WorldWideScience

Sample records for human epithelial cancer

  1. Prevalence of human papillomavirus in epithelial ovarian cancer tissue. A meta-analysis of observational studies

    DEFF Research Database (Denmark)

    Svahn, Malene F; Faber, Mette Tuxen; Christensen, Jane

    2014-01-01

    The role of human papillomavirus (HPV) in the pathogenesis of ovarian cancer is controversial, and conflicting results have been published. We conducted a systematic review and meta-analysis to estimate the prevalence of HPV in epithelial ovarian cancer tissue....

  2. Comparative proteome analysis of human epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Gagné Jean-Philippe

    2007-09-01

    Full Text Available Abstract Background Epithelial ovarian cancer is a devastating disease associated with low survival prognosis mainly because of the lack of early detection markers and the asymptomatic nature of the cancer until late stage. Using two complementary proteomics approaches, a differential protein expression profile was carried out between low and highly transformed epithelial ovarian cancer cell lines which realistically mimic the phenotypic changes observed during evolution of a tumour metastasis. This investigation was aimed at a better understanding of the molecular mechanisms underlying differentiation, proliferation and neoplastic progression of ovarian cancer. Results The quantitative profiling of epithelial ovarian cancer model cell lines TOV-81D and TOV-112D generated using iTRAQ analysis and two-dimensional electrophoresis coupled to liquid chromatography tandem mass spectrometry revealed some proteins with altered expression levels. Several of these proteins have been the object of interest in cancer research but others were unrecognized as differentially expressed in a context of ovarian cancer. Among these, series of proteins involved in transcriptional activity, cellular metabolism, cell adhesion or motility and cytoskeleton organization were identified, suggesting their possible role in the emergence of oncogenic pathways leading to aggressive cellular behavior. Conclusion The differential protein expression profile generated by the two proteomics approaches combined to complementary characterizations studies will open the way to more exhaustive and systematic representation of the disease and will provide valuable information that may be helpful to uncover the molecular mechanisms related to epithelial ovarian cancer.

  3. A taxonomy of epithelial human cancer and their metastases

    Directory of Open Access Journals (Sweden)

    De Moor Bart

    2009-12-01

    Full Text Available Abstract Background Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination. Methods We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures. Results Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics

  4. Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry.

    Science.gov (United States)

    Cogle, Christopher R; Theise, Neil D; Fu, Dongtao; Ucar, Deniz; Lee, Sean; Guthrie, Steven M; Lonergan, Jean; Rybka, Witold; Krause, Diane S; Scott, Edward W

    2007-08-01

    Bone marrow cells have the capacity to contribute to distant organs. We show that marrow also contributes to epithelial neoplasias of the small bowel, colon, and lung, but not the skin. In particular, epithelial neoplasias found in patients after hematopoietic cell transplantations demonstrate that human marrow incorporates into neoplasias by adopting the phenotype of the surrounding neoplastic environment. To more rigorously evaluate marrow contribution to epithelial cancer, we employed mouse models of intestinal and lung neoplasias, which revealed specifically that the hematopoietic stem cell and its progeny incorporate within cancer. Furthermore, this marrow involvement in epithelial cancer does not appear to occur by induction of stable fusion. Whereas previous claims have been made that marrow can serve as a direct source of epithelial neoplasia, our results indicate a more cautionary note, that marrow contributes to cancer as a means of developmental mimicry. Disclosure of Potential Conflicts of Interest is found at the end of this article.

  5. Radiosensitizing effect of epothilone B on human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, T.; Kriesen, S.; Hildebrandt, G.; Manda, K. [Univ. of Rostock (Germany). Dept. of Radiotherapy and Radiation Oncology; Klautke, G.; Fietkau, R. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen (Germany). Dept. of Radiation Oncology; Kuznetsov, S.A.; Weiss, D.G. [Univ. of Rostock (Germany). Inst. of Biological Sciences, Cell Biology, and Biosystems Technology

    2012-02-15

    A combined modality treatment employing radiation and chemotherapy plays a central role in the management of solid tumors. In our study, we examined the cytotoxic and radiosensitive effect of the microtubule stabilizer epothilone B on two human epithelial tumor cell lines in vitro and its influence on the microtubule assembly. Cancer cells were treated with epothilone B in proliferation assays and in combination with radiation in colony-forming assays. For the analysis of ionizing radiation-induced DNA damage and the influence of the drug on its repair a {gamma}H2AX foci assay was used. To determine the effect of epothilone B on the microtubule assembly in cells and on purified tubulin, immunofluorescence staining and tubulin polymerization assay, respectively, were conducted. Epothilone B induced a concentration- and application-dependent antiproliferative effect on the cells, with IC{sub 50} values in the low nanomolar range. Colony forming assays showed a synergistic radiosensitive effect on both cell lines which was dependent on incubation time and applied concentration of epothilone B. The {gamma}H2AX assays demonstrated that ionizing radiation combined with the drug resulted in a concentration-dependent increase in the number of double-strand breaks and suggested a reduction in DNA repair capacity. Epothilone B produced enhanced microtubule bundling and abnormal spindle formation as revealed by immunofluorescence microscopy and caused microtubule formation from purified tubulin. The results of this study showed that epothilone B displays cytotoxic antitumor activity at low nanomolar concentrations and also enhances the radiation response in the tumor cells tested; this may be induced by a reduced DNA repair capacity triggered by epothilone B. It was also demonstrated that epothilone B in fact targets microtubules in a more effective manner than paclitaxel. (orig.)

  6. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    International Nuclear Information System (INIS)

    Dokukin, M E; Sokolov, I; Guz, N V; Woodworth, C D

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. (paper)

  7. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    International Nuclear Information System (INIS)

    Li, Fang-qiu; Han, Yan-ling; Liu, Qun; Wu, Bo; Huang, Wen-bin; Zeng, Su-yun

    2009-01-01

    Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17) in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance. Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910. We found that HSp17 was aberrantly expressed in 43% (30/70) of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin. HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy

  8. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

    Science.gov (United States)

    Lee, John K.; Phillips, John W.; Smith, Bryan A.; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F.; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G.; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Shokat, Kevan M.; Gustafson, W. Clay; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    SUMMARY MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  9. Syndecan-1 suppresses epithelial-mesenchymal transition and migration in human oral cancer cells.

    Science.gov (United States)

    Wang, Xiaofeng; He, Jinting; Zhao, Xiaoming; Qi, Tianyang; Zhang, Tianfu; Kong, Chenfei

    2018-04-01

    Epithelial-mesenchymal transition (EMT) is one of the major processes that contribute to the occurrence of cancer metastasis. EMT has been associated with the development of oral cancer. Syndecan‑1 (SDC1) is a key cell‑surface adhesion molecule and its expression level inversely correlates with tumor differentiation and prognosis. In the present study, we aimed to determine the role of SDC1 in oral cancer progression and investigate the molecular mechanisms through which SDC1 regulates the EMT and invasiveness of oral cancer cells. We demonstrated that basal SDC1 expression levels were lower in four oral cancer cell lines (KB, Tca8113, ACC2 and CAL‑27), than in normal human periodontal ligament fibroblasts. Ectopic overexpression of SDC1 resulted in morphological transformation, decreased expression of EMT‑associated markers, as well as decreased migration, invasiveness and proliferation of oral cancer cells. In contrast, downregulation of the expression of SDC1 caused the opposite results. Furthermore, the knockdown of endogenous SDC1 activated the extracellular signal‑regulated kinase (ERK) cascade, upregulated the expression of Snail and inhibited the expression of E‑cadherin. In conclusion, our findings revealed that SDC1 suppressed EMT via the modulation of the ERK signaling pathway that, in turn, negatively affected the invasiveness of human oral cancer cells. Our results provided useful evidence about the potential use of SDC1 as a molecular target for therapeutic interventions in human oral cancer.

  10. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  11. Overexpression of Notch3 and pS6 Is Associated with Poor Prognosis in Human Ovarian Epithelial Cancer

    Directory of Open Access Journals (Sweden)

    Zhaoxia Liu

    2016-01-01

    Full Text Available Notch3 and pS6 play important roles in tumor angiogenesis. To assess the expression of Notch3 and pS6 in Chinese ovarian epithelial cancer patients, a ten-year follow-up study was performed in ovarian epithelial cancer tissues from 120 specimens of human ovarian epithelial cancer, 30 specimens from benign ovarian tumors, and 30 samples from healthy ovaries by immunohistochemistry. The results indicate that the expression of Notch3 and pS6 was higher in ovarian epithelial cancer than in normal ovary tissues and in benign ovarian tumor tissues (p0.05 but positively associated with clinical stage, pathological grading, histologic type, lymph node metastasis, and ascites (p<0.05 or p<0.01. A follow-up survey of 64 patients with ovarian epithelial cancer showed that patients with high Notch3 and pS6 expression had a shorter survival time (p<0.01, in which the clinical stage (p<0.05 and Notch3 expression (p<0.01 played important roles. In conclusion, Notch3 and pS6 are significantly related to ovarian epithelial cancer development and prognosis, and their combination represents a potential biomarker and therapeutic target in ovarian tumor angiogenesis.

  12. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  13. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  14. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    International Nuclear Information System (INIS)

    Anastassiou, Dimitris; Rumjantseva, Viktoria; Cheng, Weiyi; Huang, Jianzhong; Canoll, Peter D; Yamashiro, Darrell J; Kandel, Jessica J

    2011-01-01

    The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT). We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics

  15. In vivo detection of oral epithelial cancer using endogenous fluorescence lifetime imaging: a pilot human study (Conference Presentation)

    Science.gov (United States)

    Jo, Javier A.; Hwang, Dae Yon; Palma, Jorge; Cheng, Shuna; Cuenca, Rodrigo; Malik, Bilal; Jabbour, Joey; Cheng, Lisa; Wright, John; Maitland, Kristen

    2016-03-01

    Endogenous fluorescence lifetime imaging (FLIM) provides direct access to the concomitant functional and biochemical changes accompanying tissue transition from benign to precancerous and cancerous. Since FLIM can noninvasively measure different and complementary biomarkers of precancer and cancer, we hypothesize that it will aid in clinically detecting early oral epithelial cancer. Our group has recently demonstrated the detection of benign from premalignant and malignant lesions based on endogenous multispectral FLIM in the hamster cheek-pouch model. Encouraged by these positive preliminary results, we have developed a handheld endoscope capable of acquiring multispectral FLIM images in real time from the oral mucosa. This novel FLIM endoscope is being used for imaging clinically suspicious pre-malignant and malignant lesions from patients before undergoing tissue biopsy for histopathological diagnosis of oral epithelial cancer. Our preliminary results thus far are already suggesting the potential of endogenous FLIM for distinguishing a variety of benign lesions from advanced dysplasia and squamous cell carcinoma (SCC). To the best of out knowledge, this is the first in vivo human study aiming to demonstrate the ability to predict the true malignancy of clinically suspicious lesions using endogenous FLIM. If successful, the resulting clinical tool will allow noninvasive real-time detection of epithelial precancerous and cancerous lesions in the oral mucosa and could potentially be used to assist at every step involved on the clinical management of oral cancer patients, from early screening and diagnosis, to treatment and monitoring of recurrence.

  16. Tumorigenicity and Validity of Fluorescence Labelled Mesenchymal and Epithelial Human Oral Cancer Cell Lines in Nude Mice

    Directory of Open Access Journals (Sweden)

    Wei Xin Cai

    2016-01-01

    Full Text Available Tumorigenicity and metastatic activity can be visually monitored in cancer cells that were labelled with stable fluorescence. The aim was to establish and validate local and distant spread of subcutaneously previously injected fluorescence transduced human tongue cancer cell lines of epithelial and mesenchymal phenotype in nude mice. A total of 32 four-week-old male athymic Balb/c nude mice were randomly allocated into 4 groups (n=8. A single dose of 0.3 mL PBS containing 1 × 107 of four different cancer cell-lines (UM1, UM1-GFP, UM2, and UM2-RFP was injected subcutaneously into the right side of their posterolateral back. Validity assessment of the labelled cancer cells’ tumorigenicity was assessed by physical examination, imaging, and histology four weeks after the injection. The tumor take rate of cancer cells was similar in animals injected with either parental or transduced cancer cells. Transduced cancer cells in mice were easily detectable in vivo and after cryosection using fluorescent imaging. UM1 cells showed increased tumor take rate and mean tumor volume, presenting with disorganized histopathological patterns. Fluorescence labelled epithelial and mesenchymal human tongue cancer cell lines do not change in tumorigenicity or cell phenotype after injection in vivo.

  17. [CCL21 promotes the metastasis of human pancreatic cancer Panc-1 cells via epithelial- mesenchymal transition].

    Science.gov (United States)

    Liu, Qing; Chen, Fangfang; Duan, Tanghai; Zhu, Haitao; Xie, Xiaodong; Wu, Yingying; Zhang, Zhijian; Wang, Dongqing

    2015-01-01

    To investigate the mechanism underlying that chemokine (C-C motif) ligand 21 (CCL21) promotes the metastasis ability of human pancreatic cancer Panc-1 cells. Transwell(TM) was used to access the chemotaxis effect of CCL21 on Panc-1 cells. Real-time quantitative PCR was performed to detect the expression of C-C chemokine receptor type 7 (CCR7) mRNA in the upper and lower chambers. Immunofluorescence staining and Western blotting were employed to examine the expressions of the epithelial-mesenchymal transition (EMT)-related proteins and CD133 of Panc-1 cells in the lower chamber, which were compared with those of the upper chamber as the control. The numbers of the Panc-1 cells induced by 0, 50, 100, 200 ng/mL CCL21 were 13.00 ± 3.00, 78.00 ± 9.00, 161.00 ± 11.00, 281.00 ± 17.00, respectively; with the increase of the concentration of CCL21, there were more cells migrating from the upper to the lower chamber; and the cells in the lower chamber expressed higher level of CCR7 mRNA than the ones staying in the upper chamber. The relative protein expressions of MMP-9, vimentin, E-cadherin and CD133 in the lower chamber were 0.42 ± 0.04, 0.36 ± 0.03, 0.12 ± 0.02, 0.46 ± 0.03, respectively, which were statistically significantly different from those in the upper chamber (0.15 ± 0.02, 0.25 ± 0.02, 0.25 ± 0.03, 0.13 ± 0.02, respectively). CCL21/CCR7 axis maybe play an important role in the metastasis of pancreatic cancer stem cells by EMT and up-regulation of MMP-9.

  18. Gigantol Inhibits Epithelial to Mesenchymal Process in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Thitita Unahabhokha

    2016-01-01

    Full Text Available Lung cancer remains a leading public health problem as evidenced by its increasing death rate. The main cause of death in lung cancer patients is cancer metastasis. The metastatic behavior of lung cancer cells becomes enhanced when cancer cells undergo epithelial to mesenchymal transition (EMT. Gigantol, a bibenzyl compound extracted from the Thai orchid, Dendrobium draconis, has been shown to have promising therapeutic potential against cancer cells, which leads to the hypothesis that gigantol may be able to inhibit the fundamental EMT process in cancer cells. This study has demonstrated for the first time that gigantol possesses the ability to suppress EMT in non-small cell lung cancer H460 cells. Western blot analysis has revealed that gigantol attenuates the activity of ATP-dependent tyrosine kinase (AKT, thereby inhibiting the expression of the major EMT transcription factor, Slug, by both decreasing its transcription and increasing its degradation. The inhibitory effects of gigantol on EMT result in a decrease in the level of migration in H460 lung cancer cells. The results of this study emphasize the potential of gigantol for further development against lung cancer metastasis.

  19. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    International Nuclear Information System (INIS)

    Guo, Xinyi; Bonin, Keith; Guthold, Martin; Scarpinato, Karin

    2014-01-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell–cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell–cell interactions). (paper)

  20. The effect of neighboring cells on the stiffness of cancerous and non-cancerous human mammary epithelial cells

    Science.gov (United States)

    Guo, Xinyi; Bonin, Keith; Scarpinato, Karin; Guthold, Martin

    2014-10-01

    Using an Atomic Force Microscope (AFM) with a 5.3 μm diameter spherical probe, we determined mechanical properties of individual human mammary epithelial cells. The cells were derived from a pair of cell lines that mimic cell progression through four phases of neoplastic transformation: normal (non-transformed), immortal, tumorigenic, and metastatic. Measurements on cells in all four phases were taken over both the cytoplasmic and nuclear regions. Moreover, the measurements were made for cells in different microenvironments as related to cell-cell contacts: isolated cells; cells residing on the periphery of a contiguous cell monolayer; and cells on the inside of a contiguous cell monolayer. By fitting the AFM force versus indentation curves to a Hertz model, we determined the pseudo-elastic Young’s modulus, E. Combining all data for the cellular subregions (over nucleus and cytoplasm) and the different cell microenvironments, we obtained stiffness values for normal, immortal, tumorigenic, and metastatic cells of 870 Pa, 870 Pa, 490 Pa, and 580 Pa, respectively. That is, cells become softer as they advance to the tumorigenic phase and then stiffen somewhat in the final step to metastatic cells. We also found a distinct contrast in the influence of a cell’s microenvironment on cell stiffness. Normal mammary epithelial cells inside a monolayer are stiffer than peripheral cells, which are stiffer than isolated cells. However, the microenvironment had a slight, opposite effect on tumorigenic and little effect on immortal and metastatic cell stiffness. Thus, the stiffness of cancer cells is less sensitive to the microenvironment than normal cells. Our results show that the mechanical properties of a cell can depend on cancer progression and microenvironment (cell-cell interactions).

  1. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  2. Prognostic Significance of Mucin Antigen MUC1 in Various Human Epithelial Cancers: A Meta-Analysis.

    Science.gov (United States)

    Xu, Feng; Liu, Fuquan; Zhao, Hongwei; An, Guangyu; Feng, Guosheng

    2015-12-01

    Accumulating evidence indicates that mucin antigen MUC1 plays a fundamental role in the initiation and progression of several types of epithelial carcinomas. However, whether the expression of MUC1 on tumor cells is associated with patients' survival remains controversial. Medline/PubMed, EMBASE, the Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) databases, and Grey literature were searched up to 15 August 2015 for eligible studies of the association between the MUC1 expression and overall survival (OS) in various epithelial cancers. The hazard ratio (HR) and its 95% confidence interval (CI) were calculated from the included studies. Moreover, the odds ratio (OR) was also extracted to evaluate the association between the clinicopathological parameters of participants and MUC1 expression. A total of 3425 patients covering 23 studies were included in the analysis. The pooled results showed that positive MUC1 staining was a negative predictor of OS (HRFEM = 1.98,95% CIFEM: 1.76-2.22, PFEM = 0.479; HRREM = 2.16,95% CIREM: 1.58-2.94, PREM = 0.355) in various epithelial carcinomas. Subgroup analysis revealed that the increased MUC1 expression was significantly associated with poor OS in patients with gastric cancer (HRFEM = 2.12, 95%CIFEM: 1.75-2.57, PFEM = 0.359; HRREM = 1.89, 95% CIREM: 1.05-3.41, PREM = 0.238), colorectal cancer (HRFEM = 1.73, 95%CIFEM: 1.41-2.13, PFEM = 0.048; HRREM = 2.00,95% CIREM: 1.46-2.73, PREM = 0.019), cholangiocarcinoma (HRFEM = 2.52, 95% CIFEM: 1.42-4.49, PFEM = 0.252; HRREM = 2.34, 95% CIREM: 1.30-4.22, PREM = 0.244), and nonsmall cell lung cancer (NSCLC) (HRFEM = 2.14, 95% CIFEM: 1.46-3.14, PFEM = 0.591; HRREM = 2.81, 95% CIREM: 1.40-5.64, PREM = 0.280). In addition, MUC1 overexpression was more likely to be found in colorectal cancer patients with an advanced tumor node metastasis stage (ORREM = 1.55, 95% CIREM: 1.06-2.27; PREM = 0

  3. Prognostic Significance of Mucin Antigen MUC1 in Various Human Epithelial Cancers

    Science.gov (United States)

    Xu, Feng; Liu, Fuquan; Zhao, Hongwei; An, Guangyu; Feng, Guosheng

    2015-01-01

    Abstract Accumulating evidence indicates that mucin antigen MUC1 plays a fundamental role in the initiation and progression of several types of epithelial carcinomas. However, whether the expression of MUC1 on tumor cells is associated with patients’ survival remains controversial. Medline/PubMed, EMBASE, the Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) databases, and Grey literature were searched up to 15 August 2015 for eligible studies of the association between the MUC1 expression and overall survival (OS) in various epithelial cancers. The hazard ratio (HR) and its 95% confidence interval (CI) were calculated from the included studies. Moreover, the odds ratio (OR) was also extracted to evaluate the association between the clinicopathological parameters of participants and MUC1 expression. A total of 3425 patients covering 23 studies were included in the analysis. The pooled results showed that positive MUC1 staining was a negative predictor of OS (HRFEM = 1.98,95% CIFEM: 1.76–2.22, PFEM = 0.479; HRREM = 2.16,95% CIREM: 1.58–2.94, PREM = 0.355) in various epithelial carcinomas. Subgroup analysis revealed that the increased MUC1 expression was significantly associated with poor OS in patients with gastric cancer (HRFEM = 2.12, 95%CIFEM: 1.75–2.57, PFEM = 0.359; HRREM = 1.89, 95% CIREM: 1.05–3.41, PREM = 0.238), colorectal cancer (HRFEM = 1.73, 95%CIFEM: 1.41–2.13, PFEM = 0.048; HRREM = 2.00,95% CIREM: 1.46–2.73, PREM = 0.019), cholangiocarcinoma (HRFEM = 2.52, 95% CIFEM: 1.42–4.49, PFEM = 0.252; HRREM = 2.34, 95% CIREM: 1.30–4.22, PREM = 0.244), and nonsmall cell lung cancer (NSCLC) (HRFEM = 2.14, 95% CIFEM: 1.46–3.14, PFEM = 0.591; HRREM = 2.81, 95% CIREM: 1.40–5.64, PREM = 0.280). In addition, MUC1 overexpression was more likely to be found in colorectal cancer patients with an advanced tumor node metastasis stage (ORREM = 1.55, 95

  4. Progastrin represses the alternative activation of human macrophages and modulates their influence on colon cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carlos Hernández

    Full Text Available Macrophage infiltration is a negative prognostic factor for most cancers but gastrointestinal tumors seem to be an exception. The effect of macrophages on cancer progression depends on their phenotype, which may vary between M1 (pro-inflammatory, defensive to M2 (tolerogenic, pro-tumoral. Gastrointestinal cancers often become an ectopic source of gastrins and macrophages present receptors for these peptides. The aim of the present study is to analyze whether gastrins can affect the pattern of macrophage infiltration in colorectal tumors. We have evaluated the relationship between gastrin expression and the pattern of macrophage infiltration in samples from colorectal cancer and the influence of these peptides on the phenotype of macrophages differentiated from human peripheral monocytes in vitro. The total number of macrophages (CD68+ cells was similar in tumoral and normal surrounding tissue, but the number of M2 macrophages (CD206+ cells was significantly higher in the tumor. However, the number of these tumor-associated M2 macrophages correlated negatively with the immunoreactivity for gastrin peptides in tumor epithelial cells. Macrophages differentiated from human peripheral monocytes in the presence of progastrin showed lower levels of M2-markers (CD206, IL10 with normal amounts of M1-markers (CD86, IL12. Progastrin induced similar effects in mature macrophages treated with IL4 to obtain a M2-phenotype or with LPS plus IFNγ to generate M1-macrophages. Macrophages differentiated in the presence of progastrin presented a reduced expression of Wnt ligands and decreased the number and increased cell death of co-cultured colorectal cancer epithelial cells. Our results suggest that progastrin inhibits the acquisition of a M2-phenotype in human macrophages. This effect exerted on tumor associated macrophages may modulate cancer progression and should be taken into account when analyzing the therapeutic value of gastrin immunoneutralization.

  5. Protein Profiling of Isolated Leukocytes, Myofibroblasts, Epithelial, Basal, and Endothelial Cells from Normal, Hyperplastic, Cancerous, and Inflammatory Human Prostate Tissues

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis, Kenneth A. Iczkowski, Ziad J. Sahab, Qing-Xiang Amy Sang

    2010-01-01

    Full Text Available In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prsotate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.

  6. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  7. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  8. Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial-mesenchymal transition in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Yeonju Lee

    Full Text Available We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1, a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffness of pancreatic cancer Capan-1 and Panc 03.27 cells, which was analyzed by atomic force microscopy (AFM and correlated to microfluidic platform. The hENT1 knockdown induced reduction of cellular stiffness in both of cells up to 70%. In addition, cellular phenotypic changes such as cell morphology, migration, and expression level of epithelial-mesenchymal transition (EMT markers were observed after hENT1 knockdown. Cells with suppressed hENT1 became elongated, migrated faster, and had reduced E-cadherin and elevated N-cadherin compared to parental cells which are consistent with epithelial-mesenchymal transition (EMT. Those cellular phenotypic changes closely correlated with changes in cellular stiffness. This study suggests that hENT1 expression level affects cellular phenotype and cell elastic behavior can be a physical biomarker for quantify hENT1 expression and detect phenotypic shift. Furthermore, cell mechanics can be a critical tool in detecting disease progression and response to therapy.

  9. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells.

    Science.gov (United States)

    Kojima, Takashi; Takasawa, Akira; Kyuno, Daisuke; Ito, Tatsuya; Yamaguchi, Hiroshi; Hirata, Koichi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2011-10-01

    The novel tight junction protein marvelD3 contains a conserved MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain like occludin and tricellulin. However, little is yet known about the detailed role and regulation of marvelD3 in normal epithelial cells and cancer cells, including pancreatic cancer. In the present study, we investigated marvelD3 expression in well and poorly differentiated human pancreatic cancer cell lines and normal pancreatic duct epithelial cells in which the hTERT gene was introduced into human pancreatic duct epithelial cells in primary culture, and the changes of marvelD3 during Snail-induced epithelial-mesenchymal transition (EMT) under hypoxia, TGF-β treatment and knockdown of FOXA2 in well differentiated pancreatic cancer HPAC cells. MarvelD3 was transcriptionally downregulated in poorly differentiated pancreatic cancer cells and during Snail-induced EMT of pancreatic cancer cells in which Snail was highly expressed and the fence function downregulated, whereas it was maintained in well differentiated human pancreatic cancer cells and normal pancreatic duct epithelial cells. Depletion of marvelD3 by siRNAs in HPAC cells resulted in downregulation of barrier functions indicated as a decrease in transepithelial electric resistance and an increase of permeability to fluorescent dextran tracers, whereas it did not affect fence function of tight junctions. In conclusion, marvelD3 is transcriptionally downregulated in Snail-induced EMT during the progression for the pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    Directory of Open Access Journals (Sweden)

    Kun-Hung Shen

    2014-08-01

    Full Text Available α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn., was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT. α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2, MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN, but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK, and tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21 and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  11. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells.

    Science.gov (United States)

    Xu, Yanrui; Lou, Zhiyuan; Lee, Seong-Ho

    2017-11-18

    Arctigenin (ARC) is a lignan that is abundant in Asteraceae plants, which show anti-inflammatory and anti-cancer activities. The current study investigated whether ARC affects cancer progression and metastasis, focusing on EMT using invasive human non-small cell lung cancer (NSCLC) cells. No toxicity was observed in the cells treated with different doses of ARC (12-100 μM). The treatment of ARC repressed TGF-β-stimulated changes of metastatic morphology and cell invasion and migration. ARC inhibited TGF-β-induced phosphorylation and transcriptional activity of smad2/3, and expression of snail. ARC also decreased expression of N-cadherin and increased expression of E-cadherin in dose-dependent and time-dependent manners. These changes were accompanied by decreased amount of phospho-smad2/3 in nucleus and nuclear translocation of smad2/3. Moreover, ARC repressed TGF-β-induced phosphorylation of ERK and transcriptional activity of β-catenin. Our data demonstrate anti-metastatic activity of ARC in lung cancer model. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status.

    Science.gov (United States)

    Darbre, Philippa D; Harvey, Philip W

    2014-09-01

    A framework for understanding the complexity of cancer development was established by Hanahan and Weinberg in their definition of the hallmarks of cancer. In this review, we consider the evidence that parabens can enable development in human breast epithelial cells of four of six of the basic hallmarks, one of two of the emerging hallmarks and one of two of the enabling characteristics. In Hallmark 1, parabens have been measured as present in 99% of human breast tissue samples, possess oestrogenic activity and can stimulate sustained proliferation of human breast cancer cells at concentrations measurable in the breast. In Hallmark 2, parabens can inhibit the suppression of breast cancer cell growth by hydroxytamoxifen, and through binding to the oestrogen-related receptor gamma may prevent its deactivation by growth inhibitors. In Hallmark 3, in the 10 nm-1 μm range, parabens give a dose-dependent evasion of apoptosis in high-risk donor breast epithelial cells. In Hallmark 4, long-term exposure (>20 weeks) to parabens leads to increased migratory and invasive activity in human breast cancer cells, properties that are linked to the metastatic process. As an emerging hallmark methylparaben has been shown in human breast epithelial cells to increase mTOR, a key regulator of energy metabolism. As an enabling characteristic parabens can cause DNA damage at high concentrations in the short term but more work is needed to investigate long-term, low-dose mixtures. The ability of parabens to enable multiple cancer hallmarks in human breast epithelial cells provides grounds for regulatory review of the implications of the presence of parabens in human breast tissue. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer

    OpenAIRE

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-01-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p

  14. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  15. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  16. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  17. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.

    Science.gov (United States)

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-11-10

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all pBAG3 expression was associated with FIGO stage and metastasis (all pBAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.

  18. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  19. Epithelial mesenchymal transition status is associated with anti-cancer responses towards receptor tyrosine-kinase inhibition by dovitinib in human bladder cancer cells

    International Nuclear Information System (INIS)

    Hänze, Jörg; Henrici, Marcus; Hegele, Axel; Hofmann, Rainer; Olbert, Peter J

    2013-01-01

    Dovitinib (TKI-258) is a receptor tyrosine kinase (RTK) inhibitor targeting fibroblast growth factor receptor (FGFR) and further related RTKs. TKI-258 is under investigation as anticancer drug for the treatment of various cancers including bladder cancer with aberrant RTK signaling. Here, we analyzed the responses of ten human bladder cancer cell lines towards TKI-258 treatment in relation to the epithelial mesenchymal transition (EMT) status of the cells. Expression of epithelial marker E-cadherin as well as mesenchymal markers N-cadherin and vimentin was determined by quantitative RT-PCR and Western-blot in RNA and protein extracts from the cultured cell lines. The cell responses were analyzed upon addition of TKI-258 by viability/proliferation (XTT assay) and colony formation assay for measurement of cell contact independent growth. The investigated bladder cancer cell lines turned out to display quite different EMT patterns as indicated by the abundance of E-cadherin or N-cadherin and vimentin. Protein and mRNA levels of the respective components strongly correlated. Based on E-cadherin and N-cadherin mRNA levels that were expressed approximately mutual exclusively, an EMT-score was calculated for each cell line. A high EMT-score indicated mesenchymal-like cells and a low EMT-score epithelial-like cells. Then, we determined the IC 50 values for TKI-258 by dose response curves (0-12 μM TKI-258) in XTT assays for each cell line. Also, we measured the clonogenic survival fraction after adding TKI-258 (1 μM) by colony formation assay. We observed significant correlations between EMT-score and IC 50 values (r = 0.637, p = 0.0474) and between EMT-score and clonogenic survival fraction (r = 0.635, p = 0.0483) as analyzed by linear regression analyses. In sum, we demonstrated that the EMT status based on E-cadherin and N-cadherin mRNA levels may be useful to predict responses towards TKI-258 treatment in bladder cancer

  20. Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro.

    Science.gov (United States)

    Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2017-12-01

    Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.

  1. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  2. Modulation of epithelial sodium channel in human alveolar epithelial ...

    African Journals Online (AJOL)

    Modulation of epithelial sodium channel in human alveolar epithelial cells by lipoxin A4 through AhR-cAMP-dependent pathway. Bi-Huan Cheng1,2, Li-Wei Pan2, Sheng-Rong Zhang3, Bin-Yu Ying2, Ben-Ji. Wang2, Guo-Liang Lin2 and Shi-Fang Ding1*. 1Department of Critical Care Medicine, Qilu Hospital of Shandong ...

  3. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    Science.gov (United States)

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  4. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo.

    Directory of Open Access Journals (Sweden)

    Karen M Bussard

    Full Text Available Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display 'normal' behavior when placed into 'normal' ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for 'normal' gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo.

  5. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  6. Evaluation of transforming growth factor-β1 suppress Pokemon/epithelial-mesenchymal transition expression in human bladder cancer cells.

    Science.gov (United States)

    Li, Wei; Kidiyoor, Amritha; Hu, Yangyang; Guo, Changcheng; Liu, Min; Yao, Xudong; Zhang, Yuanyuan; Peng, Bo; Zheng, Junhua

    2015-02-01

    Transforming growth factor-β1 (TGF-β1) plays a dual role in apoptosis and in proapoptotic responses in the support of survival in a variety of cells. The aim of this study was to determine the function of TGF-β1 in bladder cancer cells and the relationship with POK erythroid myeloid ontogenic factor (Pokemon). TGF-β1 and its receptors mediate several tumorigenic cascades that regulate cell proliferation, migration, and survival of bladder cancer cells. Bladder cancer cells T24 were treated with different levels of TGF-β1. Levels of Pokemon, E-cadherin, Snail, MMP2, MMP9, Twist, VEGF, and β-catenin messenger RNA (mRNA) and protein were examined by real-time quantitative fluorescent PCR and Western blot analysis, respectively. The effects of TGF-β1 on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay, proliferation of T24 was evaluated with reference to growth curves with MTT assay, and cell invasive ability was investigated by Transwell assay. Data show that Pokemon was inhibited by TGF-β1 treatment; the gene and protein of E-cadherin and β-catenin expression level showed decreased markedly after TGF-β1 treatment (P Pokemon, β-catenin, and E-cadherin. The high expression of TGF-β1 leads to an increase in the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Related mechanism is worthy of further investigation.

  7. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT in human lung cancer.

    Directory of Open Access Journals (Sweden)

    Frances E Lennon

    Full Text Available Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05. Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.

  8. Forkhead Box Protein C2 Promotes Epithelial-Mesenchymal Transition, Migration and Invasion in Cisplatin-Resistant Human Ovarian Cancer Cell Line (SKOV3/CDDP

    Directory of Open Access Journals (Sweden)

    Chanjuan Li

    2016-08-01

    Full Text Available Background/Aims: Forkhead Box Protein C2 (FOXC2 has been reported to be overexpressed in a variety of human cancers. However, it is unclear whether FOXC2 regulates epithelial-mesenchymal transition (EMT in CDDP-resistant ovarian cancer cells. The aim of this study is to investigate the effects of FOXC2 on EMT and invasive characteristics of CDDP-resistant ovarian cancer cells and the underlying molecular mechanism. Methods: MTT, Western blot, scratch wound healing, matrigel transwell invasion, attachment and detachment assays were performed to detect half maximal inhibitory concentration (IC50 of CDDP, expression of EMT-related proteins and invasive characteristics in CDDP-resistant ovarian cancer cell line (SKOV3/CDDP and its parental cell line (SKOV3. Small hairpin RNA (shRNA was used to knockdown FOXC2 and analyze the effect of FOXC2 knockdown on EMT and invasive characteristics of SKOV3/CDDP cells. Also, the effect of FOXC2 upregulation on EMT and invasive characteristics of SKOV3 cells was analyzed. Furthermore, the molecular mechanism underlying FOXC2-regulating EMT in ovarian cancer cells was determined. Results: Compared with parental SKOV3 cell line, SKOV3/CDDP showed higher IC50 of CDDP (43.26μM (PConclusions: Taken together, these data demonstrate that FOXC2 may be a promoter of EMT phenotype in CDDP-resistant ovarian cancer cells and a potential therapeutic target for the treatment of advanced ovarian cancer.

  9. The expression of Egfl7 in human normal tissues and epithelial tumors.

    Science.gov (United States)

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  10. Connective tissue growth factor is a positive regulator of epithelial-mesenchymal transition and promotes the adhesion with gastric cancer cells in human peritoneal mesothelial cells.

    Science.gov (United States)

    Jiang, Cheng-Gang; Lv, Ling; Liu, Fu-Rong; Wang, Zhen-Ning; Na, Di; Li, Feng; Li, Jia-Bin; Sun, Zhe; Xu, Hui-Mian

    2013-01-01

    Connective tissue growth factor (CTGF) is involved in human cancer development and progression. Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. In this study, we wished to investigate the role of CTGF in EMT of peritoneal mesothelial cells and the effects of CTGF on adhesion of gastric cancer cells to mesothelial cells. Human peritoneal mesothelial cells (HPMCs) were cultured with TGF-β1 or various concentrations of CTGF for different time. The EMT process was monitored by morphology. Real-time RT-PCR and Western blot were used to evaluate the expression of vimentin, α-SMA , E-cadherin and β-catenin. RNA interference was used to achieve selective and specific knockdown of CTGF. We demonstrated that CTGF induced EMT of mesothelial cells in a dose- and time-dependent manner. HPMCs were exposed to TGF-β1 also underwent EMT which was associated with the induction of CTGF expression. Transfection with CTGF siRNA was able to reverse the EMT partially after treatment of TGF-β1. Moreover, the induced EMT of HPMCs was associated with an increased adhesion of gastric cancer cells to mesothelial cells. These findings suggest that CTGF is not only an important mediator but a potent activator of EMT in peritoneal mesothelial cells, which in turn promotes gastric cancer cell adhesion to peritoneum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Brechbuhl, Heather M. [Pediatrics, National Jewish Health, Denver, Colorado (United States); Kachadourian, Remy; Min, Elysia [Department of Medicine, National Jewish Health, Denver, Colorado (United States); Chan, Daniel [Medical Oncology, University of Colorado Denver Health Sciences Center (United States); Day, Brian J., E-mail: dayb@njhealth.org [Department of Medicine, University of Colorado Denver Health Sciences Center (United States); Immunology, University of Colorado Denver Health Sciences Center (United States); Pharmaceutical Sciences, University of Colorado Denver Health Sciences Center (United States); Department of Medicine, National Jewish Health, Denver, Colorado (United States)

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.

  12. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype.

    Science.gov (United States)

    Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura

    2015-01-01

    The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered

  13. Development and Novel Uses of Antibodies in Epithelial Ovarian Cancer

    National Research Council Canada - National Science Library

    Curtin, John P

    2003-01-01

    .... Further understanding of the host response to epithelial cancers and the potential capability of innovative immunologic technologies to ovarian cancer may play a key role in therapeutic advances...

  14. Epithelial cells as alternative human biomatrices for comet assay.

    Science.gov (United States)

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  15. Human glomerular epithelial cell proteoglycans

    International Nuclear Information System (INIS)

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M.

    1990-01-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate

  16. Lung cancer exosomes as drivers of epithelial mesenchymal transition.

    Science.gov (United States)

    Rahman, Mohammad A; Barger, Jennifer F; Lovat, Francesca; Gao, Min; Otterson, Gregory A; Nana-Sinkam, Patrick

    2016-08-23

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells.

  17. Does risk for ovarian malignancy algorithm excel human epididymis protein 4 and ca125 in predicting epithelial ovarian cancer: A meta-analysis

    International Nuclear Information System (INIS)

    Li, Fake; Tie, Ruxiu; Chang, Kai; Wang, Feng; Deng, Shaoli; Lu, Weiping; Yu, Lili; Chen, Ming

    2012-01-01

    Risk for Ovarian Malignancy Algorithm (ROMA) and Human epididymis protein 4 (HE4) appear to be promising predictors for epithelial ovarian cancer (EOC), however, conflicting results exist in the diagnostic performance comparison among ROMA, HE4 and CA125. Remote databases (MEDLINE/PUBMED, EMBASE, Web of Science, Google Scholar, the Cochrane Library and ClinicalTrials.gov) and full texts bibliography were searched for relevant abstracts. All studies included were closely assessed with the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2). EOC predictive value of ROMA was systematically evaluated, and comparison among the predictive performances of ROMA, HE4 and CA125 were conducted within the same population. Sensitivity, specificity, DOR (diagnostic odds ratio), LR ± (positive and negative likelihood ratio) and AUC (area under receiver operating characteristic-curve) were summarized with a bivariate model. Subgroup analysis and sensitivity analysis were used to explore the heterogeneity. Data of 7792 tests were retrieved from 11 studies. The overall estimates of ROMA for EOC predicting were: sensitivity (0.89, 95% CI 0.84-0.93), specificity (0.83, 95% CI 0.77-0.88), and AUC (0.93, 95% CI 0.90-0.95). Comparison of EOC predictive value between HE4 and CA125 found, specificity: HE4 (0.93, 95% CI 0.87-0.96) > CA125 (0.84, 95% CI 0.76-0.90); AUC: CA125 (0.88, 95% CI 0.85-0.91) > HE4 (0.82, 95% CI 0.78-0.85). Comparison of OC predictive value between HE4 and CA125 found, AUC: CA125 (0.89, 95% CI 0.85-0.91) > HE4 (0.79, 95% CI 0.76-0.83). Comparison among the three tests for EOC prediction found, sensitivity: ROMA (0.86, 95%CI 0.81-0.91) > HE4 (0.80, 95% CI 0.73-0.85); specificity: HE4 (0.94, 95% CI 0.90-0.96) > ROMA (0.84, 95% CI 0.79-0.88) > CA125 (0.78, 95%CI 0.73-0.83). ROMA is helpful for distinguishing epithelial ovarian cancer from benign pelvic mass. HE4 is not better than CA125 either for EOC or OC prediction. ROMA is promising predictors of

  18. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  19. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    Science.gov (United States)

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells.

    Science.gov (United States)

    Wang, Yun-Liang; Dong, Feng-Lin; Yang, Jian; Li, Zhi; Zhi, Qiao-Ming; Zhao, Xin; Yang, Yong; Li, De-Chun; Shen, Xiao-Chun; Zhou, Jin

    2015-01-01

    Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NC- PANC-1, and si-PANC-1 cells, respectively. After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.

  1. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  2. Neoadjuvant Chemotherapy for Advanced Epithelial Ovarian Cancer

    International Nuclear Information System (INIS)

    Avendano Juan; Buitrago, Giancarlo; Ramos, Pedro; Suescun Oscar

    2010-01-01

    Objective: To describe the experience at the National Cancer Institute (NCI) on the use of neoadjuvant chemotherapy as primary treatment for epithelial ovarian cancer among patients in stages IIIC and IV. Methods: We conducted a descriptive retrospective study (case series type) of patients diagnosed with epithelial ovarian cancer in stages IIIC and IV, treated at the NCI from January 1, 2003 to December 31,2006, who underwent neoadjuvant chemotherapy as primary treatment. Demographic characteristics and clinical outcomes are described. Results: Seventeen patients who fulfilled the above mentioned criteria were selected. Once neoadjuvant chemotherapy ended, 5 patients (29.4%) achieved complete or partial clinical response; 4 (23.8%) remained in stable condition, and 8 (47.6%) showed signs of progressive illness. Interval debulking surgery was performed on objective response patients. Maximum cytoreduction was achieved in 5 patients (100%); first relapse was reported at month 18 of follow-up; 2 disease-free survivors were identified in December, 2007; 8 (49%) reported some degree of non-severe chemotherapy-related toxicity. No mortality was related to chemotherapy, no post surgical complications were observed and no patient required advanced support management. Conclusions: Neoadjuvant chemotherapy, followed by optimal interval debulking surgery among selected patients, can be an alternative treatment for advanced epithelial ovarian cancer among women with irresecability or the critically ill. Further studies with improved design are required to confirm these findings.

  3. Effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice.

    Science.gov (United States)

    Song, Lin; Zhou, Xin; Jia, Hong-Jun; Du, Mei; Zhang, Jin-Ling; Li, Liang

    2016-08-01

    To study the effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. BABL/c nude mice were selected as experimental animals and gastric cancer tumor-bearing mice model were established by subcutaneous injection of gastric cancer cells, randomly divided into different intervention groups. hGC-MSCs group were given different amounts of gastric cancer cells for subcutaneous injection, PBS group was given equal volume of PBS for subcutaneous injection. Then tumor tissue volume were determined, tumor-bearing mice were killed and tumor tissues were collected, mRNA expression of proliferation, invasion, EMT-related molecules were determined. 4, 8, 12, 16, 20 d after intervention, tumor tissue volume of hGC-MSCs group were significantly higher than those of PBS group and the more the number of hGC-MSCs, the higher the tumor tissue volume; mRNA contents of Ki-67, PCNA, Bcl-2, MMP-2, MMP-7, MMP-9, MMP-14, N-cadherin, vimentin, Snail and Twist in tumor tissue of hGC-MSCs group were higher than those of PBS group, and mRNA contents of Bax, TIMP1, TIMP2 and E-cadherin were lower than those of PBS group. hGC-MSCs from human gastric cancer tissue can promote the tumor growth in gastric cancer tumor-bearing mice, and the molecular mechanism includes promoting cell proliferation, invasion and epithelial-mesenchymal transition. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  4. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    International Nuclear Information System (INIS)

    Xing, Yu; Qi, Jin; Deng, Shixiong; Wang, Cheng; Zhang, Luyu; Chen, Junxia

    2013-01-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT

  5. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of

  6. Structure-activity relationship and role of oxygen in the potential antitumour activity of fluoroquinolones in human epithelial cancer cells.

    Science.gov (United States)

    Perucca, Paola; Savio, Monica; Cazzalini, Ornella; Mocchi, Roberto; Maccario, Cristina; Sommatis, Sabrina; Ferraro, Daniela; Pizzala, Roberto; Pretali, Luca; Fasani, Elisa; Albini, Angelo; Stivala, Lucia Anna

    2014-11-01

    The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O₂ partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Etiology and Pathogenesis of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Samuel C. Mok

    2007-01-01

    Full Text Available Ovarian cancer is complex disease composed of different histological grades and types. However, the underlying molecular mechanisms involved in the development of different phenotypes remain largely unknown. Epidemiological studies identified multiple exogenous and endogenous risk factors for ovarian cancer development. Among them, an inflammatory stromal microenvironment seems to play a critical role in the initiation of the disease. The interaction between such a microenvironment, genetic polymorphisms, and different epithelial components such as endosalpingiosis, endometriosis, and ovarian inclusion cyst in the ovarian cortex may induce different genetic changes identified in the epithelial component of different histological types of ovarian tumors. Genetic studies on different histological grades and types provide insight into the pathogenetic pathways for the development of different disease phenotypes. However, the link between all these genetic changes and the etiological factors remains to be established.

  8. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells.

    Science.gov (United States)

    Weiler, Julian; Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2018-04-10

    In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α). The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody. The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline

  9. miR156a Mimic Represses the Epithelial-Mesenchymal Transition of Human Nasopharyngeal Cancer Cells by Targeting Junctional Adhesion Molecule A.

    Directory of Open Access Journals (Sweden)

    Yunhong Tian

    Full Text Available MicroRNAs (miRNAs have been documented as having an important role in the development of cancer. Broccoli is very popular in large groups of the population and has anticancer properties. Junctional adhesion molecule A (JAMA is preferentially concentrated at tight junctions and influences cell morphology and migration. Epithelial-mesenchymal transition (EMT is a developmental program associated with cancer progression and metastasis. In this study we aimed to investigate the role of miRNAs from broccoli in human nasopharyngeal cancer (NPC. We demonstrated that a total of 84 conserved miRNAs and 184 putative novel miRNAs were found in broccoli by sequencing technology. Among these, miR156a was expressed the most. In addition, synthetic miR156a mimic inhibited the EMT of NPC cells in vitro. Furthermore, it was confirmed that JAMA was the target of miR156a mimic as validated by 3' UTR luciferase reporter assays and western blotting. Knockdown of JAMA was consistent with the effects of miR156a mimic on the EMT of NPC, and the up-regulation of JAMA could partially restore EMT repressed by miR156a mimic. In conclusion, these results indicate that the miR156a mimic inhibits the EMT of NPC cells by targeting the 3' UTR of JAMA. These miRNA profiles of broccoli provide a fundamental basis for further research. Moreover, the discovery of miR156a may have clinical implications for the treatment of patients with NPC.

  10. miR156a Mimic Represses the Epithelial-Mesenchymal Transition of Human Nasopharyngeal Cancer Cells by Targeting Junctional Adhesion Molecule A.

    Science.gov (United States)

    Tian, Yunhong; Cai, Longmei; Tian, Yunming; Tu, Yinuo; Qiu, Huizhi; Xie, Guofeng; Huang, Donglan; Zheng, Ronghui; Zhang, Weijun

    2016-01-01

    MicroRNAs (miRNAs) have been documented as having an important role in the development of cancer. Broccoli is very popular in large groups of the population and has anticancer properties. Junctional adhesion molecule A (JAMA) is preferentially concentrated at tight junctions and influences cell morphology and migration. Epithelial-mesenchymal transition (EMT) is a developmental program associated with cancer progression and metastasis. In this study we aimed to investigate the role of miRNAs from broccoli in human nasopharyngeal cancer (NPC). We demonstrated that a total of 84 conserved miRNAs and 184 putative novel miRNAs were found in broccoli by sequencing technology. Among these, miR156a was expressed the most. In addition, synthetic miR156a mimic inhibited the EMT of NPC cells in vitro. Furthermore, it was confirmed that JAMA was the target of miR156a mimic as validated by 3' UTR luciferase reporter assays and western blotting. Knockdown of JAMA was consistent with the effects of miR156a mimic on the EMT of NPC, and the up-regulation of JAMA could partially restore EMT repressed by miR156a mimic. In conclusion, these results indicate that the miR156a mimic inhibits the EMT of NPC cells by targeting the 3' UTR of JAMA. These miRNA profiles of broccoli provide a fundamental basis for further research. Moreover, the discovery of miR156a may have clinical implications for the treatment of patients with NPC.

  11. [The molecular biology of epithelial ovarian cancer].

    Science.gov (United States)

    Leary, Alexandra; Pautier, Patricia; Tazi, Youssef; Morice, Philippe; Duvillard, Pierre; Gouy, Sébastien; Uzan, Catherine; Gauthier, Hélène; Balleyguier, Corinne; Lhommé, Catherine

    2012-12-01

    Epithelial ovarian cancer frequently presents at an advanced stage where the cornerstone of management remains surgery and platinum-based chemotherapy. Unfortunately, despite sometimes dramatic initial responses, advanced ovarian cancer almost invariably relapses. Little progress has been made in the identification of effective targeted-therapies for ovarian cancer. The majority of clinical trials investigating novel agents have been negative and the only approved targeted-therapy is bevacizumab, for which reliable predictive biomarkers still elude us. Ovarian cancer is treated as a uniform disease. Yet, biological studies have highlighted the heterogeneity of this malignancy with marked differences in histology, oncogenesis, prognosis, chemo-responsiveness, and molecular profile. Recent high throughput molecular analyses have identified a huge number of genomic/phenotypic alterations. Broadly speaking, high grade serous carcinomas (type II) display significant genomic instability and numerous amplifications and losses; low grade (type I) tumors are genomically stable but display frequent mutations. Importantly, many of these genomic alterations relate to known oncogenes for which targeted-therapies are available or in development. There is today a real potential for personalized medicine in ovarian cancer. We will review the current literature regarding the molecular characterization of epithelial ovarian cancer and discuss the biological rationale for a number of targeted strategies. In order to translate these biological advances into meaningful clinical improvements for our patients, it is imperative to incorporate translational research in ovarian cancer trials, a number of strategies will be proposed such as the acquisition of quality tumor samples, including sequential pre- and post-treatment biopsies, the potential of liquid biopsies, and novel trial designs more adapted to the molecular era of ovarian cancer research.

  12. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Zhang YL

    2017-03-01

    Full Text Available Yanling Zhang,1,* Weihong Dong,1,* Junjie Wang,2 Jing Cai,1 Zehua Wang1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People’s Republic of China *These authors contributed equally to this work Abstract: Mesenchymal stem cells (MSCs have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM from O-ADSCs (O-ADSC, and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE, followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression. Keywords: ovarian cancer, mesenchymal stromal cells, mesenchymal stem cells, omentum, proteomic

  13. Paradigm Shift in the Management Strategy for Epithelial Ovarian Cancer.

    Science.gov (United States)

    Fujiwara, Keiichi; McAlpine, Jessica N; Lheureux, Stephanie; Matsumura, Noriomi; Oza, Amit M

    2016-01-01

    The hypothesis on the pathogenesis of epithelial ovarian cancer continues to evolve. Although epithelial ovarian cancer had been assumed to arise from the coelomic epithelium of the ovarian surface, it is now becoming clearer that the majority of serous carcinomas arise from epithelium of the distal fallopian tube, whereas clear cell and endometrioid cancers arise from endometriosis. Molecular and genomic characteristics of epithelial ovarian cancer have been extensively investigated. Our understanding of pathogenesis of the various histologic types of ovarian cancer have begun to inform changes to the strategies for management of epithelial ovarian cancer, which represent a paradigm shift not only for treatment but also for prevention, which previously had not been considered achievable. In this article, we will discuss novel attempts at the prevention of high-grade serous ovarian cancer and treatment strategies for two distinct entities in epithelial ovarian cancer: low-grade serous and clear cell ovarian carcinomas, which are relatively rare and resistant to conventional chemotherapy.

  14. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  15. Clinical Use of Cancer Biomarkers in Epithelial Ovarian Cancer

    DEFF Research Database (Denmark)

    Söletormos, Georg; Duffy, Michael J; Othman Abu Hassan, Suher

    2016-01-01

    OBJECTIVE: To present an update of the European Group on Tumor Markers guidelines for serum markers in epithelial ovarian cancer. METHODS: Systematic literature survey from 2008 to 2013. The articles were evaluated by level of evidence and strength of recommendation. RESULTS: Because of its low s...

  16. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-02-01

    , but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl and B-cell lymphoma 2 (Bcl-2, but increased the expression of Bcl-2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK and extracellular signal-regulated kinases 1 and 2 (Erk1/2 and inhibited the activation of protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E

  17. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  18. The human homologue of unc-93 maps to chromosome 6q27 - characterisation and analysis in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Dodds, Phillippa; Emilion, Gracy

    2002-01-01

    In sporadic ovarian cancer, we have previously reported allele loss at D6S193 (62%) on chromosome 6q27, which suggested the presence of a putative tumour suppressor gene. Based on our data and that from another group, the minimal region of allele loss was between D6S264 and D6S149 (7.4 cM). To id...

  19. Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Rønnov-Jessen, Lone; Villadsen, René

    2002-01-01

    reading frame (ORF) encoding a putative 307-amino-acid protein, and mapped to chromosome 13q13.3. EPSTI1 was highly upregulated in invasive breast carcinomas compared with normal breast. In a tissue mRNA panel the most prominent expression of EPSTI1 was found in placenta. Thus, EPSTI1 is a novel human...

  20. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  1. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  2. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  3. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou, 3,4 Zhi-Xu He,4 Ruan Jin Zhao,5 Xueji Zhang,6 Lun Yang,7 Shu-Feng Zhou,3,4 Zong-Fu Mao11School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Center for Traditional Chinese Medicine, Sarasota, FL, USA; 6Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 7Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Plumbagin (PLB has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC. The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a

  4. Conservative management of epithelial ovarian cancer.

    Science.gov (United States)

    Dexeus, S; Labastida, R; Dexeus, D

    2005-01-01

    We are currently faced with a progressive delay in the age at which women conceive for the first time. This raises the possibility of the appearance of gynecologic disorders that may affect fertility, including neoplasms of the ovary. Fertility-sparing surgery is defined as the preservation of ovarian tissue in one or both adnexa and/or the uterus. Borderline ovarian tumor should be treated with conservative surgery. Salpingo-oophorectomy, or even ovarian cystectomy, are the procedures of choice, with recurrence rates of 2-3% and up to 20% if a simple cystectomy is performed. Cystectomy is indicated in patients with bilateral borderline tumors or in patients with a residual ovary. Borderline tumors with invasive peritoneal implants behave as an invasive cancer in 10-30% of cases with a survival rate of 10-66% compared with 100% in borderline tumors without invasive implants. Prophylactic oophorectomy is recommended when desire of conception has been accomplished. Conservative surgery in invasive epithelial ovarian cancer is limited to Stage IA, grade 1 tumor, and in some highly selected grade 2 tumors of serous, mucinous or endometrioid type, well-encapsulated and free of adhesions. The standard oncological surgical procedure with preservation of the uterus and normal appearing ovary is recommended. This includes salpingo-oophorectomy, excision of any suspicious peritoneal lesion, multiple peritoneal biopsies, appendectomy (particularly in mucinous tumors), and pelvic and paraaortic lymphadenectomy.

  5. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  6. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  7. Vasohibin 2 promotes epithelial-mesenchymal transition in human breast cancer via activation of transforming growth factor β 1 and hypoxia dependent repression of GATA-binding factor 3.

    Science.gov (United States)

    Tu, Min; Li, Zhanjun; Liu, Xian; Lv, Nan; Xi, Chunhua; Lu, Zipeng; Wei, Jishu; Song, Guoxin; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Wang, Shui; Gao, Wentao; Miao, Yi

    2017-03-01

    Vasohibin 2 (VASH2) is identified as an angiogenic factor, and has been implicated in tumor angiogenesis, proliferation and epithelial-mesenchymal transition (EMT). To investigate the EMT role of VASH2 in breast cancer, we overexpressed or knocked down expression of VASH2 in human breast cancer cell lines. We observed that VASH2 induced EMT in vitro and in vivo. The transforming growth factor β1 (TGFβ1) pathway was activated by VASH2, and expression of a dominant negative TGFβ type II receptor could block VASH2-mediated EMT. In clinical breast cancer tissues VASH2 positively correlated with TGFβ1 expression, but negatively correlated with E-cadherin (a marker of EMT) expression. Under hypoxic conditions in vitro or in vivo, we found that down-regulation of estrogen receptor 1 (ESR1) in VASH2 overexpressing ESR1 positive cells suppressed E-cadherin. Correlation coefficient analysis indicated that VASH2 and ESR1 expression were negatively correlated in clinical human breast cancer tissues. Further study revealed that a transcription factor of ESR1, GATA-binding factor 3 (GATA3), was down-regulated by VASH2 under hypoxia or in vivo. These findings suggest that VASH2 drives breast cancer cells to undergo EMT by activation of the TGFβ1 pathway and hypoxia dependent repression GATA3-ESR1 pathway, leading to cancer metastasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Peritoneal inflammation – A microenvironment for Epithelial Ovarian Cancer (EOC

    Directory of Open Access Journals (Sweden)

    Liu Jinsong

    2004-06-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC is a significant cause of cancer related morbidity and mortality in women. Preferential involvement of peritoneal structures contributes to the overall poor outcome in EOC patients. Advances in biotechnology, such as cDNA microarray, are a product of the Human Genome Project and are beginning to provide fresh opportunities to understand the biology of EOC. In particular, it is now possible to examine in depth, at the molecular level, the complex relationship between the tumor itself and its surrounding microenvironment. This review focuses on the anatomy, physiology, and current immunobiologic research of peritoneal structures, and addresses certain potentially useful animal models. Changes in both the inflammatory and non-inflammatory cell compartments, as well as alterations to the extracellular matrix, appear to be signal events that contribute to the remodeling effects of the peritoneal stroma and surface epithelial cells on tumor growth and spread. These alterations may involve a number of proteins, including cytokines, chemokines, growth factors, either membrane or non-membrane bound, and integrins. Interactions between these molecules and molecular structures within the extracellular matrix, such as collagens and the proteoglycans, may contribute to a peritoneal mesothelial surface and stromal environment that is conducive to tumor cell proliferation and invasion. These alterations need to be examined and defined as possible prosnosticators and as therapeutic or diagnostic targets.

  9. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  10. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  11. Different apoptotic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture.

    Science.gov (United States)

    Vetrugno, Carla; Muscella, Antonella; Fanizzi, Francesco Paolo; Cossa, Luca Giulio; Migoni, Danilo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2014-11-01

    The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 μmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin. © 2014 The British Pharmacological Society.

  12. Different apoptotic effects of [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture

    Science.gov (United States)

    Vetrugno, Carla; Muscella, Antonella; Fanizzi, Francesco Paolo; Cossa, Luca Giulio; Migoni, Danilo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2014-01-01

    Background and Purpose The aim of this study was to determine whether [platinum (Pt)(O,O′-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. Experimental Approach We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. Key Results Cancer cells were more sensitive to [Pt(O,O′-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L−1) than normal cells (IC50 = 116.9 ± 8.8 μmol·L−1). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L−1 for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O′-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O′-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O′-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O′-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O′-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O′-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. Conclusions and Implications [Pt(O,O′-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin. PMID:24990093

  13. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  14. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  15. Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer.

    Science.gov (United States)

    Yamamoto, Mizuki; Sakane, Kota; Tominaga, Kana; Gotoh, Noriko; Niwa, Takayoshi; Kikuchi, Yasuko; Tada, Keiichiro; Goshima, Naoki; Semba, Kentaro; Inoue, Jun-Ichiro

    2017-06-01

    Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition MET, are crucial in several stages of cancer metastasis. Epithelial-mesenchymal transition allows cancer cells to move to proximal blood vessels for intravasation. However, because EMT and MET processes are dynamic, mesenchymal cancer cells are likely to undergo MET transiently and subsequently re-undergo EMT to restart the metastatic process. Therefore, spatiotemporally coordinated mutual regulation between EMT and MET could occur during metastasis. To elucidate such regulation, we chose HCC38, a human triple-negative breast cancer cell line, because HCC38 is composed of epithelial and mesenchymal populations at a fixed ratio even though mesenchymal cells proliferate significantly more slowly than epithelial cells. We purified epithelial and mesenchymal cells from Venus-labeled and unlabeled HCC38 cells and mixed them at various ratios to follow EMT and MET. Using this system, we found that the efficiency of EMT is approximately an order of magnitude higher than that of MET and that the two populations significantly enhance the transition of cells from the other population to their own. In addition, knockdown of Zinc finger E-box-binding homeobox 1 (ZEB1) or Zinc finger protein SNAI2 (SLUG) significantly suppressed EMT but promoted partial MET, indicating that ZEB1 and SLUG are crucial to EMT and MET. We also show that primary breast cancer cells underwent EMT that correlated with changes in expression profiles of genes determining EMT status and breast cancer subtype. These changes were very similar to those observed in EMT in HCC38 cells. Consequently, we propose HCC38 as a suitable model to analyze EMT-MET dynamics that could affect the development of triple-negative breast cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  17. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  18. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  19. Genetic Association of Interleukin-31 Gene Polymorphisms with Epithelial Ovarian Cancer in Chinese Population

    Directory of Open Access Journals (Sweden)

    Chenlu Liu

    2018-01-01

    Full Text Available Roles of interleukin-31 (IL-31 in the development and progression of human epithelial ovarian cancer are largely unknown. Studies report that the polymorphisms, rs7977932 C>G and rs4758680 C>A in IL-31, affect the expression level of IL-31. In the present study, we examined 412 patients with epithelial ovarian cancer and 428 healthy individuals to explore whether these polymorphisms are associated with the epithelial ovarian cancer in Chinese women. The genotype of the polymorphisms in each individual was identified. The associations of the polymorphisms with patients’ clinical characteristics and outcomes were evaluated. For rs7977932, the frequency of the CG/GG was significantly decreased in patients with epithelial ovarian cancer. However, the frequency of the rs4758680 CA/AA was significantly increased in those patients. Moreover, the frequency of rs7977932 CG/GG genotype was significantly higher in patients with less advanced FIGO stages. Kaplan-Meier curve showed that patients with CG/GG genotypes of rs7977932 had a decreased risk for recurrence compared to those with CC genotype. Our findings suggested that rs7977932 and rs4758680 of IL-31 may be associated with the development and progression of the epithelial ovarian cancer in the Chinese population. IL-31, therefore, may be a potential therapeutic target for the development of drugs to treat the disease.

  20. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    Science.gov (United States)

    Hu, Zhi [El Cerrito, CA; Kuo, Wen-Lin [San Ramon, CA; Neve, Richard M [San Mateo, CA; Gray, Joe W [San Francisco, CA

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  1. Nuclear translocation of β-catenin and decreased expression of epithelial cadherin in human papillomavirus-positive tonsillar cancer: an early event in human papillomavirus-related tumour progression?

    Science.gov (United States)

    Stenner, Markus; Yosef, Basima; Huebbers, Christian U; Preuss, Simon F; Dienes, Hans-Peter; Speel, Ernst-Jan M; Odenthal, Margarete; Klussmann, Jens P

    2011-06-01

    High-risk human papillomaviruses (HPVs) constitute an important risk factor for tonsillar cancer. This study describes changes in cell adhesion molecules during metastasis of HPV-related and HPV-unrelated tonsillar carcinomas. We examined 48 primary tonsillar carcinoma samples (25 HPV-16 DNA-positive, 23 HPV-16 DNA-negative) and their respective lymph node metastases for their HPV status and for the expression of p16, epithelial cadherin (E-cadherin), β-catenin, and vimentin. A positive HPV-specific polymerase chain reaction finding correlated significantly with p16 overexpression in both primary tumours and their metastases (P<0.0001 for both). In HPV-unrelated carcinomas, the expression of E-cadherin was significantly lower in metastases than in primary tumours (P<0.001). In contrast, the expression of nuclear β-catenin was significantly higher in metastases than in primary tumours (P=0.016). In HPV-related carcinomas, nuclear localization of β-catenin expression was already apparent in primary tumours (P=0.030). The expression of vimentin significantly correlated with the grading of the primary tumour (P=0.021). Our data indicate that the down-regulation of E-cadherin and the up-regulation of nuclear β-catenin expression might be crucial steps during tumour progression of tonsillar carcinomas, being already present in primary tumours in HPV-driven carcinomas, but becoming apparent in HPV-unrelated tumours later in the process of metastasis. © 2011 Blackwell Publishing Limited.

  2. CYP1B1, Oxidative Stress, and Inflammation in the Etiology of Ovarian Epithelial Cancer Using an Avian Model of Ovarian Carcinoma

    National Research Council Canada - National Science Library

    Hales, Dale B

    2007-01-01

    .... Research in ovarian cancer has been hampered by a lack of suitable animal models. With the exception of the laying hen, no other animal gets ovarian epithelial cancer analogous to the human disease...

  3. Primary Surgery or Interval Debulking for Advanced Epithelial Ovarian Cancer

    DEFF Research Database (Denmark)

    Markauskas, Algirdas; Mogensen, Ole; dePont Christensen, René

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the surgical complexity, the postoperative morbidity, and the survival of the women after primary debulking surgery (PDS) and neoadjuvant chemotherapy followed by interval debulking surgery (NACT-IDS) for advanced epithelial ovarian cancer....... MATERIALS AND METHODS: We consecutively included all patients who underwent debulking surgery at our institution between January 2007 and December 2012 for stages IIIc and IV of epithelial ovarian cancer. RESULTS: Of the 332 patients included, 165 (49.7%) underwent PDS, and 167 (50.3%) had NACT...

  4. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3

    Directory of Open Access Journals (Sweden)

    Zhu Liang

    2012-03-01

    Full Text Available Abstract Background Response gene to complement-32 (RGC-32 is comprehensively expressed in many kinds of tissues and has been reported to be expressed abnormally in different kinds of human tumors. However, the role of RGC-32 in cancer remains controversial and no reports have described the effect of RGC-32 in pancreatic cancer. The present study investigated the expression of RGC-32 in pancreatic cancer tissues and explored the role of RGC-32 in transforming growth factor-beta (TGF-β-induced epithelial-mesenchymal transition (EMT in human pancreatic cancer cell line BxPC-3. Methods Immunohistochemical staining of RGC-32 and E-cadherin was performed on specimens from 42 patients with pancreatic cancer, 12 with chronic pancreatitis and 8 with normal pancreas. To evaluate the role of RGC-32 in TGF-β-induced EMT in pancreatic cancer cells, BxPC-3 cells were treated with TGF-β1, and RGC-32 siRNA silencing and gene overexpression were performed as well. The mRNA expression and protein expression of RGC-32 and EMT markers such E-cadherin and vimentin were determined by quantitative reverse transcription-PCR (qRT-PCR and western blot respectively. Finally, migration ability of BxPC-3 cells treated with TGF-β and RGC-32 siRNA transfection was examined by transwell cell migration assay. Results We found stronger expression of RGC-32 and higher abnormal expression rate of E-cadherin in pancreatic cancer tissues than those in chronic pancreatitis tissues and normal pancreatic tissues. Immunohistochemical analysis revealed that both RGC-32 positive expression and E-cadherin abnormal expression in pancreatic cancer were correlated with lymph node metastasis and TNM staging. In addition, a significant and positive correlation was found between positive expression of RGC-32 and abnormal expression of E-cadherin. Furthermore, in vitro, we found sustained TGF-β stimuli induced EMT and up-regulated RGC-32 expression in BxPC-3 cells. By means of si

  5. Epithelial ovarian cancer and the occurrence of skin cancer in the Netherlands: histological type connotations

    NARCIS (Netherlands)

    Niekerk, G.C. van; Bulten, J.; Verbeek, A.L.M.

    2011-01-01

    Background. Patients with epithelial ovarian cancer have a high risk of (non-)melanoma skin cancer. The association between histological variants of primary ovarian cancer and skin cancer is poorly documented. Objectives. To further evaluate the risk of skin cancer based on the histology of the

  6. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    Science.gov (United States)

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  7. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Directory of Open Access Journals (Sweden)

    Mariam El-Ashmawy

    Full Text Available Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs. In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF = 1.3, and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  8. Lymphadenectomy in surgical stage I epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Svolgaard, Olivia; Lidegaard, Ojvind; Nielsen, Marie Louise S

    2014-01-01

    OBJECTIVE: To identify the extent of lymphadenectomy performed in women presenting with epithelial ovarian cancer macroscopically confined to the ovary. Furthermore, the effect of lymphadenectomy on overall survival is evaluated. DESIGN: A prospective nationwide case-only study. SETTING: Denmark...... 2005-2011. SAMPLE: All women registered in the nationwide Danish Gynecologic Cancer Database from 1 January 2005 to 1 May 2011, presenting with a tumor macroscopically confined to the ovary without visible evidence of abdominal spread at the time of the initial exploration (surgical stage I). METHOD......: Descriptive and survival analyses of data from Danish Gynecologic Cancer Database. MAIN OUTCOME MEASURES: The annual proportion of women with surgical stage I disease who received lymphadenectomy and the survival in the two groups. RESULTS: Of 2361 women with epithelial ovarian cancer, 627 were identified...

  9. General Information about Ovarian Epithelial Cancer

    Science.gov (United States)

    ... diagnosed, tests are done to find out if cancer cells have spread within the ovaries or to other parts of the body. The ... single ovary or fallopian tube. In stage IB, cancer is found inside both ovaries or fallopian tubes. In stage IC, cancer is ...

  10. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    International Nuclear Information System (INIS)

    William Petersen, Ole; Lind Nielsen, Helga; Gudjonsson, Thorarinn; Villadsen, René; Rønnov-Jessen, Lone; Bissell, Mina J

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression

  11. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, Ren& #233; ; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  12. Targeted Therapies in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Jurjees Hasan

    2010-02-01

    Full Text Available Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer.

  13. Targeted Therapies in Epithelial Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Emma; El-Helw, Loaie; Hasan, Jurjees, E-mail: jurjees.hasan@christie.nhs.uk [Christie Hospital NHS Foundation Trust / Wilmslow Road, Manchester, M20 4BX (United Kingdom)

    2010-02-23

    Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer.

  14. Human papillomavirus: cause of epithelial lacrimal sac neoplasia?

    DEFF Research Database (Denmark)

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia

    2007-01-01

    PURPOSE: Epithelial tumours of the lacrimal sac are rare but important entities that may carry grave prognoses. In this study the prevalence and possible role of human papillomavirus (HPV) infection in epithelial tumours of the lacrimal sac were evaluated. METHODS: Five papillomas and six...... 11 RNA was demonstrated in two papillomas. CONCLUSIONS: By analysing 11 epithelial lacrimal sac papillomas and carcinomas using PCR, DNA ISH and RNA ISH, we found HPV DNA in all investigated transitional epithelium tumours of the lacrimal sac. HPV RNA was present in two of eight epithelial lacrimal...... sac tumours positive for HPV DNA. As RNA degrades fast in paraffin-embedded tissue, only a small fraction of DNA-positive tumours can be expected to be RNA-positive. We therefore suggest that HPV infection is associated with the development of lacrimal sac papillomas and carcinomas....

  15. The human homologue of unc-93 maps to chromosome 6q27 – characterisation and analysis in sporadic epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Charnock F Mark L

    2002-10-01

    Full Text Available Abstract Background In sporadic ovarian cancer, we have previously reported allele loss at D6S193 (62% on chromosome 6q27, which suggested the presence of a putative tumour suppressor gene. Based on our data and that from another group, the minimal region of allele loss was between D6S264 and D6S149 (7.4 cM. To identify the putative tumour suppressor gene, we established a physical map initially with YACs and subsequently with PACs/BACs from D6S264 to D6S149. To accelerate the identification of genes, we sequenced the entire contig of approximately 1.1 Mb. Seven genes were identified within the region of allele loss between D6S264 and D6S149. Results The human homologue of unc-93 (UNC93A in C. elegans was identified to be within the interval of allele loss centromeric to D6S149. This gene is 24.5 kb and comprises of 8 exons. There are two transcripts with the shorter one due to splicing out of exon 4. It is expressed in testis, small intestine, spleen, prostate, and ovary. In a panel of 8 ovarian cancer cell lines, UNC93A expression was detected by RT-PCR which identified the two transcripts in 2/8 cell lines. The entire coding sequence was examined for mutations in a panel of ovarian tumours and ovarian cancer cell lines. Mutations were identified in exons 1, 3, 4, 5, 6 and 8. Only 3 mutations were identified specifically in the tumour. These included a c.452G>A (W151X mutation in exon 3, c.676C>T (R226X in exon 5 and c.1225G>A(V409I mutation in exon 8. However, the mutations in exon 3 and 5 were also present in 6% and 2% of the normal population respectively. The UNC93A cDNA was shown to express at the cell membrane and encodes for a protein of 60 kDa. Conclusions These results suggest that no evidence for UNC93A as a tumour suppressor gene in sporadic ovarian cancer has been identified and further research is required to evaluate its normal function and role in the pathogenesis of ovarian cancer.

  16. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  17. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  18. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  19. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells

    International Nuclear Information System (INIS)

    Gutierrez-Barrera, Angelica M.; Menter, David G.; Abbruzzese, James L.; Reddy, Shrikanth A.G.

    2007-01-01

    Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells

  20. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  1. Use of antidepressants and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Mørch, Lina S; Dehlendorff, Christian; Baandrup, Louise

    2017-01-01

    antidepressants, selective serotonin reuptake inhibitors, other antidepressants, and potential confounder drugs), medical and reproductive history and socioeconomic parameters, were obtained from nationwide registries. We used conditional logistic regression models to estimate adjusted odds ratios (ORs) and two.......80 (95% CI, 0.60-1.08). Among postmenopausal women, the inverse association was restricted to users of menopausal hormone therapy. In conclusion, use of selective serotonin reuptake inhibitors was associated with a decreased risk of epithelial ovarian cancer; thereby implying potential chemopreventive...

  2. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  3. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  4. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  5. Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Dingxiao Zhang

    2016-03-01

    Full Text Available Prostate cancer is the second leading cause of cancer-related deaths among American men [1]. The prostate gland mainly contains basal and luminal cells, which are constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here, for the first time, we describe a whole-genome transcriptome analysis of human benign prostatic basal and luminal populations by using deep RNA sequencing (GSE67070 [2]. Combined with comprehensive molecular and biological characterizations, we show that the differential gene expression profiles account for their distinct functional phenotypes. Strikingly, in contrast to luminal cells, basal cells preferentially express gene categories associated with stem cells, neural and neuronal development, and RNA processing. Of clinical relevance, the treatment failed castration-resistant and anaplastic prostate cancers molecularly resemble a basal-like phenotype. We also identified genes associated with patient clinical outcome. Therefore, we provide a gene expression resource for understanding human prostate epithelial lineages, and link the cell-type specific gene signatures to subtypes of prostate cancer development. Keywords: Prostate epithelial cells, Basal cells, Luminal cells, RNA-seq

  6. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia.

    Science.gov (United States)

    Gosmann, Christina; Mattarollo, Stephen R; Bridge, Jennifer A; Frazer, Ian H; Blumenthal, Antje

    2014-09-01

    Persistent infection with high-risk human papillomaviruses (HPV) causes epithelial hyperplasia that can progress to cancer and is thought to depend on immunosuppressive mechanisms that prevent viral clearance by the host. IL-17 is a cytokine with diverse functions in host defense and in the pathology of autoimmune disorders, chronic inflammatory diseases, and cancer. We analyzed biopsies from patients with HPV-associated cervical intraepithelial neoplasia grade 2/3 and murine skin displaying HPV16 E7 protein-induced epithelial hyperplasia, which closely models hyperplasia in chronic HPV lesions. Expression of IL-17 and IL-23, a major inducer of IL-17, was elevated in both human HPV-infected and murine E7-expressing lesions. Using a skin-grafting model, we demonstrated that IL-17 in HPV16 E7 transgenic skin grafts inhibited effective host immune responses against the graft. IL-17 was produced by CD3(+) T cells, predominantly CD4(+) T cells in human, and CD4(+) and γδ T cells in mouse hyperplastic lesions. IL-23 and IL-1β, but not IL-18, induced IL-17 production in E7 transgenic skin. Together, these findings demonstrate an immunosuppressive role for IL-17 in HPV-associated epithelial hyperplasia and suggest that blocking IL-17 in persistent viral infection may promote antiviral immunity and prevent progression to cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Radiation therapy for epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Dembo, A.J.

    1987-01-01

    Several principles governing the cure of patients with ovarian cancer by radiotherapy were established during the last decade. The author reviews some of the studies at The Princess Margaret Hospital (PMH), which led to the establishment of the following principles: The entire peritoneal cavity should be encompassed by the treatment field, because once the disease has spread beyond the ovary, the entire peritoneal cavity is at risk for recurrent cancer. The moving-strip and open-field techniques are equally effective in tumor control. Late complications can be kept to a minimum (<5% bowel surgery, <1% radiation hepatitis, < 1% treatment mortality), but their frequency increases with increasing total radiation dosage, increasing fraction size, and possibly the extent of the previous surgical procedures (Dembo 1985a). Optimal selection of patients for radiotherapy compared with other forms of treatment is based on grouping of patients according to prognostic factors, including presenting stage of disease, amount and site of residual tumor, and histophatologic features. The potential exists for abdominopelvic radiation to be applied curatively as consolidation or as salvage therapy for patients whose disease has not been completely eradicated by chemotherapy;however, further study is needed to clarify the magnitude of this benefit, the situations in which radiotherapy is indicated, and factors that determine the toxicity of the combined-modality treatment

  8. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    Science.gov (United States)

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. © 2015 WILEY PERIODICALS, INC.

  9. [Expressions of Ras and Sos1 in epithelial ovarian cancer tissues and their clinical significance].

    Science.gov (United States)

    Xiao, Zheng-Hua; Linghu, Hua; Liu, Qian-Fen

    2016-11-20

    To detect the expressions of Ras and Sos1 proteins in human epithelial ovarian cancer (EOC) tissues and explore their correlation with the clinicopathological features of the patients. The expressions of Ras and Sos1 proteins were detected immunohistochemically in 62 EOC tissues, 5 borderline ovarian cancer tissues, 15 benign epithelial ovarian neoplasm tissues, and 18 normal ovarian tissues. The EOC tissues showed significantly higher expression levels of both Ras and Sos1 than the other tissues tested (Ptissues, Ras and Sos1 proteins were expressed mostly on the cell membrane and in the cytoplasm. The expression level of Ras was correlated with pathological types of the tumor (Ptissue-specific variation of Ras expression can lend support to a specific diagnosis of ovarian serous adenocarcinoma. The association of Ras and Sos1 protein expression with the tumor-free survival time of the patients awaits further investigation with a larger sample size.

  10. Circadian Gating of Epithelial-to-Mesenchymal Transition in Breast Cancer Cells Via Melatonin-Regulation of GSK3β

    Science.gov (United States)

    Mao, Lulu; Dauchy, Robert T.; Blask, David E.; Slakey, Lauren M.; Xiang, Shulin; Yuan, Lin; Dauchy, Erin M.; Shan, Bin; Brainard, George C.; Hanifin, John P.; Duplessis, Tamika T.; Hill, Steven M.

    2012-01-01

    Disturbed sleep-wake cycle and circadian rhythmicity are associated with cancer, but the underlying mechanisms are unknown. Employing a tissue-isolated human breast xenograft tumor nude rat model, we observed that glycogen synthase kinase 3β (GSK3β), an enzyme critical in metabolism and cell proliferation/survival, exhibits a circadian rhythm of phosphorylation in human breast tumors. Exposure to light-at-night suppresses the nocturnal pineal melatonin synthesis, disrupting the circadian rhythm of GSK3β phosphorylation. Melatonin activates GSK3β by inhibiting the serine-threonine kinase Akt phosphorylation, inducing β-catenin degradation and inhibiting epithelial-to-mesenchymal transition, a fundamental process underlying cancer metastasis. Thus, chronic circadian disruption by light-at-night via occupational exposure or age-related sleep disturbances may contribute to cancer incidence and the metastatic spread of breast cancer by inhibiting GSK3β activity and driving epithelial-to-mesenchymal transition in breast cancer patients. PMID:23002080

  11. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    Science.gov (United States)

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  12. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  13. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  14. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap Junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1999-01-01

    .... These agents also inhibit gap junctional intercellular communication (GJIC). This inhibition may contribute to the enhancement of breast epithelial growth and breast cancer formation by xenobiotics...

  15. [Characterization of epithelial primary culture from human conjunctiva].

    Science.gov (United States)

    Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A

    2014-01-01

    To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  16. Studies in human skin epithelial cell carcinogenesis

    International Nuclear Information System (INIS)

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo[a]pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and 32 P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the 32 P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts

  17. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer.

    Science.gov (United States)

    Busch, Alina; Bauer, Larissa; Wardelmann, Eva; Rudack, Claudia; Grünewald, Inga; Stenner, Markus

    2017-05-01

    Cancer of the major salivary glands comprises a morphologically diverse group of rare tumours of largely unknown cause. Epithelial-mesenchymal transition (EMT) has been shown to play a significant prognostic role in various human cancers. The aim was to assess the expression of EMT markers in different histological subtypes of parotid gland cancer (PGC) and analyse their prognostic value. We examined 94 PGC samples (13 histological subtypes) for the expression of MIB-1, epithelial cadherin (E-cadherin), β-catenin, vimentin and cytokeratin 8/18 (CK8/18) by means of immunohistochemistry. The experimental findings were correlated with clinicopathological and survival parameters. We detected all analysed EMT and proliferation markers in specifically different constellations within the examined histological subtypes of PGC. We found high epithelial marker expressions (CK8/18, E-cadherin, membranous β-catenin) only in a distinct variety of carcinomas. A high proliferation rate (high MIB-1 expression) as well as a combination of high CK8/18 and low vimentin expression was associated with a significantly worse survival. Our findings indicate that activation of the EMT pathway is a relevant explanation for tumour progression in individual histological subtypes of malignant parotid gland lesions, but by far not in all. Evidence of EMT activation in PGC cannot be seen as an isolated prognostic factor. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  19. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E 2 , directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.

  20. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    Full Text Available Feng Wang,1,2 Hai Li,3 Xiao-Gang Yan,4 Zhi-Wei Zhou,2 Zhi-Gang Yi,5 Zhi-Xu He,6 Shu-Ting Pan,7 Yin-Xue Yang,3 Zuo-Zheng Wang,1 Xueji Zhang,8 Tianxing Yang,9 Jia-Xuan Qiu,7 Shu-Feng Zhou21Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colorectal Surgery, General Hospital, Ningxia Medical University, 4Department of Oncological Surgery, The First People’s Hospital of Yinchuan, 5Department of General Surgery, Changqing Yangehu Hospital, Yinchuan, 6Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 7Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 8Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 9Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USAAbstract: Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS, a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and Bx

  1. Engineered human broncho-epithelial tissue-like assemblies

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  2. Optimal primary surgical treatment for advanced epithelial ovarian cancer.

    Science.gov (United States)

    Elattar, Ahmed; Bryant, Andrew; Winter-Roach, Brett A; Hatem, Mohamed; Naik, Raj

    2011-08-10

    Ovarian cancer is the sixth most common cancer among women. In addition to diagnosis and staging, primary surgery is performed to achieve optimal cytoreduction (surgical efforts aimed at removing the bulk of the tumour) as the amount of residual tumour is one of the most important prognostic factors for survival of women with epithelial ovarian cancer. An optimal outcome of cytoreductive surgery remains a subject of controversy to many practising gynae-oncologists. The Gynaecologic Oncology group (GOG) currently defines 'optimal' as having residual tumour nodules each measuring 1 cm or less in maximum diameter, with complete cytoreduction (microscopic disease) being the ideal surgical outcome. Although the size of residual tumour masses after surgery has been shown to be an important prognostic factor for advanced ovarian cancer, it is unclear whether it is the surgical procedure that is directly responsible for the superior outcome that is associated with less residual disease. To evaluate the effectiveness and safety of optimal primary cytoreductive surgery for women with surgically staged advanced epithelial ovarian cancer (stages III and IV).To assess the impact of various residual tumour sizes, over a range between zero and 2 cm, on overall survival. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2010, Issue 3) and the Cochrane Gynaecological Cancer Review Group Trials Register, MEDLINE and EMBASE (up to August 2010). We also searched registers of clinical trials, abstracts of scientific meetings, reference lists of included studies and contacted experts in the field. Retrospective data on residual disease from randomised controlled trials (RCTs) or prospective and retrospective observational studies which included a multivariate analysis of 100 or more adult women with surgically staged advanced epithelial ovarian cancer and who underwent primary cytoreductive surgery followed by adjuvant platinum

  3. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  4. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com [Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724 (United States); Tissue Tech Inc., Miami, FL 33173 (United States); Zhu, Min; Lance, Peter [Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  5. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    Highlights: ► Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE 2 . ► The fibroblasts interact with human colonic epithelial cancer cells. ► Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. ► Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulation of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.

  6. E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer

    KAUST Repository

    Kothandaraman, Narasimhan; Bajic, Vladimir B.; Brendan, Pang NK; Huak, Chan Y; Keow, Peh B; Razvi, Khalil; Salto-Tellez, Manuel; Choolani, Mahesh

    2010-01-01

    Background: Ovarian epithelial cancer (OEC) usually presents in the later stages of the disease. Factors, especially those associated with cell-cycle genes, affecting the genesis and tumour progression for ovarian cancer are largely unknown. We

  7. Chronic Recreational Physical Inactivity and Epithelial Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Cannioto, Rikki; LaMonte, Michael J.; Risch, Harvey A

    2016-01-01

    physical activity and epithelial ovarian cancer (EOC) is less clear. Despite extensive research, including several epidemiological studies and 2 systematic reviews, insufficient and inconsistent evidence is available to support an independent association between recreational physical activity and risk......It is estimated that 5% of women in the United States and 10% to 50% of women worldwide are physically inactive. Previous studies have demonstrated that recreational physical activity is associated with decreased risks of developing breast, colon, and endometrial cancers. The association between...... of EOC. This is largely due to use of common methodology in most studies that overlooks recreational physical inactivity as an independent risk factor for EOC. The aim of this study was to determine whether self-reported, chronic, recreational physical inactivity is an independent risk factor...

  8. Circulating Vitamin D and Risk of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Alan A. Arslan

    2009-01-01

    Full Text Available We conducted a nested case-control study within two prospective cohorts, the New York University Women's Health Study and the Northern Sweden Health and Disease Study, to examine the association between prediagnostic circulating levels of 25-hydroxy vitamin D (25(OHD and the risk of subsequent invasive epithelial ovarian cancer (EOC. The 25(OHD levels were measured in serum or plasma from 170 incident cases of EOC and 373 matched controls. Overall, circulating 25(OHD levels were not associated with the risk of EOC in combined cohort analysis: adjusted OR for the top tertile versus the reference tertile, 1.09 (95% CI, 0.59–2.01. In addition, there was no evidence of an interaction effect between VDR SNP genotype or haplotype and circulating 25(OHD levels in relation to ovarian cancer risk, although more complex gene-environment interactions may exist.

  9. Chronic recreational physical inactivity and epithelial ovarian cancer risk

    DEFF Research Database (Denmark)

    Cannioto, Rikki; LaMonte, Michael J.; Risch, Harvey A

    2016-01-01

    . We conducted a pooled analysis of nine studies from the Ovarian Cancer Association Consortium to investigate the association between chronic recreational physical inactivity and EOC risk. Methods: In accordance with the 2008 Physical Activity Guidelines for Americans, women reporting no regular......Background: Despite a large body of literature evaluating the association between recreational physical activity and epithelial ovarian cancer (EOC) risk, the extant evidence is inconclusive, and little is known about the independent association between recreational physical inactivity and EOC risk......, weekly recreational physical activity were classified as inactive. Multivariable logistic regression was utilized to estimate the ORs and 95% confidence intervals (CI) for the association between inactivity and EOC risk overall and by subgroups based upon histotype, menopausal status, race, and body mass...

  10. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  11. YY1 modulates taxane response in epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Noriomi; Huang, Zhiqing; Baba, Tsukasa; Lee, Paula S.; Barnett, Jason C.; Mori, Seiichi; Chang, Jeffrey T.; Kuo, Wen-Lin; Gusberg, Alison H.; Whitaker, Regina S.; Gray, JoeW.; Fujii, Shingo; Berchuck, Andrew; Murphy, Susan K.

    2008-10-10

    The results of this study show that a high YY1 gene signature (characterized by coordinate elevated expression of transcription factor YY1 and putative YY1 target genes) within serous epithelial ovarian cancers is associated with enhanced response to taxane-based chemotherapy and improved survival. If confirmed in a prospective study, these results have important implications for the potential future use of individualized therapy in treating patients with ovarian cancer. Identification of the YY1 gene signature profile within a tumor prior to initiation of chemotherapy may provide valuable information about the anticipated response of these tumors to taxane-based drugs, leading to better informed decisions regarding chemotherapeutic choice. Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer (SEOC) were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary SEOC and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using siRNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in SEOC and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA crosslinking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1

  12. The kinetics of epithelial cell generation: its relevance to cancer and ageing.

    Science.gov (United States)

    Morris, J A

    1999-07-07

    A hierarchical model of epithelial cell generation is proposed, in which even in extreme old age mature epithelial cells in humans are only a limited number of cell divisions from the zygote (60-120). This contrasts with conventional models in which regularly cycling stem cells can be several thousands of cell divisions from the zygote. The hierarchical model is supported by data on the rate of telomere shortening both in vivo and in vitro, and by data on the rate of synonymous substitutions in Y-linked, X-linked and autosomal genes in rodents. Limiting the number of cell generations leads to a vast reduction in the risk of cancer and reduces the rate of ageing. It is suggested that longer-lived animals need stricter control of the hierarchy than do shorter-lived animals and this difference has implications for theories of ageing. Copyright 1999 Academic Press.

  13. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  14. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    International Nuclear Information System (INIS)

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-01-01

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ERα signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ERα was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ERα-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ERα-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  15. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  16. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  17. High-risk HPV is not associated with epithelial ovarian cancer in a Caucasian population

    DEFF Research Database (Denmark)

    Ingerslev, Kasper Hjorth; Hogdall, Estrid; Skovrider-Ruminski, Wojciech

    2016-01-01

    BACKGROUND: High-risk human papillomavirus (HPV) has been suspected to play a role in the carcinogenesis of epithelial ovarian cancer (EOC). However, results from previous studies are conflicting. In most of these studies, the number of tissue samples was small. The current study was therefore...... undertaken to examine the prevalence of high-risk HPV DNA in EOC in a large series of patients. METHOD: Formalin-fixed, paraffin-imbedded tumor tissue samples from 198 cases consecutively included in the Danish Pelvic Mass Study were analyzed. The material included 163 serous adenocarcinomas, 15 endometrioid...

  18. Morphologic, Immunophenotypic, and Molecular Features of Epithelial Ovarian Cancer.

    Science.gov (United States)

    Ramalingam, Preetha

    2016-02-01

    Epithelial ovarian cancer comprises a heterogeneous group of tumors. The four most common subtypes are serous, endometrioid, clear cell, and mucinous carcinoma. Less common are transitional cell tumors, including transitional cell carcinoma and malignant Brenner tumor. While in the past these subtypes were grouped together and designated as epithelial ovarian tumors, these tumor types are now known to be separate entities with distinct clinical and biologic behaviors. From a therapeutic standpoint, current regimens employ standard chemotherapy based on stage and grade rather than histotype. However, this landscape may change in the era of personalized therapy, given that most subtypes (with the exception of high-grade serous carcinoma) are relatively resistant to chemotherapy. It is now well-accepted that high-grade and low-grade serous carcinomas represent distinct entities rather than a spectrum of the same tumor type. While they are similar in that patients present with advanced-stage disease, their histologic and molecular features are entirely different. High-grade serous carcinoma is associated with TP53 mutations, whereas low-grade serous carcinomas are associated with BRAF and KRAS mutations. Endometrioid and clear cell carcinomas typically present as early-stage disease and are frequently associated with endometriosis. Mucinous carcinomas typically present as large unilateral masses and often show areas of mucinous cystadenoma and mucinous borderline tumor. It must be emphasized that primary mucinous carcinomas are uncommon tumors, and metastasis from other sites such as the appendix, colon, stomach, and pancreaticobiliary tract must always be considered in the differential diagnosis. Lastly, transitional cell tumors of the ovary, specifically malignant Brenner tumors, are quite uncommon. High-grade serous carcinoma often has a transitional cell pattern, and adequate sampling in most cases shows more typical areas of serous carcinoma. Immunohistochemical

  19. The fate of epithelial cells in the human large intestine.

    Science.gov (United States)

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  20. Invasion of Human Oral Epithelial Cells by Prevotella intermedia

    Science.gov (United States)

    Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann

    1998-01-01

    Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397

  1. Stomatin-like protein 2 is overexpressed in epithelial ovarian cancer and predicts poor patient survival

    International Nuclear Information System (INIS)

    Sun, Fei; Ding, Wen; He, Jie-Hua; Wang, Xiao-Jing; Ma, Ze-Biao; Li, Yan-Fang

    2015-01-01

    Stomatin-like protein 2 (SLP-2, also known as STOML2) is a stomatin homologue of uncertain function. SLP-2 overexpression has been suggested to be associated with cancer progression, resulting in adverse clinical outcomes in patients. Our study aim to investigate SLP-2 expression in epithelial ovarian cancer cells and its correlation with patient survival. SLP-2 mRNA and protein expression levels were analysed in five epithelial ovarian cancer cell lines and normal ovarian epithelial cells using real-time PCR and western blotting analysis. SLP-2 expression was investigated in eight matched-pair samples of epithelial ovarian cancer and adjacent noncancerous tissues from the same patients. Using immunohistochemistry, we examined the protein expression of paraffin-embedded specimens from 140 patients with epithelial ovarian cancer, 20 cases with borderline ovarian tumours, 20 cases with benign ovarian tumours, and 20 cases with normal ovarian tissues. Statistical analyses were applied to evaluate the clinicopathological significance of SLP-2 expression. SLP-2 mRNA and protein expression levels were significantly up-regulated in epithelial ovarian cancer cell lines and cancer tissues compared with normal ovarian epithelial cells and adjacent noncancerous ovarian tissues. Immunohistochemistry analysis revealed that the relative overexpression of SLP-2 was detected in 73.6 % (103/140) of the epithelial ovarian cancer specimens, 45.0 % (9/20) of the borderline ovarian specimens, 30.0 % (6/20) of the benign ovarian specimens and none of the normal ovarian specimens. SLP-2 protein expression in epithelial ovarian cancer was significantly correlated with the tumour stage (P < 0.001). Epithelial ovarian cancer patients with higher SLP-2 protein expression levels had shorter progress free survival and overall survival times compared to patients with lower SLP-2 protein expression levels. Multivariate analyses showed that SLP-2 expression levels were an independent prognostic

  2. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Khazaei

    2016-09-01

    Full Text Available Objective(s: Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods:In this in vitro study, endometrial biopsies from endometriosis patients (n=9 were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml. Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0, 10, 25, 50 and 100 micromole/liter (µM concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO–Ethidium Bromide (EB double staining and Terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P

  3. Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Paul H van der Horst

    Full Text Available BACKGROUND: Every year approximately 74,000 women die of endometrial cancer, mainly due to recurrent or metastatic disease. The presence of tumor infiltrating lymphocytes (TILs as well as progesterone receptor (PR positivity has been correlated with improved prognosis. This study describes two mechanisms by which progesterone inhibits metastatic spread of endometrial cancer: by stimulating T-cell infiltration and by inhibiting epithelial-to-mesenchymal cell transition (EMT. METHODOLOGY AND PRINCIPAL FINDINGS: Paraffin sections from patients with (n = 9 or without (n = 9 progressive endometrial cancer (recurrent or metastatic disease were assessed for the presence of CD4+ (helper, CD8+ (cytotoxic and Foxp3+ (regulatory T-lymphocytes and PR expression. Progressive disease was observed to be associated with significant loss of TILs and loss of PR expression. Frozen tumor samples, used for genome-wide expression analysis, showed significant regulation of pathways involved in immunesurveillance, EMT and metastasis. For a number of genes, such as CXCL14, DKK1, DKK4, PEG10 and WIF1, quantitive RT-PCR was performed to verify up- or downregulation in progressive disease. To corroborate the role of progesterone in regulating invasion, Ishikawa (IK endometrial cancer cell lines stably transfected with PRA (IKPRA, PRB (IKPRB and PRA+PRB (IKPRAB were cultured in presence/absence of progesterone (MPA and used for genome-wide expression analysis, Boyden- and wound healing migration assays, and IHC for known EMT markers. IKPRB and IKPRAB cell lines showed MPA induced inhibition of migration and loss of the mesenchymal marker vimentin at the invasive front of the wound healing assay. Furthermore, pathway analysis of significantly MPA regulated genes showed significant down regulation of important pathways involved in EMT, immunesuppression and metastasis: such as IL6-, TGF-β and Wnt/β-catenin signaling. CONCLUSION: Intact progesterone signaling in non

  4. Genome-wide ChIP-seq analysis of human TOP2B occupancy in MCF7 breast cancer epithelial cells

    Directory of Open Access Journals (Sweden)

    Catriona M. Manville

    2015-11-01

    Full Text Available We report the whole genome ChIP seq for human TOP2B from MCF7 cells. Using three different peak calling methods, regions of binding were identified in the presence or absence of the nuclear hormone estradiol, as TOP2B has been reported to play a role in ligand-induced transcription. TOP2B peaks were found across the whole genome, 50% of the peaks fell either within a gene or within 5 kb of a transcription start site. TOP2B peaks coincident with gene promoters were less frequently associated with epigenetic features marking active promoters in estradiol treated than in untreated cells. Significantly enriched transcription factor motifs within the DNA sequences underlying the peaks were identified. These included SP1, KLF4, TFAP2A, MYF, REST, CTCF, ESR1 and ESR2. Gene ontology analysis of genes associated with TOP2B peaks found neuronal development terms including axonogenesis and axon guidance were significantly enriched. In the absence of functional TOP2B there are errors in axon guidance in the zebrafish eye. Specific heparin sulphate structures are involved in retinal axon targeting. The glycosaminoglycan biosynthesis–heparin sulphate/heparin pathway is significantly enriched in the TOP2B gene ontology analysis, suggesting changes in this pathway in the absence of TOP2B may cause the axon guidance faults.

  5. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    Science.gov (United States)

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  6. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis

    Science.gov (United States)

    Lee, Geum-A.; Hwang, Kyung-A.; Choi, Kyung-Chul

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a key role in tumor progression. The cells undergoing EMT upregulate the expression of cell motility-related proteins and show enhanced migration and invasion. The hallmarks of EMT in cancer cells include changed cell morphology and increased metastatic capabilities in cell migration and invasion. Therefore, prevention of EMT is an important tool for the inhibition of tumor metastasis. A novel preventive therapy is needed, such as treatment of natural dietary substances that are nontoxic to normal human cells, but effective in inhibiting cancer cells. Phytoestrogens, such as genistein, resveratrol, kaempferol and 3,3′-diindolylmethane (DIM), can be raised as possible candidates. They are plant-derived dietary estrogens, which are found in tea, vegetables and fruits, and are known to have various biological efficacies, including chemopreventive activity against cancers. Specifically, these phytoestrogens may induce not only anti-proliferation, apoptosis and cell cycle arrest, but also anti-metastasis by inhibiting the EMT process in various cancer cells. There have been several signaling pathways found to be associated with the induction of the EMT process in cancer cells. Phytoestrogens were demonstrated to have chemopreventive effects on cancer metastasis by inhibiting EMT-associated pathways, such as Notch-1 and TGF-beta signaling. As a result, phytoestrogens can inhibit or reverse the EMT process by upregulating the expression of epithelial phenotypes, including E-cadherin, and downregulating the expression of mesenchymal phenotypes, including N-cadherin, Snail, Slug, and vimentin. In this review, we focused on the important roles of phytoestrogens in inhibiting EMT in many types of cancer and suggested phytoestrogens as prominent alternative compounds to chemotherapy. PMID:27231938

  7. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    Science.gov (United States)

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Circulating 25-Hydroxyvitamin D and Risk of Epithelial Ovarian Cancer

    Science.gov (United States)

    Zheng, Wei; Danforth, Kim N.; Tworoger, Shelley S.; Goodman, Marc T.; Arslan, Alan A.; Patel, Alpa V.; McCullough, Marjorie L.; Weinstein, Stephanie J.; Kolonel, Laurence N.; Purdue, Mark P.; Shu, Xiao-Ou; Snyder, Kirk; Steplowski, Emily; Visvanathan, Kala; Yu, Kai; Zeleniuch-Jacquotte, Anne; Gao, Yu-Tang; Hankinson, Susan E.; Harvey, Chinonye; Hayes, Richard B.; Henderson, Brian E.; Horst, Ronald L.; Helzlsouer, Kathy J.

    2010-01-01

    A role for vitamin D in ovarian cancer etiology is supported by ecologic studies of sunlight exposure, experimental mechanism studies, and some studies of dietary vitamin D intake and genetic polymorphisms in the vitamin D receptor. However, few studies have examined the association of circulating 25-hydroxyvitamin D (25(OH)D), an integrated measure of vitamin D status, with ovarian cancer risk. A nested case-control study was conducted among 7 prospective studies to evaluate the circulating 25(OH)D concentration in relation to epithelial ovarian cancer risk. Logistic regression models were used to estimate odds ratios and 95% confidence intervals among 516 cases and 770 matched controls. Compared with 25(OH)D concentrations of 50–<75 nmol/L, no statistically significant associations were observed for <37.5 (odds ratio (OR) = 1.21, 95% confidence interval (CI): 0.87, 1.70), 37.5–<50 (OR = 1.03, 95% CI: 0.75, 1.41), or ≥75 (OR = 1.11, 95% CI: 0.79, 1.55) nmol/L. Analyses stratified by tumor subtype, age, body mass index, and other variables were generally null but suggested an inverse association between 25(OH)D and ovarian cancer risk among women with a body mass index of ≥25 kg/m2 (Pinteraction < 0.01). In conclusion, this large pooled analysis did not support an overall association between circulating 25(OH)D and ovarian cancer risk, except possibly among overweight women. PMID:20562186

  9. Epithelial cells in nipple aspirate fluid and subsequent breast cancer risk: A historic prospective study

    International Nuclear Information System (INIS)

    Baltzell, Kimberly A; Moghadassi, Michelle; Rice, Terri; Sison, Jennette D; Wrensch, Margaret

    2008-01-01

    Past studies have shown that women with abnormal cytology or epithelial cells in nipple aspirate fluid (NAF) have an increased relative risk (RR) of breast cancer when compared to women from whom NAF was attempted but not obtained (non-yielders). This study analyzed NAF results from a group of women seen in a breast clinic between 1970–1991 (N = 2480). Our analysis presented here is an aggregate of two sub-groups: women with questionnaire data (n = 712) and those with NAF visits beginning in 1988 (n = 238), the year in which cancer case information was uniformly collected in California. Cytological classification was determined for a group of 946 women using the most abnormal epithelial cytology observed in fluid specimens. Breast cancer incidence and mortality status was determined through June 2006 using data from the California Cancer Registry, California Vital Statistics and self-report. We estimated odd ratios (ORs) for breast cancer using logistic regression analysis, adjusting for age. We analyzed breast cancer risk related to abnormality of NAF cytology using non-yielders as the referent group and breast cancer risk related to the presence or absence of epithelial cells in NAF, using non-yielders/fluid without epithelial cells as the referent group. Overall, 10% (93) of the 946 women developed breast cancer during the follow-up period. Age-adjusted ORs and 95% confidence intervals (C.I.) compared to non-yielders were 1.4 (0.3 to 6.4), 1.7 (0.9 to 3.5), and 2.0 (1.1 to 3.6) for women with fluid without epithelial cells, normal epithelial cells and hyperplasia/atypia, respectively. Comparing the presence or absence of epithelial cells in NAF, women with epithelial cells present in NAF were more likely to develop breast cancer than non-yielders or women with fluid without epithelial cells (RR = 1.9, 1.2 to 3.1). These results support previous findings that 1) women with abnormal epithelial cells in NAF have an increased risk of breast cancer when compared to

  10. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  11. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    Science.gov (United States)

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain 1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis

  12. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  13. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells.

    Science.gov (United States)

    Tan, Jiemei; Qiu, Kaifeng; Li, Mingyi; Liang, Ying

    2015-10-07

    LncRNAs have a critical role in the regulation of cellular processes such as cancer progression and metastasis. In the present study, we confirmed that TUG1 was overexpressed in bladder cancer tissues and established cell lines. Knockdown of TUG1 inhibited bladder cancer cell metastasis both in vitro and in vivo. Furthermore, we found that TUG1 promoted cancer cell invasion and radioresistance through inducing epithelial-to-mesenchymal transition (EMT). Interestingly, TUG1 decreased the expression of miR-145 and there was a reciprocal repression between TUG1 and miR-145 in an Argonaute2-dependent manner. ZEB2 was identified as a down-stream target of miR-145 and TUG1 exerted its function through the miR-145/ZEB2 axis. In summary, our data indicated that blocking TUG1 function may be an effective anti-cancer therapy. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Functional characterization of the transcription factor ZEB1 in epithelial to mesenchymal transition and cancer progression

    International Nuclear Information System (INIS)

    Sultan, A.

    2010-01-01

    Epithelial to mesenchymal transition (EMT) is implicated in the progression of primary tumours towards metastasis and is likely caused by a pathological activation of transcription factors regulating EMT in embryonic development. To analyse EMT-causing pathways in tumourigenesis, transcriptional targets of the E-cadherin repressor ZEB1 in invasive humancancer cells were identified. We show that ZEB1 repressed multiple key determinants of epithelial differentiation and cell-cell adhesion, including the cell polarity genes Crumbs3, HUGL2, PKP3 and Pals1-associated tight junction protein. ZEB1 associated with their endogenous promoters in vivo, and strongly repressed promoter activities in reporter assays. ZEB1 downregulation in undifferentiated cancer cells by RNA interference was sufficient to upregulate expression of these cell polarity genes on the RNA and protein level, to re-establish epithelial features and to impair cell motility in vitro. In human colorectal cancer, ZEB1 expression was limited to the tumour-host interface and was accompanied by loss of intercellular adhesion and tumour cell invasion. EMT-inducing transcriptional repressor ZEB1 promotes colorectal cancer cell metastasis and loss of cell polarity. Thereby, ZEB1 suppresses the expression of cell polarity factors, in particular of Lgl2, which was found to be reduced in colorectal and breast cancers. In invasive ductal and lobular breast cancer, upregulation of ZEB1 was stringently coupled to cancer cell dedifferentiation. The invasion potential of MDA-MB-231, a highly invasive breast cancer cell line, is shown to be under the control of ZEB1. Over-expression of ZEB1downregulates and relocalizes E-Cadherin in MCF7 breast cancer cells; moreover, ZEB1 overexpression results in reduced proliferation rate of these cells. Most importantly, we show that ZEB1 mediated downregulation of E-cadherin involves chromatin modifications. Markers of transcriptionally active chromatin Acetylated H3 and Acetylated

  15. Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment

    Directory of Open Access Journals (Sweden)

    Clare eScott

    2013-12-01

    Full Text Available Despite increasing evidence that precision therapy targeted to the molecular drivers of a cancer has the potential to improve clinical outcomes, high-grade epithelial ovarian cancer patients are currently treated without consideration of molecular phenotype, and predictive biomarkers that could better inform treatment remain unknown. Delivery of precision therapy requires improved integration of laboratory-based models and cutting-edge clinical research, with pre-clinical models predicting patient subsets that will benefit from a particular targeted therapeutic. Patient-derived xenografts (PDX are renewable tumor models engrafted in mice, generated from fresh human tumors without prior in vitro exposure. PDX models allow an invaluable assessment of tumor evolution and adaptive response to therapy.PDX models have been applied to preclinical drug testing and biomarker identification in a number of cancers including ovarian, pancreatic, breast and prostate cancers. These models have been shown to be biologically stable and accurately reflect the patient tumor with regards to histopathology, gene expression, genetic mutations and therapeutic response. However, pre-clinical analyses of molecularly annotated PDX models derived from high-grade serous ovarian cancer (HG-SOC remain limited. In vivo response to conventional and/or targeted therapeutics has only been described for very small numbers of individual HG-SOC PDX in conjunction with sparse molecular annotation and patient outcome data. Recently, two consecutive panels of epithelial ovarian cancer PDX correlate in vivo platinum response with molecular aberrations and source patient clinical outcomes. These studies underpin the value of PDX models to better direct chemotherapy and predict response to targeted therapy. Tumor heterogeneity, before and following treatment, as well as the importance of multiple molecular aberrations per individual tumor underscore some of the important issues

  16. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  17. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Science.gov (United States)

    Yeung, Bonnie H Y; Wong, Chris K C

    2011-01-01

    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  18. Detecting Temporal and Spatial Effects of Epithelial Cancers with Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew D. Keller

    2008-01-01

    Full Text Available Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.

  19. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells.

    Science.gov (United States)

    Li, Mingchuan; Wang, Yong Xing; Luo, Yong; Zhao, Jiahui; Li, Qing; Zhang, Jiao; Jiang, Yongguang

    2016-07-01

    Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death. Hypoxia is an environmental stimulus that plays an important role in the development and cancer progression especially for solid tumors. The key regulator under hypoxic conditions is stabilized hypoxia-inducible factor (HIF)-1α. In the present study, immune-fluorescent staining, siRNAs, qRT-PC, immunoblotting, cell migration and invasion assays were carried out to test typical epithelial to mesenchymal transition under hypoxia and the key regulators of this process in PC3, a human prostate cancer cell line. Our data demonstrated that hypoxia induces diverse molecular, phenotypic and functional changes in prostate cancer cells that are consistent with EMT. We also showed that a cell signal factor such as HIF-1α, which might be stabilized under hypoxic environment, is involved in EMT and cancer cell invasive potency. The induced hypoxia could be blocked by HIF-1α gene silencing and reoxygenation of EMT in prostate cancer cells, hypoxia partially reversed accompanied by a process of mesenchymal-epithelial reverting transition (MErT). EMT might be induced by activation of HIF-1α-dependent cell signaling in hypoxic prostate cancer cells.

  20. Detection of genomic instability in normal human bronchial epithelial cells exposed to 238Pu

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Fukushima, N.H.; Neft, R.E.; Lechner, J.F.

    1994-01-01

    Alpha particle-emitting radon daughters constitute a risk for development of lung cancer in humans. The development of this disease involves multiple genetic alterations. These changes and the time course they follow are not yet defined despite numerous in vitro endeavors to transform human lung cells with various physical or chemical agents. However, genomic instability, characterized both by structural and numerical chromosomal aberrations and by elevated rates of point mutations, is a common feature of tumor cells. Further, both types of genomic instability have been reported in the noncancerous progeny of normal murine hemopoietic cells exposed in vitro to α-particles. The purpose of this investigation was to determine if genomic instability is also a prominent feature of normal human bronchial epithelial cells exposed to α-particle irradiation from the decay of inhaled radon daughters

  1. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  2. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes

    OpenAIRE

    Taube, Joseph H.; Herschkowitz, Jason I.; Komurov, Kakajan; Zhou, Alicia Y.; Gupta, Supriya; Yang, Jing; Hartwell, Kimberly; Onder, Tamer T.; Gupta, Piyush B.; Evans, Kurt W.; Hollier, Brett G.; Ram, Prahlad T.; Lander, Eric S.; Rosen, Jeffrey M.; Weinberg, Robert A.

    2010-01-01

    The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-β1. Each of these factors is capable, on its own, of inducing an EMT in the human mammary epithelial (HMLE) cell line. However, the interactions between these reg...

  3. Epithelial cell proliferative activity of Barrett's esophagus : methodology and correlation with traditional cancer risk markers

    NARCIS (Netherlands)

    Peters, FTM; Ganesh, S; Kuipers, EJ; De Jager-Krikken, A; Karrenbeld, A; Harms, Geert; Sluiter, WJ; Koudstaal, J; Klinkenberg-Knol, EC; Lamers, CBHW; Kleibeuker, JH

    Barrett's esophagus (BE) is a premalignant condition, due to chronic gastroesophageal reflux. Effective antireflux therapy may diminish cancer risk. To evaluate this option an intermediate marker is needed. We developed a methodology for measurement of epithelial cell proliferative activity of

  4. Organoid culture systems for prostate epithelial and cancer tissue

    NARCIS (Netherlands)

    Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material

  5. Polymorphisms in stromal genes and susceptibility to serous epithelial ovarian cancer: a report from the Ovarian Cancer Association Consortium

    DEFF Research Database (Denmark)

    Amankwah, Ernest K; Wang, Qinggang; Schildkraut, Joellen M

    2011-01-01

    Alterations in stromal tissue components can inhibit or promote epithelial tumorigenesis. Decorin (DCN) and lumican (LUM) show reduced stromal expression in serous epithelial ovarian cancer (sEOC). We hypothesized that common variants in these genes associate with risk. Associations with sEOC among...

  6. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  7. Comparison of breast cancer mucin (BCM) and CA 15-3 in human breast cancer

    NARCIS (Netherlands)

    Garcia, M.B.; Blankenstein, M.A.; Wall, E. van der; Nortier, J.W.R.; Schornagel, J.H.; Thijssen, J.H.H.

    1990-01-01

    The Breast Cancer Mucin (BCM) enzyme immunoassay utilizes two monoclonal antibodies (Mab), M85/34 and F36/22, for the identification of a mucin-like glycoprotein in serum of breast cancer patients. We have compared BCM with CA 15-3, another member of the human mammary epithelial antigen

  8. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia

    Directory of Open Access Journals (Sweden)

    Nagayasu Egawa

    2015-07-01

    Full Text Available Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted.

  9. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia

    Science.gov (United States)

    Egawa, Nagayasu; Egawa, Kiyofumi; Griffin, Heather; Doorbar, John

    2015-01-01

    Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted. PMID:26193301

  10. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    DEFF Research Database (Denmark)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neopl...

  11. Regulation of potassium transport in human lens epithelial cells.

    Science.gov (United States)

    Lauf, Peter K; Warwar, Ronald; Brown, Thomas L; Adragna, Norma C

    2006-01-01

    The major K influx pathways and their response to thiol modification by N-ethylmaleimide (NEM) and protein kinase and phosphatase inhibitors were characterized in human lens epithelial B3 (HLE-B3) cells with Rb as K congener. Ouabain (0.1 mM) and bumetanide (5 microM) discriminated between the Na/K pump ( approximately 35% of total Rb influx) and Na-K-2Cl cotransport (NKCC) ( approximately 50%). Cl-replacement with nitrate or sulfamate revealed 100 microM, activated the Na/K pump and abolished NKCC but did not affect KCC. The data suggest at least partial inverse regulation of KCC and NKCC in HLE-B3 cells by signaling cascades involving serine, threonine and tyrosine phosphorylation/dephosphorylation equilibria.

  12. Depleted uranium induces neoplastic transformation in human lung epithelial cells.

    Science.gov (United States)

    Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce

    2010-02-15

    Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.

  13. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1998-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  14. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap Junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1997-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  15. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    International Nuclear Information System (INIS)

    Roberts, Joan E.; Wielgus, Albert R.; Boyes, William K.; Andley, Usha; Chignell, Colin F.

    2008-01-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 μM. Exposure to either UVA or visible light in the presence of > 5 μM fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 μM lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein α-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C 60 (OH) 22-26 is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo

  16. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  17. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  18. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  19. EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model?

    Directory of Open Access Journals (Sweden)

    Rossella Terragni

    Full Text Available Epidermal growth factor receptor (EGFR or HER-1 and its analog c-erbB-2 (HER-2 are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7% carcinomas were classified as intestinal-type and 9 (64.3% as diffuse-type. EGFR was overexpressed (≥ 1+ in 8 (42.1% cases and HER-2 (3+ in 11 (57.9% cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80% than in the diffuse-type (11.1%, p = 0.023. KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R. EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.

  20. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    International Nuclear Information System (INIS)

    Yang, T.C.; Holley, W.R.; Curtis, S.B.; Gruenert, D.C.; California Univ., San Francisco, CA

    1990-01-01

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D 0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D 0 value, was about 24 μm 2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm 2 ), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  1. Interval debulking surgery in advanced epithelial ovarian cancer.

    Science.gov (United States)

    Pecorelli, Sergio; Odicino, Franco; Favalli, Giuseppe

    2002-08-01

    Cytoreductive surgery and chemotherapy are the mainstay for the treatment of advanced epithelial ovarian cancer. In order to minimize the tumour burden before chemotherapy, cytoreductive surgery is usually performed first. The importance of the amount of residual disease as the main prognostic factor for patients suffering from advanced disease has been almost universally accepted even in the absence of prospective randomized trials addressing the benefit of cytoreductive surgery. In the last decade, the value of debulking surgery after induction chemotherapy - interval debulking surgery, IDS - has been widely debated, especially after the completion of a prospective randomized study from the EORTC addressing the introduction of a surgical procedure with debulking intent preceded and followed by cytoreductive chemotherapy. The rationale of such a strategy in the context of the primary treatment of advanced ovarian cancer lies in a higher cytoreductibility to the 'optimal' status forwarded, and possibly facilitated, by chemotherapy. The results demonstrated a prolongation of both progression-free survival and median survival in favour of patients randomized to IDS (5 and 6 months, respectively). Multivariate analysis revealed IDS to be an independent prognostic factor which reduced the risk of death by 33% at 3 years and by 48% in subsequent re-evaluation after more than 6 years of observation. Despite the above, results have been questioned by many, leading the GOG to perform a similar study which has been concluded very recently. Nevertheless, the main concern regarding the application of IDS in all instances relates to the morbidity of two major surgical procedures integrated within a short period during which cytotoxic chemotherapy is also administered. Neoadjuvant chemotherapy has been recently proposed to avoid a non-useful surgical procedure in patients considered 'optimally unresectable' after diagnosis of advanced ovarian cancer. Whether or not this newer

  2. Stat3: linking inflammation to epithelial cancer - more than a "gut" feeling?

    Directory of Open Access Journals (Sweden)

    Putoczki Tracy

    2010-05-01

    Full Text Available Abstract Inflammation is an important environmental factor that promotes tumourigenesis and the progression of established cancerous lesions, and recent studies have started to dissect the mechanisms linking the two pathologies. These inflammatory and infectious conditions trigger immune and stromal cell release of soluble mediators which facilitate survival and proliferation of tumour cells in a paracrine manner. In addition, (epi-genetic mutations affecting oncogenes, tumour-suppressor genes, chromosomal rearrangements and amplifications trigger the release of inflammatory mediators within the tumour microenvironment to promote neoplastic growth in an autocrine manner. These two pathways converge in tumour cells and result in activation of the latent signal transducer and activator of transcription 3 (Stat3 which mediates a transcriptional response favouring survival, proliferation and angiogenesis. The abundance of cytokines that activate Stat3 within the tumour microenvironment, which comprises of members of the interleukin (IL IL6, IL10 and IL17/23 families, underpins a signaling network that simultaneously promotes the growth of neoplastic epithelium, fuels inflammation and suppresses the host's anti-tumour immune response. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in human cancers of epithelial origin and is often associated with poor outcome. Here we summarize insights gained from mice harbouring mutations in components of the Stat3 signaling cascade and in particular of gp130, the shared receptor for the IL6 family of cytokines. We focus on the various feed-back and feed-forward loops in which Stat3 provides the signaling node in cells of the tumour and its microenvironment thereby functionally linking excessive inflammation to neoplastic growth. Although these observations are particularly pertinent to gastrointestinal tumours, we suggest that the tumour's addiction to persistent Stat3 activation

  3. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Peroxiredoxin 5 promotes the epithelial-mesenchymal transition in colon cancer

    International Nuclear Information System (INIS)

    Ahn, Hye-Mi; Yoo, Jin-Woo; Lee, Seunghoon; Lee, Hong Jun; Lee, Hyun-Shik; Lee, Dong-Seok

    2017-01-01

    Globally, colorectal cancer (CRC) is common cause of cancer-related deaths. The high mortality rate of patients with colon cancer is due to cancer cell invasion and metastasis. Initiation of the epithelial-to-mesenchymal transition (EMT) is essential for the tumorigenesis. Peroxiredoinxs (PRX1-6) have been reported to be overexpressed in various tumor tissues, and involved to be responsible for tumor progression. However, the exact role of PRX5 in colon cancer remains to be investigated enhancing proliferation and promoting EMT properties. In this study, we constructed stably overexpressing PRX5 and suppressed PRX5 expression in CRC cells. Our results revealed that PRX5 overexpression significantly enhanced CRC cell proliferation, migration, and invasion. On the other hand, PRX5 suppression markedly inhibited these EMT properties. PRX5 was also demonstrated to regulate the expression of two hallmark EMT proteins, E-cadherin and Vimentin, and the EMT-inducing transcription factors, Snail and Slug. Moreover, in the xenograft mouse model, showed that PRX5 overexpression enhances tumor growth of CRC cells. Thus, our findings first provide evidence in CRC that PRX5 promotes EMT properties by inducing the expression of EMT-inducing transcription factors. Therefore, PRX5 can be used as a predictive biomarker and serves as a putative therapeutic target for the development of clinical treatments for human CRC. - Highlights: • PRX5 promoted colorectal cancer cell proliferation. • PRX5 enhanced EMT properties in colorectal cancer. • PRX5 mediated the EMT by inducing the expression of Snail and Slug. • PRX5 promoted tumor growth of colorectal cancer cells.

  5. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  6. Histone Deacetylase Inhibitor Therapy in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Noriyuki Takai

    2010-01-01

    Full Text Available Since epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in ovarian cancers, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs in treating ovarian cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and expression of genes related to the malignant phenotype in a variety of ovarian cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human ovarian carcinoma cells. In xenograft models, some of HDACIs have demonstrated antitumor activity with only few side effects. Some clinical trials demonstrate that HDACI drugs provide an important class of new mechanism-based therapeutics for ovarian cancer. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating ovarian cancer, especially focusing on preclinical studies and clinical trials.

  7. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kan Casina WS

    2012-12-01

    Full Text Available Abstract Background There is a critical need for improved diagnostic markers for high grade serous epithelial ovarian cancer (SEOC. MicroRNAs are stable in the circulation and may have utility as biomarkers of malignancy. We investigated whether levels of serum microRNA could discriminate women with high-grade SEOC from age matched healthy volunteers. Methods To identify microRNA of interest, microRNA expression profiling was performed on 4 SEOC cell lines and normal human ovarian surface epithelial cells. Total RNA was extracted from 500 μL aliquots of serum collected from patients with SEOC (n = 28 and age-matched healthy donors (n = 28. Serum microRNA levels were assessed by quantitative RT-PCR following preamplification. Results microRNA (miR-182, miR-200a, miR-200b and miR-200c were highly overexpressed in the SEOC cell lines relative to normal human ovarian surface epithelial cells and were assessed in RNA extracted from serum as candidate biomarkers. miR-103, miR-92a and miR -638 had relatively invariant expression across all ovarian cell lines, and with small-nucleolar C/D box 48 (RNU48 were assessed in RNA extracted from serum as candidate endogenous normalizers. No correlation between serum levels and age were observed (age range 30-79 years for any of these microRNA or RNU48. Individually, miR-200a, miR-200b and miR-200c normalized to serum volume and miR-103 were significantly higher in serum of the SEOC cohort (P  Conclusions We identified serum microRNAs able to discriminate patients with high grade SEOC from age-matched healthy controls. The addition of these microRNAs to current testing regimes may improve diagnosis for women with SEOC.

  8. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.

  9. HE4 as a predictor of adjuvant chemotherapy resistance and survival in patients with epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Aarenstrup Karlsen, Mona; Høgdall, Claus; Nedergaard, Lotte

    2016-01-01

    The aim of this study was to investigate the value of serum human epididymis protein 4 (HE4) and HE4 tissue protein expression to predict tumor resistance to adjuvant chemotherapy, progression-free survival (PFS), and overall survival in patients with epithelial ovarian cancer (EOC). Consecutive...... inclusion of 198 patients diagnosed with EOC was conducted. Blood samples were collected prior to surgery and tissue samples during surgery. Patient data were registered prospectively in the Danish Gynecologic Cancer Database. The association between serum HE4 and HE4 tissue protein expression, resistance...... significantly (p tissue protein expression...

  10. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  11. A case-control study of risk factors for epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ghaem Maghami Noori F

    2001-09-01

    Full Text Available Ovarian cancer is second prevalent cancer among gynecologic malignancies and the most common type of ovarian cancer is epithelial form (85-90 percent. To detect the risk factors for the epithelial ovarian cancer, a case-control study was conducted in Valieasr hospital in 1988. In this study, 118 cases with epithelial ovarian cancer (according histological records and 240 controls without any gynecological cancer in gynecologic clinic had been interviewed. For data analysis, T-test, Chi2 test and logistic regression have been used at a =0.05 as level of significance. The mean age in cases was 50±13 and in controls was 49.9±12 years, without significant different. The mean number of pregnancies and parity in cases was less than controls, significantly (P<0.03. The mean months of breast feeding in cases was less than controls (54.9±71.2 versus 82.4±62.7 (P<0.001. The cases had a lower mean age of menarch than controls (P=0.03. 58 percent of cases and 21.3 percent of controls hadn't used any contraception methods (P=0.00001. The mean years of contraception was significantly less in cases versus controls (P<0.001. The odds ratio for epithelial ovarian cancer was 0.24 (95 percent CI: 0.13-0.48 in OCP users, 0.47 (95 percent CI: 0.005-0.43 in TL method, and was 0.41 (95 percent CI: 0.22-0.76 in other contraception methods, relative to women who hadn't used any contraception methods. This study reveals that epithelial ovarian cancer risk increases significantly with earlier menarch, decreasing number of pregnancy, deliveries duration of breast feeding and use of contraception methods. Use of contraception pill and tubal ligation method decreases risk of epithelial ovarian cancer.

  12. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    Science.gov (United States)

    2012-04-01

    control expression of many of these miRNA genes. Many of the epigenetically regulated miRNAs identified are deregulated in breast cancer-derived...review board and Health Insurance Portability and Accountability Act regulations. At the time of surgery, a 1 to 3 cm section of the tumor was immediately...transformation process for- ward; the early deregulation of the HOX gene family clusters, which are decisively linked to human carcinogenesis, are one clear

  13. Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells.

    Science.gov (United States)

    Alexander, Frank A; Huey, Eric G; Price, Dorielle T; Bhansali, Shekhar

    2012-12-21

    Silica nanowires have great potential for usage in the development of highly sensitive in vivo biosensors used for biomarker monitoring. However, careful analysis of nanowire toxicity is required prior to placing these sensors within the human body. This paper describes a real-time and quantitative analysis of nanowire cytotoxicity using impedance spectroscopy; improving upon studies that have utilized traditional endpoint assays. Silica nanowires were grown using the vapor liquid solid (VLS) method, mixed with Dulbecco's Modified Eagle Medium (DMEM) and exposed to Hs578T epithelial breast cancer cells at concentrations of 0 μg ml(-1), 1 μg ml(-1), 50 μg ml(-1) and 100 μg ml(-1). Real-time cellular responses to silica nanowires confirm that while not cytotoxic, silica nanowires at high concentrations (≥50 μg ml(-1)) are toxic to cells, and also suggest that cell death is due to mechanical disturbances of high numbers of nanowires.

  14. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells.

    Science.gov (United States)

    Lee, Yeonju; Geckeler, Kurt E

    2012-08-01

    Water-soluble, PAX-loaded carbon nanotubes are fabricated by employing a synthetic polyampholyte, PDM. To investigate the suitability of the polyampholyte and the nanotubes as drug carriers, different cellular interactions such as the human epithelial Caco-2 cells viability, their effect on the cell growth, and the change in the transepithelial electrical resistance in Caco-2 cells are studied. The resulting complex is found to exhibit an effective anti-cancer effect against colon cancer cells and an increased the reduction of the electrical resistance in the Caco-2 cells when compared to the precursor PAX. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Human Breast Cancer Histoid

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R.; Ingram, Marylou

    2011-01-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue. PMID:22034518

  16. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  17. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    International Nuclear Information System (INIS)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Yoon, Kyong-Ah; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-01-01

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  18. Effect of Lead on Human Middle Ear Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shin Hye Kim

    2018-01-01

    Full Text Available Lead is a ubiquitous metal in the environment, but no studies have examined lead toxicity on the middle ear. Here, we investigated lead toxicity and its mechanism in human middle ear epithelial cells (HMEECs. Moreover, we investigated the protective effects of amniotic membrane extract (AME and chorionic membrane extract (CME against lead toxicity in HMEECs. Cell viability was analyzed using the cell counting kit, and reactive oxygen species (ROS activity was measured using a cellular ROS detection kit. After lead(II acetate trihydrate treatment, mRNA levels of various genes were assessed by semiquantitative real-time polymerase chain reaction. Following treatment with AME or CME after lead exposure, the changes in cell viability, ROS activity, and gene expression were analyzed. Exposure to >100 μg/mL of lead(II acetate trihydrate caused a significant decrease in cell viability and increased ROS production in HMEECs. Lead exposure significantly increased the mRNA expression of genes encoding inflammatory cytokines and mucins. Administration of AME or CME restored cell viability, reduced ROS activity, and ameliorated mRNA levels. Our findings suggest that environmental lead exposure is related to the development of otitis media, and AME and CME may have antioxidative and anti-inflammatory effects against lead toxicity.

  19. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  20. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  1. Effect of Formaldehyde on Human Middle Ear Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Shin Hye Kim

    2018-01-01

    Full Text Available Formaldehyde (FA is a familiar indoor air pollutant found in everything from cosmetics to clothing, but its impact on the middle ear is unknown. This study investigated whether FA causes cytotoxicity, inflammation, or induction of apoptosis in human middle ear epithelial cells (HMEECs. Cell viability was investigated using the trypan blue assay and a cell counting kit (CCK-8 in HMEECs treated with FA for 4 or 24 h. The expression of genes encoding the inflammatory cytokine tumor necrosis factor alpha (TNF-α and mucin (MUC5AC was analyzed using RT-PCR. Activation of the apoptosis pathway was determined by measuring mitochondrial membrane potential (MMP, cytochrome oxidase, caspase-9/Mch6/Apaf 3, and Caspase-Glo® 3/7 activities. The CCK-8 assay and trypan blue assay results showed a reduction in cell viability in FA-treated HMEECs. FA also increased the cellular expression of TNF-α and MUC5AC and reduced the activities of MMP and cytochrome oxidase. Caspase-9 activity increased in cells stimulated for 4 h, as well as caspase-3/7 activity in cells stimulated for 24 h. The decreased cell viability, the induction of inflammation and mucin gene expression, and the activation of the apoptosis pathway together indicate a link between environmental FA exposure and the development of otitis media.

  2. Feature Importance for Human Epithelial (HEp-2 Cell Image Classification

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    2018-02-01

    Full Text Available Indirect Immuno-Fluorescence (IIF microscopy imaging of human epithelial (HEp-2 cells is a popular method for diagnosing autoimmune diseases. Considering large data volumes, computer-aided diagnosis (CAD systems, based on image-based classification, can help in terms of time, effort, and reliability of diagnosis. Such approaches are based on extracting some representative features from the images. This work explores the selection of the most distinctive features for HEp-2 cell images using various feature selection (FS methods. Considering that there is no single universally optimal feature selection technique, we also propose hybridization of one class of FS methods (filter methods. Furthermore, the notion of variable importance for ranking features, provided by another type of approaches (embedded methods such as Random forest, Random uniform forest is exploited to select a good subset of features from a large set, such that addition of new features does not increase classification accuracy. In this work, we have also, with great consideration, designed class-specific features to capture morphological visual traits of the cell patterns. We perform various experiments and discussions to demonstrate the effectiveness of FS methods along with proposed and a standard feature set. We achieve state-of-the-art performance even with small number of features, obtained after the feature selection.

  3. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    Science.gov (United States)

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  4. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  5. Defining the cellular precursors to human breast cancer

    Science.gov (United States)

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  6. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  7. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    Science.gov (United States)

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  8. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  9. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  10. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the

  11. Endothelium specific matrilysin (MMP-7) expression in human cancers

    NARCIS (Netherlands)

    Sier, C.F.M.; Hawinkels, L.J.A.C.; Zijlmans, H.J.M.A.A.; Zuidwijk, K.; Jonge de; Muller, E.S.M.; Ferreira, V.; Hanemaaijer, R.; Mulder-Stapel, A.A.; Kenter, G.G.; Verspaget, H.W.; Gorter, A.

    2008-01-01

    Over-expression of matrilysin (MMP-7) is predominantly associated with epithelial (pre)malignant cells. In the present study MMP-7 expression is also found in endothelial cells in various human cancer types. Endothelial MMP-7 was associated with CD34 and/or CD105 expression. These

  12. LINE-1 couples EMT programming with acquisition of oncogenic phenotypes in human bronchial epithelial cells.

    Science.gov (United States)

    Reyes-Reyes, Elsa M; Aispuro, Ivan; Tavera-Garcia, Marco A; Field, Matthew; Moore, Sara; Ramos, Irma; Ramos, Kenneth S

    2017-11-28

    Although several lines of evidence have established the central role of epithelial-to-mesenchymal-transition (EMT) in malignant progression of non-small cell lung cancers (NSCLCs), the molecular events connecting EMT to malignancy remain poorly understood. This study presents evidence that Long Interspersed Nuclear Element-1 (LINE-1) retrotransposon couples EMT programming with malignancy in human bronchial epithelial cells (BEAS-2B). This conclusion is supported by studies showing that: 1) activation of EMT programming by TGF-β1 increases LINE-1 mRNAs and protein; 2) the lung carcinogen benzo(a)pyrene coregulates TGF-β1 and LINE-1 mRNAs, with LINE-1 positioned downstream of TGF-β1 signaling; and, 3) forced expression of LINE-1 in BEAS-2B cells recapitulates EMT programming and induces malignant phenotypes and tumorigenesis in vivo . These findings identify a TGFβ1-LINE-1 axis as a critical effector pathway that can be targeted for the development of precision therapies during malignant progression of intractable NSCLCs.

  13. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  14. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    Science.gov (United States)

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  15. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  16. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  17. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  18. Role of dihydrotestosterone (DHT) on TGF-β1 signaling pathway in epithelial ovarian cancer cells.

    Science.gov (United States)

    Kohan-Ivani, Karla; Gabler, Fernando; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2016-01-01

    One of the hypotheses regarding the genesis of epithelial ovarian cancer involves the action of androgens on the proliferation of epithelial ovarian cells, as well as inclusion cysts. The purpose of the present study was to evaluate whether DHT causes changes in the TGF-β1 pathway that might modify the anti-proliferative effect of the latter. The levels of TGF-β1 protein, of its receptors (TGFBR1 and TGFBR2), of Smad2/3 (canonical signaling pathway protein) and of p21 (cell cycle protein) were assessed in ovarian tissues, epithelial ovarian cancer cell lines (A2780) and control cell lines (HOSE) through the use of immunohistochemistry and immunocytochemistry. Additionally, cell lines were treated with 100 nmol/L DHT, 10 ng/mL of TGF-β1 and DHT + TGF-β1 during 72 h in the presence and absence of a siRNA against androgen receptor. After treatment, TGFBR1 and TGFBR2 levels were detected through Western blotting and p21 was assessed through immunocytochemistry. Epithelial ovarian cancer tissues showed a decrease in TGF-β1 I receptor (p DHT, protein levels of TGF-β1 receptors (TGFBR1-TGFBR2) showed a decrease (p DHT (p < 0.001). Overall, our results indicate a defect in the canonical TGF-β signaling pathway in epithelial ovarian cancer caused by androgen action, thus suggesting eventual changes in such tissue proliferation rates.

  19. Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells.

    Science.gov (United States)

    Schwab, Renate H M; Amin, Nancy; Flanagan, Dustin J; Johanson, Timothy M; Phesse, Toby J; Vincan, Elizabeth

    2018-03-01

    Metastasis underlies most colorectal cancer mortality. Cancer cells spread through the body as single cells or small clusters of cells that have an invasive, mesenchymal, nonproliferative phenotype. At the secondary site, they revert to a proliferative "tumor constructing" epithelial phenotype to rebuild a tumor. We previously developed a unique in vitro three-dimensional model, called LIM1863-Mph, which faithfully recapitulates these reversible transitions that underpin colorectal cancer metastasis. Wnt signaling plays a key role in these transitions and is initiated by the coupling of extracellular Wnt to Frizzled (FZD). Using the LIM1863-Mph model system we demonstrated that the Wnt receptor FZD7 is necessary for mesenchymal to epithelial transition (MET). Here we investigate the role of Wnt in MET. Wnt secretion is dependent on palmitoylation by Porcupine (PORC). A PORC inhibitor (IWP2) that prevents Wnt secretion, blocked the epithelial transition of mesenchymal LIM1863-Mph cells. Wnt gene array analysis identified several Wnts that are upregulated in epithelial compared with mesenchymal LIM1863-Mph cells, suggesting these ligands in MET. Wnt2B was the most abundant differentially expressed Wnt gene. Indeed, recombinant Wnt2B could overcome the IWP2-mediated block in epithelial transition of mesenchymal LIM1863-Mph cells. Wnt2B co-operates with Frizzled7 to mediate MET in colorectal cancer. Developmental Dynamics 247:521-530, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  1. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    Science.gov (United States)

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  2. Human papillomaviruses and cancer

    International Nuclear Information System (INIS)

    Haedicke, Juliane; Iftner, Thomas

    2013-01-01

    Human papillomaviruses (HPV) are small oncogenic DNA viruses of which more than 200 types have been identified to date. A small subset of these is etiologically linked to the development of anogenital malignancies such as cervical cancer. In addition, recent studies established a causative relationship between these high-risk HPV types and tonsillar and oropharyngeal cancer. Clinical management of cervical cancer and head and neck squamous cell carcinomas (HNSCCs) is largely standardized and involves surgical removal of the tumor tissue as well as adjuvant chemoradiation therapy. Notably, the response to therapeutic intervention of HPV-positive HNSCCs has been found to be better as compared to HPV-negative tumors. Although the existing HPV vaccine is solely licensed for the prevention of cervical cancer, it might also have prophylactic potential for the development of high-risk HPV-associated HNSCCs. Another group of viruses, which belongs to the beta-HPV subgroup, has been implicated in nonmelanoma skin cancer, however, the etiology remains to be established. Treatment of HPV-induced nonmelanoma skin cancer is based on local excision. However, topically applied immune-modulating substances represent non-surgical alternatives for the management of smaller cutaneous tumors. In this review we present the current knowledge of the role of HPV in cancer development and discuss clinical management options as well as targets for the development of future intervention therapies

  3. Lead, selenium and nickel concentrations in epithelial ovarian cancer, borderline ovarian tumor and healthy ovarian tissues.

    Science.gov (United States)

    Canaz, Emel; Kilinc, Metin; Sayar, Hamide; Kiran, Gurkan; Ozyurek, Eser

    2017-09-01

    Wide variation exists in ovarian cancer incidence rates suggesting the importance of environmental factors. Due to increasing environmental pollution, trace elements and heavy metals have drawn attention in studies defining the etiology of cancer, but scant data is available for ovarian cancer. Our aim was to compare the tissue concentrations of lead, selenium and nickel in epithelial ovarian cancer, borderline tumor and healthy ovarian tissues. The levels of lead, selenium and nickel were estimated using atomic absorption spectrophotometry in formalin-fixed paraffin-embedded tissue samples. Tests were carried out in 20 malignant epithelial ovarian cancer, 15 epithelial borderline tumor and 20 non-neoplastic healthy ovaries. Two samples were collected for borderline tumors, one from papillary projection and one from the smooth surface of cyst wall. Pb and Ni concentrations were found to be higher both in malignant and borderline tissues than those in healthy ovaries. Concentrations of Pb and Ni in malignant tissues, borderline papillary projections and capsular tissue samples were not different. Comparison of Se concentrations of malignant, borderline and healthy ovarian tissues did not reveal statistical difference. Studied metal levels were not found to be different in either papillary projection or in cyst wall of the borderline tumors. This study revealed the accumulation of lead and nickel in ovarian tissue is associated with borderline and malignant proliferation of the surface epithelium. Accumulation of these metals in epithelial ovarian cancer and borderline ovarian tumor has not been demonstrated before. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Liver X receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization.

    Science.gov (United States)

    Courtaut, Flavie; Derangère, Valentin; Chevriaux, Angélique; Ladoire, Sylvain; Cotte, Alexia K; Arnould, Laurent; Boidot, Romain; Rialland, Mickaël; Ghiringhelli, François; Rébé, Cédric

    2015-09-29

    Increasing evidence indicates that Liver X Receptors (LXRs) have some anticancer properties. We recently demonstrated that LXR ligands induce colon cancer cell pyroptosis through an LXRβ-dependent pathway. In the present study, we showed that human colon cancer cell lines presented differential cytoplasmic localizations of LXRβ. This localization correlated with caspase-1 activation and cell death induction under treatment with LXR ligand. The association of LXRβ with the truncated form of RXRα (t-RXRα) was responsible for the sequestration of LXRβ in the cytoplasm in colon cancer cells. Moreover t-RXRα was not expressed in normal colon epithelial cells. These cells presented a predominantly nuclear localization of LXRβ and were resistant to LXR ligand cytotoxicity. Our results showed that predominant cytoplasmic localization of LXRβ, which occurs in colon cancer cells but not in normal colon epithelial cells, allowed LXR ligand-induced pyroptosis. This study strengthens the hypothesis that LXRβ could be a promising target in cancer therapy.

  5. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  6. Deregulation of microcephalin and ASPM expression are correlated with epithelial ovarian cancer progression.

    Directory of Open Access Journals (Sweden)

    Rawiah Alsiary

    Full Text Available Mutations in the MCPH1 (Microcephalin and ASPM (abnormal spindle-like microcephaly associated genes cause primary microcephaly. Both are centrosomal associated proteins involved in mitosis. Microcephalin plays an important role in DNA damage response and ASPM is required for correct division of proliferative neuro-epithelial cells of the developing brain. Reduced MCPH1 mRNA expression and ASPM mRNA over-expression have been implicated in the development of human carcinomas. Epithelial ovarian cancer (EOC is characterised by highly aneuploid tumours. Previously we have reported low Microcephalin and high ASPM protein levels and associations with clinico-pathological parameters in malignant cells from ascitic fluids. To confirm these previous findings on a larger scale Microcephalin and ASPM expression levels and localisations were evaluated by immunohistochemistry in two cohorts; a training set of 25 samples and a validation set of 322 EOC tissue samples. Results were correlated to the associated histopathological data. In normal ovarian tissues the Microcephalin nuclear staining pattern was consistently strong. In the cancer tissues, we identified low nuclear Microcephalin expression in high grade and advanced stage tumours (p<0.0001 and p = 0.0438 respectively. ASPM had moderate to high nuclear and low to moderate cytoplasmic expression in normal tissue. Cytoplasmic ASPM expression decreased with tumour grade and stage in the serous subtype of EOC (p = 0.023 and p = 0.011 respectively. Cytoplasmic ASPM increased with tumour stage in the endometrioid subtype (p = 0.023. Increasing tumour invasiveness (T3 and lymph node involvement (N1 also correlated with a decrease in cytoplasmic ASPM in EOC (p = 0.02 and p = 0.04 respectively. We have validated previous findings of deregulated expression of Microcephalin and ASPM in EOC by confirming associations for low nuclear Microcephalin levels and high cytoplasmic ASPM levels in a larger scale tumour

  7. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    OpenAIRE

    Liu, Z.; Zhang, P.; Zhou, Y.; Qin, H.; Shen, T.

    2010-01-01

    Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithel...

  8. Epithelial-mesenchymal Transition---A Hallmark of Breast Cancer Metastasis.

    Science.gov (United States)

    Wang, Yifan; Zhou, Binhua P

    2013-03-01

    Epithelial-mesenchymal transition (EMT) is a highly conserved cellular program that converts polarized, immotile epithelial cells to migratory mesenchymal cells. In addition, EMT was initially recognized as a key step for morphogenesis during embryonic development. Emerging evidences indicate that this important developmental program promotes metastasis, drug resistance, and tumor recurrence, features that are associated with a poor clinical outcome for patients with breast cancer. Therefore, better understanding of regulation and signaling pathways in EMT is essential to develop novel targeted therapeutics. In this review, we present updated developments underlying EMT in tumor progression and metastasis, and discuss the challenges remaining in breast cancer research.

  9. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact

    Directory of Open Access Journals (Sweden)

    Hidehiko Takigawa

    2017-05-01

    Full Text Available We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow–derived mesenchymal stem cells (MSCs migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT–related genes such as fibronectin (FN, SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.

  10. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    Science.gov (United States)

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution

    Directory of Open Access Journals (Sweden)

    Wen-Yang Hu

    2017-08-01

    Full Text Available Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland.

  12. Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Jacek Nikliński

    2010-05-01

    Full Text Available The aim of the present study was to characterize the expression pattern of tumor necrosis factor (TNF-alpha and its receptors (TNF-Rs in the epithelial ovarian cancer (EOC and compare these results with the outcome of 126 patients. Presence of TNF-alpha, TNFR-1 and TNFR-2 were studied by Western blotting and immunohistochemistry. The proportion of samples positive for TNF-alpha and TNF-R2 was higher in epithelial ovarian cancer patients than in benign ovarian diseases (p<0.001 and p=0.016, respectively. Immunostaining intensity of TNF-R2 were correlated with tumor stage (p<0.001 and with reduced mean survival time (MST (p=0.002. The results of the present study suggested that tissue expression of TNF-R2 in epithelial ovarian cancer was correlated with the highest risk of cancer progression. Thus, the clinical value of activated TNF system in epithelial ovarian cancer needs to be further investigated.

  13. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  14. Discovery of dachshund 2 protein as a novel biomarker of poor prognosis in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Nodin Björn

    2012-01-01

    Full Text Available Abstract Background The Dachshund homolog 2 (DACH2 gene has been implicated in development of the female genital tract in mouse models and premature ovarian failure syndrome, but to date, its expression in human normal and cancerous tissue remains unexplored. Using the Human Protein Atlas as a tool for cancer biomarker discovery, DACH2 protein was found to be differentially expressed in epithelial ovarian cancer (EOC. Here, the expression and prognostic significance of DACH2 was further evaluated in ovarian cancer cell lines and human EOC samples. Methods Immunohistochemical expression of DACH2 was examined in tissue microarrays with 143 incident EOC cases from two prospective, population-based cohorts, including a subset of benign-appearing fallopian tubes (n = 32. A nuclear score (NS, i.e. multiplier of staining fraction and intensity, was calculated. For survival analyses, cases were dichotomized into low (NS 3 using classification and regression tree analysis. Kaplan Meier analysis and Cox proportional hazards modelling were used to assess the impact of DACH2 expression on survival. DACH2 expression was analysed in the cisplatin sensitive ovarian cancer cell line A2780 and its cisplatin resistant derivative A2780-Cp70. The specificity of the DACH2 antibody was tested using siRNA-mediated silencing of DACH2 in A2780-Cp70 cells. Results DACH2 expression was considerably higher in the cisplatin resistant A2780-Cp70 cells compared to the cisplatin-sensitive A2780 cells. While present in all sampled fallopian tubes, DACH2 expression ranged from negative to strong in EOC. In EOC, DACH2 expression correlated with several proteins involved in DNA integrity and repair, and proliferation. DACH2 expression was significantly higher in carcinoma of the serous subtype compared to non-serous carcinoma. In the full cohort, high DACH2 expression was significantly associated with poor prognosis in univariable analysis, and in carcinoma of the serous subtype

  15. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis.

    Science.gov (United States)

    Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng

    2016-03-01

    Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.

  16. TESTIN was commonly hypermethylated and involved in the epithelial-mesenchymal transition of endometrial cancer.

    Science.gov (United States)

    Dong, Ruofan; Pu, Hong; Wang, Yuan; Yu, Jinjin; Lian, Kuixian; Mao, Caiping

    2015-05-01

    We previously reported frequent loss of TESTIN in human endometrial carcinoma, which significantly suppressed tumor proliferation and invasion. Herein, we further explored the mechanisms underlying TESTIN loss and its roles in the epithelial-mesenchymal transition (EMT, a key step for tumor spreading). Methylation-specific PCR was performed to investigate the promoter status of TESTIN in a panel of endometrial cancer and normal endometrium tissues. The expression of TESTIN mRNA was determined by real-time PCR. Up- and down-regulation of TESTIN were achieved by transient transfection with pcDNA3.1-TESTIN and shRNA-TESTIN plasmids, respectively. The EMT alterations were observed under the optical microscope and EMT-related markers were detected by real-time PCR and western blot. Compared to the control (3.6%), TESTIN was hypermethylated in 43.7% endometrial cancer tissues (p < 0.001). Moreover, TESTIN hypermethylation was significantly correlated with advanced tumor stage, deep myometrial invasion and lymphatic node metastasis. In vitro, the demethylating agent dramatically restored the expression of TESTIN. In addition, up-regulation of TESTIN significantly suppressed the EMT procedure; whereas down-regulation of TESTIN enhanced EMT. In conclusion, we demonstrated that loss of TESTIN was mainly caused by hypermethylation, which might be a potent prognostic marker. Furthermore, we proved that TESTIN significantly suppressed the EMT procedure, proposing restoration of TESTIN to be a novel therapeutic strategy for endometrial carcinoma. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  17. Mechanisms of RhoGDI2 Mediated Lung Cancer Epithelial-Mesenchymal Transition Suppression

    Directory of Open Access Journals (Sweden)

    Huiyan Niu

    2014-11-01

    Full Text Available Background: The aim of this study was to evaluate the function of RhoGDI2 in lung cancer epithelial-mesenchymal transition (EMT process and to illustrate the underlying mechanisms that will lead to improvement of lung cancer treatment. Methods: The RhoGDI2 knock-down and overexpressing A549 cell lines were first constructed. The influence of RhoGDI2 on cytoskeleton in A549 cells was studied using two approaches: G-LISA-based Rac1 activity measurement and immunostaining-based F-actin distribution. The expression levels of key EMT genes were analyzed using real time quantitative polymerase chain reaction (RT-qPCR, western blot and immunostaining in untreated and RhoGDI2 knock-down or overexpressing A549 cells in both in vivo and in vitro experimental settings. Results: Our study showed that the activity of Rac1, a key gene that is crucial for the initiation and metastasis of human lung adenocarcinoma, causing the redistribution of F-actin with partial loss of cell-cell adhesions and stress fibers, was significantly suppressed by RhoGDI2. RhoGDI2 promoted the expression of EMT marker gene E-cadherin and repressed EMT promoting genes Slug, Snail, α-SMA in both A549 cells and lung and liver organs derived from the mouse models. Knocking-down RhoGDI2 induced abnormal morphology for lung organs. Conclusion: These findings indicate that RhoGDI2 repressed the activity of Rac1 and may be involved in the rearrangement of cytoskeleton in lung cancer cells. RhoGDI2 suppresses the metastasis of lung cancer mediated through EMT by regulating the expression of key genes such as E-cadherin, Slug, Snail and α-SMA in both in vivo and in vitro models.

  18. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  19. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

    Science.gov (United States)

    Chen, Shaohua; Zhang, Daohai

    2015-01-01

    The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer. PMID:25709888

  20. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    Kuchenbaecker, K.B.; Ramus, S.J.; Tyrer, J.; Lee, A.; Shen, H.C.; Beesley, J.; Lawrenson, K.; McGuffog, L.; Healey, S.; Lee, J.M.; Spindler, T.J.; Lin, Y.G.; Pejovic, T.; Bean, Y.; Li, Q.; Coetzee, S.; Hazelett, D.; Miron, A.; Southey, M.; Terry, M.B.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Neuhausen, S.L.; Ding, Y.C.; Hansen, T.V.; Jonson, L.; Gerdes, A.M.; Ejlertsen, B.; Barrowdale, D.; Dennis, J.; Benitez, J.; Osorio, A.; Garcia, M.J.; Komenaka, I.; Weitzel, J.N.; Ganschow, P.; Peterlongo, P.; Bernard, L.; Viel, A.; Bonanni, B.; Peissel, B.; Manoukian, S.; Radice, P.; Papi, L.; Ottini, L.; Fostira, F.; Konstantopoulou, I.; Garber, J.; Frost, D.; Perkins, J.; Platte, R.; Ellis, S.; Embrace, .; Godwin, A.K.; Schmutzler, R.K.; Meindl, A.; Engel, C.; Sutter, C.; Sinilnikova, O.M.; Damiola, F.; Mazoyer, S.; Stoppa-Lyonnet, D.; Claes, K.; Leeneer, K. De; Kirk, J.; Rodriguez, G.C.; Piedmonte, M.; O'Malley, D.M.; Hoya, M. de la; Caldes, T.; Aittomaki, K.; Nevanlinna, H.; Collee, J.M.; Rookus, M.A.; Oosterwijk, J.C; Tihomirova, L.; Tung, N.; Hamann, U.; Isaccs, C.; Tischkowitz, M.; Imyanitov, E.N.; Caligo, M.A.; Campbell, I.G.; Hogervorst, F.B.; Olah, E.; Diez, O.; Blanco, I.; Brunet, J.; Lazaro, C.; Pujana, M.A.; Jakubowska, A.; Gronwald, J.; Lubinski, J.; Sukiennicki, G.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Kiemeney, B.; Mensenkamp, A.R.; Kets, M.; Hoogerbrugge, N.; Ligtenberg, M.J.L.; et al.,

    2015-01-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed

  1. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.J. Ramus (Susan); J.P. Tyrer (Jonathan); A. Lee (Andrew); H.C. Shen (Howard C.); J. Beesley (Jonathan); K. Lawrenson (Kate); L. McGuffog (Lesley); S. Healey (Sue); J.M. Lee (Janet M.); T.J. Spindler (Tassja J.); Y.G. Lin (Yvonne G.); T. Pejovic (Tanja); Y. Bean (Yukie); Q. Li (Qiyuan); S. Coetzee (Simon); D. Hazelett (Dennis); A. Miron (Alexander); M.C. Southey (Melissa); M.B. Terry (Mary Beth); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); A.-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); D. Barrowdale (Daniel); J. Dennis (Joe); J. Benítez (Javier); A. Osorio (Ana); M.J. Garcia (Maria Jose); I. Komenaka (Ian); J.N. Weitzel (Jeffrey); P. Ganschow (Pamela); P. Peterlongo (Paolo); L. Bernard (Loris); A. Viel (Alessandra); B. Bonnani (Bernardo); B. Peissel (Bernard); S. Manoukian (Siranoush); P. Radice (Paolo); L. Papi (Laura); L. Ottini (Laura); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); D. Frost (Debra); J. Perkins (Jo); R. Platte (Radka); S.D. Ellis (Steve); A.K. Godwin (Andrew K.); R.K. Schmutzler (Rita); A. Meindl (Alfons); C. Engel (Christoph); C. Sutter (Christian); O. Sinilnikova (Olga); F. Damiola (Francesca); S. Mazoyer (Sylvie); D. Stoppa-Lyonnet (Dominique); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); J. Kirk (Judy); G. Rodriguez (Gustavo); M. Piedmonte (Marion); D.M. O'Malley (David M.); M. de La Hoya (Miguel); T. Caldes (Trinidad); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J.M. Collée (Margriet); M.A. Rookus (Matti); J.C. Oosterwijk (Jan); L. Tihomirova (Laima); N. Tung (Nadine); U. Hamann (Ute); C. Isaccs (Claudine); M. Tischkowitz (Marc); E.N. Imyanitov (Evgeny); M.A. Caligo (Maria); I. Campbell (Ian); F.B.L. Hogervorst (Frans); E. Olah; O. Díez (Orland); I. Blanco (Ignacio); J. Brunet (Joan); C. Lazaro (Conxi); M.A. Pujana (Miguel); A. Jakubowska (Anna); J. Gronwald (Jacek); J. Lubinski (Jan); G. Sukiennicki (Grzegorz); R.B. Barkardottir (Rosa); M. Plante (Marie); J. Simard (Jacques); P. Soucy (Penny); M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; V.S. Pankratz (Shane); X. Wang (Xianshu); N.M. Lindor (Noralane); C. Szabo (Csilla); N. Kauff (Noah); J. Vijai (Joseph); C.A. Aghajanian (Carol A.); G. Pfeiler (Georg); A. Berger (Andreas); C.F. Singer (Christian); M.-K. Tea; C. Phelan (Catherine); M.H. Greene (Mark H.); P.L. Mai (Phuong); G. Rennert (Gad); A.-M. Mulligan (Anna-Marie); S. Tchatchou (Sandrine); I.L. Andrulis (Irene); G. Glendon (Gord); A.E. Toland (Amanda); U.B. Jensen (Uffe Birk); T.A. Kruse (Torben); M. Thomassen (Mads); A. Bojesen (Anders); J. Zidan (Jamal); E. Friedman (Eitan); Y. Laitman (Yael); M. Soller (Maria); A. Liljegren (Annelie); B. Arver (Brita Wasteson); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (Marie); O.I. Olopade (Olufunmilayo I.); R.L. Nussbaum (Robert L.); T.R. Rebbeck (Timothy R.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K.H. Lu (Karen); B.Y. Karlan (Beth Y.); C. Walsh (Christine); K.J. Lester (Kathryn); R. Hein (Rebecca); A.B. Ekici (Arif); M.W. Beckmann (Matthias); P.A. Fasching (Peter); D. Lambrechts (Diether); E. Van Nieuwenhuysen (Els); I. Vergote (Ignace); S. Lambrechts (Sandrina); E. Dicks (Ed); J.A. Doherty (Jennifer A.); K.G. Wicklund (Kristine G.); M.A. Rossing (Mary Anne); A. Rudolph (Anja); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); U. Eilber (Ursula); K.B. Moysich (Kirsten B.); K. Odunsi (Kunle); L. Sucheston (Lara); S. Lele (Shashi); L. Wilkens (Lynne); M.T. Goodman (Marc); P.J. Thompson (Pamela J.); Y.B. Shvetsov (Yurii B.); I.B. Runnebaum (Ingo); M. Dürst (Matthias); P. Hillemanns (Peter); T. Dörk (Thilo); N.N. Antonenkova (Natalia); N.V. Bogdanova (Natalia); A. Leminen (Arto); L.M. Pelttari (Liisa); R. Butzow (Ralf); F. Modugno (Francesmary); J.L. Kelley (Joseph L.); R. Edwards (Robert); R.B. Ness (Roberta); A. Du Bois (Andreas); P.U. Heitz; I. Schwaab (Ira); P. Harter (Philipp); K. Matsuo (Keitaro); N. Hosono (Naoya); S. Orsulic (Sandra); A. Jensen (Allan); M. Kjaer (Michael); E. Høgdall (Estrid); H.N. Hasmad (Hanis Nazihah); M.A. Noor Azmi (Mat Adenan); S.-H. Teo (Soo-Hwang); Y.L. Woo (Yin Ling); B.L. Fridley (Brooke); E.L. Goode (Ellen); J.M. Cunningham (Julie); R.A. Vierkant (Robert); F. Bruinsma (Fiona); G.G. Giles (Graham G.); D. Liang (Dong); M.A.T. Hildebrandt (Michelle A.T.); X. Wu (Xifeng); D.A. Levine (Douglas); M. Bisogna (Maria); A. Berchuck (Andrew); E. Iversen (Erik); J.M. Schildkraut (Joellen); P. Concannon (Patrick); R.P. Weber (Rachel Palmieri); D.W. Cramer (Daniel); K.L. Terry (Kathryn); E.M. Poole (Elizabeth); S. Tworoger (Shelley); E.V. Bandera (Elisa); I. Orlow (Irene); S.H. Olson (Sara); C. Krakstad (Camilla); H.B. Salvesen (Helga); I.L. Tangen (Ingvild L.); L. Bjorge (Line); A.M. van Altena (Anne); K.K.H. Aben (Katja); L.A.L.M. Kiemeney (Bart); L.F. Massuger (Leon); M. Kellar (Melissa); A. Brooks-Wilson (Angela); L.E. Kelemen (Linda); L.S. Cook (Linda S.); N.D. Le (Nhu D.); C. Cybulski (Cezary); H. Yang (Hannah); J. Lissowska (Jolanta); L.A. Brinton (Louise); N. Wentzensen (N.); C.K. Høgdall (Claus); L. Lundvall (Lene); L. Nedergaard (Lotte); H. Baker (Helen); H. Song (Honglin); D. Eccles (Diana); I. McNeish (Ian); J. Paul (James); K. Carty (Karen); N. Siddiqui (Nadeem); R. Glasspool (Rosalind); A.S. Whittemore (Alice S.); J.H. Rothstein (Joseph H.); W.P. McGuire; W. Sieh (Weiva); B.-T. Ji (Bu-Tian); W. Zheng (Wei); X.-O. Shu (Xiao-Ou); Y. Gao; B. Rosen (Barry); H. Risch (Harvey); J. McLaughlin (John); S.A. Narod (Steven A.); A.N.A. Monteiro (Alvaro N.); A. Chen (Ann); H.-Y. Lin (Hui-Yi); J. Permuth-Wey (Jenny); T.F. Sellers; Y.-Y. Tsai (Ya-Yu); Z. Chen (Zhihua); A. Ziogas (Argyrios); H. Anton-Culver (Hoda); A. Gentry-Maharaj (Aleksandra); U. Menon (Usha); P. harrington (Patricia); A.W. Lee (Alice W.); A.H. Wu (Anna H.); C.L. Pearce (Celeste); G. Coetzee (Gerry); M.C. Pike (Malcolm C.); A. Dansonka-Mieszkowska (Agnieszka); A. Timorek (Agnieszka); I.K. Rzepecka (Iwona); J. Kupryjanczyk (Jolanta); M. Freedman (Matthew); H. Noushmehr (Houtan); D.F. Easton (Douglas F.); K. Offit (Kenneth); F.J. Couch (Fergus); S.A. Gayther (Simon); P.P.D.P. Pharoah (Paul P.D.P.); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we

  2. High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer

    NARCIS (Netherlands)

    Mingels, M.J.J.M.; Masadah, R.; Geels, Y.P.; Otte-Holler, I.; Kievit, I.M. de; Laak, J.A.W.M. van der; Ham, M.A.P.C. van; Bulten, J.; Massuger, L.F.A.G.

    2014-01-01

    OBJECTIVES: The aim of the present study is to determine the prevalence of endometrial premalignancies in women diagnosed with epithelial ovarian cancer (EOC). METHODS: Endometrial and ovarian specimens of 186 patients with EOC were retrospectively selected using the nationwide pathology network and

  3. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

    NARCIS (Netherlands)

    Phelan, Catherine M.; Kuchenbaecker, Karoline B.; Tyrer, Jonathan P.; Kar, Siddhartha P.; Lawrenson, Kate; Winham, Stacey J.; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie J.; Chornokur, Ganna; Earp, Madalene A.; Lyra, Paulo C.; Lee, Janet M.; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M.; Aben, Katja K. H.; Adams, Marcia; Adlard, Julian; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K.; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N.; Barjhoux, Laure; Barkardottir, Rosa B.; Bean, Yukie; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q.; Birrer, Michael J.; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J.; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R.; Brenton, James D.; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Cannioto, Rikki; Carney, Michael E.; Cescon, Terence; Chan, Salina B.; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K.; Claes, Kathleen B. M.; Conner, Thomas; Cook, Linda S.; Cook, Jackie; Cramer, Daniel W.; Cunningham, Julie M.; D'Aloisio, Aimee A.; Daly, Mary B.; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; Defazio, Anna; Delnatte, Capucine; Doheny, Kimberly F.; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B.; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H.; Engel, Christoph; Evans, D. Gareth; Fasching, Peter A.; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M.; Fogarty, Zachary C.; Fortner, Renée T.; Fostira, Florentia; Foulkes, William D.; Fountzilas, George; Fridley, Brooke L.; Friebel, Tara M.; Friedman, Eitan; Frost, Debra; Ganz, Patricia A.; Garber, Judy; García, María J.; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G.; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K.; Goldgar, David E.; Goranova, Teodora; Gore, Martin; Greene, Mark H.; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V. O.; Harrington, Patricia A.; Harris, Holly R.; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K.; Høgdall, Estrid; Hogervorst, Frans B. L.; Holland, Helene; Hooning, Maartje J.; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J.; Hung, Jillian; Hunter, David J.; Huntsman, David G.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Iversen, Edwin S.; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M.; Johnatty, Sharon; Jones, Michael E.; Kannisto, Päivi; Karlan, Beth Y.; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J.; Khusnutdinova, Elza; Kiemeney, Lambertus A.; Kiiski, Johanna I.; Kim, Sung-Won; Kjaer, Susanne K.; Köbel, Martin; Kopperud, Reidun K.; Kruse, Torben A.; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C.; Lazaro, Conxi; Le, Nhu D.; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B.; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A.; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H.; Lubinński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L.; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F. A. G.; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N.; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R.; Merritt, Melissa A.; Milne, Roger L.; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B.; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L.; Nedergaard, Lotte; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L.; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I.; Olsson, Håkan; Olswold, Curtis; O'Malley, David M.; Ong, Kai-Ren; Onland-Moret, N. Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L.; Pedersen, Inge Søkilde; Peeters, Petra H. M.; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M.; Permuth, Jennifer B.; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C.; Piskorz, Anna M.; Poblete, Samantha R.; Pocza, Timea; Poole, Elizabeth M.; Poppe, Bruce; Porteous, Mary E.; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C.; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A.; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Salvesen, Helga B.; Sandler, Dale P.; Schoemaker, Minouk J.; Senter, Leigha; Setiawan, V. Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E.; Sieh, Weiva; Singer, Christian F.; Sobol, Hagay; Song, Honglin; Southey, Melissa C.; Spurdle, Amanda B.; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E.; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J.; Szabo, Csilla I.; Szafron, Lukasz; Tan, Yen Y.; Taylor, Jack A.; tea, Muy-Kheng; Teixeira, Manuel R.; teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L.; Tihomirova, Laima; Tinker, Anna V.; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C.; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S.; van Altena, Anne M.; van den Berg, David; van der Hout, Annemarie H.; van der Luijt, Rob B.; van Heetvelde, Mattias; van Nieuwenhuysen, Els; van Rensburg, Elizabeth J.; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Vega, Ana; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A.; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M.; Weinberg, Clarice R.; Weitzel, Jeffrey N.; Wentzensen, Nicolas; Whittemore, Alice S.; Wijnen, Juul T.; Wilkens, Lynne R.; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K.; Narod, Steven A.; Easton, Douglas F.; Amos, Christopher I.; Schildkraut, Joellen M.; Ramus, Susan J.; Ottini, Laura; Goodman, Marc T.; Park, Sue K.; Kelemen, Linda E.; Risch, Harvey A.; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N.; Couch, Fergus J.; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L.; Sellers, Thomas A.; Gayther, Simon A.; Antoniou, Antonis C.; Pharoah, Paul D. P.

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC

  4. Potential Target Antigens for a Universal Vaccine in Epithelial Ovarian Cancer

    NARCIS (Netherlands)

    Vermeij, R.; Daemen, T.; de Bock, G.H.; de Graeff, P.; Leffers, N.; Lambeck, A.; Ten Hoor, K.A.; Hollema, H.; van der Zee, A.G.J.; Nijman, H.W.

    2010-01-01

    The prognosis of epithelial ovarian cancer (EOC), the primary cause of death from gynaecological malignancies, has only modestly improved over the last decades. Immunotherapeutic treatment using a cocktail of antigens has been proposed as a "universal" vaccine strategy. We determined the expression

  5. Resistance to first line platinum paclitaxel chemotherapy in serous epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Smoter, Marta; Waldstrøm, Marianne

    2014-01-01

    of sensitivity to platinum/paclitaxel treatment. The primary aim of the study was to investigate whether ERCC1 and Tau protein expression correlates with patient outcome in newly diagnosed epithelial ovarian cancer (EOC) patients. Formalin-fixed, paraffin-embedded tissue sections from 227 newly diagnosed EOC...

  6. Reproductive factors and epithelial ovarian cancer survival in the EPIC cohort study

    NARCIS (Netherlands)

    Be͉ević, Jelena; Gunter, Marc J.; Fortner, Renee T.; Tsilidis, Konstantinos K.; Weiderpass, Elisabete; Onland-Moret, N. Charlotte; Dossus, Laure; TjØnneland, Anne; Hansen, Louise; Overvad, Kim; Mesrine, Sylvie; Baglietto, Laura; Clavel-Chapelon, Francoise; Kaaks, Rudolf; Aleksandrova, Krasimira; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Bamia, Christina; Masala, Giovanna; Agnoli, Claudia; Tumino, Rosario; Ricceri, Fulvio; Panico, Salvatore; Bueno-de-Mesquita, H. B.; Peeters, Petra H.; Jareid, Mie; Quirós, J. Ramon; Duell, Eric J.; Sánchez, Maria Jose; Larrañaga, Nerea; Chirlaque, Maria Dolores; Barricarte, Aurelio; Dias, Joana A.; Sonestedt, Emily; Idahl, Annika; Lundin, Eva; Wareham, Nicholas J.; Khaw, Kay Tee; Travis, Ruth C.; Rinaldi, Sabina; Romieu, Isabelle; Riboli, Elio; Merritt, Melissa A.

    2015-01-01

    Background:Reproductive factors influence the risk of developing epithelial ovarian cancer (EOC), but little is known about their association with survival. We tested whether prediagnostic reproductive factors influenced EOC-specific survival among 1025 invasive EOC cases identified in the European

  7. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    NARCIS (Netherlands)

    Lawrenson, K.; Iversen, E.S.; Tyrer, J.; Weber, R.P.; Concannon, P.; Hazelett, D.J.; Li, Q.; Marks, J.R.; Berchuck, A.; Lee, J.M.; Aben, K.K.H.; Anton-Culver, H.; Antonenkova, N.; Bandera, E.V.; Bean, Y.; Beckmann, M.W.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bruinsma, F.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Chenevix-Trench, G.; Chen, A; Chen, Z.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Plisiecka-Halasa, J.; Dennis, J.; Dicks, E.; Doherty, J.A.; Dork, T.; Bois, A. du; Eccles, D.; Easton, D.T.; Edwards, R.P.; Eilber, U.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goode, E.L.; Goodman, M.T.; Gronwald, J.; Harter, P.; Hasmad, H.N.; Hein, A.; Heitz, F.; Hildebrandt, M.A.T.; Hillemanns, P.; Hogdall, E.; Hogdall, C.; Hosono, S.; Jakubowska, A.; Paul, J.; Jensen, A.; Karlan, B.Y.; Kjaer, S.K.; Kelemen, L.E.; Kellar, M.; Kelley, J.L.; Kiemeney, L.A.; Krakstad, C.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Cannioto, R.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; Nevanlinna, H.; McNeish, I.; Menon, U.; Modugno, F.; Moysich, K.B.; Narod, S.A.; Nedergaard, L.; Ness, R.B.; Azmi, M.A. Noor; Odunsi, K.; Olson, S.H.

    2015-01-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair

  8. Clinical practice of adjuvant chemotherapy in patients with early-stage epithelial ovarian cancer

    NARCIS (Netherlands)

    Frielink, Lindy M J; Pijlman, Brenda M; Ezendam, N.P.M.; Pijnenborg, Johanna M A

    2016-01-01

    BACKGROUND: Adjuvant platinum-based chemotherapy improves survival in women with early-stage epithelial ovarian cancer (EOC). Yet, there is a wide variety in clinical practice. METHODS: All patients diagnosed with FIGO I and IIa EOC (2006-2010) in the south of the Netherlands were analyzed. The

  9. Clinical Practice of Adjuvant Chemotherapy in Patients with Early-Stage Epithelial Ovarian Cancer

    NARCIS (Netherlands)

    Frielink, L.M.; Pijlman, B.M.; Ezendam, N.P.; Pijnenborg, J.M.A.

    2016-01-01

    BACKGROUND: Adjuvant platinum-based chemotherapy improves survival in women with early-stage epithelial ovarian cancer (EOC). Yet, there is a wide variety in clinical practice. METHODS: All patients diagnosed with FIGO I and IIa EOC (2006-2010) in the south of the Netherlands were analyzed. The

  10. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Phelan, Catherine M; Kuchenbaecker, Karoline B; Tyrer, Jonathan P

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous E...

  11. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  12. Emerging role of cystic fibrosis transmembrane conductance regulator- an epithelial chloride channel in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    Yuning Hou; Xiaoqing Guan; Zhe Yang; Chunying Li

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator(CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.

  13. Stages of Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer

    Science.gov (United States)

    ... diagnosed, tests are done to find out if cancer cells have spread within the ovaries or to other parts of the body. The ... single ovary or fallopian tube. In stage IB, cancer is found inside both ovaries or fallopian tubes. In stage IC, cancer is ...

  14. Relationship between circulating tumor cells and epithelial to mesenchymal transition in early breast cancer

    International Nuclear Information System (INIS)

    Mego, M.; Cierna, Z.; Janega, P.; Karaba, M.; Minarik, G.; Benca, J.; Sedlácková, T.; Sieberova, G.; Gronesova, P.; Manasova, D.; Pindak, D.; Sufliarsky, J.; Danihel, L.; Reuben, JM; Mardiak, J.

    2015-01-01

    Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are an independent survival predictor in breast cancer (BC) patients. Epithelial to mesenchymal transition (EMT) is involved in cancer invasion and metastasis. The aim of this study was to assess correlation between CTCs and expression of EMT transcription factors TWIST1 and SLUG in breast tumor tissue. This study included 102 early BC patients treated by primary surgery. Peripheral blood mononuclear cells (PBMC) were depleted of hematopoietic cells using RossetteSep™ negative selection kit. RNA extracted from CD45-depleted PBMC was interrogated for expression of EMT (TWIST1, SNAIL1, SLUG, FOXC2 and ZEB1) and epithelial (KRT19) gene transcripts by qRT-PCR. Expression of TWIST1 and SLUG in surgical specimens was evaluated by immunohistochemistry and quantified by multiplicative score. CTCs were detected in 24.5 % patients. CTCs exhibiting only epithelial markers were present in 8.8 % patients, whereas CTCs with only EMT markers were observed in 12.8 % of pts and CTCs co-expressing both markers were detected in 2.9 % pts. We observed lack of correlation between CTCs and expression of TWIST1 and SLUG in breast cancer cells or cancer associated stroma. Lack of correlation was observed for epithelial CTCs as well as for CTCs with EMT. In this translational study, we showed a lack of association between CTCs and expression of EMT-inducing transcription factors, TWIST1 and SLUG, in breast tumor tissue. Despite the fact that EMT is involved in cancer invasion and metastasis our results suggest, that expression of EMT proteins in unselected tumor tissue is not surrogate marker of CTCs with either mesenchymal or epithelial features

  15. Suppression of epithelial ovarian cancer invasion into the omentum by 1α,25-dihydroxyvitamin D3 and its receptor.

    Science.gov (United States)

    Lungchukiet, Panida; Sun, Yuefeng; Kasiappan, Ravi; Quarni, Waise; Nicosia, Santo V; Zhang, Xiaohong; Bai, Wenlong

    2015-04-01

    Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer death in women, mainly because it has spread to intraperitoneal tissues such as the omentum in the peritoneal cavity by the time of diagnosis. In the present study, we established in vitro assays, ex vivo omental organ culture system and syngeneic animal tumor models using wild type (WT) and vitamin D receptor (VDR) null mice to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25D3) and VDR on EOC invasion. Treatment of human EOC cells with 1,25D3 suppressed their migration and invasion in monolayer scratch and transwell assays and ability to colonize the omentum in the ex vivo system, supporting a role for epithelial VDR in interfering with EOC invasion. Furthermore, VDR knockdown in OVCAR3 cells increased their ability to colonize the omentum in the ex vivo system in the absence of 1,25D3, showing a potential ligand-independent suppression of EOC invasion by epithelial VDR. In syngeneic models, ID8 tumors exhibited an increased ability to colonize omenta of VDR null over that of WT mice; pre-treatment of WT, not VDR null, mice with EB1089 reduced ID8 colonization, revealing a role for stromal VDR in suppressing EOC invasion. These studies are the first to demonstrate a role for epithelial and stromal VDR in mediating the activity of 1,25D3 as well as a 1,25D3-independent action of the VDR in suppressing EOC invasion. The data suggest that VDR-based drug discovery may lead to the development of new intervention strategies to improve the survival of patients with EOC at advanced stages. This article is part of a Special Issue entitled "Vitamin D Workshop". Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Identification of H-Ras-Specific Motif for the Activation of Invasive Signaling Program in Human Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Hae-Young Yong

    2011-02-01

    Full Text Available Increased expression and/or activation of H-Ras are often associated with tumor aggressiveness in breast cancer. Previously, we showed that H-Ras, but not N-Ras, induces MCF10A human breast epithelial cell invasion and migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. In an attempt to determine the sequence requirement directing the divergent phenotype induced by H-Ras and N-Ras with a focus on the induction of human breast cell invasion, we investigated the structural and functional relationships between H-Ras and N-Ras using domain-swap and site-directed mutagenesis approaches. Here, we report that the hypervariable region (HVR, consisting of amino acids 166 to 189 in H-Ras, determines the invasive/migratory signaling program as shown by the exchange of invasive phenotype by swapping HVR sequences between H-Ras and N-Ras. We also demonstrate that the H-Ras-specific additional palmitoylation site at Cys184 is not responsible for the signaling events that distinguish between H-Ras and N-Ras. Importantly, this work identifies the C-terminal HVR, especially the flexible linker domain with two consecutive proline residues Pro173 and Pro174, as a critical domain that contributes to activation of H-Ras and its invasive potential in human breast epithelial cells. The present study sheds light on the structural basis for the Ras isoform-specific invasive program of breast epithelial cells, providing information for the development of agents that specifically target invasion-related H-Ras pathways in human cancer.

  17. Chronic Recreational Physical Inactivity and Epithelial Ovarian Cancer Risk: Evidence from the Ovarian Cancer Association Consortium.

    Science.gov (United States)

    Cannioto, Rikki; LaMonte, Michael J; Risch, Harvey A; Hong, Chi-Chen; Sucheston-Campbell, Lara E; Eng, Kevin H; Brian Szender, J; Chang-Claude, Jenny; Schmalfeldt, Barbara; Klapdor, Ruediger; Gower, Emily; Minlikeeva, Albina N; Zirpoli, Gary R; Bandera, Elisa V; Berchuck, Andrew; Cramer, Daniel; Doherty, Jennifer A; Edwards, Robert P; Fridley, Brooke L; Goode, Ellen L; Goodman, Marc T; Hogdall, Estrid; Hosono, Satoyo; Jensen, Allan; Jordan, Susan; Kjaer, Susanne K; Matsuo, Keitaro; Ness, Roberta B; Olsen, Catherine M; Olson, Sara H; Leigh Pearce, Celeste; Pike, Malcolm C; Anne Rossing, Mary; Szamreta, Elizabeth A; Thompson, Pamela J; Tseng, Chiu-Chen; Vierkant, Robert A; Webb, Penelope M; Wentzensen, Nicolas; Wicklund, Kristine G; Winham, Stacey J; Wu, Anna H; Modugno, Francesmary; Schildkraut, Joellen M; Terry, Kathryn L; Kelemen, Linda E; Moysich, Kirsten B

    2016-07-01

    Despite a large body of literature evaluating the association between recreational physical activity and epithelial ovarian cancer (EOC) risk, the extant evidence is inconclusive, and little is known about the independent association between recreational physical inactivity and EOC risk. We conducted a pooled analysis of nine studies from the Ovarian Cancer Association Consortium to investigate the association between chronic recreational physical inactivity and EOC risk. In accordance with the 2008 Physical Activity Guidelines for Americans, women reporting no regular, weekly recreational physical activity were classified as inactive. Multivariable logistic regression was utilized to estimate the ORs and 95% confidence intervals (CI) for the association between inactivity and EOC risk overall and by subgroups based upon histotype, menopausal status, race, and body mass index. The current analysis included data from 8,309 EOC patients and 12,612 controls. We observed a significant positive association between inactivity and EOC risk (OR = 1.34; 95% CI, 1.14-1.57), and similar associations were observed for each histotype. In this large pooled analysis examining the association between recreational physical inactivity and EOC risk, we observed consistent evidence of an association between chronic inactivity and all EOC histotypes. These data add to the growing body of evidence suggesting that inactivity is an independent risk factor for cancer. If the apparent association between inactivity and EOC risk is substantiated, additional work via targeted interventions should be pursued to characterize the dose of activity required to mitigate the risk of this highly fatal disease. Cancer Epidemiol Biomarkers Prev; 25(7); 1114-24. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    Science.gov (United States)

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  19. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells

    Science.gov (United States)

    Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.

    2018-01-01

    Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.

  20. Proteomic profiling of acrolein adducts in human lung epithelial cells

    Science.gov (United States)

    Spiess, Page C.; Deng, Bin; Hondal, Robert J.; Matthews, Dwight E.; van der Vliet, Albert

    2011-01-01

    Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology. PMID:21704744

  1. Tubal ligation and salpingectomy and the risk of epithelial ovarian cancer and borderline ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, C; Baandrup, Louise; Dehlendorff, Christian

    2015-01-01

    OBJECTIVE: According to the recent theories on the ovarian cancer origin, any protective effect of tubal ligation may vary with histologic subtype of ovarian cancer. Furthermore, bilateral salpingectomy may represent an opportunity for surgical prevention of serous ovarian cancer. DESIGN: Nationw......OBJECTIVE: According to the recent theories on the ovarian cancer origin, any protective effect of tubal ligation may vary with histologic subtype of ovarian cancer. Furthermore, bilateral salpingectomy may represent an opportunity for surgical prevention of serous ovarian cancer. DESIGN...... sampling. We required that cases and controls have no previous cancer and that controls have no previous bilateral oophorectomy. METHODS: Conditional logistic regression was used to estimate odds ratios and 95% confidence intervals, adjusting for potential confounders. MAIN OUTCOME MEASURES: Epithelial...

  2. Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity

    Directory of Open Access Journals (Sweden)

    Fei Yao

    2015-07-01

    Full Text Available Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET whole-genome sequencing, we analyzed 15 gastric cancers (GCs from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT. Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H+ leakage, and the fusion might contribute to invasiveness once a cell is transformed.

  3. Type II diabetes mellitus and the incidence of epithelial ovarian cancer in the cancer prevention study-II nutrition cohort.

    Science.gov (United States)

    Gapstur, Susan M; Patel, Alpa V; Diver, W Ryan; Hildebrand, Janet S; Gaudet, Mia M; Jacobs, Eric J; Campbell, Peter T

    2012-11-01

    Despite consistent associations of type II diabetes mellitus with hormonally related cancers such as breast and endometrium, the relation between type II diabetes mellitus and ovarian cancer risk is unclear. Associations of type II diabetes mellitus status, duration, and insulin use with epithelial ovarian cancer overall, and with serous and nonserous histologic subtypes were examined in the Cancer Prevention Study-II Nutrition Cohort, a prospective study of U.S. men and women predominantly aged 50 years and older. Between 1992 and 2007, 524 incident epithelial ovarian cancer cases were identified among 63,440 postmenopausal women. Multivariable-adjusted relative risks (RR) and 95% confidence intervals (CI) were computed using extended Cox regression to update diabetes status and bilateral oophorectomy status during follow-up. Type II diabetes mellitus status (RR = 1.05; 95% CI, 0.75-1.46) and duration were not associated with epithelial ovarian cancer risk. Although not statistically significantly different (P(difference) = 0.39), the RR was higher for type II diabetes mellitus with insulin use (RR = 1.28; 95% CI, 0.74-2.24) than for type II diabetes mellitus without insulin use (RR = 0.96; 95% CI, 0.64-1.43). Diabetes seemed to be more strongly associated with nonserous (RR = 1.41; 95% CI, 0.70-2.85) than serous (RR = 0.71; 95% CI, 0.41-1.23) histologic subtypes. Type II diabetes mellitus was not associated with risk of epithelial ovarian cancer, although higher risks with nonserous subtypes and among insulin users cannot be ruled out. Larger studies are needed to clarify associations of type II diabetes mellitus with or without insulin use with risk of ovarian cancer overall and by histologic subtypes. ©2012 AACR.

  4. Oral epithelial stem cells – implications in normal development and cancer metastasis

    Science.gov (United States)

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  5. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    International Nuclear Information System (INIS)

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  6. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  7. Oral focal epithelial hyperplasia: report of 3 cases with human papillomavirus DNA sequencing analysis.

    Science.gov (United States)

    Gültekin, S E; Tokman Yildirim, Benay; Sarisoy, S

    2011-01-01

    Focal epithelial hyperplasia (FEH), or Heck's disease, is a benign proliferative viral infection of the oral mucosa that is related to Human Papil-lomavirus (HPV), mainly subtypes 13 and 32. Although this condition is known to exist in numerous populations and ethnic groups, the reported cases among Caucasians are relatively rare. It presents as asymptomatic papules or nodules on the oral mucosa, gingiva, tongue, and lips. Histopathologically, it is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, fusion, and horizontal outgrowth of epithelial ridges and the cells named mitozoids. The purpose of this case report was to present 3 cases of focal epithelial hyperplasia in a pediatric age group. Histopathological and clinical features of cases are discussed and DNA sequencing analysis is reported in which HPV 13, HPV 32, and HPV 11 genomes are detected.

  8. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline.

    Science.gov (United States)

    Wang, Tung Yuan; Peng, Chih-Yu; Lee, Shiuan-Shinn; Chou, Ming-Yung; Yu, Cheng-Chia; Chang, Yu-Chao

    2016-12-20

    Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3' UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.

  9. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    Science.gov (United States)

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  10. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Olivia I. Coleman

    2018-01-01

    Full Text Available The gastrointestinal (GI tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD and colorectal cancer (CRC. Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.

  11. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    Science.gov (United States)

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  12. Menstrual pain and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Babic, Ana; Harris, Holly R; Vitonis, Allison F

    2018-01-01

    to lack of power. We assessed menstrual pain using either direct questions about having experienced menstrual pain, or indirect questions about menstrual pain as indication for use of hormones or medications. We used multivariate logistic regression to calculate the odds ratio (OR) for the association......Menstrual pain, a common gynecological condition, has been associated with increased risk of ovarian cancer in some, but not all studies. Furthermore, potential variations in the association between menstrual pain and ovarian cancer by histologic subtype have not been adequately evaluated due...... between severe menstrual pain and ovarian cancer, adjusting for potential confounders and multinomial logistic regression to calculate ORs for specific histologic subtypes. We observed no association between ovarian cancer and menstrual pain assessed by indirect questions. Among studies using direct...

  13. New highlights on stroma–epithelial interactions in breast cancer

    International Nuclear Information System (INIS)

    Barcellos-Hoff, Mary Helen; Medina, Daniel

    2005-01-01

    Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches

  14. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  15. Differential growth factor induction and modulation of human gastric epithelial regeneration

    International Nuclear Information System (INIS)

    Tetreault, Marie-Pier; Chailler, Pierre; Rivard, Nathalie; Menard, Daniel

    2005-01-01

    While several autocrine/paracrine growth factors (GFs) can all stimulate epithelial regeneration in experimentally wounded primary gastric cultures, clinical relevance for their non-redundant cooperative actions in human gastric ulcer healing is suggested by the sequential pattern of GF gene induction in vivo. Using new HGE cell lines able to form a coherent monolayer with tight junctions as well as using primary human gastric epithelial cultures, we show that EGF, TGFα, HGF and IGFs accelerate epithelial restitution upon wounding, independently of the TGFβ pathway (as opposed to intestinal cells). However, they differently modulate cell behavior: TGFα exerts strong effects (even more than EGF) on cytoplasmic spreading and non-oriented protruding activity of bordering cells whereas HGF preferentially coordinates single lamella formation, cell elongation and migration into the wound. IGF-I and IGF-II rather induce the alignment of bordering cells and maintain a compact monolayer front. The number of mitotic cells maximally increases with EGF, followed by TGFα and IGF-I,-II. The current study demonstrates that GFs differentially regulate the regeneration of human gastric epithelial cells through specific modulation of cell shape adaptation, migration and proliferation, further stressing that a coordination of GF activities would be necessary for the normal progression of post-wounding epithelial repair

  16. The Epithelial-to-Mesenchymal Transition in Breast Cancer: Focus on Basal-Like Carcinomas

    Directory of Open Access Journals (Sweden)

    Monica Fedele

    2017-09-01

    Full Text Available Breast cancer is a heterogeneous disease that is characterized by a high grade of cell plasticity arising from the contribution of a diverse range of factors. When combined, these factors allow a cancer cell to transition from an epithelial to a mesenchymal state through a process of dedifferentiation that confers stem-like features, including chemoresistance, as well as the capacity to migrate and invade. Understanding the complex events that lead to the acquisition of a mesenchymal phenotype will therefore help to design new therapies against metastatic breast cancer. Here, we recapitulate the main endogenous molecular signals involved in this process, and their cross-talk with paracrine factors. These signals and cross-talk include the extracellular matrix; the secretome of cancer-associated fibroblasts, macrophages, cancer stem cells, and cancer cells; and exosomes with their cargo of miRNAs. Finally, we highlight some of the more promising therapeutic perspectives based on counteracting the epithelial-to-mesenchymal transition in breast cancer cells.

  17. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Eunsohl Lee

    2016-09-01

    Full Text Available Cancer metastasis is a multistep process associated with the induction of an epithelial-mesenchymal transition (EMT and cancer stem cells (CSCs. Although significant progress has been made in understanding the molecular mechanisms regulating EMT and the CSC phenotype, little is known of how these processes are regulated by epigenetics. Here we demonstrate that reduced expression of DNA methyltransferase 1 (DNMT1 plays an important role in the induction of EMT and the CSC phenotype by prostate cancer (PCa cells, with enhanced tumorigenesis and metastasis. First, we observed that reduction of DNMT1 by 5-azacitidine (5-Aza promotes EMT induction as well as CSCs and sphere formation in vitro. Reduced expression of DNMT1 significantly increased PCa migratory potential. We showed that the increase of EMT and CSC activities by reduction of DNMT1 is associated with the increase of protein kinase C. Furthermore, we confirmed that silencing DNMT1 is correlated with enhancement of the induction of EMT and the CSC phenotype in PCa cells. Additionally, chromatin immunoprecipitation assay reveals that reduction of DNMT1 promotes the suppression of H3K9me3 and H3K27me3 on the Zeb2 and KLF4 promoter region in PCa cells. Critically, we found in an animal model that significant tumor growth and more disseminated tumor cells in most osseous tissues were observed following injection of 5-Aza pretreated–PCa cells compared with vehicle-pretreated PCa cells. Our results suggest that epigenetic alteration of histone demethylation regulated by reduction of DNMT1 may control induction of EMT and the CSC phenotype, which facilitates tumorigenesis in PCa cells and has important therapeutic implications in targeting epigenetic regulation.

  18. Chronic Recreational Physical Inactivity and Epithelial Ovarian Cancer Risk: Evidence from the Ovarian Cancer Association Consortium

    Science.gov (United States)

    Cannioto, Rikki; LaMonte, Michael J.; Risch, Harvey A.; Hong, Chi-Chen; Sucheston-Campbell, Lara E.; Eng, Kevin H.; Szender, J. Brian; Chang-Claude, Jenny; Schmalfeldt, Barbara; Klapdor, Ruediger; Gower, Emily; Minlikeeva, Albina N.; Zirpoli, Gary; Bandera, Elisa V.; Berchuck, Andrew; Cramer, Daniel; Doherty, Jennifer A.; Edwards, Robert P.; Fridley, Brooke L.; Goode, Ellen L.; Goodman, Marc T.; Hogdall, Estrid; Hosono, Satoyo; Jensen, Allan; Jordan, Susan; Kjaer, Susanne K.; Matsuo, Keitaro; Ness, Roberta B.; Olsen, Catherine M.; Olson, Sara H.; Pearce, Celeste Leigh; Pike, Malcolm C.; Rossing, Mary Anne; Szamreta, Elizabeth A.; Thompson, Pamela J.; Tseng, Chiu-Chen; Vierkant, Robert A.; Webb, Penelope M.; Wentzensen, Nicolas; Wicklund, Kristine G.; Winham, Stacey J.; Wu, Anna H.; Modugno, Francesmary; Schildkraut, Joellen M.; Terry, Kathryn L.; Kelemen, Linda E.; Moysich, Kirsten B.

    2016-01-01

    Background Despite a large body of literature evaluating the association between recreational physical activity and epithelial ovarian cancer (EOC) risk, the extant evidence is inconclusive and little is known about the independent association between recreational physical inactivity and EOC risk. We conducted a pooled analysis of nine studies from the Ovarian Cancer Association Consortium (OCAC) to investigate the association between chronic recreational physical inactivity and EOC risk. Methods In accordance with the 2008 Physical Activity Guidelines for Americans, women reporting no regular, weekly recreational physical activity were classified as inactive. Multivariable logistic regression was utilized to estimate the odds ratios (OR) and 95% confidence intervals (CI) for the association between inactivity and EOC risk overall and by subgroups based upon histotype, menopausal status, race and body mass index (BMI). Results The current analysis included data from 8,309 EOC patients and 12,612 controls. We observed a significant positive association between inactivity and EOC risk (OR=1.34, 95% CI: 1.14-1.57) and similar associations were observed for each histotype. Conclusions In this large pooled analysis examining the association between recreational physical inactivity and EOC risk, we observed consistent evidence of an association between chronic inactivity and all EOC histotypes. Impact These data add to the growing body of evidence suggesting that inactivity is an independent risk factor for cancer. If the apparent association between inactivity and EOC risk is substantiated, additional work via targeted interventions should be pursued to characterize the dose of activity required to mitigate the risk of this highly fatal disease. PMID:27197285

  19. A phase II study of combination chemotherapy in early relapsed epithelial ovarian cancer using gemcitabine and pegylated liposomal doxorubicin

    DEFF Research Database (Denmark)

    Mirza, Mansoor Raza; Lund, Bente; Lindegaard, Jacob Christian

    2010-01-01

    Treatment of epithelial ovarian cancer patients relapsing with a short treatment-free interval (TFI) after prior chemotherapy is unsatisfactory. This phase II trial evaluated the activity and feasibility of pegylated liposomal doxorubicin (PLD) plus gemcitabine in this setting....

  20. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown.

  1. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  2. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements

    International Nuclear Information System (INIS)

    Berdyyeva, Tamara K; Woodworth, Craig D; Sokolov, Igor

    2005-01-01

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously attributed to increased crosslinking of extracellular matrix proteins. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that the Young's modulus of viable cells was consistently increased two- to four-fold in older versus younger cells. Direct visualization of the cytoskeleton using a novel method involving the AFM suggested that increased rigidity of ageing cells was due to a higher density of cytoskeletal fibres. Our results identify a unique mechanism that might contribute to the age-related loss of elasticity in epithelial tissues

  3. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    Science.gov (United States)

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  4. The emerging role of exosomes in Epithelial-Mesenchymal-Transition in cancer.

    Directory of Open Access Journals (Sweden)

    Laura Jayne Vella

    2014-12-01

    Full Text Available Metastasis in cancer consists of multiple steps, including Epithelial-Mesenchymal-Transition (EMT, which is characterized by the loss of Epithelial-like characteristics and the gain of Mesenchymal-like attributes including cell migration and invasion. It is clear that the tumour microenvironment can promote the metastatic cascade and that intercellular communication is necessary for this to occur. Exosomes are small membranous vesicles secreted by most cell types into the extracellular environment and they are important communicators in the tumour microenvironment. They promote angiogenesis, invasion and proliferation in recipient cells to support tumour growth and a prometastatic phenotype. Although it is clear that exosomes contribute to cancer cell plasticity, experimental evidence to define exosome induced plasticity as EMT is only just coming to light. This review will discuss recent research on exosomal regulation of the EMT process in the tumour microenvironment.

  5. The preparation and clinical use of a radioimmunoassay CA125 kit for the diagnosis of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Liu Wenshu

    1992-01-01

    A self-made radioimmunoassay CA125 kit (using OC125 monoclonal antibody ascites offered by Dr. Bast Laboratory which was purified, solidified and labelled with 125 I) was used for serum determination in 80 patients with epithelial ovarian cancer and in 40 standard antigen samples. The results demonstrated a statistically significant correlation between our self-made CA 125 kit and an imported CENTOCOR CA125 kit (P 125 kit is very useful in monitoring epithelial ovarian cancer

  6. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  7. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  9. A Novel Method of Imaging Lysosomes in Living Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2003-01-01

    Full Text Available Cancer cells invade by secreting degradative enzymes which, under normal conditions, are sequestered in lysosomal vesicles. The ability to noninvasively label lysosomes and track lysosomal trafficking would be extremely useful to understand the mechanisms by which degradative enzymes are secreted in the presence of pathophysiological environments, such as hypoxia and acidic extracellular pH, which are frequently encountered in solid tumors. In this study, a novel method of introducing a fluorescent label into lysosomes of human mammary epithelial cells (HMECs was evaluated. Highly glycosylated lysosomal membrane proteins were labeled with a newly synthesized compound, 5-dimethylamino-naphthalene-1-sulfonic acid 5-amino-3,4,6-trihydroxy-tetrahydro-pyran-2-ylmethyl ester (6-O-dansyl-GlcNH2. The ability to optically image lysosomes using this new probe was validated by determining the colocalization of the fluorescence from the dansyl group with immunofluorescent staining of two well-established lysosomal marker proteins, LAMP-1 and LAMP-2. The location of the dansyl group in lysosomes was also verified by using an anti-dansyl antibody in Western blots of lysosomes isolated using isopycnic density gradient centrifugation. This novel method of labeling lysosomes biosynthetically was used to image lysosomes in living HMECs perfused in a microscopy-compatible cell perfusion system.

  10. Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor-Associated Angiogenesis

    Science.gov (United States)

    2016-09-01

    analysis of tumor necrosis factor - alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype...AWARD NUMBER: W81XWH-15-1-0296 TITLE: Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor - Associated...Cancer and Impairs Tumor -Associated Angiogenesis 5b. GRANT NUMBER W81XWH-15-1-0296 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  11. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-10-01

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Abdominal wall perforation in a patient with recurrent epithelial ovarian cancer after bevacizumab treatment

    Directory of Open Access Journals (Sweden)

    Efnan Algin

    2016-08-01

    Full Text Available Bowel perforation is a rare but well-described complication of bevacizumab, a VEGF monoclonal antibody. However, bevacizumab associated abdominal wall perforation is a more serious complication. In here, a patient with recurrent epithelial ovarian cancer developing both bowel and abdominal wall perforation after bevacizumab treatment is reported with review of the literature to point out the clinical significance of this rare complication. To our knowledge, this is the first case with bevacizumab associated abdominal wall perforation.

  13. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  14. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  15. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    Science.gov (United States)

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical study

    Science.gov (United States)

    Raghunandan, Bangalore Nagarajachar; Sanjai, Karpagaselvi; Kumaraswamy, Jayalakshmi; Papaiah, Lokesh; Pandey, Bhavna; Jyothi, Bellur MadhavaRao

    2016-01-01

    Background: Telomerase is an RNA-dependent DNA polymerase that synthesizes TTAGGG telomeric DNA sequences and almost universally provides the molecular basis for unlimited proliferative potential. The telomeres become shorter with each cycle of replication and reach a critical limit; most cells die or enter stage of replicative senescence. Telomere length maintenance by telomerase is required for all the cells that exhibit limitless replicative potential. It has been postulated that reactivation of telomerase expression is necessary for the continuous proliferation of neoplastic cells to attain immortality. Use of immunohistochemistry (IHC) is a useful, reliable method of localizing the human telomerase reverse transcriptase (hTERT) protein in tissue sections which permits cellular localization. Although there exists a lot of information on telomerase in oral cancer, little is known about their expression in oral epithelial dysplasia and their progression to oral squamous cell carcinoma (OSCC) compared to normal oral mucosa. This study addresses this lacuna. Aims: To compare the expression of hTERT protein in oral epithelial dysplasia and OSCC with normal oral mucosa by Immunohistochemical method. Subjects and Methods: In this preliminary study, IHC was used to detect the expression of hTERT protein in OSCC (n = 20), oral epithelial dysplasia (n = 21) and normal oral mucosa (n = 10). The tissue localization of immunostain, cellular localization of immunostain, nature of stain, intensity of stain, percentage of cells stained with hTERT protein were studied. A total number of 100 cells were counted in each slide. Statistical Analysis: All the data were analyzed using SPSS software version 16.0. The tissue localization, cellular localization of cytoplasmic/nuclear/both of hTERT stain, staining intensity was compared across the groups using Pearson's Chi-square test. The mean percentage of cells stained for oral epithelial dysplasia, OSCC and normal oral mucosa were

  17. Diffusion-weighted MRI of epithelial ovarian cancers: Correlation of apparent diffusion coefficient values with histologic grade and surgical stage

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ji-Won, E-mail: fromentin@naver.com [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Rha, Sung Eun, E-mail: serha@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Oh, Soon Nam, E-mail: hiohsn@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Park, Michael Yong, E-mail: digirave@kmle.com [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Byun, Jae Young, E-mail: jybyun@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Lee, Ahwon, E-mail: klee@catholic.ac.kr [Department of Hospital Pathology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of)

    2015-04-15

    Highlights: •The solid component of all invasive epithelial cancers showed high b{sub 1000} signal intensity. •ADCs can predict the histologic grade of epithelial ovarian cancer. •ADCs correlate negatively to the surgical stage of epithelial ovarian cancer. •ADCs may be useful imaging biomarkers to assess epithelial ovarian cancer. -- Abstract: Objective: The purpose of this article is to correlate the apparent diffusion coefficient (ADC) values of epithelial ovarian cancers with histologic grade and surgical stage. Materials and methods: We enrolled 43 patients with pathologically proven epithelial ovarian cancers for this retrospective study. All patients underwent preoperative pelvic magnetic resonance imaging (MRI) including diffusion-weighted images with b value of 0 and 1000 s/mm{sup 2} at 3.0-T unit. The mean ADC values of the solid portion of the tumor were measured and compared among different histologic grades and surgical stages. Results: The mean ADC values of epithelial ovarian cancers differed significantly between grade 1 (well-differentiated) and grade 2 (moderately-differentiated) (P = 0.013) as well as between grade 1 and grade 3 (poorly-differentiated) (P = 0.01); however, no statistically significant difference existed between grade 2 and grade 3 (P = 0.737). The receiver-operating characteristic analysis indicated that a cutoff ADC value of less than or equal to 1.09 × 10{sup −3} mm{sup 2}/s was associated with 94.4% sensitivity and 85.7% specificity in distinguishing grade 1 and grade 2/3 cancer. The difference in mean ADC values was statistically significant for early stage (FIGO stage I) and advanced stage (FIGO stage II-IV) cancer (P = 0.011). The interobserver agreement for the mean ADC values of epithelial ovarian cancers was excellent. Conclusion: The mean ADC values of the solid portion of epithelial ovarian cancers negatively correlated to histologic grade and surgical stage. The mean ADC values may be useful imaging

  18. Loss of prostasin (PRSS8) in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT)

    International Nuclear Information System (INIS)

    Chen, Li-Mei; Verity, Nicole J; Chai, Karl X

    2009-01-01

    The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy

  19. Loss of prostasin (PRSS8 in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT

    Directory of Open Access Journals (Sweden)

    Chai Karl X

    2009-10-01

    Full Text Available Abstract Background The glycosylphosphatidylinositol (GPI-anchored epithelial extracellular membrane serine protease prostasin (PRSS8 is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC of the human bladder and in human TCC cell lines. Methods Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP. Results Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15 TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Conclusion Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT, and may have functional implications in tumor invasion and resistance to chemotherapy.

  20. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin

    Science.gov (United States)

    Khan, Mohammad Imran; Adhami, Vaqar Mustafa; Lall, Rahul Kumar; Sechi, Mario; Joshi, Dinesh C.; Haidar, Omar M.; Syed, Deeba Nadeem; Siddiqui, Imtiaz Ahmad; Chiu, Shing-Yan; Mukhtar, Hasan

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis. The transcription/translation regulatory Y-box binding protein-1 (YB-1) is known to be associated with cancer metastasis. We observed that YB-1 expression increased with tumor grade and showed an inverse relationship with E-cadherin in a human PCa tissue array. Forced YB-1 expression induced a mesenchymal morphology that was associated with down regulation of epithelial markers. Silencing of YB-1 reversed mesenchymal features and decreased cell proliferation, migration and invasion in PCa cells. YB-1 is activated directly via Akt mediated phosphorylation at Ser102 within the cold shock domain (CSD). We next identified fisetin as an inhibitor of YB-1 activation. Computational docking and molecular dynamics suggested that fisetin binds on the residues from β1 - β4 strands of CSD, hindering Akt's interaction with YB-1. Calculated free binding energy ranged from −11.9845 to −9.6273 kcal/mol. Plasmon Surface Resonance studies showed that fisetin binds to YB-1 with an affinity of approximately 35 μM, with both slow association and dissociation. Fisetin also inhibited EGF induced YB-1 phosphorylation and markers of EMT both in vitro and in vivo. Collectively our data suggest that YB-1 induces EMT in PCa and identify fisetin as an inhibitor of its activation. PMID:24770864

  1. An integrative model on the role of DMBT1 in epithelial cancer

    DEFF Research Database (Denmark)

    Mollenhauer, Jan; Helmke, Burkhard; Müller, Hanna

    2002-01-01

    The gene, deleted in malignant brain tumors 1 (DMBT1), has been proposed to play a role in brain and epithelial cancer, but shows unusual features for a classical tumor suppressor gene. We have proposed that its presumptive dual function in protection and differentiation is of importance to under......The gene, deleted in malignant brain tumors 1 (DMBT1), has been proposed to play a role in brain and epithelial cancer, but shows unusual features for a classical tumor suppressor gene. We have proposed that its presumptive dual function in protection and differentiation is of importance...... displayed presumable mutations. However, none of the alterations would be predicted to lead to a complete inactivation of the gene. DMBT1 is mucin-like and shows tissue-specific expression and secretion, pointing to a function in the protection of monolayered epithelia and to an additional function...... in the differentiation of multilayered epithelia. The expression patterns in carcinomas arising from the respective structures support this view. Accepting this functional dualism gives rise to an initial model on the role of DMBT1 in epithelial cancer....

  2. The effect of Pokemon on bladder cancer epithelial-mesenchymal transition.

    Science.gov (United States)

    Guo, Changcheng; Zhu, Kai; Sun, Wei; Yang, Bin; Gu, Wenyu; Luo, Jun; Peng, Bo; Zheng, Junhua

    2014-01-24

    This study aimed at detecting Pokemon expression in bladder cancer cell and investigating the relationship between Pokemon and epithelial-mesenchymal transition. Furthermore, we investigated the functions of Pokemon in the carcinogenesis and development of bladder cancer. This study was also designed to observe the inhibitory effects of siRNA expression vector on Pokemon in bladder cancer cell. The siRNA expression vectors which were constructed to express a short hairpin RNA against Pokemon were transfected to the bladder cancer cells T24 with a liposome. Levels of Pokemon, E-cadherin and β-catenin mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of Pokemon silencing on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay. Pokemon was strongly inhibited by siRNA treatment, especially siRNA3 treatment group, as it was reflected by Western blot and real-time PCR. The gene and protein of E-cadherin expression level showed increased markedly after Pokemon was inhibited by RNA interference. While there were no differences in the levels of gene and protein of β-catenin among five groups. The bladder cancer cell after Pokemon siRNA interference showed a significantly reduced wound-closing efficiency at 6, 12 and 24h. Our findings suggest Pokemon may inhibit the expression of E-cadherin. The low expression of E-cadherin lead to increasing the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Studies Using an in Vitro Model Show Evidence of Involvement of Epithelial-Mesenchymal Transition of Human Endometrial Epithelial Cells in Human Embryo Implantation*

    Science.gov (United States)

    Uchida, Hiroshi; Maruyama, Tetsuo; Nishikawa-Uchida, Sayaka; Oda, Hideyuki; Miyazaki, Kaoru; Yamasaki, Akiko; Yoshimura, Yasunori

    2012-01-01

    Human embryo implantation is a critical multistep process consisting of embryo apposition/adhesion, followed by penetration and invasion. Through embryo penetration, the endometrial epithelial cell barrier is disrupted and remodeled by an unknown mechanism. We have previously developed an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial adenocarcinoma cell line Ishikawa. Using this model we have shown that stimulation with ovarian steroid hormones (17β-estradiol and progesterone, E2P4) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, enhances the attachment and adhesion of JAR spheroids to Ishikawa. In the present study we showed that the attachment and adhesion of JAR spheroids and treatment with E2P4 or SAHA individually induce the epithelial-mesenchymal transition (EMT) in Ishikawa cells. This was evident by up-regulation of N-cadherin and vimentin, a mesenchymal cell marker, and concomitant down-regulation of E-cadherin in Ishikawa cells. Stimulation with E2P4 or SAHA accelerated Ishikawa cell motility, increased JAR spheroid outgrowth, and enhanced the unique redistribution of N-cadherin, which was most prominent in proximity to the adhered spheroids. Moreover, an N-cadherin functional blocking antibody attenuated all events but not JAR spheroid adhesion. These results collectively provide evidence suggesting that E2P4- and implanting embryo-induced EMT of endometrial epithelial cells may play a pivotal role in the subsequent processes of human embryo implantation with functional control of N-cadherin. PMID:22174415

  4. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    International Nuclear Information System (INIS)

    Pang, Lisa Y.; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J.

    2011-01-01

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology

  5. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lisa Y., E-mail: lisa.pang@ed.ac.uk; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J. [Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG (United Kingdom)

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  6. The protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Xue - Fang Chen

    2013-06-01

    Full Text Available AIM: To investigate the protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis. METHODS:Subcultured human lens epithelial cell line, ultraviolet induced cell apoptosis, 20μmol/L resveratrol pretreated cell, the indicators change was observed: rate of apoptosis was detected by flow cytometry and apoptosis-related factors of caspses-3 and caspase-9 were detected by colorimetric detection, ultrastructure changes were observed under transmission electron microscope. RESULTS: Flow cytometry instrument testing found that resveratrol can suppress the apoptosis induced by ultraviolet irradiation, caspses-3 and caspase-9 content in positive control group were significantly higher than that of the negative control group at the same time period, the difference was statistically significant(P<0.05; caspses-3 and caspase-9 content in experimental group were lower than that in the positive control group at the same time, the difference was statistically significant(P<0.05. In addition, the damage of human lens epithelial cells was alleviated with the incubation time of resveratrol elongated. CONCLUSION:Resveratrol may inhibit ultraviolet-induced apoptosis of human lens epithelial cells, it has preventive function against radioactive cataract, and it can provide reliable evidence for pursuing effective medicine to prevent and treat cataract.

  7. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2018-04-01

    Full Text Available Background: Human cytomegalovirus (HCMV establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods: The infectivity of primary human mammary epithelial cells (HMECs was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3 was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9 gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results: We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs. CTH cells when injected in NOD/SCID Gamma (NSG mice

  8. A core invasiveness gene signature reflects epithelial-to-mesenchymal transition but not metastatic potential in breast cancer cell lines and tissue samples.

    Directory of Open Access Journals (Sweden)

    Melike Marsan

    Full Text Available INTRODUCTION: Metastases remain the primary cause of cancer-related death. The acquisition of invasive tumour cell behaviour is thought to be a cornerstone of the metastatic cascade. Therefore, gene signatures related to invasiveness could aid in stratifying patients according to their prognostic profile. In the present study we aimed at identifying an invasiveness gene signature and investigated its biological relevance in breast cancer. METHODS & RESULTS: We collected a set of published gene signatures related to cell motility and invasion. Using this collection, we identified 16 genes that were represented at a higher frequency than observed by coincidence, hereafter named the core invasiveness gene signature. Principal component analysis showed that these overrepresented genes were able to segregate invasive and non-invasive breast cancer cell lines, outperforming sets of 16 randomly selected genes (all P<0.001. When applied onto additional data sets, the expression of the core invasiveness gene signature was significantly elevated in cell lines forced to undergo epithelial-mesenchymal transition. The link between core invasiveness gene expression and epithelial-mesenchymal transition was also confirmed in a dataset consisting of 2420 human breast cancer samples. Univariate and multivariate Cox regression analysis demonstrated that CIG expression is not associated with a shorter distant metastasis free survival interval (HR = 0.956, 95%C.I. = 0.896-1.019, P = 0.186. DISCUSSION: These data demonstrate that we have identified a set of core invasiveness genes, the expression of which is associated with epithelial-mesenchymal transition in breast cancer cell lines and in human tissue samples. Despite the connection between epithelial-mesenchymal transition and invasive tumour cell behaviour, we were unable to demonstrate a link between the core invasiveness gene signature and enhanced metastatic potential.

  9. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan

    2015-01-01

    associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded......Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed...

  10. Regulation of the Epithelial-Mesenchymal Transition in Prostate Cancer

    Science.gov (United States)

    2013-06-01

    These proteins are structurally similar to the SRC family kinases , consisting of Src- homology-3 (SH3) and SH2 domains followed by a tyrosine kinase ...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Protein tyrosine kinase 6...PTK6) is a nonmyristoylated intracellular tyrosine kinase that is expressed in the normal prostate and in prostate cancers. We had hypothesized that

  11. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  12. Adrenomedullin stimulates cyclic AMP production in the airway epithelial cells of guinea-pigs and in the human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Takashi Kawaguchi

    1999-01-01

    Full Text Available This study was designed to examine the effects of adrenomedullin (AM on airway epithelial cells. Primary cultures of guinea-pig tracheal epithelial cells and the human bronchiolar epithelial cell line NCI-H441 were used. Intracellular cyclic adenosine monophosphate (cAMP, cyclic guanosine monophosphate (cGMP, prostaglandin E2 (PGE2, and stable end-products of nitric oxide were assayed. Adrenomedullin (10−6 mol/L stimulated cAMP production in guinea-pig epithelial cells. Indomethacin (10−5 mol/L significantly decreased the basal level of intracellular cAMP in guinea-pig epithelial cells, but not in NCI-H441 cells. However, AM did not stimulate production of PGE2, a major product that can increase cAMP formation. In the case of NCI-H441 cells, AM (10−8 – 10−6 mol/L did not significantly affect intracellular cGMP levels or nitrite content in conditioned medium. Adrenomedullin and calcitonin gene-related peptide (CGRP each stimulated cAMP production in NCI-H441 cells, but AM-stimulated cAMP production was antagonized by the CGRP fragment CGRP8–37. These findings suggest that AM stimulates cAMP production and functionally competes with CGRP for binding sites in airway epithelial cells, at least in human epithelial cells, but that it does not stimulate the release of PGE2 and nitric oxide. Though cyclooxygenase products contribute to some extent to cAMP formation in guinea-pigs, AM independently stimulates intracellular cAMP formation in airway epithelial cells.

  13. BAX protein expression and clinical outcome in epithelial ovarian cancer.

    Science.gov (United States)

    Tai, Y T; Lee, S; Niloff, E; Weisman, C; Strobel, T; Cannistra, S A

    1998-08-01

    Expression of the pro-apoptotic protein BAX sensitizes ovarian cancer cell lines to paclitaxel in vitro by enhancing the pathway of programmed cell death. The present study was performed to determine the relationship between BAX expression and clinical outcome in 45 patients with newly diagnosed ovarian cancer. BAX protein expression was analyzed by immunohistochemistry, and its relationship with clinical outcome was determined. Assessment of BAX mRNA transcript levels and mutational analysis of the BAX coding region were also performed. BAX protein was expressed at high levels (defined as > or = 50% of tumor cells positive) in tumor tissue from 60% of newly diagnosed patients. All patients whose tumors expressed high levels of BAX achieved a complete response (CR) to first-line chemotherapy that contained paclitaxel plus a platinum analogue, compared with 57% of patients in the low-BAX group (P = .036). After a median follow-up of 1.9 years, the median disease-free survival (DFS) of patients in the high-BAX group has not been reached, compared with a median DFS of 1.1 years for low-BAX expressors (P = .0061). BAX retained independent prognostic significance in multivariate analysis when corrected for stage and histology. BAX mRNA transcripts were easily detected in samples with low BAX protein expression, and no BAX mutations were identified. The correlation between high BAX levels and improved clinical outcome suggests that an intact apoptotic pathway is an important determinant of chemoresponsiveness in ovarian cancer patients who receive paclitaxel.

  14. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  15. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis.

    Science.gov (United States)

    Mulder, Daniel J; Pooni, Aman; Mak, Nanette; Hurlbut, David J; Basta, Sameh; Justinich, Christopher J

    2011-02-01

    Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Decoding critical long non-coding RNA in ovarian cancer epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Mitra, Ramkrishna; Chen, Xi; Greenawalt, Evan J; Maulik, Ujjwal; Jiang, Wei; Zhao, Zhongming; Eischen, Christine M

    2017-11-17

    Long non-coding RNA (lncRNA) are emerging as contributors to malignancies. Little is understood about the contribution of lncRNA to epithelial-to-mesenchymal transition (EMT), which correlates with metastasis. Ovarian cancer is usually diagnosed after metastasis. Here we report an integrated analysis of >700 ovarian cancer molecular profiles, including genomic data sets, from four patient cohorts identifying lncRNA DNM3OS, MEG3, and MIAT overexpression and their reproducible gene regulation in ovarian cancer EMT. Genome-wide mapping shows 73% of MEG3-regulated EMT-linked pathway genes contain MEG3 binding sites. DNM3OS overexpression, but not MEG3 or MIAT, significantly correlates to worse overall patient survival. DNM3OS knockdown results in altered EMT-linked genes/pathways, mesenchymal-to-epithelial transition, and reduced cell migration and invasion. Proteotranscriptomic characterization further supports the DNM3OS and ovarian cancer EMT connection. TWIST1 overexpression and DNM3OS amplification provides an explanation for increased DNM3OS levels. Therefore, our results elucidate lncRNA that regulate EMT and demonstrate DNM3OS specifically contributes to EMT in ovarian cancer.

  17. Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer

    Directory of Open Access Journals (Sweden)

    Flora Guerra

    2017-12-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT allows epithelial cancer cells to assume mesenchymal features, endowing them with enhanced motility and invasiveness, thus enabling cancer dissemination and metastatic spread. The induction of EMT is orchestrated by EMT-inducing transcription factors that switch on the expression of “mesenchymal” genes and switch off the expression of “epithelial” genes. Mitochondrial dysfunction is a hallmark of cancer and has been associated with progression to a metastatic and drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA or mutations in Krebs’ cycle enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided evidence that mitochondrial dysfunction and EMT are interconnected. In this review, we provide an overview of the current knowledge on the role of different types of mitochondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent advances in the identification of signaling components in the mito-nuclear communication network initiated by dysfunctional mitochondria that promote cellular remodeling and EMT activation in cancer cells.

  18. [A survey of willingness about genetic counseling and tests in patients of epithelial ovarian cancer].

    Science.gov (United States)

    Li, L; Qiu, L; Wu, M

    2017-11-21

    Objective: To analyze patients' tendency towards genetics counseling and tests based on a prospective cohort study on hereditary ovarian cancer. Methods: From February 2017 to June 2017, among 220 cases of epithelial ovarian cancer in Peking Union Medical College Hospital, we collected epidemiological, pathological and tendency towards genetics counseling and tests via medical records and questionnaire.All patients would get education about hereditary ovarian cancer by pamphlets and WeChat.If they would receive further counseling, a face to face interview and tests will be given. Results: Among all 220 patients, 10 (4.5%) denied further counseling.For 210 patients receiving genetic counseling, 170 (81%) accepted genetic tests.In multivariate analysis, risk factors relevant to acceptance of genetic tests included: being charged by physicians of gynecologic oncology for diagnosis and treatment, receiving counseling in genetic counseling clinics, and having family history of breast cancer.For patients denying genetic tests, there were many subjective reasons, among which, "still not understanding genetic tests" (25%) and "unable bear following expensive targeting medicine" . Conclusions: High proportion patients of epithelial ovarian cancer would accept genetic counseling and tests.Genetic counseling clinics for gynecologic oncology would further improve genetic tests for patients.

  19. Endothelin-1 promotes epithelial-mesenchymal transition in human chondrosarcoma cells by repressing miR-300.

    Science.gov (United States)

    Wu, Min-Huan; Huang, Pei-Han; Hsieh, Mingli; Tsai, Chun-Hao; Chen, Hsien-Te; Tang, Chih-Hsin

    2016-10-25

    Chondrosarcoma is a malignant tumor of mesenchymal origin predominantly composed of cartilage-producing cells. This type of bone cancer is extremely resistant to radiotherapy and chemotherapy. Surgical resection is the primary treatment, but is often difficult and not always practical for metastatic disease, so more effective treatments are needed. In particular, it would be helpful to identify molecular markers as targets for therapeutic intervention. Endothelin-1 (ET-1), a potent vasoconstrictor, has been shown to enhance chondrosarcoma angiogenesis and metastasis. We report that ET-1 promotes epithelial-mesenchymal transition (EMT) in human chondrosarcoma cells. EMT is a key pathological event in cancer progression, during which epithelial cells lose their junctions and apical-basal polarity and adopt an invasive phenotype. Our study verifies that ET-1 induces the EMT phenotype in chondrosarcoma cells via the AMP-activated protein kinase (AMPK) pathway. In addition, we show that ET-1 increases EMT by repressing miR-300, which plays an important role in EMT-enhanced tumor metastasis. We also show that miR-300 directly targets Twist, which in turn results in a negative regulation of EMT. We found a highly positive correlation between ET-1 and Twist expression levels as well as tumor stage in chondrosarcoma patient specimens. Therefore, ET-1 may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.

  20. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  1. Whole abdomen irradiation in epithelial ovarian cancer - state of the art

    International Nuclear Information System (INIS)

    Gocheva, L.

    2009-01-01

    Epithelial ovarian cancer (OC) as a malignancy which poses multiple challenges has led to growing attention and concern during recent years. The not very noteworthy treatment results achieved during the last three decades with contemporary chemotherapeutic schemes have led to the need for research and development of new therapeutic approaches, as well as to a resurgence of interest in radiotherapy (RT) as part of a combined modality approach and as salvage therapy for patients with small volume persistent disease after primary cytoreductive surgery and chemotherapy. This article reviews the state of the art of whole abdomen irradiation (WAI) (excluding the moving strip field technique) as part of the complex treatment of epithelial OC. The prognostic factors and risk groups of epithelial OC are discussed as indicators for WAI, giving in detail the applied treatment modalities, fractionation and total doses. Toxicity and second primary malignancies following WAI are analyzed. The clinical experience accumulated during the last decades, as adjuvant, consolidative, salvage and palliative WAI in combined treatment of epithelial OC, is presented. Current issues in the radiotherapeutic management are discussed along with ideas for future clinical research directions. (author)

  2. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  3. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  4. Induction of non-apoptotic programmed cell death by oncogenic RAS in human epithelial cells and its suppression by MYC overexpression.

    Science.gov (United States)

    Dendo, Kasumi; Yugawa, Takashi; Nakahara, Tomomi; Ohno, Shin-Ichi; Goshima, Naoki; Arakawa, Hirofumi; Kiyono, Tohru

    2018-02-09

    Oncogenic mutations of RAS genes, found in about 30% of human cancers, are considered to play important roles in cancer development. However, oncogenic RAS can also induce senescence in mouse and human normal fibroblasts. In some cell lines, oncogenic RAS has been reported to induce non-apoptotic programed cell death (PCD). Here, we investigated effects of oncogenic RAS expression in several types of normal human epithelial cells. Oncogenic RAS but not wild-type RAS stimulated macropinocytosis with accumulation of large-phase lucent vacuoles in the cytoplasm, subsequently leading to cell death which was indistinguishable from a recently proposed new type of PCD, methuosis. A RAC1 inhibitor suppressed accumulation of macropinosomes and overexpression of MYC attenuated oncogenic RAS-induced such accumulation, cell cycle arrest and cell death. MYC suppression or rapamycin treatment in some cancer cell lines harbouring oncogenic mutations in RAS genes induced cell death with accumulation of macropinosomes. These results suggest that this type of non-apoptotic PCD is a tumour-suppressing mechanism acting against oncogenic RAS mutations in normal human epithelial cells, which can be overcome by MYC overexpression, raising the possibility that its induction might be a novel approach to treatment of RAS-mutated human cancers. © The Author(s) 2017. Published by Oxford University Press.

  5. Oxytetracycline Inhibits Mucus Secretion and Inflammation in Human Airway Epithelial Cells.

    Science.gov (United States)

    Shah, Said Ahmad; Ishinaga, Hajime; Takeuchi, Kazuhiko

    2017-01-01

    Oxytetracycline is a broad-spectrum antibiotic, but its nonantibacterial effects in the human respiratory tract are unknown. In this study, the effects of oxytetracycline on mucus secretion and inflammation were examined by PCR and ELISA in the human airway epithelial cell line NCI-H292. Oxytetracycline (10 μg/mL) significantly inhibited TNF-α-induced MUC5AC gene expression and MUC5AC protein levels in NCI-H292 cells. It also downregulated IL-8 and IL-1β gene expression and IL-1β protein levels. Our findings demonstrated that oxytetracycline suppressed mucus production and inflammation in human respiratory epithelial cells, providing further evidence for the usefulness of oxytetracycline for human airway inflammatory diseases. © 2017 S. Karger AG, Basel.

  6. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    Directory of Open Access Journals (Sweden)

    Yuan CX

    2015-03-01

    Full Text Available Chun-Xiu Yuan,1,2 Zhi-Wei Zhou,2,3 Yin-Xue Yang,4 Zhi-Xu He,3 Xueji Zhang,5 Dong Wang,6 Tianxing Yang,7 Si-Yuan Pan,8 Xiao-Wu Chen,9 Shu-Feng Zhou2 1Department of Oncology, General Hospital, Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Department of Colorectal Surgery, General Hospital, Ningxia Medical University, Yinchuan, 5Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 6Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China; 7Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 8Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 9Department of General Surgery, The First People’s Hospital of Shunde, Southern Medical University, Shunde, People’s Republic of China Abstract: Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and

  7. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine...... single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2......,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant...

  8. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    . As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC......BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes...... and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted...

  9. Platelets are a possible regulator of human endometrial re-epithelialization during menstruation.

    Science.gov (United States)

    Suginami, Koh; Sato, Yukiyasu; Horie, Akihito; Matsumoto, Hisanori; Kyo, Satoru; Araki, Yoshihiko; Konishi, Ikuo; Fujiwara, Hiroshi

    2017-01-01

    The human endometrium periodically breaks down and regenerates. As platelets have been reported to contribute to the tissue remodeling process, we examined the possible involvement of platelets in endometrial regeneration. The distribution of extravasating platelets throughout the menstrual cycle was immunohistochemically examined using human endometrial tissues. EM-E6/E7/hTERT cells, a human endometrial epithelial cell-derived immortalized cell line, were co-cultured with platelets, and the effects of platelets on the epithelialization response of EM-E6/E7/hTERT cells were investigated by attachment and permeability assays, immunohistochemical staining, and Western blot analysis. Immunohistochemical study showed numerous extravasated platelets in the subluminar stroma during the menstrual phase. The platelets promoted the cell-to-matrigel attachment of EM-E6/E7/hTERT cells concomitantly with the phosphorylation of focal adhesion kinase. They also promoted cell-to-cell contact among EM-E6/E7/hTERT cells in parallel with E-cadherin expression. These results indicate the possible involvement of platelets in the endometrial epithelial re-epithelialization process. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    Science.gov (United States)

    2007-06-01

    human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad Sci USA 1995; 92:3687-91. 54. Shay JW, Pereira-Smith OM, Wright...Liu X-L, Chu Q, Gao Q, Band V. Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 e6 or e7. Proc Nat Acad

  11. Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation.

    Science.gov (United States)

    Wecksler, Aaron T; Kenyon, Victor; Deschamps, Joshua D; Holman, Theodore R

    2008-07-15

    Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-( S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-( S)-hydroxyoctadecadienoic acid (13-HODE) and 12-( S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio. These results, coupled with the dependence of the 15-hLO-1 k cat/ K m kinetic isotope effect ( (D) k cat/ K m) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801-4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.

  12. Mechanism research of miR-181 regulating human lens epithelial cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yu Qin

    2015-05-01

    Full Text Available AIM: To investigate the expression of miR-181 in the lens tissue of cataract and the regulating mechanism of miR-181 on apoptosis of human lens epithelial cell.METHODS:Real time q-PCR was used to measure the expression of miR-181 in the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model. miR-181 mimic and inhibitor were transfected using Lipofectamine 2 000 to regulate the expression of miR-181, and then Real time q-PCR was used to verify transfection efficiency. Flow cytometry was used to detect the change of cell apoptosis rate. RESULTS: Compared with control group, the expression of miR-181 was significantly higher in both the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model; the relative expression of miR-181 in lens epithelial cells transfected with miR-181 mimic was increased, whereas decreased in cells transfected with miR-181 inhibitor; the apoptosis rate of cells transfected with miR-181 mimic was increased, while reduced in miR-181 inhibitor group. Each result was statistically significant(PCONCLUSION: High expression of miR-181 is detected in anterior lens capsule of age-related cataract. miR-181 might play a certain role in the pathogenesis of cataract via promoting human lens epithelial cell apoptosis. miR-181 probably becomes a new approach for the nonoperative treatment of cataract, but the concrete mechanism still needs to be further studied.

  13. Regulation of matrix stiffness on the epithelial-mesenchymal transition of breast cancer cells under hypoxia environment

    Science.gov (United States)

    Lv, Yonggang; Chen, Can; Zhao, Boyuan; Zhang, Xiaomei

    2017-06-01

    Substrate stiffness and hypoxia are associated with tumor development and progression, respectively. However, the synergy of them on the biological behavior of human breast cancer cell is still largely unknown. This study explored how substrate stiffness regulates the cell phenotype, viability, and epithelial-mesenchymal transition (EMT) of human breast cancer cells MCF-7 under hypoxia (1% O2). TRITC-phalloidin staining showed that MCF-7 cells transformed from round to irregular polygon with stiffness increase either in normoxia or hypoxia. While being accompanied with the upward tendency from a 0.5- to a 20-kPa substrate, the percentage of cell apoptosis was significantly higher in hypoxia than that in normoxia, especially on the 20-kPa substrate. Additionally, it was hypoxia, but not normoxia, that promoted the EMT of MCF-7 by upregulating hypoxia-inducible factor-1α (HIF-1α), vimentin, Snail 1, and matrix metalloproteinase 2 (MMP 2) and 9 (MMP 9), and downregulating E-cadherin simultaneously regardless of the change of substrate stiffness. In summary, this study discovered that hypoxia and stiffer substrate (20 kPa) could synergistically induce phenotype change, apoptosis, and EMT of MCF-7 cells. Results of this study have an important significance on further exploring the synergistic effect of stiffness and hypoxia on the EMT of breast cancer cells and its molecular mechanism.

  14. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Science.gov (United States)

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  15. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Anaar Siletz

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  16. Case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, K.; Ootsuka, F. (Tokyo Univ. (Japan). Faculty of Medicine); Mizoguchi, M.

    1980-12-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered.

  17. A case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    International Nuclear Information System (INIS)

    Oohara, Kuniaki; Ootsuka, Fujio; Mizoguchi, Masako.

    1980-01-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered. (Tsunoda, M.)

  18. Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer.

    Science.gov (United States)

    Innamaa, A; Jackson, L; Asher, V; van Schalkwyk, G; Warren, A; Keightley, A; Hay, D; Bali, A; Sowter, H; Khan, R

    2013-11-01

    Aberrant expression of potassium (K(+)) channels contributes to cancer cell proliferation and apoptosis, and K(+) channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis. The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry. Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.

  19. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  20. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  1. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  2. Skeletal Muscle Depletion and Markers for Cancer Cachexia Are Strong Prognostic Factors in Epithelial Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Stefanie Aust

    Full Text Available Tumor cachexia is an important prognostic parameter in epithelial ovarian cancer (EOC. Tumor cachexia is characterized by metabolic and inflammatory disturbances. These conditions might be reflected by body composition measurements (BCMs ascertained by pre-operative computed tomography (CT. Thus, we aimed to identify the prognostically most relevant BCMs assessed by pre-operative CT in EOC patients.We evaluated muscle BCMs and well established markers of nutritional and inflammatory status, as well as clinical-pathological parameters in 140 consecutive patients with EOC. Furthermore, a multiplexed inflammatory marker panel of 25 cytokines was used to determine the relationship of BCMs with inflammatory markers and patient's outcome. All relevant parameters were evaluated in uni- and multivariate survival analysis.Muscle attenuation (MA-a well established BCM parameter-is an independent prognostic factor for survival in multivariate analysis (HR 2.25; p = 0.028. Low MA-reflecting a state of cachexia-is also associated with residual tumor after cytoreductive surgery (p = 0.046 and with an unfavorable performance status (p = 0.015. Moreover, MA is associated with Eotaxin and IL-10 out of the 25 cytokine multiplex marker panel in multivariate linear regression analysis (p = 0.021 and p = 0.047, respectively.MA-ascertained by routine pre-operative CT-is an independent prognostic parameter in EOC patients. Low MA is associated with the inflammatory, as well as the nutritional component of cachexia. Therefore, the clinical value of pre-operative CT could be enhanced by the assessment of MA.

  3. Attenuation of radiation-induced DNA damage due to paracrine interactions between normal human epithelial and stromal cells

    International Nuclear Information System (INIS)

    Saenko, V.A.; Nakazawa, Yu.; Rogounovitch, T.I.; Suzuki, K.; Mitsutake, N.; Matsuse, M.; Yamashita, S.

    2007-01-01

    Complete text of publication follows. Objective: Developmentally, every tissue accommodates different types of cells, such as epitheliocytes and stromal cells in parenchymal organs. To better understand the complexity of radiation response, it is necessary to evaluate possible cross-talk between different tissue components. This work was set out to investigate reciprocal influence of normal human epithelial cells and fibroblasts on the extent of radiation-induced DNA damage. Methods: Model cultures of primary human thyrocytes (PT), normal diploid fibroblasts (BJ), PT/BJ cell co-culture and conditioned medium transfer were used to examine DNA damage in terms of γ-H2AX foci number per cell or by Comet assay after exposure to different doses of γ-rays. Results: In co-cultures, the kinetics of γ-H2AX foci number change was dose-dependent and similar to that in individual PT and BJ cultures. The number of γ-H2AX foci in co-cultures was significantly lower (∼25%) in both types of cells comparing to individual cultures. Reciprocal conditioned medium transfer to individual counterpart cells prior to irradiation resulted in approximately 35% reduction in the number γ-H2AX foci at 1 Gy and lower doses in both PT and BJ demonstrating the role of paracrine soluble factors. Comet assay corroborated the results of γ-H2AX foci counting in conditioned medium transfer experiments. In contrast to medium conditioned on PT cells, conditioned medium collected from several human thyroid cancer cell lines failed to establish DNA-protected state in BJ fibroblasts. In its turn, medium conditioned on BJ cells did not change the extent of radiation-induced DNA damage in cancer cell lines tested. Conclusion: The results imply the existence of a network of soluble factor-mediated paracrine interactions between normal epithelial and stromal cells that could be a part of natural mechanism by which cells protect DNA from genotoxic stress.

  4. HUMAN PROSTATE CANCER RISK FACTORS

    Science.gov (United States)

    Prostate cancer has the highest prevalence of any non-skin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating an...

  5. [Epithelial cadherins and associated molecules in invasive lobular breast cancer].

    Science.gov (United States)

    Brilliant, Yu M; Brilliant, A A; Sazonov, S V

    to estimate the expression of cell adhesion molecules E- and P-cadherin, as well as that of cadherin-catenin complexes in invasive lobular breast cancer (BC) cells. 250 cases of postoperative material from patients diagnosed with invasive lobular BC were studied. The expressions of cell adhesion molecules E-cadherin, P-cadherin, β-catenin, p120 catenin, and vimentin were determined by immunohistochemical assay in all cases. The examined cases were divided into molecular biological subtypes, based on the evaluation of estrogen receptors (ER), progesterone receptors (PR), HER-2/neu, and Ki-67 proliferative index. The membrane expression of E-cadherin on the tumor cells was found to be preserved in 93%; the cytoplasmic expression of β-catenin and p120-catenin appeared in 60 and 72% of cases, respectively. The expression of P-cadherin was detected in 82% of cases. The coexpression of E- and P-cadherin was noted in 90% of all the examined cases. There was a correlation between the expression of E- and P-cadherins (V=0.34; pcancer and its metastasis.

  6. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    Science.gov (United States)

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  7. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells.

    Science.gov (United States)

    Ayaki, Masahiko; Yaguchi, Shigeo; Iwasawa, Atsuo; Koide, Ryohei

    2008-08-01

    The cytotoxicity of a range of commercial ophthalmic solutions in the presence and absence of preservatives was assessed in human corneal endothelial cells (HCECs), corneal epithelia and conjunctival epithelia using in vitro techniques. Cell survival was measured using the WST-1 assay for endothelial cells and the MTT assay for epithelial cells. Commercially available timolol, carteolol, cromoglicate, diclofenac, bromfenac and hyaluronic acid ophthalmic solutions were assessed for cytotoxicity in the presence and absence of preservatives. The preservatives benzalkonium, chlorobutanol and polysorbate were also tested. The survival of cells exposed to test ophthalmic solutions was expressed as a percentage of cell survival in the control solution (distilled water added to media) after 48 h exposure. HCEC survival was 20-30% in ophthalmic solutions diluted 10-fold. The survival of HCEC was significantly greater in all solutions in the absence of preservative than in the presence of preservative. The survival of corneal and conjunctival epithelia was consistent with that of HCECs for all test ophthalmic solutions. The preservatives polysorbate and benzalkonium were highly cytotoxic with cell survival decreasing to 20% at the concentration estimated in commercial ophthalmic solutions. By comparison, the survival of cells exposed to chlorobutanol was 80% or greater. The cytotoxicity of ophthalmic solutions to HCEC, corneal epithelia and conjunctival epithelia decreased in the absence of preservative.

  8. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  9. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  10. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  11. An Embryonic Growth Pathway is Reactivated in Human Prostate Cancer

    National Research Council Canada - National Science Library

    Bushman, Wade

    2005-01-01

    .... This research postulates that prostate cancer cells commandeer this normal epithelial-mesenchymal signaling pathway to recruit stromal cells to support abnormal tumor growth and tests the hypothesis...

  12. An Embryonic Growth Pathway is Reactivated in Human Prostate Cancer

    National Research Council Canada - National Science Library

    Bushman, Wade

    2003-01-01

    .... This research postulates that prostate cancer cells commandeer this normal epithelial-mesenchymal signaling pathway to recruit stromal cells to support abnormal tumor growth and tests the hypothesis...

  13. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jungnam Lee

    2017-12-01

    Full Text Available Porphyromonas gingivalis is a host-adapted oral pathogen associated with chronic periodontitis that successfully survives and persists in the oral epithelium. Recent studies have positively correlated periodontitis with increased risk and severity of oral squamous cell carcinoma (OSCC. Intriguingly, the presence of P. gingivalis enhances tumorigenic properties independently of periodontitis and has therefore been proposed as a potential etiological agent for OSCC. However, the initial host molecular changes induced by P. gingivalis infection which promote predisposition to cancerous transformation through EMT (epithelial-mesenchymal-transition, has never been studied in human primary cells which more closely mimic the physiological state of cells in vivo. In this study, we examine for the first time in primary oral epithelial cells (OECs the expression and activation of key EMT mediators during long-term P. gingivalis infection in vitro. We examined the inactive phosphorylated state of glycogen synthase kinase-3 beta (p-GSK3β over 120 h P. gingivalis infection and found p-GSK3β, an important EMT regulator, significantly increases over the course of infection (p < 0.01. Furthermore, we examined the expression of EMT-associated transcription factors, Slug, Snail, and Zeb1 and found significant increases (p < 0.01 over long-term P. gingivalis infection in protein and mRNA expression. Additionally, the protein expression of mesenchymal intermediate filament, Vimentin, was substantially increased over 120 h of P. gingivalis infection. Analysis of adhesion molecule E-cadherin showed a significant decrease (p < 0.05 in expression and a loss of membrane localization along with β-catenin in OECs. Matrix metalloproteinases (MMPs 2, 7, and 9 are all markedly increased with long-term P. gingivalis infection. Finally, migration of P. gingivalis infected cells was evaluated using scratch assay in which primary OEC monolayers were wounded and treated with

  14. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  15. Rate of Appendiceal Metastasis with Non-Serous Epithelial Ovarian Cancer in Manitoba.

    Science.gov (United States)

    Altman, Alon D; Lefas, Georgia; Power, Laura; Lambert, Pascal; Lotocki, Robert; Dean, Erin; Nachtigal, Mark W

    2018-02-01

    This study sought to evaluate the rate of appendiceal involvement in non-serous mucinous and endometrioid-associated epithelial ovarian cancers. The Manitoba Cancer Registry and CancerCare database were used to find all women with non-serous epithelial ovarian, fallopian tube, or primary peritoneal cancer between 1995 and 2011. All patients with an appendectomy were then identified, and their final pathology findings were reviewed. Women who did not receive treatment or lacked follow-up were excluded. We identified 338 patients from 1995-2011 with no prior appendectomy. Of these, 16.6% received an appendectomy, and 22.8% were clinically evaluated. Most cases within this cohort were mucinous (62%) and stage 1 (63%). Four appendiceal metastases were identified (7.2%), and one half appeared clinically normal at the time of surgery (3.6%). Within the mucinous histologic type, 32.7% of patients received an appendectomy, with a metastatic rate of 5.7%. Of the 127 endometrioid cases, only 10 patients received an appendectomy, and 2 were found to have metastases. No metastases were found in the 85 patients in the clear cell cohort, only 5 of whom received an appendectomy. Routine appendectomy or clinical assessment of the appendix is valuable for all non-serous ovarian cancers. The rate of involvement for endometriosis-associated ovarian cancers may be significantly higher than expected, and further studies need to be conducted. Copyright © 2018 Society of Obstetricians and Gynaecologists of Canada. Published by Elsevier Inc. All rights reserved.

  16. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

    Science.gov (United States)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja Kh; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Vierkant, Robert A; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Schernhammer, Eva; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M; Kelemen, Linda E; Ramus, Susan J; Monteiro, Alvaro N A; Goode, Ellen L; Narod, Steven A; Gayther, Simon A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10 -4 ]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1 , may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

  17. Xianyu decoction attenuates the inflammatory response of human lung bronchial epithelial cell.

    Science.gov (United States)

    Yu, Chenyi; Xiang, Qiangwei; Zhang, Hailin

    2018-06-01

    Xianyu decoction (XD), a Chinese experience recipe, shows inhibitory effects on lung cancer. However, the potential functions of XD on pneumonia were unknown. This study aimed to investigate the effect of XD on inflammatory response of childhood pneumonia. Human lung bronchial epithelial cell line BEAS-2B was cultured in different doses of LPS with or without XD treatment. The expression of miR-15a and IKBKB were altered by transfection assay. RT-PCR and western blot were used to evaluate the effects of XD and miR-15a mimic/inhibitor on the expression levels of miR-15a, IKBKB, p65 and IκBα. ELISA was used to determine the levels of CRP, IL-6 and IL-8. High expression of miR-15a was observed in serum and cell model of pneumonia. miR-15a promoted the expression of inflammatory cytokines IL-6, IL-8, CRP and IKBKB in vitro. XD treatment downregulated the level of miR-15a in pneumonia children. In addition, XD reduced the expression of inflammatory cytokines and the phosphorylation levels of p65 and IκBα by inhibition of miR-15a and IKBKB expression in LPS-stimulated BEAS-2B cells. XD downregulated the level of miR-15a in serum of pneumonia children. Additionally, XD inhibited inflammatory response in LPS-stimulated BEAS-2B cells possibly by blocking IKBKB/NF-κB signal pathway which was regulated by miR-15a. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification

    Directory of Open Access Journals (Sweden)

    Yu L

    2018-01-01

    Full Text Available Lei Yu,1 Na Li,1 Jisheng Zhang,2 Yan Jiang1 1Department of Otorhinolaryngology, 2Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China Introduction: Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC, remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods: The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects.Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. Keywords: IL-13, H3K4me3 modification, nasal epithelial cell, differentiation 

  19. SERPINB3 in the chicken model of ovarian cancer: a prognostic factor for platinum resistance and survival in patients with epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Whasun Lim

    Full Text Available Serine protease inhibitors (SERPINs appear to be ubiquitously expressed in a variety of species and play important roles in pivotal physiological processes such as angiogenesis, immune responses, blood coagulation and fibronolysis. Of these, squamous cell carcinoma antigen 1 (SCCA1, also known as a SERPINB3, was first identified in squamous cell carcinoma tissue from the cervix of women. However, there is little known about the SERPINB3 expression in human epithelial ovarian cancer (EOC. Therefore, in the present study, we investigated the functional role of SERPINB3 gene in human EOC using chickens, the most relevant animal model. In 136 chickens, EOC was found in 10 (7.4%. SERPINB3 mRNA was induced in cancerous, but not normal ovaries of chickens (P<0.01, and it was abundant only in the glandular epithelium of cancerous ovaries of chickens. Further, several microRNAs, specifically miR-101, miR-1668 and miR-1681 were discovered to influence SERPINB3 expression via its 3'-UTR which suggests that post-transcriptional regulation influences SERPINB3 expression in chickens. SERPINB3 protein was localized predominantly to the glandular epithelium in cancerous ovaries of chickens, and it was abundant in the nucleus of both chicken and human ovarian cancer cell lines. In 109 human patients with EOC, 15 (13.8%, 66 (60.6% and 28 (25.7% patients showed weak, moderate and strong expression of SERPINB3 protein, respectively. Strong expression of SERPINB3 protein was a prognostic factor for platinum resistance (adjusted OR; odds ratio, 5.94; 95% Confidence Limits, 1.21-29.15, and for poor progression-free survival (PFS; adjusted HR; hazard ratio, 2.07; 95% CI; confidence interval, 1.03-4.41. Therefore, SERPINB3 may play an important role in ovarian carcinogenesis and be a novel biomarker for predicting platinum resistance and a poor prognosis for survival in patients with EOC.

  20. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells.

    Science.gov (United States)

    Oghalaie, Akbar; Kazemi-Lomedasht, Fatemeh; Zareinejad, Mohammad Reza; Shahbazzadeh, Delavar

    2017-01-01

    Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1) was the main aim of this study. Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC) using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5). Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  1. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells

    Directory of Open Access Journals (Sweden)

    Akbar Oghalaie

    2017-01-01

    Full Text Available Background: Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1 was the main aim of this study. Materials and Methods: Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Results: Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5. Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Conclusion: Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  2. Lysophosphatidic Acid Disrupts Junctional Integrity and Epithelial Cohesion in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yueying Liu

    2012-01-01

    Full Text Available Ovarian cancer metastasizes via exfoliation of free-floating cells and multicellular aggregates from the primary tumor to the peritoneal cavity. A key event in EOC metastasis is disruption of cell-cell contacts via modulation of intercellular junctional components including cadherins. Ascites is rich in lysophosphatidic acid (LPA, a bioactive lipid that may promote early events in ovarian cancer dissemination. The objective of this paper was to assess the effect of LPA on E-cadherin junctional integrity. We report a loss of junctional E-cadherin in OVCAR3, OVCA429, and OVCA433 cells exposed to LPA. LPA-induced loss of E-cadherin was concentration and time dependent. LPA increased MMP-9 expression and promoted MMP-9-catalyzed E-cadherin ectodomain shedding. Blocking LPA receptor signaling inhibited MMP-9 expression and restored junctional E-cadherin staining. LPA-treated cells demonstrated a significant decrease in epithelial cohesion. Together these data support a model wherein LPA induces MMP-9 expression and MMP-9-catalyzed E-cadherin ectodomain shedding, resulting in loss of E-cadherin junctional integrity and epithelial cohesion, facilitating metastatic dissemination of ovarian cancer cells.

  3. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics

    International Nuclear Information System (INIS)

    Scimeca, Manuel; Giannini, Elena; Antonacci, Chiara; Pistolese, Chiara Adriana; Spagnoli, Luigi Giusto; Bonanno, Elena

    2014-01-01

    Mammary microcalcifications have a crucial role in breast cancer detection, but the processes that induce their formation are unknown. Moreover, recent studies have described the occurrence of the epithelial–mesenchymal transition (EMT) in breast cancer, but its role is not defined. In this study, we hypothesized that epithelial cells acquire mesenchymal characteristics and become capable of producing breast microcalcifications. Breast sample biopsies with microcalcifications underwent energy dispersive X-ray microanalysis to better define the elemental composition of the microcalcifications. Breast sample biopsies without microcalcifications were used as controls. The ultrastructural phenotype of breast cells near to calcium deposits was also investigated to verify EMT in relation to breast microcalcifications. The mesenchymal phenotype and tissue mineralization were studied by immunostaining for vimentin, BMP-2, β2-microglobulin, β-catenin and osteopontin (OPN). The complex formation of calcium hydroxyapatite was strictly associated with malignant lesions whereas calcium-oxalate is mainly reported in benign lesions. Notably, for the first time, we observed the presence of magnesium-substituted hydroxyapatite, which was frequently noted in breast cancer but never found in benign lesions. Morphological studies demonstrated that epithelial cells with mesenchymal characteristics were significantly increased in infiltrating carcinomas with microcalcifications and in cells with ultrastructural features typical of osteoblasts close to microcalcifications. These data were strengthened by the rate of cells expressing molecules typically involved during physiological mineralization (i.e. BMP-2, OPN) that discriminated infiltrating carcinomas with microcalcifications from those without microcalcifications. We found significant differences in the elemental composition of calcifications between benign and malignant lesions. Observations of cell phenotype led us to

  4. Transplantation of human amniotic epithelial cells repairs brachial plexus injury:pathological and biomechanical analyses

    Institute of Scientific and Technical Information of China (English)

    Qi Yang; Min Luo; Peng Li; Hai Jin

    2014-01-01

    A brachial plexus injury model was established in rabbits by stretching the C6 nerve root. Imme-diately after the stretching, a suspension of human amniotic epithelial cells was injected into the injured brachial plexus. The results of tensile mechanical testing of the brachial plexus showed that the tensile elastic limit strain, elastic limit stress, maximum stress, and maximum strain of the injured brachial plexuses were signiifcantly increased at 24 weeks after the injection. The treat-ment clearly improved the pathological morphology of the injured brachial plexus nerve, as seen by hematoxylin eosin staining, and the functions of the rabbit forepaw were restored. These data indicate that the injection of human amniotic epithelial cells contributed to the repair of brachial plexus injury, and that this technique may transform into current clinical treatment strategies.

  5. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Kopecky, K.J.; Hiraoka, T.; Ezaki, H.; Clifton, K.H.

    1986-01-01

    Studies were conducted to examine differences between the radiosensitivities of normal and neoplastic epithelial cells of the human thyroid. Freshly excised thyroid tissues from the tumours of eight patients with papillary carcinoma (PC) and five with follicular adenoma (FA) were cultured in vitro separately from normal thyroid tissue obtained from the surgical margins of the same patients. Plating efficiency of unirradiated control tissue was lower, on average for tumour tissue compared with normal tissue. Radiosensitivity, measured by the 37% inactivation dose D 0 , was greater for carcinoma tissue than for normal tissue in seven out of eight PC cases. Adenomatous tissue was less radiosensitive than normal tissue in four out of five FA cases. This is the first report comparing the radiosensitivity of autologous normal and abnormal epithelial tissue from the human thyroid. (author)

  6. Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states.

    Science.gov (United States)

    Sulaiman, Andrew; McGarry, Sarah; Li, Li; Jia, Deyong; Ooi, Sarah; Addison, Christina; Dimitroulakos, Jim; Arnaout, Angel; Nessim, Carolyn; Yao, Zemin; Ji, Guang; Song, Haiyan; Gadde, Suresh; Li, Xuguang; Wang, Lisheng

    2018-04-01

    Triple-negative breast cancer (TNBC), the most refractory subtype of breast cancer to current treatments, accounts disproportionately for the majority of breast cancer-related deaths. This is largely due to cancer plasticity and the development of cancer stem cells (CSCs). Recently, distinct yet interconvertible mesenchymal-like and epithelial-like states have been revealed in breast CSCs. Thus, strategies capable of simultaneously inhibiting bulk and CSC populations in both mesenchymal and epithelial states have yet to be developed. Wnt/β-catenin and Hippo/YAP pathways are crucial in tumorigenesis, but importantly also possess tumor suppressor functions in certain contexts. One possibility is that TNBC cells in epithelial or mesenchymal state may differently affect Wnt/β-catenin and Hippo/YAP signaling and CSC phenotypes. In this report, we found that YAP signaling and CD44 high /CD24 -/low CSCs were upregulated while Wnt/β-catenin signaling and ALDH+ CSCs were downregulated in mesenchymal-like TNBC cells, and vice versa in their epithelial-like counterparts. Dual knockdown of YAP and Wnt/β-catenin, but neither alone, was required for effective suppression of both CD44 high /CD24 -/low and ALDH+ CSC populations in mesenchymal and epithelial TNBC cells. These observations were confirmed with cultured tumor fragments prepared from patients with TNBC after treatment with Wnt inhibitor ICG-001 and YAP inhibitor simvastatin. In addition, a clinical database showed that decreased gene expression of Wnt and YAP was positively correlated with decreased ALDH and CD44 expression in patients' samples while increased patient survival. Furthermore, tumor growth of TNBC cells in either epithelial or mesenchymal state was retarded, and both CD44 high /CD24 -/low and ALDH+ CSC subpopulations were diminished in a human xenograft model after dual administration of ICG-001 and simvastatin. Tumorigenicity was also hampered after secondary transplantation. These data suggest a new

  7. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy

    DEFF Research Database (Denmark)

    Sánchez-Martínez, Ruth; Cruz-Gil, Silvia; Gómez de Cedrón, Marta

    2015-01-01

    an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome...... of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive...... and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment....

  8. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  9. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Elham Hashemi

    2017-01-01

    Full Text Available As the key producer of cerebrospinal fluid (CSF, the choroid plexus (CP provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2, as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

  10. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  11. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  12. Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits

    Science.gov (United States)

    Kim, Tae-Hyun; Park, Young-Woo; Ahn, Jae-Sang; Ahn, Jeong-Taek; Kim, Se-Eun; Jeong, Man-Bok; Seo, Min-Su; Kang, Kyung-Sun

    2013-01-01

    This study was performed to evaluate the effects of conditioned media (CM) from human amniotic epithelial cells (HAECs) on the corneal wound healing process. Eighteen rabbits (36 eyes) were used and randomly assigned to three groups according treatment: CM from HAECs (group 1), vehicle alone (group 2), and saline (group 3). Corneal alkali injuries were induced with 1 N sodium hydroxide. Each reagent used for treatment evaluation was injected into the dorsal bulbar subconjunctiva and the area of the corneal epithelial defect was measured every other day. Two animals from each group were euthanized at a time on days 3, 7, and 15, and the cornea was removed for histological examination. The sum of the epithelial defect areas measured on day 0 to day 6 as well as day 0 to day 14 in group 1 was significantly smaller than those of other groups. Histological examination revealed that the group 1 corneas had less inflammatory cell infiltration and showed more intact epithelial features compared to the other groups. These results suggest that CM from HAECs promote corneal wound healing in rabbits. PMID:23388445

  13. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  14. Human papillomavirus associated oropharyngeal cancer

    International Nuclear Information System (INIS)

    Stefanicka, P.

    2015-01-01

    Recently, there is substantial epidemiological, molecular-pathological and experimental evidence indicating that some of the high-risk human papillomavirus (HR-HPV), especially HPV type 16, are etiologically related to a subset of head and neck squamous cell carcinomas, in particular, those arising from the oropharynx. Incidence of oropharyngeal cancer is increasing in direct opposition to a decreasing incidence of all other head and neck cancers. The prognosis of patients with HPV associated oropharyngeal cancer is significantly better compare to patients with non associated oropharyngeal cancers. Patients with HPV-positive oropharyngeal cancer respond better to radiotherapy, surgery, chemoradiotherapy. Therefore, the presence of HPV in tumor is the most important prognostic factor in patients with oropharyngeal cancers. These findings have prompted the need for change of treatment strategies in these patients. The goal is selective de-intensified treatment stratified for HPV status. (author)

  15. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  16. Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells

    OpenAIRE

    Foltz, LP; Clegg, DO

    2017-01-01

    We describe a robust method to direct the differentiation of pluripotent stem cells into retinal pigment epithelial cells (RPE). The purpose of providing a detailed and thorough protocol is to clearly demonstrate each step and to make this readily available to researchers in the field. This protocol results in a homogenous layer of RPE with minimal or no manual dissection needed. The method presented here has been shown to be effective for induced pluripotent stem cells (iPSC) and human embry...

  17. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y

    1990-01-01

    Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...... was then isolated and used to elicit a rabbit antiserum. In immunostaining, both antisera reacted with the nuclei of cultured tumor cells. In tissue sections of human carcinoma, nuclear immunoreactivity was observed in the tumor cells in 40 of 42 cases examined. Adjacent normal epithelial tissue obtained from......, the presence of the homeobox transcript in human carcinoma was documented by in situ hybridization and RNase protection mapping. These results demonstrate that human cancer is associated with the expression of homeobox proteins. Such homeobox proteins, as well as other regulatory proteins, could be involved...

  18. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein.

    Science.gov (United States)

    Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P

    2017-08-01

    An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. BENIGN EPITHELIAL NEOPLASIA ASSOCIATED WITH BETA-HUMAN PAPILLOMA VIRUS

    Directory of Open Access Journals (Sweden)

    V. A. Molochkov

    2014-01-01

    Full Text Available Aim: To study an association between acrochordon and human papilloma virus (HPV using quantitative analysis of viral desoxyribonucleic acid (DNA; to detect different phenotypes of beta-HPV. Materials and methods: We examined 52  patients (22 immuno-suppressed patients and 30 immunocompetent subjects in the Dermatovenereology and Dermato-Oncology Department and Chronic Dialysis and Kidney Transplantation Department of the Moscow Regional Research and Clinical Institute (MONIKI. Control group included 49 healthy donors. Burr biopsy samples (micro-samples of acrochordon and intact skin (apper arm were collected in sterile conditions. After sample procession and DNA isolation using DNK-sorb-C kit (Central Research Institute for Epidemiology – CRIE, polymerase chain reaction for HPV was performed with real-time fluorescent hybridization detection. For DNA amplification and detection we used RotorGene 3000 analyzer (Corbett Research, Australia. In the beta-HPV assay, recombinant plasmids were used as positive controls and control human beta-globin gene fragments (CRIE. 4 oligo-nucleotide systems (group-specific primers and probes were used for the detection of beta-HPV DNA. Results: Preliminary data indicated that acrochordons of open and covered skin regions were common in renal transplant recipients. Beta-HPV DNA was more frequent in acrochordons and intact skin (64% and 54% of renal transplant recipients compared to healthy donors (47%. 57% of renal transplant recipients demonstrated mixed infection in acrochordons. Conclusion: HPV DNA was frequently detected in acrochordons and intact skin of renal transplant recipients. In immunocompetent patients prevalence of HPV DNA in acrochordons was significantly higher compared to intact skin.

  20. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    Teng, Yong; Xie, Xiayang; Walker, Steven; White, David T; Mumm, Jeff S; Cowell, John K

    2013-01-01

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  1. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  2. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  3. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    Science.gov (United States)

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  4. [Expression of thioredoxin-2 in human lens epithelial cells with oxidative damage and its significance].

    Science.gov (United States)

    Che, Xuanyi; Zhao, Qingxia; Li, Di

    2018-03-28

    To explore whether thioredoin-2 (Trx-2) is involved in the development of cataract and to study the effect of Trx-2 on hydrogen peroxide (H2O2)-induced injury in human lens epithelial cells.
 Methods: A total of 10 volunteers (removing the lens due totraumatism) and 30 patients received phacoemulsification (age more than 60 years) were selected. The expression of Trx-2 protein in lens epithelial cells from cataract patients and volunteers were detected by the immunohistochemical streptavidin-peroxidase (SP) method. SRA01/04 cells were cultured and were divided into six groups according to different treatment: a control group, H2O2-treated groups at 20, 50 or 
100 μmol/L, a negative control group (transfected with pCMV6 plasmid plus 100 μmol/L H2O2), and a Trx-2 overexpression group (transfected with pCMV6-Trx-2 plasmid plus 100 μmol/L H2O2). Methyl thiazolyltetrazolium (MTT) assay and flow cytometry was performed to measure the cell viability and apoptosis for SRA01/04 cells, respectively. The activities of superoxide dismutase (SOD) and catalase (CAT), the content of glutathione (GSH) and malondialdehyde (MDA) in human lens epithelial cells were measured via chemical chromatometry. Western blot was used to measure the protein levels of Trx-2, B-cell lymphoma 2 protein (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3.
 Results: Compared with the volunteers, the expression of Trx-2 was significantly decreased in lens epithelial cells in patients with cataract (PTrx-2 protein in the 20, 50 or 100 μmol/L H2O2 groups was decreased (all PTrx-2 and Bcl-2 expression and up-regulated Bax and caspase-3 expression (all PTrx-2 overexpression group (PTrx-2 and Bcl-2 expression and down-regulated Bax and caspase-3 expression (PTrx-2 might be involved in the apoptosis of lens epithelial cells in patients with cataract. The overexpression of Trx-2 obviously attenuated H2O2-induced injury of human lens epithelial cells, which might be associated with the

  5. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  6. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  7. Diffusion-Weighted Magnetic Resonance Imaging of Urinary Epithelial Cancer with Upper Urinary Tract Obstruction: Preliminary Results

    International Nuclear Information System (INIS)

    Takeuchi, M.; Matsuzaki, K.; Kubo, H.; Nishitani, H.

    2008-01-01

    Background: Various malignant tumors of the body show high signal intensity on diffusion-weighted magnetic resonance imaging (DWI). In the genitourinary region, DWI is expected to have a role in detecting urinary epithelial cancer noninvasively. Purpose: To demonstrate the feasibility of DWI for the diagnosis of urinary epithelial cancer with upper urinary tract obstruction. Material and Methods: Twenty upper urinary tract cancers in 16 patients were evaluated by high-b-value DWI (b=800s/mm2). The signal intensity was visually evaluated, and the apparent diffusion coefficients (ADCs) were measured. Results: All urinary epithelial cancers showed high signal intensity on DWI. The ADC in cancerous lesions was 1.31±0.27 x 10 -3 mm 2 /s, which was significantly lower than that of the lumens of the ureter or renal pelvis (3.32±0.44 x 10 -3 mm 2 /s; P<0.001). Maximum intensity projection images of DWI in combination with static-fluid MR urography provided three-dimensional entire urinary tract imaging with the extension of tumors. Conclusion: DWI is useful in the tumor detection and in evaluating the tumor extension of urinary epithelial cancer in patients with upper urinary tract obstruction

  8. Expression of zinc finger E-box-binding homeobox factor 1 in epithelial ovarian cancer: A clinicopathological analysis of 238 patients

    OpenAIRE

    LI, XIUFANG; HUANG, RUIXIA; LI, RUTH HOLM; TROPE, CLAES G.; NESLAND, JAHN M.; SUO, ZHENHE

    2015-01-01

    A growing body of evidence indicates that aberrant activation of epithelial-to-mesenchymal transition (EMT) plays a key role in tumor cell invasion and metastasis. Zinc finger E-box-binding homeobox factor 1 (ZEB1), as a crucial mediator of EMT, contributes to the malignant progression of various epithelial tumors. To determine whether ZEB1 is involved in the progression of ovarian cancer, we immunohistochemically evaluated the expression of ZEB1 in 238 cases of epithelial ovarian cancer (EOC...

  9. Interleukin-13-induced MUC5AC is regulated by 15-lipoxygenase 1 pathway in human bronchial epithelial cells.

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B; O'Donnell, Valerie; Wenzel, Sally E

    2009-05-01

    15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13-induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air-liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma.

  10. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Aparna Jayachandran

    2016-08-01

    Full Text Available Abstract Hepatocellular carcinoma (HCC remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future.

  11. All-Cause Mortality After Fertility-Sparing Surgery for Stage I Epithelial Ovarian Cancer.

    Science.gov (United States)

    Melamed, Alexander; Rizzo, Anthony E; Nitecki, Roni; Gockley, Allison A; Bregar, Amy J; Schorge, John O; Del Carmen, Marcela G; Rauh-Hain, J Alejandro

    2017-07-01

    To compare all-cause mortality between women who underwent fertility-sparing surgery with those who underwent conventional surgery for stage I ovarian cancer. In a cohort study using the National Cancer Database, we identified women younger than 40 years diagnosed with stage IA and unilateral IC epithelial ovarian cancer between 2004 and 2012. Fertility-sparing surgery was defined as conservation of one ovary and the uterus. The primary outcome was time from diagnosis to death. We used propensity score methods to assemble a cohort of women who underwent fertility-sparing or conventional surgery but were otherwise similar on observed covariates and conducted survival analyses using the Kaplan-Meier method and Cox proportional hazard models. We identified 1,726 women with stage IA and unilateral IC epithelial ovarian cancer of whom 825 (47.8%) underwent fertility-sparing surgery. Fertility-sparing surgery was associated with younger age, residence in the northeastern and western United States, and serous or mucinous histology (Pfertility-sparing surgery and 37 deaths among propensity-matched women who underwent conventional surgery after a median follow-up of 63 months. Fertility-sparing surgery was not associated with hazard of death (hazard ratio 0.80, 95% confidence interval [CI] 0.49-1.29, P=.36). The probability of survival 10 years after diagnosis was 88.5% (95% CI 82.4-92.6) in the fertility-sparing group and 88.9% (95% CI 84.9-92.0) in the conventional surgery group. In patients with high-risk features such as clear cell histology, grade 3, or stage IC, 10-year survival was 80.5% (95% CI 68.5-88.3) among women who underwent fertility-sparing surgery and 83.4% (95% 76.0-88.7) among those who had conventional surgery (hazard ratio 0.86, 95% CI 0.49-1.53, P=.61). Compared with conventional surgery, fertility-sparing surgery was not associated with increased risk of death in young women with stage I epithelial ovarian cancer.

  12. Assessment of moderate coffee consumption and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Ong, Jue-Sheng; Hwang, Liang-Dar; Cuellar-Partida, Gabriel

    2018-01-01

    Background: Coffee consumption has been shown to be associated with various health outcomes in observational studies. However, evidence for its association with epithelial ovarian cancer (EOC) is inconsistent and it is unclear whether these associations are causal. Methods: We used single...... nucleotide polymorphisms associated with (i) coffee and (ii) caffeine consumption to perform Mendelian randomization (MR) on EOC risk. We conducted a two-sample MR using genetic data on 44 062 individuals of European ancestry from the Ovarian Cancer Association Consortium (OCAC), and combined instrumental...... variable estimates using a Wald-type ratio estimator. Results: For all EOC cases, the causal odds ratio (COR) for genetically predicted consumption of one additional cup of coffee per day was 0.92 [95% confidence interval (CI): 0.79, 1.06]. The COR was 0.90 (95% CI: 0.73, 1.10) for high-grade serous EOC...

  13. Recreational physical inactivity and mortality in women with invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Cannioto, Rikki A.; LaMonte, Michael J.; Kelemen, Linda E

    2016-01-01

    Background: Little is known about modifiable behaviours that may be associated with epithelial ovarian cancer (EOC) survival. We conducted a pooled analysis of 12 studies from the Ovarian Cancer Association Consortium to investigate the association between pre-diagnostic physical inactivity...... and mortality. Methods: Participants included 6806 women with a primary diagnosis of invasive EOC. In accordance with the Physical Activity Guidelines for Americans, women reporting no regular, weekly recreational physical activity were classified as inactive. We utilised Cox proportional hazard models...... to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) representing the associations of inactivity with mortality censored at 5 years. Results: In multivariate analysis, inactive women had significantly higher mortality risks, with (HR=1.34, 95% CI: 1.18-1.52) and without (HR=1.22, 95% CI: 1...

  14. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Science.gov (United States)

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  15. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available The use of electronic cigarettes (e-cigarettes is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV infection.We examined the effects of e-cigarette liquid (e-liquid on pro-inflammatory cytokine (e.g., IL-6 production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1 in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  16. Chemokines and antimicrobial peptides have a cag-dependent early response to Helicobacter pylori infection in primary human gastric epithelial cells.

    Science.gov (United States)

    Mustapha, Pascale; Paris, Isabelle; Garcia, Magali; Tran, Cong Tri; Cremniter, Julie; Garnier, Martine; Faure, Jean-Pierre; Barthes, Thierry; Boneca, Ivo G; Morel, Franck; Lecron, Jean-Claude; Burucoa, Christophe; Bodet, Charles

    2014-07-01

    Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in patients with epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Maria; Kim, Hee Seung; Chung, Hyun Hoon; Kim, Jae-Weon; Park, Noh-Hyun; Song, Yong Sang [Seoul National University College of Medicine, Department of Obstetrics and Gynecology, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Hyunjong; Cheon, Gi Jeong [Seoul National University College of Medicine, Department of Nuclear Medicine, Cancer Research Institute, Seoul (Korea, Republic of)

    2017-01-15

    To investigate the prognostic value of intratumoral FDG uptake heterogeneity (IFH) derived from PET/CT in patients with epithelial ovarian cancer (EOC). We retrospectively reviewed patients with pathologically proven epithelial ovarian cancer who underwent preoperative {sup 18}F-FDG PET/CT scans. PET/CT parameters such as maximum and average standardized uptake values (SUV{sub max} and SUV{sub avg}), sum of all metabolic tumour volume (MTV), cumulative total lesion glycolysis (TLG) and IFH were assessed. Regression analyses were used to identify clinicopathological and imaging variables associated with disease-free survival (DFS). Clinicopathological data were reviewed for 61 eligible patients. The median duration of DFS was 13 months (range, 6-26 months), and 18 (29.5 %) patients experienced recurrence. High IFH values were associated with tumour recurrence (P = 0.005, hazard ratio 4.504, 95 % CI 1.572-12.902). The Kaplan-Meier survival graphs showed that DFS significantly differed in groups categorized based on IFH (P = 0.002, log-rank test). Moreover, there were significant differences in DFS (P = 0.009) and IFH (P = 0.040) between patients with and without recurrence. Preoperative IFH measured by {sup 18}F-FDG PET/CT was significantly associated with EOC recurrence. FDG-based heterogeneity could be a useful and potential predicator of EOC recurrence before treatment. (orig.)

  18. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells.

    Science.gov (United States)

    Chen, Yansu; Fu, Rui; Xu, Mengdie; Huang, Yefei; Sun, Guixiang; Xu, Lichun

    2018-04-15

    Angiogenesis is associated with the progression and mortality of gastric cancer. Epidemiological evidences indicate that long-term N-nitroso compounds (NOCs) exposure predominantly contributes to the mortality of gastric cancer. Therefore, further reduced mortality of gastric cancer demands to explore the exact mechanisms of NOCs induced angiogenesis. As a tumor suppressor gene, inhibitor of growth protein 4 (ING4) plays an important role in pathological angiogenesis. In this study, we will investigate ING4 expression level in human gastric epithelial cells after the long-term low dose exposure of N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and the pathological impact of MNNG-reduced ING4 on angiogenesis of transformed cells. The soft agar colony formation assay, Western blotting, immunofluorescence and wound healing assay were used to evaluate the characteristics of transformed cells. HUVEC growth and tube formation assays were performed to test the angiogenic abilities. EMSA, luciferase reporter gene assay, real-time PCR and Western blotting were used to explore the exact mechanism. By establishing transformed human gastric epithelial cells via chronic low dose treatment, a gradually ING4 downregulation was observed in the later-stage of MNNG-induced cell transformation. Moreover, we demonstrated that MNNG exposure-reduced ING4 expression significantly resulted into aggravating angiogenesis through increasing the phosphorylation level of NF-κB p65 and subsequently DAN binding activity and regulating the expressions of NF-κB p65 downstream pro-angiogenic genes, MMP-2 and MMP-9. Our findings provided a significant mechanistic insight into angiogenesis of MNNG-transformed human gastric epithelial cell and supported the concept that ING4 may be a relevant therapeutic target for gastric cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

    NARCIS (Netherlands)

    Thebault, S.C.; Lemonnier, L.; Bidaux, G.; Flourakis, M.; Bavencoffe, A.; Gordienko, D.; Roudbaraki, M.; Delcourt, P.; Panchin, Y.; Shuba, Y.; Skryma, R.; Prevarskaya, N.

    2005-01-01

    Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the

  20. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  1. Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells

    Science.gov (United States)

    Kreindler, James L.; Bertrand, Carol A.; Lee, Robert J.; Karasic, Thomas; Aujla, Shean; Pilewski, Joseph M.; Frizzell, Raymond A.; Kolls, Jay K.

    2009-01-01

    The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells. Furthermore, IL-17A levels are increased in sputum from patients during pulmonary exacerbations of cystic fibrosis. Therefore, we investigated the effects of IL-17A on basal, amiloride-sensitive, and forskolin-stimulated ion transport in mature, well-differentiated HBE cells. Exposure of HBE monolayers to IL-17A for 48 h induced a novel forskolin-stimulated bicarbonate secretion in addition to forskolin-stimulated chloride secretion and resulted in alkalinization of liquid on the mucosal surface of polarized cells. IL-17A-induced bicarbonate secretion was cystic fibrosis transmembrane conductance regulator (CFTR)-dependent, mucosal chloride-dependent, partially Na+-dependent, and sensitive to serosal, but not mucosal, stilbene inhibition. These data suggest that IL-17A modulates epithelial bicarbonate secretion and implicate a mechanism by which airway surface liquid pH changes may be abnormal in cystic fibrosis. PMID:19074559

  2. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-08-01

    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  3. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis.

    Science.gov (United States)

    Dijkman, Henry; Smeets, Bart; van der Laak, Jeroen; Steenbergen, Eric; Wetzels, Jack

    2005-10-01

    Focal segmental glomerulosclerosis (FSGS) is one of the most common patterns of glomerular injury encountered in human renal biopsies. Epithelial hyperplasia, which can be prominent in FSGS, has been attributed to dedifferentiation and proliferation of podocytes. Based on observations in a mouse model of FSGS, we pointed to the role of parietal epithelial cells (PECs). In the present study we investigated the relative role of PECs and podocytes in human idiopathic FSGS. We performed a detailed study of lesions from a patient with recurrent idiopathic FSGS by serial sectioning, marker analysis and three-dimensional reconstruction of glomeruli. We have studied the expression of markers for podocytes, PECs, mesangial cells, endothelium, and myofibroblasts. We also looked at proliferation and composition of the deposited extracellular matrix (ECM). We found that proliferating epithelial cells in FSGS lesions are negative for podocyte and macrophage markers, but stain for PEC markers. The composition of the matrix deposited by these cells is identical to Bowman's capsule. Our study demonstrates that PECs are crucially involved in the pathogenesis of FSGS lesions.

  4. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells.

    Science.gov (United States)

    Wang, Hong; Wang, Yajing; Du, Qianming; Lu, Ping; Fan, Huimin; Lu, Jinrong; Hu, Rong

    2016-03-15

    Inflammasome NLRP3 plays a crucial role in the process of colitis and colitis--associated colon cancer. Even though much is known regarding the NLRP3 inflammasome that regulates pro-inflammatory cytokine release in innate immune cells, the role of NLRP3 in non-immune cells is still unclear. In this study, we showed that NLRP3 was highly expressed in mesenchymal-like colon cancer cells (SW620), and was upregulated by tumor necrosis factors-α (TNF-α) and transforming growth factor-β1 (TGF-β1) respectively, during EMT in colon cancer epithelial cells HCT116 and HT29. Knockdown of NLRP3 retained epithelial spindle-like morphology of HCT116 and HT29 cells and reversed the mesenchymal characteristic of SW620 cells, indicated by the decreased expression of vimentin and MMP9 and increased expression of E-cadherin. In addition, knockdown of NLRP3 in colorectal carcinoma cells displayed diminished cell migration and invasion. Interestingly, during the EMT process induced by TNF-α or TGF-β1, the cleaved caspase-1 and ASC speck were not detected, indicating that NLRP3 functions in an inflammasome-independent way. Further studies demonstrated that NLRP3 protein expression was regulated by NF-κB signaling in TNF-α or TGF-β1-induced EMT, as verified by the NF-κB inhibitor Bay 11-7082. Moreover, NLRP3 knockdown reduced the expression of Snail1, indicating that NLRP3 may promote EMT through regulating Snail1. In summary, our results showed that the NLRP3 expression, not the inflammasome activation, was required for EMT in colorectal cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.

  6. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer

    Science.gov (United States)

    Tan, Xiaohui; Fu, Yebo; Chen, Liang; Lee, Woojin; Lai, Yinglei; Rezaei, Katayoon; Tabbara, Sana; Latham, Patricia; Teal, Christine B.; Man, Yan-Gao; Siegel, Robert S.; Brem, Rachel F.; Fu, Sidney W.

    2016-01-01

    MicroRNA (miRNA) dysfunction is associated with a variety of human diseases, including cancer. Our previous study showed that miR-671-5p was deregulated throughout breast cancer progression. Here, we report for the first time that miR-671-5p is a tumor-suppressor miRNA in breast tumorigenesis. We found that expression of miR-671-5p was decreased significantly in invasive ductal carcinoma (IDC) compared to normal in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Forkhead Box M1 (FOXM1), an oncogenic transcription factor, was predicted as one of the direct targets of miR-671-5p, which was subsequently confirmed by luciferase assays. Forced expression of miR-671-5p in breast cancer cell lines downregulated FOXM1 expression, and attenuated the proliferation and invasion in breast cancer cell lines. Notably, overexpression of miR-671-5p resulted in a shift from epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) phenotypes in MDA-MB-231 breast cancer cells and induced S-phase arrest. Moreover, miR-671-5p sensitized breast cancer cells to cisplatin, 5-fluorouracil (5-FU) and epirubicin exposure. Host cell reactivation (HCR) assays showed that miR-671-5p reduces DNA repair capability in post-drug exposed breast cancer cells. cDNA microarray data revealed that differentially expressed genes when miR-671-5p was transfected are associated with cell proliferation, invasion, cell cycle, and EMT. These data indicate that miR-671-5p functions as a tumor suppressor miRNA in breast cancer by directly targeting FOXM1. Hence, miR-671-5p may serve as a novel therapeutic target for breast cancer management. PMID:26588055

  7. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  8. ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial - Mesenchymal Transition in Colon Cancer Cells.

    Science.gov (United States)

    Guo, Cao; Ma, Junli; Deng, Ganlu; Qu, Yanlin; Yin, Ling; Li, Yiyi; Han, Ying; Cai, Changjing; Shen, Hong; Zeng, Shan

    2017-01-01

    Background: Oxaliplatin (OXA) chemotherapy is widely used in the clinical treatment of colon cancer. However, chemo-resistance is still a barrier to effective chemotherapy in cases of colon cancer. Accumulated evidence suggests that the epithelial mesenchymal transition (EMT) may be a critical factor in chemo-sensitivity. The present study investigated the effects of Zinc finger E-box binding homeobox 1 (ZEB1) on OXA-sensitivity in colon cancer cells. Method: ZEB1expression and its correlation with clinicopathological characteristics were analyzed using tumor tissue from an independent cohort consisting of 118 colon cancer (CC) patients who receiving OXA-based chemotherapy. ZEB1 modulation of OXA-sensitivity in colon cancer cells was investigated in a OXA-resistant subline of HCT116/OXA cells and the parental colon cancer cell line: HCT116. A CCK8 assay was carried out to determine OXA-sensitivity. qRT-PCR, Western blot, Scratch wound healing and transwell assays were used to determine EMT phenotype of colon cells. ZEB1 knockdown using small interfering RNA (siRNA) was used to determine the ZEB1 contribution to OXA-sensitivity in vitro and in vivo (in a nude mice xenograft model). Result: ZEB1 expression was significantly increased in colon tumor tissue, and was correlated with lymph node metastasis and the depth of invasion. Compared with the parental colon cancer cells (HCT116), HCT116/OXA cells exhibited an EMT phenotype characterized by up-regulated expression of ZEB1, Vimentin, MMP2 and MMP9, but down-regulated expression of E-cadherin. Transfection of Si-ZEB1 into HCT116/OXA cells significantly reversed the EMT phenotype and enhanced OXA-sensitivity in vitro and in vivo . Conclusion: HCT116/OXA cells acquired an EMT phenotype. ZEB1 knockdown effectively restored OXA-sensitivity by reversing EMT. ZEB1 is a potential therapeutic target for the prevention of OXA-resistance in colon cancer.

  9. Microcell-mediated chromosome transfer identifies EPB41L3 as a functional suppressor of epithelial ovarian cancers

    DEFF Research Database (Denmark)

    Dafou, Dimitra; Grun, Barbara; Sinclair, John

    2010-01-01

    lines. Using immunohistochemistry, 66% of 794 invasive ovarian tumors showed no EPB41L3 expression compared with only 24% of benign ovarian tumors and 0% of normal ovarian epithelial tissues. EPB41L3 was extensively methylated in ovarian cancer cell lines and primary ovarian tumors compared with normal...... (erythrocyte membrane protein band 4.1-like 3, alternative names DAL-1 and 4.1B) was a candidate ovarian cancer-suppressor gene. Immunoblot analysis showed that EPB41L3 was activated in TOV21G(+18) hybrids, expressed in normal ovarian epithelial cell lines, but was absent in 15 (78%) of 19 ovarian cancer cell...... tissues (P = .00004), suggesting this may be the mechanism of gene inactivation in ovarian cancers. Constitutive reexpression of EPB41L3 in a three-dimensional multicellular spheroid model of ovarian cancer caused significant growth suppression and induced apoptosis. Transmission and scanning electron...

  10. Human antimicrobial peptides and cancer.