WorldWideScience

Sample records for human erythrocyte acetylcholinesterase

  1. Selective radiolabeling and isolation of the hydrophobic membrane-binding domain of human erythrocyte acetylcholinesterase

    International Nuclear Information System (INIS)

    Roberts, W.L.; Rosenberry, T.L.

    1986-01-01

    The hydrophobic, membrane-binding domain of purified human erythrocyte acetylcholinesterase was labeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[ 125 I]iodophenyl)diazirine. The radiolabel was incorporated when the enzyme was prepared in detergent-free aggregates, in detergent micelles, or in phospholipid liposomes, but the highest percentage of labeling occurred in the detergent-free aggregates. Papain digestion of the enzyme released the hydrophobic domain, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate or gel exclusion chromatography demonstrated that the label was localized exclusively in the cleaved hydrophobic domain fragment. This fragment was purified in a three-step procedure. Digestion was conducted with papain attached to Sepharose CL-4B, and the supernatant was adsorbed to acridinium affinity resin to remove the hydrophilic enzyme fragment. The nonretained fragment associated with Triton X-100 micelles was then chromatographed on Sepharose CL-6B, and finally detergent was removed by chromatography on Sephadex LH-60 in an ethanol-formic acid solvent. The fragment exhibited an apparent molecular weight of 3100 on the Sephadex LH-60 column when compared with peptide standards. However, amino acid analysis of the purified fragment revealed only 1 mol each of histidine and glycine per mole of fragment in contrast to the 25-30 mole of amino acids expected on the basis of the molecular weight estimate. This result suggests a novel non-amino acid structure for the hydrophobic domain of human erythrocyte acetylcholinesterase

  2. Pre- and post-treatment effect of physostigmine on soman-inhibited human erythrocyte and muscle acetylcholinesterase in vitro

    International Nuclear Information System (INIS)

    Herkert, N.M.; Schulz, S.; Wille, T.; Thiermann, H.; Hatz, R.A.; Worek, F.

    2011-01-01

    Standard treatment of organophosphorus (OP) poisoning includes administration of an antimuscarinic (e.g., atropine) and of an oxime-based reactivator. However, successful oxime treatment in soman poisoning is limited due to rapid aging of phosphylated acetylcholinesterase (AChE). Hence, the inability of standard treatment procedures to counteract the effects of soman poisoning resulted in the search for alternative strategies. Recently, results of an in vivo guinea pig study indicated a therapeutic effect of physostigmine given after soman. The present study was performed to investigate a possible pre- and post-treatment effect of physostigmine on soman-inhibited human AChE given at different time intervals before or after perfusion with soman by using a well-established dynamically working in vitro model for real-time analysis of erythrocyte and muscle AChE. The major findings were that prophylactic physostigmine prevented complete inhibition of AChE by soman and resulted in partial spontaneous recovery of the enzyme by decarbamylation. Physostigmine given as post-treatment resulted in a time-dependent reduction of the protection from soman inhibition and recovery of AChE. Hence, these date indicate that physostigmine given after soman does not protect AChE from irreversible inhibition by the OP and that the observed therapeutic effect of physostigmine in nerve agent poisoning in vivo is probably due to other factors.

  3. [Ceruloplasmin receptor on human erythrocytes].

    Science.gov (United States)

    Saenko, E L; Basevich, V V; Iaropolov, A I

    1988-08-01

    The structural fragments of the human ceruloplasmin (CP) molecule and of erythrocyte receptors which provide for the specific interaction of CP with erythrocytes were identified, and their properties were investigated. The interaction of CP with erythrocytes, both intact and treated with neuroaminidase and proteolytic enzymes (trypsin, chymotrypsin, papaine, pronase E) is described. Experiments with CP reception were performed at 4 degrees C, using [125I]CP and [125I]asialo-CP. The parameters of binding were determined in Scatchard plots. It was demonstrated that the specific binding of CP to erythrocyte receptors is determined by its interaction with two structural sites of the carbohydrate moiety of the CP molecule, i.e., the terminal residues of sialic acids and a site, (formula; see text) located at a large distance from the chain terminus.

  4. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.

    Science.gov (United States)

    Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz

    2009-04-28

    Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE.

  5. Induction of transient radioresistance in human erythrocytes

    International Nuclear Information System (INIS)

    Krokosz, Anita; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%), were irradiated with γ-rays with single and split doses under air or N 2 O in order to determine the physicochemical changes caused by the dose inducing an increase in resistance to radiation-induced hemolysis. The obtained results showed that under the applied irradiation conditions, the dose of 0.4 kGy induced changes in erythrocytes, which were responsible for temporary resistance of erythrocytes to hemolysis. We concluded that the observed resistance is caused mainly by the structural changes in proteins

  6. Clofazimine Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Arbace Officioso

    2015-08-01

    Full Text Available Background/Aims: The antimycobacterial riminophenazine clofazimine has previously been shown to up-regulate cellular phospholipase A2 and to induce apoptosis. In erythrocytes phospholipase A2 stimulates eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Phospholipase A2 is in part effective by fostering formation of prostaglandin E2, which triggers Ca2+ entry. Stimulators of Ca2+ entry and eryptosis further include oxidative stress and energy depletion. The present study tested, whether and how clofazimine induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, cytosolic Ca2+ activity ([Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS from 2′, 7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, and cytosolic ATP level utilizing a luciferin-luciferase assay kit. Results: A 24-48 hours exposure of human erythrocytes to clofazimine (≥1.5 µg/ml significantly increased the percentage of annexin-V-binding cells without appreciably modifying forward scatter. Clofazimine significantly increased [Ca2+]i, significantly decreased cytosolic ATP, but did not significantly modify ROS. The effect of clofazimine on annexin-V-binding was significantly blunted, but not fully abolished by removal of extracellular Ca2+, and by phospholipase A2 inhibitor quinacrine (25 µM. Clofazimine further augmented the effect of Ca2+ ionophore ionomycin (0.1 µM on eryptosis. The clofazimine induced annexin-V-binding was, however, completely abrogated by combined Ca2+ removal and addition of quinacrine. Conclusion: Clofazimine stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on entry of extracellular Ca2+, paralleled by cellular energy depletion and sensitive to

  7. Fucoxanthin Induced Suicidal Death of Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Marilena Briglia

    2015-12-01

    Full Text Available Background/Aims: Fucoxanthin, a carotenoid isolated from brown seaweeds, induces suicidal death or apoptosis of tumor cells and is thus considered for the treatment or prevention of malignancy. In analogy to apoptosis of nucleated cell, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and activation of p38 kinase or protein kinase C. The present study explored, whether and how fucoxanthin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS from DCFDA dependent fluorescence and lipid peroxidation using BODIPY fluoresence. Results: A 48 hours exposure of human erythrocytes to fucoxanthin significantly increased the percentage of annexin-V-binding cells (≥ 50 µM, significantly decreased average forward scatter (≥ 25 µM, significantly increased hemolysis (≥ 25 µM, significantly increased Fluo3-fluorescence (≥ 50 µM, significantly increased lipid peroxidation, but did not significantly modify DCFDA fluorescence. The effect of fucoxanthin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+, and was insensitive to p38 kinase inhibitor skepinone (2 µM and to protein kinase C inhibitor calphostin (100 nM. Conclusion: Fucoxanthin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.

  8. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterase may be a first line of defense against poisons that are eaten or inhaled.

  9. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    International Nuclear Information System (INIS)

    Atsmon, Jacob; Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari; Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y.; Bartfeld, Daniel; Shulman, Avidor; Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit; Soreq, Hermona; Shaaltiel, Yoseph

    2015-01-01

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD 50 and 1.5 × LD 50 of toxin and 10 min after exposure to 1.5 × LD 50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t ½ ) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t ½ in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study exhibited its safety

  10. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    Energy Technology Data Exchange (ETDEWEB)

    Atsmon, Jacob [Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University (Israel); Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y. [Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University (Israel); Bartfeld, Daniel [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Shulman, Avidor, E-mail: avidors@protalix.com [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Soreq, Hermona [Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem (Israel); Shaaltiel, Yoseph [Protalix Biotherapeutics, Science Park, Carmiel (Israel)

    2015-09-15

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study

  11. Erythrocyte metallothionein as an index of zinc status in humans

    International Nuclear Information System (INIS)

    Grider, A.; Bailey, L.B.; Cousins, R.J.

    1990-01-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced ∼7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat [ 35 S]metallothionein with human erythrocyte lysate showed a time-dependent increase in 35 S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans

  12. Spin labelling of human erythrocytes with nitroxide radicals

    International Nuclear Information System (INIS)

    Chagalj, C.; DePaoli, T.C.P.; Hager, A.A.; Palaoro, L.A.; Rubin de Celis, E.; Farach, H.A.; Poole, C.P. jr

    1984-01-01

    Human erythrocytes were labelled with nitroxide, the spin label SYNVAR 101, under various experimantal conditions. A study was made of the influence of antireductants on the labelling efficiency and the kinetics of the radical decay during the labelling process

  13. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  14. Human erythrocytes inhibit complement-mediated solubilization of immune complexes by human serum

    International Nuclear Information System (INIS)

    Dorval, B.L.

    1987-01-01

    The aim of this study was to develop an autologus human system to evaluate the effects of human erythrocytes on solubilization of immune complex precipitates (IC) by human serum. Incubation of IC with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed erythrocytes were added to human serum or guinea pig serum binding of IC to the erythrocyte occurred and IC solubilization was inhibited significantly (p <.025). Sheep erythrocytes did not bind IC or inhibit IC solubilization. To evaluate the role of human erythrocyte complement receptor (CR1) on these findings, human erythrocytes were treated with trypsin or anti-CR1 antibodies. Both treatments abrogated IC binding to human erythrocytes but did not affect the ability of the human erythrocyte to inhibit IC solubilization. Radioimmunoassay was used to measure C3, C4 and C5 activation in human serum after incubation with IC, human erythrocytes, human erythrocytes plus IC, whole blood or in whole blood plus IC

  15. Specific binding of beta-endorphin to normal human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chenet, B.; Hollis, V. Jr.; Kang, Y.; Simpkins, C.

    1986-03-05

    Beta-endorphin (BE) exhibits peripheral functions which may not be mediated by interactions with receptors in the brain. Recent studies have demonstrated binding of BE to both opioid and non-opioid receptors on lymphocytes and monocytes. Abood has reported specific binding of /sup 3/H-dihydromorphine in erythrocytes. Using 5 x 10/sup -11/M /sup 125/I-beta-endorphin and 10/sup -5/M unlabeled BE, they have detected 50% specific binding to human erythrocytes. This finding is supported by results from immunoelectron microscopy using rabbit anti-BE antibody and biotinylated secondary antibody with avidin-biotin complexes horseradish peroxidase. Binding is clearly observed and is confined to only one side of the cells. Conclusions: (1) BE binding to human erythrocytes was demonstrated by radioreceptor assay and immunoelectron microscopy, and (2) BE binding sites exist on only one side of the cells.

  16. Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase.

    Science.gov (United States)

    Worek, Franz; Aurbek, Nadine; Wille, Timo; Eyer, Peter; Thiermann, Horst

    2011-01-15

    Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.

    Science.gov (United States)

    Haggarty, N W; Dunbar, B; Fothergill, L A

    1983-01-01

    The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important for the activity of the glycolytic mutase are conserved in the erythrocyte diphosphoglycerate mutase. PMID:6313356

  18. Determination of somatic mutations in human erythrocytes by cytometry

    International Nuclear Information System (INIS)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-01-01

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab

  19. Determination of somatic mutations in human erythrocytes by cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  20. NMR studies of transmembrane electron transport in human erythrocytes

    International Nuclear Information System (INIS)

    Kennett, E.C.; Bubb, W.A.; Kuchel, P.W.

    2002-01-01

    Full text: Electron transport systems exist in the plasma membranes of all cells. These systems appear to play a role in cell growth and proliferation, intracellular signalling, hormone responses, apoptotic events, cell defence and perhaps most importantly they enable the cell to respond to changes in the redox state of both the intra- and extracellular environments. Previously, 13 C NMR has been used to study transmembrane electron transport in human erythrocytes, specifically the reduction of extracellular 13 C-ferricyanide. NMR is a particularly useful tool for studying such systems as changes in the metabolic state of the cell can be observed concomitantly with extracellular reductase activity. We investigated the oxidation of extracellular NADH by human erythrocytes using 1 H and 31 P NMR spectroscopy. Recent results for glucose-starved human erythrocytes indicate that, under these conditions, extracellular NADH can be oxidised at the plasma membrane with the electron transfer across the membrane resulting in reduction of intracellular NAD + . The activity is inhibited by known trans-plasma membrane electron transport inhibitors (capsaicin and atebrin) and is unaffected by inhibition of the erythrocyte Band 3 anion transporter. These results suggest that electron import from extracellular NADH allows the cell to re-establish a reducing environment after the normal redox balance is disturbed

  1. Metallic mercury uptake by catalase Part 1 In Vitro metallic mercury uptake by various kind of animals' erythrocytes and purified human erythrocyte catalase

    OpenAIRE

    劒持,堅志

    1980-01-01

    The uptake of metallic mercury was studied using erythrocytes with different catalase activities taken from various kind of animals. The results were: 1) The uptake of metallic mercury by erythrocytes paralleled the activity of catalase in the erythrocytes with and without hydrogen peroxide, suggesting that the erythrocyte catalase activity is related to the uptake of metallic mercury. 2) The uptake of metallic mercury occurred not only with purified human erythrocyte catalase but also with h...

  2. The role of inorganic phosphate in intact human erythrocytes

    International Nuclear Information System (INIS)

    Nishiguchi, Eiko; Umeda, Masahiro.

    1988-01-01

    The role of inorganic phosphate in intact human erythrocytes was investigated by phosphorus-31 nuclear magnetic resonance ( 31 P NMR). When erythrocytes stored for 5 weeks were incubated at 37 deg C, pH 7.4, in medium containing 2 mM adenine and 10 mM inosine, with or without 5 mM glucose, a substance of around 4 ppm, as assessed by 31 P NMR chemical shift, was detected in the mixture. However, this substance disappeared by the addition of inorganic phosphate. When erythrocytes stored for 4 weeks in acid citrate dextrose (ACD) solution were incubated with 2 mM adenine, 10 mM inosine, 5 mM glucose, 50 mM inorganic phosphate and 10 mM pyruvate at 37 deg C, pH 7.4, the 2,3-DPG level increased gradually, whereas the ATP level initially increased and then decreased. Intracellular inorganic phosphate appeared to be used for the synthesis of ATP and 2,3-DPG during the first 30 min. of the reaction. These results suggests that the inorganic phosphate accelerates glycolysis by increasing the activity of glycolytic enzymes rather than its direct involvement in synthesizing organic phosphorus compounds in stored erythrocytes. The results also suggests that the reserve energy from ATP synthesis is not sufficient for the synthesis of 2,3-DPG. (author)

  3. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  4. Oxidative stress and damage to erythrocytes in patients with chronic obstructive pulmonary disease--changes in ATPase and acetylcholinesterase activity.

    Science.gov (United States)

    Bukowska, Bożena; Sicińska, Paulina; Pająk, Aneta; Koceva-Chyla, Aneta; Pietras, Tadeusz; Pszczółkowska, Anna; Górski, Paweł; Koter-Michalak, Maria

    2015-12-01

    The study indicates, for the first time, the changes in both ATPase and AChE activities in the membrane of red blood cells of patients diagnosed with COPD. Chronic obstructive pulmonary disease (COPD) is one of the most common and severe lung disorders. We examined the impact of COPD on redox balance and properties of the membrane of red blood cells. The study involved 30 patients with COPD and 18 healthy subjects. An increase in lipid peroxidation products and a decrease in the content of -SH groups in the membrane of red blood cells in patients with COPD were observed. Moreover, an increase in the activity of glutathione peroxidase and a decrease in superoxide dismutase, but not in catalase activity, were found as well. Significant changes in activities of erythrocyte membrane enzymes in COPD patients were also evident demonstrated by a considerably lowered ATPase activity and elevated AChE activity. Changes in the structure and function of red blood cells observed in COPD patients, together with changes in the activity of the key membrane enzymes (ATPases and AChE), can result from the imbalance of redox status of these cells due to extensive oxidative stress induced by COPD disease.

  5. Purification and properties of enolase of human erythrocytes

    NARCIS (Netherlands)

    Hoorn, R.K.J.; Flikweert, J.P.; Staal, Gerard E.J.

    1974-01-01

    1. 1. Human erythrocyte enolase (2-phospho-D-glycerate hydrolyase, EC 4.2.1.11) was purified I000-fold. 2. 2. The pH-optimum was at pH 6.5. The molecular weight, estimated by gel filtration, was found to be 95,000 ± 5,000. 3. 3. Electrophoresis on agar-agarose at pH 8.5 and 6.4 showed only one

  6. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.

    OpenAIRE

    Haggarty, N W; Dunbar, B; Fothergill, L A

    1983-01-01

    The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important...

  7. The erythrocyte membrane in human muscular dystrophy

    NARCIS (Netherlands)

    W. Ruitenbeek (Willem)

    1979-01-01

    textabstractMore than 250 different forms of human neuromuscular diseases are known. They differ in age of onset, severity of weakness, rate of progression, type of inheritance, groups of muscles affected, frequency of incidence. Sometimes the clinical symptoms are not restricted to nervous

  8. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon

    International Nuclear Information System (INIS)

    Shenouda, Josephine; Green, Paula; Sultatos, Lester

    2009-01-01

    Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of α/β-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted in rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K m of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k i of 3048 nM -1 h -1 , and a K D of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k i increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k i s of 1.2 and 19.3 nM -1 h -1 , respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.

  9. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    International Nuclear Information System (INIS)

    Kaushik, R.; Rosenfeld, Clint A.; Sultatos, L.G.

    2007-01-01

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k i 's that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K d (binding affinity) and k 2 (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve

  10. Transport of 3-bromopyruvate across the human erythrocyte membrane.

    Science.gov (United States)

    Sadowska-Bartosz, Izabela; Soszyński, Mirosław; Ułaszewski, Stanisław; Ko, Young; Bartosz, Grzegorz

    2014-06-01

    3-Bromopyruvic acid (3-BP) is a promising anticancer compound because it is a strong inhibitor of glycolytic enzymes, especially glyceraldehyde 3-phosphate dehydrogenase. The Warburg effect means that malignant cells are much more dependent on glycolysis than normal cells. Potential complications of anticancer therapy with 3-BP are side effects due to its interaction with normal cells, especially erythrocytes. Transport into cells is critical for 3-BP to have intracellular effects. The aim of our study was the kinetic characterization of 3-BP transport into human erythrocytes. 3-BP uptake by erythrocytes was linear within the first 3 min and pH-dependent. The transport rate decreased with increasing pH in the range of 6.0-8.0. The Km and Vm values for 3-BP transport were 0.89 mM and 0.94 mmol/(l cells x min), respectively. The transport was inhibited competitively by pyruvate and significantly inhibited by DIDS, SITS, and 1-cyano-4-hydroxycinnamic acid. Flavonoids also inhibited 3-BP transport: the most potent inhibition was found for luteolin and quercetin.

  11. Proton NMR studies of creatine in human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kuchel, P W; Chapman, B E [Sydney Univ. (Australia). Dept. of Biochemistry

    1983-09-01

    Proton spin-echo nuclear magnetic resonance spectroscopy was used to measure the relative levels of some metabolites in intact human erythrocytes that had been fractionated by density gradient centrifugation. Age dependent changes in the concentrations of free glycine, choline and ergothioneine were seen for the first time, while glutathione was essentially invariant. In addition, there was a 10-fold decrease in creatine levels from the youngest to oldest cells. This confirms earlier reports and provides a simple explanation for the variable creatine resonance intensities seen in spectra obtained from different erythrocyte samples prepared from the same donor. The different chemical shifts of the methylene resonances of creatine and creatine phosphate was demonstrated and hence confirmed that the bulk of the creatine in intact erythrocytes is not phosphorylated. The chemical shift difference enabled the monitoring of the creatine phosphokinase catalysed reaction in lysates to which the rabbit muscle enzyme had been added. This experiment indicated that the enzyme is not significantly inhibited by factors in the lysates, and introduced a new means of assaying the in situ activity of the enzyme.

  12. Proton NMR studies of creatine in human erythrocytes

    International Nuclear Information System (INIS)

    Kuchel, P.W.; Chapman, B.E.

    1983-01-01

    Proton spin-echo nuclear magnetic resonance spectroscopy was used to measure the relative levels of some metabolites in intact human erythrocytes that had been fractionated by density gradient centrifugation. Age dependent changes in the concentrations of free glycine, choline and ergothioneine were seen for the first time, while glutathione was essentially invariant. In addition, there was a 10-fold decrease in creatine levels from the youngest to oldest cells. This confirms earlier reports and provides a simple explanation for the variable creatine resonance intensities seen in spectra obtained from different erythrocyte samples prepared from the same donor. The different chemical shifts of the methylene resonances of creatine and creatine phosphate was demonstrated and hence confirmed that the bulk of the creatine in intact erythrocytes is not phosphorylated. The chemical shift difference enabled the monitoring of the creatine phosphokinase catalysed reaction in lysates to which the rabbit muscle enzyme had been added. This experiment indicated that the enzyme is not significantly inhibited by factors in the lysates, and introduced a new means of assaying the in situ activity of the enzyme. (author)

  13. Hairy-root organ cultures for the production of human acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Mor Tsafrir S

    2008-12-01

    Full Text Available Abstract Background Human cholinesterases can be used as a bioscavenger of organophosphate toxins used as pesticides and chemical warfare nerve agents. The practicality of this approach depends on the availability of the human enzymes, but because of inherent supply and regulatory constraints, a suitable production system is yet to be identified. Results As a promising alternative, we report the creation of "hairy root" organ cultures derived via Agrobacterium rhizogenes-mediated transformation from human acetylcholinesterase-expressing transgenic Nicotiana benthamiana plants. Acetylcholinesterase-expressing hairy root cultures had a slower growth rate, reached to the stationary phase faster and grew to lower maximal densities as compared to wild type control cultures. Acetylcholinesterase accumulated to levels of up to 3.3% of total soluble protein, ~3 fold higher than the expression level observed in the parental plant. The enzyme was purified to electrophoretic homogeneity. Enzymatic properties were nearly identical to those of the transgenic plant-derived enzyme as well as to those of mammalian cell culture derived enzyme. Pharmacokinetic properties of the hairy-root culture derived enzyme demonstrated a biphasic clearing profile. We demonstrate that master banking of plant material is possible by storage at 4°C for up to 5 months. Conclusion Our results support the feasibility of using plant organ cultures as a successful alternative to traditional transgenic plant and mammalian cell culture technologies.

  14. Human erythrocyte electrofusion kinetics monitored by aqueous contents mixing.

    OpenAIRE

    Stenger, D A; Hui, S W

    1988-01-01

    The kinetics of electrically induced fusion of human erythrocyte ghosts were monitored by the Tb/DPA and ANTS/DPX fluorescence fusion assays. Ghosts were aligned by dielectrophoresis using a 3-MHz 350-V/cm alternating field and were fused by single 15- or 50-microseconds electric field pulses of amplitude 2.5-5.0 kV/cm. Fusion was detected immediately after the pulse. The peak fluorescence change due to fusion was always obtained within 7 s of pulse application, and was highest for a 5.0 kV/c...

  15. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jefferson Muniz de Lima

    2015-01-01

    Full Text Available Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4 D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  16. Acute dark chocolate ingestion is beneficial for hemodynamics via enhancement of erythrocyte deformability in healthy humans.

    Science.gov (United States)

    Radosinska, Jana; Horvathova, Martina; Frimmel, Karel; Muchova, Jana; Vidosovicova, Maria; Vazan, Rastislav; Bernatova, Iveta

    2017-03-01

    Erythrocyte deformability is an important property of erythrocytes that considerably affects blood flow and hemodynamics. The high content of polyphenols present in dark chocolate has been reported to play a protective role in functionality of erythrocytes. We hypothesized that chocolate might influence erythrocytes not only after repeated chronic intake, but also immediately after its ingestion. Thus, we determined the acute effect of dark chocolate and milk (with lower content of biologically active substances) chocolate intake on erythrocyte deformability. We also focused on selected factors that may affect erythrocyte deformability, specifically nitric oxide production in erythrocytes and total antioxidant capacity of plasma. We determined posttreatment changes in the mentioned parameters 2hours after consumption of chocolate compared with their levels before consumption of chocolate. In contrast to milk chocolate intake, the dark chocolate led to a significantly higher increase in erythrocyte deformability. Nitric oxide production in erythrocytes was not changed after dark chocolate intake, but significantly decreased after milk chocolate. The plasma total antioxidant capacity remained unaffected after ingestion of both chocolates. We conclude that our hypothesis was confirmed. Single ingestion of dark chocolate improved erythrocyte deformability despite unchanged nitric oxide production and antioxidant capacity of plasma. Increased deformability of erythrocytes may considerably improve rheological properties of blood and thus hemodynamics in humans, resulting in better tissue oxygenation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Blood-group-Ii-active gangliosides of human erythrocyte membranes

    International Nuclear Information System (INIS)

    Feizi, T.; Childs, R.A.; Hakomori, S.-I.; Powell, M.E.

    1978-01-01

    More than ten new types of gangliosides, in addition to haematoside and sialosylparagloboside, were isolated from human erythrocyte membranes. These were separated by successive chromatographies on DAEA-Sephadex, on porous silica-gel columns and on thin-layer silica gel as acetylated compounds. Highly potent blood-group-Ii and moderate blood-group-H activities were demonstrated in some of the ganglioside fractions. The gangliosides incorporated into chlolesterol/phosphatidylcholine liposomes stoicheiometrically inhibited binding of anti-(blood-group-I and i) antibodies to a radioiodinated blood-group-Ii-active glycoprotein. The fraction with the highest blood-group-I activity, I(g) fraction, behaved like sialosyl-deca- to dodeca-glycosylceramides on t.l.c. Certain blood-group-I and most of the i-determinants were in partially or completely cryptic form and could be unmasked by sialidase treatment. Thus the I and i antigens, which are known to occur on internal structures of blood-group-ABH-active glycoproteins in secretions, also occur in the interior of the carbohydrate chains of erythrocyte gangliosides. (author)

  18. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    OpenAIRE

    Matteucci, Elena; Giampietro, Ottavio

    2007-01-01

    Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na+/H+ exchange and HC3 -/Cl- anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore dama...

  19. Solubilization of human erythrocyte membranes by ASB detergents

    Directory of Open Access Journals (Sweden)

    C.C. Domingues

    2008-09-01

    Full Text Available Understanding the membrane solubilization process and finding effective solubilizing agents are crucial challenges in biochemical research. Here we report results on the interaction of the novel linear alkylamido propyl dimethyl amino propanosulfonate detergents, ASB-14 and ASB-16, with human erythrocyte membranes. An estimation of the critical micelle concentration of these zwitterionic detergents (ASB-14 = 100 µM and ASB-16 = 10 µM was obtained using electron paramagnetic resonance. The amount of proteins and cholesterol solubilized from erythrocytes by these detergents was then determined. The hemolytic activities of the ASB detergents were assayed and the detergent/lipid molar ratios for the onset of hemolysis (Re sat and total lysis (Re sol were calculated, allowing the determination of the membrane binding constants (Kb. ASB-14 presented lower membrane affinity (Kb = 7050 M-1 than ASB-16 (Kb = 15610 M-1. The amount of proteins and cholesterol solubilized by both ASB detergents was higher while Re sat values (0.22 and 0.08 detergent/lipid for ASB-14 and ASB-16, respectively were smaller than those observed with the classic detergents CHAPS and Triton X-100. These results reveal that, besides their well-known use as membrane protein solubilizers to enhance the resolution of two dimensional electrophoresis/mass spectrometry, ASB-14 and ASB-16 are strong hemolytic agents. We propose that the physicochemical properties of ASB detergents determine their membrane disruption efficiency and can help to explain the improvement in the solubilization of membrane proteins, as reported in the literature.

  20. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    Science.gov (United States)

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Morphological Effects and Antioxidant Capacity of Solanum crispum (Natre) In Vitro Assayed on Human Erythrocytes.

    Science.gov (United States)

    Suwalsky, Mario; Ramírez, Patricia; Avello, Marcia; Villena, Fernando; Gallardo, María José; Barriga, Andrés; Manrique-Moreno, Marcela

    2016-06-01

    In order to gain insight into the molecular mechanism of the antioxidant properties of Solanum crispum, aqueous extracts of its leaves were assayed on human erythrocytes and molecular models of its membrane. Phenolics and alkaloids were detected by HPLC-MS. Scanning electron and defocusing microscopy showed that S. crispum changed erythrocytes from the normal shape to echinocytes. These results imply that molecules present in the aqueous extracts were located in the outer monolayer of the erythrocyte membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that S. crispum preferentially interacted with DMPC bilayers. Experiments regarding its antioxidant properties showed that S. crispum neutralized the oxidative capacity of HClO on DMPE bilayers; defocusing microscopy and hemolysis assays demonstrated the protective effect of S. crispum against the oxidant effects of HClO on human erythrocytes.

  2. Isolation of low-molecular-weight lead-binding protein from human erythrocytes

    International Nuclear Information System (INIS)

    Raghavan, S.R.V.; Gonick, H.C.

    1977-01-01

    In blood, lead is mainly associated with erythrocytes and only a very small amount is found in plasma. Previously it was thought that the lead was bound to the erythrocyte cell membrane but more recently it has been observed that lead is bound primarily to the cell contents, ostensibly hemoglobin. In examining the lead-binding properties of normal human erythrocytes and those of lead-exposed industrial workers, we have found that, whereas lead binds only to hemoglobin in normal erythrocytes, there is also appreciable binding of lead to a low-molecular weight-protein in erythrocytes from lead-exposed workers. The synthesis of this protein may be induced by lead exposure. The 10,000 molecular weight protein may act as a storage site and mechanism for segregating lead in a non-toxic form

  3. Diffusion properties of band 3 in human erythrocytes

    Science.gov (United States)

    Spector, Jeffrey O.

    The plasma membrane of the human erythrocyte (RBC) is a six fold symmetric network held together at various pinning points by several multi-protein complexes. This unique architecture is what gives the RBC its remarkable material properties and any disruptions to the network can have severe consequences for the cell. Band 3 is a major transmembrane protein that plays the role of linking the fluid lipid bilayer to the cytoskeletal network. To interrogate the structural integrity of the RBC membrane we have tracked individual band 3 molecules in RBCs displaying a variety of pathologies that are all a consequence of membrane or network related defects. These diseases are spherocytosis, elliptocytosis, and pyropokilocytosis. We have also investigated the protein related diseases sickle cell, and south east asian ovalocytosis. To assess the impact that the network has on the dynamic organization of the cell we have also studied the mobility of band 3 in RBC progenitor cells. Individual band 3 molecules were imaged at 120 frames/second and their diffusion coefficients and compartment sizes recorded. The distributions of the compartment sizes combined with the information about the short and long time diffusion of band 3 has given us insight into the architecture of the membrane in normal and diseased cells. The observation that different membrane pathologies can be distinguished, even to the point of different molecular origins of the same disease, implies that the mobility of transmembrane proteins may be a useful tool for characterizing the "health" of the membrane.

  4. Effects of phenylpropanolamine (PPA) on in vitro human erythrocyte membranes and molecular models

    Energy Technology Data Exchange (ETDEWEB)

    Suwalsky, Mario, E-mail: msuwalsk@udec.cl [Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile); Zambrano, Pablo; Mennickent, Sigrid [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Villena, Fernando [Faculty of Biological Sciences, University of Concepcion, Concepcion (Chile); Sotomayor, Carlos P.; Aguilar, Luis F. [Instituto de Quimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Bolognin, Silvia [CNR-Institute for Biomedical Technologies, University of Padova, Padova (Italy)

    2011-03-18

    Research highlights: {yields} PPA is a common ingredient in cough-cold medication and appetite suppressants. {yields} Reports on its effects on human erythrocytes are very scarce. {yields} We found that PPA induced in vitro morphological changes to human erythrocytes. {yields} PPA interacted with isolated unsealed human erythrocyte membranes. {yields} PPA interacted with class of lipid present in the erythrocyte membrane outer monolayer. -- Abstract: Norephedrine, also called phenylpropanolamine (PPA), is a synthetic form of the ephedrine alkaloid. After reports of the occurrence of intracranial hemorrhage and other adverse effects, including several deaths, PPA is no longer sold in USA and Canada. Despite the extensive information about PPA toxicity, reports on its effects on cell membranes are scarce. With the aim to better understand the molecular mechanisms of the interaction of PPA with cell membranes, ranges of concentrations were incubated with intact human erythrocytes, isolated unsealed human erythrocyte membranes (IUM), and molecular models of cell membranes. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of most plasmatic cell membranes, respectively. The capacity of PPA to perturb the bilayer structures of DMPC and DMPE was assessed by X-ray diffraction, DMPC large unilamellar vesicles (LUV) and IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). This study presents evidence that PPA affects human red cell membranes as follows: (a) in SEM studies on human erythrocytes it was observed that 0.5 mM PPA induced shape changes; (b) in IUM PPA induced a sharp decrease in the fluorescence anisotropy in the lipid bilayer acyl chains in a concentration range lower than 100 {mu}M; (c) X-ray diffraction studies showed that PPA in the 0.1-0.5 m

  5. Inhibition by nucleosides of glucose-transport activity in human erythrocytes.

    OpenAIRE

    Jarvis, S M

    1988-01-01

    The interaction of nucleosides with the glucose carrier of human erythrocytes was examined by studying the effect of nucleosides on reversible cytochalasin B-binding activity and glucose transport. Adenosine, inosine and thymidine were more potent inhibitors of cytochalasin B binding to human erythrocyte membranes than was D-glucose [IC50 (concentration causing 50% inhibition) values of 10, 24, 28 and 38 mM respectively]. Moreover, low concentrations of thymidine and adenosine inhibited D-glu...

  6. The osmotic fragility of human erythrocytes is inhibited by laser irradiation

    International Nuclear Information System (INIS)

    Habodaszova, D.; Sikurova, L.; Waczulikova, I.

    2004-01-01

    In this study we investigated the influence of green laser irradiation (532 nm, 30 mW, 31,7 J/cm 2 ) on the membrane integrity of human erythrocytes and compared the results with the effect of infrared laser irradiation (810 nm, 50 mW, 31,3 J/cm 2 ). To evaluate the membrane integrity of erythrocytes, one clinical parameter, the osmotic fragility, was investigated. We observed a decrease in osmotic fragility of the erythrocytes after irradiation by the green laser light as well as by the infrared laser compared to non-irradiated controls (Authors)

  7. PIXE elemental analysis of erythrocyte and blood plasma samples from human pregnancies

    International Nuclear Information System (INIS)

    Borbely-Kiss, I.; Koltay, E.; Laszlo, S.; Szabo, Gy.

    1984-01-01

    Elemental concentrations of P, S, Cl, K, Ca, Fe, Ni, Cu, Zn, Br, Rb have been determined in erythrocyte and blood plasma samples from normal and diabetic human pregnancies. Average values, the dependence of the concentrations on the time during gestation period, the correlation coefficients for pairs of elements as well as for the same elements in plasma and erythrocyte samples are given. A marked difference appeared in a number of cases between normal and diabetic pregnancies. (author)

  8. PIXE elemental analysis of erythrocyte and blood plasma samples from human pregnancies

    Energy Technology Data Exchange (ETDEWEB)

    Borbely-Kiss, I; Koltay, E; Laszlo, S; Szabo, Gy [Magyar Tudomanyos Akademia, Debrecen. Atommag Kutato Intezete; Goedeny, S [Orvostudomanyi Egyetem, Szeged (Hungary). Szueleszeti es Noegyogyaszati Klinika; Seif El-Nasr, S [Teachers' Coll. for Women, Samia (Kuwait)

    1984-07-01

    Elemental concentrations of P, S, Cl, K, Ca, Fe, Ni, Cu, Zn, Br, Rb have been determined in erythrocyte and blood plasma samples from normal and diabetic human pregnancies. Average values, the dependence of the concentrations on the time during gestation period, the correlation coefficients for pairs of elements as well as for the same elements in plasma and erythrocyte samples are given. A marked difference appeared in a number of cases between normal and diabetic pregnancies. 11 refs.

  9. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases.

    Science.gov (United States)

    Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima

    2008-09-25

    Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.

  10. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase

    OpenAIRE

    Kamil Musilek; Kamil Kuca; Daniel Jun; Lucie Musilova

    2011-01-01

    We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a “pseudocatalytic...

  11. Fragmentation of Human Erythrocyte Actin following Exposure to Hypoxia

    Czech Academy of Sciences Publication Activity Database

    Risso, A.; Santamaria, B.; Pistarino, E.; Cosulich, M. E.; Pompach, Petr; Bezouška, Karel; Antonutto, G.

    2010-01-01

    Roč. 123, č. 1 (2010), s. 6-13 ISSN 0001-5792 Institutional research plan: CEZ:AV0Z50200510 Keywords : beta-Actin * Erythrocytes * Hypoxia Subject RIV: EE - Microbiology, Virology Impact factor: 1.316, year: 2010

  12. Phosphorylation of intact erythrocytes in human muscular dystrophy

    International Nuclear Information System (INIS)

    Johnson, R.M.; Nigro, M.

    1986-01-01

    The uptake of exogenous 32 Pi into the membrane proteins of intact erythrocytes was measured in 8 patients with Duchenne muscular dystrophy. No abnormalities were noted after autoradiographic analysis. This contrasts with earlier results obtained when isolated membranes were phosphorylated with gamma-[ 32 P]ATP, and suggests a possible reinterpretation of those experiments

  13. Erratum Detergent-resistant membranes in human erythrocytes and ...

    Indian Academy of Sciences (India)

    Unknown

    Figure 3. Immunodetection of flotillin-2 and band 3 in DRMs isolated from erythrocyte ghosts by various treatments. Flotillin-2. (left) and band 3 (right) Western blotting in ten fractions of 0⋅5 ml each, obtained from the sucrose gradients described in figure 2 and numbered from top to bottom. Flotillin-2 is enriched in DRMs ...

  14. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  15. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    International Nuclear Information System (INIS)

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-01-01

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl 3 was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 μM; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 μM concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 μm-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 μM to 100 μM.

  16. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte.

    Science.gov (United States)

    Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus

    2009-09-01

    The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells.

  17. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    Science.gov (United States)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  18. Grape (Vitis vinifera) extracts protects against radiation-induced oxidative stress in human erythrocyte (RBC)

    International Nuclear Information System (INIS)

    Ghosh, Subhashis

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated the radioprotective actions of the grape extracts of two different cultivars, including the Thompson seedless (green) and Kishmish chorni (black) in human erythrocytes. Pretreatment with grape extracts attenuates oxidative stress induced by 4 Gy-radiation in human erythrocytes in vitro. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. Effects of grape extracts of different cultivars on protein content, Thiobarbituric acid reactive substances (TBARS) level, reduced glutathione (GSH) content and activities of Catalase, Nitrite, GST, GR in human erythrocytes against -radiation exposure at a dose of 4 Gy are investigated. The grape extracts did not appear to alter the viability of human erythrocytes. Exposure of erythrocytes to the -irradiation at a dose of 4 Gy significantly increased the extent of formation of TBARS, while decreased the level of GSH and activities of CAT, GSSG , GST, GR in the erythrocytes as compared to the non-irradiated control counterparts. This was significantly attenuated by the pretreatment with the grape seed extracts (p<0.001) and significantly with the skin extracts (p<0.05) compared to the ionizing radiation exposed group. Moreover, protection offered by the seed extracts was found significantly better than that was offered by the pulp extract of the same cultivar. In conclusion, our results suggested that the grape extracts significantly attenuated IR induced oxidative stress and

  19. Influence of Cocoa Flavanols and Procyanidins on Free Radical-induced Human Erythrocyte Hemolysis

    Directory of Open Access Journals (Sweden)

    Qin Yan Zhu

    2005-01-01

    Full Text Available Cocoa can be a rich source of antioxidants including the flavan-3-ols, epicatechin and catechin, and their oligomers (procyanidins. While these flavonoids have been reported to reduce the rate of free radical-induced erythrocyte hemolysis in experimental animal models, little is known about their effect on human erythrocyte hemolysis. The major objective of this work was to study the effect of a flavonoid-rich cocoa beverage on the resistance of human erythrocytes to oxidative stress. A second objective was to assess the effects of select purified cocoa flavonoids, epicatechin, catechin, the procyanidin Dimer B2 and one of its major metabolites, 3ʹ-O-methyl epicatechin, on free radical-induced erythrocyte hemolysis in vitro. Peripheral blood was obtained from 8 healthy subjects before and 1, 2, 4 and 8 h after consuming a flavonoid-rich cocoa beverage that provided 0.25 g/kg body weight (BW, 0.375 or 0.50 g/kg BW of cocoa. Plasma flavanol and dimer concentrations were determined for each subject. Erythrocyte hemolysis was evaluated using a controlled peroxidation reaction. Epicatechin, catechin, 3ʹ-O-methyl epicatechin and (--epicatechin-(4β > 8epicatechin (Dimer B2 were detected in the plasma within 1 h after the consumption of the beverage. The susceptibility of erythrocytes to hemolysis was reduced significantly following the consumption of the beverages. The duration of the lag time, which reflects the capacity of cells to buffer free radicals, was increased. Consistent with the above, the purified flavonoids, epicatechin, catechin, Dimer B2 and the metabolite 3ʹ-O-methyl epicatechin, exhibited dose-dependent protection against AAPH-induced erythrocyte hemolysis at concentrations ranging from 2.5 to 20 μM. Erythrocytes from subjects consuming flavonoid-rich cocoa show reduced susceptibility to free radical-induced hemolysis (p < 0.05.

  20. Aquaporin-1-Mediated Effects of Low Level He-Ne Laser Irradiation on Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Gang-Yue Luo

    2012-01-01

    Full Text Available The role of membrane aquaporin-1 (APQ-1 in the photobiomodulation (PBM on erythrocyte deformability will be studied in this paper with human dehydrated erythrocytes as echinocytic shape alterations lead to decreased cellular deformability. Human dehydrated erythrocytes were irradiated with low intensity He-Ne laser irradiation (LHNL at 0.9, 1.8, 2.7, and 4.4 mW/cm2 for 5, 15, and 30 min, respectively, and APQ-1 inhibitor, 0.2 μmol/L HgCl2, was used to study the role of APQ-1 in mediating PBM with LHNL at 4.4 mW/cm2 for 5 min. Comprehensive morphological parameters of an intact cell such as contact area, perimeter, roundness and erythrocyte elongation index (EEI were measured to characterize erythrocyte deformability with fast micro multi-channel spectrophotometer. It was observed that the dosage of LHNL improvement of the morphological parameters of dehydrated erythrocytes was morphological-parameter-dependent, but the Bunsen-Roscoe rule did not hold for roundness. The LHNL at 4.4 mW/cm2 for 5 min significantly improved the contact area (P<0.05 and EEI (P<0.05 of the dehydrated erythrocytes, but the improvement was significantly inhibited by 0.2 μmol/L HgCl2 (P<0.05. It was concluded that AQP-1 might mediate the effects of LHNL on erythrocyte deformability, which supports the membranotropic mechanism of PBM.

  1. Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates

    International Nuclear Information System (INIS)

    Schallreuter, Karin U.; University of Bradford; Elwary, Souna M.; Parkin, Susan M.; Wood, John M.

    2007-01-01

    The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10 -3 M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. 45 Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H 2 O 2 -mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m 2 surface area with its calcium gradient in the 10 -3 M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue

  2. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers

    International Nuclear Information System (INIS)

    Quintanar-Escorza, M.A.; Gonzalez-Martinez, M.T.; Navarro, L.; Maldonado, M.; Arevalo, B.; Calderon-Salinas, J.V.

    2007-01-01

    Erythrocytes are the route of lead distribution to organs and tissues. The effect of lead on calcium homeostasis in human erythrocytes and other excitable cells is not known. In the present work we studied the effect of lead intoxication on the uptake and efflux (measured as (Ca 2+ -Mg 2+ )-ATPase activity) of calcium were studied in erythrocytes obtained from lead-exposed workers. Blood samples were taken from 15 workers exposed to lead (blood lead concentration 74.4 ± 21.9 μg/dl) and 15 non-exposed workers (9.9 ± 2 μg/dl). In erythrocytes of lead-exposed workers, the intracellular free calcium was 79 ± 13 nM, a significantly higher concentration (ANOVA, P 2+ -Mg 2+ )-ATPase activity. Lipid peroxidation was 1.7-fold higher in erythrocytes of lead-exposed workers as compared with control. The alteration on calcium equilibrium in erythrocytes is discussed in light of the toxicological effects in lead-exposed workers

  3. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning

    International Nuclear Information System (INIS)

    Babu, Challagundla K.; Khanna, Subhash K.; Das, Mukul

    2008-01-01

    Oxidative damage of biomolecules and antioxidant status in erythrocytes of humans from an outbreak of argemone oil (AO) poisoning in Kannauj (India) and AO intoxicated experimental animals was investigated. Erythrocytes of the dropsy patients and AO treated rats were found to be more susceptible to 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced peroxidative stress. Significant decrease in RBC glutathione (GSH) levels (46, 63%) with concomitant enhancement in oxidized glutathione (172, 154%) levels was noticed in patients and AO intoxicated animals. Further, depletion of glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PDH) and glutathione-S-transferase (GST) (42-52%) was observed in dropsy patients. Oxidation of erythrocyte membrane lipids and proteins was increased (120-144%) in patients and AO treated animals (112-137%) along with 8-OHdG levels in whole blood (180%) of dropsy patients. A significant reduction in α-tocopherol content (68%) was noticed in erythrocytes of dropsy patients and hepatic, plasma and RBCs of AO treated rats (59-70%) thereby indicating the diminished antioxidant potential to scavenge free radicals or the limited transport of α-tocopherol from liver to RBCs leading to enhanced oxidation of lipids and proteins in erythrocytes. These studies implicate an important role of erythrocyte degradation in production of anemia and breathlessness in epidemic dropsy

  4. Synthesis and biological evaluation of lycorine derivatives as dual inhibitors of human acetylcholinesterase and butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Wang Yue-Hu

    2012-09-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is a neurologically degenerative disorder that affects more than 20 million people worldwide. The selective butyrylcholinesterase (BChE inhibitors and bivalent cholinesterase (ChE inhibitors represent new treatments for AD. Findings A series of lycorine derivatives (1–10 were synthesized and evaluated for anti-cholinesterase activity. Result showed that the novel compound 2-O-tert-butyldimethylsilyl-1-O-(methylthiomethyllycorine (7 was a dual inhibitor of human acetylcholinesterase (hAChE and butyrylcholinesterase (hBChE with IC50 values of 11.40 ± 0.66 μM and 4.17 ± 0.29 μM, respectively. The structure-activity relationships indicated that (i the 1-O-(methylthiomethyl substituent in lycorine was better than the 1-O-acetyl group for the inhibition of cholinesterase; (ii the acylated or etherified derivatives of lycorine and lycorin-2-one were more potent against hBChE than hAChE; and (iii the oxidation of lycorine at C-2 decreases the activity. Conclusion Acylated or etherified derivatives of lycorine are potential dual inhibitors of hBChE and hAChE. Hence, further study on the modification of lycorine for ChE inhibition is necessary.

  5. Antioxidant capacity of Ugni molinae fruit extract on human erythrocytes: an in vitro study.

    Science.gov (United States)

    Suwalsky, Mario; Avello, Marcia

    2014-08-01

    Ugni molinae is an important source of molecules with strong antioxidant activity widely used as a medicinal plant in Southern Chile-Argentina. Total phenol concentration from its fruit extract was 10.64 ± 0.04 mM gallic acid equivalents. Analysis by means of HPLC/MS indicated the presence of the anthocyanins cyanidin and peonidin, and the flavonol quercitin, all in glycosylated forms. Its antioxidant properties were assessed in human erythrocytes in vitro exposed to HClO oxidative stress. Scanning electron microscopy showed that HClO induced an alteration in erythrocytes from a normal shape to echinocytes; however, this change was highly attenuated in samples containing U. molinae extracts. It also had a tendency in order to reduce the hemolytic effect of HClO. In addition, X-ray diffraction experiments were performed in dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine bilayers, classes of lipids preferentially located in the outer and inner monolayers, respectively, of the human erythrocyte membrane. It was observed that U. molinae only interacted with DMPC. Results by fluorescence spectroscopy on DMPC large unilamellar vesicles and isolated unsealed human erythrocyte membranes also showed that it interacted with the erythrocyte membrane and DMPC. It is possible that the location of U. molinae components into the membrane outer monolayer might hinder the diffusion of HClO and of free radicals into cell membranes and the consequent decrease of the kinetics of free radical reactions.

  6. The influence of split doses of γ-radiation on human erythrocytes

    International Nuclear Information System (INIS)

    Koziczak, R.; Gonciarz, M.; Krokosz, A.; Szweda-Lewandowska, Z.

    2003-01-01

    Human erythrocyte suspensions in an isotonic Na-phosphate buffer, pH 7.4, of hematocrit of 2% were exposed under air to gamma radiation at a dose rate of 2.2 kGy. Erythrocytes were irradiated with single doses, and identical doses split into two fractions with an interval time of 3.5 h between following exposures. The obtained results indicated that the irradiation of enucleated human erythrocytes with split doses caused a reduction of hemolysis (2.4 times), a decrease in the level of damage to membrane lipids and the contents of MetHb, compared with identical single doses. However, the splitting of radiation doses did not change the level of damage to the membrane proteins, as was estimated with a maleimide spin label. The obtained results suggest that a decrease in the level of damage to lipids was related to a decrease in hemolysis. (author)

  7. Reactivation of organophosphate-inhibited human acetylcholinesterase by isonitrosoacetone (MINA): a kinetic analysis.

    Science.gov (United States)

    Worek, Franz; Thiermann, Horst

    2011-11-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP) with atropine and an acetylcholinesterase (AChE) reactivator (oxime) is of limited effectiveness in case of different nerve agents and pesticides. One challenge is the reactivation of OP-inhibited brain AChE which shows inadequate success with charged pyridinium oximes. Recent studies with high doses of the tertiary oxime isonitrosoacetone (MINA) indicated a beneficial effect on central and peripheral AChE and on survival in nerve agent poisoned guinea pigs. Now, an in vitro study was performed to determine the reactivation kinetics of MINA with tabun-, sarin-, cyclosarin-, VX- and paraoxon-inhibited human AChE. MINA showed an exceptionally low affinity to inhibited AChE but, with the exception of tabun-inhibited AChE, a moderate to high reactivity. In comparison to the pyridinium oximes obidoxime, 2-PAM and HI-6 the affinity and reactivity of MINA was in most cases lower and in relation to the most effective reactivators, the second order reactivation constant of MINA was 500 to 3400-fold lower. Hence, high in vivo MINA concentrations would be necessary to achieve at least partial reactivation. This assumption corresponds to in vivo data showing a dose-dependent effect on reactivation and survival in animals. In view, of the toxic potential of MINA in animals human studies would be necessary to determine the tolerability and pharmacokinetics of MINA in order to enable a proper assessment of the value of this oxime as an antidote in OP poisoning. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  9. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  10. Regulation of hemoglobin AIc formation in human erythrocytes in vitro. Effects of physiologic factors other than glucose.

    OpenAIRE

    Smith, R J; Koenig, R J; Binnerts, A; Soeldner, J S; Aoki, T T

    1982-01-01

    The formation of hemoglobin AIc was studied in intact human erythrocytes in vitro. Satisfactory methods were developed for maintaining erythrocytes under physiologic conditions for greater than 8 d with less than 10% hemolysis. Hemoglobin AIc levels were determined chromatographically on erythrocyte hemolysates after removal of reversible components by incubation for 6 h at 37 degree C. Hemoglobin AIc concentration was found to increase linearly with time during 8 d of incubation. The rate of...

  11. Labelling malaria-infected human erythrocytes with Tc-99m

    International Nuclear Information System (INIS)

    Garmelius-Larsson, B.; Pettersson, F.; Vogt, A.; Jonsson, C.

    2002-01-01

    Aim: Malaria is an old and a very common disease, especially in undeveloped countries. The malaria parasites infect the erythrocytes and the aim of this work was to label infected cells for future studies of their distribution and life span. Material and Method: With a commercial kit containing stannous fluoride and sodium medronate, which is used to label erythrocytes in vivo, in vitro and in vivo/vitro methods, we labelled the cells by using a modified method and a small volume, 5 - 50 microlitre, of packed cells. The cells were labelled with Tc-99m in the range of 60 - 1500 MBq. The kit was reconstituted with saline and the pH was adjusted to 7.0. The cells were incubated with 1 ml of the kitsolution in 37 0 C for 5 min. The remaining Sn-ions were reduced by adding NaOCl and then the solution was centrifuged.The supernantant was discarded and the Tc-99m was added to the precipitate and incubated 37 0 C for 20 min and then washed 3 times. This labelling procedure was performed on both infected and on non-infected cells. Results: Ten samples of cells have been labelled. The best labelling result was obtained using 7 - 20 MBq per 10 microlitre of packed cells. The labelling efficiency was, on average, 35%. Conclusion: It is possible to label both infected and non-infected cells in very small volumes. The cells were visually inspected in a microscope and were viable after labelling. Furthermore, the cell distribution was traced in vivo in an animal model by a gamma camera

  12. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  13. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.

    Science.gov (United States)

    Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I

    2009-08-14

    Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.

  14. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    Science.gov (United States)

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  15. Curcumin Protects -SH Groups and Sulphate Transport after Oxidative Damage in Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Rossana Morabito

    2015-05-01

    Full Text Available Background/Aims: Erythrocytes, continuously exposed to oxygen pressure and toxic compounds, are sensitive to oxidative stress, namely acting on integral Band 3 protein, with consequences on cell membranes deformability and anion transport efficiency. The aim of the present investigation, conducted on human erythrocytes, is to verify whether curcumin (1 or 10µM, a natural compound with proved antioxidant properties, may counteract Band 3-mediated anion transport alterations due to oxidative stress. Methods: Oxidative conditions were induced by exposure to, alternatively, either 2 mM N-ethylmaleimide (NEM or pH-modified solutions (6.5 and 8.5. Rate constant for SO4= uptake and -SH groups estimation were measured to verify the effect of oxidative stress on anion transport efficiency and erythrocyte membranes. Results: After the exposure of erythrocytes to, alternatively, NEM or pH-modified solutions, a significant decrease in both rate constant for SO4= uptake and -SH groups was observed, which was prevented by curcumin, with a dose-dependent effect. Conclusions: Our results show that: i the decreased efficiency of anion transport may be due to changes in Band 3 protein structure caused by cysteine -SH groups oxidation, especially after exposure to NEM and pH 6.5; ii 10 µM Curcumin is effective in protecting erythrocytes from oxidative stress events at level of cell membrane transport.

  16. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland)]. E-mail: krokosz@biol.uni.lodz.pl; Koziczak, Renata [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland); Gonciarz, Marta [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland); Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland)

    2006-01-15

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with {gamma}-rays at three dose-rates of 66.7, 36.7, 25 Gy min{sup -1} in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  17. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    International Nuclear Information System (INIS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect

  18. The action of cobra venom phospholipase A2 isoenzymes towards intact human erythrocytes

    NARCIS (Netherlands)

    Roelofsen, B.; Sibenius Trip, M.; Verheij, H.M.; Zevenbergen, J.L.

    1980-01-01

    1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography. 2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine

  19. Alcohol and the calcium-dependent potassium transport of human erythrocytes

    International Nuclear Information System (INIS)

    Harris, R.A.; Caldwell, K.K.

    1985-01-01

    In vitro exposure of human red blood cells to ethanol (100 and 400 mM) was found to increase the initial rate of calcium-dependent potassium efflux through the red cell membrane. This effect of ethanol was apparently not due to an elevation of the intracellular free calcium but rather to a direct action of the drug on the transport process as, (1) intracellular calcium concentrations were tightly buffered with EGTA, (2) ethanol did not alter the efflux of 45 Ca from the cells, and (3) dantrolene, which has been proposed to counteract the effect of ethanol on intracellular calcium levels in the erythrocyte, did not inhibit the stimulatory action of ethanol. The efflux of potassium from erythrocytes obtained from chronic alcoholics was not different from that of erythrocytes from non-alcoholic individuals. The relationship of these findings to neuronal potassium transport is discussed

  20. Resistance of human erythrocytes containing elevated levels of vitamin E to radiation-induced hemolysis

    International Nuclear Information System (INIS)

    Brown, M.A.

    1983-01-01

    Human erythrocytes were isolated from the blood of healthy donors and then incubated in the presence of suspensions of alpha-tocopherol for 30 min at 37 degrees C. Unabsorbed tocopherol was removed by centrifugation using several washes of isotonic phosphate-buffered saline. Washed erythrocytes were resuspended to 0.05%. Hct and exposed to hemolyzing doses of 60 Co gamma radiation, and hemolysis was monitored continuously by light scattering at 700 nm in a recording spectrophotometer. The extent of hemolysis with time was sigmoid and data analysis was carried out on the time taken for 50% hemolysis to occur (t50%). The vitamin E content of erythrocytes was significantly elevated by the incubation procedure and resulted in the cells exhibiting a significantly increased resistance to hemolysis as reflected by the extended t50% values. Oral supplementation of 500 IU of vitamin E per day to eight normal human subjects for a period of 16 days also resulted in their washed erythrocytes exhibiting a significant increase in resistance to radiation-induced hemolysis. When comparing vitamin E incubated cells with control cells, both the dose-reducing factor (DRF) and the time for 50% hemolysis quotient (Qt50%) were observed to increase with increasing radiation dose

  1. Functional and structural changes of human erythrocyte catalase induced by cimetidine: proposed model of binding.

    Science.gov (United States)

    Yazdi, Fatemeh; Minai-Tehrani, Dariush; Jahngirvand, Mahboubeh; Almasirad, Ali; Mousavi, Zahra; Masoud, Masoudeh; Mollasalehi, Hamidreza

    2015-06-01

    In erythrocyte, catalase plays an important role to protect cells from hydrogen peroxide toxicity. Hydrogen peroxide is a byproduct compound which is produced during metabolic pathway of cells. Cimetidine, a histamine H2 receptor antagonist, is used for gastrointestinal tract diseases and prevents the extra release of gastric acid. In this study, the effect of cimetidine on the activity of human erythrocyte catalase was investigated. Erythrocytes were broken by hypotonic solution. The supernatant was used for catalase assay and kinetics study. Lineweaver-Burk plot was performed to determine the type of inhibition. The kinetics data revealed that cimetidine inhibited the catalase activity by mixed inhibition. The IC50 (1.54 μM) and Ki (0.45 μM) values of cimetidine determined that the drug was bound to the enzyme with high affinity. Circular dichroism and fluorescence measurement showed that the binding of cimetidine to the enzyme affected the content of secondary structure of the enzyme as well as its conformational changes. Docking studies were carried out to detect the site in which the drug was bound to the enzyme. Molecular modeling and energy calculation of the binding showed that the cyanoguanidine group of the drug connected to Asp59 via two hydrogen bonds, while the imidazole group of the drug interacted with Phe64 in the enzyme by a hydrophobic interaction. In conclusion, cimetidine could bind to human erythrocyte catalase, and its interaction caused functional and conformational changes in the enzyme.

  2. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    Science.gov (United States)

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  3. Bifenthrin-induced oxidative stress in human erythrocytes in vitro and protective effect of selected flavonols.

    Science.gov (United States)

    Sadowska-Woda, Izabela; Popowicz, Diana; Karowicz-Bilińska, Agata

    2010-03-01

    Bifenthrin is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activity used to control wide range of insect pests in a variety of applications. This investigation was designed to examine (1) bifenthrin as an inducer of oxidative stress in human erythrocytes in vitro through effects on catalase (CAT) and superoxide dismutase (SOD) activities, and (2) the role of the flavonoids quercetin (Q, 40 and 80microM) and rutin (R, 80microM) in alleviating the effects of bifenthrin. Erythrocytes were divided into portions. The first portion was incubated for 4h at 37 degrees C with different concentrations (0, 42.2, 211, 1055ppm) of bifenthrin. The other portions were preincubated with Q or R for 30min, followed incubation with bifenthrin for 4h. The influence of solvent (ethanol) was also checked on the parameters studied. Malondialdehyde (MDA) concentrations, CAT and SOD activities were measured in all treatment portions of erythrocytes. Our results demonstrated that bifenthrin-induced oxidative stress causes enhanced lipid peroxidation and decreased antioxidative enzyme activities in human peripheral blood. R pretreated erythrocytes were protected against the increase of MDA induced by bifenthrin. Q (80microM) and R pretreated erythrocytes were protected against the inhibition of CAT activity induced by bifenthrin. The protective action against the inhibition of SOD activity of Q was greater than that of R at the same concentration. These results suggest that Q and R may play a role in reducing bifenthrin-induced oxidative stress in vitro. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    Science.gov (United States)

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  5. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol into human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Max Kurlbaum

    Full Text Available Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl-γ-valerolactone (M1, that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.

  6. Physical and Chemical Processes and the Morphofunctional Characteristics of Human Erythrocytes in Hyperglycaemia

    Directory of Open Access Journals (Sweden)

    Victor V. Revin

    2017-08-01

    Full Text Available Background: This study examines the effect of graduated hyperglycaemia on the state and oxygen-binding ability of hemoglobin, the correlation of phospholipid fractions and their metabolites in the membrane, the activity of proteolytic enzymes and the morphofunctional state of erythrocytes.Methods: Conformational changes in the molecule of hemoglobin were determined by Raman spectroscopy. The structure of the erythrocytes was analyzed using laser interference microscopy (LIM. To determine the activity of NADN-methemoglobinreductase, we used the P.G. Board method. The degree of glycosylation of the erythrocyte membranes was determined using a method previously described by Felkoren et al. Lipid extraction was performed using the Bligh and Dyer method. Detection of the phospholipids was performed using V. E. Vaskovsky method.Results: Conditions of hyperglycaemia are characterized by a low affinity of hemoglobin to oxygen, which is manifested as a parallel decrease in the content of hemoglobin oxyform and the growth of deoxyform, methemoglobin and membrane-bound hemoglobin. The degree of glycosylation of membrane proteins and hemoglobin is high. For example, in the case of hyperglycaemia, erythrocytic membranes reduce the content of all phospholipid fractions with a simultaneous increase in lysoforms, free fatty acids and the diacylglycerol (DAG. Step wise hyperglycaemia in incubation medium and human erythrocytes results in an increased content of peptide components and general trypsin-like activity in the cytosol, with a simultaneous decreased activity of μ-calpain and caspase 3.Conclusions: Metabolic disorders and damage of cell membranes during hyperglycaemia cause an increase in the population of echinocytes and spherocytes. The resulting disorders are accompanied with a high probability of intravascular haemolysis.

  7. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    DEFF Research Database (Denmark)

    Brekke, O. L.; Hellerud, B. C.; Christiansen, D.

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant...... antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding...... and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had...

  8. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Ingrid Rossouw

    2015-05-01

    Full Text Available Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  9. Effects of an angelica extract on human erythrocyte aggregation, deformation and osmotic fragility.

    Science.gov (United States)

    Wang, X; Wei, L; Ouyang, J P; Muller, S; Gentils, M; Cauchois, G; Stoltz, J F

    2001-01-01

    In Chinese traditional medicine, angelica is widely used for its known clinical effects of ameliorating blood microcirculation. But the mechanism of these beneficial effects still remains unclear. In this work the rheological behaviour of human erythrocytes treated by angelica was studied in vitro. Normal RBCs incubated with an angelica extract at different concentrations (5, 10 or 20 mg/ml) for 60 min at 37 degrees C and then their aggregation, deformation and osmotic fragility were measured with different recently developed optical techniques, namely Erythroaggregometer (Regulest, Florange, France), LORCA (Mechatronics, Amsterdam) and Fragilimeter (Regulest, Florange, France). Experimental results show that angelica (20 mg/ml) significantly decreased normal RBCs' aggregation speed (p<0.01) and could inhibit the hyperaggregability caused by dextran 500. However, the strength of normal RBCs aggregates were not influenced by angelica. When a calcium ionophore A23187 (1.9 microM) was used to harden cell membrane, angelica (20 mg/ml) could significantly (p<0.01) protect erythrocytes against the loss of their deformability even it had no effects on normal RBCs deformation. Finally angelica (5 and 10 mg/ml) decreased significantly (p<0.01) normal RBCs osmotic fragility. In conclusion angelica plays a rheologically active role on human erythrocytes, and this study suggests a possible mechanism for angelica's positive effects against certain cardiovascular diseases.

  10. 31P-NMR study of human pyrimidine 5'-nucleotidase deficient erythrocytes

    International Nuclear Information System (INIS)

    Higaki, Tsuyoshi; Kagimoto, Tadashi; Nagata, Koichi; Tanase, Sumio; Morino, Yoshimasa; Takatsuki, Kiyoshi

    1982-01-01

    Metabolic disorder of nucleotides in human pyrimidine 5'-nucleotidase (P5N) deficient erythrocytes was studied by 31 P-NMR with high resolution. Identification by combination of high-speed liquid chromatography revealed two-fold increases from the normal in the spectra in the α-, β- and γ-zones of nucleoside triphosphates of P5N deficient erythrocytes, 2,3-diphosphoglycerate shifted to the 0.3 ppm low magnetic field and signals of NAD and UDP-sugars(s) in the diphosphodiester zone. These results were obtained from the 31 P-NMR spectrum about one hour after blood sampling, indicating the high utility of this NMR for the diagnosis of P5N deficiency. (Chiba, N.)

  11. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.

    Science.gov (United States)

    Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V

    2016-03-21

    Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models

    International Nuclear Information System (INIS)

    Zambrano, Pablo; Suwalsky, Mario; Villena, Fernando; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2017-01-01

    Memantine is a NMDA antagonist receptor clinically used for treating Alzheimer's disease. NMDA receptors are present in the human neurons and erythrocyte membranes. The aim of the present study was to investigate the effects of memantine on human erythrocytes. With this purpose, the drug was developed to in vitro interact with human red cells and bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). The latter represent lipids respectively present in both outer and inner monolayers of the red cell membrane. Results obtained by scanning electron microscopy (SEM) showed that memantine changed the normal biconcave shape of red cells to cup-shaped stomatocytes. According to the bilayer-couple hypothesis the drug intercalated into the inner monolayer of the erythrocyte membrane. Experimental results obtained by X-ray diffraction on multibilayers of DMPC and DMPE, and by differential scanning calorimetry on multilamellar vesicles indicated that memantine preferentially interacted with DMPC in a concentration-dependent manner. Thus, it can be concluded that in the low therapeutic plasma concentration of circa 1 μM memantine is located in NMDA receptor channel without affecting the erythrocyte shape. However, at higher concentrations, once the receptors became saturated excess of memantine molecules (20 μM) would interact with phosphoinositide lipids present in the inner monolayer of the erythrocyte membrane inducing the formation of stomatocytes. However, 40–50 μM memantine was required to interact with isolated phosphatidylcholine bilayers. - Highlights: • The interaction of memantine with human erythrocytes and lipid bilayers were assessed. • Memantine induced morphological changes to human erythrocytes. • Memantine interacted with classes of phospholipids present in the erythrocyte membrane. • Results support the hypothesis that memantine interacts with NMDA receptors.

  13. Effects of diethylene glycol butyl ether and butoxyethoxyacetic acid on rat and human erythrocytes.

    Science.gov (United States)

    Udden, M M

    2005-03-28

    The toxicity of diethylene glycol butyl ether (DGBE), and its principal metabolite, butoxyethoxyacetic acid (BEAA), were assessed in vitro for rat and human red blood cells. Rat erythrocytes showed evidence of mild hemolysis when exposed to BEAA at concentrations of 5 or 10 mM for 4 h. BEAA treated rat red blood cells also showed evidence of sub-hemolytic damage: increased spherocytosis, a shift in distribution of cell size to larger cells, a significant increase in mean cellular volume, and a decrease in cellular deformability. However, DGBE had no effect on rat red blood cell morphology, cell size, hemolysis or deformability. There was no hemolysis when human red blood cells were exposed to DGBE or BEAA at the same concentrations. No changes in mean cellular volume, distribution of cell size, or morphologic appearance of human red blood cells were observed. No evidence for decreased deformability of human red blood cells exposed to DGBE or BEAA was found. In conclusion, BEAA has weak hemolytic activity and sub-hemolytic effects in vitro on rat erythrocytes, which is consistent with the finding of mild hemolysis when the parent compound DGBE is administered to rats by gavage. The absence of hemolysis or sub-hemolytic damage when human red blood cells were exposed to BEAA or DGBE in vitro indicates that it is unlikely that hemolysis will occur as a result of human exposure to DGBE.

  14. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Wai-Hong Tham

    2015-12-01

    Full Text Available The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL and reticulocyte binding-like (Rh protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.

  15. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Science.gov (United States)

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  16. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    William P Clafshenkel

    Full Text Available Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP, may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidylsuberate (BS3. A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  17. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study.

    Science.gov (United States)

    Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos

    2017-10-27

    The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.

  18. Production and enzyme engineerinq of human acetylcholinesterase and its mutant derivatives. Midterm report, 15 January 1993-15 July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Shafferman, A.

    1994-07-15

    Specificity determinants of human acetylcholinesterase (HuAChE) towards ligands (substrate and some reversible and irreversible inhibitors) were identified by combination of site-directed mutagenesis, molecular modeling and kinetic studies with enzymes mutated in active center residues Trp86, Glu202, Trp286, Phe295, Phe297, Tyr337, Phe338 and Glu450. Thus, the anionic and hydrophobic subsites as well as the acyl pocket were identified. Enzymes with resistance to OP aging were engineered.The role of N-glycosylation in the function, biosynthesis and stability of HuAChE was examined by site-directed mutagenesis (Asn to GIn substitution) of the three potential N glycosylation sites, Asn265, Asn350 and Asn464. Large scale preparation of recombinant HuAChE was performed utilizing the microcarrier technology. Over 500 milligrams of enzyme was prepared for x-ray crystallography.

  19. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    Science.gov (United States)

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hydrogen peroxide modifies both activity and isoforms of acetylcholinesterase in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Alba Garcimartín

    2017-08-01

    Full Text Available The involvement of cholinergic system and the reactive oxygen species (ROS in the pathogenesis of some degenerative diseases has been widely reported; however, the specific impact of hydrogen peroxide (H2O2 on the acetylcholinesterase (AChE activity as well as AChE isoform levels has not been clearly established. Hence, the purpose of present study is to clarify whether H2O2 alters these parameters.Human neuroblastoma SH-SY5Y cells were treated with H2O2 (1–1000 µM for 24 h and AChE activity and AChE and cytochrome c levels were evaluated. AChE activity was strongly increased from 1 µM to 1000 µM of H2O2. The results of the kinetic study showed that H2O2 affected Vmax but not Km; and also that H2O2 changed the sigmoid kinetic observed in control samples to hyperbolic kinetic. Thus, results suggest that H2O2 acts as an allosteric activators. In addition, H2O2, (100–1000 µM reduced the total AChE content and modified its isoform profile (mainly 50-, 70-, and 132-kDa·H2O2 from 100 µM to 1000 µM induced cytochrome c release confirming cell death by apoptosis. All these results together suggest: a the involvement of oxidative stress in the imbalance of AChE; and b treatment with antioxidant agents may be a suitable strategy to protect cholinergic system alterations promoted by oxidative stress. Keywords: Acetylcholinesterase, Hydrogen peroxide, Alternative splicing, Cell culture, Cell death

  1. Ultrastructure changes produced by the action of uranyl acetate on the human erythrocyte in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, J H

    1975-06-01

    Human erythrocytes exposed in vitro to low concentrations of uranyl ions are immediately changed in shape to stomatocytes. Electron microscope examination demonstrates that cellular damage is confined to the plasma membrane. Endocytosis of the cell membrane produces groups of inside out membrane-lined vesicles within the cell; lipid from the membrane enters the cell, giving rise to intracellular myelin figures, and breaks are seen in the cell membrane. It is proposed that the lipid fraction of the cell membrane is the primary target for damage by uranyl ions.

  2. Ultrastructure changes produced by the action of uranyl acetate on the human erythrocyte in vitro

    International Nuclear Information System (INIS)

    Wyatt, J.H.

    1975-06-01

    Human erythrocytes exposed in vitro to low concentrations of uranyl ions are immediately changed in shape to stomatocytes. Electron microscope examination demonstrates that cellular damage is confined to the plasma membrane. Endocytosis of the cell membrane produces groups of inside out membrane-lined vesicles within the cell; lipid from the membrane enters the cell, giving rise to intracellular myelin figures, and breaks are seen in the cell membrane. It is proposed that the lipid fraction of the cell membrane is the primary target for damage by uranyl ions. (author)

  3. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  4. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert; Hall, Joanna M.; Rangkuti, Farania; Ho, YungShwen; Almond, Neil M.; Mitchell, Graham Howard; Pain, Arnab; Holder, Anthony A.; Blackman, Michael J.

    2012-01-01

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  5. Effects of cobalt-60 ionizing radiation on human erythrocyte and its membrane proteins

    International Nuclear Information System (INIS)

    Amancio, Francisco Fernandes

    1998-01-01

    Ionizing radiation has several uses, as sterilization and radiotherapy, by its effects on living beings. recently, it has been used, at relatively lower doses (25 Gy), on blood for transfusions, mainly to eliminate undesirable graft host reactions, for use in multi transfused or immunocompromised patients. Here, we study the effect of larger doses of cobalt-60 ionizing radiation (25-1600 Gy) on human erythrocytes, by cytometric, physiologic, biochemical and immunological methods, looking for its effects and its detection. The red cells presented a clear dose-dependent increase in this volume, when irradiated in doses higher than 200 Gy, more significant in stored blood, but without hemolysis. Osmotic fragility was increased only after irradiation of more than 400 Gy. By ektacytometry, there was a lower deformability of irradiated red cells, at low stress (0.3 Pa), similar to capillary flow, but without alteration in higher stress (3 Pa), found in cardiac chambers. By SDS-PAGE, it was demonstrated that irradiated isolated erythrocyte membranes had aggregation of spectrin molecules, and decay of bands with lower molecular mass. This effect could be attributed to the radiation-induced hydroxyl radical, by specific scavenger studies. Those modifications were both antigenic and immunogenic in experimental animals, and the induced antibodies recognizes, by ELISA and immunoblot, both native or irradiated membrane proteins. They recognize rather irradiated whole erythrocyte than native ones, by hemagglutination, indirect immunofluorescence or flow cytometry assays. Our data suggests that human red cells could be irradiated at higher doses than those usually employed, with possible effect on other contaminant pathogens, without loss of viability of its use in transfusions. After improvements, irradiation induced epitopes detection could be a new tool in biological dosimetry. (author)

  6. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure

    International Nuclear Information System (INIS)

    Soreq, H.; Ben-Aziz, R.; Prody, C.A.; Seidman, S.; Gnatt, A.; Neville, L.; Lieman-Hurwitz, J.; Lev-Lehman, E.; Ginzberg, D.; Lapidot-Lifson, Y.; Zakut, H.

    1990-01-01

    To study the primary structure of human acetylcholinesterase and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase. However, these cDNA clones were all truncated within a 300-nucleotide-long G + C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the AcChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification

  7. Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia.

    Directory of Open Access Journals (Sweden)

    Irina I Lobysheva

    Full Text Available Impaired nitric oxide (NO-dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR spectroscopy to identify the 5-coordinate α-HbNO (HbNO concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT. Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects. Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals.Mean erythrocyte HbNO concentration at baseline was 219+/-12 nmol/L (n = 50. HbNO levels and reactive hyperemia (RH indexes were higher in female (free of contraceptive pills than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1-2 min of post-occlusion hyperemia (120+/-8% of basal levels; post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH indexes (r = 0.58; P<0.0001 for basal HbNO.The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation.

  8. Grape extract protects against γ-radiation-induced membrane damage strains of human erythrocytes

    International Nuclear Information System (INIS)

    Das, Subir Kumar

    2017-01-01

    The membrane integrity of circulating red blood cells (RBCs) is compromised by the deleterious actions of γ-radiation in humans. Grapes are the richest source of antioxidants due to presence of potentially bioactive phytochemicals. The objective of the present study was to assess the radioprotective actions of grape extracts against the γ-radiation-induced membrane permeability of human erythrocytes. The scavenging activities in seeds of grape in DPPH, hydrogen peroxide and hydroxyl radicals, were higher than skin or pulp of different cultivars. Grape extracts also showed appreciable extent of total antioxidant capacity and effective antihemolytic action. Grape extracts significantly ameliorated the γ-radiation-induced increase of the levels of thiobarbituric acid-reactive substances (TBARS, an index of lipid peroxidation) in the RBC membrane ghosts. Stored blood showed higher levels of K + ion as compared to the normal blood which was elevated by γ-radiation. Membrane ATPase was inhibited by the exposure to γ-radiation.Treatment of RBCs with the grape extracts prior to the exposure of γ-radiation significantly mitigated these changes in the erythrocyte membranes caused by the lower dose of radiation (4 Gy). (author)

  9. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: A modified kinetic approach

    International Nuclear Information System (INIS)

    Worek, Franz; Wille, Timo; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst

    2010-01-01

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning.

  10. The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining.

    Science.gov (United States)

    Sims, K S; Williams, R S

    1990-01-01

    We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.

  11. Reactivation of organophosphate-inhibited human, Cynomolgus monkey, swine and guinea pig acetylcholinesterase by MMB-4: a modified kinetic approach.

    Science.gov (United States)

    Worek, Franz; Wille, Timo; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst

    2010-12-15

    Treatment of poisoning by highly toxic organophosphorus compounds (OP, nerve agents) is a continuous challenge. Standard treatment with atropine and a clinically used oxime, obidoxime or pralidoxime is inadequate against various nerve agents. For ethical reasons testing of oxime efficacy has to be performed in animals. Now, it was tempting to investigate the reactivation kinetics of MMB-4, a candidate oxime to replace pralidoxime, with nerve agent-inhibited acetylcholinesterase (AChE) from human and animal origin in order to provide a kinetic basis for the proper assessment of in vivo data. By applying a modified kinetic approach, allowing the use of necessary high MMB-4 concentrations, it was possible to determine the reactivation constants with sarin-, cyclosarin-, VX-, VR- and tabun-inhibited AChE. MMB-4 exhibited a high reactivity and low affinity towards OP-inhibited AChE, except of tabun-inhibited enzyme where MMB-4 had an extremely low reactivity. Species differences between human and animal AChE were low (Cynomolgus) to moderate (swine, guinea pig). Due to the high reactivity of MMB-4 a rapid reactivation of inhibited AChE can be anticipated at adequate oxime concentrations which are substantially higher compared to HI-6. Additional studies are necessary to determine the in vivo toxicity, tolerability and pharmacokinetics of MMB-4 in humans in order to enable a proper assessment of the value of this oxime as an antidote against nerve agent poisoning. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. An Improved 2-Dimensional Gel Electrophoresis Method for Resolving Human Erythrocyte Membrane Proteins.

    Science.gov (United States)

    Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K

    2017-01-01

    The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for

  13. The effects of chemical and radioactive properties of Tl-201 on human erythrocyte glucose 6-phosphate dehydrogenase activity

    International Nuclear Information System (INIS)

    Sahin, Ali; Senturk, Murat; Ciftci, Mehmet; Varoglu, Erhan; Kufrevioglu, Omer Irfan

    2010-01-01

    Aim: The inhibitory effects of thallium-201 ( 201 Tl) solution on human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) activity were investigated. Methods: For this purpose, erythrocyte G6PD was initially purified 835-fold at a yield of 41.7% using 2',5'-Adenosine diphosphate sepharose 4B affinity gel chromatography. The purification was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed a single band for the final enzyme preparation. The in vitro and in vivo effects of the 201 Tl solution including Tl + , Fe +3 and Cu +2 metals and the in vitro effects of the radiation effect of the 201 Tl solution and non-radioactive Tl + , Fe +3 and Cu +2 metals on human erythrocyte G6PD enzyme were studied. Enzyme activity was determined with the Beutler method at 340 nm using a spectrophotometer. All purification procedures were carried out at +4 deg. C. Results: 201 Tl solution and radiation exposure had inhibitory effects on the enzyme activity. IC 50 value of 201 Tl solution was 36.86 μl ([Tl + ]: 0.0036 μM, [Cu +2 ]: 0.0116 μM, [Fe +3 ]: 0.0132 μM), of human erythrocytes G6PD. Seven human patients were also used for in vivo studies of 201 Tl solution. Furthermore, non-radioactive Tl + , Fe +3 and Cu +2 were found not to have influenced the enzyme in vitro. Conclusion: Human erythrocyte G6PD activity was inhibited by exposure for up to 10 minutes to 0.057 mCi/kg 201 Tl solution. It was detected in in vitro and in vivo studies that the human erythrocyte G6PD enzyme is inhibited due to the radiation effect of 201 Tl solution.

  14. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Kamil Musilek

    2011-03-01

    Full Text Available We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6 to reactivate human acetylcholinesterase (AChE, inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos. We also tested reactivation of human butyrylcholinesterase (BChE with the aim of finding a potent oxime, suitable to serve as a “pseudocatalytic” bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10−5 M had higher reactivation ability than the 10−4 M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10−3–10−7 M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10−5 M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for “pseudocatalytic” bioscavengers with BChE.

  15. Plant-derived human butyrylcholinesterase, but not an organophosphorous-compound hydrolyzing variant thereof, protects rodents against nerve agents

    OpenAIRE

    Geyer, Brian C.; Kannan, Latha; Garnaud, Pierre-Emmanuel; Broomfield, Clarence A.; Cadieux, C. Linn; Cherni, Irene; Hodgins, Sean M.; Kasten, Shane A.; Kelley, Karli; Kilbourne, Jacquelyn; Oliver, Zeke P.; Otto, Tamara C.; Puffenberger, Ian; Reeves, Tony E.; Robbins, Neil

    2010-01-01

    The concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g., plasma-derived butyrylcholinesterase and erythrocytic acetylcholinesterase) or nonexisting (synaptic acetylcholinesterase). Here we identify a unique form of recombinant human butyrylcholinesterase that mimics the native enzyme assembly into tetramers; t...

  16. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  17. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: implications for Alzheimer disease.

    Science.gov (United States)

    Cuya, Teobaldo; Baptista, Leonardo; Celmar Costa França, Tanos

    2017-11-23

    Components of ginger (Zingiber officinale) extracts have been described as potential new drug candidates against Alzheimer disease (AD), able to interact with several molecular targets related to the AD treatment. However, there are very few theoretical studies in the literature on the possible mechanisms of action by which these compounds can work as potential anti-AD drugs. For this reason, we performed here docking, molecular dynamic simulations and mmpbsa calculations on four components of ginger extracts former reported as active inhibitors of human acetylcholinesterase (HssAChE), and compared our results to the known HssAChE inhibitor and commercial drug in use against AD, donepezil (DNP). Our findings points to two among the compounds studied: (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-on and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3- ethoxyphenyl) heptane-3,5-diyl diacetate, as promising new HssAChE inhibitors that could be as effective as DNP. We also mapped the binding of the studied compounds in the different binding pockets inside HssAChE and established the preferred interactions to be favored in the design of new and more efficient inhibitors.

  18. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    Science.gov (United States)

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  19. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    Directory of Open Access Journals (Sweden)

    Hafsa Amat-Ur-Rasool

    Full Text Available Alzheimer's disease (AD, a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh. The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE, an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals and self-drawn ligands were compared with Food and Drug Administration (FDA approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD.

  20. Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: Correlation with various leukemias and abnormal megakaryocytopoiesis

    International Nuclear Information System (INIS)

    Lapidot-Lifson, Y.; Prody, C.A.; Ginzberg, D.; Meytes, D.; Zakut, H.; Soreq, H.

    1989-01-01

    To study the yet unknown role of the ubiquitous family of cholinesterases (ChoEases) in developing blood cells, the recently isolated cDNAs encoding human acetylcholinesterase and butyrylcholinesterase were used in blot hybridization with peripheral blood DNA from various leukemic patients. Hybridization signals and modified restriction patterns were observed with both cDNA probes in 4 of the 16 leukemia DNA preparations examined. These reflected the amplification of the corresponding AcCho-Ease and BtChoEase genes (ACHE and CHE) and alteration in their structure. Parallel analysis of 30 control samples revealed nonpolymorphic, much weaker hybridization signals for each of the probes. In view of previous reports on the effect of acetylcholine analogs and ChoEase inhibitors in the induction of megakaryocytopoiesis and production of platelets in the mouse. The authors further searched for such phenomena in nonleukemic patients with platelet production disorders. Amplifications of both ACHE and CHE genes were found in 2 of the 4 patients so far examined. Pronounced coamplification of these two related but distinct genes in correlation with pathological production of blood cells suggests a functional role for members of the ChoEase family in megakaryocytopoiesis and raises the question whether the coamplification of these genes could be casually involved in the etiology of hemocytopoietic disorders

  1. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-01-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC 50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined

  2. Acetylcholinesterase Reactivators (HI-6, Obidoxime, Trimedoxime, K027, K075, K127, K203, K282: Structural Evaluation of Human Serum Albumin Binding and Absorption Kinetics

    Directory of Open Access Journals (Sweden)

    Filip Zemek

    2013-08-01

    Full Text Available Acetylcholinesterase (AChE reactivators (oximes are compounds predominantly targeting the active site of the enzyme. Toxic effects of organophosphates nerve agents (OPNAs are primarily related to their covalent binding to AChE and butyrylcholinesterase (BChE, critical detoxification enzymes in the blood and in the central nervous system (CNS. After exposure to OPNAs, accumulation of acetylcholine (ACh overstimulates receptors and blocks neuromuscular junction transmission resulting in CNS toxicity. Current efforts at treatments for OPNA exposure are focused on non-quaternary reactivators, monoisonitrosoacetone oximes (MINA, and diacylmonoxime reactivators (DAM. However, so far only quaternary oximes have been approved for use in cases of OPNA intoxication. Five acetylcholinesterase reactivator candidates (K027, K075, K127, K203, K282 are presented here, together with pharmacokinetic data (plasma concentration, human serum albumin binding potency. Pharmacokinetic curves based on intramuscular application of the tested compounds are given, with binding information and an evaluation of structural relationships. Human Serum Albumin (HSA binding studies have not yet been performed on any acetylcholinesterase reactivators, and correlations between structure, concentration curves and binding are vital for further development. HSA bindings of the tested compounds were 1% (HI-6, 7% (obidoxime, 6% (trimedoxime, and 5%, 10%, 4%, 15%, and 12% for K027, K075, K127, K203, and K282, respectively.

  3. Influence of high energy electron irradiation and gamma irradiation on the osmotic resistance of human erythrocyte membranes

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Moraru, Rodica; Popescu, Alina; Morariu, V. V.

    1998-01-01

    The effects of 5 MeV electrons and of gamma irradiation at 0 deg. C on the osmotic fragility of human erythrocyte membranes are presented. Both electron and gamma radiation in the range 0-400 Gy induced no hemolysis indicating that the membrane modifications due to radiation interaction do not reach a critical point as to cause swelling of the cells and subsequent lysis. The osmotic stress experiments performed after irradiation showed that the gamma irradiated erythrocytes exhibited an almost similar sigmoidal behavior for all irradiation doses, whereas the electron irradiated samples showed a much larger increase in hemolysis degree and, in the case of a given electron dose (100 Gy), the hemolysis was found much smaller than for the control sample (a similar behavior of the erythrocytes was found in the case of microwave irradiation at temperatures under 0 deg. C). Our experimental data suggest that electron radiation and gamma radiation have different impacts on the erythrocyte membrane fluidity, involving, probably, the different rate of energy deposition in the samples and the direct interaction of electrons with the erythrocyte membranes. (authors)

  4. Microcalorimetric measurements of heat production in human erythrocytes. IV. Comparison between different calorimetric techniques, suspension media, and preparation methods.

    Science.gov (United States)

    Monti, M; Wadsö, I

    1976-10-01

    Heat production in human erythrocytes from healthy subjects has been measured under different experimental conditions. Simultaneous measurements were made on the same samples using different types of microcalorimeters: a static ampoule calorimeter, an air perfusion calorimeter, and a flow calorimeter. Obtained heat effect values for specified standard conditions, P degrees, were within uncertainty limits the same for the different calorimeters. Cells were suspended either in autologous plasma or in a phosphate buffer. P degrees values for buffer suspensions were significantly higher than those for plasma suspensions. Erythrocyte samples prepared by the column adsorption technique gave higher P degrees values than those obtained by a conventional centrifugation procedure.

  5. Effect of some radiosensitising drugs on human erythrocyte membrane - - spin label study

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, K P [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1982-02-01

    Electron spin resonance and spin label techniques have been employed to study the effects of local anaesthetic drugs, procaine and tetracaine, on human erythrocyte membrane. Both the drugs altered the protein and lipid arrangements in the membrane and these changes were reversible. Procaine had greater effect on the labels attached to proteins while tetracaine fluidized interior of lipid bilayer to a greater extent. The differential effects of these drugs on the protein and lipid labels have been interpreted in terms of their relative penetrability in the membrane. Present results have explained that radiation induced enhanced killing of cells in the presence of these drugs might be due to the alterations in membrane, particularly proteins both structural and enzymatic. In addition, these results indicate a possible relationship between drug-induced structural changes in membrane and their anaesthetic potency.

  6. Membrane-bound 2,3-diphosphoglycerate phosphatase of human erythrocytes.

    Science.gov (United States)

    Schröter, W; Neuvians, M

    1970-12-01

    Gradual osmotic hemolysis of human erythrocytes reduces the cell content of whole protein, hemoglobin, 2,3-diphosphoglycerate and triosephosphate isomerase extensively, but not that of membrane protein and 2,3-diphosphoglycerate phosphatase. After the refilling of the ghosts with 2,3-diphosphoglycerate and reconstitution of the membrane, the 2,3-diphosphoglycerate phosphatase activity equals that of intact red cells. The membrane-bound 2,3-diphosphoglycerate phosphatase can be activated by sodium hyposulfite. The enzyme system of ghosts seems to differ from that of intact red cells with regard to the optima of pH and temperature. It remains to be elucidated if the membrane binding of the 2,3-diphosphoglycerate phosphatase is related to the transfer of inorganic phosphate across the red cell membrane.

  7. Study of kinetics of 2,3-diphosphoglycerate degradation by 31P-NMR technique in depleted human erythrocytes

    International Nuclear Information System (INIS)

    Ataullakhanov, F.I.; Vitvitskii, V.M.; Dubinskaya, E.I.; Dubinskii, V.Z.

    1986-01-01

    The kinetics of 2,3-diphosphoglycerate degradation in depleted human erythrocytes was studied by the high-resolution 31 P-NMR technique. A plateau was found on the kinetic curve in the first 1.5-2 h after the beginning of depletion. The mechanisms that may be responsible for the existence of such a plateau are discussed

  8. EFFECT OF PESTICIDES ON RAT (Rattus norvegicus ERYTHROCYTES ANTIOXIDANT ENZYMES IN VITRO

    Directory of Open Access Journals (Sweden)

    Jasna Friščić

    2014-10-01

    Full Text Available Abstract: In the last century, maximum in herbicide production was achieved. Growing use of herbicides initiated the need for continuous evaluation of damaging effects of herbicides on human health and environment. Paraquat is the trade name for N,N′-dimethyl-4,4′-bipyridinium dichloride and one of the most widely used herbicides in the world. Although mechanism of paraquat toxicity remains undefined, a great portion of toxicity is attributed to the process of redox cycling. In this research, rat erythrocytes were exposed to various paraquat concentrations (0, 0.25, 0.5, 0.75, 1.25 mM. Changes in antioxidant enzymes activity, catalase and superoxide dismutase were determined, and also the activity of erythrocyte acetylcholinesterase. Obtained results show damaging effects of paraquat on erythrocytes due to oxidative stress.

  9. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  10. Hydroxychloroquine binding to cytoplasmic domain of Band 3 in human erythrocytes: Novel mechanistic insights into drug structure, efficacy and toxicity.

    Science.gov (United States)

    Nakagawa, Mizuki; Sugawara, Kotomi; Goto, Tatsufumi; Wakui, Hideki; Nunomura, Wataru

    2016-05-13

    Hydroxychloroquine (HCQ) is a widely used drug in the treatment of autoimmune diseases, such as arthritis and systemic lupus erythematosus. It has also been prescribed for the treatment of malaria owing to its lower toxicity compared to its closely related compound chloroquine (CQ). However, the mechanisms of action of HCQ in erythrocytes (which bind preferentially this drug) have not been documented and the reasons underlying the lower side effects of HCQ compared to CQ remain unclear. Here we show that, although the activity of erythrocyte lactate dehydrogenase (LDH), but not GAPDH, was inhibited by both HCQ and CQ in vitro, LDH activity in erythrocytes incubated with 20 mM HCQ was not significantly reduced within 5 h in contrast to CQ did. Using HCQ coupled Sepharose chromatography (HCQ-Sepharose), we identified Band 3, spectrin, ankyrin, protein 4.1R and protein 4.2 as HCQ binding proteins in human erythrocyte plasma membrane. Recombinant cytoplasmic N-terminal 43 kDa domain of Band 3 bound to HCQ-Sepharose and was eluted with 40 mM (but not 20 mM) HCQ. Band 3 transport activity was reduced by only 23% in the presence of 20 mM HCQ. Taken together, these data demonstrate that HCQ binds to the cytoplasmic N-terminal domain of Band 3 in human erythrocytes but does not inhibit dramatically its transport activity. We hypothesize that the trapping of HCQ on Band 3 contributes to the lower side effects of the drug on energy production in erythrocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type

    Energy Technology Data Exchange (ETDEWEB)

    Tomkinson, B.; Wernstedt, C.; Hellman, U.; Zetterqvist, Oe.

    1987-11-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with (/sup 3/H)diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases.

  12. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level.

    Science.gov (United States)

    Yang, Wei; Fu, Juan; Yu, Miao; Huang, Qingde; Wang, Di; Xu, Jiqu; Deng, Qianchun; Yao, Ping; Huang, Fenghong; Liu, Liegang

    2012-07-08

    The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia.

  13. Isolation and characterization of cDNA clones for human erythrocyte β-spectrin

    International Nuclear Information System (INIS)

    Prchal, J.T.; Morley, B.J.; Yoon, S.H.; Coetzer, T.L.; Palek, J.; Conboy, J.G.; Kan, Y.W.

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical α (M/sub r/ 240,000) and β (M/sub r/ 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. The authors report here the isolation and characterization of a human erythroid-specific β-spectrin cDNA clone that encodes parts of the β-9 through β-12 repeat segments. This cDNA was used as a hybridization probe to assign the β-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte β-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the β-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities

  14. Detection of antibodies in human serum using trimellityl-erythrocytes: direct and indirect haemagglutination and haemolysis.

    Science.gov (United States)

    Turner, E S; Pruzansky, J J; Patterson, R; Zeiss, C R; Roberts, M

    1980-02-01

    Utilizing trimellityl-erythrocytes (TM-E), antibodies were detected in sera of seven workers with trimellitic anhydride (TMA) induced airway syndromes by direct haemagglutination, indirect haemagglutination with anti-human IgG, IgA or IgM or by haemolysis. Detectable levels of antibody were obtained with all three methods. The most sensitive technique was indirect haemagglutination using anti-IgG. When added as an inhibitor, TM-human serum albumin produced a 10- to 800-fold reduction in titres. TM-ovalbumin of similar epitope density was less inhibitory and sodium trimellitate the least inhibitory on a molar basis. All of the assays using haptenized human red cells were also capable of detecting anti-TM antibodies in Rhesus monkeys whose airways had been exposed to TMA. These assays are useful for detecting anti-TM antibodies and may also be adapted to demonstrate antibodies induced against other inhaled haptens in sera of environmentally exposed individuals or in animal models of such exposure.

  15. Bio-field array: a dielectrophoretic electromagnetic toroidal excitation to restore and maintain the golden ratio in human erythrocytes.

    Science.gov (United States)

    Purnell, Marcy C; Butawan, Matthew B A; Ramsey, Risa D

    2018-06-01

    Erythrocytes must maintain a biconcave discoid shape in order to efficiently deliver oxygen (O 2 ) molecules and to recycle carbon dioxide (CO 2 ) molecules. The erythrocyte is a small toroidal dielectrophoretic (DEP) electromagnetic field (EMF) driven cell that maintains its zeta potential (ζ) with a dielectric constant (ԑ) between a negatively charged plasma membrane surface and the positively charged adjacent Stern layer. Here, we propose that zeta potential is also driven by both ferroelectric influences (chloride ion) and ferromagnetic influences (serum iron driven). The Golden Ratio, a function of Phi φ, offers a geometrical mathematical measure within the distinct and desired curvature of the red blood cell that is governed by this zeta potential and is required for the efficient recycling of CO 2 in our bodies. The Bio-Field Array (BFA) shows potential to both drive/fuel the zeta potential and restore the Golden Ratio in human erythrocytes thereby leading to more efficient recycling of CO 2 . Live Blood Analyses and serum CO 2 levels from twenty human subjects that participated in immersion therapy sessions with the BFA for 2 weeks (six sessions) were analyzed. Live Blood Analyses (LBA) and serum blood analyses performed before and after the BFA immersion therapy sessions in the BFA pilot study participants showed reversal of erythrocyte rheological alterations (per RBC metric; P = 0.00000075), a morphological return to the Golden Ratio and a significant decrease in serum CO 2 (P = 0.017) in these participants. Immersion therapy sessions with the BFA show potential to modulate zeta potential, restore this newly defined Golden Ratio and reduce rheological alterations in human erythrocytes. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Molecular cloning of human protein 4.2: A major component of the erythrocyte membrane

    International Nuclear Information System (INIS)

    Sung, L.A.; Chien, Shu; Lambert, K.; Chang, Longsheng; Bliss, S.A.; Bouhassira, E.E.; Nagel, R.L.; Schwartz, R.S.; Rybicki, A.C.

    1990-01-01

    Protein 4.2 (P4.2) comprises ∼5% of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. The authors now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-air insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of ∼77 and ∼80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human RBC P4.2 has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates

  17. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase

    NARCIS (Netherlands)

    Koning, M.C. de; Grol, M. van; Noort, D.

    2011-01-01

    Commonly employed pyridinium-oxime (charged) reactivators of nerve agent inhibited acetylcholinesterase (AChE) do not readily pass the blood brain barrier (BBB) because of the presence of charge(s). Conversely, non-ionic oxime reactivators often suffer from a lack of reactivating potency due to a

  18. Docking and molecular dynamics studies of peripheral site ligand–oximes as reactivators of sarin-inhibited human acetylcholinesterase

    NARCIS (Netherlands)

    Almeida, J.S.F.D. de; Cuya Guizado, T.R.; Guimarães, A.P.; Ramalho, T.C.; Gonçalves, A.S.; Koning, M.C. de; França, T.C.C.

    2016-01-01

    In the present work, we performed docking and molecular dynamics simulations studies on two groups of long-tailored oximes designed as peripheral site binders of acetylcholinesterase (AChE) and potential penetrators on the blood brain barrier. Our studies permitted to determine how the tails anchor

  19. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    Directory of Open Access Journals (Sweden)

    Neha Qasim

    Full Text Available Creatine (Cr is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane dihydrochloride (AAPH and hydrogen peroxide (H2O2 in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their

  20. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  1. NMR studies of human blood cells in health and disease. I. Alterations of the plasma membrane water permeability of erythrocytes

    International Nuclear Information System (INIS)

    Katona, Eva; Doaga, I. O.; Radulet, Diana; Caplanusi, A.; Negreanu, Cezarina; Mihele, Denisa

    1999-01-01

    Alterations in pathological cases of the human erythrocyte membrane water permeability were investigated by using a Mn 2+ -doping 1 H nuclear magnetic resonance (NMR) technique. The temperature dependence of the apparent water diffusional exchange through erythrocyte membranes in chronic hepatitis, diabetes, dyslipidemia and essential hypertension was measured and compared to healthy controls. Using moderate manganese concentrations (9-18 mM) and Carr-Purcell-Meiboom-Gill pulse sequences with a large number of refocusing π pulses and short interpulse delay (100 μs) our values of the water exchange times (τ e ) across erythrocyte membranes, obtained within a 10 min time period following the moment of doping, were independent of the actual manganese concentration and the Arrhenius plot for water exchange was linear over the range of 22-42 deg C. A marked increase of the water exchange times values was observed in all studied disease states. In case of chronic hepatitis, diabetes and dyslipidemia the changes observed in transmembrane water exchange time were associated with significant increase in the apparent activation energy of the diffusional water permeability thus, pointing out alterations in the function of the erythrocyte water channel. (author)

  2. NMR studies of human blood cells in health and disease. I. Alterations of the plasma membrane water permeability of erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Katona, Eva; Doaga, I O; Radulet, Diana [Department of Biophysics, Carol Davila University of Medicine and Pharmaceutics, 8 Blvd. Eroilor Sanitari, POB 15-205, RO-76241 Bucharest (Romania); Caplanusi, A [Medical Biochemistry Department, Carol Davila University of Medicine and Pharmaceutics, 8 Blvd. Eroilor Sanitari, POB 15-205, RO-76241 Bucharest (Romania); Negreanu, Cezarina [Division of New Energy Conversion Methods, Institute of Research and Design for Thermoenergetic Equipment, ICPET-CERCETARE, Bucharest (Romania); Mihele, Denisa [Clinical Laboratory Department, Carol Davila University of Medicine and Pharmaceutics, 8 Blvd. Eroilor Sanitari, POB 15-205, RO-76241 Bucharest (Romania)

    1999-07-01

    Alterations in pathological cases of the human erythrocyte membrane water permeability were investigated by using a Mn{sup 2+}-doping {sup 1}H nuclear magnetic resonance (NMR) technique. The temperature dependence of the apparent water diffusional exchange through erythrocyte membranes in chronic hepatitis, diabetes, dyslipidemia and essential hypertension was measured and compared to healthy controls. Using moderate manganese concentrations (9-18 mM) and Carr-Purcell-Meiboom-Gill pulse sequences with a large number of refocusing {pi} pulses and short interpulse delay (100 {mu}s) our values of the water exchange times ({tau}{sub e}) across erythrocyte membranes, obtained within a 10 min time period following the moment of doping, were independent of the actual manganese concentration and the Arrhenius plot for water exchange was linear over the range of 22-42 deg C. A marked increase of the water exchange times values was observed in all studied disease states. In case of chronic hepatitis, diabetes and dyslipidemia the changes observed in transmembrane water exchange time were associated with significant increase in the apparent activation energy of the diffusional water permeability thus, pointing out alterations in the function of the erythrocyte water channel. (author)

  3. SO4= uptake and catalase role in preconditioning after H2O2-induced oxidative stress in human erythrocytes.

    Science.gov (United States)

    Morabito, Rossana; Remigante, Alessia; Di Pietro, Maria Letizia; Giannetto, Antonino; La Spada, Giuseppina; Marino, Angela

    2017-02-01

    Preconditioning (PC) is an adaptive response to a mild and transient oxidative stress, shown for the first time in myocardial cells and not described in erythrocytes so far. The possible adaptation of human erythrocytes to hydrogen peroxide (H 2 O 2 )-induced oxidative stress has been here verified by monitoring one of band 3 protein functions, i.e., Cl - /HCO 3 - exchange, through rate constant for SO 4 = uptake measurement. With this aim, erythrocytes were exposed to a mild and transient oxidative stress (30 min to either 10 or 100 μM H 2 O 2 ), followed by a stronger oxidant condition (300- or, alternatively, 600-μM H 2 O 2 treatment). SO 4 = uptake was measured by a turbidimetric method, and the possible role of catalase (CAT, significantly contributing to the anti-oxidant system in erythrocytes) in PC response has been verified by measuring the rate of H 2 O 2 degradation. The preventive exposure of erythrocytes to 10 μM H 2 O 2 , and then to 300 μM H 2 O 2 , significantly ameliorated the rate constant for SO 4 = uptake with respect to 300 μM H 2 O 2 alone, showing thus an adaptive response to oxidative stress. Our results show that (i) SO 4 = uptake measurement is a suitable model to monitor the effects of a mild and transient oxidative stress in human erythrocytes, (ii) band 3 protein anion exchange capability is retained after 10 μM H 2 O 2 treatment, (iii) PC response induced by the 10 μM H 2 O 2 pretreatment is clearly detected, and (iv) PC response, elicited by low-concentrated H 2 O 2 , is mediated by CAT enzyme and does not involve band 3 protein tyrosine phosphorylation pathways. Erythrocyte adaptation to a short-term oxidative stress may serve as a basis for future studies about the impact of more prolonged oxidative events, often associated to aging, drug consumption, chronic alcoholism, hyperglycemia, or neurodegenerative diseases.

  4. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.

    Science.gov (United States)

    Petersen, A; Kristensen, S R; Jacobsen, J P; Hørder, M

    1990-08-17

    Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.

  5. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  6. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes

    DEFF Research Database (Denmark)

    Beaudet, Julie M; Mansur, Leandra; Joo, Eun Ji

    2014-01-01

    expressing VAR2CSA on the erythrocyte surface. This protein adheres to a low-sulfated chondroitin sulfate-A found in placental tissue causing great harm to both mother and developing fetus. In rare cases, the localization of infected erythrocytes to the placenta can even result in the vertical transmission...... placental tissue accessible to parasites in the bloodstream, suggesting it is the primary receptor for parasite infected red blood cells....

  7. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    Science.gov (United States)

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-01-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes. Images PMID:152321

  8. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    Science.gov (United States)

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-11-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes.

  9. Haemolytic effect of saponin extract from Vernonia amygdalina (bitter leaf) on human erythrocyte

    International Nuclear Information System (INIS)

    Oboh, G.

    2001-09-01

    Leaves of Veronia amygdalina were extracted using ethanol and aqueous extraction respectively. The physico-chemical analysis of the extracts revealed that both extracts had darkish brown colour, sweetish bitter taste, pungent smell, positive froth and haemolytic test, this indicated the presence of saponin in both extracts. The result of the haemolytic assay revealed that blood group-O had the highest susceptibility to the saponin-induced haemolysis, while blood group-A had the least susceptibility to haemolysis among the blood groups tested. Genotype-AA had the highest resistant to haemolysis by Vernonia amygdalina saponin induced haemolysis, while genotype-SS had the least resistant to haemolysis among the genotype tested. Furthermore the ethanol extract had a higher haemolytic activity than the aqueous extract on the various human erythrocyte analysed. This study revealed that Vernonia amygdalina had haemolytic substance, this substance had a high haemolytic effect on blood group-O and genotype-SS. The active haemolytic substance in both extracts was identified to be saponin. (author)

  10. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    Science.gov (United States)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-10-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu3+- or Tb3+-doped GdF3-, NaGdF4-, and BaGdF5-based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF5-based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF5-based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles' magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization.

  11. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides

    International Nuclear Information System (INIS)

    Grzyb, Tomasz; Mrówczyńska, Lucyna; Szczeszak, Agata; Śniadecki, Zbigniew; Runowski, Marcin; Idzikowski, Bogdan; Lis, Stefan

    2015-01-01

    Multifunctional nanoparticles exhibiting red or green luminescence properties and magnetism were synthesized and thoroughly analyzed. The hydrothermal method was used for the synthesis of Eu 3+ - or Tb 3+ -doped GdF 3 -, NaGdF 4 -, and BaGdF 5 -based nanocrystalline materials. The X-ray diffraction patterns of the samples confirmed the desired compositions of the materials. Transmission electron microscope images revealed the different morphologies of the products, including the nanocrystal sizes, which varied from 12 nm in the case of BaGdF 5 -based nanoparticles to larger structures with dimensions exceeding 300 nm. All of the samples presented luminescence under ultraviolet irradiation, as well as when the samples were in the form of water colloids. The highest luminescence was observed for BaGdF 5 -based materials. The obtained nanoparticles exhibited paramagnetism along with probable evidence of superparamagnetic behavior at low temperatures. The particles’ magnetic characteristics were also preserved for samples in the form of a suspension in distilled water. The cytotoxicity studies against the human erythrocytes indicated that the synthesized nanoparticles are non-toxic because they did not cause the red blood cells shape changes nor did they alter their membrane structure and permeabilization

  12. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Directory of Open Access Journals (Sweden)

    Douglas R Boettner

    2008-01-01

    Full Text Available Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK, was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i incubation of ameba with anti-PATMK antibodies; (ii PATMK mRNA knock-down using a novel shRNA expression system; and (iii expression of a carboxy-truncation of PATMK (PATMK(delta932. Expression of the carboxy-truncation of PATMK(delta932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  13. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Science.gov (United States)

    Boettner, Douglas R; Huston, Christopher D; Linford, Alicia S; Buss, Sarah N; Houpt, Eric; Sherman, Nicholas E; Petri, William A

    2008-01-01

    Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMK(delta932)). Expression of the carboxy-truncation of PATMK(delta932) also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  14. Inositol phosphates influence the membrane bound Ca2+/Mg2+ stimulated ATPase from human erythrocyte membranes

    International Nuclear Information System (INIS)

    Kester, M.; Ekholm, J.; Kumar, R.; Hanahan, D.J.

    1986-01-01

    The modulation by exogenous inositol phosphates of the membrane Ca 2+ /Mg 2+ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl 2 , 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na 2 ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl 2 and EGTA. The ATPase assay was linear with time at 44 0 C. The inositol phosphates were commercially obtained and were also prepared from 32 P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP 3 ) elevated the Ca 2+ /Mg 2+ ATPase activity over basal levels in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na + /K + -ATPase and a Mg 2+ ATPase were not effected by IP 3 . Ca 2+ /Mg 2+ APTase activity with IP 2 or IP 3 could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP 3 was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP 3 stimulated Ca 2+ /Mg 2+ ATPase

  15. Calorimetric study on human erythrocyte glycolysis. Heat production in various metabolic conditions.

    Science.gov (United States)

    Minakami, S; de Verdier, C H

    1976-06-01

    The heat production of human erythrocytes was measured on a flow microcalorimeter with simultaneous analyses of lactate and other metabolites. The heat production connected with the lactate formation was about 17 kcal (71 kJ) per mol lactate formed which corresponded to the sum of heat production due to the formation of lactate from glucose and the heat production due to neutralization. The heat production rate increased as the pH of the suspension increased, corresponding to the increase in lactate formation. Glycolytic inhibitors such as fluoride and monoiodoacetate caused a decrease in the rate of heat production, whereas arsenate induced a large transient increase in heat production associated with a transient increase in lactate formation. Decrease in pyruvate concentration was usually associated with increase in heat production, although the decreased pyruvate concentration was coupled with formation of 2,3-bisphosphoglycerate. When inosine, dihydroxyacetone or D-glyceraldehyde was used as a substrate, an increase in the heat production rate was observed. Addition of methylene blue caused an oxygen uptake which was accompanied by a remarkable increase in heat production rate corresponding to about 160 kcal (670 kJ) per mol oxygen consumed. The value for heat production in red cells in the above-mentioned metabolic conditions was considered in relation to earlier known data on free energy and enthalpy changes of the different metabolic steps in the glycolytic pathway.

  16. New human erythrocyte protein with binding sites for both spectrin and calmodulin

    International Nuclear Information System (INIS)

    Gardner, K.; Bennett, V.

    1986-01-01

    A new cytoskeletal protein that binds calmodulin has been purified to greater than 95% homogeneity from human erythrocyte cytoskeletons. The protein is a heterodimer with subunits of 103,000 and 97,000 and M/sub r/ = 197,000 calculated from its Stokes radius of 6.9 nm and sedimentation coefficient of 6.8. A binding affinity of this protein for calmodulin has been estimated to be 230 nM by displacement of two different concentrations of 125 I-azidocalmodulin with increasing concentrations of unmodified calmodulin followed by Dixon plot analysis. This protein is present in red cells at approximately 30,000 copies per cell and contains a very tight binding site(s) on cytoskeletons. The protein can be only partially solubilized from isolated cytoskeletons in buffers containing high salt, but can be totally solubilized from red cell ghost membranes by extraction in low ionic strength buffers. Affinity purified IgG against this calmodulin-binding protein identifies crossreacting polypeptide(s) in brain, kidney, testes and retina. Visualization of the calmodulin-binding protein by negative staining, rotary shadowing and unidirectional shadowing indicate that it is a flattened circular molecule with molecular height of 5.4 nm and a diameter of 12.4 nm. Preliminary cosedimentation studies with purified spectrin and F-actin indicate that the site of interaction of this calmodulin-binding protein with the cytoskeleton resides on spectrin

  17. In situ assembly states of (Na+,K+)-pump ATPase in human erythrocytes. Radiation target size analyses

    International Nuclear Information System (INIS)

    Hah, J.; Goldinger, J.M.; Jung, C.Y.

    1985-01-01

    The in situ assembly state of the (Na+,K+)-pump ATPase of human erythrocytes was studied by applying the classical target theory to radiation inactivation data of the ouabain-sensitive sodium efflux and ATP hydrolysis. Erythrocytes and their extensively washed white ghosts were irradiated at -45 to -50 degrees C with an increasing dose of 1.5-MeV electron beam, and after thawing, the Na+-pump flux and/or enzyme activities were assayed. Each activity measured was reduced as a simple exponential function of radiation dose, from which a radiation sensitive mass (target size) was calculated. When intact cells were used, the target sizes for the pump and for the ATPase activities were equal and approximately 620,000 daltons. The target size for the ATPase activity was reduced to approximately 320,000 daltons if the cells were pretreated with digitoxigenin. When ghosts were used, the target size for the ATPase activity was again approximately 320,000 daltons. Our target size measurements together with other information available in literature suggest that (Na+,K+)-pump ATPase may exist in human erythrocytes either as a tetramer of alpha beta or as a dimer of alpha beta in tight association with other protein mass, probably certain glycolytic enzymes, and that this tetrameric or heterocomplex association is dissociable by digitoxigenin treatment or by extensive wash during ghost preparation

  18. Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene.

    Science.gov (United States)

    Zámbó, Boglárka; Várady, György; Padányi, Rita; Szabó, Edit; Németh, Adrienn; Langó, Tamás; Enyedi, Ágnes; Sarkadi, Balázs

    2017-07-01

    Plasma membrane Ca 2+ -ATPases are key calcium exporter proteins in most tissues, and PMCA4b is the main calcium transporter in the human red blood cells (RBCs). In order to assess the expression level of PMCA4b, we have developed a flow cytometry and specific antibody binding method to quantitatively detect this protein in the erythrocyte membrane. Interestingly, we found several healthy volunteers showing significantly reduced expression of RBC-PMCA4b. Western blot analysis of isolated RBC membranes confirmed this observation, and indicated that there are no compensatory alterations in other PMCA isoforms. In addition, reduced PMCA4b levels correlated with a lower calcium extrusion capacity in these erythrocytes. When exploring the potential genetic background of the reduced PMCA4b levels, we found no missense mutations in the ATP2B4 coding regions, while a formerly unrecognized minor haplotype in the predicted second promoter region closely correlated with lower erythrocyte PMCA4b protein levels. In recent GWA studies, SNPs in this ATP2B4 haplotype have been linked to reduced mean corpuscular hemoglobin concentrations (MCHC), and to protection against malaria infection. Our data suggest that an altered regulation of gene expression is responsible for the reduced RBC-PMCA4b levels that is probably linked to the development of human disease-related phenotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

    Science.gov (United States)

    Vandorpe, David H; Xu, Chang; Shmukler, Boris E; Otterbein, Leo E; Trudel, Marie; Sachs, Frederick; Gottlieb, Philip A; Brugnara, Carlo; Alper, Seth L

    2010-01-15

    Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca(2+)] ([Ca(2+)](i)) and subsequent activation of K(Ca) 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration. We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca(2+)- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 microM), dipyridamole (100 microM), DIDS (100 microM), and carbon monoxide (25 ppm pretreatment). Deoxygenation also elevates sickle erythrocyte [Ca(2+)](i), in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca(2+)](i) in mouse sickle erythrocytes did not require KCa3.1 activity. The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca(2+)-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca(2+) for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.

  20. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

    Directory of Open Access Journals (Sweden)

    David H Vandorpe

    2010-01-01

    Full Text Available Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle, leading to elevated intracellular [Ca(2+] ([Ca(2+](i and subsequent activation of K(Ca 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration.We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca(2+- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 microM, dipyridamole (100 microM, DIDS (100 microM, and carbon monoxide (25 ppm pretreatment. Deoxygenation also elevates sickle erythrocyte [Ca(2+](i, in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca(2+](i in mouse sickle erythrocytes did not require KCa3.1 activity.The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca(2+-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca(2+ for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.

  1. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the 'Sinton and Mulligan' Stipplings in the Cytoplasm of Monkey and Human Erythrocytes.

    Science.gov (United States)

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J; Kaneko, Osamu

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as 'Sinton and Mulligan' stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum.

  2. Plasmodium knowlesi Skeleton-Binding Protein 1 Localizes to the ‘Sinton and Mulligan’ Stipplings in the Cytoplasm of Monkey and Human Erythrocytes

    Science.gov (United States)

    Lucky, Amuza Byaruhanga; Sakaguchi, Miako; Katakai, Yuko; Kawai, Satoru; Yahata, Kazuhide; Templeton, Thomas J.

    2016-01-01

    The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P. falciparum, the exported protein skeleton-binding protein 1 (PfSBP1) is involved in the trafficking of erythrocyte surface ligands and localized to membranous structures within the infected erythrocyte, termed Maurer's clefts. In this study, we analyzed SBP1 orthologs across the Plasmodium genus by BLAST analysis and conserved gene synteny, which were also recently described by de Niz et al. (2016). To evaluate the localization of an SBP1 ortholog, we utilized the zoonotic malaria parasite, Plasmodium knowlesi. Immunofluorescence assay of transgenic P. knowlesi parasites expressing epitope-tagged recombinant PkSBP1 revealed a punctate staining pattern reminiscent of Maurer's clefts, following infection of either monkey or human erythrocytes. The recombinant PkSBP1-positive puncta co-localized with Giemsa-stained structures, known as ‘Sinton and Mulligan’ stipplings. Immunoelectron microscopy also showed that recombinant PkSBP1 localizes within or on the membranous structures akin to the Maurer's clefts. The recombinant PkSBP1 expressed in P. falciparum-infected erythrocytes co-localized with PfSBP1 at the Maurer's clefts, indicating an analogous trafficking pattern. A member of the P. knowlesi 2TM protein family was also expressed and localized to membranous structures in infected monkey erythrocytes. These results suggest that the trafficking machinery and induced erythrocyte cellular structures of P. knowlesi are similar following infection of both monkey and human erythrocytes, and are conserved with P. falciparum. PMID:27732628

  3. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects.

    Directory of Open Access Journals (Sweden)

    Galateja Jordakieva

    Full Text Available BACKGROUND AND AIMS: Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC. METHODS AND RESULTS: BALB/c mice (n = 20 were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10 or the non-specific antigen ovalbumin (OVA (n = 10. A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42 at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. CONCLUSION: Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens

  4. [Mechanism of changes in the rate of glycolysis and levels of ATP and 2,3-diphosphoglycerate in human erythrocytes during aging].

    Science.gov (United States)

    Bogatskaia, L N; Pisaruk, A V

    1987-01-01

    Reasons which have induced changes in the glycolysis rate, ATP and 2,3-diphosphoglycerate content in human erythrocytes with ageing are studied. A fall of the hexokinase activity is shown to be one of the reasons of a significant decrease in the glycolysis rate. The total ATPase activity in erythrocytes does not change with the age. At the same time the decay rate of 2,3-diphosphoglycerate increases, that, evidently, is one of the reasons of the 2,3-diphosphoglycerate content decrease in erythrocytes with ageing.

  5. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.

    Science.gov (United States)

    Blackman, S M; Cobb, C E; Beth, A H; Piston, D W

    1996-01-01

    The dominant motional mode for membrane proteins is uniaxial rotational diffusion about the membrane normal axis, and investigations of their rotational dynamics can yield insight into both the oligomeric state of the protein and its interactions with other proteins such as the cytoskeleton. However, results from the spectroscopic methods used to study these dynamics are dependent on the orientation of the probe relative to the axis of motion. We have employed polarized fluorescence confocal microscopy to measure the orientation of eosin-5-maleimide covalently reacted with Lys-430 of human erythrocyte band 3. Steady-state polarized fluorescence images showed distinct intensity patterns, which were fit to an orientation distribution of the eosin absorption and emission dipoles relative to the membrane normal axis. This orientation was found to be unchanged by trypsin treatment, which cleaves band 3 between the integral membrane domain and the cytoskeleton-attached domain. this result suggests that phosphorescence anisotropy changes observed after trypsin treatment are due to a rotational constraint change rather than a reorientation of eosin. By coupling time-resolved prompt fluorescence anisotropy with confocal microscopy, we calculated the expected amplitudes of the e-Dt and e-4Dt terms from the uniaxial rotational diffusion model and found that the e-4Dt term should dominate the anisotropy decay. Delayed fluorescence and phosphorescence anisotropy decays of control and trypsin-treated band 3 in ghosts, analyzed as multiple uniaxially rotating populations using the amplitudes predicted by confocal microscopy, were consistent with three motional species with uniaxial correlation times ranging from 7 microseconds to 1.4 ms. Images FIGURE 4 FIGURE 8 FIGURE 9 PMID:8804603

  6. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times

    International Nuclear Information System (INIS)

    Endre, Z.H.; Kuchel, P.W.

    1986-01-01

    Metabolically active human erythrocytes were incubated with [α- 13 C]glycine which led to the specific enrichment of intracellular glutathione. The cells were then studied using 13 C-NMR in which the longitudinal relaxation times (T 1 ) and nuclear Overhauser enhancements of the free glycine and glutathione were measured. Bulk viscosities of the erythrocyte cytoplasm were measured using Ostwald capillary viscometry. Large differences existed between the latter viscosity estimates and those based upon NMR-T 1 measurements. The authors derived an equation from the theory of the viscosity of concentrated solutions which contains two phenomenological interaction parameters, a 'shape' factor and a 'volume' factor; it was fitted to data relating to the concentration dependence of viscosity measured by both methods. Under various conditions of extracellular osmotic pressure, erythrocytes change volume and thus the viscosity of the intracellular milieu is altered. The volume changes resulted in changes in the T 1 of [α- 13 C]glycine. Conversely, the authors showed that alterations in T 1 , when appropriately calibrated, could be used for monitoring changes in volume of metabolically active cells. (Auth.)

  7. Photoaffinity labeling of the human erythrocyte monosaccharide transporter with an aryl azide derivative of D-glucose

    International Nuclear Information System (INIS)

    Shanahan, M.F.; Wadzinski, B.E.; Lowndes, J.M.; Ruoho, A.E.

    1985-01-01

    A photoreactive, radioiodinated derivative of glucose, N-(4-iodoazidosalicyl)-6-amido-6-deoxyglucopyranose (IASA-glc), has been synthesized and used as a photoaffinity label for the human erythrocyte monosaccharide transporter. Photoinactivation and photoinsertion are both light-dependent and result in a marked decrease in the absorption spectra of the compound. When [ 125 I]IASA-glc was photolyzed with erythrocyte ghost membranes, photoinsertion of radiolabel was observed in three major regions, spectrin, band 3, and a protein of 58,000 daltons located in the zone 4.5 region. Of the three regions which were photolabeled, only labeling of polypeptides in the zone 4.5 region was partially blocked by D-glucose. In the non-iodinated form, N-(4-azidosalicyl)-6-amido-6-deoxy-glucopyranose inhibited the labeling of the transporter by [ 125 I]IASA-glc more effectively than D-glucose. The ability to synthesize this [ 125 I]containing photoprobe for the monosaccharide transporter at carrier-free levels offers several new advantages for investigating the structure of this transport protein in the erythrocyte

  8. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  9. Photolabeling and radioligand binding of human erythrocyte NaK-ATPase with 125I-derivatives of cymarin and digitoxigenin

    International Nuclear Information System (INIS)

    Lowndes, J.M.

    1988-01-01

    NaK-ATPase is an enzyme which maintains Na + and K + gradients across the plasma membrane of eukaryotic cells, and is specifically inhibited by cardiac glycosides. The cardiac glycoside binding site is located primarily on the catalytic α subunit but the glycoprotein β and proteolipid-γ subunits may also contribute to the structure of the site. In order to label the cardiac glycoside binding site of human erythrocytes, four photoaffinity ligands with very high specific radioactivity were synthesized. The compounds, which are abbreviated [ 125 I]AISC, [ 125 I]AIPP-GluD, [ 125 I]AIPP-GalD and [ 125 I]IA-GalD, were all effective photolabels for NaK-ATPase as shown by ouabain-protectable, covalent labeling of the α, β, and proteolipid-γ subunits. In order to study the possible existence of a very high affinity binding site in erythrocyte NaK-ATPase, a carrier-free radioligand, [ 125 I]I-TASC, was synthesized; this compound had the same structure as [ 125 I]AISC except that a light-sensitive azide group was replaced with a hydroxyl group. Competitive binding assays with cymarin against 0.2 nM [ 125 I]I-TASC suggested two classes of erythrocyte binding sites. Scatchard analysis of direct [ 125 I]I-TASC binding indicated that the very high affinity, low capacity class of erythrocyte bindings sites had a K D of 54 pM and a B max of 23 fmol/mg protein

  10. The Duffy binding protein (PkDBPαII) of Plasmodium knowlesi from Peninsular Malaysia and Malaysian Borneo show different binding activity level to human erythrocytes.

    Science.gov (United States)

    Lim, Khai Lone; Amir, Amirah; Lau, Yee Ling; Fong, Mun Yik

    2017-08-11

    The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated. The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes. Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P < 0.0001). However, no difference in binding activity level was seen in the binding assay using M. fascicularis erythrocytes. This study is the first report of phenotypic difference between PkDBPαII haplotypes. The biological implication of this finding is yet to be determined. Therefore, further studies need to be carried out to determine whether this differential binding level can be associated with severity of knowlesi malaria in human.

  11. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes

    International Nuclear Information System (INIS)

    Lou, L.L.; Clarke, S.

    1987-01-01

    Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77). The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3 H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl- 3 H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl- 3 H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[ 3 H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [ 3 H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[ 3 H]methyl ester or glutamyl gamma-[ 3 H]methyl ester was detected. The formation of D-aspartic acid beta-[ 3 H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl- 3 H]methionine

  12. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-125I-Tyr-A14-insulin preparation

    International Nuclear Information System (INIS)

    Marttinen, A.; Pasternack, A.; Koivula, T.; Jokela, H.; Lehtinen, M.

    1984-01-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono- 125 I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected. (author)

  13. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-/sup 125/I-Tyr-A14-insulin preparation

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, A; Pasternack, A [Tampere Univ. (Finland). Dept. of Clinical Sciences; Koivula, T; Jokela, H; Lehtinen, M [Tampere Univ. Central Hospital (Finland). Dept. of Clinical Chemistry

    1984-09-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono-/sup 125/I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected.

  14. Age-dependent effects of He-Ne laser irradiation on the membrane fluidity of human erythrocytes

    Science.gov (United States)

    Kovacs, Eugenia; Savopol, Tudor; Pologea-Moraru, Roxana; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    1997-12-01

    The low power He-Ne laser radiation has been extensively used in past decades as medical device to relieve pain, accelerate wound healing as well as aiming beam in invisible laser beam in invisible laser beam applications. It is not known however if there are any secondary, undesirable effects of He-Ne laser radiation on the irradiated tissue. In this paper we investigate the changes induced in membrane fluidity of human erythrocyte during/upon the interaction with the He-Ne laser beam having the parameters currently used for target aiming in laser surgery.

  15. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes.

    Directory of Open Access Journals (Sweden)

    Iñigo Angulo-Barturen

    Full Text Available To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/- mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/- mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9 as a reference strain for model development. Pf3D7(0087/N9 caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.

  16. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    -encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...... in immunologically naive individuals and high effective multiplication rates. METHODS: var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54...... compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. CONCLUSION...

  17. Pharmacologic manipulation of human erythrocyte 2,3-diphosphoglycerate levels by prednisone administration.

    Science.gov (United States)

    Silken, A B

    1975-02-01

    Erythrocyte 2,3-diphosphoglycerate (2,3-DPG) concentrations in 10 patients with acute lymphoblastic leukemia rose 21.3%(P smaller than 0.02) after 3 weeks of prednisone and vincristine therapy, and returned to pretreatment level 2 weeks after therapy had been discontinued. The mean 2,3-DPG level of three patients on vincristine alone did not vary significantly from the control level of the leukemia patients on prednisone and vincristine. No significant change in serum inorganic phosphate level was observed. The mean erythrocyte 2,3-DPG concentration of 17 nephrotic syndrome patients being treated with chronic prednisone therapy was 14.0% higher than a control group of 20 nephrotic syndrome patients not being treated with prednisone (P small than 0.01). A significant positive correlation was observed between the dose of prednisone and 2,3-DPG level.

  18. Investigations into the binding of 125I-calmodulin to CA++ transport ATPase of human erythrocytes

    International Nuclear Information System (INIS)

    Sterk, V.

    1983-01-01

    The study described was carried out in order to investigate the binding of 125 I-calmodulin to Ca ++ transport ATPase using different Ca ++ concentrations and temperatures. The data obtained from these experiments were subsequently analysed in such as a way as to yield meaningful information relating to the mechanisms underlying the attachment of calmodulin to Ca ++ transport ATPase, the % proportion of membrane protein that was attributable to the enzyme as well as the number of calmodulin receptor sites on the individual erythrocytes, etc. Comparisons with data from the relevant literature permitted conclusions to be drawn concerning the mode of Ca ++ transport at the level of the erythrocytes. A new methodology and processing technique had to be developed prior to the beginning of the experiments. (orig./MG) [de

  19. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome.

    Science.gov (United States)

    Lange, Philipp F; Huesgen, Pitter F; Nguyen, Karen; Overall, Christopher M

    2014-04-04

    A goal of the Chromosome-centric Human Proteome Project is to identify all human protein species. With 3844 proteins annotated as "missing", this is challenging. Moreover, proteolytic processing generates new protein species with characteristic neo-N termini that are frequently accompanied by altered half-lives, function, interactions, and location. Enucleated and largely void of internal membranes and organelles, erythrocytes are simple yet proteomically challenging cells due to the high hemoglobin content and wide dynamic range of protein concentrations that impedes protein identification. Using the N-terminomics procedure TAILS, we identified 1369 human erythrocyte natural and neo-N-termini and 1234 proteins. Multiple semitryptic N-terminal peptides exhibited improved mass spectrometric identification properties versus the intact tryptic peptide enabling identification of 281 novel erythrocyte proteins and six missing proteins identified for the first time in the human proteome. With an improved bioinformatics workflow, we developed a new classification system and the Terminus Cluster Score. Thereby we described a new stabilizing N-end rule for processed protein termini, which discriminates novel protein species from degradation remnants, and identified protein domain hot spots susceptible to cleavage. Strikingly, 68% of the N-termini were within genome-encoded protein sequences, revealing alternative translation initiation sites, pervasive endoproteolytic processing, and stabilization of protein fragments in vivo. The mass spectrometry proteomics data have been deposited to ProteomeXchange with the data set identifier .

  20. Effect of Lidocaine and Epinephrine on Human Erythrocyte Shape and Vesiculability of Blood Cells

    Directory of Open Access Journals (Sweden)

    Tanja Slokar

    2015-01-01

    Full Text Available The effect of local anesthetic composed of lidocaine and epinephrine on vesiculability of blood cells and erythrocyte shape was studied. Whole blood and plasma were incubated with lidocaine/epinephrine. Extracellular vesicles were isolated by centrifugation and washing and counted by flow cytometry. Lidocaine/epinephrine and each component alone were added to diluted blood. Shape changes were recorded by micrographs. An ensemble of captured frames was analyzed for populations of discocytes, echinocytes, and stomatocytes by using statistical methods. Incubation of whole blood and blood plasma with lidocaine/epinephrine considerably increased concentration of extracellular vesicles in isolates (for an average factor 3.4 in blood and 2.8 in plasma. Lidocaine/epinephrine caused change of erythrocyte shape from mainly discocytic to mainly stomatocytic (higher than 50%. Lidocaine alone had even stronger stomatocytic effect (the percent of stomatocytes was higher than 95% while epinephrine had echinocytic effect (the percent of echinocytes was higher than 80%. The differences were highly statistically significant p<10-8 with statistical power P=1. Lidocaine/epinephrine induced regions of highly anisotropically curved regions indicating that lidocaine and epinephrine interact with erythrocyte membrane. It was concluded that lidocaine/epinephrine interacts with cell membranes and increases vesiculability of blood cells in vitro.

  1. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study.

    Science.gov (United States)

    Gangwar, Mayank; Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B; Goel, R K; Nath, Gopal

    2014-01-01

    Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.

  2. Piracetam and TRH analogues antagonise inhibition by barbiturates, diazepam, melatonin and galanin of human erythrocyte D-glucose transport

    Science.gov (United States)

    Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram

    2004-01-01

    Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (Pnootropics, D-levetiracetam and D-pyroglutamate, have higher antagonist Ki's against pentobarbital inhibition of glucose transport than more potent L-stereoisomers (Pnootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis. PMID:15148255

  3. Epigallocatechin-3-Gallate Protects Erythrocyte Ca2+-ATPase and Na+/K+-ATPase Against Oxidative Induced Damage During Aging in Humans

    Directory of Open Access Journals (Sweden)

    Prabhanshu Kumar

    2014-10-01

    Full Text Available Purpose: The main purpose of this study was to investigate the protective role of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced oxidative damage in erythrocyte during aging in humans. Methods: Human erythrocyte membrane bound Ca2+-ATPase and Na+/K+-ATPase activities were determined as a function of human age. Protective role of epigallocatechin-3-gallate was evaluated by in vitro experiments by adding epigallocatechin-3-gallate in concentration dependent manner (final concentration range 10-7M to 10-4M to the enzyme assay medium. Oxidative stress was induced in vitro by incubating washed erythrocyte ghosts with tertiary butyl hydroperoxide (10-5 M final concentration. Results: We have reported concentration dependent effect of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced damage on activities of Ca2+-ATPase and Na+/K+-ATPase during aging in humans. We have detected a significant (p < 0.001 decreased activity of Ca2+-ATPase and Na+/K+ -ATPase as a function of human age. Epigallocatechin-3-gallate protected ATPases against tertiary butyl hydroperoxide induced damage in concentration dependent manner during aging in humans. Conclusion: Epigallocatechin-3-gallate is a powerful antioxidant that is capable of protecting erythrocyte Ca2+-ATPase and Na+/K+ -ATPase against oxidative stress during aging in humans. We may propose hypothesis that a high intake of catechin rich diet may provide some protection against development of aging and age related diseases.

  4. L-cysteine efflux in erythrocytes as a function of human age: correlation with reduced glutathione and total anti-oxidant potential.

    Science.gov (United States)

    Kumar, Prabhanshu; Maurya, Pawan Kumar

    2013-06-01

    Thiol compounds such as cysteine (Cys) and reduced glutathione (GSH) play an important role in human aging and age-related diseases. In erythrocytes, GSH is synthesized by glutamic acid, cysteine, and glycine, but the rate of GSH synthesis is determined only by the availability of L-cysteine. Cysteine supplementation has been shown to ameliorate several parameters that are known to degenerate during human aging. We have studied L-cysteine efflux in vitro in human erythrocytes as a function of age by suspending cells in solution containing 10 mM L-cysteine for uptake; later cells were re-suspended in phosphate-buffered saline (PBS)-glucose to allow efflux. Change in the free sulfhydryl (-SH) concentration was then measured to calculate the rate of efflux. The GSH/oxidized glutathione (GSSG) ratio was taken as a control to study the oxidation/reduction state of the erythrocyte. The total anti-oxidant potential of plasma was measured in terms of ferric reducing ability of plasma (FRAP) values. We have shown a significant (pL-cysteine in erythrocytes during human aging, and the GSH/GSSG ratio decreases as a function of human age. The decline in L-cysteine efflux during aging correlates with the decrease in GSH and the FRAP value. This finding may help to explain the shift in the redox status and low GSH concentration that might determine the rate of L-cysteine efflux observed in erythrocytes and an important factor in the development of oxidative stress in erythrocytes during aging.

  5. Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen.

    Science.gov (United States)

    Safeukui, Innocent; Correas, Jean-Michel; Brousse, Valentine; Hirt, Déborah; Deplaine, Guillaume; Mulé, Sébastien; Lesurtel, Mickael; Goasguen, Nicolas; Sauvanet, Alain; Couvelard, Anne; Kerneis, Sophie; Khun, Huot; Vigan-Womas, Inès; Ottone, Catherine; Molina, Thierry Jo; Tréluyer, Jean-Marc; Mercereau-Puijalon, Odile; Milon, Geneviève; David, Peter H; Buffet, Pierre A

    2008-09-15

    The current paradigm in Plasmodium falciparum malaria pathogenesis states that young, ring-infected erythrocytes (rings) circulate in peripheral blood and that mature stages are sequestered in the vasculature, avoiding clearance by the spleen. Through ex vivo perfusion of human spleens, we examined the interaction of this unique blood-filtering organ with P falciparum-infected erythrocytes. As predicted, mature stages were retained. However, more than 50% of rings were also retained and accumulated upstream from endothelial sinus wall slits of the open, slow red pulp microcirculation. Ten percent of rings were retained at each spleen passage, a rate matching the proportion of blood flowing through the slow circulatory compartment established in parallel using spleen contrast-enhanced ultrasonography in healthy volunteers. Rings displayed a mildly but significantly reduced elongation index, consistent with a retention process, due to their altered mechanical properties. This raises the new paradigm of a heterogeneous ring population, the less deformable subset being retained in the spleen, thereby reducing the parasite biomass that will sequester in vital organs, influencing the risk of severe complications, such as cerebral malaria or severe anemia. Cryptic ring retention uncovers a new role for the spleen in the control of parasite density, opening novel intervention opportunities.

  6. Effects of Three Kinds of Curcuminoids on Anti-Oxidative System and Membrane Deformation of Human Peripheral Blood Erythrocytes in High Glucose Levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-01-01

    Full Text Available Background/Aims: Curcuminoids are the main bioactive constituents of the rhizome of turmeric. Erythrocytes lesions in diabetes are probably related to hyperglycemia and protein glycation. It has been reported that curcumin prevent lipid peroxidation. However, reports on the effects of demethoxycurcumin and bis-demethoxycurcumin on human erythrocytes at high glucose levels are scarce. Our aim is to investigate the effect of curcuminoids on oxidative stress and membrane of erythrocytes exposed to hyperglycemic condition. Methods: In this study, the different blood samples were treated with two doses of glucose (10 or 30 mM to mimic hyperglycemia in the presence or absence of three kinds of curcuminoids (5 or 10 μM in a medium at 37 °C for 24 h (Each experiment consists of 20 blood samples from 10 male and 10 female volunteers. The malondialdehyde was checked by HPLC, antioxidase (GSH and GSSG were measured by LC/MS, SOD was checked by WST-1 kit, morphology and phospholipid symmetry were detected by flow cytometry, confocal scanning microscope and scanning electron microscope. Results: The results illustrated that all three curcuminoids reduce oxidative stress damage on the membrane and maintain a better profile for erythrocytes. Furthermore, three curcuminoids had benefit effects on antioxidase. Conclusion: The three kinds of curcuminoids supplementation may prevent lipid peroxidation at different intensity and membrane dysfunction of human erythrocytes in hyperglycemia.

  7. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    International Nuclear Information System (INIS)

    Edward, Kert; Farahi, Faramarz

    2014-01-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition. (letters)

  8. A study on the complexes between human erythrocyte enzymes participating in the conversions of 1,3-diphosphoglycerate.

    Science.gov (United States)

    Fokina, K V; Dainyak, M B; Nagradova, N K; Muronetz, V I

    1997-09-15

    The ability of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzing the reaction of 1,3-diphosphoglycerate synthesis in human erythrocytes to form complexes with enzymes which use this metabolite as substrate (3-phosphoglycerate kinase (3-PGK) or 2,3-diphosphoglycerate mutase (2,3-DPGM)) was studied. It was found that highly active 2,3-DPGM can be extracted from human erythrocyte hemolysates in a complex with GAPDH adsorbed on Sepharose-bound anti-GAPDH antibodies at pH 6.5, the molar ratio being one 2,3-GPGM subunit per subunit of GAPDH. No complexation was, however, detected at pH 8.0. The opposite was true for the interaction between GAPDH and 3-PGK, which could be observed at pH 8.0. In experiments carried out at pH 7.4, both GAPDH x 2,3-DPGM and GAPGH x 3-PGK complexes were detected. The Kd values of the complexes determined with purified enzyme preparations were in the range 2.40-2.48 microM for both the GAPDH x 2,3-DPGM and GAPGH x 3-PGK enzyme pairs, when titrations of GAPDH covalently bound to CNBr-activated Sepharose were performed by the soluble 2,3-DPGM or 3-PGK. If, however, GAPDH adsorbed on the specific antibodies covalently bound to Sepharose was used in the titration experiments, the Kd for the GAPDH x 2,3-DPGM complex was found to be 0.54 microM, and the Kd for the GAPDH x 3-PGK complex was 0.49 microM. The concentration of 2,3-diphosphoglycerate determined after 1 h of incubation of erythrocytes in the presence of glucose was found to increase 1.5-fold if the incubation was carried out at pH 6.5, but did not change upon incubation at pH 8.0. On the other hand, the concentration of 3-phosphoglycerate after incubation at pH 8.0 was twice as large as that found after incubation at pH 6.5. The results are interpreted on the hypothesis that specific protein-protein interactions between GAPDH and 2,3-DPGM or between GAPDH and 3-PGK may play a role in determining the fate of 1,3-diphosphoglycerate produced in the GAPDH-catalyzed reaction.

  9. The influence of Bauhinia forficata Link subsp. pruinosa tea on lipid peroxidation and non-protein SH groups in human erythrocytes exposed to high glucose concentrations.

    Science.gov (United States)

    Salgueiro, Andréia C F; Leal, Carina Q; Bianchini, Matheus C; Prado, Ianeli O; Mendez, Andreas S L; Puntel, Robson L; Folmer, Vanderlei; Soares, Félix A; Avila, Daiana S; Puntel, Gustavo O

    2013-06-21

    Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  11. Equilibrium thermodynamics of the partitioning of non-steroidal anti-inflammatory drugs into human erythrocyte ghost membranes

    International Nuclear Information System (INIS)

    Omran, Ahmed A.

    2013-01-01

    Graphical abstract: Bar diagram representing thermodynamic parameters obtained for the partitioning of NSAIDs into human erythrocyte ghost membranes at physiological pH; 7.4. Highlights: • Partition coefficients of NSAIDs into HEG membranes were determined. • Thermodynamic parameters were evaluated and successfully analyzed. • Partitioning of NSAIDs into HEG membranes was exothermic. • Partitioning of NSAIDs into HEG is spontaneous with negative free energy values. • Identical partitioning enthalpy–entropy driven compensation mechanism was shown. -- Abstract: In this work,second derivative spectrophotometry was applied for determining the partition coefficients (K p s) of four non-steroidal anti-inflammatory drugs (NSAIDs; flufenamic, meclofenamic, mefenamic and niflumic acids) into human erythrocyte ghost (HEG) membranes over a temperature range from (283.2 to 313.2) K. The proposed method allowed the evaluation and direct analyses of thermodynamic parameters; enthalpy (ΔH W→M ), Gibbs energy (ΔG W→M ) and entropy (ΔS W→M ) changes of the partitioning of NSAIDs into HEG membranes. The partitioning of NSAIDs between polar aqueous phase and non-polar lipid bilayer HEG membrane phase was exothermic with negative (ΔH W→M ) which compensated for the changes in (ΔS W→M ). The negative values of (ΔG W→M ) revealed that the partitioning of NSAIDs into HEG, owing to their transfer from polar aqueous phase and non-polar HEG phase is spontaneous. The enthalpy–entropy correlation analysis resulted in a good linearity that suggests an identical partitioning enthalpy–entropy driven compensation mechanism for the studied NSAIDs

  12. Highly Selective Fluorescence Determination of the Hematin Level in Human Erythrocytes with No Need for Separation from Bulk Hemoglobin.

    Science.gov (United States)

    Ji, Lijuan; Chen, Li; Wu, Ping; Gervasio, Dominic F; Cai, Chenxin

    2016-04-05

    Hematin-induced fluorescence quenching of boron-doped graphene quantum dots (BGQDs) allows for determination of hematin concentration in human erythrocytes with no need for separating hematin from hemoglobin before performing the assay. The BGQDs are made by oxidizing a graphite anode by holding the voltage between a graphite rod and a Pt cathode at 3 V for 2 h in an aqueous borax solution at pH 7; then, the borate solution was filtered with BGQDs, and the borate was dialyzed from the filtrate, leaving a solution of BGQDs in water. The fluorescence intensity of BGQDs is measurable in real time, and its quenching is very sensitive to the concentration of hematin in the system but not to other coexisting biological substances. The analytical signal is defined as ΔF = 1 - F/F0, where F0 and F are the fluorescence intensities of the BGQDs before and after interaction with hematin, respectively. There is a good linear relationship between ΔF and hematin concentration, ranging from 0.01 to 0.92 μM, with the limit of detection (LOD) being ∼0.005 ± 0.001 μM at a signal-to-noise ratio of 3. This new method is sensitive, label-free, simple, and inexpensive, and many tedious procedures related to sample separation and preparation can be omitted, implying that this method has potential for applications in clinical examinations and disease diagnoses. For example, the determination of the hematin levels in two kind of red blood cell samples, healthy human and sickle cell erythrocytes, gives average concentrations of hematin of ∼(23.1 ± 4.9) μM (average of five samples) for healthy red cell cytosols and ∼(52.5 ± 9.5) μM (average of two samples) for sickle red cell cytosols.

  13. Application of human erythrocytes to a radioimmune assay of immune complexes in serum. [Lupus erythematosus, type B hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, F; Miyakawa, Y; Mayumi, M [Tokyo Metropolitan Lab. of Public Health (Japan)

    1979-07-01

    An immune adherence receptor exists on the surface of primate erythrocytes, and has been characterized as a receptor for the activated third component of complement (C3b). Human red blood cells (RCBs, blood group O) were applied to a sensitive determination of complement-fixing, soluble immune complexes in serum. The method involved the binding of immune complexes with RBCs in the presence of complement and the detection of cell-bound IgG molecules by radiolabelled anti-human IgG antibodies. Since the binding of RBCs with monomeric IgG was minimal, cell bound IgG molecules were taken as representing immune complexes. When aggregated human gammaglobulin (AHG) was used as a model of immune complexes, as little as 5 ..mu..g dissolved in 1 ml of normal human serum were detected. The binding of RBCs with AHG was inhibited in EDTA solution where the classical complement pathway could not be activated. The RBC radioimmune assay was successfully applied to the determination of soluble immune complexes in pathological serum samples obtained from the patients with systemic lupus erythematosus and those with fulminant Type B hepatitis. False-positive results by autoantibodies against RBCs could be excluded by a Coombs test and by comparing the binding in the presence of complement with that in EDTA solution. The ubiquitous availability of RBCs coupled with a high sensitivity would allow the RBC radioimmune assay to be used as a further method of determining immune complexes in the serum.

  14. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    Science.gov (United States)

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Growth of plasmodium falciparum in human erythrocytes containing abnormal membrane proteins

    International Nuclear Information System (INIS)

    Schulman, S.; Roth, E.F. Jr.; Cheng, B.; Rybicki, A.C.; Sussman, I.I.; Wong, M.; Nagel, R.L.; Schwartz, R.S.; Wang, W.; Ranney, H.M.

    1990-01-01

    To evaluate the role of erythrocyte (RBC) membrane proteins in the invasion and maturation of Plasmodium falciparum, the authors have studied, in culture, abnormal RBCs containing quantitative or qualitative membrane protein defects. These defects included hereditary spherocytosis (HS) due to decreases in the content of spectrin [HS(Sp + )], hereditary elliptocytosis (HE) due to protein 4.1 deficiency [HE(4.1 0 )], HE due to a spectrin αI domain structural variant that results in increased content of spectrin dimers [HE(Spα I/65 )], and band 3 structural variants. Parasite invasion, measured by the initial uptake of [ 3 H]hypoxanthine 18 hr after inoculation with merozoites, was normal in all of the pathologic RBCs. In contrast, RBCs from six HS(Sp + ) subjects showed marked growth inhibition that became apparent after the first or second growth cycle. The extent of decreased parasite growth in HS(Sp + ) RBCs closely correlated with the extent of RBC spectrin deficiency. Homogeneous subpopulations of dense HS RBCs exhibited decreased parasite growth to the same extent as did HS whole blood. RBCs from four HE subjects showed marked parasite growth and development

  16. Stable-isotope dilution GC-MS approach for nitrite quantification in human whole blood, erythrocytes, and plasma using pentafluorobenzyl bromide derivatization: nitrite distribution in human blood.

    Science.gov (United States)

    Schwarz, Alexandra; Modun, Darko; Heusser, Karsten; Tank, Jens; Gutzki, Frank-Mathias; Mitschke, Anja; Jordan, Jens; Tsikas, Dimitrios

    2011-05-15

    Previously, we reported on the usefulness of pentafluorobenzyl bromide (PFB-Br) for the simultaneous derivatization and quantitative determination of nitrite and nitrate in various biological fluids by GC-MS using their (15)N-labelled analogues as internal standards. As nitrite may be distributed unevenly in plasma and blood cells, its quantification in whole blood rather than in plasma or serum may be the most appropriate approach to determine nitrite concentration in the circulation. So far, GC-MS methods based on PFB-Br derivatization failed to measure nitrite in whole blood and erythrocytes because of rapid nitrite loss by oxidation and other unknown reactions during derivatization. The present article reports optimized and validated procedures for sample preparation and nitrite derivatization which allow for reliable quantification of nitrite in human whole blood and erythrocytes. Essential measures for stabilizing nitrite in these samples include sample cooling (0-4°C), hemoglobin (Hb) removal by precipitation with acetone and short derivatization of the Hb-free supernatant (5 min, 50°C). Potassium ferricyanide (K(3)Fe(CN)(6)) is useful in preventing Hb-caused nitrite loss, however, this chemical is not absolutely required in the present method. Our results show that accurate GC-MS quantification of nitrite as PFB derivative is feasible virtually in every biological matrix with similar accuracy and precision. In EDTA-anticoagulated venous blood of 10 healthy young volunteers, endogenous nitrite concentration was measured to be 486±280 nM in whole blood, 672±496 nM in plasma (C(P)), and 620±350 nM in erythrocytes (C(E)). The C(E)-to-C(P) ratio was 0.993±0.188 indicating almost even distribution of endogenous nitrite between plasma and erythrocytes. By contrast, the major fraction of nitrite added to whole blood remained in plasma. The present GC-MS method is useful to investigate distribution and metabolism of endogenous and exogenous nitrite in blood

  17. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    Science.gov (United States)

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. Published by Elsevier Inc.

  18. Towards a multiscale description of microvascular flow regulation: O2-dependent release of ATP from human erythrocytes and the distribution of ATP in capillary networks

    Directory of Open Access Journals (Sweden)

    Daniel eGoldman

    2012-07-01

    Full Text Available Integration of the numerous mechanisms that have been suggested to contribute to optimization of O2 supply to meet O2 need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in vitro studies which, when incorporated into a single robust multiscale model, will provide information on the role of erythrocyte-released ATP in perfusion distribution in skeletal muscle under both physiological and pathophysiological conditions. Healthy human erythrocytes exposed to low O2 tension release ATP via a well characterized signaling pathway requiring activation of the G-protein, Gi, and adenylyl cyclase leading to increases in cAMP. This cAMP then activates PKA and subsequently CFTR culminating in ATP release via pannexin 1. A critical control point in this pathway is the level of cAMP which is regulated by pathway-specific phosphodiesterases. Using time constants (~100ms that are consistent with measured erythrocyte ATP release, we have constructed a dynamic model of this pathway. The model predicts levels of ATP release consistent with measurements obtained over a wide range of hemoglobin O2 saturations (sO2. The model further predicts how insulin, at concentrations found in prediabetes, enhances the activity of PDE3 and reduces intracellular cAMP levels leading to decreased low O2-induced ATP release from erythrocytes. The second model, which couples O2 and ATP transport in capillary networks, shows how intravascular ATP and the resulting conducted vasodilation are affected by local sO2, convection and ATP degradation. This model also predicts network-level effects of decreased ATP release resulting from elevated insulin levels. Taken together, these models lay the groundwork for investigating the systems biology of the regulation of microvascular perfusion distribution by

  19. Discriminating the hemolytic risk of blood type A plasmas using the complement hemolysis using human erythrocytes (CHUHE) assay.

    Science.gov (United States)

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Sass, Megan A; Enos, Clinton W; Whitley, Pamela H; Maes, Lanne Y; Goldberg, Corinne L

    2017-03-01

    The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors. Plasma or serum from each type A blood donor was incubated with AB or B red blood cells in the CHUHE assay and measured for free hemoglobin release. CHUHE assays for serum or plasma demonstrate a wide, dynamic range and high sensitivity for complement-mediated hemolysis for individual serum/plasma and red blood cell combinations. CHUHE results suggest that agglutination assays alone are only moderately predictive of complement-mediated hemolysis. CHUHE results also suggest that plasma from particular type A blood donors produce minimal complement-mediated hemolysis, whereas plasma from other type A blood donors produce moderate to high-level complement-mediated hemolysis, depending on the red blood cell donor. The current results indicate that the CHUHE assay can be used to assess complement-mediated hemolysis for plasma or serum from a type A blood donor, providing additional risk discrimination over agglutination titers alone. © 2016 AABB.

  20. Radiation-induced structural changes in membrane proteins of human erythrocytes and ghosts and the relation to cellular morphology

    Energy Technology Data Exchange (ETDEWEB)

    Schuurhuis, G.J.; Hommes, J.; Vos, J.; Molenaar, I.; Konings, A.W.T. (Rijksuniversiteit Groningen (Netherlands))

    1984-02-01

    Isolated human erythrocytes and ghosts were irradiated with X-rays under different experimental conditions and the effect examined with regard to the structure of membrane proteins and morphology of whole cells and ghosts. From sodium dodecyl sulphate/polyacrylamide gel electrophoresis it is concluded that spectrin (band 1 and 2) is the most radiosensitive of the membrane proteins examined. X-irradiation of cells and ghosts induced covalent cross-linking of a small fraction of membrane proteins. In the protein aggregates thus formed spectrin was found to be the major component. Molecular disulphide (-SS-) bridges seemed to account for part of the cross-links observed. Some nondisulphide cross-links were found, especially when ghosts were irradiated. Significant amounts of spectrin aggregates were formed during post-irradiation incubation at 37/sup 0/C but not at 4/sup 0/C. In the intact cell a transformation in shape from discocyte to echinocyte accompanied the process of post-irradiation spectrin aggregation. The characteristics of both processes, such as their reversibility with adenosine, point to a metabolic involvement. It is shown that there is no causal relationship between the two phenomena observed. Possible causes of the post-irradiation effects and the parallelism with similar processes in non-irradiated metabolically depleted cells are discussed.

  1. Radiation-induced structural changes in membrane proteins of human erythrocytes and ghosts and the relation to cellular morphology

    International Nuclear Information System (INIS)

    Schuurhuis, G.J.; Hommes, J.; Vos, J.; Molenaar, I.; Konings, A.W.T.

    1984-01-01

    Isolated human erythrocytes and ghosts were irradiated with X-rays under different experimental conditions and the effect examined with regard to the structure of membrane proteins and morphology of whole cells and ghosts. From sodium dodecyl sulphate/polyacrylamide gel electrophoresis it is concluded that spectrin (band 1 and 2) is the most radiosensitive of the membrane proteins examined. X-irradiation of cells and ghosts induced covalent cross-linking of a small fraction of membrane proteins. In the protein aggregates thus formed spectrin was found to be the major component. Molecular disulphide (-SS-) bridges seemed to account for part of the cross-links observed. Some nondisulphide cross-links were found, especially when ghosts were irradiated. Significant amounts of spectrin aggregates were formed during post-irradiation incubation at 37 0 C but not at 4 0 C. In the intact cell a transformation in shape from discocyte to echinocyte accompanied the process of post-irradiation spectrin aggregation. The characteristics of both processes, such as their reversibility with adenosine, point to a metabolic involvement. It is shown that there is no causal relationship between the two phenomena observed. Possible causes of the post-irradiation effects and the parallelism with similar processes in non-irradiated metabolically depleted cells are discussed. (author)

  2. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress in human erythrocyte (red blood cell)

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuates oxidative stress induced by 4 Gy γ-radiation in human erythrocytes in vitro. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. (author)

  3. Local anesthetics: interaction with human erythrocyte membranes as studied by 1H and 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Fraceto, Leonardo Fernandes; Paula, Eneida de

    2004-01-01

    The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by 1 H and 31 P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipids acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na + -channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia. (author)

  4. Dietary indicaxanthin from cactus pear (Opuntia ficus-indica L. Mill) fruit prevents eryptosis induced by oxysterols in a hypercholesterolaemia-relevant proportion and adhesion of human erythrocytes to endothelial cell layers.

    Science.gov (United States)

    Tesoriere, Luisa; Attanzio, Alessandro; Allegra, Mario; Livrea, Maria A

    2015-08-14

    Toxic oxysterols in a hypercholesterolaemia-relevant proportion cause suicidal death of human erythrocytes or eryptosis. This process proceeds through early production of reactive oxygen species (ROS), release of prostaglandin (PGE2) and opening of PGE2-dependent Ca channels, membrane phosphatidylserine (PS) externalisation, and cell shrinkage. The present study was the first to reveal that a bioavailable phytochemical, indicaxanthin (Ind) from cactus pear fruit, in a concentration range (1.0-5.0 μM) consistent with its plasma level after a fruit meal, prevents PS externalisation and cell shrinkage in a dose-dependent manner when incubated with isolated healthy human erythrocytes exposed to an oxysterol mixture for 48 h. Dietary Ind inhibited ROS production, glutathione (GSH) depletion, PGE2 release and Ca2+ entry. Ind alone did not modify the erythrocyte redox environment or affect other parameters. Ex vivo spiking of normal human blood with the oxysterol mixture for 48 h induced eryptosis, resulting in the production of ROS and decreased levels of GSH, which was prevented by concurrent exposure to 5 μm-Ind. The adherence of eryptotic erythrocytes to the endothelium causes vascular tissue injury. Erythrocytes isolated from blood incubated with the oxysterol mixture plus 5 μm-Ind did not adhere to endothelial cell monolayers. Eryptotic erythrocytes may contribute to thrombotic complications in hypercholesterolaemia. Our findings suggest the positive effects of diets containing Ind on erythrocytes in hypercholesterolaemic subjects.

  5. Unexpected role of the L-domain of calpastatin during the autoproteolytic activation of human erythrocyte calpain.

    Science.gov (United States)

    De Tullio, Roberta; Franchi, Alice; Martines, Antonino; Averna, Monica; Pedrazzi, Marco; Melloni, Edon; Sparatore, Bianca

    2018-04-26

    Autoproteolysis of human erythrocyte calpain-1 proceeds in vitro at high [Ca 2+ ], through the conversion of the 80-kDa catalytic subunit into a 75-kDa activated enzyme that requires lower [Ca 2+ ] for catalysis. Importantly, here we detect a similar 75 kDa calpain-1 form also in vivo , in human meningiomas. Although calpastatin is so far considered the specific inhibitor of calpains, we have previously identified in rat brain a calpastatin transcript truncated at the end of the L-domain (cast110, L-DOM), coding for a protein lacking the inhibitory units. Aim of the present study was to characterize the possible biochemical role of the L-DOM during calpain-1 autoproteolysis in vitro , at high (100 µM) and low (5 µM) [Ca 2+ ]. Here we demonstrate that the L-DOM binds the 80 kDa proenzyme in the absence of Ca 2+ Consequently, we have explored the ability of the 75 kDa activated protease to catalyze at 5 µM Ca 2+ the intermolecular activation of native calpain-1 associated with the L-DOM. Notably, this [Ca 2+ ] is too low to promote the autoproteolytic activation of calpain-1 but enough to support the catalysis of the 75 kDa calpain. We show for the first time that the L-DOM preserves native calpain-1 from the degradation mediated by the 75 kDa form. Taken together, our data suggest that the free L-domain of calpastatin is a novel member of the calpain/calpastatin system endowed with a function alternative to calpain inhibition. For this reason, it will be crucial to define the intracellular relevance of the L-domain in controlling calpain activation/activity in physiopathological conditions having altered Ca 2+ homeostasis. © 2018 The Author(s).

  6. Modeling hysteresis observed in the human erythrocyte voltage-dependent cation channel

    DEFF Research Database (Denmark)

    Flyvbjerg, Henrik; Gudowska-Nowak, Ewa; Christophersen, Palle

    2012-01-01

    The non-selective voltage-activated cation channel from human red cells, which is activated at depolarizing potentials, has been shown to exhibit counter-clockwise gating hysteresis. Here, we analyze this phenomenon with the simplest possible phenomenological models. Specifically, the hysteresis ...

  7. The role of electrostatic interactions in the Streptococcus thermophilus adhesion on human erythrocytes in media with different 1:1 electrolyte concentration

    Directory of Open Access Journals (Sweden)

    О. І. Гордієнко

    2015-10-01

    Full Text Available The process of bacterial adhesion is usually discussed in terms of the two-stage sorption model. According to the model, at the first stage the bacteria fastly attaches to the surface by weak physical interactions, while at the second stage irreversible molecular and cellular adhesion process takes place. An important factor, influencing the adhesion processes, is physical-chemical characteristics of the medium, in particular, the presence of monovalent cations therein. The aim of this work is to assess the role of electrostatic component of the intercellular interactions at the first reversible stage of adhesion. Comparison of experimental data of adhesion of lactobacilli S. thermophilus on human erythrocytes and theoretical definition of the Debye radius and the erythrocytes surface potential in the experimental solutions showed that with decreasing ionic strength of the solution the change in the adhesion index in our experiments is fully in line with the theory DLVO predictions.

  8. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N2O-saturated buffers

    International Nuclear Information System (INIS)

    Krokosz, Anita; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia

    2008-01-01

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N 2 O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes

  9. Computed aided system for separation and classification of the abnormal erythrocytes in human blood

    Science.gov (United States)

    Wąsowicz, Michał; Grochowski, Michał; Kulka, Marek; Mikołajczyk, Agnieszka; Ficek, Mateusz; Karpieńko, Katarzyna; Cićkiewicz, Maciej

    2017-12-01

    The human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified diamonds and oxidation modified. The blood was put under an impact of two diamond concentrations: 20μl and 100μl. The amount of abnormal cells increased with time. The percentage of echinocytes as a result of interaction with nanodiamonds in various time intervals for individual specimens was scarce. The impact of the two diamond types had no clinical importance on red blood cells. It is supposed that as a result of longlasting exposure a dehydratation of red cells takes place, because of the function of the cells. The analysis of an influence of nanodiamond particles on blood elements was supported by computer system designed for automatic counting and classification of the Red Blood Cells (RBC). The system utilizes advanced image processing methods for RBCs separation and counting and Eigenfaces method coupled with the neural networks for RBCs classification into normal and abnormal cells purposes.

  10. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  11. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  12. Rapid degradation of D- and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Momand, J.; Clarke, S.

    1987-12-01

    The authors have been interested in the metabolic fate of proteins containing aspartyl succinimide (Asu) residues. These residues can be derived from the spontaneous rearrangement of Asp and Asn residues and from the spontaneous demethylation of enzymatically methylated L-isoAsp and D-Asp residues. Incubation of the synthetic hexapeptide N-Ac-Val-Tyr-Pro-Asu-Gly-Ala with the cytosolic fraction of human erythrocytes resulted in rapid cleavage of the prolyl-aspartyl succinimide bond producing the tripeptide N-Ac-Val-Try-Pro. The rate of this reaction is equal for both L- and D-Asu-containing peptides and is 10-fold greater that the rate of cleavage of a corresponding peptide containing a normal Pro-Asp linkage. When the aspartyl succinimide ring was replaced with an isoaspartyl residue, the cleavage rate was about 5 times that of the normal Pro-Asp peptide. The tripeptide-producing activity copurified on DEAE-cellulose chromatography with an activity that cleaves N-carbobenzoxy-Gly-Pro-4-methylcoumarin-7-amide, a post-proline endopeptidase substrate. These two activities were both inhibited by an antiserum to rat brain post-proline endopeptidase, and it appears that they are catalyzed by the same enzyme. This enzyme has a molecular weight of approximately 80,000 and is covalently labeled and inhibited by (/sup 3/H) diisopropyl fluorophosphate. The facile cleavage of the succinimide- and isoaspartyl-containing peptides by this post-proline endopeptidase suggests that it may play a role in the metabolism of peptides containing altered aspartyl residues.

  13. Ebselen exhibits glycation-inhibiting properties and protects against osmotic fragility of human erythrocytes in vitro.

    Science.gov (United States)

    Soares, Julio C M; Folmer, Vanderlei; Da Rocha, João B T; Nogueira, Cristina W

    2014-05-01

    Diabetic status is associated with an increase on oxidative stress markers in humans and animal models. We have investigated the in vitro effects of high concentrations of glucose on the profile of oxidative stress and osmotic fragility of blood from control and diabetic patients; we considered whether its antioxidant properties could afford some protection against glucose-induced osmotic fragility, and whether ebselen could act as an inhibitor of hemoglobin glycation. Raising blood glucose to 5-100 mmol/L resulted in a concentration-dependent increase of glycated hemoglobin (HbA1c; P Ebselen significantly reduced the glucose-induced increase in osmotic fragility and inhibited HbA1c formation (P < 0.0001). These results indicate that blood from patients with uncontrolled diabetes are more sensitive to osmotic shock than from patients with controlled diabetes and control subjects in relation to increased production of free radicals in vivo. © 2014 International Federation for Cell Biology.

  14. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  15. An incubation medium for the elevation of adenosine triphosphate and 2,3-diphosphoglycerate in fresh and long-preserved human erythrocytes.

    Science.gov (United States)

    Rubinstein, D; Warrendorf, E

    1975-06-01

    The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.

  16. Physical-chemical basis of the protection of slowly frozen human erythrocytes by glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Rall, W.F.; Mazur, P.; Souzu, H.

    1978-07-01

    One theory of freezing damage suggests that slowly cooled cells are killed by being exposed to increasing concentrations of electrolytes as the suspending medium freezes. A corollary to this view is that protective additives such as glycerol protect cells by acting colligatively to reduce the electrolyte concentration at any subzero temperature. Recently published phase-diagram data for the ternary system glycerol-NaCl-water by M.L. Shepard et al. (Cryobiology, 13: 9-23, 1976), in combination with the data on human red cell survival vs. subzero temperature presented here and in the companion study of Souzu and Mazur (Biophys. J., 23: 89-100), permit a precise test of this theory. Appropriate liquidus phase-diagram information for the solutions used in the red cell freezing experiments was obtained by interpolation of liquidus data of Shepard and his co-workers. The results of phase-diagram analysis of red cell survival indicate that the correlation between the temperature that yields 50% hemolysis (LT/sub 50/) and the electrolyte concentration attained at that temperature in various concentrations of glycerol is poor. With increasing concentrations of glycerol, the cells were killed at progressively lower concentrations of NaCl. For example, the LT/sub 50/ for cells frozen in the absence of glycerol corresponds to a NaCl concentration of 12 weight percent (2.4 molal), while for cells frozen in 1.75 M glycerol in buffered saline the LT/sub 50/ corresponds to 3.0 weight percent NaCl (1.3 molal). The data, in combination with other findings, lead to two conclusions: (a) The protection from glycerol is due to its colligative ability to reduce the concentration of sodium chloride in the external medium, but (b) the protection is less than that expected from colligative effects; apparently glycerol itself can also be a source of damage, probably because it renders the red cells susceptible to osmotic shock during thawing.

  17. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1

    Czech Academy of Sciences Publication Activity Database

    Carlisle, R. C.; Di, Y.; Cerny, A. M.; Sonnen, A. F. P.; Sim, R. B.; Green, N. K.; Šubr, Vladimír; Ulbrich, Karel; Gilbert, R. J. C.; Fisher, K. D.; Finberg, R. W.; Seymour, L. W.

    2009-01-01

    Roč. 113, č. 9 (2009), s. 1909-1918 ISSN 0006-4971 EU Projects: European Commission(XE) 512087 - GIANT Institutional research plan: CEZ:AV0Z40500505 Keywords : adenovirus * erythrocyte * complement receptor 1 Subject RIV: CD - Macromolecular Chemistry Impact factor: 10.555, year: 2009

  18. Factors influencing erythrocyte choline concentrations.

    Science.gov (United States)

    Miller, B L; Jenden, D J; Tang, C; Read, S

    1989-01-01

    Choline concentrations in human erythrocytes increase after freezing and thawing, during incubation in Krebs-phosphate for 30 min or on storage at 0 degrees C for 3-24 hr. The increase is prevented by protein precipitation by 10% perchloric acid, 10% zinc hydroxide, 10% sodium tungstate or boiling in water. It is not prevented by EDTA (10 mM) and is increased by oleate (5 mM). We suggest that the increase is due to the action of phospholipase D on erythrocyte phospholipids.

  19. RhD Specific Antibodies Are Not Detectable in HLA-DRB11501* Mice Challenged with Human RhD Positive Erythrocytes

    Directory of Open Access Journals (Sweden)

    Lidice Bernardo

    2014-01-01

    Full Text Available The ability to study the immune response to the RhD antigen in the prevention of hemolytic disease of the fetus and newborn has been hampered by the lack of a mouse model of RhD immunization. However, the ability of transgenic mice expressing human HLA DRB11501* to respond to immunization with purified RhD has allowed this question to be revisited. In this work we aimed at inducing anti-RhD antibodies by administering human RhD+ RBCs to mice transgenic for the human HLA DRB11501* as well as to several standard inbred and outbred laboratory strains including C57BL/6, DBA1/J, CFW(SW, CD1(ICR, and NSA(CF-1. DRB11501* mice were additionally immunized with putative extracellular immunogenic RhD peptides. DRB11501* mice immunized with RhD+ erythrocytes developed an erythrocyte-reactive antibody response. Antibodies specific for RhD could not however be detected by flow cytometry. Despite this, DRB11501* mice were capable of recognizing immunogenic sequences of Rh as injection with Rh peptides induced antibodies reactive with RhD sequences, consistent with the presence of B cell repertoires capable of recognizing RhD. We conclude that while HLA DRB11501* transgenic mice may have the capability of responding to immunogenic sequences within RhD, an immune response to human RBC expressing RhD is not directly observed.

  20. Synthesis and evaluation of the potential deleterious effects of ZnO nanomaterials (nanoneedles and nanoflowers) on blood components, including albumin, erythrocytes and human isolated primary neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Pastrello, Bruna [São Paulo State University (UNESP), Department of Chemistry, Faculty of Sciences (Brazil); Paracatu, Luana Chiquetto [São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences (Brazil); Carvalho Bertozo, Luiza de [São Paulo State University (UNESP), Department of Chemistry, Faculty of Sciences (Brazil); Paino, Iêda Maria Martinez [University of São Paulo (USP), Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC) (Brazil); Lisboa-Filho, Paulo Noronha [São Paulo State University (UNESP), Department of Physics, Faculty of Sciences (Brazil); Ximenes, Valdecir Farias, E-mail: vfximenes@fc.unesp.br [São Paulo State University (UNESP), Department of Chemistry, Faculty of Sciences (Brazil)

    2016-07-15

    The application of zinc oxide (ZnO) nanoparticles in biomaterials has increased significantly in the recent years. Here, we aimed to study the potential deleterious effects of ZnO on blood components, including human serum albumin (HSA), erythrocytes and human isolated primary neutrophils. To test the influence of the morphology of the nanomaterials, ZnO nanoneedles (ZnO-nn) and nanoflowers (ZnO-nf) were synthesized. The zeta potential and mean size of ZnO-nf and ZnO-nn suspensions in phosphate-buffered saline were −10.73 mV and 3.81 nm and −5.27 mV and 18.26 nm, respectively. The incubation of ZnO with HSA did not cause its denaturation as verified by the absence of significant alterations in the intrinsic and extrinsic fluorescence and in the circular dichroism spectrum of the protein. The capacity of HSA as a drug carrier was not affected as verified by employing site I and II fluorescent markers. Neither type of ZnO was able to provoke the activation of neutrophils, as verified by lucigenin- and luminol-dependent chemiluminescence and by the extracellular release of hydrogen peroxide. ZnO-nf, but not ZnO-nn, induced the haemolysis of erythrocytes. In conclusion, our results reinforce the concept that ZnO nanomaterials are relatively safe for usage in biomaterials. A potential exception is the capacity of ZnO-nf to promote the lysis of erythrocytes, a discovery that shows the importance of the morphology in the toxicity of nanoparticles.

  1. A simple in vitro method of radiolabelling human erythrocytes in whole blood with 113mIn-tropolonate

    International Nuclear Information System (INIS)

    Osman, S.; Danpure, H.J.

    1987-01-01

    A simple and rapid in vitro procedure has been developed for selectively radiolabelling erythrocytes in whole blood using 113m In-tropolonate. A maximum labelling efficiency of 97% was achieved, of which 95.5% was on the erythrocytes after only 5 min incubation of whole blodd at room temperature. The optimum amount of tropolone for labelling whole blood was 10 μg of tropolone per ml of blood using acid-citrate dextrose (ACD) as the anticoagulant and 50 μg of tropolone per ml of blood using heparin. Under these optimim conditions, only 2.5% of the cell-bound 113m In was released from the labelled cells during a 1 h in vitro incubation in cell-free plasma, irrespective of the anticoagulant used. These results suggest that 113m In-tropolonate may prove to be useful in vitro agent for labelling erythrocytes for short-term clinical investigations, especially at centres where 99m Tc and 111 In are unavailable. (author)

  2. The approximate entropy of the electromyographic signals of tremor correlates with the osmotic fragility of human erythrocytes

    Directory of Open Access Journals (Sweden)

    Penha-Silva Nilson

    2010-06-01

    Full Text Available Abstract Background The main problem of tremor is the damage caused to the quality of the life of patients, especially those at more advanced ages. There is not a consensus yet about the origins of this disorder, but it can be examined in the correlations between the biological signs of aging and the tremor characteristics. Methods This work sought correlations between the osmotic fragility of erythrocytes and features extracted from electromyographic (EMG activity resulting from physiological tremor in healthy patients (N = 44 at different ages (24-87 years. The osmotic fragility was spectrophotometrically evaluated by the dependence of hemolysis, provided by the absorbance in 540 nm (A54o, on the concentration of NaCl. The data were adjusted to curves of sigmoidal regression and characterized by the half transition point (H50, amplitude of lysis transition (dx and values of A540 in the curve regions that characterize the presence of lysed (A1 and preserved erythrocytes (A2. The approximate entropy was estimated from EMG signals detected from the extensor carpi ulnaris muscle during the movement of the hand of subjects holding up a laser pen towards an Archimedes spiral, fixed in a whiteboard. The evaluations were carried out with the laser pen at rest, at the center of the spiral, and in movement from the center to the outside and from outside to the center. The correlations among the parameters of osmotic fragility, tremor and age were tested. Results Negative correlations with age were found for A1 and dx. With the hand at rest, a positive correlation with H50 was found for the approximate entropy. Negative correlations with H50 were found for the entropy with the hand in movement, as from the center to the outside or from the outside to the center of the spiral. Conclusion In healthy individuals, the increase in the erythrocyte osmotic fragility was associated with a decrease in the approximate entropy for rest tremor and with an increase

  3. Uptake of Eudragit Retard L (Eudragit® RL Nanoparticles by Human THP-1 Cell Line and Its Effects on Hematology and Erythrocyte Damage in Rats

    Directory of Open Access Journals (Sweden)

    Mosaad A. Abdel-Wahhab

    2014-02-01

    Full Text Available The aim of this study was to prepare Eudragit Retard L (Eudragit RL nanoparticles (ENPs and to determine their properties, their uptake by the human THP-1 cell line in vitro and their effect on the hematological parameters and erythrocyte damage in rats. ENPs showed an average size of 329.0 ± 18.5 nm, a positive zeta potential value of +57.5 ± 5.47 mV and nearly spherical shape with a smooth surface. THP-1 cell lines could phagocyte ENPs after 2 h of incubation. In the in vivo study, male Sprague-Dawley rats were exposed orally or intraperitoneally (IP with a single dose of ENP (50 mg/kg body weight. Blood samples were collected after 4 h, 48 h, one week and three weeks for hematological and erythrocytes analysis. ENPs induced significant hematological disturbances in platelets, red blood cell (RBC total and differential counts of white blood cells (WBCs after 4 h, 48 h and one week. ENP increased met-Hb and Co-Hb derivatives and decreased met-Hb reductase activity. These parameters were comparable to the control after three weeks when administrated orally. It could be concluded that the route of administration has a major effect on the induction of hematological disturbances and should be considered when ENPs are applied for drug delivery systems.

  4. Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes.

    Science.gov (United States)

    Zou, Ying; Zhao, Mouming; Yang, Kun; Lin, Lianzhu; Wang, Yong

    2017-08-15

    The black garlic juice is popular for its nutritive value. Enrichment of antioxidants is needed to make black garlic extract an effective functional ingredient. Five macroporous resins were evaluated for their capacity in adsorbing antioxidants in black garlic juice. XAD-16 resin was chosen for further study due to its high adsorption and desorption ratios. Pseudo-second-order kinetics (q e =625μmol Trolox equiv/g dry resin, k 2 =0.0001463) and Freundlich isotherm models (ΔH=-10.1547kJ/mol) were suitable for describing the whole exothermic and physical adsorption processes of the antioxidants from black garlic juice on XAD-16 resin. The antioxidants and phenolics were mostly enriched in 40% ethanol fraction by XAD-16 resin column chromatography. The black garlic extract and its fractions could protect erythrocytes against AAPH-induced hemolysis in dose-dependent manners. The pretreatment of AAPH-damaged erythrocytes with 40% ethanol fractions (2.5mg/mL) significantly decreased the hemolysis ratios from 53.58% to 3.79%. The 40% ethanol fraction possessing strong intracellular antioxidant activity could be used as a functional food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Conjugated Bilirubin Triggers Anemia by Inducing Erythrocyte Death

    Science.gov (United States)

    Lang, Elisabeth; Gatidis, Sergios; Freise, Noemi F; Bock, Hans; Kubitz, Ralf; Lauermann, Christian; Orth, Hans Martin; Klindt, Caroline; Schuier, Maximilian; Keitel, Verena; Reich, Maria; Liu, Guilai; Schmidt, Sebastian; Xu, Haifeng C; Qadri, Syed M; Herebian, Diran; Pandyra, Aleksandra A; Mayatepek, Ertan; Gulbins, Erich; Lang, Florian; Häussinger, Dieter; Lang, Karl S; Föller, Michael; Lang, Philipp A

    2015-01-01

    Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca2+ influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Conclusion: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. (Hepatology 2015;61:275–284) PMID:25065608

  6. Influence of some DNA-alkylating drugs on thermal stability, acid and osmotic resistance of the membrane of whole human erythrocytes and their ghosts.

    Science.gov (United States)

    Ivanov, I T; Gadjeva, V

    2000-09-01

    Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.

  7. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  8. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma lucidum Grown on Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    Beong Ou Lim

    2013-06-01

    Full Text Available In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  9. Effect of changes in dietary sodium on active electrolyte transport by erythrocytes at different stages of human pregnancy.

    Science.gov (United States)

    Gallery, E D; Rowe, J; Brown, M A; Ross, M

    1988-02-01

    1. Active electrolyte transport was examined in erythrocytes from women in the second and third trimesters of pregnancy and post partum, and compared with that in ovulating women. 2. There was a significant reduction in intracellular sodium ([Na]i) and increase in intracellular potassium ([K]i) in pregnancy with a return towards normal values in the post-partum period. 3. Maximum specific ouabain binding [number of Na+,K+-adenosine triphosphatase (Na+, K+-ATPase) units] was increased by 70% in pregnancy and returned slowly towards normal values post partum. 4. Na+,K+-ATPase activity as determined by ouabain-sensitive 86Rb influx in artificial media was also increased in pregnancy by 13%. It returned towards normal post partum. 5. The increases in Na+,K+-ATPase in pregnancy were not closely related to the concomitant increases in aldosterone or cholesterol nor to reticulocytosis and were not affected by 7 days of high (greater than 250 mmol/day) or low (less than 50 mmol/day) sodium intake.

  10. Acetylcholinesterase assay for cerebrospinal fluid using bupivacaine to inhibit butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Anders Jens

    2001-12-01

    Full Text Available Abstract Background Most test systems for acetylcholinesterase activity (E.C.3.1.1.7. are using toxic inhibitors (BW284c51 and iso-OMPA to distinguish the enzyme from butyrylcholinesterase (E.C.3.1.1.8. which occurs simultaneously in the cerebrospinal fluid. Applying Ellman's colorimetric method, we were looking for a non-toxic inhibitor to restrain butyrylcholinesterase activity. Based on results of previous in vitro studies bupivacaine emerged to be a suitable inhibitor. Results Pharmacokinetic investigations with purified cholinesterases have shown maximum inhibition of butyrylcholinesterase activity and minimal interference with acetylcholinesterase activity at bupivacaine final concentrations between 0.1 and 0.5 mmol/l. Based on detailed analysis of pharmacokinetic data we developed three equations representing enzyme inhibition at bupivacaine concentrations of 0.1, 0.2 and 0.5 mmol/l. These equations allow us to calculate the acetylcholinesterase activity in solutions containing both cholinesterases utilizing the extinction differences measured spectrophotometrically in samples with and without bupivacaine. The accuracy of the bupivacaine-inhibition test could be confirmed by investigations on solutions of both purified cholinesterases and on samples of human cerebrospinal fluid. If butyrylcholinesterase activity has to be assessed simultaneously an independent test using butyrylthiocholine iodide as substrate (final concentration 5 mmol/l has to be conducted. Conclusions The bupivacaine-inhibition test is a reliable method using spectrophotometrical techniques to measure acetylcholinesterase activity in cerebrospinal fluid. It avoids the use of toxic inhibitors for differentiation of acetylcholinesterase from butyrylcholinesterase in fluids containing both enzymes. Our investigations suggest that bupivacaine concentrations of 0.1, 0.2 or 0.5 mmol/l can be applied with the same effect using 1 mmol/l acetylthiocholine iodide as substrate.

  11. Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction.

    Science.gov (United States)

    Baccarin, Thaisa; Mitjans, Montserrat; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-25

    The main purpose of the present study is to evaluate the ability of nanoemulsion entrapping pomegranate peel polyphenol-rich ethyl acetate fraction (EAF) prepared from pomegranate seed oil and medium chain triglyceride to protect human erythrocyte membrane from oxidative damage and to assess preliminary in vitro photosafety. In order to evaluate the phototoxic effect of nanoemulsions, human red blood cells (RBCs) are used as a biological model and the rate of haemolysis and photohaemolysis (5 J cm(-2) UVA) is assessed in vitro. The level of protection against oxidative damage caused by the peroxyl radical generator AAPH in human RBCs as well as its effects on bilayer membrane characteristics such as fluidity, protein profile and RBCs morphology are determined. EAF-loaded nanoemulsions do not promote haemolysis or photohaemolysis. Anisotropy measurements show that nanoemulsions significantly retrain the increase in membrane fluidity caused by AAPH. SDS-PAGE analysis reveals that AAPH induced degradation of membrane proteins, but that nanoemulsions reduce the extension of degradation. Scanning electron microscopy examinations corroborate the interaction between AAPH, nanoemulsions and the RBC membrane bilayer. Our work demonstrates that Punica granatum nanoemulsions are photosafe and protect RBCs against oxidative damage and possible disturbance of the lipid bilayer of biomembranes. Moreover it suggests that these nanoemulsions could be promising new topical products to reduce the effects of sunlight on skin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Acetylcholinesterase Inhibitory Activity of Green Tea Polyphenols ...

    African Journals Online (AJOL)

    Inhibition of acetylcholinesterase activity is one of the most popular approaches for treatment of neurological disorders such as Alzheimer's disease and others. In the present study, we evaluated inhibition of acetylcholinesterase activity by different concentrations of green tea (Camellia sinensis L.) extract using ...

  13. Delayed effects of radiation on enzymes in erythrocytes

    International Nuclear Information System (INIS)

    Li Jinying; Zhang Weiping; Liu Benti

    1998-01-01

    Objective: To study the delayed effects of radiation on the enzymes in erythrocytes. Methods: The activity of 8 enzymes, related glycolysis, hexose monophosphate shunt, nucleotide metabolism, redox reaction and esterase in erythrocytes of five patients with bone marrow form of acute radiation sickness (ARS) were assayed at 1,2,3 and 6 years after exposure to 60 Co radiation. Results: The decreased activities of glucose-6-phosphate dehydrogenase (G6PD), pyruvate kinase (PK), NADH-methemoglobin reductase (MR) during the stage of crisis and of acetylcholinesterase (ACE) during the stage of convalescence were recovered to varying extent, whereas the lowered activities of the first three enzymes in some cases remained unchanged. There was no correlation between the enzyme activity and the radiation dose as well as the age of the patients. Conclusion: It is demonstrated that the delayed effects of radiation damage to erythrocyte enzymes are most significant in PK of glycolysis, G6PD of hexose monophosphate shunt and MR of redox reaction. It is suggested that the genes related to the synthesis of erythrocyte enzymes may be damaged by radiation

  14. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700 Erythrocyte...

  15. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    Science.gov (United States)

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  16. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  17. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  18. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  19. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  20. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

    OpenAIRE

    David H Vandorpe; Chang Xu; Boris E Shmukler; Leo E Otterbein; Marie Trudel; Frederick Sachs; Philip A Gottlieb; Carlo Brugnara; Seth L Alper

    2010-01-01

    Background: Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca2+] ([Ca2+]i) and subsequent activation of KCa 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded...

  1. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling.

    Directory of Open Access Journals (Sweden)

    Elisandra Grangeiro de Carvalho

    Full Text Available The protective immunity of natural killer (NK cells against malarial infections is thought to be due to early production of type II interferon (IFN and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

  2. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  3. Solubilization and separation of the human erythrocyte D-glucose transporter covalently and noncovalently photoaffinity-labeled with [3H]cytochalasin B

    International Nuclear Information System (INIS)

    Kurokawa, T.; Tillotson, L.G.; Chen, C.C.; Isselbacher, K.J.

    1986-01-01

    The D-glucose transporter in the human erythrocyte membranes was photoaffinity-labeled with [ 3 H]cytochalasin B and solubilized with n-octyl β-D-glucopyranoside (octyl glucoside). [ 3 H]Cytochalasin B-bound proteins were further isolated by using Sephadex G-50 chromatography. The amount of [ 3 H]cytochalasin B associated with the membrane proteins was approximately 10% of the total radioactivity in the octyl glucoside extract. The solubilized photoaffinity-labeled D-glucose transporter was isolated and found to consist of two major peaks by DEAE-Sephacel chromatography. The radioactivity of peak II was considerably greater than that of peak I. The incorporation of [ 3 H]cytochalasin B into both peaks was blocked by the presence of D-glucose during photolysis. These results indicate the [ 3 H]cytochalasin B was covalently bound to the D-glucose transporter only in peak II and that peak II could be generated by the photoaffinity labeling of peak I. However, the D-glucose transport activity was associated only with peak I. These findings suggest that the anionic domain of the D-glucose transporter becomes exposed because of the conformational changes of the protein as a result of covalent binding with [ 3 H]cytochalasin B by photoaffinity labeling

  4. Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors.

    Science.gov (United States)

    Zeeshan, Mohammad; Tyagi, Rupesh Kumar; Tyagi, Kriti; Alam, Mohd Shoeb; Sharma, Yagya Dutta

    2015-04-01

    Plasmodium vivax synthesizes the largest number of 36 tryptophan-rich proteins belonging to the Pv-fam-a family. These parasite proteins need to be characterized for their biological function because tryptophan-rich proteins from other Plasmodium species have been proposed as vaccine candidates. Recombinant P. vivax tryptophan-rich antigens (PvTRAgs) were used to determine their erythrocyte-binding activity by a cell-based enzyme-linked immunosorbent assay, flow cytometry, and a rosetting assay. Only 4 (PvTRAg26.3, PvTRAg34, PvTRAg36, and PvTRAg36.6) of 21 PvTRAgs bind to host erythrocytes. The cross-competition data indicated that PvTRAg36 and PvTRAg34 share their erythrocyte receptors with previously described proteins PvTRAg38 and PvTRAg33.5, respectively. On the other hand, PvTRAg26.3 and PvTRAg36.6 cross-compete with each other and not with any other PvTRAg, indicating that these 2 proteins bind to the same but yet another set of erythrocyte receptor(s). Together, 10 of 36 PvTRAgs possess erythrocyte-binding activity in which each protein recognizes >1 erythrocyte receptor. Further, each erythrocyte receptor is shared by >1 PvTRAg. This redundancy may be useful for the parasite to invade red blood cells and cause disease pathogenesis, and it can be exploited to develop therapeutics against P. vivax malaria. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    African Journals Online (AJOL)

    Phytochemical screening and in vitro acetylcholinesterase inhibitory activity of seven plant extracts. Titilayo Johnson, Oduje A. Akinsanmi, Enoch J. Banbilbwa, Tijani A. Yahaya, Karima Abdulaziz, Kolade Omole ...

  6. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  7. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: Interactions with human β2 integrins and erythrocytes

    DEFF Research Database (Denmark)

    Reinholdt, Jesper; Poulsen, Knud; Brinkmann, Christel Rothe

    2013-01-01

    Aggregatibacter actinomycetemcomitans is a gram-negative, facultatively anaerobic cocco-bacillus and a frequent member of the human oral flora. It produces a leukotoxin, LtxA, belonging to the repeats-in-toxin (RTX) family of bacterial cytotoxins. LtxA efficiently kills neutrophils and mononuclear...

  8. Oxidative Hemolysis of Erythrocytes

    Science.gov (United States)

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  9. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum blood stage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Hansen, H S; Jakobsen, P H

    1993-01-01

    -s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...... acid (EPA, 20:5n-3) of 3.5 g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre...

  10. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum bloodstage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y.A.; Hansen, Harald S.; Jakobsen, P.H.

    1993-01-01

    -s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...... acid (EPA, 20:5n-3) of 3.5g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre...

  11. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N{sub 2}O-saturated buffers

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)], E-mail: krokosz@biol.uni.lodz.pl; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)

    2008-06-15

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N{sub 2}O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes.

  12. Interaction of complement-solubilized immune complexes with CR1 receptors on human erythrocytes. The binding reaction

    DEFF Research Database (Denmark)

    Jepsen, H H; Svehag, S E; Jarlbaek, L

    1986-01-01

    showed no binding. IC solubilized in 50% human serum in the presence of autologous RBC bound rapidly to RBC-CR1, with maximal binding within less than 1 min at 37 degrees C. Release of CR1-bound IC under these conditions occurred slowly, requiring more than 30 min. Only binding of 'partially' solubilized...... of an intact classical pathway in preparing the IC for binding to RBC-CR1. C-solubilized IC could be absorbed to solid-phase conglutinin or antibody to C3c and C4c, and these ligands were able to inhibit the binding of solubilized IC to RBC. Heparin also exerted a marked, dose-dependent inhibitory effect...

  13. Erythrocytes for Drug Delivery and their Applications: A Review ...

    African Journals Online (AJOL)

    , dogs, rabbits, rats and mice. Encapsulation in erythrocytes drastically changes the pharmacokinetic properties of drugs in both animals and humans, enhancing liver and spleen uptake and targeting the reticulo-endothelial system (RES).

  14. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening.

    Science.gov (United States)

    Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar

    2011-08-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.

  15. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes

    Science.gov (United States)

    Ahmadzadeh, Ezat; Jaferzadeh, Keyvan; Lee, Jieun; Moon, Inkyu

    2017-07-01

    We present unsupervised clustering methods for automatic grouping of human red blood cells (RBCs) extracted from RBC quantitative phase images obtained by digital holographic microscopy into three RBC clusters with regular shapes, including biconcave, stomatocyte, and sphero-echinocyte. We select some good features related to the RBC profile and morphology, such as RBC average thickness, sphericity coefficient, and mean corpuscular volume, and clustering methods, including density-based spatial clustering applications with noise, k-medoids, and k-means, are applied to the set of morphological features. The clustering results of RBCs using a set of three-dimensional features are compared against a set of two-dimensional features. Our experimental results indicate that by utilizing the introduced set of features, two groups of biconcave RBCs and old RBCs (suffering from the sphero-echinocyte process) can be perfectly clustered. In addition, by increasing the number of clusters, the three RBC types can be effectively clustered in an automated unsupervised manner with high accuracy. The performance evaluation of the clustering techniques reveals that they can assist hematologists in further diagnosis.

  16. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    Science.gov (United States)

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  17. Altered levels of acetylcholinesterase in Alzheimer plasma.

    Directory of Open Access Journals (Sweden)

    María-Salud García-Ayllón

    Full Text Available BACKGROUND: Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE pose a major problem. PRINCIPAL FINDINGS: Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were approximately 20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G(1+G(2 forms and not G(4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD patients compared to age and gender-matched controls. This increase correlates with an increase in the G(1+G(2 forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. CONCLUSION: Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.

  18. Erythrocyte nanovesicles: Biogenesis, biolo

    Directory of Open Access Journals (Sweden)

    Gamaleldin I. Harisa

    2017-01-01

    Full Text Available Nanovesicles (NVs represent a novel transporter for cell signals to modify functions of target cells. Therefore, NVs play many roles in both physiological and pathological processes. This report highlights biogenesis, composition and biological roles of erythrocytes derived nanovesicles (EDNVs. Furthermore, we address utilization of EDNVs as novel drug delivery cargo as well as therapeutic target. EDNVs are lipid bilayer vesicles rich in phospholipids, proteins, lipid raft, and hemoglobin. In vivo EDNVs biogenesis is triggered by an increase of intracellular calcium levels, ATP depletion and under effect of oxidative stress conditions. However, in vitro production of EDNVs can be achieved via hypotonic treatment and extrusion of erythrocyte. NVs can be used as biomarkers for diagnosis, monitoring of therapy and drug delivery system. Many therapeutic agents are suggested to decrease NVs biogenesis.

  19. The Effect in Vitro of Ionizing Irradiation and Small Rises in Temperature on the Uptake and Release of Labelled Lipids by the Human Erythrocyte Membrane

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Karle, H.; Stender, S.

    1978-01-01

    1. The effect of X-irradiation (50 000 rad) and an increase in temperature from 37 to 42° C on the synthesis, uptake and release of labelled lipids by erythrocytes was studied in plasma incubations in vitro. 2. Both irradiation and a rise in temperature resulted in an enhanced synthesis of [32P]phosphatidic...

  20. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2016-07-01

    Full Text Available A new series of benzylaminochalcone derivatives with different substituents on ring B were synthesized and evaluated as inhibitors of acetylcholinesterase. The study is aimed at identification of novel benzylaminochalcones capable of blocking acetylcholinesterase activity for further development of an approach to Alzheimer’s disease treatment. These compounds were produced in moderate to good yields via Claisen-Schmidt condensation and subjected to an in vitro acetylcholinesterase inhibition assay, using Ellman’s method. The in silico docking procedure was also employed to identify molecular interactions between the chalcone compounds and the enzyme. Compounds with ring B bearing pyridin-4-yl, 4-nitrophenyl, 4-chlorophenyl and 3,4-dimethoxyphenyl moieties were discovered to exhibit significant inhibitory activities against acetylcholinesterase, with IC50 values ranging from 23 to 39 µM. The molecular modeling studies are consistent with the hypothesis that benzylaminochalcones could exert their effects as dual-binding-site acetylcholinesterase inhibitors, which might simultaneously enhance cholinergic neurotransmission and inhibit β-amyloid aggregation through binding to both catalytic and peripheral sites of the enzyme. These derivatives could be further developed to provide novel leads for the discovery of new anti-Alzheimer drugs in the future.

  1. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    Science.gov (United States)

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  2. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  3. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target.

    Science.gov (United States)

    Kaufmann, Dorothea; Dogra, Anudeep Kaur; Wink, Michael

    2011-10-01

    Inhibition of acetylcholinesterase (AChE) is a common treatment for early stages of the most general form of dementia, Alzheimer's disease. In this study selected components of essential oils, which carry a variety of important functional groups, were tested for their in-vitro anti-acetylcholinesterase activity. In-vitro anti-acetylcholinesterase activity was measured by an adapted version of Ellman's colorimetric assay. 1,8-cineole, carvacrol, myrtenal and verbenone apparently inhibited AChE; the highest inhibitory activity was observed for myrtenal (IC50 = 0.17 mm). This is the first study showing the AChE inhibitory activity of myrtenal. Our investigations provided evidence for the efficacy of monoterpenes as inhibitors of AChE. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  4. Plasmodium falciparum-infected erythrocytes do not adhere well to C32 melanoma cells or CD36 unless rosettes with uninfected erythrocytes are first disrupted.

    OpenAIRE

    Handunnetti, S M; Hasler, T H; Howard, R J

    1992-01-01

    Plasmodium falciparum malaria parasites modify the human erythrocytes in which they grow so that some parasitized erythrocytes (PE) can cytoadhere (C+) to host vascular endothelial cells or adhere in rosettes (R+) to uninfected erythrocytes. These C+ and R+ adherence properties of PE appear to mediate much of the pathogenesis of severe malaria infections, in part by blocking blood flow in microvessels. From one parasite strain, PE were selected in vitro for C+ R+ or C+ R- adherence properties...

  5. Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon

    Czech Academy of Sciences Publication Activity Database

    Kuča, K.; Musilová, L.; Paleček, J.; Církva, Vladimír; Paar, M.; Musílek, K.; Hrabinová, M.; Pohanka, M.; Zdarová Karasová, J.; Jun, D.

    2009-01-01

    Roč. 14, č. 12 (2009), s. 4915-4921 ISSN 1420-3049 Grant - others:MO0(CZ) FZV0000604 Institutional research plan: CEZ:AV0Z40720504 Keywords : acetylcholinesterase * reactivator * oxime Subject RIV: CC - Organic Chemistry Impact factor: 1.738, year: 2009

  6. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  7. Actividad hemolítica de la ortovainillina y la isovainillina sobre eritrocitos humanos Haemolytic activity of orthovanillin and isovanillin on human erythrocytes

    Directory of Open Access Journals (Sweden)

    Yamirka Alonso Geli

    2005-04-01

    Full Text Available Los eritrocitos portadores de hemoglobina S ( b 6 glu ® val , son menos flexibles que los eritrocitos normales, lo que los hace más frágiles y se hemolizan con mayor facilidad. La ortovainillina y la isovainillina, isómeros químicos de la vainillina, pueden inhibir la polimerización de la desoxihemoglobina S (actividad antipolimerizante y evitar la falciformación de los eritrocitos. Se determinó la actividad citotóxica de estos compuestos sobre eritrocitos normales y SS, a razones molares 1:1, 1:4, 1:8 y 1:10, por espectrofotometría midiendo la absorbancia a una longitud de onda l =545 nm de la hemoglobina libre en el sobrenadante, después de incubar la solución de eritrocitos con los compuestos, y se determinó el porcentaje de hemólisis. Los resultados muestran que el porcentaje de hemólisis promedio calculado fue inferior al 1 %. No se detectaron diferencias estadísticamente significativas entre las medias por razón molar en una misma clase de eritrocitos (p=0,05 ni una dependencia entre la concentración y la actividad hemolítica. Se compararon las medias entre ambos tipos de eritrocitos, para todas las relaciones molares, y no se observaron diferencias estadísticamente significativas. Se compararon, además, los resultados de trabajos anteriores sobre la actividad hemolítica de la vainillina con la de sus isómeros estructurales, y se obtuvo que la isovainillina y la ortovainillina provocaron porcentajes de hemólisis inferiores a los provocados por la vainillina. La baja actividad hemolítica de estos aldehídos aromáticos potencia su actividad antipolimerizante.The erythrocytes carriers of haemoglobin S ( b6 glu®val are less flexible than the normal erythrocytes, which makes them more fragile and allow them to haemolyse easier. The orthovanillin and the isovanillin, chemical isomers of vanillin, may inhibit the polymerisation of desoxohaemoglobin S (antipolimerizing activity and prevent the falciformation of

  8. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  9. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  10. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  11. Stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes Estágios da fagocitose in vitro por monócitos humanos de eritrócitos infectados por Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira

    2009-04-01

    Full Text Available Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.Monócitos/macrófagos desempenham uma função crítica nos mecanismos de defesa antiplasmódio e constituem as principais células responsáveis pela eliminação das formas eritrocitárias do plasmódio da circulação sangüínea. Realizamos uma avaliação microscópica dos estágios da fagocitose in vitro de eritrócitos infectados por Plasmodium falciparum por monócitos humanos. Essas células foram obtidas de indivíduos adultos sadios por centrifugação em Percoll e incubadas com eritrócitos infectados por Plasmodium falciparum previamente incubados com um pool de soro imune contra plasmódio. Descrevemos os estágios da fagocitose, desde a aderência dos eritrócitos infectados até sua destruição nos fagolisossomas dos monócitos. Observou-se que eritrócitos infectados por todos os diferentes est

  12. Influence of polar and non-polar digoxin and digitoxin metabolites on the /sup 86/Rb-uptake of human erythrocytes and the contractility of guinea pig papillary muscles

    Energy Technology Data Exchange (ETDEWEB)

    Belz, G G; Heinz, N [Bundeswehr-Zentralkrankenhaus, Koblenz (Germany, F.R.). Medizinische Abt.; Beiersdorf A G, Hamburg Pharma-Forschung [Germany, F.R.

    1977-01-01

    The potency of various digoxigenin and digitoxigenin derivatives with different polarity was tested in two biological systems: First, in an /sup 86/Rb-erythrocyte assay which allows to determine the influence on active cation transport (measured as the glycoside concentration exerting half maximal inhibition of /sup 86/Rb-uptake of human erythrocytes = IC/sub 50/). Second, with isolated guinea pig papillary muscle, which allows to determine glycoside effects on contractile force (measured as the glycoside concentration exerting a 100% increase of contractile force = C+/sub 100/B). The IC/sub 50/ of the substances covered a range from 3.2 to 4800 x 10/sup -9/M, the C+/sub 100/B from 0.7 to 978 x 10/sup -6/ M. In both assay systems the glucuronides of glycosides and genins were between 1.4 and 11 times less potent than the original substances. A highly significant correlation (p < 0.0001) was found between IC/sub 50/ and C+/sub 100/B (r = 0.9996) and between log IC/sub 50/ and log C+/sub 100/B (r = 0.9819), the slope for the latter correlation being nearly unity (= 0.9912). The results support the hypothesis that inhibition of active cation transport is an important step in glycoside induced positive-inotropic effect. (orig.) 891 VJ 892 AP.

  13. Stimulation of Suicidal Erythrocyte Death by the Antimalarial Drug Mefloquine

    Directory of Open Access Journals (Sweden)

    Rosi Bissinger

    2015-07-01

    Full Text Available Background: The antimalarial drug mefloquine has previously been shown to stimulate apoptosis of nucleated cells. Similar to apoptosis, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, and ceramide. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from specific antibody binding. Results: A 48 h treatment of human erythrocytes with mefloquine significantly increased the percentage of annexin-V-binding cells (≥5 µg/ml, significantly decreased forward scatter (≥5 µg/ml, significantly increased ROS abundance (5 µg/ml, significantly increased [Ca2+]i (7.5 µg/ml and significantly increased ceramide abundance (10 µg/ml. The up-regulation of annexin-V-binding following mefloquine treatment was significantly blunted but not abolished by removal of extracellular Ca2+. Even in the absence of extracellular Ca2+, mefloquine significantly increased annexin-V-binding. Conclusions: Mefloquine treatment leads to erythrocyte shrinkage and erythrocyte membrane scrambling, effects at least partially due to induction of oxidative stress, increase of [Ca2+]i and up-regulation of ceramide abundance.

  14. Triggering of Suicidal Erythrocyte Death by Regorafenib

    Directory of Open Access Journals (Sweden)

    Jens Zierle

    2016-01-01

    Full Text Available Background/Aims: The multikinase inhibitor regorafenib is utilized for the treatment of malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Side effects of regorafenib include anemia. At least in theory, regorafenib induced anemia could result from stimulated suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study explored, whether regorafenib induces eryptosis and, if so, whether it is effective up- and/or downstream of Ca2+. Methods: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to regorafenib (≥ 0.5 µg/ml significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (≥ 1.25 µg/ml, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of regorafenib on annexin-V-binding and forward scatter was not significantly blunted by removal of extracellular Ca2+. Regorafenib (5 µg/ml significantly augmented the increase of annexin-V-binding, but significantly blunted the decrease of forward scatter following treatment with the Ca2+ ionophore ionomycin. Conclusions: Regorafenib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+.

  15. Triggering of Suicidal Erythrocyte Death by Regorafenib.

    Science.gov (United States)

    Zierle, Jens; Bissinger, Rosi; Bouguerra, Ghada; Abbès, Salem; Lang, Florian

    2016-01-01

    The multikinase inhibitor regorafenib is utilized for the treatment of malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Side effects of regorafenib include anemia. At least in theory, regorafenib induced anemia could result from stimulated suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether regorafenib induces eryptosis and, if so, whether it is effective up- and/or downstream of Ca2+. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. A 48 hours exposure of human erythrocytes to regorafenib (≥ 0.5 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (≥ 1.25 µg/ml), but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of regorafenib on annexin-V-binding and forward scatter was not significantly blunted by removal of extracellular Ca2+. Regorafenib (5 µg/ml) significantly augmented the increase of annexin-V-binding, but significantly blunted the decrease of forward scatter following treatment with the Ca2+ ionophore ionomycin. Regorafenib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Stimulation of Suicidal Erythrocyte Death by Garcinol

    Directory of Open Access Journals (Sweden)

    Antonella Fazio

    2015-09-01

    Full Text Available Background/Aims: The benzophenone garcinol from dried fruit rind of Garcinia indica counteracts malignancy, an effect at least in part due to stimulation of apoptosis. The proapototic effect of garcinol is attributed in part to inhibition of histone acetyltransferases and thus modification of gene expression. Moreover, garcinol triggers mitochondrial depolarisation. Erythrocytes lack gene expression and mitochondria but are nevertheless able to enter apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, energy depletion and Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i. The present study explored, whether and how garcinol induces eryptosis. Methods: To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and cytosolic ATP levels utilizing a luciferin-luciferase-based assay. Results: A 24 hours exposure of human erythrocytes to garcinol (2.5 or 5 µM significantly increased the percentage of annexin-V-binding cells. Garcinol decreased (at 1 µM and 2.5 µM or increased (at 5 µM forward scatter. Garcinol (5 µM further increased Fluo3-fluorescence, increased DCFDA fluorescence, and decreased cytosolic ATP levels. The effect of garcinol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Garcinol triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation, energy depletion and Ca2+ entry.

  17. Erythrocyte fluorescence and lead intoxication.

    Science.gov (United States)

    Clark, K G

    1976-01-01

    Blood samples from people exposed to inorganic lead were examined by fluorescence microscopy for excess erythrocyte porphyrin. With continued lead absorption, fluorescent erythrocytes appeared in the circulation of workers handling this metal or its compounds, and they progressively increased in number and brilliance. These changes ensued if the blood lead concentration was maintained above 2-42 mumol/l (50 mug/100 ml), and preceded any material fall in the haemoglobin value. At one factory, 62-5% of 81 symptomless workers showed erythrocyte fluorescence attributable to the toxic effects of lead. Excess fluorocytes were found in blood samples from a child with pica and three of her eight siblings. These four were subsequently shown to have slightly increased blood lead concentrations (2-03 to 2-32 mumol/l). Fluorescence microscopy for excess erythrocyte porphyrin is a sensitive method for the detection of chronic lead intoxication. A relatively slight increase in the blood lead is associated with demonstrabel changes in erythrocyte porphyrin content. The procedure requires little blood, and may be performed upon stored samples collected for lead estimation. The results are not readily influenced by contamination, and provide good confirmatory evidence for the absorption of biochemically active lead. PMID:963005

  18. A simple radiometric in vitro assay for acetylcholinesterase inhibitors

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Burns, H.D.; Dannals, R.F.; Wagner, H.N. Jr.

    1983-01-01

    A radiometric method for screening acetylcholinesterase inhibitors has been described. The method is based on the production of [ 14 C]carbon dioxide from the hydrolysis of acetylcholine. The inhibitory concentration at 50% (IC50) values for several known acetylcholinesterase inhibitors were in agreement with literature values. The new radiometric method is simple, inexpensive, and has the potential for automation

  19. Acetylcholinesterase Inhibitory and Antioxidant Properties of Euphorbiacharacias Latex

    Directory of Open Access Journals (Sweden)

    Francesca Pintus

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the acetylcholinesterase inhibitory capacity and the antioxidant properties of extracts of Euphorbia characias latex, a Mediterranean shrub. We performed a new extraction method involving the use of the trichloroacetic acid. The extract showed high antioxidant activity, was rich in total polyphenolic and flavonoid content and exhibited substantial inhibition of acetylcholinesterase activity.

  20. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    Purpose: To search for new acetylcholinesterase enzyme inhibitors from Calopyllum species. Methods: Six stem bark extracts of Calophyllum inophyllum, C. soulattri, C. teysmannii, C. lowii, C. benjaminum and C. javanicum were subjected to anti-cholinesterase analysis against acetylcholinesterase (AChE) enzyme using ...

  1. MODIFICATION OF ERYTHROCYTE MEMBRANE PROTEINS WITH POLYETHYLENE GLYCOL 1500

    Directory of Open Access Journals (Sweden)

    N. G. Zemlianskykh

    2016-10-01

    Full Text Available The aim of the work was to study the effect of polyethylene glycol PEG-1500 on the Ca2+-ATPase activity and changes in CD44 surface marker expression in human erythrocyte membranes. Determination of the Ca2+-ATPase activity was carried out in sealed erythrocyte ghosts by the level of accumulation of inorganic phosphorus. Changes in the expression of CD44 and amount of CD44+-erythrocytes were evaluated by flow cytometry. The inhibition of Ca2+-ATPase activity and a reduction in the level of CD44 expression and also the decrease in the amount CD44+-cells were found, reflecting a fairly complex restructuring in the membrane-cytoskeleton complex of erythrocytes under the influence of PEG-1500. Effect of PEG-1500 on the surface CD44 marker could be mediated by modification of proteins of membrane-cytoskeleton complex, as indicated by accelerated loss of CD44 in erythrocyte membranes after application of protein cross-linking reagent diamide. Reduced activity of Ca2+-ATPase activity may contribute to the increase in intracellular Ca2+ level and thus leads to a modification of interactions of integral proteins with cytoskeletal components that eventually could result in membrane vesiculation and decreasing in expression of the CD44 marker, which is dynamically linked to the cytoskeleton.

  2. Inhibitory and enzyme-kinetic investigation of chelerythrine and lupeol isolated from Zanthoxylum rhoifolium against krait snake venom acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mustaq, E-mail: mushtaq213@yahoo.com [University of Science and Technology, Bannu, (Pakistan). Department of Biotechnology; Weber, Andrea D.; Zanon, Graciane; Tavares, Luciana de C.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F., E-mail: ademirfariasm@gmail.com [Universidade Federal de Santa Maria, RS (Brazil). Dept. de Quimica

    2014-01-15

    The in vitro activity of chelerythrine and lupeol, two metabolites isolated from Zanthoxylum rhoifolium were studied against the venom of the snake Bungarus sindanus (Elapidae). The venom, which is highly toxic to humans, consists mainly by the enzyme acetylcholinesterase (AChE). Both compounds showed activity against the venom, and the alkaloid chelerythrine presented higher activity than did triterpene lupeol. (author)

  3. Red not dead: signaling in and from erythrocytes.

    Science.gov (United States)

    Sprague, Randy S; Stephenson, Alan H; Ellsworth, Mary L

    2007-11-01

    The oxygen required to meet metabolic needs of all tissues is delivered by the erythrocyte, a small, flexible cell which, in mammals, is devoid of a nucleus and mitochondria. Despite its simple appearance, this 'bag of hemoglobin' has an important role in its own distribution, enabling the delivery of oxygen to precisely meet localized metabolic need. When an erythrocyte enters an area in which tissue oxygen demand exceeds supply, a signaling pathway is activated resulting in the release of adenosine 5'-triphosphate (ATP). This ATP acts in a paracrine fashion to increase vascular caliber resulting in increased oxygen delivery. Defects in this pathway are found in erythrocytes of humans with type 2 diabetes (DM2) and could contribute to the perfusion abnormalities in skeletal muscle associated with this disease.

  4. Changes in haematology, plasma biochemistry and erythrocyte ...

    African Journals Online (AJOL)

    The results suggest that maintaining wild birds in captivity for a prolonged period could be stressful as shown by the heterophil/lymphocytes ratio and reduced erythrocyte osmotic resistance, and could lead to decreases in erythrocyte parameters and muscle wasting. Keywords: Haematological parameters, erythrocyte ...

  5. Decreased erythrocyte superoxide dismutase in elderly men with early nuclear cataract

    Directory of Open Access Journals (Sweden)

    Rose Rose

    2015-12-01

    Full Text Available BACKGROUND Imbalance between oxidative processes and antioxidant defenses has been considered to play a role in cataractogenesis, particularly in diabetes patients. Superoxide dismutase (SOD is an important precursor for oxidative stress in the human lens, and its activity is mainly dependent on the copper and zinc levels in the body. The aim of this study was to compare erythrocyte SOD, erythrocyte zinc and total serum testosterone levels in male patients with early senile nuclear cataract and evaluate the correlations between the parameters in all subjects. METHODS A community-based study of cross-sectional design was conducted at Cilandak District Primary Health Center where 52 adult and 17 elderly men with early senile nuclear cataract were chosen as the study subjects. Erythrocyte SOD, erythrocyte zinc, serum testosterone, and fasting blood glucose (FBG levels were measured in all subjects. Nuclear cataract stage was assessed with the Pentacam® instrument (Oculus, Germany. Independent Student t test and Pearson’s correlation were used to analyze the results. RESULTS Erythrocyte SOD level was significantly decreased in elderly men compared to adult men (p=0.014. Erythrocyte zinc, serum testosterone and FBG did not differ significantly in adult and elderly males (at p=0.304; p=0.145;and p=0.376, respectively. Erythrocyte SOD activity was significantly associated with erythrocyte zinc level (r=0.486; p=0.048. CONCLUSIONS Lower erythrocyte SOD activity was found in elderly males than in adult males with early nuclear cataract. There was a relationship between erythrocyte SOD and erythrocyte zinc level in elderly males with early nuclear cataract.

  6. Decreased erythrocyte superoxide dismutase in elderly men with early nuclear cataract

    Directory of Open Access Journals (Sweden)

    Rose

    2014-04-01

    Full Text Available BACKGROUND Imbalance between oxidative processes and antioxidant defenses has been considered to play a role in cataractogenesis, particularly in diabetes patients. Superoxide dismutase (SOD is an important precursor for oxidative stress in the human lens, and its activity is mainly dependent on the copper and zinc levels in the body. The aim of this study was to compare erythrocyte SOD, erythrocyte zinc and total serum testosterone levels in male patients with early senile nuclear cataract and evaluate the correlations between the parameters in all subjects. METHODS A community-based study of cross-sectional design was conducted at Cilandak District Primary Health Center where 52 adult and 17 elderly men with early senile nuclear cataract were chosen as the study subjects. Erythrocyte SOD, erythrocyte zinc, serum testosterone, and fasting blood glucose (FBG levels were measured in all subjects. Nuclear cataract stage was assessed with the Pentacam® instrument (Oculus, Germany. Independent Student t test and Pearson’s correlation were used to analyze the results. RESULTS Erythrocyte SOD level was significantly decreased in elderly men compared to adult men (p=0.014. Erythrocyte zinc, serum testosterone and FBG did not differ significantly in adult and elderly males (at p=0.304; p=0.145;and p=0.376, respectively. Erythrocyte SOD activity was significantly associated with erythrocyte zinc level (r=0.486; p=0.048. CONCLUSIONS Lower erythrocyte SOD activity was found in elderly males than in adult males with early nuclear cataract. There was a relationship between erythrocyte SOD and erythrocyte zinc level in elderly males with early nuclear cataract.

  7. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation.

    Science.gov (United States)

    Campos, Elisa; Moura, Teresa F; Oliva, Abel; Leandro, Paula; Soveral, Graça

    2011-05-13

    In general, erythrocytes are highly permeable to water, urea and glycerol. However, expression of aquaporin isoforms in erythrocytes appears to be species characteristic. In the present study, human (hRBC) and bovine (bRBC) erythrocytes were chosen for comparative studies due to their significant difference in membrane glycerol permeability. Osmotic water permeability (P(f)) at 23°C was (2.89 ± 0.37) × 10(-2) and (5.12 ± 0.61) × 10(-2)cms(-1) for human and bovine cells, respectively, with similar activation energies for water transport. Glycerol permeability (P(gly)) for human ((1.37 ± 0.26) × 10(-5)cms(-1)) differed in three orders of magnitude from bovine erythrocytes ((5.82 ± 0.37) × 10(-8)cms(-1)) that also showed higher activation energy for glycerol transport. When compared to human, bovine erythrocytes showed a similar expression pattern of AQP1 glycosylated forms on immunoblot analysis, though in slight higher levels, which could be correlated with the 1.5-fold larger P(f) found. However, AQP3 expression was not detectable. Immunofluorescence analysis confirmed the absence of AQP3 expression in bovine erythrocyte membranes. In conclusion, lack of AQP3 in bovine erythrocytes points to the lipid pathway as responsible for glycerol permeation and explains the low glycerol permeability and high E(a) for transport observed in ruminants. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Influence of Erythrocyte Membrane Stability in Atherosclerosis.

    Science.gov (United States)

    da Silva Garrote-Filho, Mario; Bernardino-Neto, Morun; Penha-Silva, Nilson

    2017-04-01

    The purpose of this study is to show how an excess of cholesterol in the erythrocyte membrane contributes stochastically to the progression of atherosclerosis, leading to damage in blood rheology and O 2 transport, deposition of cholesterol (from trapped erythrocytes) in an area of intraplaque hemorrhage, and local exacerbation of oxidative stress. Cholesterol contained in the membrane of erythrocytes trapped in an intraplaque hemorrhage contributes to the growth of the necrotic nucleus. There is even a relationship between the amount of cholesterol in the erythrocyte membrane and the severity of atherosclerosis. In addition, the volume variability among erythrocytes, measured by RDW, is predictive of a worsening of this disease. Erythrocytes contribute to the development of atherosclerosis in several ways, especially when trapped in intraplate hemorrhage. These erythrocytes are oxidized and phagocytosed by macrophages. The cholesterol present in the membrane of these erythrocytes subsequently contributes to the growth of the atheroma plaque. In addition, when they rupture, erythrocytes release hemoglobin, which leads to the generation of free radicals. Finally, increased RDW may predict the worsening of atherosclerosis, due to the effects of inflammation and oxidative stress on erythropoiesis and erythrocyte volume. A better understanding of erythrocyte participation in atherosclerosis may contribute to the improvement of the prevention and treatment strategies of this disease.

  9. Hemolitic action of Naja naja atra cardiotoxin on erythrocytes from different animals

    Directory of Open Access Journals (Sweden)

    J. C. Troiano

    2006-01-01

    Full Text Available A comparative study on the sensitivity of erythrocytes from different vertebrate species (avian, mammalian and reptilian to the hemolytic action caused by cardiotoxin isolated from Naja naja atra venom was carried out. Cardiotoxin was able to induce direct hemolysis in washed erythrocytes from several animals, except for llama. The EC50 values from hemolysis of the most sensitive (cat and the most resistant (snake animal varied approximately tenfold. According to the cell behavior, it was possible to characterize four types of behavior: The first was observed in cat, horse and human cells; the second in rat, rabbit and dog erythrocytes; and the third only in llama erythrocytes, which were resistant to cardiotoxin concentrations up to 300 µg/ml. Finally, avian and reptilian erythrocytes were more resistant to cardiotoxin III-induced hemolysis than those of the mammalian species.

  10. New Acetylcholinesterase Inhibitors for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Mona Mehta

    2012-01-01

    Full Text Available Acetylcholinesterase (AChE remains a highly viable target for the symptomatic improvement in Alzheimer's disease (AD because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AchE for myasthenia gravis had effectively proven that AchE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEI continue to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs in development and their respective mechanisms of actions. This pharmacological approach continues to be active with many promising compounds.

  11. Plasmodium falciparum secretome in erythrocyte and beyond

    Directory of Open Access Journals (Sweden)

    Rani eSoni

    2016-02-01

    Full Text Available Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for development of novel anti-malarial therapies.

  12. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Science.gov (United States)

    2010-06-17

    Sciences, Bethesda, MD, ...... 14. ABSTRACT Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is...parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of...Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum Carmenza Spadafora1,2,3, Gordon A. Awandare4

  13. Contribution of the major and minor subunits to fimbria-mediated adherence of Haemophilus influenzae to human epithelial cells and erythrocytes

    NARCIS (Netherlands)

    van Ham, S. M.; van Alphen, L.; Mooi, F. R.; van Putten, J. P.

    1995-01-01

    Fimbriae are colonization factors of the human pathogen Haemophilus influenzae in that they mediate bacterial adherence to human eukaryotic cells. The contribution of the major (HifA) and putative minor (HifD and HifE) subunits of H. influenzae fimbriae to fimbria-specific adherence was studied by

  14. Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes

    DEFF Research Database (Denmark)

    Christensen, Pernille M.; Bosteen, Markus H.; Hajny, Stefan

    2017-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid implicated in e.g. angiogenesis, lymphocyte trafficking, and endothelial barrier function. Erythrocytes are a main source of plasma S1P together with platelets and endothelial cells. Apolipoprotein M (apoM) in HDL carries 70% of plasma S1P, whereas...... 30% is carried by albumin. The current aim was to investigate the role of apoM in export of S1P from human erythrocytes. Erythrocytes exported S1P more efficiently to HDL than to albumin, particularly when apoM was present in HDL. In contrast, export of sphingosine to HDL was unaffected...... by the presence of apoM. The specific ability of apoM to promote export of S1P was independent of apoM being bound in HDL particles. Treatment with MK-571, an inhibitor of the ABCC1 transporter, effectively reduced export of S1P from human erythrocytes to apoM, whereas the export was unaffected by inhibitors...

  15. Changes in acetylcholinesterase activities in the developing and ...

    African Journals Online (AJOL)

    Changes in acetylcholinesterase activities in the developing and aging pig brain and hypophyses. ... International Journal of Agriculture and Rural Development. Journal Home · ABOUT ... Open Access DOWNLOAD FULL TEXT Subscription ...

  16. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  17. Alpha-tocopherol transfer factor (aTTF) from rat liver mediates the transfer of d-alpha-[3H]-tocopherol from liposomes to human erythrocyte ghosts and exhibits saturation kinetics

    International Nuclear Information System (INIS)

    Verdon, C.P.; Blumberg, J.B.

    1986-01-01

    aTTF was observed to transfer d-alpha-[ 3 H]-tocopherol ( 3 HaT) from egg lecithin liposomes to human erythrocyte ghosts (EG). aTTF may be associated with the 32,000-35,000 MW alpha-Tocopherol Binding Protein previously described to transfer 3 HaT from liposomes to rat liver microsomes and mitochondria prepared by ammonium sulfate precipitation of rat liver cytosol followed by dialysis against 50 mM TRIS-HCl/1 mM EDTA buffer, pH 7.4. Assay for aTTF activity consisted of incubating liposomal 3 HaT and EG in the presence of aTTF or buffer blank for various time periods at 37 0 C, then counting the resulting radioactivity in washed EG after pelleting by centrifugation. Liposomes were prelabeled-with non-exchangable glycerol-[ 14 C]-trioleate to correct for liposomes adhering to pelleted EG. Greater than 50% of the tritium found with the EG pellet was recovered by HPLC as 3 HaT. aTTF activity increased with increasing liposomal 3 HaT concentration before reaching a plateau. aTTF activity was similarly saturated by increasing EG concentrations. The same assay conditions with buffer blank along resulted in negligible transfer activity

  18. 51Cr - erythrocyte survival curves

    International Nuclear Information System (INIS)

    Paiva Costa, J. de.

    1982-07-01

    Sixteen patients were studied, being fifteen patients in hemolytic state, and a normal individual as a witness. The aim was to obtain better techniques for the analysis of the erythrocytes, survival curves, according to the recommendations of the International Committee of Hematology. It was used the radiochromatic method as a tracer. Previously a revisional study of the International Literature was made in its aspects inherent to the work in execution, rendering possible to establish comparisons and clarify phonomena observed in cur investigation. Several parameters were considered in this study, hindering both the exponential and the linear curves. The analysis of the survival curves of the erythrocytes in the studied group, revealed that the elution factor did not present a homogeneous answer quantitatively to all, though, the result of the analysis of these curves have been established, through listed programs in the electronic calculator. (Author) [pt

  19. Two Step Synthesis of a Non-symmetric Acetylcholinesterase Reactivator

    Directory of Open Access Journals (Sweden)

    Vit Koleckar

    2007-08-01

    Full Text Available The newly developed and very promising acetylcholinesterase reactivator (E-1- (2-hydroxyiminomethylpyridinium-4-(4-hydroxyiminomethylpyridinium-but-2-ene dibromide was prepared using two different pathways via a two-step synthesis involving the appropriate (E-1-(4-bromobut-2-enyl-2- or 4-hydroxyiminomethyl-pyridinium bromides. Afterwards, purities and yields of the desired product prepared by both routes were compared. Finally, its potency to reactivate several nerve agent-inhibited acetylcholinesterases was tested.

  20. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes.

    Directory of Open Access Journals (Sweden)

    Muriel Vayssier-Taussat

    2010-06-01

    Full Text Available Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage

  1. Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3. Equilibrium measurements at physiological pH using matrix-bound proteins: the effects of ionic strength, deoxygenation and of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Chétrite, G; Cassoly, R

    1985-10-05

    The cytoplasmic fragment of band 3 protein isolated from the human erythrocyte membrane was linked to a CNBr-activated Sepharose matrix in an attempt to measure, in batch experiments, its equilibrium binding constant with oxy- and deoxyhemoglobin at physiological pH and ionic strength values and in the presence or the absence of 2,3-diphosphoglycerate. All the experiments were done at pH 7.2, and equilibrium constants were computed on the basis of one hemoglobin tetramer bound per monomer of fragment. In 10 mM-phosphate buffer, a dissociation constant KD = 2 X 10(-4)M was measured for oxyhemoglobin and was shown to increase to 8 X 10(-4)M in the presence of 50 mM-NaCl. Association could not be demonstrated at higher salt concentrations. Diphosphoglycerate-stripped deoxyhemoglobin was shown to associate more strongly with the cytoplasmic fragment of band 3. In 10 mM-bis-Tris (pH 7.2) and in the presence of 120 mM-NaCl, a dissociation constant KD = 4 X 10(-4)M was measured. Upon addition of increasing amounts of 2,3-diphosphoglycerate, the complex formed between deoxyhemoglobin and the cytoplasmic fragment of band 3 was dissociated. On the reasonable assumption that the hemoglobin binding site present on band 3 fragment was not modified upon linking the protein to the Sepharose matrix, the results indicated that diphosphoglycerate-stripped deoxyhemoglobin or partially liganded hemoglobin tetramers in the T state could bind band 3 inside the intact human red blood cell.

  2. Encapsulation of interleukin-2 in murine erythrocytes and subsequent deposition in mice receiving a subcutaneous injection

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Andrews, K.; Sheffield, C.L.

    1988-01-01

    Radiolabeled recombinant human interleukin-2 (IL-2) was successfully encapsulated in both mouse and sheep erythrocytes. Of the added IL-2, 70% was recovered bound to or encapsulated within the carrier cells. Erythrocytes containing IL-2 were stable in vitro and most of the IL-2 remained associated with the cells following a 16-h incubation at 37 degrees C. When carrier erythrocytes containing IL-2 were injected subcutaneously into mice, intact [ 35 S]IL-2 was detectable in a number of tissues 3 days after injection

  3. In silico development of new acetylcholinesterase inhibitors.

    Science.gov (United States)

    Pascoini, A L; Federico, L B; Arêas, A L F; Verde, B A; Freitas, P G; Camps, I

    2018-04-19

    In this work, we made use of fragment-based drug design (FBDD) and de novo design to obtain more powerful acetylcholinesterase (AChE) inhibitors. AChE is associated with Alzheimer's disease (AD). It was found that the cholinergic pathways in the cerebral cortex are compromised in AD and the accompanying cholinergic deficiency contributes to the cognitive deterioration of AD patients. In the FBDD approach, fragments are docked into the active site of the protein. As fragments are molecular groups with a low number of atoms, it is possible to study their interaction with localized amino acids. Once the interactions are measured, the fragments are organized by affinity and then linked together to form new molecules with a high degree of interaction with the active site. In the other approach, we used the de novo design technique starting from reference drugs used in the AD treatment. These drugs were broken into fragments (seeds). In the growing strategy, fragments were added to each seed, growing new molecules. In the linking strategy, two or more separated seeds were linked with different fragments. Both strategies combined produced a library of more than 2 million compounds. This library was filtered using absorption, distribution, metabolism, and excretion properties. The resulting library with around six thousand compounds was filtered again. In this case, structures with Tanimoto coefficients >.85 were discarded. The final library with 1500 compounds was submitted to docking studies. As a result, 10 compounds with better interaction energy than the reference drugs were obtained.

  4. Natural sesquiterpen lactones as acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    HOMA HAJIMEHDIPOOR

    2014-06-01

    Full Text Available Background and the purpose of the study: The amount of elder people who suffer from Alzheimer disease is continuously increasing every year. Cholinesterase inhibitors have shown to be effective in alleviating the symptoms of the disease, thus opening a field of research for these treatments. Herbal products, owning a reputation as effective agents in many biological studies are now drawing attention for inhibiting acetylcholinesterase, in other words, Alzheimer disease. In the present study, the ability of three sesquiterpene lactones from Inula oculus-christi and I. aucheriana to inhibit AChE has been evaluated through Ellman assay.Materials and Methods: Gaillardin and pulchellin C were obtained from I. oculus-christi and britannin from I. aucheriana by chromatographic methods. They were dissolved in methanol in concentration of 3 mg/mL and the AChEI activity of the compounds was determined by Ellman method using Acethylthiocholine iodide as the substrate and 5, 5′-dithiobis-2-nitrobenzoic acid as the reagent, in 96-well plates at 405 nm.Results: AChEI activity of the examined compounds was obtained as 67.0, 25.2 and 10.9% in concentration of 300 µg/L for gaillardin, britannin and pulchellin C, respectively.Conclusion: Among the three sesquiterpene lactones, gaillardin with 67% inhibition of AChE could be considered a good candidate for future Alzheimer studies.

  5. The reactivation effect of pralidoxime in human blood on parathion and paraoxon–induced cholinesterase inhibition

    Directory of Open Access Journals (Sweden)

    Mahvash Jafari

    2006-03-01

    Full Text Available In this investigation the reactivation of cholinesterases by pralidoxime in parathion and paraoxon intoxication in plasma and erythrocytes were studied. For this purpose, human plasma and erythrocytes were incubated with various concentrations of parathion (0.1-10 µM and paraoxon (0.03-0.3 µM at 37 oC for 10 min. Then, pralidoxime (10-300 µM was added to the samples and incubated for 10 min before cholinesterases assay. The results showed that effects of parathion and paraoxon were dose dependent. These agents inhibited more than 85% of butyrylcholinesterase (BChE and acetylcholinesterase (AChE activity and the inhibitory effect of paraoxon was 10 times more than parathion. BChE activity was significantly higher than the control at 100 µM of pralidoxime and it reduced inhibitory effects of parathion to less than 50% and of paraoxon to 42% of control. When pralidoxime (10 µM was added to erythrocytes, the inhibitory effects of two organophosphates were reduced to less than 15%. At higher concentrations of pralidoxime (>100 µM, both BChE and AChE activities were inhibited.

  6. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2006-01-01

    Full Text Available In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 ± 38 IU g-1 Hb-1 min-1 at 37ºC, compared to the human erythrocyte activity of 12 ± 2 IU g-1 Hb-1 min-1 at 37ºC. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa. The Michaelis-Menten constants (Km: 55 µM for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 µM were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively. A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate.

  7. Erythrocytes in alternating electric fields

    International Nuclear Information System (INIS)

    Morariu, V.V.; Chifu, A.; Simplaceanu, T.; Frangopol, P.T.

    1983-02-01

    The elastic and inelastic deformation of erythrocytes induced by alternating fields and the suggestion that moderate field intensities (1.2 kV/cm) when continuously applied can cause lysis by a different mechanism compared to the action of short intense field pulses is presented. The different experimental conditions can be used to approach various properties of the membrane such as those related to the dielectric polarization of the membrane or to the interfacial polarization, leading to the inelastic deformation of the cells. (authors)

  8. Examination of the calcium-erythrocyte membrane interactions

    International Nuclear Information System (INIS)

    Gardos, Gy.; Szasz, I.; Sarkadi, B.

    1979-01-01

    A review of the cation-transport mechanisms of human erythrocytes is given. The following experimental methods were applied: measurement of 45 Ca influx, 45 Ca efflux, 42 K influx, 42 K efflux, 22 Na efflux and determination of the activity of the Ca-ATP-ase enzyme. The increase of the intracellular Ca-level opens some specific K-channels, through which K is leaking out passively. The kinetics and the chemical nature of this K-transport are given in detail. On the other hand, Ca ions taken up are removed by active transport. Detailed data are given on the activity and specific inhibition of this Ca-pump. In human erythrocytes the pump is working with the stoichiometry of Ca:ATP=2. (L.E.)

  9. Loss of the clock protein PER2 shortens the erythrocyte life span in mice.

    Science.gov (United States)

    Sun, Qi; Zhao, Yue; Yang, Yunxia; Yang, Xiao; Li, Minghui; Xu, Xi; Wen, Dan; Wang, Junsong; Zhang, Jianfa

    2017-07-28

    Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H 2 O 2 challenges. 1 H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na + /K + -ATPase activity in Per2 -null erythrocytes, and inhibition of Na + /K + -ATPase activity by ouabain efficiently rescued ATP levels. Per2 -null mice displayed increased levels of Na + /K + -ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. [The 2,3-diphosphoglycerate shunt and stabilization of the ATP level in mammalian erythrocytes].

    Science.gov (United States)

    Ataullakhanov, A I; Ataullakhanov, F I; Vitvitskiĭ, V M; Zhabotinskiĭ, A M; Pichugin, A V

    1985-06-01

    The mechanisms of regulation of energy metabolism in erythrocytes of various mammalian species were investigated. In native erythrocytes of man, sheep, cow, dog and mouse the dependencies of the rates of glucose uptake on ATP concentration (i.e., regulatory parameters of glycolysis) were measured. These parameters plotted in normalized coordinates are not species-specific (invariant). The dependence of the rate of ATP-consuming processes on ATP concentration has been studied for the first time in intact mammalian erythrocytes. This dependence was found to be linear only in the species, in whose erythrocytes the activity of 2,3-diphosphoglycerate shunt is practically zero. In all species under study, the stabilization of ATP level is provided for mainly by the hexokinase-phosphofructokinase system. A comparison of regulatory mechanisms of energy metabolism in mammalian (sheep, cow) erythrocytes, in which the 2,3-diphosphoglycerate shunt is absent, with human and animal erythrocytes, in which this pathway is active, points to the important role of the 2,3-diphosphoglycerate shunt in regulation of energy conversion in erythrocytes. This shunt operates as an additional stabilizer protecting the cell from extremal influences.

  11. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  12. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin

    Directory of Open Access Journals (Sweden)

    Morena Mischitelli

    2016-11-01

    Full Text Available Background/Aims: The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM, DCFDA fluorescence (75 µM and ceramide abundance (75 µM. The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface.

  13. SERUM ACETYLCHOLINESTERASE LEVEL IN THE PATIENTS OF OPIOID (BROWN SUGAR) DEPENDENCE

    OpenAIRE

    Shah, Nilesh; Dave, Kirti

    1992-01-01

    The authors compared the serum acetylcholinesterase level in the patients of brown sugar dependence and the normal volunteers. Significantly lower level of serum acetylcholinesterase was found in patients of brown sugar dependence.

  14. Tuning SERS for living erythrocytes

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Parshina, E.Y.; Khabanova, V.V.

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (Ag......NP) properties. We demonstrate that the enhancement factor for 4/A1g, 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative...... between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands 10/B1g and A2g is more sensitive to AgNPs' size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band 4/A1g. This can...

  15. Invasion of erythrocytes by Babesia bovis

    NARCIS (Netherlands)

    Gaffar, Fasila Razzia

    2004-01-01

    In this thesis we investigated the invasion of erythrocytes taking place during the asexual erythrocytic blood stage of the apicomplexan parasites Babesia bovis parasite. Host cell invasion by apicomplexan parasites is a complex process requiring multiple receptor-ligand interactions, involving

  16. Enzymatic assay for methotrexate in erythrocytes

    DEFF Research Database (Denmark)

    Schrøder, H; Heinsvig, E M

    1985-01-01

    Methotrexate (MTX) accumulates in erythrocytes in MTX-treated patients. We present a modified enzymatic assay measuring MTX concentrations between 10 and 60 nmol/l in erythrocytes, adapted for a centrifugal analyser (Cobas Bio). About 40 patient's samples could be analysed within 1 h. The detection...

  17. Molecular mechanisms of erythrocyte photo-irradiation

    International Nuclear Information System (INIS)

    Ferreira, W.T.; Souza, M.C.

    1985-01-01

    The role of singlet oxygen and the lipid peroxidation of erythrocyte membrane are studied. The irradiation of erythrocytes with visible light in the presence of a photodynamic mediator (toluidine blue) is reported. A system of light application by optical fiber, connected to a catheter is suggested for local instillation of the photosensitizing agent. (M.A.C.) [pt

  18. Characterization of acetylcholinesterase-inhibition by itopride.

    Science.gov (United States)

    Iwanaga, Y; Kimura, T; Miyashita, N; Morikawa, K; Nagata, O; Itoh, Z; Kondo, Y

    1994-11-01

    Itopride is a gastroprokinetic benzamide derivative. This agent inhibited both electric eel acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BuChE). The IC50 of itopride with AChE (2.04 +/- 0.27 microM) was, however, 100-fold less than that with BuChE, whereas in the case of neostigmine with AChE (11.3 +/- 3.4 nM), it was 10-fold less. The recovery of AChE activity inhibited by 10(-7) M neostigmine was partial, but that inhibited by up to 3 x 10(-5) M itopride was complete when the reaction mixture was subjected to ultrafiltration. Double reciprocal plots of the experimental data showed that both Km and Vmax were affected by itopride, suggesting that the inhibition is a "mixed" type, although primarily being an uncompetitive one. The inhibitory effect of itopride on cholinesterase (ChE) activity in guinea pig gastrointestine was much weaker than that on pure AChE. However, in the presence of a low dose of diisopropyl fluorophosphate, just enough to inhibit BuChE but not AChE, the IC50s of itopride against ChE activities were found to be about 0.5 microM. In conclusion, itopride exerts reversible and a "mixed" type of inhibition preferably against AChE. The IC50 of itopride for electric eel and guinea pig gastrointestinal AChE inhibition was 200 times and 50 times as large as that of neostigmine, respectively.

  19. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    Science.gov (United States)

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  20. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-01-01

    Phosphorus 31 nuclear magnetic resonance ( 31 P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31 P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which leads to lower steady-state concentrations of the intracellular phosphates

  1. Erythrocytes in muscular dystrophy. Investigation with 31P nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sarpel, G.; Lubansky, H.J.; Danon, M.J.; Omachi, A.

    1981-01-01

    Phosphorus 31 nuclear magnetic resonance (31P NMR) signals were recorded from intact human erythrocytes for 16 hours. Total phosphate concentration, which was estimated as the sum of the individual 31P signals, was 25% lower in erythrocytes from men with myotonic dystrophy than in control erythrocytes. The inorganic-phosphate fraction contained the highest average phosphate concentration over the 16-hour period, and made the major contribution to the difference in total phosphate between the two groups. This result was not observed in erythrocytes from either women with myotonic dystrophy or patients with Duchenne's dystrophy and may be due to a change in cell membrane permeability to inorganic phosphate, which lead to lower steady-state concentrations of the intracellular phosphates

  2. Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip

    Science.gov (United States)

    Toderi, Martín A.; Castellini, Horacio V.; Riquelme, Bibiana D.

    2017-01-01

    The study of red blood cell (RBC) aggregation is of great interest because of its implications for human health. Altered RBC aggregation can lead to microcirculatory problems as in vascular pathologies, such as hypertension and diabetes, due to a decrease in the erythrocyte surface electric charge and an increase in the ligands present in plasma. The process of erythrocyte aggregation was studied in stasis situation (free shear stresses), using an optical chip based on the laser transmission technique. Kinetic curves of erythrocyte aggregation under different conditions were obtained, allowing evaluation and characterization of this process. Two main characteristics of blood that influence erythrocyte aggregation were analyzed: the erythrocyte surface anionic charge (EAC) after digestion with the enzyme trypsin and plasmatic protein concentration in suspension medium using plasma dissolutions in physiological saline with human albumin. A theoretical approach was evaluated to obtain aggregation and disaggregation ratios by syllectograms data fitting. Sensible parameters (Amp100, t) regarding a reduced erythrocyte EAC were determined, and other parameters (AI, M-Index) resulted that are representative of a variation in the plasmatic protein content of the suspension medium. These results are very useful for further applications in biomedicine.

  3. Quantitative evaluation of respiration induced metabolic oscillations in erythrocytes

    DEFF Research Database (Denmark)

    Hald, Bjørn; Madsen, Mads F; Danø, Sune

    2009-01-01

    The changes in the partial pressures of oxygen and carbon dioxide (P(O(2)) and P(CO(2))) during blood circulation alter erythrocyte metabolism, hereby causing flux changes between oxygenated and deoxygenated blood. In the study we have modeled this effect by extending the comprehensive kinetic...... model by Mulquiney and Kuchel [P.J. Mulquiney, and P.W. Kuchel. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement, Biochem. J. 1999, 342, 581-596.] with a kinetic model of hemoglobin oxy...... solely by steady state consideration. The metabolic system exhibits a broad distribution of time scales. Relaxations of modes with hemoglobin and Mg(2+) binding reactions are very fast, while modes involving glycolytic, membrane transport and 2,3-BPG shunt reactions are much slower. Incomplete slow mode...

  4. Extracellular histones induce erythrocyte fragility and anemia.

    Science.gov (United States)

    Kordbacheh, Farzaneh; O'Meara, Connor H; Coupland, Lucy A; Lelliott, Patrick M; Parish, Christopher R

    2017-12-28

    Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients. © 2017 by The American Society of Hematology.

  5. Novel acetylcholinesterase target site for malaria mosquito control.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2006-12-01

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  6. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides.

    Science.gov (United States)

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-04-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.

  7. Acetyl-cholinesterase Enzyme Inhibitory Effect of Calophyllum species

    African Journals Online (AJOL)

    1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, ... Purpose: To search for new acetylcholinesterase enzyme inhibitors from ... Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, .... The data are expressed as mean ± standard .... The authors acknowledge financial support from.

  8. Introducing Dynamic Combinatorial Chemistry: Probing the Substrate Selectivity of Acetylcholinesterase

    Science.gov (United States)

    Angelin, Marcus; Larsson, Rikard; Vongvilai, Pornrapee; Ramstrom, Olof

    2010-01-01

    In this laboratory experiment, college students are introduced to dynamic combinatorial chemistry (DCC) and apply it to determine the substrate selectivity of acetylcholinesterase (AChE). Initially, the students construct a chemical library of dynamically interchanging thioesters and thiols. Then, AChE is added and allowed to select and hydrolyze…

  9. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  10. Erythrocyte enrichment in hematopoietic progenitor cell cultures based on magnetic susceptibility of the hemoglobin.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    Full Text Available Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A, hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes.

  11. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (Pcurcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Adenosine deaminase activity of erythrocytes in hyperuricemia

    International Nuclear Information System (INIS)

    Krueger, W.; Richter, V.; Beenken, O.; Weinhold, D.; Hirschberg, K.; Rotzsch, W.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1982-01-01

    Erythrocytic adenosine deaminase (ADA) activity was determined in 55 patients with primary hyperuricemia and in 37 healthy control persons. Unlike the controls, the ADA activity in the patient group showed a two-peak response. Hyperuricemia patients with high ADA activity also exhibited increased uric acid excretion and elevated 15 N incorporation into uric acid. High activity values of erythrocytic ADA can be interpreted as an uric acid overproduction, giving hints for a therapeutic plan. (author)

  13. Tirilazad mesylate protects stored erythrocytes against osmotic fragility.

    Science.gov (United States)

    Epps, D E; Knechtel, T J; Bacznskyj, O; Decker, D; Guido, D M; Buxser, S E; Mathews, W R; Buffenbarger, S L; Lutzke, B S; McCall, J M

    1994-12-01

    The hypoosmotic lysis curve of freshly collected human erythrocytes is consistent with a single Gaussian error function with a mean of 46.5 +/- 0.25 mM NaCl and a standard deviation of 5.0 +/- 0.4 mM NaCl. After extended storage of RBCs under standard blood bank conditions the lysis curve conforms to the sum of two error functions instead of a possible shift in the mean and a broadening of a single error function. Thus, two distinct sub-populations with different fragilities are present instead of a single, broadly distributed population. One population is identical to the freshly collected erythrocytes, whereas the other population consists of osmotically fragile cells. The rate of generation of the new, osmotically fragile, population of cells was used to probe the hypothesis that lipid peroxidation is responsible for the induction of membrane fragility. If it is so, then the antioxidant, tirilazad mesylate (U-74,006f), should protect against this degradation of stored erythrocytes. We found that tirilazad mesylate, at 17 microM (1.5 mol% with respect to membrane lecithin), retards significantly the formation of the osmotically fragile RBCs. Concomitantly, the concentration of free hemoglobin which accumulates during storage is markedly reduced by the drug. Since the presence of the drug also decreases the amount of F2-isoprostanes formed during the storage period, an antioxidant mechanism must be operative. These results demonstrate that tirilazad mesylate significantly decreases the number of fragile erythrocytes formed during storage in the blood bank.

  14. Triggering of Suicidal Erythrocyte Death Following Boswellic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Salvatrice Calabrò

    2015-08-01

    Full Text Available Background/Aims: The antinflammatory natural product boswellic acid is effective against cancer at least in part by inducing tumor cell apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, energy depletion, ceramide formation and p38 kinase activation. The present study tested, whether and how boswellic acid induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies, reactive oxygen species (ROS from 2′,7′-dichlorodihydrofuorescein diacetate (DCFDA fluorescence, and cytosolic ATP concentration utilizing a luciferin-luciferase assay kit. Results: A 24 hours exposure of human erythrocytes to boswellic acid (5 µg/ml significantly increased the percentage of annexin-V-binding cells (to 9.3 ±0.9 % and significantly decreased forward scatter. Boswellic acid did not significantly modify [Ca2+]i, cytosolic ATP, ROS, or ceramide abundance. The effect of boswellic acid on annexin-V-binding was significantly blunted, but not abolished by p38 kinase inhibitors skepinone (2 µM and SB203580 (2 µM. Conclusions: Boswellic acid stimulates cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on p38 protein kinase activity.

  15. Effect of fluorozis on the erythrocyte antioxidant enzyme activity levels

    International Nuclear Information System (INIS)

    Akdogan, M.; YiImaz, D.; Yontem, M.; Kalei, S.; Kilic, I.

    2011-01-01

    While the flourine level of (drinking) water was higher than normal ranges in the center of Isparta region before 1995 year, this problematic situation is solved in later years. (However) the individuals who are staying in Yenice district are still expose to high levels of fluorine because of the usage of Andik spring water (3.8 mg/L flour level) as drinking water. In this study we aimed to investigate the harmful effect of floride on human erythrocytes via antioxidant defence system and lipid peroxidation. Therefore, we studied the activities of erythrocyte antioxidant enzymes such as Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-Px) and Catalase (CAT), and the level of erythrocyte Glutathione (GSH), thiobarbituric acid reactive substance (TBARS) and the level of urine floride in high floride exposed people (children, adult and elderly). The activities of SOD, GSH-Px and CAT and the level of GSH, TBARS and urine floride were higher in 3.8 mg/L floride exposed children (Group II) than 0.8 mg/L floride exposed control children (Group I) (p 0.05). The activities of SOD, GSH-Px and CAT were lower and the levels of TBARS and urine floride were higher in 3.8 mg/L floride exposed elderly people (Group VI) than 0.8 mg/L floride exposed control elderly people (Group V) (p 0.05). As a result we thought that increased SOD, GSH-Px and CAT activities in floride exposed children and adult people, decreased activities of these enzymes in floride exposed elderly people, and increased TBARS in all groups may indicate floride caused oxidative damage in erythrocytes. (author)

  16. Pesticide use, erythrocyte acetylcholinesterase level and self-reported acute intoxication symptoms among vegetable farmers in Nepal

    DEFF Research Database (Denmark)

    Neupane, Dinesh; Jors, E.; Brandt, L.

    2014-01-01

    : The majority of pesticides used were WHO class II, classified as moderately hazardous. The mean numbers of personal protective equipment used by farmers were 2.22 (95% CI: 1.89; 2.54). Out of five hygienic practices asked, farmers followed 3.63 (95% CI: 3.40; 3.86) hygienic practices on the average. Farmers...... of healthy individuals. A lower mean haemoglobin-adjusted AChE level was seen among farmers compared to the controls. The use of highly toxic pesticides, inadequate use of personal protective equipment and poor hygienic practices might explain the reason for symptoms of pesticide intoxication and a lower ACh...

  17. Altitude Acclimatization and Blood Volume: Effects of Exogenous Erythrocyte Volume Expansion

    National Research Council Canada - National Science Library

    Sawka, M

    1996-01-01

    ...: (a) altitude acclimatization effects on erythrocyte volume and plasma volume; (b) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations; (c...

  18. Effect of gamma irradiation on membranes of normal and pathological erythrocytes (beta-thalassemia)

    International Nuclear Information System (INIS)

    Sportelli, L.; Bonincontro, A.; Cametti, C.; Consiglio Nazionale delle Ricerche, Rome

    1987-01-01

    The influence of ionizing radiation on the membrane of human normal erythrocytes has extensively been studied and a variety of effects including changes in the cation fluxes or in non-electrolytes permeability, in membrane fluidity, in peroxidation of unsaturated lipids as well as chemical composition or structural modifications has been observed. However, only few studies deal with the effects of ionizing radiation on pathological red blood cells. In this work, we have investigated by means of electron spin resonance (ESR) spectroscopy the effects of 60 Co γ-radiation on the normal and homozygous β-thalassemic human erythrocyte membranes. (orig.)

  19. Erythrocyte 3H-ouabain binding and digitalis treatment in ethanol addicted patients

    International Nuclear Information System (INIS)

    Battaini, F.; Govoni, S.; Mauri, A.; Civelli, L.; Trabucchi, M.

    1987-01-01

    The binding of 3 H-ouabain to human erythrocytes was analyzed in a population of hospitalized male ethanol addicted patients under long term digitalis treatment. In the non-alcoholic patient group the long term digitalis treatment induced an increase in Bmax and Kd values; such modification was not observed in the alcoholic patients. Chronic alcohol intake itself induced an increase in 3 H-ouabain kinetic parameters. These observations confirm that ouabain binding to human erythrocytes is subject to pharmacological and toxicological regulation and that adaptive changes in peripheral tissues can be useful in predicting possible parallel modifications in other less accessible tissues. 22 references, 1 table

  20. Flavonoids, Antioxidant Potential, and Acetylcholinesterase Inhibition Activity of the Extracts from the Gametophyte and Archegoniophore of Marchantia polymorpha L.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-03-01

    Full Text Available Marchantia polymorpha L. is a representative bryophyte used as a traditional Chinese medicinal herb for scald and pneumonia. The phytochemicals in M. polymorpha L. are terpenoids and flavonoids, among which especially the flavonoids show significant human health benefits. Many researches on the gametophyte of M. polymorpha L. have been reported. However, as the reproductive organ of M. polymorpha L., the bioactivity and flavonoids profile of the archegoniophore have not been reported, so in this work the flavonoid profiles, antioxidant and acetylcholinesterase inhibition activities of the extracts from the archegoniophore and gametophyte of M. polymorpha L. were compared by radical scavenging assay methods (DPPH, ABTS, O2−, reducing power assay, acetylcholinesterase inhibition assay and LC-MS analysis. The results showed that the total flavonoids content in the archegoniophore was about 10-time higher than that of the gametophyte. Differences between the archegoniophore and gametophyte of M. polymorpha L. were observed by LC-MS analysis. The archegoniophore extracts showed stronger bio-activities than those of the gametophyte. The archegoniophore extract showed a significant acetylcholinesterase inhibition, while the gametophyte extract hardly inhibited it.

  1. Acetylcholinesterase activity, cohabitation with floricultural workers, and blood pressure in Ecuadorian children.

    Science.gov (United States)

    Suarez-Lopez, Jose R; Jacobs, David R; Himes, John H; Alexander, Bruce H

    2013-05-01

    Acetylcholinesterase (AChE) inhibitors are commonly used pesticides that can effect hemodynamic changes through increased cholinergic stimulation. Children of agricultural workers are likely to have paraoccupational exposures to pesticides, but the potential physiological impact of such exposures is unclear. We investigated whether secondary pesticide exposures were associated with blood pressure and heart rate among children living in agricultural Ecuadorian communities. This cross-sectional study included 271 children 4-9 years of age [51% cohabited with one or more flower plantation workers (mean duration, 5.2 years)]. Erythrocyte AChE activity was measured using the EQM Test-mate system. Linear regression models were used to estimate associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate with AChE activity, living with flower workers, duration of cohabitation with a flower worker, number of flower workers in the child's home, and number of practices that might increase children's exposure to pesticides. Mean (± SD) AChE activity was 3.14 ± 0.49 U/mL. A 1-U/mL decrease in AChE activity was associated with a 2.86-mmHg decrease in SBP (95% CI: -5.20, -0.53) and a 2.89-mmHg decrease in DBP (95% CI: -5.00, -0.78), after adjustment for potential confounders. Children living with flower workers had lower SBP (-1.72 mmHg; 95% CI: -3.53, 0.08) than other children, and practices that might increase exposure also were associated with lower SBP. No significant associations were found between exposures and heart rate. Our findings suggest that subclinical secondary exposures to pesticides may affect vascular reactivity in children. Additional research is needed to confirm these findings.

  2. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  3. Allosensibilisation to erythrocyte antigens (literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2015-01-01

    Full Text Available In this article literature review of the causes of allosensibilisation to erythrocyte antigens are presented. It is shown that the ability to produce antierythrocyte antibodies is affected by many factors, principal of whom it is difficult to identify. For the allosensibilisation development requires genetically determined differences in erythrocyte antigens phenotypes of donor and recipient, mother and fetus, which can lead to immune response and antibodies production. The biochemical nature of erythrocyte antigens, antigen dose (the amount of transfused doses, the number of antigens determinants on donor and fetus erythrocytes, the number of pregnancies are important. Individual patient characteristics: age, gender, diseases, the use of immunosuppressive therapy and the presence of inflammatory processes, are also relevant. Note that antibody to one erythrocyte antigens have clinical value, and to the other – have no. The actual data about frequency of clinically significant antibodies contribute to the development of post-transfusion hemolytic complications prophylaxis as well as the improvement of laboratory diagnosis of hemolytic disease of the newborn in the presence of maternal antierythrocyte antibodies.

  4. Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci.

    Science.gov (United States)

    Cottage, Emma L A; Gunning, Robin V

    2006-01-01

    B-biotype Bemisia tabaci is a severe insect pest worldwide in many ornamental, agricultural, and horticultural industries. Control of this insect is hampered by resistance to many acetylcholinesterase (AChE)-inhibiting insecticides, such as organophosphates and carbamates. Consequently, insect growth regulators such as buprofezin, which act by inhibiting chitin synthesis, are being investigated for use against B-biotype B. tabaci in Australia. This study discusses the effects of buprofezin on B. tabaciAChE.

  5. Enzymatic and biochemical characterization of Bungarus sindanus snake venom acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    M Ahmed

    2012-01-01

    Full Text Available This study analyses venom from the elapid krait snake Bungarus sindanus, which contains a high level of acetylcholinesterase (AChE activity. The enzyme showed optimum activity at alkaline pH (8.5 and 45ºC. Krait venom AChE was inhibited by substrate. Inhibition was significantly reduced by using a high ionic strength buffer; low ionic strength buffer (10 mM PO4 pH 7.5 inhibited the enzyme by 1. 5mM AcSCh, while high ionic strength buffer (62 mM PO4 pH 7.5 inhibited it by 1 mM AcSCh. Venom acetylcholinesterase was also found to be thermally stable at 45ºC; it only lost 5% of its activity after incubation at 45ºC for 40 minutes. The Michaelis-Menten constant (Km for acetylthiocholine iodide hydrolysis was found to be 0.068 mM. Krait venom acetylcholinesterase was also inhibited by ZnCl2, CdCl2, and HgCl2 in a concentrationdependent manner. Due to the elevated levels of AChE with high catalytic activity and because it is more stable than any other sources, Bungarus sindanus venom is highly valuable for biochemical studies of this enzyme.

  6. Influence of styryl dyes on blood erythrocytes

    Science.gov (United States)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  7. Inhibition of Suicidal Erythrocyte Death by Indirubin-3’-Monoxime

    Directory of Open Access Journals (Sweden)

    Chunqiu Liu

    2018-02-01

    Full Text Available Background/Aims: Qing Dai is a prized traditional Chinese medicine whose major component, indirubin, and its derivative, indirubin-3’-monoxime (IDM, have inhibitory effects on the growth of many human tumor cells and pronounced anti-leukemic activities. However, the effects of IDM on mature human erythrocytes are unclear. This study aimed to evaluate the potential impact of IDM on erythrocytes and the mechanisms underlying that impact. Methods: Utilizing flow cytometry and confocal laser scanning microscopy, phosphatidylserine exposure at the cell surface was estimated by annexin V-fluorescein isothiocyanate (FITC. The relative cell size, expressed in arbitrary units, was evaluated by forward scatter in a flow cytometer. Fluo-3 fluorescence was used to bewrite changes in cytosolic Ca2+ activity, reactive oxygen species (ROS formation was assessed by 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA fluorescence, and ceramide abundance was evaluated by FITC-conjugated specific antibodies. Results: The 24-h exposure of human erythrocytes to IDM (12 µM significantly decreased the percentage of annexin V-binding erythrocytes and the intracellular calcium concentration ([Ca2+]i. IDM (3-12 µM did not significantly modify the ceramide level or DCFH-DA fluorescence. Energy depletion (removal of glucose for 24 hours significantly increased annexin V binding and Fluo-3 fluorescence and diminished forward scatter, and these effects were significantly mitigated by IDM (12 µM. Moreover, the Ca2+ ionophore ionomycin (1 µM, 60 min and oxidative stress (30 min exposure to 0.05 mM tert-butyl hydroperoxide, t-BHP similarly triggered eryptosis, which was also significantly suppressed by IDM. Conclusions: IDM is a novel inhibitor of suicidal erythrocyte death following ionomycin treatment, t-BHP treatment and energy depletion. Thus, IDM may counteract anemia and impairment of microcirculation, at least in part, by inhibition of Ca2+ entry into erythrocytes.

  8. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions...

  9. Role of erythrocyte tropomodulin in the biomechanics and topology of the erythrocyte membrane skeletal network

    OpenAIRE

    Green, Terrell Ann

    2010-01-01

    The erythrocyte membrane skeleton is a multi-protein complex providing mechanical properties and stability to erythrocytes. Defects in the skeleton can manifest in dysfunction and disease such as hemolytic anemia. Erythrocyte tropomodulin (E-Tmod) is a slow-growing end actin-capping protein and has been proposed that together with tropomyosin 5 or 5b they form a "molecular ruler" which dictates protofilament length of 37 nm in the network. In this study, the role for E-Tmod in the network org...

  10. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    Science.gov (United States)

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Evidence for coordinate genetic control of Na,K pump density in erythrocytes and lymphocytes

    International Nuclear Information System (INIS)

    DeLuise, M.; Flier, J.S.

    1985-01-01

    The erythrocyte is widely used as a model cell for studies of the Na,K pump in health and disease. However, little is known about the factors that control the number of Na,K pumps expressed on the erythrocytes of a given individual, nor about the extent to which erythrocytes can be used to validly assess the pump density on other cell types. In this report, the authors have compared the interindividual variance of Na,K pump density in erythrocytes of unrelated individuals to that seen with identical twins. Unlike unrelated individuals, in whom pump parameters, i.e., ouabain binding sites, 86 Rb uptake, and cell Na concentration vary widely, identical twin pairs showed no significant intrapair variation for these values. Thus, a role for genetic factors is suggested. In addition, the authors established and validated a method for determining Na,K pump density and pump-mediated 86 Rb uptake in human peripheral lymphocytes. Using this method, they show that whereas Na,K pump density differs markedly between erythrocytes (mean of 285 sites per cell) and lymphocytes (mean 40,600 sites per cell), there is a strong and highly significant correlation (r = 0.79, P less than 0.001) between the pump density in these cell types in any given individual. Taken together, these studies suggest that genetic factors are important determinants of Na,K pump expression, and that pump density appears to be coordinately regulated in two cell types in healthy individuals

  12. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hui Shi

    Full Text Available Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM. We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  13. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Science.gov (United States)

    Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck

    2013-01-01

    Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  14. Synthesis, Biological Evaluation and Molecular Modelling of 2′-Hydroxychalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Sri Devi Sukumaran

    2016-07-01

    Full Text Available A series of 2′-hydroxy- and 2′-hydroxy-4′,6′-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE. The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40–85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE.

  15. Synthesis and study of thiocarbonate derivatives of choline as potential inhibitors of acetylcholinesterase.

    Science.gov (United States)

    Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J

    1997-09-12

    Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.

  16. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles

    NARCIS (Netherlands)

    Gerritsen, A.; Verkleij, A.J.; Deenen, L.L.M. van

    1979-01-01

    Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts. Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced

  17. Erythrocyte Glutathione S-transferase Activity of Non-Malarious Male ...

    African Journals Online (AJOL)

    Hilaire

    Cameroon Journal of Experimental Biology 2009 Vol. 05 N° 02, 112-116. ... GST activity from the inhibitory action of the drugs. The results of these findings suggested the capability of these drugs to bind to the human erythrocyte GST, accompanied with ... of the five antimalarial drugs constituted the control sample analysis.

  18. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages...

  19. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    International Nuclear Information System (INIS)

    Safarik, I. Ivo; Safarikova, Mirka

    2001-01-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed

  20. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein

    NARCIS (Netherlands)

    van Meer, G.; Poorthuis, B. J.; Wirtz, K. W.; Op den Kamp, J. A.; van Deenen, L. L.

    1980-01-01

    1. The exchange of phosphatidylcholine between intact human or rat erythrocytes and rat liver microsomes was greatly stimulated by phosphatidylcholine-specific exchange proteins from rat liver and beef liver. It was found, however, that compared to the exchange reaction between phospholipid vesicles

  1. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein

    NARCIS (Netherlands)

    van Meer, G.|info:eu-repo/dai/nl/068570368; Poorthuis, B.J.H.M.; Wirtz, K.W.A.|info:eu-repo/dai/nl/068427956; op den Kamp, J.A.F.; van Deenen, L.L.M.

    1980-01-01

    The exchange of phosphatidylcholine between intact human or rat erythrocytes and rat liver microsomes was greatly stimulated by phosphatidylcholine-specific exchange proteins from rat liver and beef liver. It was found, however, that compared to the exchange reaction between phospholipid vesicles

  2. Paired Chicken and Mammalian Erythrocyte Indicator Systems for ...

    African Journals Online (AJOL)

    Three levels of erythrocytes suspensions, 1.5%, 1% and 0.5% respectively from goat and guinea pig, were compared to conventional 0.5% chicken erythrocytes, in an attempt to investigate the suitability for the two sources of mammalian erythrocytes as indicators for Newcastle disease virus haemagglutination (HA) tests.

  3. Erythrocyte membrane stabilization effect and antioxidant activity of methyl methacrylate

    International Nuclear Information System (INIS)

    Popov, B.

    2004-01-01

    Methyl methacrylate (MMK) is a synthetic product with mild impact on human health that is not well studied on cellular basis. Here, human erythrocytes were used to investigate the effects MMK exerts on acid and heat-induced hemolysis. Biphasic effect of MMK was observed for acid-induced hemolysis; i.e., protection at low (0 - 0.05% v/v) and stimulation at higher (0.1- 0.4% v/v) concentrations. The maximal protective effect was produced at 0.03% (v/v). At this concentration MMK increased the temperatures of heat denaturation of erythrocyte membrane proteins, spectrin and integral proteins, by about 2 0 C and inhibited the heat-induced hemolysis by 20 %. This membrane stabilization effect of MMK is similar to that produced by some anti-inflammatory and antirheumatic drugs. The increased acid resistance possibly indicated anti-oxidant properties of MMK. The nonenzymatic antioxidant activity test evidenced that MMK has no superoxide dismutase-like activity but demonstrates strong catalase-like activity (about 900 kU/mmol at 0.05-0.1 mmol/l concentration). The results indicate that at low concentration MMK exerts benign effect on cellular membrane that could find therapeutic usage. (author)

  4. In vitro host erythrocyte specificity and differential morphology of Babesia divergens and a zoonotic Babesia sp. from eastern cottontail rabbits (Sylvilagus floridanus).

    Science.gov (United States)

    Spencer, Angela M; Goethert, Heidi K; Telford, Samuel R; Holman, Patricia J

    2006-04-01

    A Babesia sp. isolated from eastern cottontail rabbits (Sylvilagus floridanus) is morphologically similar and genetically identical, based on SSU rRNA gene comparisons, to 2 agents responsible for human babesiosis in the United States. This zoonotic agent is closely related to the European parasite, Babesia divergens. The 2 organisms were characterized by in vitro comparisons. In vitro growth of the rabbit Babesia sp. was supported in human and cottontail rabbit erythrocytes, but not in bovine cells. Babesia divergens was supported in vitro in bovine and human erythrocytes, but not in cottontail rabbit cells. Morphometric analysis classifies B. divergens as a small babesia in bovine erythrocytes, but the parasite exceeds this size in human erythrocytes. The rabbit Babesia sp. is large, the same size in both human or rabbit erythrocytes, and is significantly larger than B. divergens. Eight or more rabbit Babesia sp. parasites may occur within a single erythrocyte, sometimes in a floret array, unlike B. divergens. The erythrocyte specificity and morphological differences reported in this study agree with previous in vivo results and validate the use of in vitro methods for characterization of Babesia species.

  5. Sickle erythrocytes enhance phenylephrine and histamine ...

    African Journals Online (AJOL)

    Sickle erythrocytes enhance phenylephrine and histamine contractions of isolated rabbit carotid arteries. ... enhancement of histamine contractions, compared with phenylephrine (in AS and SS), suggests a possible role for histamine in the increased vascular tone and vaso-occlusive crisis in sickle cell disease.

  6. Baseline Haematology and Erythrocyte Morphological Changes of ...

    African Journals Online (AJOL)

    Summary: This study evaluates the haematological parameters and the observed erythrocytes morphological changes in dogs raised in Ibadan, Oyo State in the south western part of Nigeria. Blood samples were collected from sixty-four apparently healthy dogs. The haematological parameters of the blood samples ...

  7. Erythrocyte aging in sickle cell disease.

    NARCIS (Netherlands)

    Bosman, G.J.C.G.M.

    2004-01-01

    Physiological removal of old erythrocytes from the circulation by macrophages is initiated by binding of autologous IgG to senescent cell antigen (SCA). SCA is generated from the anion exchanger band 3. This process is accompanied by a number of alterations in the function and structure of band 3.

  8. Erythrocyte seditnentation rate in elderly blacks

    African Journals Online (AJOL)

    Abstract This study inv~tigated the erythrocyte sedimen- tation rate (ESR) in an elderly population with the objective of establishing reference ranges and the diagnostic value of the ESR. Elderly blacks were randomly selected frOIn conununities in the. Orange Free State. ESR determinations were done according to the ...

  9. Sickle erythrocytes enhance phenylephrine and histamine

    African Journals Online (AJOL)

    Dr Olaleye

    the influence of sickle erythrocyte on contractile responses induced by phenylephrine and histamine. ... obtained from subjects of different haemoglobin (Hb) genotypes (AA, AS and SS), under ... the sixth position of the β-chain of the hemoglobin S. Address for ... blood pressure values in sickle cell anaemia subjects as.

  10. Comparative Erythrocytes Osmotic Fragility Test and some ...

    African Journals Online (AJOL)

    Erythrocytes osmotic fragility and haematological parameters of subjects with HbAS (sickle cell trait) and HbSS (sickle cell anaemia) were determined and compared with subjects with HbAA (normal adult haemoglobin), which acted as control. They were divided into three groups of 40 subjects for HbAA, 35 subjects for ...

  11. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris

    Science.gov (United States)

    To construct the Pichia pastoris (P. pastoris) cell surface display system of Bombyx mori acetylcholinesterase (BmAChE), the gene for the anchor protein (AGa1) was obtained from Saccharomyces cerevisiae and was fused with the modified Bombyx mori acetylcholinesterase gene (bmace) and transformed int...

  12. THE NANOSTRUCTURE OF ERYTHROCYTE MEMBRANES UNDER BLOOD INTOXICATION: AN ATOMIC FORCE MICROSCOPY STUDY

    Directory of Open Access Journals (Sweden)

    V. A. Sergunova

    2016-01-01

    Full Text Available Background: The effects of toxins on nanostructure of blood cells are one of the key problems of biophysics and medicine. Erythrocyte morphology and membrane structure are recognized as the main parameters of blood quality. Therefore, analysis of membrane defects under toxin effects seems an urgent issue. Aim: To identify characteristic features and patterns of changes in membrane nanostructure under hemin intoxication and during extended storage of erythrocyte suspension. Materials and methods: The study was done in vitro in human whole blood with addition of hemin, аnd in erythrocyte suspension with a CPD blood preservative stored at 4 °С for 30 days. The nanostructure of erythrocyte membrane was assessed by atomic force microscopy. Results: Characteristic size of space periods between “granules” was from 120 to 200 nm. “Granule” numbers within a topological defect varied from 4 to 5 and to several dozens. Such domains arose virtually on all cells in erythrocyte suspension, as well as after hemin addition to the blood. An increase in hemin intoxication and an increase in a storage time were associated by increases in echinocyte numbers that subsequently transformed into spherical echinocytes. Both under hemin and during the storage of erythrocyte suspension for 9 to 12 days, a specific abnormality in nanostructure of erythrocyte membrane was observed: structural clusters, i.e., domains with granular structure, were formed. Conclusion: The experiments showed that both hemin and oxidative processes in the blood can specifically affect the nanostructure of erythrocyte membranes with formation of domains on their surface. The specific size of granular structures in the domains is from 100 to 200 nm that coincides with a  specific size of spectrin matrix. These results can be used in basic and applied medicine, in blood transfusion, for the analysis of a toxin effects in the human body. The biophysical mechanisms of domain

  13. Erythrocyte endogenous proteinase activity during blood bank storage.

    Science.gov (United States)

    de Angelis, V; de Matteis, M C; Orazi, B M; Santarossa, L; Della Toffola, L; Raineri, A; Vettore, L

    1990-01-01

    We studied proteolytic alterations of membrane proteins in ghosts derived from human red blood cells, preserved up to 35 days in the liquid state either as whole blood or with additive solution. The study was carried out by performing sodium dodecyl sulfate polyacrylamide gel electrophoresis of stromal proteins from erythrocytes, either previously treated with proteinase inhibitors or previously incubated in conditions promoting proteolysis. To differentiate the effect of erythrocyte from granulocyte proteinases, the investigation was also carried out in leukocyte-free red cell preparations. The results show: (1) the effects of endogenous proteinases on membrane proteins derived from red cells stored under blood bank conditions; (2) a decrease of proteolytic effects in ghosts derived from red cells which have been submitted to a longer storage; (3) a relevant influence of the red cell resuspending medium before lysis on the time-dependent onset and exhaustion of proteolysis in ghosts. The presence of increased proteolysis in ghosts could be regarded as a marker of molecular lesions induced in red cells by storage under blood bank conditions.

  14. Intracellular Erythrocyte Platelet-activating Factor Acetylhydrolase I Inactivates Aspirin in Blood*

    Science.gov (United States)

    Zhou, Gang; Marathe, Gopal K.; Willard, Belinda; McIntyre, Thomas M.

    2011-01-01

    Aspirin (acetylsalicylic acid) prophylaxis suppresses major adverse cardiovascular events, but its rapid turnover limits inhibition of platelet cyclooxygenase activity and thrombosis. Despite its importance, the identity of the enzyme(s) that hydrolyzes the acetyl residue of circulating aspirin, which must be an existing enzyme, remains unknown. We find that circulating aspirin was extensively hydrolyzed within erythrocytes, and chromatography indicated these cells contained a single hydrolytic activity. Purification by over 1400-fold and sequencing identified the PAFAH1B2 and PAFAH1B3 subunits of type I platelet-activating factor (PAF) acetylhydrolase, a phospholipase A2 with selectivity for acetyl residues of PAF, as a candidate for aspirin acetylhydrolase. Western blotting showed that catalytic PAFAH1B2 and PAFAH1B3 subunits of the type I enzyme co-migrated with purified erythrocyte aspirin hydrolytic activity. Recombinant PAFAH1B2, but not its family member plasma PAF acetylhydrolase, hydrolyzed aspirin, and PAF competitively inhibited aspirin hydrolysis by purified or recombinant erythrocyte enzymes. Aspirin was hydrolyzed by HEK cells transfected with PAFAH1B2 or PAFAH1B3, and the competitive type I PAF acetylhydrolase inhibitor NaF reduced erythrocyte hydrolysis of aspirin. Exposing aspirin to erythrocytes blocked its ability to inhibit thromboxane A2 synthesis and platelet aggregation. Not all individuals or populations are equally protected by aspirin prophylaxis, the phenomenon of aspirin resistance, and erythrocyte hydrolysis of aspirin varied 3-fold among individuals, which correlated with PAFAH1B2 and not PAFAH1B3. We conclude that intracellular type I PAF acetylhydrolase is the major aspirin hydrolase of human blood. PMID:21844189

  15. Intracellular erythrocyte platelet-activating factor acetylhydrolase I inactivates aspirin in blood.

    Science.gov (United States)

    Zhou, Gang; Marathe, Gopal K; Willard, Belinda; McIntyre, Thomas M

    2011-10-07

    Aspirin (acetylsalicylic acid) prophylaxis suppresses major adverse cardiovascular events, but its rapid turnover limits inhibition of platelet cyclooxygenase activity and thrombosis. Despite its importance, the identity of the enzyme(s) that hydrolyzes the acetyl residue of circulating aspirin, which must be an existing enzyme, remains unknown. We find that circulating aspirin was extensively hydrolyzed within erythrocytes, and chromatography indicated these cells contained a single hydrolytic activity. Purification by over 1400-fold and sequencing identified the PAFAH1B2 and PAFAH1B3 subunits of type I platelet-activating factor (PAF) acetylhydrolase, a phospholipase A(2) with selectivity for acetyl residues of PAF, as a candidate for aspirin acetylhydrolase. Western blotting showed that catalytic PAFAH1B2 and PAFAH1B3 subunits of the type I enzyme co-migrated with purified erythrocyte aspirin hydrolytic activity. Recombinant PAFAH1B2, but not its family member plasma PAF acetylhydrolase, hydrolyzed aspirin, and PAF competitively inhibited aspirin hydrolysis by purified or recombinant erythrocyte enzymes. Aspirin was hydrolyzed by HEK cells transfected with PAFAH1B2 or PAFAH1B3, and the competitive type I PAF acetylhydrolase inhibitor NaF reduced erythrocyte hydrolysis of aspirin. Exposing aspirin to erythrocytes blocked its ability to inhibit thromboxane A(2) synthesis and platelet aggregation. Not all individuals or populations are equally protected by aspirin prophylaxis, the phenomenon of aspirin resistance, and erythrocyte hydrolysis of aspirin varied 3-fold among individuals, which correlated with PAFAH1B2 and not PAFAH1B3. We conclude that intracellular type I PAF acetylhydrolase is the major aspirin hydrolase of human blood.

  16. Acetylcholinesterase inhibitory effects of some plants from Rosaceae

    Directory of Open Access Journals (Sweden)

    S. Esmaeili

    2015-10-01

    Full Text Available Background and objectives: Alzheimer's disease (AD is an age dependent disorder. AD is associated with decrease of brain acetylcholine level. Nowadays, one of the methods for progression inhibition of AD is using acetylcholinesterase inhibitors. Rosaceae is a large plant family. Different biological effects of some species of this family have been reported. The aim of the present study was to assess the acetylcholinesterase inhibitory (AChEI activity of the selected plants belonging to Rosaceae family. Methods: AChEI activity of six species from Rosaceae including Cotoneaster nummularia, Cerasus microcarpa, Amygdalus scoparia, Agrimonia eupatoria, Rosa canina and Rosa damascena were evaluated based on Ellman’s method in concentration of 300 µg/mL using total extracts and methanol fractions which were obtained by maceration. Results: The results showed that the total extract and methanol fraction of the aerial parts of A. eupatoria demonstrated significant AChEI activity with 46.5% and 56.2% inhibition of the enzyme, respectively. Conclusion: According to the results of the AChEI activity of the methanol fraction of A. eupatoria, it seems that the polar components of the species such as flavonoids may be responsible for its effectiveness.

  17. Old and new acetylcholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Galimberti, Daniela; Scarpini, Elio

    2016-10-01

    To date, pharmacological treatment of Alzheimer's disease (AD) includes Acetylcholinesterase Inhibitors (AChEIs) for mild-to-moderate AD, and memantine for moderate-to-severe AD. AChEIs reversibly inhibit acetylcholinesterase (AChE), thus increasing the availability of acetylcholine in cholinergic synapses, enhancing cholinergic transmission. These drugs provide symptomatic short-term benefits, without clearly counteracting the progression of the disease. On the wake of successful clinical trials which lead to the marketing of AChEIs donepezil, rivastigmine and galantamine, many compounds with AChEI properties have been developed and tested mainly in Phase I-II clinical trials in the last twenty years. Here, we review clinical trials initiated and interrupted, and those ongoing so far. Despite many clinical trials with novel AChEIs have been carried out after the registration of those currently used to treat mild to moderate AD, none so far has been successful in a Phase III trial and marketed. Alzheimer's disease is a complex multifactorial disorder, therefore therapy should likely address not only the cholinergic system but also additional neurotransmitters. Moreover, such treatments should be started in very mild phases of the disease, and preventive strategies addressed in elderly people.

  18. Language impairment in Alzheimer's disease and benefits of acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Ferris SH

    2013-08-01

    Full Text Available Steven H Ferris,1 Martin Farlow21Alzheimer's Disease Center, Comprehensive Center on Brain Aging, New York University Langone Medical Center, New York, NY, 2Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Alzheimer's disease is characterized by progressively worsening deficits in several cognitive domains, including language. Language impairment in Alzheimer's disease primarily occurs because of decline in semantic and pragmatic levels of language processing. Given the centrality of language to cognitive function, a number of language-specific scales have been developed to assess language deficits throughout progression of the disease and to evaluate the effects of pharmacotherapy on language function. Trials of acetylcholinesterase inhibitors, used for the treatment of clinical symptoms of Alzheimer's disease, have generally focused on overall cognitive effects. However, in the current report, we review data indicating specific beneficial effects of acetylcholinesterase inhibitors on language abilities in patients with Alzheimer’s disease, with a particular focus on outcomes among patients in the moderate and severe disease stages, during which communication is at risk and preservation is particularly important.Keywords: Alzheimer's disease, donepezil, cognition, language, communication, clinical trials

  19. Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants.

    Science.gov (United States)

    Feitosa, C M; Freitas, R M; Luz, N N N; Bezerra, M Z B; Trevisan, M T S

    2011-08-01

    A microplate assay and a thin-layer chromatography (TLC) "in situ" assay based on the Ellman assay was used to screen for acetylcholinesterase inhibitors from ethyl acetate and methanol extracts of Brazilian medicinal plants of families that, according to the literature, have traditional uses that might be connected with acetylcholinesterase inhibition. Eighteen species belonging to Convolvulaceae, Crassulaceae, Euphorbiaceae, Leguminosae, Malvaceae, Moraceae, Nyctaginaceae and Rutaceae families were tested. The most active plants were Ipomoea asarifolia (IC50 = 0.12 mg/mL), Jatropha curcas (IC50 = 0.25 mg/mL), Jatropha gossypiifolia (IC50 = 0.05 mg/mL), Kalanchoe brasiliensis (IC50 = 0.16 mg/mL) and Senna alata (IC50 = 0.08 mg/mL). The most promising extracts were the Jatropha gossypiifolia and Senna alata species assuming there were compounds with a similar activity to galanthamine, which should contain about 1% of an active compound, or if present at lower levels even more active compounds than galanthamine (IC50 = 0.37 x 10-3 mg/mL) should be present.

  20. Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants

    Directory of Open Access Journals (Sweden)

    CM. Feitosa

    Full Text Available A microplate assay and a thin-layer chromatography (TLC "in situ" assay based on the Ellman assay was used to screen for acetylcholinesterase inhibitors from ethyl acetate and methanol extracts of Brazilian medicinal plants of families that, according to the literature, have traditional uses that might be connected with acetylcholinesterase inhibition. Eighteen species belonging to Convolvulaceae, Crassulaceae, Euphorbiaceae, Leguminosae, Malvaceae, Moraceae, Nyctaginaceae and Rutaceae families were tested. The most active plants were Ipomoea asarifolia (IC50 = 0.12 mg/mL, Jatropha curcas (IC50 = 0.25 mg/mL, Jatropha gossypiifolia (IC50 = 0.05 mg/mL, Kalanchoe brasiliensis (IC50 = 0.16 mg/mL and Senna alata (IC50 = 0.08 mg/mL. The most promising extracts were the Jatropha gossypiifolia and Senna alata species assuming there were compounds with a similar activity to galanthamine, which should contain about 1% of an active compound, or if present at lower levels even more active compounds than galanthamine (IC50 = 0.37 x 10-3 mg/mL should be present.

  1. P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes.

    Science.gov (United States)

    Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid

    2013-12-05

    Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.

  2. The mechanism of erythrocyte sedimentation. Part 2: The global collapse of settling erythrocyte network.

    Science.gov (United States)

    Pribush, A; Meyerstein, D; Meyerstein, N

    2010-01-01

    Results reported in the companion paper showed that erythrocytes in quiescent blood are combined into a network followed by the formation of plasma channels within it. This study is focused on structural changes in the settling dispersed phase subsequent to the channeling and the effect of the structural organization on the sedimentation rate. It is suggested that the initial, slow stage of erythrocyte sedimentation is mainly controlled by the gravitational compactness of the collapsed network. The lifetime of RBC network and hence the duration of the slow regime of erythrocyte sedimentation decrease with an increase in the intercellular pair potential and with a decrease in Hct. The gravitational compactness of the collapsed network causes its rupture into individual fragments. The catastrophic collapse of the network transforms erythrocyte sedimentation from slow to fast regime. The size of RBC network fragment is insignificantly affected by Hct and is mainly determined by the intensity of intercellular attractive interactions. When cells were suspended in the weak aggregating medium, the Stokes radius of fragments does not differ measurably from that of individual RBCs. The proposed mechanism provides a reasonable explanation of the effects of RBC aggregation, Hct and the initial height of the blood column on the delayed erythrocyte sedimentation.

  3. The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards L-glutathione, and its determination in human erythrocytes

    International Nuclear Information System (INIS)

    Luz, R.C.S.; Maroneze, C.M.; Tanaka, A.A.; Kubota, L.T.; Gushikem, Y.; Damos, F.S.

    2010-01-01

    The electrocatalytic activity of a supramolecular complex based on cobalt(II) phthalocyanine tetrasulfonate and iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin adsorbed on multi-walled carbon nanotubes for the oxidation of L-glutathione (GSH) was investigated at pH 7.4. Scanning electron microscopy and energy dispersive X-ray spectrometry were used to characterize the morphologies and composition of the materials. The modified electrode displayed efficient electrocatalytic activity in terms of oxidation of GSH at an oxidation potential of 0 V (versus Ag/AgCl). Cyclic voltammetry and amperometry indicated that the oxidation involves 2-electrons, with a heterogeneous rate constant of 4.9 x 10 5 mol -1 L s -1 . The response is linear from 2 to 210 μmol L -1 , the sensitivity is 1570 μA L mmol -1 , the detection limit is 0.03 μmol L -1 , and the relative standard deviation of 110 μmol L -1 GSH was 2.6% (n=10). The modified electrode was applied to the determination of GSH in erythrocytes and the results were in agreement with those obtained by a method reported in the literature. (author)

  4. Induction of Suicidal Erythrocyte Death by Novobiocin

    Directory of Open Access Journals (Sweden)

    Adrian Lupescu

    2014-03-01

    Full Text Available Background: Novobiocin, an aminocoumarin antibiotic, interferes with heat shock protein 90 and hypoxia inducible factor dependent gene expression and thus compromises cell survival. Similar to survival of nucleated cells, erythrocyte survival could be disrupted by eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phospholipd scrambling of the cell membrane with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i. The Ca2+ sensitivity of phospholipid scrambling is enhanced by ceramide. The present study explored, whether novobiocin elicits eryptosis. Methods: [Ca2+]i was estimated from Fluo3-fluorescence, ceramide abundance utilizing fluorescent antibodies, cell volume from forward scatter, phosphatidylserine-exposure from annexin V binding. Results: A 48 hours exposure to novobiocin (500 µM was followed by a significant increase of [Ca2+]i, decrease of forward scatter, increase of annexin-V-binding and enhanced ceramide formation. Removal of extracellular Ca2+ virtually abrogated the increase of annexin-V-binding following novobiocin exposure. Conclusions: Novobiocin stimulates eryptosis, an effect at least in part due to entry of extracellular Ca2+ and formation of ceramide.

  5. Synthesis of 1-[11c]methylpiperidin-4-yl propionate ([11c]pmp) for in vivo measurements of acetylcholinesterase activity

    International Nuclear Information System (INIS)

    Snyder, Scott E.; Tluczek, Louis; Jewett, Douglas M.; Nguyen, Thinh B.; Kuhl, David E.; Kilbourn, Michael R.

    1998-01-01

    Synthesis of 1-[ 11 C]methylpiperidin-4-yl propionate ([ 11 C]PMP), an in vivo substrate for acetylcholinesterase, is reported. An improved preparation of 4-piperidinyl propionate (PHP), the immediate precursor for radiolabeling, was accomplished in three steps from 4-hydroxypiperidine by (a) protection of the amine as the benzyl carbamate, (b) acylation with propionyl chloride, and (c) deprotection of the carbamate by catalytic hydrogenation. The final product was obtained in an overall 82% yield. Reaction of the free base form of PHP with [ 11 C]methyl trifluoromethanesulfonate at room temperature in N,N-dimethylformamide, followed by high performance liquid chromatography (HPLC) purification, provided [ 11 C]PMP in 57% radiochemical yield, >99% radiochemical purity, and >1500 Ci/mmol at the end of synthesis. The total synthesis time from end-of-bombardment was 35 min. [ 11 C]PMP can thus be reliably prepared for routine clinical studies of acetylcholinesterase in human brain using positron emission tomography

  6. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review

    Directory of Open Access Journals (Sweden)

    Jingqian Su

    2017-01-01

    Full Text Available Acetylcholinesterase inhibitors (AChEIs are an attractive research subject owing to their potential applications in the treatment of neurodegenerative diseases. Fungi and bacteria are major producers of AChEIs. Their active ingredients of fermentation products include alkaloids, terpenoids, phenylpropanoids, and steroids. A variety of in vitro acetylcholinesterase inhibitor assays have been developed and used to measure the activity of acetylcholinesterases, including modified Ellman’s method, thin layer chromatography bioautography, and the combined liquid chromatography-mass spectrometry/modified Ellman’s method. In this review, we provide an overview of the different detection methodologies, the microbe-derived AChEIs, and their producing strains.

  7. Effects of centrifugation on transmembrane water loss from normal and pathologic erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kaperonis, A.A.; Chien, S.

    1989-02-01

    Plasma /sup 125/I-albumin was used as a marker of extracellular dilution in order to study the effect of high-speed centrifugation on transmembrane water distribution in several types of human red cells, including normal (AA), hemoglobin variants (beta A, AS, SC, beta S, and SS), and those from patients with hereditary spherocytosis. SS and AA erythrocytes were also examined for changes in intracellular hemoglobin concentration of three different density fractions and with increasing duration of spin. The minimum force and duration of centrifugation required to impair water permeability were found to vary with the red cell type, the anticoagulant used (heparin or EDTA), the initial hematocrit of the sample centrifuged, as well as among the individual erythrocyte fractions within the same sample. When subjecting pathologic erythrocytes to high-speed centrifugation, the /sup 125/I-albumin dilution technique can be used to determine whether the centrifugation procedure has led to an artifactual red cell water loss and to correct for this when it does occur. An abnormal membrane susceptibility to mechanical stress was demonstrated in erythrocytes from patients with hereditary spherocytosis and several hemoglobinopathies.

  8. Effects of centrifugation on transmembrane water loss from normal and pathologic erythrocytes

    International Nuclear Information System (INIS)

    Kaperonis, A.A.; Chien, S.

    1989-01-01

    Plasma 125 I-albumin was used as a marker of extracellular dilution in order to study the effect of high-speed centrifugation on transmembrane water distribution in several types of human red cells, including normal (AA), hemoglobin variants (beta A, AS, SC, beta S, and SS), and those from patients with hereditary spherocytosis. SS and AA erythrocytes were also examined for changes in intracellular hemoglobin concentration of three different density fractions and with increasing duration of spin. The minimum force and duration of centrifugation required to impair water permeability were found to vary with the red cell type, the anticoagulant used (heparin or EDTA), the initial hematocrit of the sample centrifuged, as well as among the individual erythrocyte fractions within the same sample. When subjecting pathologic erythrocytes to high-speed centrifugation, the 125 I-albumin dilution technique can be used to determine whether the centrifugation procedure has led to an artifactual red cell water loss and to correct for this when it does occur. An abnormal membrane susceptibility to mechanical stress was demonstrated in erythrocytes from patients with hereditary spherocytosis and several hemoglobinopathies

  9. Increase of a Calcium Independent Transglutaminase Activity in the Erythrocyte during the Infection with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Wasserman Moisés

    1999-01-01

    Full Text Available We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13 during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km of the enzyme for the substrates N'N'dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.

  10. Dielectric response of biconcave erythrocyte membranes to D- and L-Glucose

    International Nuclear Information System (INIS)

    Livshits, L; Caduff, A; Talary, M S; Feldman, Y

    2007-01-01

    In this paper, we report on the influence of D- and L-glucose on the dielectric properties of native shaped (biconcave) human erythrocytes using time domain dielectric spectroscopy. The dielectric spectra of biconcave cells were analysed using a modified form of the model originally reported for spheroid particle suspensions (Asami and Yonezawa 1995 Biochim. Biophys. Acta. 1245 317-24) The observed increase in the specific membrane capacitance of the biconcave erythrocytes was correlated with an increase in the concentration of D-glucose. In contrast, no associated correlation was found to changes in the membrane capacitance with increasing concentrations of L-glucose. A similar analysis of the dielectric response of osmotically swollen erythrocytes to changes in D-glucose concentration revealed a significantly different calculated specific cell membrane capacitance at elevated (>12 mM) D-glucose concentrations. The paper outlines and discusses the possible biochemical mechanisms that could be responsible for the measured dielectric properties of the erythrocyte membrane capacitances

  11. Dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Dynamics of glucose concentration in human organism is an important diagnostic characteristic for it's parameters correlate significantly with the severity of metabolic, vessel and perfusion disorders. 36 patients with stable angina pectoris of II and III functional classes were involved in this study. All of them were men in age range of 45-59 years old. 7 patients hospitalized with acute myocardial infarction (aged from 49 to 59 years old) form the group of compare. Control group (n = 5) was of practically healthy men in comparable age. To all patients intravenous glucose solution (40%) in standard loading dose was injected. Capillary and vein blood samples were withdrawn before, and 5, 60, 120, 180 and 240 minutes after glucose load. At these time points blood pressure and glucose concentration were measured. In prepared blood smears shape, deformability and sizes of erythrocytes, quantity and degree of shear stress resistant erythrocyte aggregates were studied. Received data were approximated by polynomial of high degree to receive concentration function of studied parameters, which first derivative elucidate velocity characteristics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease and practically healthy persons. Received data show principle differences in dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease as a possible mechanism of coronary blood flow destabilization.

  12. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  13. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    International Nuclear Information System (INIS)

    Clarencon, D.; Multon, E.; Galonnier, M.; Estrade, M.; Fournier, C.; Mathieu, J.; Mestries, J.C.; Testylier, G.; Fatome, M.

    1995-01-01

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  14. Comedication and Treatment Length in Users of Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Anne Sverdrup Efjestad

    2017-02-01

    Full Text Available Background/Aims: Reduced clinical effect on cognitive decline in dementia by acetylcholinesterase inhibitors (AChEIs may be due to concurrent use of drugs with anticholinergic properties. The aim was to analyze the incidence of AChEI use and comedication with drugs with anticholinergic properties and other potential unfavorable effects. Methods: A prospective study applying drug use data from the Norwegian Prescription Database. Anticholinergic Drug Scale (ADS scores were used as a measure of overall anticholinergic burden. Results: Patients with high ADS scores were more frequently discontinuing treatment early. Coprescribing of antipsychotics was strongly associated with early discontinuation of AChEI treatment. Conclusion: Coprescribing with potentially unfavorable medications was common. A high ADS score was associated with early discontinuation of treatment.

  15. Acetylcholinesterase and Nissl staining in the same histological section.

    Science.gov (United States)

    Shipley, M T; Ennis, M; Behbehani, M M

    1989-12-18

    Acetylcholinesterase (AChE) enzyme histochemistry and Nissl staining are commonly utilized in neural architectonic studies. However, the opaque reaction deposit produced by the most commonly used AChE histochemical methods is not compatible with satisfactory Nissl staining. As a result, precise correlation of AChE and Nissl staining necessitates time-consuming comparisons of adjacent sections which may have differential shrinkage. Here, we have modified the Koelle-Friedenwald histochemical reaction for AChE by omitting the final intensification steps. The modified reaction yields a non-opaque reaction product that is selectively visualized by darkfield illumination. This non-intensified darkfield AChE (NIDA) reaction allows clear visualization of Nissl staining in the same histological section. This combined AChE-Nissl method greatly facilitates detailed correlation of enzyme and cytoarchitectonic organization.

  16. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    Science.gov (United States)

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  17. Subcutaneous administration of carrier erythrocytes: slow release of entrapped agent

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Corrier, D.E.

    1988-01-01

    Carrier erythrocytes administered subcutaneously in mice release encapsulated molecules at the injection site and through cells that escape the injection site. One day postinjection, the efflux of encapsulated [ 14 C]sucrose, [ 3 H]inulin, and 51 Cr-hemoglobin from the injection site was 45, 55, and 65%, respectively. Intact carrier erythrocytes escaped the injection site and entered the blood circulation carrying with them the encapsulated molecules. Most of the encapsulated [ 3 H]inulin that reached whole blood circulated within erythrocytes. Small but measurable numbers of encapsulated molecules were trapped within lymph nodes. Subcutaneous injection of carrier erythrocytes may allow for limited extravascular tissue targeting of drugs

  18. Hepatic or splenic targeting of carrier erythrocytes: a murine model

    International Nuclear Information System (INIS)

    Zocchi, E.; Guida, L.; Benatti, U.; Canepa, M.; Borgiani, L.; Zanin, T.; De Flora, A.

    1987-01-01

    Carrier mouse erythrocytes, i.e., red cells, subjected to a dialysis technique involving transient hypotonic hemolysis and isotonic resealing were treated in vitro in three different ways: (a) energy depletion by exposure for 90 min at 42 degrees C; (b) desialylation by incubation with neuroaminidase; and (c) oxidative stress by incubation with H 2 O 2 and NaN3. Procedure (c) afforded maximal damage, as shown by analysis of biochemical properties of the treated erythrocytes. Reinfusion in mice of the variously manipulated erythrocytes following their 51 Cr labeling showed extensive fragilization as indicated by rapid clearance of radioactivity from the circulation. Moreover, both the energy-depleted and the neuraminidase-treated erythrocytes showed a preferential liver uptake, reaching 50 and 75%, respectively, within 2 h. On the other hand, exposure of erythrocytes to the oxidant stress triggered a largely splenic removal, accounting for almost 40% of the reinjected cells within 4 h. Transmission electron microscopy of liver from mice receiving energy-depleted erythrocytes demonstrated remarkable erythrocyte congestion within the sinusoids, followed by hyperactivity of Kupffer cells and by subsequent thickening of the perisinusoidal Disse space. Concomitantly, levels of serum transaminase activities were moderately increased. Each of the three procedures of manipulation of carrier erythrocytes may prove applicable under conditions where selective targeting of erythrocyte-encapsulated chemicals and drugs to either the liver or the spleen has to be achieved

  19. Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

    National Research Council Canada - National Science Library

    Olson, Mark

    2004-01-01

    ... screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

  20. EEG SPECTRA, BEHAVIORAL STATES AND MOTOR ACTIVITY IN RATS EXPOSED TO ACETYLCHOLINESTERASE INHIBITOR CHLORPYRIFOS.

    Science.gov (United States)

    Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...

  1. N-[11C]methylpiperidine esters as acetylcholinesterase substrates: an in vivo structure-reactivity study

    International Nuclear Information System (INIS)

    Kilbourn, Michael R.; Nguyen, Thinh B.; Snyder, Scott E.; Sherman, Phillip

    1998-01-01

    A series of simple esters incorporating the N-[ 11 C]methylpiperidine structure were examined as in vivo substrates for acetylcholinesterase in mouse brain. 4-N-[ 11 C]Methylpiperidinyl esters, including the acetate, propionate and isobutyrate esters, are good in vivo substrates for mammalian cholinesterases. Introduction of a methyl group at the 4-position of the 4-piperidinol esters, to form the ester of a teritary alcohol, effectively blocks enzymatic action. Methylation of 4- N-[ 11 C]methylpiperidinyl propionate at the 3-position gives a derivative with increased in vivo reactivity toward acetylcholinesterase. Esters of piperidinecarboxylic acids (nipecotic, isonipecotic and pipecolinic acid ethyl esters) are not hydrolyzed by acetylcholinesterase in vivo, nor do they act as in vivo inhibitors of the enzyme. This study has identified simple methods to both increase and decrease the in vivo reactivity of piperidinyl esters toward acetylcholinesterase

  2. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre

    DEFF Research Database (Denmark)

    Halldórsdóttir, Elsa Steinunn; Jaroszewski, Jerzy W; Olafsdottir, Elin Soffia

    2010-01-01

    The aim of this study was to investigate structures and acetylcholinesterase inhibitory activities of lycopodane-type alkaloids isolated from an Icelandic collection of Lycopodium annotinum ssp. alpestre. Ten alkaloids were isolated, including annotinine, annotine, lycodoline, lycoposerramine M...

  3. Interferon-γ, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity

    Directory of Open Access Journals (Sweden)

    BenMohamed Lbachir

    2011-02-01

    Full Text Available Abstract Immunity against the pre-erythrocytic stages of malaria is the most promising, as it is strong and fully sterilizing. Yet, the underlying immune effectors against the human Plasmodium falciparum pre-erythrocytic stages remain surprisingly poorly known and have been little explored, which in turn prevents any rational vaccine progress. Evidence that has been gathered in vitro and in vivo, in higher primates and in humans, is reviewed here, emphasizing the significant role of IFN-γ, either as a critical immune mediator or at least as a valuable surrogate marker of protection. One may hope that these results will trigger investigations in volunteers immunized either by optimally irradiated or over-irradiated sporozoites, to quickly delineate better surrogates of protection, which are essential for the development of a successful malaria vaccine.

  4. Reduced Plasmodium vivax erythrocyte infection in PNG Duffy-negative heterozygotes.

    Science.gov (United States)

    Kasehagen, Laurin J; Mueller, Ivo; Kiniboro, Benson; Bockarie, Moses J; Reeder, John C; Kazura, James W; Kastens, Will; McNamara, David T; King, Charles H; Whalen, Christopher C; Zimmerman, Peter A

    2007-03-28

    Erythrocyte Duffy blood group negativity reaches fixation in African populations where Plasmodium vivax (Pv) is uncommon. While it is known that Duffy-negative individuals are highly resistant to Pv erythrocyte infection, little is known regarding Pv susceptibility among heterozygous carriers of a Duffy-negative allele (+/-). Our limited knowledge of the selective advantages or disadvantages associated with this genotype constrains our understanding of the effect that interventions against Pv may have on the health of people living in malaria-endemic regions. We conducted cross-sectional malaria prevalence surveys in Papua New Guinea (PNG), where we have previously identified a new Duffy-negative allele among individuals living in a region endemic for all four human malaria parasite species. We evaluated infection status by conventional blood smear light microscopy and semi-quantitative PCR-based strategies. Analysis of a longitudinal cohort constructed from our surveys showed that Duffy heterozygous (+/-) individuals were protected from Pv erythrocyte infection compared to those homozygous for wild-type alleles (+/+) (log-rank tests: LM, p = 0.049; PCR, p = 0.065). Evaluation of Pv parasitemia, determined by semi-quantitative PCR-based methods, was significantly lower in Duffy +/- vs. +/+ individuals (Mann-Whitney U: p = 0.023). Overall, we observed no association between susceptibility to P. falciparum erythrocyte infection and Duffy genotype. Our findings provide the first evidence that Duffy-negative heterozygosity reduces erythrocyte susceptibility to Pv infection. As this reduction was not associated with greater susceptibility to Pf malaria, our in vivo observations provide evidence that Pv-targeted control measures can be developed safely.

  5. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Areche, Carlos; Cejas, Patricia; Thomas, Pablo; San-Martin, Aurelio [University of Chile, Santiago (Chile). Faculty of Sciences. Dept. of Chemistry], e-mail: aurelio@uchile.cl; Astudillo, Luis; Gutierrez, Margarita [University of Talca, Talca (Chile). Inst. of Chemistry of Natural Resource; Loyola, Luis A. [University of Antofagasta (Chile). Faculty of Basic Sciences. Dept. of Chemistry

    2009-07-01

    The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella. (author)

  6. Triterpenoids from Azorella trifurcata (Gaertn.) Pers and their effect against the enzyme acetylcholinesterase

    International Nuclear Information System (INIS)

    Areche, Carlos; Cejas, Patricia; Thomas, Pablo; San-Martin, Aurelio; Astudillo, Luis; Gutierrez, Margarita; Loyola, Luis A.

    2009-01-01

    The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella. (author)

  7. Effect of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation

    OpenAIRE

    О. К. Пакулова; В. К. Kлочков; Н. С. Кавок; И. А. Костина; А. С. Сопотова; В. А. Бондаренко

    2017-01-01

    Rare-earth-based nanoparticles (REB NPs) have been employed in molecular and cell biology due to their unique features. However, their interaction with biosystems and the influence on cell functioning are poorly understood. In this study effect of REB NPs (composed of dielectric nanocrystalls of cerium dioxide and orthovanadates of gadolinium and yttrium) with different form-factor as well as REB NPs-cholesterol complexes on the adaptation of human erythrocytes to hypertonic lysis (4 M NaCl) ...

  8. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina

    2015-01-01

    Infections with the human malaria parasite Plasmodium falciparum during pregnancy can lead to severe complications for both mother and child, resulting from the cytoadhesion of parasitized erythrocytes in the intervillous space of the placenta. Cytoadherence is conferred by the specific interacti...... was cooperative and shear stress induced. These findings suggest that the CSA density, together with allosteric effects in VAR2CSA, aid in discriminating between different CSA milieus....

  9. The Effect of Parathion on Red Blood Cell Acetylcholinesterase in the Wistar Rat

    Directory of Open Access Journals (Sweden)

    Naofumi Bunya

    2016-01-01

    Full Text Available Organophosphorus (OP pesticide poisoning is a significant problem worldwide. Research into new antidotes for these acetylcholinesterase inhibitors, and even optimal doses for current therapies, is hindered by a lack of standardized animal models. In this study, we sought to characterize the effects of the OP pesticide parathion on acetylcholinesterase in a Wistar rat model that included comprehensive medical care. Methods. Male Wistar rats were intubated and mechanically ventilated and then poisoned with between 20 mg/kg and 60 mg/kg of intravenous parathion. Upon developing signs of poisoning, the rats were treated with standard critical care, including atropine, pralidoxime chloride, and midazolam, for up to 48 hours. Acetylcholinesterase activity was determined serially for up to 8 days after poisoning. Results. At all doses of parathion, maximal depression of acetylcholinesterase occurred at 3 hours after poisoning. Acetylcholinesterase recovered to nearly 50% of baseline activity by day 4 in the 20 mg/kg cohort and by day 5 in the 40 and 60 mg/kg cohorts. At day 8, most rats’ acetylcholinesterase had recovered to roughly 70% of baseline. These data should be useful in developing rodent models of acute OP pesticide poisoning.

  10. Enzymatic oxidation of mercury vapor by erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, S; Clarkson, T W

    1978-01-01

    The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuouus infusion of diluted H/sub 2/O/sub 2/ was used to maintain steady concentrations of complex I. 1% red cell suspensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H/sub 2/O/sub 2/-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H/sub 2/O/sub 2/ reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.

  11. The role of the erythrocyte in antitumour drug transport

    NARCIS (Netherlands)

    Dumez, Herlinde

    2005-01-01

    The area of research on the substance-carrier capacity of the erythrocyte is rather limited and it remains difficult to estimate the impact of erythrocyte drug level monitoring in the clinic. Although equilibrium between blood and tissues based on the dissolution of compounds in the plasma water

  12. Transcriptomic Analysis of Young and Old Erythrocytes of Fish

    Directory of Open Access Journals (Sweden)

    Miriam Götting

    2017-12-01

    Full Text Available Understanding gene expression changes over the lifespan of cells is of fundamental interest and gives important insights into processes related to maturation and aging. This study was undertaken to understand the global transcriptome changes associated with aging in fish erythrocytes. Fish erythrocytes retain their nuclei throughout their lifetime and they are transcriptionally and translationally active. However, they lose important functions during their lifespan in the circulation. We separated rainbow trout (Oncorhynchus mykiss erythrocytes into young and old fractions using fixed angle-centrifugation and analyzed transcriptome changes using RNA sequencing (RNA-seq technology and quantitative real-time PCR. We found 930 differentially expressed between young and old erythrocyte fractions; 889 of these showed higher transcript levels in young, while only 34 protein-coding genes had higher transcript levels in old erythrocytes. In particular genes involved in ion binding, signal transduction, membrane transport, and those encoding various enzyme classes are affected in old erythrocytes. The transcripts with higher levels in old erythrocytes were associated with seven different GO terms within biological processes and nine within molecular functions and cellular components, respectively. Our study furthermore found several highly abundant transcripts as well as a number of differentially expressed genes (DEGs for which the protein products are currently not known revealing the gaps of knowledge in most non-mammalian vertebrates. Our data provide the first insight into changes involved in aging on the transcriptional level and thus opens new perspectives for the study of maturation processes in fish erythrocytes.

  13. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Deanna M. Schmitt

    2017-05-01

    Full Text Available Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes, dotU, or iglC (two genes encoding T6SS machinery severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus, which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.

  14. Desickling of Sickle Cell Erythrocytes by Pulsed RF Fields.

    Science.gov (United States)

    1986-09-16

    spectrophotometery. Field induced menbrane potential which causes the L partyl breakdown of the memrbrane and the formation of pores was calculated... plasma . Fig.5 shows the photographs of sickled and desickled SS erythrocytes which are suspended in Hank’s solution. As shown, desickled erythrocytes

  15. Paired Chicken and Mammalian Erythrocyte Indicator Systems for ...

    African Journals Online (AJOL)

    A retrospective flock health analysis revealed that the higher titres were associated with confirmable Newcastle Disease (ND) outbreaks in the affected flocks. These findings therefore suggested that the use of standardised guinea pig erythrocytes in parallel with chicken erythrocytes as indicators, might facilitate field ND ...

  16. Erythrocyte Saturation with IgG Is Required for Inducing Antibody-Mediated Immune Suppression and Impacts Both Erythrocyte Clearance and Antigen-Modulation Mechanisms.

    Science.gov (United States)

    Cruz-Leal, Yoelys; Marjoram, Danielle; Lazarus, Alan H

    2018-02-15

    Anti-D prevents hemolytic disease of the fetus and newborn, and this mechanism has been referred to as Ab-mediated immune suppression (AMIS). Anti-D, as well as other polyclonal AMIS-inducing Abs, most often induce both epitope masking and erythrocyte clearance mechanisms. We have previously observed that some Abs that successfully induce AMIS effects could be split into those that mediate epitope masking versus those that induce erythrocyte clearance, allowing the ability to analyze these mechanisms separately. In addition, AMIS-inducing activity has recently been shown to induce Ag modulation (Ag loss from the erythrocyte surface). To assess these mechanisms, we immunized mice with transgenic murine RBCs expressing a single Ag protein comprising a recombinant Ag composed of hen egg lysozyme, OVA sequences comprising aa 251-349, and the human Duffy transmembrane protein (HOD-Ag) with serial doses of polyclonal anti-OVA IgG as the AMIS-inducing Ab. The anti-OVA Ab induced AMIS in the absence of apparent epitope masking. AMIS occurred only when the erythrocytes appeared saturated with IgG. This Ab was capable of inducing HOD-RBC clearance, as well as loss of the OVA epitope at doses of Ab that caused AMIS effects. HOD-RBCs also lost reactivity with Abs specific for the hen egg lysozyme and Duffy portions of the Ag consistent with the initiation of Ag modulation and/or trogocytosis mechanisms. These data support the concept that an AMIS-inducing Ab that does not cause epitope masking can induce AMIS effects in a manner consistent with RBC clearance and/or Ag modulation. Copyright © 2018 by The American Association of Immunologists, Inc.

  17. Ferrokinetic and erythrocyte survival studies in healthy and anemic cats

    Energy Technology Data Exchange (ETDEWEB)

    Madewell, B.R.; Holmes, P.H.; Onions, D.E.

    1983-03-01

    Erythrocyte survival and ferrokinetic studies were adapted to the cat. For 5 clinically healthy 4- to 9-month-old cats, mean /sup 51/Cr-labeled erythrocyte survival was 144 hours, and mean plasma /sup 59/Fe-labeled transferrin disappearance halftime was 51 minutes. Erythrocyte use of radioiron was rapid and efficient, with 50% to 80% of labeled iron incorporated into the erythron by 100 hours after injection into the cat. Six cats with feline leukemia virus infection were studied. For 2 cats with erythroid aplasia associated with C subgroup of feline leukemia virus, erythrocyte survival times were similar to those determined for the healthy cats, but plasma radioiron disappearance half time and erythrocyte use of radioiron were markedly diminished.

  18. Ferrokinetic and erythrocyte survival studies in healthy and anemic cats

    International Nuclear Information System (INIS)

    Madewell, B.R.; Holmes, P.H.; Onions, D.E.

    1983-01-01

    Erythrocyte survival and ferrokinetic studies were adapted to the cat. For 5 clinically healthy 4- to 9-month-old cats, mean 51 Cr-labeled erythrocyte survival was 144 hours, and mean plasma 59 Fe-labeled transferrin disappearance halftime was 51 minutes. Erythrocyte use of radioiron was rapid and efficient, with 50% to 80% of labeled iron incorporated into the erythron by 100 hours after injection into the cat. Six cats with feline leukemia virus infection were studied. For 2 cats with erythroid aplasia associated with C subgroup of feline leukemia virus, erythrocyte survival times were similar to those determined for the healthy cats, but plasma radioiron disappearance half time and erythrocyte use of radioiron were markedly diminished

  19. Differential effect of extracellular calcium on the Na(+)-K+ pump activity in intact polymorphonuclear leucocytes and erythrocytes

    DEFF Research Database (Denmark)

    Petersen, R H; Knudsen, T; Johansen, Torben

    1991-01-01

    The effect of extracellular calcium on the Na(+)-K+ pump activity in human polymorphonuclear leucocytes and erythrocytes was studied and compared with the activity in mixed peritoneal leucocytes from rats. While there was maximal decrease in the pump activity (25-30%) of leucocytes from both rat ...

  20. Local anesthetics: interaction with human erythrocyte membranes as studied by {sup 1}H and {sup 31}P nuclear magnetic resonance; Anestesicos locais: interacao com membranas de eritrocitos de sangue humano, estudada por ressonancia magnetica nuclear de {sup 1}H e {sup 31}P

    Energy Technology Data Exchange (ETDEWEB)

    Fraceto, Leonardo Fernandes; Paula, Eneida de [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia. Dept. de Bioquimica]. E-mail: depaula@unicamp.br

    2004-02-01

    The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by {sup 1}H and {sup 31}P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipids acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na{sup +}-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia. (author)

  1. A Comparative Analysis of Perinatal Development of Barrel Cortex in Rat, Mouse and Guinea Pig Using Acetylcholinesterase Histochemistry

    OpenAIRE

    ŞENDEMİR, Erdoğan

    2014-01-01

    The role of acetylcholinesterase (AChE) in the developing neocortex was reexamined by comparing its expression in rats, mice and guinea pigs, following the protocol for acetylcholinesterase histochemistry (described in Sendemir et al., 1996) in order to determine the suitability of the breeding colony at UludaÛ University for use as an animal model. A total of 103 pups as well as two adult animals of each species were used. In the rat pups, acetylcholinesterase-rich patches were d...

  2. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    Science.gov (United States)

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigating the Antioxidant and Acetylcholinesterase Inhibition Activities of Gossypium herbaceam

    Directory of Open Access Journals (Sweden)

    Haji Akber Aisa

    2013-01-01

    Full Text Available Our previous research showed that standardized extract from the flowers of the Gossypium herbaceam labeled GHE had been used in clinical trials for its beneficial effects on brain functions, particularly in connection with age-related dementia and Alzheimer’s disease (AD. The aim of this work was to determine the components of this herb and the individual constituents of GHE. In order to better understand this herb for AD treatment, we investigated the acetylcholinesterase (AChE inhibition and antioxidant activity of GHE as well as the protective effects to PC12 cells against cytotoxicity induced by tertiary butyl hydroperoxide (tBHP using in vitro assays. The antioxidant activities were assessed by measuring their capabilities for scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH and 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radical as well as in inhibiting lipid peroxidation. Our data showed that GHE exhibited certain activities against AChE and also is an efficient free radical scavenger, which may be helpful in preventing or alleviating patients suffering from AD.

  4. NMR studies of the fate of adenine nucleotides in glucose-starved erythrocytes

    International Nuclear Information System (INIS)

    Bubb, W.A.; Mulquiney, P.J.; Kuchel, P.W.; Rohwer, J.; De Atauri, P.

    2002-01-01

    Full text: As a consequence of many refinements during the past 30 years, we now have a detailed understanding of the glycolytic pathway in human erythrocytes. By comparison, and notwithstanding their central importance to four key steps in erythrocyte glycolysis, our knowledge of the catabolism of adenine nucleotides remains relatively limited. In particular, the mechanism for the degradation of AMP, whose concentration rises under conditions of oxidative stress or glucose deprivation, remains poorly understood, AMP degradation may proceed via two possible pathways which converge in the production of inosine. Analysis of the key intermediates for the respective pathways, adenosine and AMP, as well as determination of end products is not straightforward. High-resolution NMR spectroscopy affords a potentially simple analytical solution to this problem but is complicated by spectral overlap and the sensitivity of key resonances to variations in pH and the concentrations of cations such as Mg 2+ . We describe a multinuclear NMR approach towards characterising the intermediates and end-products of adenine nucleotide metabolism in glucose-starved human erythrocytes. Assignments based on homo- and heteronuclear correlation experiments for both 13 C and 31 P are presented

  5. Effects of proteolytic enzymes and neuraminidase on the I and i erythrocyte antigen sites

    International Nuclear Information System (INIS)

    Doinel, C.; Ropars, C.; Salmon, C.

    1978-01-01

    Homogeneous cold agglutinins, purified and labelled with 125 I, have been used in a study of the effects of neuraminidase and proteolytic enzymes on the I and i reactivities of human adult erythrocytes. Measurements were made of antigen site numbers, equilibrium constants and thermodynamic parameters. There was enhanced reactivity after enzyme treatment as well as after the release of N-acetylneuraminic acid. Steric factors were shown to be of primary importance in the accessibility of the I and i antigenic determinant. After enzyme treatment, the antigenic structures became more homogeneous in their reaction with antibodies. The heterogeneity of binding constants observed with antigenic determinants of non-treated erythrocytes is probably due to the wide range of spatial distribution of these receptors within the membrane. (author)

  6. iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states.

    Science.gov (United States)

    Bordbar, Aarash; Jamshidi, Neema; Palsson, Bernhard O

    2011-07-12

    The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. In silico models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored. Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte. The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in the functional capabilities of human erythrocyte metabolism.

  7. iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard O

    2011-07-01

    Full Text Available Abstract Background The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. In silico models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored. Results Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte. Conclusion The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in

  8. Erythrocyte 22Na+ influx in hypertension

    International Nuclear Information System (INIS)

    Shalev, O.; Eaton, J.W.; Ben-Ishay, D.

    1984-01-01

    We assessed 22Na+ uptake by erythrocytes (RBC) from 38 individuals with essential hypertension and 37 healthy controls. All subjects were male, white, non-obese and with normal renal function, obviating sex, race, hormonal, ponderal and renal factors known to influence RBC Na+ handling. The mean +/- sem 22Na+ uptake of the patients was 284 +/- 16 mumole/liter RBC/hour while that of normal controls was 249 +/- 11 mumole/liter RBC/hour; although the difference reached borderline significance, individual values showed considerable overlap. Consequently, in our population, RBC 22Na+ uptake is not a reliable marker for essential hypertension. We believe that previous studies should be reassessed with regard to patients' characteristics and future studies employ rigorous criteria in selection of subjects

  9. Fluorescence energy transfer on erythrocyte membranes

    International Nuclear Information System (INIS)

    Fuchs, H.M.; Hof, M.; Lawaczeck, R.

    1995-08-01

    Stationary and time-dependent fluorescence have been measured for a donor/acceptor (DA) pair bound to membrane proteins of bovine erythrocyte ghosts. The donor N-(p-(2-benzoxazolyl)phenyl)-maleimid (BMI) and the acceptor fluram bind to SH- and NH 2 -residues, respectively. The fluorescence spectra and the time-dependent emission are consistent with a radiationless fluorescence energy transfer (RET). The density of RET-effective acceptor binding sites c=0.072 nm -2 was calculated on the basis of the two-dimensional Foerster-kinetic. Band3 protein is the only membrane spanning protein with accessible SH-groups, and therefore only effective binding sites on the band3 protein are counted for the RET measurements performed. (author). 23 refs, 4 figs, 2 tabs

  10. In Vitro Protective Effect of Phikud Navakot Extraction on Erythrocyte

    Directory of Open Access Journals (Sweden)

    Kanchana Kengkoom

    2016-01-01

    Full Text Available Phikud Navakot (PN, Thai herbal remedy in National List of Essential Medicines, has been claimed to reduce many cardiovascular symptoms especially dizziness and fainting. Apart from blood supply, erythrocyte morphology, in both shape and size, is one of the main consideration factors in cardiovascular diseases and may be affected by vascular oxidative stress. However, little is known about antioxidative property of PN on erythrocyte to preserve red blood cell integrity. In this study, 1,000 μM hydrogen peroxide-induced oxidative stress was conducted on sheep erythrocyte. Three doses of PN (1, 0.5, and 0.25 mg/mL and 10 μM of ascorbic acid were compared. The released hemoglobin absorbance was measured to demonstrate hemolysis. Electron microscopic and immunohistochemical studies were also performed to characterize dysmorphic erythrocyte and osmotic ability in relation to aquaporin- (AQP- 1 expression, respectively. The results revealed that all doses of PN and ascorbic acid decreased the severity of dysmorphic erythrocyte, particularly echinocyte, acanthocyte, knizocyte, codocyte, clumping, and other malformations. However, the most effective was 0.5 mg/mL PN dosage. In addition, hydrostatic pressure may be increased in dysmorphic erythrocyte in association with AQP-1 upregulation. Our results demonstrated that PN composes antioxidative effect to maintain the integrity and osmotic ability on sheep erythrocyte.

  11. Deformability of Erythrocytes and Oxidative Damage in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Mukerrem Betul Yerer

    2012-04-01

    Full Text Available Purpose: A lowered cerebral perfusion as a consequence of hemodynamic microcirculatory insufficiency is one of the factors underlying in Alzheimer's disease, which is a neurodegenerative disorder leading to progressive cognitive impairment. Erythrocyte deformability is one of the major factors affecting the microcirculatory hemodynamics which is closely related to the oxidative damage. The aim of this study is to investigate the relationship between the erythrocyte deformability, nitric oxide levels and oxidative stress in Alzheimer's disease. Methods: The blood samples of 30 elderly people in three groups consisting of healthy control and different severities of the disease (low and severe were used. Then the erythrocytes were isolated and the deformability of erythrocytes was determined by Rheodyne SSD evaluating the elongation indexes of the erythrocytes under different shear stress. The catalase, glutathione peroxidase and plasma nitric oxide levels were measured spectrophotometric ally. Results: The plasma nitric oxide levels, catalase activities were found significantly higher and glutathione peroxidase activity was significantly lower in severe Alzheimer's disease patients compared to the control group. However, the deformability of erythrocytes was not significantly affected from these alterations. Conclusion: the oxidant-antioxidant status is dramatically changed in Alzheimer's disease patients with the severity of the disease and similar alterations were seen in the nitric oxide levels without any significant change in erythrocyte deformability. [Cukurova Med J 2012; 37(2.000: 65-75

  12. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity.

    Science.gov (United States)

    Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami

    2018-02-01

    A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.

  13. The Uremic Toxin Acrolein Promotes Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Mohamed Siyabeldin E. Ahmed

    2013-05-01

    Full Text Available Background: Anemia is a major complication of end stage renal disease. The anemia is mainly the result of impaired formation of erythrocytes due to lack of erythropoietin and iron deficiency. Compelling evidence, however, points to the contribution of accelerated erythrocyte death, which decreases the life span of circulating erythrocytes. Erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i. Erythrocytes could be sensitized to cytosolic Ca2+ by ceramide. In end stage renal disease, eryptosis may possibly be stimulated by uremic toxins. The present study explored, whether the uremic toxin acrolein could trigger eryptosis. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ceramide from fluorescent antibodies. Results: A 48 h exposure to acrolein (30 - 50 µM did not significantly modify [Ca2+]i but significantly decreased forward scatter and increased annexin-V-binding. Acrolein further triggered slight, but significant hemolysis and increased ceramide formation in erythrocytes. Acrolein (50 µM induced annexin-V-binding was significantly blunted in the nominal absence of extracellular Ca2+. Acrolein augmented the annexin-V-binding following treatment with Ca2+ ionophore ionomycin (1 µM. Conclusion: Acrolein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to stimulation of ceramide formation with subsequent sensitisation of the erythrocytes to cytosolic Ca2+.

  14. Mature Erythrocytes of Iguana iguana (Squamata, Iguanidae Possess Functional Mitochondria.

    Directory of Open Access Journals (Sweden)

    Giuseppina Di Giacomo

    Full Text Available Electron microscopy analyses of Iguana iguana blood preparations revealed the presence of mitochondria within erythrocytes with well-structured cristae. Fluorescence microscopy analyses upon incubation with phalloidin-FITC, Hoechst 33342 and mitochondrial transmembrane potential (Δψm-sensitive probe MitoTracker Red indicated that mitochondria i widely occur in erythrocytes, ii are polarized, and iii seem to be preferentially confined at a "perinuclear" region, as confirmed by electron microscopy. The analysis of NADH-dependent oxygen consumption showed that red blood cells retain the capability to consume oxygen, thereby providing compelling evidence that mitochondria of Iguana erythrocytes are functional and capable to perform oxidative phosphorylation.

  15. Mature Erythrocytes of Iguana iguana (Squamata, Iguanidae) Possess Functional Mitochondria.

    Science.gov (United States)

    Di Giacomo, Giuseppina; Campello, Silvia; Corrado, Mauro; Di Giambattista, Livia; Cirotti, Claudia; Filomeni, Giuseppe; Gentile, Gabriele

    2015-01-01

    Electron microscopy analyses of Iguana iguana blood preparations revealed the presence of mitochondria within erythrocytes with well-structured cristae. Fluorescence microscopy analyses upon incubation with phalloidin-FITC, Hoechst 33342 and mitochondrial transmembrane potential (Δψm)-sensitive probe MitoTracker Red indicated that mitochondria i) widely occur in erythrocytes, ii) are polarized, and iii) seem to be preferentially confined at a "perinuclear" region, as confirmed by electron microscopy. The analysis of NADH-dependent oxygen consumption showed that red blood cells retain the capability to consume oxygen, thereby providing compelling evidence that mitochondria of Iguana erythrocytes are functional and capable to perform oxidative phosphorylation.

  16. Erythrocyte survival studies in a rat myelogenous leukemia

    International Nuclear Information System (INIS)

    Derelanko, M.J.; Meagher, R.C.; Lobue, J.; Khouri, J.A.; Gordon, A.S.

    1982-01-01

    To determine the extent intrinsic erythrocyte defects and/or extrinsic factors were involved in anemia of rats bearing Shay chloroleukemia (SCL), survival of 3 H-DFP labeled erythrocytes was studied in leukemic and nonleukemic hosts. Red blood cells labeled before induction of leukemia, were rapidly lost from the peripheral circulation of SCL rats in terminal stages of disease. However, labeled erythrocytes from terminal SCL animals displayed normal lifespans when transfused into nonleukemic controls. Thus the anemia of this leukemia probably resulted from extrinsic factors associated with the leukemic process. Hemorrhage appeared to be primarily responsible for the anemia of this disease

  17. Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Glushakova Svetlana

    2013-01-01

    Full Text Available Abstract Background Egress of Plasmodium falciparum, from erythrocytes at the end of its asexual cycle and subsequent parasite invasion into new host cells, is responsible for parasite dissemination in the human body. The egress pathway is emerging as a coordinated multistep programme that extends in time for tens of minutes, ending with rapid parasite extrusion from erythrocytes. While the Ca2+ regulation of the invasion of P. falciparum in erythrocytes is well established, the role of Ca2+ in parasite egress is poorly understood. This study analysed the involvement of cytoplasmic free Ca2+ in infected erythrocytes during the multistep egress programme of malaria parasites. Methods Live-cell fluorescence microscopy was used to image parasite egress from infected erythrocytes, assessing the effect of drugs modulating Ca2+ homeostasis on the egress programme. Results A steady increase in cytoplasmic free Ca2+ is found to precede parasite egress. This increase is independent of extracellular Ca2+ for at least the last two hours of the cycle, but is dependent upon Ca2+ release from internal stores. Intracellular BAPTA chelation of Ca2+ within the last 45 minutes of the cycle inhibits egress prior to parasitophorous vacuole swelling and erythrocyte membrane poration, two characteristic morphological transformations preceding parasite egress. Inhibitors of the parasite endoplasmic reticulum (ER Ca2+-ATPase accelerate parasite egress, indicating that Ca2+ stores within the ER are sufficient in supporting egress. Markedly accelerated egress of apparently viable parasites was achieved in mature schizonts using Ca2+ ionophore A23187. Ionophore treatment overcomes the BAPTA-induced block of parasite egress, confirming that free Ca2+ is essential in egress initiation. Ionophore treatment of immature schizonts had an adverse effect inducing parasitophorous vacuole swelling and killing the parasites within the host cell. Conclusions The parasite egress

  18. Polypyridylruthenium(II complexes exert in vitro and in vivo nematocidal activity and show significant inhibition of parasite acetylcholinesterases

    Directory of Open Access Journals (Sweden)

    Madhu Sundaraneedi

    2018-04-01

    Full Text Available Over 4.5 billion people are at risk of infection with soil transmitted helminths and there are concerns about the development of resistance to the handful of frontline nematocides in endemic populations. We investigated the anti-nematode efficacy of a series of polypyridylruthenium(II complexes and showed they were active against L3 and adult stages of Trichuris muris, the rodent homologue of the causative agent of human trichuriasis, T. trichiura. One of the compounds, Rubb12-mono, which was among the most potent in its ability to kill L3 (IC50 = 3.1 ± 0.4 μM and adult (IC50 = 5.2 ± 0.3 μM stage worms was assessed for efficacy in a mouse model of trichuriasis by administering 3 consecutive daily oral doses of the drug 3 weeks post infection with the murine whipworm Trichuris muris. Mice treated with Rubb12-mono showed an average 66% reduction (P = 0.015 in faecal egg count over two independent trials. The drugs partially exerted their activity through inhibition of acetylcholinesterases, as worms treated in vitro and in vivo showed significant decreases in the activity of this class of enzymes. Our data show that ruthenium complexes are effective against T. muris, a model gastro-intestinal nematode and soil-transmitted helminth. Further, knowledge of the target of ruthenium drugs can facilitate modification of current compounds to identify analogues which are even more effective and selective against Trichuris and other helminths of human and veterinary importance. Keywords: Acetylcholinesterase, Trichuris muris, Ruthenium complex, Anthelmintic

  19. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats.

    Science.gov (United States)

    Teodorak, Brena P; Ferreira, Gabriela K; Scaini, Giselli; Wessler, Letícia B; Heylmann, Alexandra S; Deroza, Pedro; Valvassori, Samira S; Zugno, Alexandra I; Quevedo, João; Streck, Emilio L

    2015-08-01

    Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p.) or vehicle (2% Tween 80). Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  20. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  1. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes.

    Science.gov (United States)

    Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min

    2015-05-01

    The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 μg/ml) (P0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.

  2. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish.

    Science.gov (United States)

    Assis, Caio Rodrigo Dias; Linhares, Amanda Guedes; Oliveira, Vagne Melo; França, Renata Cristina Penha; Carvalho, Elba Veronica Matoso Maciel; Bezerra, Ranilson Souza; de Carvalho, Luiz Bezerra

    2012-12-15

    Monitoring of pesticides based on acetylcholinesterase (AChE; EC 3.1.1.7) inhibition in vitro avoids interference of detoxification defenses and bioactivation of some of those compounds in non-target tissues. Moreover, environmental temperature, age and stress are able to affect specific enzyme activities when performing in vivo studies. Few comparative studies have investigated the inter-specific differences in AChE activity in fish. Screening studies allow choosing the suitable species as source of AChE to detect pesticides in a given situation. Brain AChE from the tropical fish: pirarucu (Arapaima gigas), cobia (Rachycentron canadum) and Nile tilapia (Oreochromis niloticus) were characterized and their activities were assayed in the presence of pesticides (the organophosphates: dichlorvos, diazinon, chlorpyrifos, temephos, tetraethyl pyrophosphate- TEPP and the carbamates: carbaryl and carbofuran). Inhibition parameters (IC₅₀ and Ki) for each species were found and compared with commercial AChE from electric eel (Electrophorus electricus). Optimal pH and temperature were found to be 8.0 and 35-45 °C, respectively. A. gigas AChE retained 81% of the activity after incubation at 50 °C for 30 min. The electric eel enzyme was more sensitive to the compounds (mainly carbofuran, IC₅₀ of 5 nM), excepting the one from A. gigas (IC₅₀ of 9 nM) under TEPP inhibition. These results show comparable sensitivity between purified and non-purified enzymes suggesting them as biomarkers for organophosphorus and carbamate detection in routine environmental and food monitoring programs for pesticides. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors.

    Science.gov (United States)

    Haviv, H; Wong, D M; Silman, I; Sussman, J L

    2007-01-01

    The naturally occurring alkaloid Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor that has been used for centuries as a Chinese folk medicine in the context of its source plant Huperzia Serrata. The potency and relative safety of HupA rendered it a promising drug for the ameliorative treatment of Alzheimer's disease (AD) vis-à-vis the "cholinergic hypothesis" that attributes the cognitive decrements associated with AD to acetylcholine deficiency in the brain. However, recent evidence supports a neuroprotective role for HupA, suggesting that it could act as more than a mere palliative. Biochemical and crystallographic studies of AChE revealed two potential binding sites in the active-site gorge of AChE, one of which, the "peripheral anionic site" at the mouth of the gorge, was implicated in promoting aggregation of the beta amyloid (Abeta) peptide responsible for the neurodegenerative process in AD. This feature of AChE facilitated the development of dual-site binding HupA-based bivalent ligands, in hopes of concomitantly increasing AChE inhibition potency by utilizing the "chelate effect", and protecting neurons from Abeta toxicity. Crystal structures of AChE allowed detailed modeling and docking studies that were instrumental in enhancing the understanding of underlying principles of bivalent inhibitor-enzyme dynamics. This monograph reviews two categories of HupA-based bivalent ligands, in which HupA and HupA fragments serve as building blocks, with a focus on the recently solved crystallographic structures of Torpedo californica AChE in complex with such bifunctional agents. The advantages and drawbacks of such structured-based drug design, as well as species differences, are highlighted and discussed.

  4. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    Directory of Open Access Journals (Sweden)

    Fuyuki Tokumasu

    2014-05-01

    Full Text Available Plasmodium falciparum (Pf infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM, a parasitophorous vacuole membrane (PVM, a tubulovesicular network (TVN, and Maurer's clefts (MC. Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA and hemoglobin S-containing (HbAS, HbAS erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM. Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes.

  5. Erythrocyte Sedimentation Rate (ESR): MedlinePlus Lab Test Information

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Erythrocyte Sedimentation Rate (ESR); p. 267– ...

  6. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Andreas; Hinterdorfer, Peter [Institute for Biophysics, University of Linz, A-4040 Linz (Austria); Nikova, Dessy; Lange, Tobias; Bruns, Reimer; Oberleithner, Hans; Schillers, Hermann [Institute of Physiology II, University of Muenster, D-48149 Muenster (Germany); Haeberle, Johannes; Falk, Sabine; Duebbers, Angelika [Department of Pediatrics, University Hospitals of Muenster, D-48149 Muenster (Germany)], E-mail: schille@uni-muenster.de

    2008-09-24

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl{sup -}) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  7. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    Science.gov (United States)

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P CCS (47% reduction, P CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  8. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    International Nuclear Information System (INIS)

    Ebner, Andreas; Hinterdorfer, Peter; Nikova, Dessy; Lange, Tobias; Bruns, Reimer; Oberleithner, Hans; Schillers, Hermann; Haeberle, Johannes; Falk, Sabine; Duebbers, Angelika

    2008-01-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl - ) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients

  9. Hematology and erythrocyte osmotic fragility of the Franquet's fruit bat (Epomops franqueti).

    Science.gov (United States)

    Ekeolu, Oyetunde Kazeem; Adebiyi, Olamide Elizabeth

    2018-03-15

    Hematological parameters are vital diagnostic tools for understanding health dynamics of humans and animals. Franquet's fruit bat (Epomops franqueti) is host to several parasites such as protozoa, bacteria, viruses and mites. Yet, studies exploring the values of its blood components with interest for research or food purposes are scarce. Thus, this study was carried out to investigate the hematological values of the adult E. franqueti. Seventeen (nine female and eight male) apparently healthy adult E. franqueti were captured from their roosting colony. Blood samples were collected for determination of erythrocyte indices [red blood cell count (RBC), packed cell volume (PCV), hemoglobin (Hb) concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC)] and leukocyte indices [total white blood cell counts (WBC), lymphocytes, eosinophil, monocytes, neutrophil count and erythrocytes osmotic fragility]. There were no significant (p≥0.05) sex-related differences in RBC, PCV, Hb concentration, MCV, MCH, MCHC and total and differential WBC of E. franqueti. Erythrocyte osmotic fragility was significantly higher in female than in male E. franqueti at 0.1% NaCl. These considerations are critical in establishing reference ranges of blood parameters for E. franqueti and may provide insight to why they serve as reservoir hosts for several microorganisms.

  10. Immobilization of Acetylcholinesterase on Screen-Printed Electrodes. Application to the Determination of Arsenic(III

    Directory of Open Access Journals (Sweden)

    M. Julia Arcos-Martínez

    2010-03-01

    Full Text Available Enzymatic amperometric procedures for measuring arsenic, based on the inhibitive action of this metal on acetylcholinesterase enzyme activity, have been developed. Screen-printed carbon electrodes (SPCEs were used with acetylcholinesterase covalently bonded directly to its surface. The amperometric response of acetylcholinesterase was affected by the presence of arsenic ions, which caused a decrease in the current intensity. The experimental optimum working conditions of pH, substrate concentration and potential applied, were established. Under these conditions, repeatability and reproducibility of biosensors were determined, reaching values below 4% in terms of relative standard deviation. The detection limit obtained for arsenic was 1.1 × 10−8 M for Ach/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of arsenic in spiked tap water samples.

  11. A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition

    International Nuclear Information System (INIS)

    Kucherenko, I S; Soldatkin, O O; Arkhypova, V M; Dzyadevych, S V; Soldatkin, A P

    2012-01-01

    A novel enzyme biosensor based on acetylcholinesterase inhibition for the determination of surfactants in aqueous solutions is described. Acetylcholinesterase-based bioselective element was deposited via glutaraldehyde on the surface of conductometric transducers. Different variants of inhibitory analysis of surfactants were tested, and finally surfactant's concentration was evaluated by measuring initial rate of acetylcholinesterase inhibition. Besides, we studied the effect of solution characteristics on working parameters of the biosensor for direct measurement of acetylcholine and for inhibitory determination of surfactants. The biosensor's sensitivity to anionic and cationic surfactants (0.35 mg l −1 ) was tested. The high operational stability of the biosensor during determination of acetylcholine (RSD 2%) and surfactants (RSD 11%) was shown. Finally, we discussed the selectivity of the biosensor toward surfactants and other AChE inhibitors. The proposed biosensor can be used as a component of the multibiosensor for ecological monitoring of toxicants. (paper)

  12. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts

    Directory of Open Access Journals (Sweden)

    Levi P. Machado

    Full Text Available Abstract Alzheimer's disease affects nearly 36.5 million people worldwide, and acetylcholinesterase inhibition is currently considered the main therapeutic strategy against it. Seaweed biodiversity in Brazil represents one of the most important sources of biologically active compounds for applications in phytotherapy. Accordingly, this study aimed to carry out a quantitative and qualitative assessment of Hypnea musciformis (Wulfen J.V. Lamouroux, Ochtodes secundiramea (Montagne M.A. Howe, and Pterocladiella capillacea (S.G. Gmelin Santelices & Hommersand (Rhodophyta in order to determine the AChE effects from their extracts. As a matter of fact, the O. secundiramea extract showed 48% acetylcholinesterase inhibition at 400 μg/ml. The chemical composition of the bioactive fraction was determined by gas chromatography–mass spectrometry (GC–MS; this fraction is solely composed of halogenated monoterpenes, therefore allowing assignment of acetylcholinesterase inhibition activity to them.

  13. Insulin binding to erythrocytes after acute 16-methyleneprednisolone ingestion.

    Science.gov (United States)

    Dwenger, A; Holle, W; Zick, R; Trautschold, I

    1982-10-01

    The binding of [125I]insulin to erythrocytes, glucose and insulin were determined before and 1, 7 and 35 days after ingestion of 2 X 60-methyleneprednisolone. None of two groups of volunteers (7 males, 4 females showed clear alterations of the insulin binding parameters (Ka and R0), or of the fasting cortisol, glucose and insulin concentrations. These results exclude the possibility that the diabetogenic effect of glucocorticoides is accompanied by an alteration of the insulin receptor characteristics of erythrocytes.

  14. Increase in the amount of erythrocyte delta-aminolevulinic acid dehydratase in workers with moderate lead exposure

    International Nuclear Information System (INIS)

    Fujita, H.; Sano, S.

    1982-01-01

    The amount of ALA-D in human erythrocytes was determined directly by radioimmunoassay or calculated from the restored activity assayed in the presence of zinc and dithiothreitol, and a good correlation was observed between the RIA-based and the restored activity-based amounts. The RIA-based amount of ALA-D in the blood of 10 normal individuals (blood lead levels of 5.6 +- 2.3 μg/100 ml: mean +- SD) and 19 lead-exposed workers (blood lead levels of 41.2 +- 10.2 μg/100 ml) was 54.1 +- 11.8 μg/ml blood and 92.3 +- 20.6 μg/ml blood, respectively, indicating an apparent increase of the enzyme amount in lead-exposed workers. A significant increase in the amount of erythrocyte ALA-D calculated from the restored activity in lead-exposed workers was observed even in the low blood lead level of 10-20 μg/100 ml, resulting in the range of blood lead level 20-40 μg/100 ml. No significant difference was observed in hematocrit and hemoglobin content between lead-exposed and non-exposed groups. These observations suggested that the increase of erythrocyte ALA-D in lead exposure was not due to anemia, which might result in the increase of young erythrocytes in peripheral blood. This increase in the amount of ALA-D in human erythrocytes might be a result of the function to overcome the inhibition of the enzyme in bone marrow cells during lead exposure, and these findings may throw light on the danger to human health of low-level lead toxicity. (orig.)

  15. Effects of dietary fat on lipid composition of serum and erythrocytes of the swine and in vitro incorporation of fatty acids into erythrocyte membranes

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    1974-01-01

    Changes in ftty acid patterns of lipids in serum and erythrocytes induced by dietary fats and in vitro incorporation of fatty acids into erythrocyte membranes were investigated with pigs. On feeding various diets, it was found that fatty acid composition of serum and erythrocytes could be modified and altered toward the fatty acid pattern of the diet. In vitro, the incorporation of labelled fatty acids into erythrocyte membranes was accelerated by the addition of cofactors such as lysolecithin, CoA and ATP. Dietary fats also had certain effects on the incorporation of fatty acids into erythrocyte membranes. Erythrocytes, collected from the blood of pigs fed corn oil, incorporated and also released more labelled linoleate than those of pigs fed hydrogenated soybean oil. Palmitic acid was more slowly incorporated into erythrocyte membranes than linoleic acid in the pigs fed both a commercial chow and scheduled meals, indicating selective esterification of fatty acids in the erythrocyte membranes. (author)

  16. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation.

    Directory of Open Access Journals (Sweden)

    Sirada Srihirun

    Full Text Available Nitrite is a nitric oxide (NO metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated.Platelet aggregation was studied in platelet-rich plasma (PRP and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger, suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes.Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.

  17. Erythrocyte zinc levels in children with bronchial asthma.

    Science.gov (United States)

    Arik Yilmaz, E; Ozmen, S; Bostanci, I; Misirlioglu, E Dibek; Ertan, U

    2011-12-01

    Zinc deficiency may be suspected to play a role in the pathogenesis, control, and severity of asthma because of its antioxidant, antiapoptotic, and anti-inflammatory effects. We aimed to investigate whether there was any relationship between erythrocyte zinc levels and childhood asthma. The erythrocyte zinc levels of 67 asthmatic and 45 healthy children were analyzed in this case-control study. The mean concentrations of erythrocyte zinc were 1215.8 ± 145.1 µg/dl in asthma patients and 1206.9 ± 119.5 µg/dl in controls with no significant difference (P = 0.472). The erythrocyte zinc level was below 1,000 µg/dl in 6 asthmatic patients (8.9%) and 2 control group patients (4.4%). There was no relationship between erythrocyte zinc levels and duration of follow-up, severity, and control of the asthma (P > 0.05). On the other hand, patients hospitalized for an asthma attack had significantly lower erythrocyte zinc levels compared with nonhospitalized patients and the control group (P = 0.000 and P = 0.004 respectively). This study's findings indicate that asthmatic children are not a risk group for zinc deficiency. We emphasize that checking zinc levels in children who are hospitalized for an asthma attack may be useful. Copyright © 2011 Wiley Periodicals, Inc.

  18. Temperature-dependent binding of cyclosporine to an erythrocyte protein

    International Nuclear Information System (INIS)

    Agarwal, R.P.; Threatte, G.A.; McPherson, R.A.

    1987-01-01

    In this competitive binding assay to measure endogenous binding capacity for cyclosporine (CsA) in erythrocyte lysates, a fixed amount of [ 3 H]CsA plus various concentrations of unlabeled CsA is incubated with aliquots of a test hemolysate. Free CsA is then adsorbed onto charcoal and removed by centrifugation; CsA complexed with a cyclosporine-binding protein (CsBP) remains in the supernate. We confirmed the validity of this charcoal-separation mode of binding analysis by comparison with equilibrium dialysis. Scatchard plot analysis of the results at 4 degrees C yielded a straight line with slope corresponding to a binding constant of 1.9 X 10(7) L/mol and a saturation capacity of approximately 4 mumol per liter of packed erythrocytes. Similar analysis of binding data at 24 degrees C and 37 degrees C showed that the binding constant decreased with increasing temperature, but the saturation capacity did not change. CsBP was not membrane bound but appeared to be freely distributed within erythrocytes. 125 I-labeled CsA did not complex with the erythrocyte CsBP. Several antibiotics and other drugs did not inhibit binding between CsA and CsBP. These findings may explain the temperature-dependent uptake of CsA by erythrocytes in whole blood and suggest that measurement of CsBP in erythrocytes or lymphocytes may help predict therapeutic response or toxicity after administration of CsA

  19. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  20. A gasometric method to determine erythrocyte catalase activity

    Directory of Open Access Journals (Sweden)

    A.J.S. Siqueira

    1999-09-01

    Full Text Available We describe a new gasometric method to determine erythrocyte catalase activity by the measurement of the volume of oxygen produced as a result of hydrogen peroxide decomposition in a system where enzyme and substrate are separated in a special reaction test tube connected to a manometer and the reagents are mixed with a motor-driven stirrer. The position of the reagents in the test tube permits the continuous measurement of oxygen evolution from the time of mixing, without the need to stop the reaction by the addition of acid after each incubation time. The enzyme activity is reported as KHb, i.e., mg hydrogen peroxide decomposed per second per gram of hemoglobin (s-1 g Hb-1. The value obtained for catalase activity in 28 samples of hemolyzed human blood was 94.4 ± 6.17 mg H2O2 s-1 g Hb-1. The results obtained were precise and consistent, indicating that this rapid, simple and inexpensive method could be useful for research and routine work.

  1. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors.

    Science.gov (United States)

    Alipour, Masoumeh; Khoobi, Mehdi; Foroumadi, Alireza; Nadri, Hamid; Moradi, Alireza; Sakhteman, Amirhossein; Ghandi, Mehdi; Shafiee, Abbas

    2012-12-15

    A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC(50) in which compound 3r (IC(50) = 0.11 nM) was the most active compound against acetylcholinesterase enzyme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Phenolic Lipids Affect the Activity and Conformation of Acetylcholinesterase from Electrophorus electricus (Electric eel)

    Science.gov (United States)

    Stasiuk, Maria; Janiszewska, Alicja; Kozubek, Arkadiusz

    2014-01-01

    Phenolic lipids were isolated from rye grains, cashew nutshell liquid (CNSL) from Anacardium occidentale, and fruit bodies of Merrulius tremellosus, and their effects on the electric eel acetylcholinesterase activity and conformation were studied. The observed effect distinctly depended on the chemical structure of the phenolic lipids that were available for interaction with the enzyme. All of the tested compounds reduced the activity of acetylcholinesterase. The degree of inhibition varied, showing a correlation with changes in the conformation of the enzyme tested by the intrinsic fluorescence of the Trp residues of the protein. PMID:24787269

  3. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sylvie Cornelie

    Full Text Available Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  4. Diabetic Erythrocytes Test by Correlation Coefficient

    Science.gov (United States)

    Korol, A.M; Foresto, P; Darrigo, M; Rosso, O.A

    2008-01-01

    Even when a healthy individual is studied, his/her erythrocytes in capillaries continually change their shape in a synchronized erratic fashion. In this work, the problem of characterizing the cell behavior is studied from the perspective of bounded correlated random walk, based on the assumption that diffractometric data involves both deterministic and stochastic components. The photometric readings are obtained by ektacytometry over several millions of shear elongated cells, using a home-made device called Erythrodeformeter. We have only a scalar signal and no governing equations; therefore the complete behavior has to be reconstructed in an artificial phase space. To analyze dynamics we used the technique of time delay coordinates suggested by Takens, May algorithm, and Fourier transform. The results suggest that on random-walk approach the samples from healthy controls exhibit significant differences from those from diabetic patients and these could allow us to claim that we have linked mathematical nonlinear tools with clinical aspects of diabetic erythrocytes’ rheological properties. PMID:19415139

  5. Kinetics of heat-damaged homologous erythrocytes

    International Nuclear Information System (INIS)

    Dimitriou, P.A.; Depascouale, A.K.; Germenis, A.E.; Antipas, S.E.P.

    1990-01-01

    A new theoretical five-compartmental model (5CM) was developed for analysis of the clearance of heat-damaged erythroctes (HDE) labelled with chronium 51. Besides the HDE-spleen interaction, this new model also takes into account the interaction between extrasplenic reticuloendothelial (RES) sites and HDE, i.e. the hepatic clearance of fragment erythrocytes (FE). Accordingly, HDE clearance curves are analysed into three exponential components, the fastest of which describes the RES-FE interaction, whereas the others describe the splenic clearance of spherocytes. Therefore, an estimation of the effective liver blood flow for HDE (ELBF) was achieved, along with a series of parameters describing splenic function. The 5CM proved to be more efficient than a previously proposed three-compartmental model (3CM) in the mathematical description of HDE clearance. Comparison was made by applying both models to 37 experimental curves obtained from 20 patients with congenital hemolytic anemias. The values for the splenic function parameters calculated by 5CM analysis and the strong correlations observed among them offer evidence that this model provides an adequate approximation to the real conditions under which HDE clearance takes place. Furthermore, a detailed quantitative analysis of the pooling of spherocytes within the spleen was attempted in this work, and this phenomenon was found to compete with splenic irreversible spherocyte trapping. The ELBF proved to be closely correlated with the hemodynamic splenic parameters, following first-order kinetics, as do low-dose colloids. (orig.)

  6. The Aotus nancymaae erythrocyte proteome and its importance for biomedical research.

    Science.gov (United States)

    Moreno-Pérez, D A; García-Valiente, R; Ibarrola, N; Muro, A; Patarroyo, M A

    2017-01-30

    The Aotus nancymaae species has been of great importance in researching the biology and pathogenesis of malaria, particularly for studying Plasmodium molecules for including them in effective vaccines against such microorganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte protein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a correlation between categories having the greatest amount of proteins and vital cell function. Integral membrane molecules were also identified which could be possible receptors facilitating interaction with Plasmodium species. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories interested in carrying out basic and applied biomedical investigation studies which involve using this primate. An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fascinating area for research regarding the study of the pathogenesis of malaria since these are the main target for Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains unknown. According to the above and bearing in mind the lack of information about the A. nancymaae species genome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra with the available information for

  7. Hupresin Retains Binding Capacity for Butyrylcholinesterase and Acetylcholinesterase after Sanitation with Sodium Hydroxide

    Directory of Open Access Journals (Sweden)

    Seda Onder

    2017-10-01

    Full Text Available Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE in human plasma and acetylcholinesterase (AChE solubilized from red blood cells (RBC. Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA with full activity and 10–15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

  8. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea.

    Science.gov (United States)

    Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant

    2017-12-01

    There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50  = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50  = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50  = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.

  9. Morphological characteristics of urine erythrocytes in children with erythrocyturia

    Directory of Open Access Journals (Sweden)

    V.A. Minakova

    2017-09-01

    Full Text Available Background. Nephropathies with erythrocyturia make up about 1/3 of all diseases of the kidneys and the urinary system, and they have some difficulties in differential diagnostics. Quite often, erythrocyturia is the only symptom of these diseases. In connection with this, determination of its origin is an important task in forming the correct diagnosis. Erythrocyturia in most diseases of the lower urinary tract is not accompanied by proteinuria or the presence of cylinders in the urine. The presence of proteinuria (more than 0.3 g/l or 1 g protein in urine per day, along with the appearance of erythrocytic cylinder in the urine sediment, raises suspicion in favor of glomerular or tubular diseases. Glomerular erythrocytes may be detected by means of urea concentration factor (UCF in the urinary sediment as a preliminary test for the determination of the erythrocyturia site. Erythrocytes that pass through the glomerular membrane have a changed form (dysmorphic. Determination of acanthocytes in the urine (ring-shaped erythrocytes with one or several bulges in the form of bubbles of different sizes and types is a more precise criterion of glomerular nephropathy than the presence of dysmorphic erythrocytes. The purpose of the study was to determine the morphological characteristics of urine erythrocytes in children with erythrocyturia, to improve the quality of differential diagnosis. Materials and methods. Determination of the morphological characteristics of urinary erythrocytes using UCF in 73 patients aged 1 to 18 years, of which 45 (61.6 % are patients with hematuric form of glomerulonephritis, 23 (31.5 % — with hereditary nephritis, and 5 (6.8 % — with dysmetabolic nephropathy. Detection of 50 to 80 % of dysmorphic erythrocytes in the urine sediment and finding in urine of more than 5 % of acanthocytes is a highly sensitive and specific diagnostic criterion for glomerular hematuria. Results. In children with a clinical diagnosis

  10. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  11. Insulin radioreceptor assay on murine splenic leukocytes and peripheral erythrocytes

    International Nuclear Information System (INIS)

    Shimizu, F.; Kahn, R.

    1982-01-01

    Insulin radioreceptor assays were developed using splenic leukocytes and peripheral erythrocytes from individual mice. Splenic leukocytes were prepared using an NH 4 Cl buffer which did not alter insulin binding, but gave much higher yields than density gradient methods. Mouse erythrocytes were isolated from heparinized blood by three passages over a Boyum gradient, and a similar buffer was used to separate cells from free [ 125 I]iodoinsulin at the end of the binding incubation. Insulin binding to both splenic leukocytes and peripheral erythrocytes had typical pH, temperature, and time dependencies, and increased linearly with an increased number of cells. Optimal conditions for the splenic leukocytes (6 x 10 7 /ml) consisted of incubation with [ 125 I]iodoinsulin at 15 C for 2 h in Hepes buffer, pH 8.0. In cells from 20 individual mice, the specific [ 125 I]iodoinsulin binding was 2.6 +/- 0.1% (SEM), and nonspecific binding was 0.3 +/- 0.04% (10.6% of total binding). Erythrocytes (2.8 x 10 9 /ml) were incubated with [ 125 ]iodoinsulin at 15 C for 2 h in Hepes buffer, pH 8.2. In cells from 25 individual mice, the specific [ 125 I]iodoinsulin binding was 4.5 +/- 0.2%, and nonspecific binding was 0.7 +/- 0.03% (13.6% of total binding). In both splenic leukocytes and peripheral erythrocytes, analysis of equilibrium binding data produced curvilinear Scatchard plots with approximately 3500 binding sites/leukocyte and 20 binding sites/erythrocyte. These data demonstrate that adequate numbers of splenic leukocytes and peripheral erythrocytes can be obtained from individual mice to study insulin binding in a precise and reproducible manner

  12. Interaction of lectins with membrane receptors on erythrocyte surfaces.

    Science.gov (United States)

    Sung, L A; Kabat, E A; Chien, S

    1985-08-01

    The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.

  13. Estimation of vascular spaces using radiolabeled erythrocytes

    International Nuclear Information System (INIS)

    Nasseri, K.

    2002-01-01

    Measurement of vascular volume is important in many physiological and pathological studies. For isolated organ preparations, this is usually performed using normal erythrocytes (red blood cell; RBC) and in the whole body studies, labeled RBCs are used. The aim of the present project was to compare the two methods in model organ (the liver) in terms of sensitivity and packed RBCs are suspended in normal saline. 100 u l aliquot is injected into the portal vein of rat. The outflow samples collected, hemo lysed and measured by colorimeter. In the second method, the packed RBCs are incubated with Cr-sodium and then resuspended in normal saline. A bolus of labelled RBCs with known activity is injected into portal vein of rats and the outflow activity is determined by gamma spectrometry. The extend of Cr binding to RBCs was investigated; in all experiments less than 2% of the total radioactivity after washing was extra cellular. Both methods were tested in 30 preparations. The normalized frequency outflow profiles of RBCs counted by two methods were then compared. The standard curves of the two methods were also obtained and the correlation was compared. The shape of the curves and calculated vascular volume obtained from the two methods were similar. A good correlation was observed between the methods of measurement of RBCs. The results indicated the second method is more precise and sensitive to low grade changes while the first method is quicker and better preserves RBCs than the second method. Theses advantages, together with safety considerations, favour the first method when it is applicable

  14. Chagas disease: modulation of the inflammatory response by acetylcholinesterase in hematological cells and brain tissue.

    Science.gov (United States)

    Silva, Aniélen D; Bottari, Nathieli B; do Carmo, Guilherme M; Baldissera, Matheus D; Souza, Carine F; Machado, Vanessa S; Morsch, Vera M; Schetinger, Maria Rosa C; Mendes, Ricardo E; Monteiro, Silvia G; Da Silva, Aleksandro S

    2018-01-01

    Chagas disease is an acute or chronic illness that causes severe inflammatory response, and consequently, it may activate the inflammatory cholinergic pathway, which is regulated by cholinesterases, including the acetylcholinesterase. This enzyme is responsible for the regulation of acetylcholine levels, an anti-inflammatory molecule linked to the inflammatory response during parasitic diseases. Thus, the aim of this study was to investigate whether Trypanosoma cruzi infection can alter the activity of acetylcholinesterase and acetylcholine levels in mice, and whether these alterations are linked to the inflammatory cholinergic signaling pathway. Twenty-four mice were divided into two groups: uninfected (control group, n = 12) and infected by T. cruzi, Y strain (n = 12). The animals developed acute disease with a peak of parasitemia on day 7 post-infection (PI). Blood, lymphocytes, and brain were analyzed on days 6 and 12 post-infection. In the brain, acetylcholine and nitric oxide levels, myeloperoxidase activity, and histopathology were analyzed. In total blood and brain, acetylcholinesterase activity decreased at both times. On the other hand, acetylcholinesterase activity in lymphocytes increased on day 6 PI compared with the control group. Infection by T. cruzi increased acetylcholine and nitric oxide levels and histopathological damage in the brain of mice associated to increased myeloperoxidase activity. Therefore, an intense inflammatory response in mice with acute Chagas disease in the central nervous system caused an anti-inflammatory response by the activation of the cholinergic inflammatory pathway.

  15. Screening of acetylcholinesterase inhibitors in snake venom by electrospray mass spectrometry

    NARCIS (Netherlands)

    Liesener, A.; Perchuc, Anna-Maria; Schöni, Reto; Schebb, Nils Helge; Wilmer, Marianne; Karst, U.

    2007-01-01

    An electrospray ionization/mass spectrometry (ESI/MS)-based assay for the determination of acetylcholinesterase (AChE)-inhibiting activity in snake venom was developed. It allows the direct monitoring of the natural AChE substrate acetylcholine (AC) and the respective product choline. The assay

  16. Evaluating the antioxidant and acetylcholinesterase inhibitory activity of three Centaurea species

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-01-01

    Full Text Available Factors such as oxidative stress and reduced acetylcholine level have been implicated in Alzheimer’s disease (AD pathology and recently there has been a trend towards natural product research to find potential sources of antioxidants and acetylcholinesterase inhibitors in the plants kingdom. Centaurea is a genus with about 500 species world wild, many of them have shown to possess biologic activity; Centaurea albonites, C. aucheri and C. pseudoscabiosa are three species which little investigation has been carried out about their biological properties. In the present study, the antioxidant and acetylcholinesterase inhibitory activity of the above mentioned species have been evaluated. The ability of the total extract and methanol fraction of the plants to scavenge free radicals has been assessed through DPPH radical scavenging assay, and the acetylcholinesterase inhibitory property has been evaluated by Ellman method. The total extract of all species exhibited moderate antioxidant activity whereas the extracts of C. pseudoscabiosa showed the strongest antioxidant property; its total extract also demonstrated the highest acetylcholinesterase inhibitory activity among the evaluated samples (19.2% inhibition. The results suggest the species as potential sources of natural antioxidants which could be focused in future studies of Alzheimer’s disease.

  17. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    Directory of Open Access Journals (Sweden)

    Shikhar Gupta

    2014-01-01

    Full Text Available In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen and validated using test set, Fischer’s randomization technique. The best acetylcholinesterase and butyrylcholinesterase inhibitors pharmacophore hypotheses Hypo1_A and Hypo1_B, with high correlation coefficient of 0.96 and 0.94, respectively, were used as 3D query for screening the Zinc database. The screened hits were then subjected to the ADME/T and molecular docking study to prioritise the compounds. Finally, 18 compounds were identified as potential leads against AChE enzyme, showing good predicted activities and promising ADME/T properties.

  18. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride.

    Science.gov (United States)

    Zang, Lun-Yi; Misra, Hara P

    2003-12-01

    The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.

  19. Stabilizing Acetylcholinesterase on Carbon Electrodes Using Peptide Nanotubes to Produce Effective Biosensors

    Science.gov (United States)

    2012-03-22

    disposable, inhibition 1. Introduction Organophosphates (OPs) are acetyl cholinesterase (AChE) inhibitors with a broad range of potency and toxicity...5 Cholinesterase Biosensors...BIOSENSORS I. Introduction Background Organophosphates (OPs) are acetylcholinesterase (AChE) inhibitors with a broad range of potency and

  20. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi

    Directory of Open Access Journals (Sweden)

    Matheus Thomaz Nogueira Silva Lima

    Full Text Available ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine and/or a histone deacetylase inhibitor (suberohydroxamic acid. Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%, when compared to the control extract (39.62 ± 3.76%. Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.

  1. Two Bombyx mori acetylcholinesterase genes influence motor control and development in different ways

    Science.gov (United States)

    Among its other biological roles, acetylcholinesterase (AChE, EC 3.1.1.7), encoded by two ace genes in most insects, catalyses the breakdown of acetylcholine, thereby terminating synaptic transmission. ace1 encodes the synaptic enzyme and ace2 has other essential actions in many insect species, such...

  2. Bifunctional phenolic-choline conjugates as anti-oxidants and acetylcholinesterase inhibitors

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Marques, S. M.; Falé, P. L.; Santos, S.; Arduíno, D. M.; Cardoso, S. M.; Oliveira, S. M.; Serralheiro, M. L. M.; Santos, A. M.

    Roč. 26, č. 4 (485), s. 497 ISSN 1475-6366 Institutional research plan: CEZ:AV0Z40550506 Keywords : acetylcholinesterase inhibitors * antioxidants * hybrid ligands * anti-neurodegeneratives * Alzheimer´s disease Subject RIV: CC - Organic Chemistry

  3. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor

    Czech Academy of Sciences Publication Activity Database

    Šepsová, V.; Krůšek, Jan; Zdarová Karasová, J.; Zemek, F.; Musílek, K.; Kuča, K.; Soukup, O.

    2014-01-01

    Roč. 63, č. 6 (2014), s. 771-777 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : acetylcholinesterase inhibitor * nicotin receptor Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  4. Fenugreek hydrogel–agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection

    Energy Technology Data Exchange (ETDEWEB)

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang, E-mail: bhchiang@ntu.edu.tw

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel–agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10–20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel–agarose–acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. - Highlights: • Acetylcholinesterase (AChE) dip-strip biosensor fabricated to detect carbamates. • AChE entrapped in fenugreek hydrogel–agarose matrix with gold nanoparticles (GNPs). • High enzyme retention efficiency (92%) and shelf life (half-life, 55 days). • Detection limits of carbofuran, oxamyl and methomyl: 2, 21 and 113 nM. • The biosensor had good testing capabilities to detect carbamates in food samples.

  5. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc

    Czech Academy of Sciences Publication Activity Database

    Zelík, Petr; Lukešová, Alena; Voloshko, L. N.; Štys, D.; Kopecký, Jiří

    2009-01-01

    Roč. 24, č. 2 (2009), s. 531-536 ISSN 1475-6366 R&D Projects: GA MŠk ME 874 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60660521 Keywords : acetylcholinesterase * bioactivity * inhibitors Subject RIV: EE - Microbiology, Virology Impact factor: 1.496, year: 2009

  6. Lipopeptide-Induced Suicidal Erythrocyte Death Correlates with the Degree of Acylation

    Directory of Open Access Journals (Sweden)

    Abdulla Al Mamun Bhuyan

    2017-01-01

    Full Text Available Background/Aims: Consequences of bacterial infection include anemia, which could result from stimulation of suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Bacterial components known to stimulate eryptosis include lipopeptides. Signaling mediating the triggering of eryptosis include increased cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and cellular accumulation of ceramide. The present study aimed to define the molecular requirements for lipopeptide-induced cell membrane scrambling. Methods: Human erythrocytes were incubated for 48 hours in the absence and presence of 1 or 5 µg/ml of the synthetic lipopeptides Pam1 (lipopeptide with one fatty acid, Pam2 (lipopeptide with two fatty acids, or Pam3 (lipopeptide with three fatty acids. In the following phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCF dependent fuorescence, and ceramide abundance utilizing specific antibodies. Results: Pam1 (5 µg/ml, Pam2 (5 µg/ml and Pam3 (1 and 5 µg/ml significantly increased the percentage of annexin-V-binding to erythrocytes in a dose dependent manner, which was largely independent of Ca2+. Pam1-3 increased the percentage of both, swollen and shrunken erythrocytes without significantly modifying the average forward scatter. They also increased reactive oxygen species (ROS and ceramide abundance. In all assays the effect on eryptosis increased with increasing number of fatty acids, with Pam3 showing always the strongest effect. In contrast, a comparison of the effect of Pam1-3 on TLR2 dependent immune stimulation showed that not Pam3 but Pam2 displayed the strongest activity, and that immune stimulation was triggered at much lower concentrations than eryptosis. Conclusions: Lipopeptides are not only important

  7. Monocyte-mediated erythrocyte destruction. A comparative study of current methods

    International Nuclear Information System (INIS)

    Hunt, J.S.; Beck, M.L.; Wood, G.W.

    1981-01-01

    Three assay systems-EAIgG rosette formation, 51Cr release, and erythrophagocytosis-were used to quantitate interaction between antibody-coated human erythrocytes and normal blood monocytes. The three methods were compared in terms of time requirements and sensitivity. Erythrophagocytosis required more time to perform (2 hours) than did rosette tests (30 minutes) but less than minimum 51Cr release assays (5.5 hours). Erythrophagocytosis was 20-fold more sensitive than either of the other two procedures. Results obtained with purified IgG anti-D and with antibodies induced by transfusion or pregnancy were similar

  8. Detection of Occult Erythrocytic Membrane Damages upon Pharmacological Exposures

    Directory of Open Access Journals (Sweden)

    P. Yu. Alekseyeva

    2007-01-01

    Full Text Available Blood administration of pharmaceuticals may cause occult effects of these agents on erythrocytic membranes. These effects may damage and cause additional membrane defects, but may strengthen. The type and degree of the effects of an agent were detected by calibrated irreversible electroporation with a pulsed electric field (PEF. The paper considers the erythrocytic membranous effects of a wide concentration range of agents used in anesthesiology, such as esmerone, tracrium, and mar-caine-adrenaline. Under the action of PEF and esmerone at the normal concentration N, the rate of erythrocytic hemolysis increased by several times as compared with the control. The similar effect also occurred when esmerone was added at the concentration C=10N. Tracrium exerted a fixing effect on erythrocytic membranes. Upon a combined exposure to PEF and tracrium in the normal concentration C=N; erythrocytic hemolysis was slow. So was with the concentration C=10N. The rate of hemolysis of the red blood cells subjected to a combined action of marcaine adrenaline at the normal concentration C=N and even at the concentration C=10N and PEF was comparable with the hemolytic rate of the reference suspension. 

  9. Erythrocyte and platelet fatty acids in retinitis pigmentosa.

    Science.gov (United States)

    Stanzial, A M; Bonomi, L; Cobbe, C; Olivieri, O; Girelli, D; Trevisan, M T; Bassi, A; Ferrari, S; Corrocher, R

    1991-05-01

    The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-toco-pherol were increased in patients with RP. The activities of Na(+)-K+ pump, cotransport and Na(+)-Li+ countertransport were normal in RP erythrocytes.

  10. Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes.

    Science.gov (United States)

    Durant, Thomas J S; Olson, Eben M; Schulz, Wade L; Torres, Richard

    2017-12-01

    Morphologic profiling of the erythrocyte population is a widely used and clinically valuable diagnostic modality, but one that relies on a slow manual process associated with significant labor cost and limited reproducibility. Automated profiling of erythrocytes from digital images by capable machine learning approaches would augment the throughput and value of morphologic analysis. To this end, we sought to evaluate the performance of leading implementation strategies for convolutional neural networks (CNNs) when applied to classification of erythrocytes based on morphology. Erythrocytes were manually classified into 1 of 10 classes using a custom-developed Web application. Using recent literature to guide architectural considerations for neural network design, we implemented a "very deep" CNN, consisting of >150 layers, with dense shortcut connections. The final database comprised 3737 labeled cells. Ensemble model predictions on unseen data demonstrated a harmonic mean of recall and precision metrics of 92.70% and 89.39%, respectively. Of the 748 cells in the test set, 23 misclassification errors were made, with a correct classification frequency of 90.60%, represented as a harmonic mean across the 10 morphologic classes. These findings indicate that erythrocyte morphology profiles could be measured with a high degree of accuracy with "very deep" CNNs. Further, these data support future efforts to expand classes and optimize practical performance in a clinical environment as a prelude to full implementation as a clinical tool. © 2017 American Association for Clinical Chemistry.

  11. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Pavlov, Valentin A.; Parrish, William R.; Rosas-Ballina, Mauricio; Ochani, Mahendar; Puerta, Margot; Ochani, Kanta; Chavan, Sangeeta; Al-Abed, Yousef; Tracey, Kevin J.

    2015-01-01

    The excessive release of cytokines by the immune system contributes importantly to the pathogenesis of inflammatory diseases. Recent advances in understanding the biology of cytokine toxicity led to the discovery of the “cholinergic anti-inflammatory pathway,” defined as neural signals transmitted via the vagus nerve that inhibit cytokine release through a mechanism that requires the alpha7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). Vagus nerve regulation of peripheral functions is controlled by brain nuclei and neural networks, but despite considerable importance, little is known about the molecular basis for central regulation of the vagus nerve-based cholinergic anti-inflammatory pathway. Here we report that brain acetylcholinesterase activity controls systemic and organ specific TNF production during endotoxemia. Peripheral administration of the acetylcholinesterase inhibitor galantamine significantly reduced serum TNF levels through vagus nerve signaling, and protected against lethality during murine endotoxemia. Administration of a centrally-acting muscarinic receptor antagonist abolished the suppression of TNF by galantamine, indicating that suppressing acetylcholinesterase activity, coupled with central muscarinic receptors, controls peripheral cytokine responses. Administration of galantamine to α7nAChR knockout mice failed to suppress TNF levels, indicating that the α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of galantamine. These findings show that inhibition of brain acetylcholinesterase suppresses systemic inflammation through a central muscarinic receptor-mediated and vagal- and α7nAChR-dependent mechanism. Our data also indicate that a clinically used centrally-acting acetylcholinesterase inhibitor can be utilized to suppress abnormal inflammation to therapeutic advantage. PMID:18639629

  12. Optical Assay of Erythrocyte Function in Banked Blood

    Science.gov (United States)

    Bhaduri, Basanta; Kandel, Mikhail; Brugnara, Carlo; Tangella, Krishna; Popescu, Gabriel

    2014-09-01

    Stored red blood cells undergo numerous biochemical, structural, and functional changes, commonly referred to as storage lesion. How much these changes impede the ability of erythrocytes to perform their function and, as result, impact clinical outcomes in transfusion patients is unknown. In this study we investigate the effect of the storage on the erythrocyte membrane deformability and morphology. Using optical interferometry we imaged red blood cell (RBC) topography with nanometer sensitivity. Our time-lapse imaging quantifies membrane fluctuations at the nanometer scale, which in turn report on cell stiffness. This property directly impacts the cell's ability to transport oxygen in microvasculature. Interestingly, we found that cells which apparently maintain their normal shape (discocyte) throughout the storage period, stiffen progressively with storage time. By contrast, static parameters, such as mean cell hemoglobin content and morphology do not change during the same period. We propose that our method can be used as an effective assay for monitoring erythrocyte functionality during storage time.

  13. Genotoxic Biomarkers in Erythrocytes of Lepidochelys olivacea (Cheloniidae from Colombia

    Directory of Open Access Journals (Sweden)

    Victor Hugo Quiroz Herrera

    2017-09-01

    Full Text Available This research was conducted in the municipality of Bahia Solano, Colombia, and had as a goal to detect damage erythrocytes circulating with nuclear lesions in fifty-five Olive Ridley adult females using acridine orange immunostain, and correlate its frequencies with some physiological and biometric parameters. We determine a micronucleated erythrocytes (MNE frequency of 0.6 ± 0.6 and nuclear buds (NBE of 2.1 ± 1.9. We not found any relationship between the nuclear lesions with physiological or biometric parameters evaluated (Pearson and Kruskal-Wallis, p<0.05. We define a significative statistical difference (p=0.035 between both nuclear lesions frequencies. This results show nuclear damages in erythrocytes of Olive Ridley sea turtle for the first time in Colombia as an outcome of genotoxic stress. Also contributes key information for future research in the ecotoxicology area for endangered marine species.

  14. A novel approach for assessments of erythrocyte sedimentation rate.

    Science.gov (United States)

    Pribush, A; Hatskelzon, L; Meyerstein, N

    2011-06-01

    Previous studies have shown that the dispersed phase of sedimenting blood undergoes dramatic structural changes: Discrete red blood cell (RBC) aggregates formed shortly after a settling tube is filled with blood are combined into a continuous network followed by its collapse via the formation of plasma channels, and finally, the collapsed network is dispersed into individual fragments. Based on this scheme of structural transformation, a novel approach for assessments of erythrocyte sedimentation is suggested. Information about erythrocyte sedimentation is extracted from time records of the blood conductivity measured after a dispersion of RBC network into individual fragments. It was found that the sedimentation velocity of RBC network fragments correlates positively with the intensity of attractive intercellular interactions, whereas no effect of hematocrit (Hct) was observed. Thus, unlike Westergren erythrocyte sedimentation rate, sedimentation data obtained by the proposed method do not require correction for Hct. © 2010 Blackwell Publishing Ltd.

  15. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A microscopic study of the action of uranyl acetate on the erythrocyte at varying molarity and toxicity

    International Nuclear Information System (INIS)

    Wyatt, J.H.

    1977-03-01

    Phase contrast and dark field microphotographs were made to record variation of the shape and size changes seen when human erythrocytes are exposed in a number of ways to uranyl acetate in vitro. The degree of hemolysis produced by varying the toxicity of the uranyl acetate solutions was measured, and the results are discussed with particular reference to the possible influence of pH. (author)

  17. Detergent-resistant membranes in human erythrocytes and their ...

    Indian Academy of Sciences (India)

    Unknown

    SLP, stomatin-like-protein-2; TX-100, Triton X-100. ... via electrostatic interactions that can be disrupted by the simultaneous increase in pH and ionic strength of the solubilization .... dentified components of the DRMs and the membrane ..... Analysis of proteins and cholesterol in 6 ... Band 3, the main integral protein of the.

  18. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... ... role in the protection of cell membranes aganist oxidative damage .... Differences were calculated using one way analysis of variance (ANOVA) .... via the formation of reactive oxygen species and the perturbation of ...

  19. Haemolytic activity of orthovanillin and isovanillin on human erythrocytes

    OpenAIRE

    Alonso Geli, Yamirka; del Toro García, Grisel; Falcón Dieguez, José E; Valdés Rodríguez, Yolanda C

    2005-01-01

    Los eritrocitos portadores de hemoglobina S ( b 6 glu ® val ), son menos flexibles que los eritrocitos normales, lo que los hace más frágiles y se hemolizan con mayor facilidad. La ortovainillina y la isovainillina, isómeros químicos de la vainillina, pueden inhibir la polimerización de la desoxihemoglobina S (actividad antipolimerizante) y evitar la falciformación de los eritrocitos. Se determinó la actividad citotóxica de estos compuestos sobre eritrocitos normales y SS, a razones molares 1...

  20. Activation of human erythrocyte glutathione – s – transferase (EC ...

    African Journals Online (AJOL)

    Caffeine (1,3,7 – trimethylxanthine) was extracted from Nescafe ® (product number CC5AA) a brand of “instant coffees” produced by Nestle foods, Lagos, Nigeria, using Harris method adapted from FDALS (1982) and confirmed by Wagenar test (Arnand, 1984). Various concentrations (5.0mM, 10.0mM, 15.0mM, 20.0mM, ...