (125)I-MII was detected both in serum and in urine. The maximal concentration of (125)I-rhTPO was reached at 2 hours after injection. The terminal half-life was 10.8 hours, which was much longer than those of other peptides. TCA precipitable radioactivity in tissue showed that the radioactivity in bone marrow was rather high. The highest level was found in urinary system. Levels in adrenals, lymph nodes, and fat were near to that in serum. Lowest was found in brain. The main excretion route was urinary system and (98 +/- 5.6)% of (125)I-rhTPO was excreted within 72 hours after dosing.

  8. Identification and Quantification of Flavonoids from Two Southern Italian Cultivars of Allium cepa L., Tropea (Red Onion) and Montoro (Copper Onion), and Their Capacity to Protect Human Erythrocytes from Oxidative Stress.

    Science.gov (United States)

    Tedesco, Idolo; Carbone, Virginia; Spagnuolo, Carmela; Minasi, Paola; Russo, Gian Luigi

    2015-06-03

    Onions (Allium cepa) are consumed worldwide and represent an important source of dietary phytochemicals with proven antioxidant properties, such as phenolic acids, flavonoids, thiosulfinates, and anthocyanins. Epidemiological and experimental data suggest that regular consumption of onions is associated with a reduced risk of degenerative disorders. Therefore, it is of interest to investigate the biological properties of different varieties of onions. Here, we characterized for the first time a variety of onion, called Ramata di Montoro (coppery onion from Montoro), grown in a niche area in southern Italy, and compared its phenolic profile and antioxidant properties to a commercial ecotype of red onion, Tropea, also present in southern Italy. An analytical method based on high-performance liquid chromatography coupled with UV detection and mass spectrometry was used to separate and characterize the phenolic fraction (anthocyanins and flavonols) extracted from both coppery and red types. The main compounds detected in the two ecotypes were quercetin and quercetin glucosides, isorhamnetin glucosides, kaempferol glucoside, and, among anthocyanins, cyanidin glucosides. Tropea ecotype onion showed a higher content of flavonols (632.82 mg/kg fresh weight) than Montoro type onion (252.91 mg/kg fresh weight). Accordingly, the antioxidant activity of the former was 2.8-fold higher compared to the latter. More pronounced were the differences existing between the four anthocyanins detected in the two ecotypes, with those in the Tropea ecotype onion present at concentrations 20-230-fold higher than in the Montoro type onion. Both extracts reduced LDL oxidation about 6-fold and protected human erythrocytes from oxidative damage induced by HClO by about 40%. In addition, as a consequence of HClO treatment, glutathione concentration in erythrocytes was reduced about 50% and pretreatment with onion extracts induced a recovery of glutathione level by about 15-22%. Qualitative

  9. Metabolic activity, experiment M171. [space flight effects on human metabolism

    Science.gov (United States)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  10. Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases?

    Science.gov (United States)

    Pap, Attila; Cuaranta-Monroy, Ixchelt; Peloquin, Matthew; Nagy, Laszlo

    2016-01-01

    With the increasing number of patients affected with metabolic diseases such as type 2 diabetes, obesity, atherosclerosis and insulin resistance, academic researchers and pharmaceutical companies are eager to better understand metabolic syndrome and develop new drugs for its treatment. Many studies have focused on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which plays a crucial role in adipogenesis and lipid metabolism. These studies have been able to connect this transcription factor to several human metabolic diseases. Due to obvious limitations concerning experimentation in humans, animal models—mainly mouse models—have been generated to investigate the role of PPARγ in different tissues. This review focuses on the metabolic features of human and mouse PPARγ-related diseases and the utility of the mouse as a model. PMID:27483259

  11. Metabolic acceleration and the evolution of human brain size and life history.

    Science.gov (United States)

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.

  12. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, ...

  13. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  14. Aspergillus niger metabolism of citrus furanocoumarin inhibitors of human cytochrome P450 3A4

    Science.gov (United States)

    Fungi metabolize polycyclic aromatic hydrocarbons by a number of detoxification processes, including the formation of sulfated and glycosidated conjugates. A class of aromatic compounds important to the citrus industry is the furanocoumarins in grapefruit, and their metabolism in humans is critical...

  15. Equine metabolic myopathies with emphasis on the diagnostic approach - Comparison with human myopathies - A review

    NARCIS (Netherlands)

    Westermann, C. M.; Dorland, L.; Wijnberg, I. D.; van der Kolk, J. H.

    2007-01-01

    This review gives an overview of the presently known human and equine metabolic myopathies with emphasis on the diagnostic approach. Metabolic myopathies are muscle disorders caused by a biochemical defect of the skeletal muscle energy system, which results in inefficient muscle performance. Myopath

  16. Equine metabolic myopathies with emphasis on the diagnostic approach - Comparison with human myopathies - A review

    NARCIS (Netherlands)

    Westermann, C. M.; Dorland, L.; Wijnberg, I. D.; van der Kolk, J. H.

    2007-01-01

    This review gives an overview of the presently known human and equine metabolic myopathies with emphasis on the diagnostic approach. Metabolic myopathies are muscle disorders caused by a biochemical defect of the skeletal muscle energy system, which results in inefficient muscle performance. Myopath

  17. Metabolic effects of overnight continuous infusion of unacylated ghrelin in humans

    NARCIS (Netherlands)

    A. Benso; Y. St-Pierre (Yves); F. Prodam (Flavia); E. Gramaglia (Elena); R. Granata (Riccarda); A-J. van der Lely (Aart-Jan); E. Ghigo (Ezio); F. Broglio (Fabio)

    2012-01-01

    textabstractObjective: To clarify the metabolic effects of an overnight i.v. infusion of unacylated ghrelin (UAG) in humans. UAG exerts relevant metabolic actions, likely mediated by a still unknown ghrelin receptor subtype, including effects on β-cell viability and function, insulin secretion and s

  18. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    Science.gov (United States)

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  19. Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer

    DEFF Research Database (Denmark)

    Rask, Thomas Salhøj; Hansen, Daniel Aaen; Theander, Thor G.

    2010-01-01

    The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development...

  20. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea.

    NARCIS (Netherlands)

    Fowkes, F.J.; Michon, P.; Pilling, L.; Ripley, R.M.; Tavul, L.; Imrie, H.J.; Woods, C.M.; Mgone, C.S.; Luty, A.J.F.; Day, K.P.

    2008-01-01

    BACKGROUND: The protection afforded by human erythrocyte polymorphisms against the malaria parasite, Plasmodium falciparum, has been proposed to be due to reduced ability of the parasite to invade or develop in erythrocytes. If this were the case, variable levels of parasitaemia and rates of

  1. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria

    Institute of Scientific and Technical Information of China (English)

    Purnima Guda; Chittibabu Guda; Shankar Subramaniam

    2007-01-01

    We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.

  2. Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (Final Report, 2009)

    Science.gov (United States)

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...

  3. The potential role of inhibitor of differentiation-3 in human adipose tissue remodeling and metabolic health

    DEFF Research Database (Denmark)

    Svendstrup, Mathilde; Vestergaard, Henrik

    2014-01-01

    in the tissue. Regulation of angiogenesis in SAT and VAT in response to diet is therefore crucial for the metabolic outcome in obesity. Knowledge about the underlying genetic mechanisms determining metabolic health in obesity is very limited. We aimed to review the literature of the inhibitor of differentiation......-3 (ID3) gene in relation to adipose tissue and angiogenesis in humans in order to determine whether ID3 could be involved in the regulation of adipose tissue expansion and metabolic health in human obesity. We find evidence that ID3 is involved in regulatory mechanisms in adipose tissue...... literature suggest ID3 to play a potential role in the underlying regulatory mechanisms of metabolic health in human obesity. The literature is still sparse and further studies focusing on human ID3 in relation to the nature of obesity are warranted....

  4. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.

    Science.gov (United States)

    Aurich, Maike K; Thiele, Ines

    2016-01-01

    Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.

  5. Spectral Markers of Erythrocytes on Solid Substrate

    Science.gov (United States)

    Paiziev, Adkhamjon A.; Krakhmalev, V. A.

    Proposed in previous paper [1,2] the new nondestructive method of optical microscopy allows to examine the structures of living cells (human erythrocytes) in their natural colors without its staining by using a specially designed substrate for deposition of biological sample and observing a native blood smears in reflected light. Color interference contrast image is achieved due to special condition of experiment is connected with chose of angle of incidental light, wave length of light of reflected ray, chemical composition of sample, thickness of sample, refractive index of sample, refractive index of substrate, chemical composition of substrate [1,2]. We can identify chemical compounds of erythrocytes after calibration color scale by alternative methods. For comparison we used Synchrotron Radiation based Fourier Transformed Infrared (SR-FTIR) microspectroscopy. By focusing of infrared beam of FTIR microscope on cell surface we can screen and distinguish difference erythrocytes by its color. For example on Fig. 49.1 we can see two neighbored erythrocytes where one of them have red color (point 1) and other-green (point 5). To identify their spectral markers we measured IR absorption spectra of cells at different points (1,2,3,4 and 5). Intermediated area (points 3 and 4) correspond to substrate spectra (silicon substrate) and their spectra are same. The peaks at 2,850 and 2,920 cm-1 correspond mainly to the CH2 stretching modes of the methylene chains in membrane lipids. At 1,650 cm-1 the amide I band is observed, which results, principally, from the n(CO) stretching vibrations of the protein amide bonds; the amide II band, near 1,550 cm-1, is a combination of the d(N-H) bending and n(C-N) stretching vibrations of the amide bonds. The peaks at 2,850 and 2,920 cm-1 correspond mainly to the CH2 stretching modes of the methylene chains in membrane lipids [3. The intensities of the absorption bands at 2,920 and 2,850 cm-1 in green erythrocyte (point 5) were also

  6. Metabolism of puerarin and daidzin by human intestinal bacteria and their relation to in vitro cytotoxicity.

    Science.gov (United States)

    Kim, D H; Yu, K U; Bae, E A; Han, M J

    1998-06-01

    When puerarin or daidzin were incubated for 24 h with human intestinal bacteria, two metabolites, daidzein and calycosin, were produced from them, respectively. The metabolic time course of puerarin was as follows: at an early time, puerarin was converted to daidzin, and then calycosin. The metabolic time course of daidzin by human intestinal bacteria was also similar to that of puerarin. The in vitro cytotoxicities of these metabolites, calycosin and daidzein, were superior to those of puerarin and daidzein.

  7. Leg exoskeleton reduces the metabolic cost of human hopping.

    Science.gov (United States)

    Grabowski, Alena M; Herr, Hugh M

    2009-09-01

    During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.

  8. The implications of relationships between human diseases and metabolic subpathways.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the "k-clique" subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN. Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play

  9. Report: Human biochemical genetics: an insight into inborn errors of metabolism

    Institute of Scientific and Technical Information of China (English)

    YU Chunli; SCOTT C. Ronald

    2006-01-01

    Inborn errors of metabolism (IEM) include a broad spectrum of defects of various gene products that affect intermediary metabolism in the body. Studying the molecular and biochemical mechanisms of those inherited disorder, systematically summarizing the disease phenotype and natural history, providing diagnostic rationale and methodology and treatment strategy comprise the context of human biochemical genetics. This session focused on: (1) manifestations of representative metabolic disorders; (2) the emergent technology and application of newborn screening of metabolic disorders using tandem mass spectrometry; (3) principles of managing IEM; (4) the concept of carrier testing aiming prevention. Early detection of patients with IEM allows early intervention and more options for treatment.

  10. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  11. Erythrophagocytosis of Lead-Exposed Erythrocytes by Renal Tubular Cells: Possible Role in Lead-Induced Nephrotoxicity

    OpenAIRE

    Kwon, So-Youn; Bae, Ok-Nam; Noh, Ji-Yoon; Kim, Keunyoung; Kang, Seojin; Shin, Young-Jun; Lim, Kyung-Min; Chung, Jin-Ho

    2014-01-01

    Background: Nephrotoxicity associated with lead poisoning has been frequently reported in epidemiological studies, but the underlying mechanisms have not been fully described. Objectives: We examined the role of erythrocytes, one of the major lead reservoirs, in lead-associated nephrotoxicity. Methods and results: Co-incubation of lead-exposed human erythrocytes with HK-2 human renal proximal tubular cells resulted in renal tubular cytotoxicity, suggesting a role of erythrocytes in lead-induc...

  12. Metabolite profiling identifies pathways associated with metabolic risk in humans.

    Science.gov (United States)

    Cheng, Susan; Rhee, Eugene P; Larson, Martin G; Lewis, Gregory D; McCabe, Elizabeth L; Shen, Dongxiao; Palma, Melinda J; Roberts, Lee D; Dejam, Andre; Souza, Amanda L; Deik, Amy A; Magnusson, Martin; Fox, Caroline S; O'Donnell, Christopher J; Vasan, Ramachandran S; Melander, Olle; Clish, Clary B; Gerszten, Robert E; Wang, Thomas J

    2012-05-08

    Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood. To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmö Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease. We observed that metabolic risk factors (obesity, insulin resistance, high blood pressure, and dyslipidemia) were associated with multiple metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. We observed strong associations of insulin resistance traits with glutamine (standardized regression coefficients, -0.04 to -0.22 per 1-SD change in log-glutamine; Prisk of incident diabetes mellitus in FHS (odds ratio, 0.79; adjusted P=0.03) but not in MDC. In experimental models, administration of glutamine in mice led to both increased glucose tolerance (P=0.01) and decreased blood pressure (Pprofiling identified circulating metabolites not previously associated with metabolic traits. Experimentally interrogating one of these pathways demonstrated that excess glutamine relative to glutamate, resulting from exogenous administration, is associated with reduced metabolic risk in mice.

  13. Triggers, Inhibitors, Mechanisms, and Significance of Eryptosis: The Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2015-01-01

    Full Text Available Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16. Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson’s disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

  14. Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death.

    Science.gov (United States)

    Lang, Elisabeth; Lang, Florian

    2015-01-01

    Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.

  15. Treatment of human muscle cells with popular dietary supplements increase mitochondrial function and metabolic rate

    Directory of Open Access Journals (Sweden)

    Vaughan Roger A

    2012-11-01

    Full Text Available Abstract Background Obesity is a common pathology with increasing incidence, and is associated with increased mortality and healthcare costs. Several treatment options for obesity are currently available ranging from behavioral modifications to pharmaceutical agents. Many popular dietary supplements claim to enhance weight loss by acting as metabolic stimulators, however direct tests of their effect on metabolism have not been performed. Purpose This work identified the effects popular dietary supplements on metabolic rate and mitochondrial biosynthesis in human skeletal muscle cells. Methods Human rhabdomyosarcoma cells were treated with popular dietary supplements at varied doses for 24 hours. Peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α, an important stimulator of mitochondrial biosynthesis, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Mitochondrial content was measured using flow cytometry confirmed with confocal microscopy. Glycolytic metabolism was quantified by measuring extracellular acidification rate (ECAR and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR. Total relative metabolism was quantified using WST-1 end point assay. Results Treatment of human rhabdomyosarcoma cells with dietary supplements OxyElite Pro (OEP or Cellucore HD (CHD induced PGC-1α leading to significantly increased mitochondrial content. Glycolytic and oxidative capacities were also significantly increased following treatment with OEP or CHD. Conclusion This is the first work to identify metabolic adaptations in muscle cells following treatment with popular dietary supplements including enhanced mitochondrial biosynthesis, and glycolytic, oxidative and total metabolism.

  16. Laser light induced modulations in metabolic activities in human brain cancer

    Science.gov (United States)

    Tata, Darrell B.; Waynant, Ronald W.

    2008-03-01

    The role of low visible or near infra-red laser intensity in suppressing metabolic activity of malignant human brain cancer (glioblastoma) cells was investigated through the application of either a continuous wave 633nm HeNe or a pulsed picosecond 1,552nm wavelength laser. Human glioblastomas were exposed in their growth culture medium with serum for several energy doses. For both types of laser exposures the glioblastomas exhibited a maximal decline in the metabolic activity relative to their respective sham control counterparts at 10 J/cm2. The cellular metabolic activities for various treatment doses were measured through the colorimetric MTS metabolic assay after the laser exposure. Interestingly, addition of (the enzyme) catalase in the growth medium prior to the laser exposure was found to diminish the laser induced metabolic suppression for all fluence treatment conditions, thus suggesting a functional role of H IIO II in the metabolic suppression. Taken together, our findings reveal that visible or near infra-red low level light exposures could potentially be a viable tool in reducing the metabolic activity of cancers; evidence at hand implicates a role of light induced H IIO II in bringing about in part, suppression in the metabolic activity. Due to the cellular "biphasic" response to the laser exposure, further research needs to be undertaken to determine exposure parameters which would optimize metabolic and cellular growth suppression in-vivo.

  17. In vitro Metabolism of Strychnine by Human Cytochrome P450 and Its Interaction with Glycyrrhetic Acid

    Institute of Scientific and Technical Information of China (English)

    LIU Li; XIAO Juan; PENG Zhi-hong; WU Wen-hua; DU Peng; CHEN Yong

    2012-01-01

    Objective To investigate the metabolism of strychnine (STN) and the metabolic interaction between STN and glycyrthetic acid (GA) in vitro.Methods Human liver microsomes (HLM) and human recombinant cytochrome P450 (CYP) isoforms were employed to study the metabolism of STN and the metabolic interaction of STN with GA in vitro.Results In HLM,the Km,Vmax,and clearance of STN were 88.50 μmol/L,0.88 nmol/(mg·min),and 9.93 mL/(mg·min),respectively.STN was metabolized mainly by CYP3A4.However,STN noncompetitively inhibited CYP3A4-catalyzed testosterone 6β-hydroxylation with IC50 value of 5.9 μtmol/L and Ki value of 5.5μmol/L.Moreover,GA competitively inhibited STN metabolism with IC5o value of 10.6 μmol/L and Ki value of 17.7 μmol/L.Conclusion Although STN is mainly metabolized by CYP3A4 in vitro,STN has noncompetitive inhibition on CYP3A4-catalyzed testosterone 6β-hydroxylation.Moreover,GA could competitively inhibit STN metabolism.The present work is helpful to elucidate the metabolic interaction between STN and GA.

  18. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery☆

    Science.gov (United States)

    Kell, Douglas B.; Goodacre, Royston

    2014-01-01

    Metabolism represents the ‘sharp end’ of systems biology, because changes in metabolite concentrations are necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs. To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of the human metabolic network that include the important transporters. Small molecule ‘drug’ transporters are in fact metabolite transporters, because drugs bear structural similarities to metabolites known from the network reconstructions and from measurements of the metabolome. Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia: (i) the effects of inborn errors of metabolism; (ii) which metabolites are exometabolites, and (iii) how metabolism varies between tissues and cellular compartments. However, even these qualitative network models are not yet complete. As our understanding improves so do we recognise more clearly the need for a systems (poly)pharmacology. PMID:23892182

  19. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    Science.gov (United States)

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

  20. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Yoichi Shimoda

    2012-01-01

    Full Text Available Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

  1. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Nehlin, Jan O; Just, Marlene; Rustan, Arild C

    2011-01-01

    that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength.......Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways...

  2. Selenium fortification of an Italian rice cultivar via foliar fertilization with sodium selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity.

    Science.gov (United States)

    Giacosa, Attilio; Faliva, Milena Anna; Perna, Simone; Minoia, Claudio; Ronchi, Anna; Rondanelli, Mariangela

    2014-03-24

    Selenium food fortification could be a cost-effective strategy to counteract the inadequacy of selenium intake among the Italian population. In this study, the effect of foliar fertilization with sodium selenate of an Italian rice cultivar and the increase of serum selenium and of erythrocyte glutathione peroxidase (GPx) activity after intake of fortified rice, have been evaluated. The effect of foliar fertilization with sodium selenate (50 g Se/ha) vs. water was studied. Moreover, in a randomized, double-blind study, 10 healthy women supplemented their usual diet with a daily dose of 80 g of Se-enriched-rice and 10 matched-women with 80 g of regular rice. Before, after 5 and 20 days of supplementation, serum Se and GPx-activity were evaluated. The mean selenium content in Se-enriched-rice was 1.64 ± 0.28 μg/g, while in regular rice it was 0.36 ± 0.15 μg/g (p foliar fertilization with sodium selenate and that the 20 days intake of this Se-enriched-rice increases the serum selenium levels and GPx-activity.

  3. Cerebral blood flow and oxidative metabolism during human endotoxemia

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Qvist, Jesper;

    2002-01-01

    The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), has been suggested to mediate septic encephalopathy through an effect on cerebral blood flow (CBF) and metabolism. The effect of an intravenous bolus of endotoxin on global CBF, metabolism, and net flux of cytokines...... and catecholamines was investigated in eight healthy young volunteers. Cerebral blood flow was measured by the Kety-Schmidt technique at baseline (during normocapnia and voluntary hyperventilation for calculation of subject-specific cerebrovascular CO reactivity), and 90 minutes after an intravenous bolus...

  4. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    Science.gov (United States)

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  5. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins

    DEFF Research Database (Denmark)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas;

    2016-01-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins...... produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address...... native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better...

  6. Disorders of the erythrocyte membrane

    Directory of Open Access Journals (Sweden)

    Sophia Delicou

    2015-12-01

    Full Text Available Hemolytic anemia due to abnormalities of the erythrocyte membrane comprises an important group of inherited disorders. These include hereditary spherocytosis, hereditary elliptocytosis, hereditary pyropoikilocytosis, and the hereditary stomatocytosis syndromes. The erythrocyte membrane skeleton composed of spectrin, actin, and several other proteins is essential for the maintenance of the erythrocyte shape, reversible deformability, and membrane structural integrity in addition to controlling the lateral mobility of integral membrane proteins. These disorders are characterized by clinical and laboratory heterogeneity and, as evidenced by recent molecular studies, by genetic heterogeneity. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Treatment with splenectomy is curative in most patients.

  7. The human hepatocyte cell lines IHH and HepaRG : models to study glucose, lipid and lipoprotein metabolism

    NARCIS (Netherlands)

    Samanez, Carolina Huaman; Caron, Sandrine; Briand, Olivier; Dehondt, Helene; Duplan, Isabelle; Kuipers, Folkert; Hennuyer, Nathalie; Clavey, Veronique; Staels, Bart

    2012-01-01

    Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological sti

  8. The human hepatocyte cell lines IHH and HepaRG : models to study glucose, lipid and lipoprotein metabolism

    NARCIS (Netherlands)

    Samanez, Carolina Huaman; Caron, Sandrine; Briand, Olivier; Dehondt, Helene; Duplan, Isabelle; Kuipers, Folkert; Hennuyer, Nathalie; Clavey, Veronique; Staels, Bart

    Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological

  9. CYP3A4 mediated in vitro metabolism of vinflunine in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping ZHAO; Jiao ZHONG; Xiao-quan LIU; Guang-ji WANG

    2007-01-01

    Aim: To study the metabolism of vinflunine and the effects of selective cyto-chrome P-450 (CYP450) inhibitors on the metabolism of vinflunine in human liver microsomes. Methods: Individual selective CYP450 inhibitors were used to inves-tigate their effects on the metabolism of vinflunine and the principal CYP450 isoform involved in the formation of metabolites M1 and M2 in human liver microsomes.Results: Vinflunine was rapidly metabolized to 2 metabolites: M1 and M2 in human liver microsomes. M1 and M2 were tentatively presumed to be the N-oxide metabo-lite or hydroxylated metabolite and epoxide metabolite of vinflunine, respectively. Ketoconazole uncompetitively inhibited the formation of M1, and competitively inhibited the formation of M2, while α-naphthoflavone, sulfaphenazole, diethyl dithiocarbamate, tranylcypromine and quinidine had little or no inhibitory effect on the formation of M1 and M2. Conclusion: Vinflunine is rapidly metabolized in human liver microsomes, and CYP3A4 is the major human CYP450 involved in the metabolism of vinflunine.

  10. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  11. Rapid and highly sensitive detection of malaria-infected erythrocytes using a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shouki Yatsushiro

    Full Text Available BACKGROUND: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. METHODS AND FINDINGS: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. CONCLUSION: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10-100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes.

  12. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    Science.gov (United States)

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-02-24

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U-(13)C]glucose, [U-(13)C]glutamate or [U-(13)C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF(e)96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U-(13)C]Glutamate and [U-(13)C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U-(13)C]glutamate was higher than that from [U-(13)C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  13. Extraction of DNA from malaria-infected erythrocytes using isotachophoresis.

    Science.gov (United States)

    Marshall, Lewis A; Han, Crystal M; Santiago, Juan G

    2011-12-15

    We demonstrate a technique for purification of nucleic acids from malaria parasites infecting human erythrocytes using isotachophoresis (ITP). We release nucleic acids from malaria-infected erythrocytes by lysing with heat and proteinase K for 10 min and immediately, thereafter, load sample onto a capillary device. We study the effect of temperature on lysis efficiency. We also implement pressure-driven counterflow during ITP extraction to extend focusing time and increase nucleic acid yield. We show that the purified genomic DNA samples are compatible with polymerase chain reaction (PCR) and demonstrate a clinically relevant limit of detection of 0.5 parasites per nanoliter using quantitative PCR.

  14. Erythrocyte-derived optical nano-vesicles as theranostic agents

    Science.gov (United States)

    Mac, Jenny T.; Nunez, Vicente; Bahmani, Baharak; Guerrero, Yadir; Tang, Jack; Vullev, Valentine I.; Anvari, Bahman

    2015-07-01

    We have engineered nano-vesicles, derived from erythrocytes, which can be doped with various near infrared (NIR) organic chromophores, including the FDA-approved indocyanine green (ICG). We refer to these vesicles as NIR erythrocyte-mimicking transducers (NETS) since in response to NIR photo-excitation they can generate heat or emit fluorescent light. Using biochemical methods based on reduction amination, we have functionalized the surface of NET with antibodies to target specific biomolecules. We present results that demonstrate the effectiveness of NETs in targeted imaging of cancer cells that over-express the human epidermal growth factor receptor-2 (HER2).

  15. Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2.

    Science.gov (United States)

    Stacey, Melissa M; Peskin, Alexander V; Vissers, Margreet C; Winterbourn, Christine C

    2009-11-15

    Peroxiredoxin 2 (Prx2) is an abundant thiol protein that is readily oxidized in erythrocytes exposed to hydrogen peroxide. We investigated its reactivity in human erythrocytes with hypochlorous acid (HOCl) and chloramines, relevant oxidants in inflammation. Prx2 was oxidized to a disulfide-linked dimer by HOCl, glycine chloramine (GlyCl), and monochloramine (NH(2)Cl) in a dose-dependent manner. In the absence of added glucose, Prx2 and GSH showed similar sensitivities. Second-order rate constants for the reactions of Prx2 with NH(2)Cl and GlyCl were 1.5 x 10(4) and 8 M(-1) s(-1), respectively. The NH(2)Cl value is approximately 10 times higher than that for GSH, whereas Prx2 is approximately 30 times less sensitive than GSH to GlyCl. Thus, the relative sensitivity of Prx2 to GlyCl is greater in the erythrocyte. Oxidation of erythrocyte Prx2 and GSH was less in the presence of glucose, probably because of recycling. High doses of NH(2)Cl resulted in incomplete regeneration of reduced Prx2, suggesting impairment of the recycling mechanism. Our results show that, although HOCl and chloramines are less selective than H(2)O(2), they nevertheless oxidize Prx2. Exposure to these inflammatory oxidants will result in Prx2 oxidation and could compromise the erythrocyte's ability to resist damaging oxidative insult.

  16. Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

    Science.gov (United States)

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-01-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model. PMID:25134535

  17. Erythrocyte Osmotic Fragility and Excitability Score in Rabbit fed ...

    African Journals Online (AJOL)

    olayemitoyin

    protect cells against oxidative stress in rats (Wang et al., 2000) and ... building for easy and effective cross-ventilation, and the cages were ... Graded level of Hibiscus sabdariffa alters erythrocyte membrane stability in rabbit. 114 ..... Haematological and serum biochemical response ... Vitamin C in human health and disease ...

  18. A EPC Approach to the Residual Water in Erythrocytes

    Institute of Scientific and Technical Information of China (English)

    ZHAOGang; GUOXiao-jie; HELi-qun; LIUZhong; GAODa-yong

    2004-01-01

    A novel approach has been developed to determine the amount of residual water in human erythrocyte at room temperature by electronic particle counter. Nacl solutions of 13 osmolalities were prepared and the equilibrium cell volumes in which were measured one by one. The isotonic volume, Vo, was obtained under the isotonic condition. The mean RBC volumes of 5 donors at each osmolality were fitted according to Boyle van't Hoff relationship, and the osmotically inactive volume, Vb, of erythrocyte was then determined. The results show that Vb=50% Vo. More importantly, the final cell volume with regard to the solution of the highest concentration found to be kept at about 0. 5 V0. The difference between these two volumes is unconspicuous. According to the published data that non-water volume of human erythrocyte is about 28.3% of its isotonic volume, residual water of human erythrocyte can be gained by subtracting Vdry from Vf, that is Vrw----21.7% Vo Then it was concluded that the residual water of human lays in 2 states, one is bound water, and the other is free water.

  19. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  20. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  1. The metabolic cost of human running: is swinging the arms worth it?

    Science.gov (United States)

    Arellano, Christopher J; Kram, Rodger

    2014-07-15

    Although the mechanical function is quite clear, there is no consensus regarding the metabolic benefit of arm swing during human running. We compared the metabolic cost of running using normal arm swing with the metabolic cost of running while restricting the arms in three different ways: (1) holding the hands with the arms behind the back in a relaxed position (BACK), (2) holding the arms across the chest (CHEST) and (3) holding the hands on top of the head (HEAD). We hypothesized that running without arm swing would demand a greater metabolic cost than running with arm swing. Indeed, when compared with running using normal arm swing, we found that net metabolic power demand was 3, 9 and 13% greater for the BACK, CHEST and HEAD conditions, respectively (all Prunning without arm swing, subjects significantly increased the peak-to-peak amplitudes of both shoulder and pelvis rotation about the vertical axis, most likely a compensatory strategy to counterbalance the rotational angular momentum of the swinging legs. In conclusion, our findings support our general hypothesis that swinging the arms reduces the metabolic cost of human running. Our findings also demonstrate that arm swing minimizes torso rotation. We infer that actively swinging the arms provides both metabolic and biomechanical benefits during human running.

  2. Structure-Induced Dynamics of Erythrocyte Aggregates by Microscale Simulation

    Directory of Open Access Journals (Sweden)

    Tong Wang

    2013-01-01

    modeling. The technique of immersed boundary-fictitious domain method has been applied to the study of erythrocyte aggregates traversing modeled stenotic microchannels. The effects of stenosis geometry, cell membrane stiffness, and intercellular interaction strength on aggregate hemodynamics including transit velocity are studied. It is found that the width of the stenosis throat and shape of stenosis have a significant influence on the dissociation of the aggregates. Moreover, horizontally orientated erythrocyte aggregates are observed to dissociate much easier than their vertical counterparts under the same simulation conditions. Results from this study contribute to the fundamental understanding and knowledge on the biophysical characteristics of erythrocyte aggregates in microscopic blood flow, which will provide pathological insights into some human diseases, such as malaria.

  3. Structural optimization of quinolon-4(1H)-imines as dual-stage antimalarials: toward increased potency and metabolic stability.

    Science.gov (United States)

    Ressurreição, Ana S; Gonçalves, Daniel; Sitoe, Ana R; Albuquerque, Inês S; Gut, Jiri; Góis, Ana; Gonçalves, Lídia M; Bronze, Maria R; Hanscheid, Thomas; Biagini, Giancarlo A; Rosenthal, Philip J; Prudêncio, Miguel; O'Neill, Paul; Mota, Maria M; Lopes, Francisca; Moreira, Rui

    2013-10-10

    Discovery of novel effective and safe antimalarials has been traditionally focused on targeting erythrocytic parasite stages that cause clinical symptoms. However, elimination of malaria parasites from the human population will be facilitated by intervention at different life-cycle stages of the parasite, including the obligatory developmental phase in the liver, which precedes the erythrocytic stage. We have previously reported that N-Mannich-based quinolon-4(1H)-imines are potent antiplasmodial agents but present several stability liabilities. We now report our efforts to optimize quinolon-4(1H)-imines as dual-stage antiplasmodial agents endowed with chemical and metabolic stability. We report compounds active against both the erythrocytic and exoerythrocytic forms of malaria parasites, such as the quinolon-4(1H)-imine 5p (IC50 values of 54 and 710 nM against the erythrocytic and exoerythrocytic forms), which constitute excellent starting points for further lead optimization as dual-stage antimalarials.

  4. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals.

    Directory of Open Access Journals (Sweden)

    Anja Böhm

    Full Text Available Among obese subjects, metabolically healthy and unhealthy obesity (MHO/MUHO can be differentiated: the latter is characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Aim of this study was, to identify adipocyte-specific metabolic signatures and functional biomarkers for MHO versus MUHO.10 insulin-resist