WorldWideScience

Sample records for human embryos impaired

  1. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  2. Ethanol impedes embryo transport and impairs oviduct epithelium

    International Nuclear Information System (INIS)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-01-01

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50 ± 6 mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy.

  3. Ethanol impedes embryo transport and impairs oviduct epithelium.

    Science.gov (United States)

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Feminists on the inalienability of human embryos.

    Science.gov (United States)

    McLeod, Carolyn; Baylis, Francoise

    2006-01-01

    The feminist literature against the commodification of embryos in human embryo research includes an argument to the effect that embryos are "intimately connected" to persons, or morally inalienable from them. We explore why embryos might be inalienable to persons and why feminists might find this view appealing. But, ultimately, as feminists, we reject this view because it is inconsistent with full respect for women's reproductive autonomy and with a feminist conception of persons as relational, embodied beings. Overall, feminists should avoid claims about embryos' being inalienable to persons in arguments for or against the commodification of human embryos.

  5. Laboratory techniques for human embryos.

    Science.gov (United States)

    Geber, Selmo; Sales, Liana; Sampaio, Marcos A C

    2002-01-01

    This review is concerned with laboratory techniques needed for assisted conception, particularly the handling of gametes and embryos. Such methods are being increasingly refined. Successive stages of fertilization and embryogenesis require especial care, and often involve the use of micromanipulative methods for intracytoplasmic sperm injection (ICSI) or preimplantation genetic diagnosis. Embryologists must take responsibility for gamete collection and preparation, and for deciding on the means of insemination or ICSI. Embryos must be assessed in culture, during the 1-cell, cleaving and morula/blastocyst stages, and classified according to quality. Co-culture methods may be necessary. The best embryos for transfer must be selected and loaded into the transfer catheter. Embryos not transferred must be cryopreserved, which demands the correct application of current methods of media preparation, seeding and the correct speed for cooling and warming. Before too long, methods of detecting abnormal embryos and avoiding their transfer may become widespread.

  6. Human embryo culture media comparisons.

    Science.gov (United States)

    Pool, Thomas B; Schoolfield, John; Han, David

    2012-01-01

    Every program of assisted reproduction strives to maximize pregnancy outcomes from in vitro fertilization and selecting an embryo culture medium, or medium pair, consistent with high success rates is key to this process. The common approach is to replace an existing medium with a new one of interest in the overall culture system and then perform enough cycles of IVF to see if a difference is noted both in laboratory measures of embryo quality and in pregnancy. This approach may allow a laboratory to select one medium over another but the outcomes are only relevant to that program, given that there are well over 200 other variables that may influence the results in an IVF cycle. A study design that will allow for a more global application of IVF results, ones due to culture medium composition as the single variable, is suggested. To perform a study of this design, the center must have a patient caseload appropriate to meet study entrance criteria, success rates high enough to reveal a difference if one exists and a strong program of quality assurance and control in both the laboratory and clinic. Sibling oocytes are randomized to two study arms and embryos are evaluated on day 3 for quality grades. Inter and intra-observer variability are evaluated by kappa statistics and statistical power and study size estimates are performed to bring discriminatory capability to the study. Finally, the complications associated with extending such a study to include blastocyst production on day 5 or 6 are enumerated.

  7. Time to take human embryo culture seriously.

    Science.gov (United States)

    Sunde, Arne; Brison, Daniel; Dumoulin, John; Harper, Joyce; Lundin, Kersti; Magli, M Cristina; Van den Abbeel, Etienne; Veiga, Anna

    2016-10-01

    Is it important that end-users know the composition of human embryo culture media? We argue that there is as strong case for full transparency concerning the composition of embryo culture media intended for human use. Published data suggest that the composition of embryo culture media may influence the phenotype of the offspring. A review of the literature was carried out. Data concerning the potential effects on embryo development of culture media were assessed and recommendations for users made. The safety of ART procedures, especially with respect to the health of the offspring, is of major importance. There are reports from the literature indicating a possible effect of culture conditions, including culture media, on embryo and fetal development. Since the introduction of commercially available culture media, there has been a rapid development of different formulations, often not fully documented, disclosed or justified. There is now evidence that the environment the early embryo is exposed to can cause reprogramming of embryonic growth leading to alterations in fetal growth trajectory, birthweight, childhood growth and long-term disease including Type II diabetes and cardiovascular problems. The mechanism for this is likely to be epigenetic changes during the preimplantation period of development. In the present paper the ESHRE working group on culture media summarizes the present knowledge of potential effects on embryo development related to culture media, and makes recommendations. There is still a need for large prospective randomized trials to further elucidate the link between the composition of embryo culture media used and the phenotype of the offspring. We do not presently know if the phenotypic changes induced by in vitro embryo culture represent a problem for long-term health of the offspring. Published data indicate that there is a strong case for demanding full transparency concerning the compositions of and the scientific rationale behind the

  8. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.

    Science.gov (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2017-03-01

    Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non-human

  9. Human embryo cloning prohibited in Hong Kong.

    Science.gov (United States)

    Liu, Athena

    2005-12-01

    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area.

  10. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  11. Cryopreservation of Embryos and Oocytes in Human Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    János Konc

    2014-01-01

    Full Text Available Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification of human embryos and oocytes are summarized.

  12. Cryopreservation of embryos and oocytes in human assisted reproduction.

    Science.gov (United States)

    Konc, János; Kanyó, Katalin; Kriston, Rita; Somoskői, Bence; Cseh, Sándor

    2014-01-01

    Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification) of human embryos and oocytes are summarized.

  13. [Ethical viewpoints on cryopreservation of human embryos].

    Science.gov (United States)

    Weiler, R

    1991-01-01

    In the introduction the author describes how moral judgements are being formed in the pluralistic structures of today's societies. Moral relativism and subjectivism are the wide spread consequences of empirical anthropological theories. In this situation the necessity of an objective and normative moral theory (Christian natural law theory) is being stressed. Neither biology nor medicine can pronounce final judgements on the value of human life. The arguments in favour of cryoconservation (medical progress, parents wish to have children, cost-reduction) are outweighed by those arguments which maintain that man cannot dispose of human life through the manipulation of the progenitive act outside marriage and of the juman act of procreation. There are also the risks and the endangering of the human value of the embryo, up to prolicide which is considered to be permissible in some cases, on these moral grounds the author objects to the cryoconservation of embryos as does the relevant instruction of the papal magisterium of the Roman Catholic Church (Donum vitae 1987). He does not, however, take a final stance on how the subjective decision of the physician is to be judged in the individual case.

  14. [Association of human chorionic gonadotropin level in embryo culture media with early embryo development].

    Science.gov (United States)

    Wang, Haiying; Zhang, Renli; Han, Dong; Liu, Caixia; Cai, Jiajie; Bi, Yanling; Wen, Anmin; Quan, Song

    2014-06-01

    To investigate the association of human chorionic gonadotropin (HCG) level on day 3 of embryo culture with embryo development. Spent culture media were collected from individually cultured embryos on day 3 of in vitro fertilization and embryo transfer (IVF-ET) cycles. HCG concentration in the culture media was measured using an ELISA kit and its association with embryo development was assessed. In the 163 samples of embryo culture media from 60 patients, HCG was positive in 153 sample (93.8%) with a mean level of 0.85 ± 0.43 mIU/ml. The concentration of hCG in the culture media increased gradually as the number of blastomeres increased (F=2.273, P=0.03), and decreased as the morphological grade of the embryo was lowered (F=3.900, P=0.02). ELISA is capable of detecting HCG levels in spent culture media of embryos on day 3 of in vitro culture. The concentration of HCG in spent culture media is positively correlated with the status of early embryo development and implantation rate and thus serves as a useful marker for embryo selection in IVF-ET procedure.

  15. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    Science.gov (United States)

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  16. The impact of preimplantation genetic diagnosis on human embryos

    Directory of Open Access Journals (Sweden)

    García-Ferreyra J.

    2016-12-01

    Full Text Available Chromosome abnormalities are extremely common in human oocytes and embryos and are associated with a variety of negative outcomes for both natural cycles and those using assisted reproduction techniques. Aneuploidies embryos may fail to implant in the uterus, miscarry, or lead to children with serious medical problems (e.g., Down syndrome. Preimplantation genetic diagnosis (PGD is a technique that allows the detection of aneuploidy in embryos and seeks to improve the clinical outcomes od assisted reproduction treatments, by ensuring that the embryos chosen for the transfer are chromosomally normal.

  17. Human embryo-conditioned medium stimulates in vitro endometrial angiogenesis

    NARCIS (Netherlands)

    Kapiteijn, K.; Koolwijk, P.; Weiden, R.M.F. van der; Nieuw Amerongen, G. van; Plaisier, M.; Hinsbergh, V.W.M. van; Helmerhorst, F.M.

    2006-01-01

    Objective: Successful implantation and placentation depend on the interaction between the endometrium and the embryo. Angiogenesis is crucial at this time. In this article we investigate the direct influence of the human embryo on in vitro endometrial angiogenesis. Design: In vitro study. Setting:

  18. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  19. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  20. Closure of the vertebral canal in human embryos and fetuses

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S. Eleonore; Lamers, Wouter H.

    2017-01-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10weeks of

  1. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  2. Human embryo research and the 14-day rule.

    Science.gov (United States)

    Pera, Martin F

    2017-06-01

    In many jurisdictions, restrictions prohibit the culture of human embryos beyond 14 days of development. However, recent reports describing the successful maintenance of embryos in vitro to this stage have prompted many in the field to question whether the rule is still appropriate. This Spotlight article looks at the original rationale behind the 14-day rule and its relevance today in light of advances in human embryo culture and in the derivation of embryonic-like structures from human pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.

  3. [The human embryo after Dolly: new practices for new times].

    Science.gov (United States)

    de Miguel Beriain, Iñigo

    2008-01-01

    The possiblity of cloning human beings introduced a lot of issues in our ethical and legal frameworks. In this paper, we will put the focus into the necessary changes in the concept of embryo that our legal systems will have to implement in order to face the new situation. The description of the embryo as a group of cells able to develop into a human being will be defended here as the best way of doing so.

  4. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  5. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  6. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    Science.gov (United States)

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus.

  7. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.

    Science.gov (United States)

    Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M

    2009-03-01

    To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.

  8. Preimplantation maternal stress impairs embryo development by inducing oviductal apoptosis with activation of the Fas system.

    Science.gov (United States)

    Zheng, Liang-Liang; Tan, Xiu-Wen; Cui, Xiang-Zhong; Yuan, Hong-Jie; Li, Hong; Jiao, Guang-Zhong; Ji, Chang-Li; Tan, Jing-He

    2016-11-01

    What are the mechanisms by which the preimplantation restraint stress (PIRS) impairs embryo development and pregnancy outcome? PIRS impairs embryo development by triggering apoptosis in mouse oviducts and embryos,and this involves activation of the Fas system. Although it is known that the early stages of pregnancy are more vulnerable than later stages to prenatalstress, studies on the effect of preimplantation stress on embryo developmentare limited. Furthermore, the mechanisms by which psychological stress impairs embryo development are largely unknown. These issues are worth exploring using the mouse PIRS models because restraint of mice is an efficient experimental procedure developed for studies of psychogenic stress. Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in FasL in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female and male mice were used 8-10 weeks and 10-12 weeks after birth, respectively. Female mice showing vaginal plugs were paired by weight and randomly assigned to restraint treatments or as controls. For restraint treatment, an individual mouse was put in a micro-cage with food and water available. Control mice remained in their cages with food and water during the time treated females were stressed. Female mice were exposed to PIRS for 48 h starting from 16:00 on the day of vaginal plug detection. At the end of PIRS, levels of glucorticoids (GC), corticotropin-releasing hormone (CRH)and redox potential were measured in serum, while levels of GC, GC receptor (GR), CRH, CRH receptor (CRHR), Fas and Fas ligand (FasL) protein, mRNAs for brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), oxidative stress (OS) and apoptosis were examined in oviducts. Preimplantation development and levels of GR, Fas, redox potential and apoptosis were observed in embryos recovered at different times after the initiation of PIRS. The gld mice

  9. Effects of fluoxetine on human embryo development

    NARCIS (Netherlands)

    Kaihola, Helena; Yaldir, Fatma G.; Hreinsson, Julius; Hornaeus, Katarina; Bergquist, Jonas; Olivier, Jocelien D. A.; Akerud, Helena; Sundstrom-Poromaa, Inger

    2016-01-01

    The use of antidepressant treatment during pregnancy is increasing, and selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressants in pregnant women. Serotonin plays a role in embryogenesis, and serotonin transporters are expressed in two-cell mouse embryos. Thus,

  10. The endometrial factor in human embryo implantation

    NARCIS (Netherlands)

    Boomsma, C.M.

    2009-01-01

    The studies presented in this thesis aimed to explore the role of the endometrium in the implantation process. At present, embryo implantation is the major rate-limiting step for success in fertility treatment. Clinicians have sought to develop clinical interventions aimed at enhancing implantation

  11. In vitro culture of mouse embryos amniotic fluid ID human

    African Journals Online (AJOL)

    1989-07-15

    Jul 15, 1989 ... Because human amniotic fluid is a physiological, balanced ultrafiltrate, it has been considered as an inexpensive alternative culture medium in. IVF. A study of the development of mouse embryos in human amniotic fluid was undertaken to assess the suitability of this as an optional culture medium in human ...

  12. Status of the human embryo: Philosophical Foundations from Phenomenology

    Directory of Open Access Journals (Sweden)

    Maria Emilia de Oliveira Schpallir Silva

    2017-10-01

    Full Text Available Given the difficulty in demonstrating the moment of ontogenesis in which personalization takes place, we sought to define, from a philosophic point of view, the nature of the human embryo regarding its individuality, using Phenomenology, specifically reflections of philosophers Bourghet and Merleau-Ponty on the embryo. Although the statement of their individuality does not entail ethical content in itself, from the point of view of ethical responsibility, it is an extremely important fact to be considered in the bioethical reflection about the moment of ontogeny from which human life must (ethical duty be protected.

  13. Development of the epaxial muscles in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Eleonore KÖhler, S.; Lamers, Wouter H.

    2016-01-01

    Although the intrinsic muscles of the back are defined by their embryological origin and innervation pattern, no detailed study on their development is available. Human embryos (5-10 weeks development) were studied, using Amira3D® reconstruction and Cinema4D® remodeling software for visualization.

  14. A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development

    NARCIS (Netherlands)

    Santos, Margarida Avo; van de Werken, Christine; de Vries, Marieke; Jahr, Holger; Vromans, Martijn J. M.; Laven, Joop S. E.; Fauser, Bart C.; Kops, Geert J.; Lens, Susanne M.; Baart, Esther B.

    BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important

  15. Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

    Directory of Open Access Journals (Sweden)

    Svetlana Gavrilov

    2011-01-01

    Full Text Available We report the derivation and characterization of two new human embryonic stem cells (hESC lines (CU1 and CU2 from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion of in vitro fertilization (IVF embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos.

  16. Movement of the external ear in human embryo.

    Science.gov (United States)

    Kagurasho, Miho; Yamada, Shigehito; Uwabe, Chigako; Kose, Katsumi; Takakuwa, Tetsuya

    2012-02-01

    External ears, one of the major face components, show an interesting movement during craniofacial morphogenesis in human embryo. The present study was performed to see if movement of the external ears in a human embryo could be explained by differential growth. In all, 171 samples between Carnegie stage (CS) 17 and CS 23 were selected from MR image datasets of human embryos obtained from the Kyoto Collection of Human Embryos. The three-dimensional absolute position of 13 representative anatomical landmarks, including external and internal ears, from MRI data was traced to evaluate the movement between the different stages with identical magnification. Two different sets of reference axes were selected for evaluation and comparison of the movements. When the pituitary gland and the first cervical vertebra were selected as a reference axis, the 13 anatomical landmarks of the face spread out within the same region as the embryo enlarged and changed shape. The external ear did move mainly laterally, but not cranially. The distance between the external and internal ear stayed approximately constant. Three-dimensionally, the external ear located in the caudal ventral parts of the internal ear in CS 17, moved mainly laterally until CS 23. When surface landmarks eyes and mouth were selected as a reference axis, external ears moved from the caudal lateral ventral region to the position between eyes and mouth during development. The results indicate that movement of all anatomical landmarks, including external and internal ears, can be explained by differential growth. Also, when the external ear is recognized as one of the facial landmarks and having a relative position to other landmarks such as the eyes and mouth, the external ears seem to move cranially. © 2012 Kagurasho et al; licensee BioMed Central Ltd.

  17. Expression of Aquaporins in Human Embryos and Potential Role of AQP3 and AQP7 in Preimplantation Mouse Embryo Development

    Directory of Open Access Journals (Sweden)

    Yun Xiong

    2013-05-01

    Full Text Available Background/Aims: Water channels, also named aquaporins (AQPs, play crucial roles in cellular water homeostasis. Methods: RT-PCR indicated the mRNA expression of AQPs 1-5, 7, 9, and 11-12, but not AQPs 0, 6, 8, and 10 in the 2∼8-cell stage human embryos. AQP3 and AQP7 were further analyzed for their mRNA expression and protein expression in the oocyte, zygote, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst from both human and mouse using RT-PCR and immunofluorescence, respectively. Results: AQP3 and AQP7 were detected in all these stages. Knockdown of either AQP3 or AQP7 by targeted siRNA injection into 2-cell mouse embryos significantly inhibited preimplantation embryo development. However, knockdown of AQP3 in JAr spheroid did not affect its attachment to Ishikawa cells. Conclusion: These data demonstrate that multiple aquaporins are expressed in the early stage human embryos and that AQP3 and AQP7 may play a role in preimplantation mouse embryo development.

  18. NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential.

    Science.gov (United States)

    Pudakalakatti, Shivanand M; Uppangala, Shubhashree; D'Souza, Fiona; Kalthur, Guruprasad; Kumar, Pratap; Adiga, Satish Kumar; Atreya, Hanudatta S

    2013-01-01

    There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5) ) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Courts, legislators and human embryo research: lessons from Ireland.

    Science.gov (United States)

    Binchy, William

    2011-01-01

    When it comes to the matter of human embryo research law plays a crucial role in its development by helping to set the boundaries of what may be done, the sanctions for acting outside those boundaries and the rights and responsibilities of key parties. Nevertheless, the philosophical challenges raised by human embryo research, even with the best will of all concerned, may prove too great for satisfactory resolution through the legal process. Taking as its focus the position of Ireland, this paper explores the distinctive constitutional approach taken on this issue and addresses the difficulty of translating sound philosophy into judicial decrees and the difficulty of establishing expert commissions to make law reform proposals on matters of profound normative controversy. It concludes that the Irish experience does have useful lessons for those in other countries who are concerned with the legal approach to research on human embryos and points to the desirability of a diversity of normative positions in order to enrich the quality of the analysis so as to encourage more informed debate in society.

  20. Single-site neural tube closure in human embryos revisited.

    Science.gov (United States)

    de Bakker, Bernadette S; Driessen, Stan; Boukens, Bastiaan J D; van den Hoff, Maurice J B; Oostra, Roelof-Jan

    2017-10-01

    Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. The ethics of cloning and human embryo research.

    Science.gov (United States)

    Saran, Madeleine

    2002-01-01

    The successful cloning experiments that led to Dolly in 1997 have raised many ethical and policy questions. This paper will focus on cloning research in human embryonic cells. The possible gains of the research will be judged against the moral issues of doing research on a person. This paper concludes that while the embryo has some moral status, its moral status is outweighed by the multitude of benefits that embryonic stem cell research will bring to humanity. Policy suggestions are given for dealing with this new and developing field of stem cell research.

  2. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    Science.gov (United States)

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  3. Four stages of hepatic hematopoiesis in human embryos and fetuses.

    Science.gov (United States)

    Fanni, D; Angotzi, F; Lai, F; Gerosa, C; Senes, G; Fanos, V; Faa, G

    2018-03-01

    The liver is a major hematopoietic organ during embryonic and fetal development in humans. Its hematopoietic activity starts during the first weeks of gestation and continues until birth. During this period the liver is colonized by undifferentiated hematopoietic stem cells (HSCs) that gradually differentiate and once mature, enter the circulatory system through the hepatic sinusoids, this process is called hepatic hematopoiesis. The morphology of hepatic hematopoiesis, has been studied in humans through the years, and led to a characterization of all the cell types that make up these phenomena. Studies on murine models also helped to describe the extent of hepatic hematopoiesis at different gestational ages. Using this knowledge, we attempted to describe how hepatic hematopoiesis morphologically evolves as gestation progresses, in human embryos and fetuses. Thus, we observed a total of 32 tissue specimens obtained from the livers of embryos and fetuses at different gestational ages. Basing our observations on the four stages of liver hematopoiesis identified by Sasaki and Sonoda in mice, we also described four consecutive stages of liver hematopoiesis in humans, which resulted to be highly similar to those described in murine models.

  4. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  5. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications.

    Science.gov (United States)

    Kalatova, Beata; Jesenska, Renata; Hlinka, Daniel; Dudas, Marek

    2015-01-01

    Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Closure of the vertebral canal in human embryos and fetuses.

    Science.gov (United States)

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  7. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Maide Ö. Raeker

    2011-01-01

    Full Text Available During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues.

  8. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Science.gov (United States)

    Raeker, Maide Ö.; Russell, Mark W.

    2011-01-01

    During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues. PMID:22190853

  9. Polypeptide profiles of human oocytes and preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  10. Differential expression of parental alleles of BRCA1 in human preimplantation embryos

    Science.gov (United States)

    Tulay, Pinar; Doshi, Alpesh; Serhal, Paul; SenGupta, Sioban B

    2017-01-01

    Gene expression from both parental genomes is required for completion of embryogenesis. Differential methylation of each parental genome has been observed in mouse and human preimplantation embryos. It is possible that these differences in methylation affect the level of gene transcripts from each parental genome in early developing embryos. The aim of this study was to investigate if there is a parent-specific pattern of BRCA1 expression in human embryos and to examine if this affects embryo development when the embryo carries a BRCA1 or BRCA2 pathogenic mutation. Differential parental expression of ACTB, SNRPN, H19 and BRCA1 was semi-quantitatively analysed by minisequencing in 95 human preimplantation embryos obtained from 15 couples undergoing preimplantation genetic diagnosis. BRCA1 was shown to be differentially expressed favouring the paternal transcript in early developing embryos. Methylation-specific PCR showed a variable methylation profile of BRCA1 promoter region at different stages of embryonic development. Embryos carrying paternally inherited BRCA1 or 2 pathogenic variants were shown to develop more slowly compared with the embryos with maternally inherited BRCA1 or 2 pathogenic mutations. This study suggests that differential demethylation of the parental genomes can influence the early development of preimplantation embryos. Expression of maternal and paternal genes is required for the completion of embryogenesis. PMID:27677417

  11. Parliamentary cultures and human embryos: the Dutch and British debates compared

    NARCIS (Netherlands)

    Kirejczyk, Marta

    1999-01-01

    Twenty years ago, the technology of in vitro fertilization created a new artefact: the human embryo outside the woman's body. In many countries, political debates developed around this artefact. One of the central questions in these debates is whether it is permissible to use human embryos in

  12. Addressing the ethical issues raised by synthetic human entities with embryo-like features

    NARCIS (Netherlands)

    Aach, John; Lunshof, Jeantine; Iyer, Eswar; Church, George M.

    2017-01-01

    The "14-day rule" for embryo research stipulates that experiments with intact human embryos must not allow them to develop beyond 14 days or the appearance of the primitive streak. However, recent experiments showing that suitably cultured human pluripotent stem cells can self organize and

  13. Endocardial tip cells in the human embryo - facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Mugurel C Rusu

    Full Text Available Experimental studies regarding coronary embryogenesis suggest that the endocardium is a source of endothelial cells for the myocardial networks. As this was not previously documented in human embryos, we aimed to study whether or not endothelial tip cells could be correlated with endocardial-dependent mechanisms of sprouting angiogenesis. Six human embryos (43-56 days were obtained and processed in accordance with ethical regulations; immunohistochemistry was performed for CD105 (endoglin, CD31, CD34, α-smooth muscle actin, desmin and vimentin antibodies. Primitive main vessels were found deriving from both the sinus venosus and aorta, and were sought to be the primordia of the venous and arterial ends of cardiac microcirculation. Subepicardial vessels were found branching into the outer ventricular myocardium, with a pattern of recruiting α-SMA+/desmin+ vascular smooth muscle cells and pericytes. Endothelial sprouts were guided by CD31+/CD34+/CD105+/vimentin+ endothelial tip cells. Within the inner myocardium, we found endothelial networks rooted from endocardium, guided by filopodia-projecting CD31+/CD34+/CD105+/ vimentin+ endocardial tip cells. The myocardial microcirculatory bed in the atria was mostly originated from endocardium, as well. Nevertheless, endocardial tip cells were also found in cardiac cushions, but they were not related to cushion endothelial networks. A general anatomical pattern of cardiac microvascular embryogenesis was thus hypothesized; the arterial and venous ends being linked, respectively, to the aorta and sinus venosus. Further elongation of the vessels may be related to the epicardium and subepicardial stroma and the intramyocardial network, depending on either endothelial and endocardial filopodia-guided tip cells in ventricles, or mostly on endocardium, in atria.

  14. Analysis of compaction initiation in human embryos by using time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Yumoto, Keitaro; Sugishima, Minako; Mizoguchi, Chizuru; Kai, Yoshiteru; Iba, Yumiko; Mio, Yasuyuki

    2014-04-01

    To analyze the initiation of compaction in human embryos in vitro by using time-lapse cinematography (TLC), with the goal of determining the precise timing of compaction and clarifying the morphological changes underlying the compaction process. One hundred and fifteen embryos donated by couples with no further need for embryo-transfer were used in this study. Donated embryos were thawed and processed, and then their morphological behavior during the initiation of compaction was dynamically observed via time-lapse cinematography (TLC) for 5 days. Although the initiation of compaction occurred throughout the period from the 4-cell to 16-cell stage, 99 (86.1 %) embryos initiated compaction at the 8-cell stage or later, with initiation at the 8-cell stage being most frequent (22.6 %). Of these 99 embryos, 49.5 % developed into good-quality blastocysts. In contrast, of the 16 (13.9 %) embryos that initiated compaction prior to the 8-cell stage, only 18.8 % developed into good-quality blastocysts. Embryos that initiated compaction before the 8-cell stage showed significantly higher numbers of multinucleated blastomeres, due to asynchronism in nuclear division at the third mitotic division resulting from cytokinetic failure. The initiation of compaction primarily occurs at the third mitotic division or later in human embryos. Embryos that initiate compaction before the 8-cell stage are usually associated with aberrant embryonic development (i.e., cytokinetic failure accompanied by karyokinesis).

  15. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media.

    Science.gov (United States)

    Kleijkers, Sander H M; Eijssen, Lars M T; Coonen, Edith; Derhaag, Josien G; Mantikou, Eleni; Jonker, Martijs J; Mastenbroek, Sebastiaan; Repping, Sjoerd; Evers, Johannes L H; Dumoulin, John C M; van Montfoort, Aafke P A

    2015-10-01

    Is gene expression in human preimplantation embryos affected by the medium used for embryo culture in vitro during an IVF treatment? Six days of in vitro culture of human preimplantation embryos resulted in medium-dependent differences in expression level of genes involved in apoptosis, protein degradation, metabolism and cell-cycle regulation. Several human studies have shown an effect of culture medium on embryo development, pregnancy outcome and birthweight. However, the underlying mechanisms in human embryos are still unknown. In animal models of human development, it has been demonstrated that culture of preimplantation embryos in vitro affects gene expression. In humans, it has been found that culture medium affects gene expression of cryopreserved embryos that, after thawing, were cultured in two different media for 2 more days. In a multicenter trial, women were randomly assigned to two culture medium groups [G5 and human tubal fluid (HTF)]. Data on embryonic development were collected for all embryos. In one center, embryos originating from two pronuclei (2PN) zygotes that were not selected for transfer or cryopreservation on Day 2 or 3 because of lower morphological quality, were cultured until Day 6 and used in this study, if couples consented. Ten blastocysts each from the G5 and HTF study groups, matched for fertilization method, maternal age and blastocyst quality, were selected and their mRNA was isolated and amplified. Embryos were examined individually for genome-wide gene expression using Agilent microarrays and PathVisio was used to identify the pathways that showed a culture medium-dependent activity. Expression of 951 genes differed significantly (P differences observed between the study groups are caused by factors that we did not investigate. Extrapolation of these results to embryos used for transfer demands caution as in the present study embryos that were not selected for either embryo transfer or cryopreservation have been used for the

  16. Dysregulated LIF-STAT3 pathway is responsible for impaired embryo implantation in a Streptozotocin-induced diabetic mouse model

    Directory of Open Access Journals (Sweden)

    Tong-Song Wang

    2015-07-01

    Full Text Available The prevalence of diabetes is increasing worldwide with the trend of patients being young and creating a significant burden on health systems, including reproductive problems, but the effects of diabetes on embryo implantation are still poorly understood. Our study was to examine effects of diabetes on mouse embryo implantation, providing experimental basis for treating diabetes and its complications. Streptozotocin (STZ was applied to induce type 1 diabetes from day 2 of pregnancy or pseudopregnancy in mice. Embryo transfer was used to analyze effects of uterine environment on embryo implantation. Our results revealed that the implantation rate is significantly reduced in diabetic mice compared to controls, and the change of uterine environment is the main reason leading to the decreased implantation rate. Compared to control, the levels of LIF and p-STAT3 are significantly decreased in diabetic mice on day 4 of pregnancy, and serum estrogen level is significantly higher. Estrogen stimulates LIF expression under physiological level, but the excessive estrogen inhibits LIF expression. LIF, progesterone or insulin supplement can rescue embryo implantation in diabetic mice. Our data indicated that the dysregulated LIF-STAT3 pathway caused by the high level of estrogen results in the impaired implantation in diabetic mice, which can be rescued by LIF, progesterone or insulin supplement.

  17. Toxicity testing of human assisted reproduction devices using the mouse embryo assay.

    NARCIS (Netherlands)

    Punt-Van der Zalm, J.P.; Hendriks, J.C.M.; Westphal, J.R.; Kremer, J.A.M.; Teerenstra, S.; Wetzels, A.M.M.

    2009-01-01

    Systems to assess the toxicity of materials used in human assisted reproduction currently lack efficiency and/or sufficient discriminatory power. The development of 1-cell CBA/B6 F1 hybrid mouse embryos to blastocysts, expressed as blastocyst rate (BR), is used to measure toxicity. The embryos were

  18. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates

    NARCIS (Netherlands)

    Wong, Kai Mee; Mastenbroek, Sebastiaan; Repping, Sjoerd

    2014-01-01

    Cryopreservation of human embryos is now a routine procedure in assisted reproductive technologies laboratories. There is no consensus on the superiority of any protocol, and substantial differences exist among centers in day of embryo cryopreservation, freezing method, selection criteria for which

  19. Human cloning and embryo research: the 2003 John J. Conley Lecture on medical ethics.

    Science.gov (United States)

    George, Robert P

    2004-01-01

    The author, a member of the U.S. President's Council on Bioethics, discusses ethical issues raised by human cloning, whether for purposes of bringing babies to birth or for research purposes. He first argues that every cloned human embryo is a new, distinct, and enduring organism, belonging to the species Homo sapiens, and directing its own development toward maturity. He then distinguishes between two types of capacities belonging to individual organisms belonging to this species, an immediately exerciseable capacity and a basic natural capacity that develops over time. He argues that it is the second type of capacity that is the ground for full moral respect, and that this capacity (and its concomitant degree of respect) belongs to cloned human embryos no less than to adult human beings. He then considers and rejects counter-arguments to his position, including the suggestion that the capacity of embryos is equivalent to the capacity of somatic cells, that full human rights are afforded only to human organisms with functioning brains, that the possibility of twinning diminishes the moral status of embryos, that the fact that people do not typically mourn the loss of early embryos implies that they have a diminished moral status, that the fact that early spontaneous abortions occur frequently diminishes the moral status of embryos, and that his arguments depend upon a concept of ensoulment. He concludes that if the moral status of cloned human embryos is equivalent to that of adults, then public policy should be based upon this assumption.

  20. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Danilo Cimadomo

    2016-01-01

    Full Text Available Preimplantation Genetic Diagnosis and Screening (PGD/PGS for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential.

  1. Expression of microRNAs in bovine and human pre-implantation embryo culture media

    Science.gov (United States)

    Kropp, Jenna; Salih, Sana M.; Khatib, Hasan

    2014-01-01

    MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy. PMID:24795753

  2. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    Science.gov (United States)

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  3. Approaches for prediction of the implantation potential of human embryos

    Directory of Open Access Journals (Sweden)

    Georgi Stamenov

    2013-01-01

    Full Text Available Optimization of assisted reproductive technologies (ART has become the main goal of contemporary reproductive medicine. The main aspiration of scientists working in the field is to use less intervention to achieve more, and, if possible, in a more cost-effective way. A number of directions have been under development, namely – various stimulation protocols, ART with no stimulation whatever, all aiming at a single goal – the chase for Moby Dick, or the perfect embryo. Comprehensive embryo selection resulting in reducing the number of transferred embryos is one of the main directions for optimization of the ART procedures. Both clinical and laboratory procedures are being constantly improved, and today there is a significant number of clinics that report success rates of 30% and even higher. Based on results achieved, and analyzing data from millions of ART procedures, researchers from different centers are seeking to develop prognostic models in order to further improve success rates. One of the greatest challenges remains the reduction of the incidence of multifetal pregnancy, and that can be achieved only through reducing the number of embryos per transfer and a rise in single embryo transfer (SET numbers. This, however, depends on reliable methods for preliminary embryo selection, employing a growing number of morphological, biochemical, genetic and other characteristics of the embryo. A primary concern in developing prognostic models for in vitro fertilization (IVF outcome is selecting the prognostic parameters to be included. A number of publications define the main criteria that have an impact on fertilization outcome on the side of the embryo, and for the ultimate outcome of the ART procedure – on the side of the maternal organism as a whole. In this review, some of the most important parameters are discussed, with particular focus on their application for development of IVF prognostic models.

  4. Persons and their bodies: how we should think about human embryos.

    Science.gov (United States)

    McLachlan, Hugh V

    2002-01-01

    The status of human embryos is discussed particularly in the light of the claim by Fox, in Health Care Analysis 8 that it would be useful to think of them in terms of cyborg metaphors. It is argued that we should consider human embryos for what they are--partially formed human bodies--rather than for what they are like in some respects (and unlike in others)--cyborgs. However to settle the issue of the status of the embryo is not to answer the moral questions which arise concerning how embryos should be treated. Since persons rather than bodies have rights, embryos do not have rights. However, whether or not embryos have rights, people can have duties concerning them. Furthermore, the persons whose fully developed bodies embryos will, might (or might have) become can have rights. Contrary to what is often assumed, it is not merely persons who have (or have had) living, developed human bodies who have moral rights: so it is argued in this paper.

  5. Where does New Zealand stand on permitting research on human embryos?

    Science.gov (United States)

    Jones, D Gareth

    2014-08-01

    In many respects New Zealand has responded to the assisted reproductive technologies (ARTs) as positively as many comparable societies, such as Australia and the UK. Consequently, in vitro fertilisation (IVF) and pre-implantation genetic diagnosis (PGD) are widely available, as is non-commercial surrogacy utilising IVF. These developments have been made possible by the Human Assisted Reproductive Technology (HART) Act 2004, overseen by its two committees, the Advisory Committee on Assisted Reproductive Technology (ACART) and the Ethics Committee (ECART). However, New Zealand stands apart from many of these other societies by the lack of permission for scientists to conduct research using human embryos. There is no doubt this reflects strongly held viewpoints on the part of some that embryos should be protected and not exploited. Legitimate as this stance is, the resulting situation is problematic when IVF is already designated as an established procedure. This is because the development of IVF involved embryo research, and continuing improvements in procedures depend upon ongoing embryo research. While prohibition of research on human embryos gives the impression of protecting embryos, it fails to do this and also fails to enhance the health and wellbeing of children born using IVF. This situation will not be rectified until research is allowed on human embryos.

  6. Barcode tagging of human oocytes and embryos to prevent mix-ups in assisted reproduction technologies.

    Science.gov (United States)

    Novo, Sergi; Nogués, Carme; Penon, Oriol; Barrios, Leonardo; Santaló, Josep; Gómez-Martínez, Rodrigo; Esteve, Jaume; Errachid, Abdelhamid; Plaza, José Antonio; Pérez-García, Lluïsa; Ibáñez, Elena

    2014-01-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time

  7. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    recently demonstrated to occur from first cleavage cycle in mice using time-lapse microscopy, with the largest impact on the pre-compaction stages. However, embryonic development in mice differs in many aspects from human embryonic development. The objective of this retrospective, descriptive study...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2......) or in 5% O2 (group 3). Eligible were patients with age 8 oocytes retrieved. Group 1 consisted of 120 IVF/ICSI embryos from 26 patients recruited to a study conducted to evaluate the safety of the time-lapse incubator by randomising 1:1 embryos from a patient to culture...

  8. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    -points for each cell division and blastocyst stages were registered until 120 hours after oocyte retrieval. Only 2PN embryos completing the first cleavage were evaluated. The groups were compared using one-way ANOVA or Kruskall-Wallis test. Estimates are reported as medians with 95% confidence intervals. Time......Introduction: Data from a number of studies indicate -but not unequivocally- that culture of embryos in 5% O2 compared to 20% O2 improves blastocyst formation in humans and various animal species and may yield better pregnancy rates in IVF. The detrimental effects of atmospheric oxygen were...... was to evaluate the influence of oxygen tension on human pre-implantation development using time-lapse monitoring. Materials and methods: Human embryos were cultured to the blastocyst stage in a time-lapse incubator (EmbryoScope™) in 20% O2 (group 1), 20% O2 for 24 hours followed by culture in 5% O2 (group 2...

  9. Effects of ulipristal acetate on human embryo attachment and endometrial cell gene expression in an in vitro co-culture system.

    Science.gov (United States)

    Berger, C; Boggavarapu, N R; Menezes, J; Lalitkumar, P G L; Gemzell-Danielsson, K

    2015-04-01

    Does ulipristal acetate (UPA) used for emergency contraception (EC) interfere with the human embryo implantation process? UPA, at the dosage used for EC, does not affect human embryo implantation process, in vitro. A single pre-ovulatory dose of UPA (30 mg) acts by delaying or inhibiting ovulation and is recommended as first choice among emergency contraceptive pills due to its efficacy. The compound has also been demonstrated to have a dose-dependent effect on the endometrium, which theoretically could impair endometrial receptivity but its direct action on human embryo implantation has not yet been studied. Effect of UPA on embryo implantation process was studied in an in vitro endometrial construct. Human embryos were randomly added to the cultures and cultured for 5 more days with UPA (n = 10) or with vehicle alone (n = 10) to record the attachment of embryos. Endometrial biopsies were obtained from healthy, fertile women on cycle day LH+4 and stromal and epithelial cells were isolated. A three-dimensional in vitro endometrial co-culture system was constructed by mixing stromal cells with collagen covered with a layer of epithelial cells and cultured in progesterone containing medium until confluence. The treatment group received 200 ng/ml of UPA. Healthy, viable human embryos were placed on both control and treatment cultures. Five days later the cultures were tested for the attachment of embryos and the 3D endometrial constructs were analysed for endometrial receptivity markers by real-time PCR. There was no significant difference in the embryo attachment rate between the UPA treated group and the control group as 5 out of 10 human embryos exposed to UPA and 7 out of 10 embryos in the control group attached to the endometrial cell surface (P = 0.650). Out of 17 known receptivity genes studied here, only 2 genes, HBEGF (P = 0.009) and IL6 (P = 0.025) had a significant up-regulation and 4 genes, namely HAND2 (P = 0.003), OPN (P = 0.003), CALCR (P = 0.016) and

  10. Correction of β-thalassemia mutant by base editor in human embryos

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-09-01

    Full Text Available Abstract β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB −28 (A>G mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB −28 (A>G mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB −28 (A>G homozygous mutation. Data showed that base editor could precisely correct HBB −28 (A>G mutation in the patient’s primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB −28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.

  11. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo.

    Science.gov (United States)

    Capmany, G; Taylor, A; Braude, P R; Bolton, V N

    1996-05-01

    The timing of pronuclear formation and breakdown, DNA synthesis and cleavage during the first cell cycle of human embryogenesis are described. Pronuclei formed between 3 and 10 h post-insemination (hpi; median 8 hpi). S-phase commenced between 8 and 14 hpi, and was completed between 10 and 18 hpi. M-phase was observed between 22 and 31 hpi (median duration 3 h), and cleavage to the 2-cell stage took place between 25 and 33 hpi. The timing of the same events was determined in 1-cell embryos derived from re-inseminated human oocytes that had failed to fertilize during therapeutic in-vitro fertilization (IVF). In these embryos, pronuclei formed between 3 and 8 h post-re-insemination (hpr-i), coinciding with the beginning of S-phase. While S-phase was completed as early as 10 hpr-i in some embryos, it extended until at least 16 hpr-i in others. Pronuclear breakdown and cleavage occurred from 23 and 26 hpr-i respectively; however, they did not occur in some embryos until after 46 hpr-i. The results demonstrate a markedly greater degree of variation in the timing of these events in embryos derived from re-inseminated oocytes compared with embryos derived from conventional IVF, and thus throw into question the validity of using the former as models for studies of the first cell cycle of human embryogenesis.

  12. Biopsy of human morula-stage embryos: outcome of 215 IVF/ICSI cycles with PGS.

    Directory of Open Access Journals (Sweden)

    Elena E Zakharova

    Full Text Available Preimplantation genetic diagnosis (PGD is commonly performed on biopsies from 6-8-cell-stage embryos or blastocyst trophectoderm obtained on day 3 or 5, respectively. Day 4 human embryos at the morula stage were successfully biopsied. Biopsy was performed on 709 morulae from 215 ICSI cycles with preimplantation genetic screening (PGS, and 3-7 cells were obtained from each embryo. The most common vital aneuploidies (chromosomes X/Y, 21 were screened by fluorescence in situ hybridization (FISH. No aneuploidy was observed in 72.7% of embryos, 91% of those developed to blastocysts. Embryos were transferred on days 5-6. Clinical pregnancy was obtained in 32.8% of cases, and 60 babies were born. Patients who underwent ICSI/PGS treatment were compared with those who underwent standard ICSI treatment by examining the percentage of blastocysts, pregnancy rate, gestational length, birth height and weight. No significant differences in these parameters were observed between the groups. Day 4 biopsy procedure does not adversely affect embryo development in vitro or in vivo. The increased number of cells obtained by biopsy of morulae might facilitate diagnostic screening. There is enough time after biopsy to obtain PGD results for embryo transfer on day 5-6 in the current IVF cycle.

  13. NGS Analysis of Human Embryo Culture Media Reveals miRNAs of Extra Embryonic Origin.

    Science.gov (United States)

    Sánchez-Ribas, Immaculada; Diaz-Gimeno, Patricia; Quiñonero, Alicia; Ojeda, María; Larreategui, Zaloa; Ballesteros, Agustín; Domínguez, Francisco

    2018-01-01

    Our objective in this work was to isolate, identify, and compare micro-RNAs (miRNAs) found in spent culture media of euploid and aneuploid in vitro fertilization (IVF) embryos. Seventy-two embryos from 62 patients were collected, and their spent media were retained. A total of 108 spent conditioned media samples were analyzed (n = 36 day 3 euploid embryos, n = 36 day 3 aneuploid embryos, and n = 36 matched control media). Fifty hed-control media embryos were analyzed using next-generation sequencing (NGS) technology. We detected 53 known human miRNAs present in the spent conditioned media of euploid and aneuploid IVF embryos. miR-181b-5p and miR-191-5p were found the most represented. We validated our results by quantitative polymerase chain reaction (qPCR), but no significant results were obtained between the groups. In conclusion, we obtained the list of miRNAs present in the spent conditioned media from euploid and aneuploid IVF embryos, but our data suggest that these miRNAs could have a nonembryonic origin.

  14. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    Science.gov (United States)

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  15. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  16. Characterization and quantification of proteins secreted by single human embryos prior to implantation.

    Science.gov (United States)

    Poli, Maurizio; Ori, Alessandro; Child, Tim; Jaroudi, Souraya; Spath, Katharina; Beck, Martin; Wells, Dagan

    2015-11-01

    The use of in vitro fertilization (IVF) has revolutionized the treatment of infertility and is now responsible for 1-5% of all births in industrialized countries. During IVF, it is typical for patients to generate multiple embryos. However, only a small proportion of them possess the genetic and metabolic requirements needed in order to produce a healthy pregnancy. The identification of the embryo with the greatest developmental capacity represents a major challenge for fertility clinics. Current methods for the assessment of embryo competence are proven inefficient, and the inadvertent transfer of non-viable embryos is the principal reason why most IVF treatments (approximately two-thirds) end in failure. In this study, we investigate how the application of proteomic measurements could improve success rates in clinical embryology. We describe a procedure that allows the identification and quantification of proteins of embryonic origin, present in attomole concentrations in the blastocoel, the enclosed fluid-filled cavity that forms within 5-day-old human embryos. By using targeted proteomics, we demonstrate the feasibility of quantifying multiple proteins in samples derived from single blastocoels and that such measurements correlate with aspects of embryo viability, such as chromosomal (ploidy) status. This study illustrates the potential of high-sensitivity proteomics to measure clinically relevant biomarkers in minute samples and, more specifically, suggests that key aspects of embryo competence could be measured using a proteomic-based strategy, with negligible risk of harm to the living embryo. Our work paves the way for the development of "next-generation" embryo competence assessment strategies, based on functional proteomics. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Biomedical research with human embryos: changes in the legislation on assisted reproduction in Spain.

    Science.gov (United States)

    Vidal Martínez, Jaime

    2006-01-01

    This study deals with issues of research with human embryos obtained through in vitro fertilization in the context of the Spanish Law. The paper focuses on Act 14/2006 on techniques of human assisted reproduction, which replaces the previous Act from 1988. The author claims that the main goals of Act 14/2006 are, on the one hand, to eliminate the restrictions affecting research with human embryos put in place by Act 45/2003 and, on the other, to pave the way for a future legislation on biomedical research. This paper argues for the need of an effective and adequate juridical protection of human embryos obtained in vitro according to responsibility and precautionary principles.

  18. Inactivation of the Huntington's disease gene (Hdh impairs anterior streak formation and early patterning of the mouse embryo

    Directory of Open Access Journals (Sweden)

    Conlon Ronald A

    2005-08-01

    Full Text Available Abstract Background Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdhex4/5 huntingtin deficient embryos. Results In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE are specified. Conclusion Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in

  19. Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo.

    Science.gov (United States)

    Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E

    2005-08-18

    Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5) huntingtin deficient embryos. In the absence of huntingtin, expression of nutritive genes appears normal but E7.0-7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.

  20. Morphometric analysis of human embryos to predict developmental competence

    DEFF Research Database (Denmark)

    Ziebe, Søren

    2013-01-01

    pregnancy test, no matter what we choose in the laboratory. Still, both with the increasing complexity of infertile patients treated today and the important focus on reducing multiple pregnancies, it becomes increasingly important to improve our ability to predict the developmental competence of each embryo....... This involves an improved understanding of the basic biology controlling early embryonic development and, over the years, many groups have tried to identify parameters reflecting embryonic competence....

  1. Composition of commercial media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Krisher, Rebecca L; Herrick, Jason R; Baumann, Nikola A; Matern, Dietrich; Moyer, Thomas

    2014-09-01

    To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. Experimental laboratory study. University-based laboratory. Cryopreserved hybrid mouse one-cell embryos were used in experiments. Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Synthetic profiles of polypeptides of human oocytes and normal and abnormal preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1999-09-01

    There is considerable variation in the rate of development in vitro of individual preimplantation human embryos. The relationship between the rate of development and patterns of polypeptide synthesis in individual embryos was examined using SDS-PAGE and autoradiography. After incubation in [35S]methionine, 19 polypeptide bands were identified that change between fertilization and the morula stage. Although changes in two of the bands occurred in embryos that were developing normally and in ageing oocytes, and are thus independent of fertilization, the changes identified in the remaining 17 bands occurred only after fertilization. In embryos that were developing abnormally, as assessed by delayed cleavage, cleavage arrest or extensive fragmentation, the alteration in polypeptide synthetic profiles increased with increasing abnormality.

  3. Human developmental anatomy: microscopic magnetic resonance imaging (μMRI) of four human embryos (from Carnegie Stage 10 to 20).

    Science.gov (United States)

    Lhuaire, Martin; Martinez, Agathe; Kaplan, Hervé; Nuzillard, Jean-Marc; Renard, Yohann; Tonnelet, Romain; Braun, Marc; Avisse, Claude; Labrousse, Marc

    2014-12-01

    Technological advances in the field of biological imaging now allow multi-modal studies of human embryo anatomy. The aim of this study was to assess the high magnetic field μMRI feasibility in the study of small human embryos (less than 21mm crown-rump) as a new tool for the study of human descriptive embryology and to determine better sequence characteristics to obtain higher spatial resolution and higher signal/noise ratio. Morphological study of four human embryos belonging to the historical collection of the Department of Anatomy in the Faculty of Medicine of Reims was undertaken by μMRI. These embryos had, successively, crown-rump lengths of 3mm (Carnegie Stage, CS 10), 12mm (CS 16), 17mm (CS 18) and 21mm (CS 20). Acquisition of images was performed using a vertical nuclear magnetic resonance spectrometer, a Bruker Avance III, 500MHz, 11.7T equipped for imaging. All images were acquired using 2D (transverse, sagittal and coronal) and 3D sequences, either T1-weighted or T2-weighted. Spatial resolution between 24 and 70μm/pixel allowed clear visualization of all anatomical structures of the embryos. The study of human embryos μMRI has already been reported in the literature and a few atlases exist for educational purposes. However, to our knowledge, descriptive or morphological studies of human developmental anatomy based on data collected these few μMRI studies of human embryos are rare. This morphological noninvasive imaging method coupled with other techniques already reported seems to offer new perspectives to descriptive studies of human embryology.

  4. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M. J.; Wong, K. M.; van Montfoort, A. P. A.; de Jong, M.; Breit, T. M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation embryos than the culture medium or

  5. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  6. Caspase activity and expression of cell death genes during development of human preimplantation embryos.

    Science.gov (United States)

    Spanos, S; Rice, S; Karagiannis, P; Taylor, D; Becker, D L; Winston, R M L; Hardy, K

    2002-09-01

    It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.

  7. Imaging of a large collection of human embryo using a super-parallel MR microscope

    International Nuclear Information System (INIS)

    Matsuda, Yoshimasa; Ono, Shinya; Otake, Yosuke; Handa, Shinya; Kose, Katsumi; Haishi, Tomoyuki; Yamada, Shigeto; Uwabe, Chikako; Shiota, Kohei

    2007-01-01

    Using 4 and 8-channel super-parallel magnetic resonance (MR) microscopes with a horizontal bore 2.34T superconducting magnet developed for 3-dimensional MR microscopy of the large Kyoto Collection of Human Embryos, we acquired T 1 -weighted 3D images of 1204 embryos at a spatial resolution of (40 μm) 3 to (150 μm) 3 in about 2 years. Similarity of image contrast between the T 1 -weighted images and stained anatomical sections indicated that T 1 -weighted 3D images could be used for an anatomical 3D image database for human embryology. (author)

  8. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development.

    Science.gov (United States)

    Swain, J E; Cabrera, L; Xu, X; Smith, G D

    2012-02-01

    Because media osmolality can impact embryo development, the effect of conditions during microdrop preparation on osmolality was examined. Various sizes of microdrops were prepared under different laboratory conditions. Drops were pipetted directly onto a dish and covered by oil (standard method) or pipetted on the dish, overlaid with oil before removing the underlying media and replaced with fresh media (wash-drop method). Drops were made at 23°C or on a heated stage (37°C) and with or without airflow. Osmolality was assessed at 5 min and 24h. The biological impact of osmolality change was demonstrated by culturing 1-cell mouse embryos in media with varying osmolality. Reduced drop volume, increased temperature and standard method were associated with a significant increase in osmolality at both 5 min and 24h (P-values media with elevated osmolality (>310mOsm/kg; P<0.05). Procedures in the IVF laboratory can alter osmolality and impact embryo development. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Transient expression and activity of human DNA polymerase iota in loach embryos.

    Science.gov (United States)

    Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E

    2012-02-01

    Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.

  10. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-01-01

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910

  11. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  12. The developmental relationship between the deciduous dentition and the oral vestibule in human embryos

    Czech Academy of Sciences Publication Activity Database

    Hovořáková, Mária; Lesot, H.; Peterka, Miroslav; Peterková, Renata

    2005-01-01

    Roč. 209, č. 4 (2005), s. 303-313 ISSN 0340-2061 R&D Projects: GA ČR GA304/02/0448; GA MŠk(CZ) OC B23.002 Institutional research plan: CEZ:AV0Z5039906 Keywords : human embryo * tooth development Subject RIV: EA - Cell Biology Impact factor: 1.255, year: 2005

  13. Effect of in vitro culture of human embryos on birthweight of newborns

    NARCIS (Netherlands)

    Dumoulin, John C.; Land, Jolande A.; Van Montfoort, Aafke P.; Nelissen, Ewka C.; Coonen, Edith; Derhaag, Josien G.; Schreurs, Inge L.; Dunselman, Gerard A.; Kester, Arnold D.; Geraedts, Joep P.; Evers, Johannes L.

    In animal models, in vitro culture of preimplantation embryos has been shown to be a risk factor for abnormal fetal outcome, including high and low birthweight. In the human, mean birthweight of singletons after in vitro fertilization (IVF) is considerably lower than after natural conception, but it

  14. Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency

    NARCIS (Netherlands)

    Brinkhof, Bas; van Tol, Helena T A; Groot Koerkamp, Marian J A; Wubbolts, Richard W; Haagsman, Henk P; Roelen, Bernard A J

    2017-01-01

    In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a

  15. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    Science.gov (United States)

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  16. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development.

    Science.gov (United States)

    Familiari, Giuseppe; Heyn, Rosemarie; Relucenti, Michela; Nottola, Stefania A; Sathananthan, A Henry

    2006-01-01

    This study describes the updated, fine structure of human gametes, the human fertilization process, and human embryos, mainly derived from assisted reproductive technology (ART). As clearly shown, the ultrastructure of human reproduction is a peculiar multistep process, which differs in part from that of other mammalian models, having some unique features. Particular attention has been devoted to the (1) sperm ultrastructure, likely "Tygerberg (Kruger) strict morphology criteria"; (2) mature oocyte, in which the MII spindle is barrel shaped, anastral, and lacking centrioles; (3) three-dimensional microarchitecture of the zona pellucida with its unique supramolecular filamentous organization; (4) sperm-egg interactions with the peculiarity of the sperm centrosome that activates the egg and organizes the sperm aster and mitotic spindles of the embryo; and (5) presence of viable cumulus cells whose metabolic activity is closely related to egg and embryo behavior in in vitro as well as in vivo conditions, in a sort of extraovarian "microfollicular unit." Even if the ultrastructural morphodynamic features of human fertilization are well understood, our knowledge about in vivo fertilization is still very limited and the complex sequence of in vivo biological steps involved in human reproduction is only partially reproduced in current ART procedures.

  17. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial.

    Science.gov (United States)

    Kieslinger, Dorit C; Hao, Zhenxia; Vergouw, Carlijn G; Kostelijk, Elisabeth H; Lambalk, Cornelis B; Le Gac, Séverine

    2015-03-01

    To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Prospective randomized controlled trial. In vitro fertilization laboratory. One hundred eighteen donated frozen-thawed human day-4 embryos. Random allocation of embryos that fulfilled the inclusion criteria to single-embryo culture in a microfluidics device (n = 58) or standard microdrop dish (n = 60). Blastocyst formation rate and quality after 24, 28, 48, and 72 hours of culture. The percentage of frozen-thawed day-4 embryos that developed to the blastocyst stage did not differ significantly in the standard microdrop dishes and microfluidic devices after 28 hours of culture (53.3% vs. 58.6%) or at any of the other time points. The proportion of embryos that would have been suitable for embryo transfer was comparable after 28 hours of culture in the control dishes and microfluidic devices (90.0% vs. 93.1%). Furthermore, blastocyst quality was similar in the two study groups. This study shows that a microfluidic device can successfully support human blastocyst development in vitro under static culture conditions. Future studies need to clarify whether earlier stage embryos will benefit from the culture in microfluidic devices more than the tested day-4 embryos because many important steps in the development of human embryos already take place before day 4. Further improvements of the microfluidic device will include parallel culture of single embryos, application of medium refreshment, and built-in sensors. NTR3867. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. The Effect of Prolonged Culture of Chromosomally Abnormal Human Embryos on The Rate of Diploid Cells

    Directory of Open Access Journals (Sweden)

    Masood Bazrgar

    2016-12-01

    Full Text Available Background: A decrease in aneuploidy rate following a prolonged co-culture of human blastocysts has been reported. As co-culture is not routinely used in assisted reproductive technology, the present study aimed to evaluate the effect of the prolonged single culture on the rate of diploid cells in human embryos with aneuploidies. Materials and Methods: In this cohort study, we used fluorescence in situ hybridization (FISH to reanalyze surplus blastocysts undergoing preimplantation genetic diagnosis (PGD on day 3 postfertilization. They were randomly studied on days 6 or 7 following fertilization. Results: Of the 30 analyzed blastocysts, mosaicism was observed in 26(86.6%, while 2(6.7% were diploid, and 2(6.7% were triploid. Of those with mosaicism, 23(88.5% were determined to be diploid-aneuploid and 3(11.5% were aneuploid mosaic. The total frequency of embryos with more than 50% diploid cells was 33.3% that was lower on day 7 in comparison with the related value on day 6 (P<0.05; however, there were no differences when the embryos were classified according to maternal age, blastocyst developmental stage, total cell number on day 3, and embryo quality. Conclusion: Although mosaicism is frequently observed in blastocysts, the prolonged single culture of blastocysts does not seem to increase the rate of normal cells.

  19. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos.

    Science.gov (United States)

    Mio, Yasuyuki; Maeda, Kazuo

    2008-12-01

    The purpose of this study was to clarify developmental changes of early human embryos by using time-lapse cinematography (TLC). For human ova, fertilization and cleavage, development of the blastocyst, and hatching, as well as consequent changes were repeatedly photographed at intervals of 5-6 days by using an inverse microscope under stabilized temperature and pH. Photographs were taken at 30 frames per second and the movies were studied. Cinematography has increased our understanding of the morphologic mechanisms of fertilization, development, and behavior of early human embryos, and has identified the increased risk of monozygotic twin pregnancy based on prolonged incubation in vitro to the blastocyst stage. Using TLC, we observed the fertilization of an ovum by a single spermatozoon, followed by early cleavages, formation of the morula, blastocyst hatching, changes in the embryonic plates, and the development of monozygotic twins from the incubated blastocysts.

  20. Immunoprotection of gonads and genital tracts in human embryos and fetuses: immunohistochemical study.

    Science.gov (United States)

    Gurevich, A; Ben-Hur, H; Moldavsky, M; Szvalb, S; Berman, V; Zusman, I

    2001-12-01

    The immune protection of genital organs in embryogenesis has not been sufficiently studied. The purpose of this study was to investigate the development of the secretory immune system (SIS) in the gonads and genital tracts of human embryos and fetuses. Developing gonads at different stages and genital tracts from 18 embryos and 39 fetuses in the first to third trimester of gestation were analyzed for presence of different component of SIS: secretory component (SC), joining (J) chain. IgA, IgM, IgG, macrophages, and subsets of lymphocytes. The material was divided into two groups: cases not subjected to foreign antigenic effects (group I, n = 31) and those under antigenic attack (chorioamnionitis, group II, n = 26). In embryos and fetuses of group I, SC, J chain, and IgG were seen in the epithelium of mesonephric and paramesonephric ducts, proliferating coelomic epithelium, epithelium of the uterine tubes and uterus, epithelium of the vas deferens, epididymis, and rete testis. IgA and IgM appeared in 6-week-old embryos. J chain, IgA, IgM, and IgG, but not SC, were found in the primary oocytes and oogonia, spermatogonia. and interstitial cells. An abundance of macrophages was seen in 4-week-old embryos. T and B lymphocytes first appeared in 6-7-week-old embryos. In embryos and fetuses of group II, reactivity of immunoglobulins (Igs) decreased until they disappeared altogether. Components of SIS were seen in genital organs in 4-5-week-old embryos and were present during the whole intrauterine period. We suggest the presence of two forms of immune protection of fetal genital organs. One form contains SC, J chain, and Igs and is present in the genital tract epithelium. The second form contains only J chain and Igs and is present in germ cells of gonads. The loss of Igs in cases with chorioamnionitis reflects the functional participation of the SIS of genital organs in response to antigen attack.

  1. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation.

    Science.gov (United States)

    Rosenbluth, Evan M; Shelton, Dawne N; Wells, Lindsay M; Sparks, Amy E T; Van Voorhis, Bradley J

    2014-05-01

    To determine whether human blastocysts secrete microRNA (miRNAs) into culture media and whether these reflect embryonic ploidy status and can predict in vitro fertilization (IVF) outcomes. Experimental study of human embryos and IVF culture media. Academic IVF program. 91 donated, cryopreserved embryos that developed into 28 tested blastocysts, from 13 couples who had previously completed IVF cycles. None. Relative miRNA expression in IVF culture media. Blastocysts were assessed by chromosomal comparative genomic hybridization analysis, and the culture media from 55 single-embryo transfer cycles was tested for miRNA expression using an array-based quantitative real-time polymerase chain reaction analysis. The expression of the identified miRNA was correlated with pregnancy outcomes. Ten miRNA were identified in the culture media; two were specific to spent media (miR-191 and miR-372), and one was only present in media before the embryos had been cultured (miR-645). MicroRNA-191 was more highly concentrated in media from aneuploid embryos, and miR-191, miR-372, and miR-645 were more highly concentrated in media from failed IVF/non-intracytoplasmic sperm injection cycles. Additionally, miRNA were found to be more highly concentrated in ICSI and day-5 media samples when compared with regularly inseminated and day-4 samples, respectively. MicroRNA can be detected in IVF culture media. Some of these miRNA are differentially expressed according to the fertilization method, chromosomal status, and pregnancy outcome, which makes them potential biomarkers for predicting IVF success. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Effect of Adding Human Chorionic Gonadotropin to The Endometrial Preparation Protocol in Frozen Embryo Transfer Cycles

    Directory of Open Access Journals (Sweden)

    Maryam Eftekhar

    2012-01-01

    Full Text Available Background: Human chorionic gonadotropin (HCG, one of the initial embryonic signals, isprobably a major regulator of the embryo-endometrial relationship. This study aims to assess theadvantage of HCG supplementation during the secretory phase of hormonally prepared cycles forthe transfer of cryopreserved-thawed embryos.Materials and Methods: This study was a randomized clinical trial. Infertile women who werecandidates for frozen-thawed embryo transfers entered the study and were divided into two groups,HCG and control. The endometrial preparation method was similar in both groups: all women receivedestradiol valerate (6 mg po per day from the second day of the menstrual cycle and progesteronein oil (100 mg intramuscular (I.M. when the endometrial thickness reached 8 mm. Estradiol andprogesterone were continued until the tenth week of gestation. In the HCG group, patients received anHCG 5000 IU injection on the first day of progesterone administration and the day of embryo transfer.Results: In this study, 130 couples participated: 65 in the HCG group and 65 in the control group.There was no statistically significant difference between groups regarding basic characteristics.Implantation rate, chemical pregnancy, clinical pregnancy, ongoing pregnancy, and abortion rateswere similar in both groups.Conclusion: Although HCG has some advantages in assisted reproductive technology (ARTcycles, our study did not show any benefit of HCG supplementation during the secretory phase offrozen cycles (Registration Number: IRCT201107266420N4.

  3. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    Science.gov (United States)

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology.

  4. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    Science.gov (United States)

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  5. Is the creation of admixed embryos "an offense against human dignity"?

    Science.gov (United States)

    Jones, David Albert

    2010-01-01

    The controversy over the creation of admixed human-nonhuman embryos, and specifically of what have been termed "cybrids," involves a range of ethical and political issues. It is not reducible to a single question. This paper focuses on one question raised by that controversy, whether creating admixed human-nonhuman entities is "an offense against human dignity. "In the last decade there has been sustained criticism of the use of the concept of human dignity within bioethics. The concept has been criticized as "vague" and "useless." Nevertheless, the concept continues to be invoked in bioethical discussion and in international instruments. This paper defends a concept of human dignity that is coherent but that is wider than contemporary post-Kantian approaches. "Human dignity" is best regarded as having a set of analogically related meanings, more than one of which is relevant to the field of bioethics. A more subtle understanding of the concept of human dignity can help identify what is ethically problematic in human-nonhuman combinations and so shed light on one aspect of the admixed embryo debate.

  6. Imprinted Expression of SNRPN in Human Preimplantation Embryos

    OpenAIRE

    Huntriss, John; Daniels, Robert; Bolton, Virginia; Monk, Marilyn

    1998-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurogenetic disorders arising from a loss of expression of imprinted genes within the human chromosome region 15q11-q13. Recent evidence suggests that the SNRPN gene, which is defective in PWS, plays a central role in the imprinting-center regulation of the PWS/AS region. To increase our understanding of the regulation of expression of this imprinted gene, we have developed single-cell-sensitive procedures for...

  7. Estimating limits for natural human embryo mortality [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gavin E. Jarvis

    2016-12-01

    Full Text Available Natural human embryonic mortality is generally considered to be high. Values of 70% and higher are widely cited. However, it is difficult to determine accurately owing to an absence of direct data quantifying embryo loss between fertilisation and implantation. The best available data for quantifying pregnancy loss come from three published prospective studies (Wilcox, Zinaman and Wang with daily cycle by cycle monitoring of human chorionic gonadotrophin (hCG in women attempting to conceive. Declining conception rates cycle by cycle in these studies indicate that a proportion of the study participants were sub-fertile. Hence, estimates of fecundability and pre-implantation embryo mortality obtained from the whole study cohort will inevitably be biased. This new re-analysis of aggregate data from these studies confirms the impression that discrete fertile and sub-fertile sub-cohorts were present. The proportion of sub-fertile women in the three studies was estimated as 28.1% (Wilcox, 22.8% (Zinaman and 6.0% (Wang. The probability of conceiving an hCG pregnancy (indicating embryo implantation was, respectively, 43.2%, 38.1% and 46.2% among normally fertile women, and 7.6%, 2.5% and 4.7% among sub-fertile women. Pre-implantation loss is impossible to calculate directly from available data although plausible limits can be estimated. Based on this new analysis and a model for evaluating reproductive success and failure it is proposed that a plausible range for normal human embryo and fetal mortality from fertilisation to birth is 40-60%.

  8. Manipulating early pig embryos.

    Science.gov (United States)

    Niemann, H; Reichelt, B

    1993-01-01

    On the basis of established surgical procedures for embryo recovery and transfer, the early pig embryo can be subjected to various manipulations aimed at a long-term preservation of genetic material, the generation of identical multiplets, the early determination of sex or the alteration of the genetic make-up. Most of these procedures are still at an experimental stage and despite recent considerable progress are far from practical application. Normal piglets have been obtained after cryopreservation of pig blastocysts hatched in vitro, whereas all attempts to freeze embryos with intact zona pellucida have been unsuccessful. Pig embryos at the morula and blastocyst stage can be bisected microsurgically and the resulting demi-embryos possess a high developmental potential in vitro, whereas their development in vivo is impaired. Pregnancy rates are similar (80%) but litter size is reduced compared with intact embryos and twinning rate is approximately 2%. Pig blastomeres isolated from embryos up to the 16-cell stage can be grown in culture and result in normal blastocysts. Normal piglets have been born upon transfer of blastocysts derived from isolated eight-cell blastomeres, clearly underlining the totipotency of this developmental stage. Upon nuclear transfer the developmental capacity of reconstituted pig embryos is low and culture. Sex determination can be achieved either by separation of X and Y chromosome bearing spermatozoa by flow cytometry or by analysing the expression of the HY antigen in pig embryos from the eight-cell to morula stage. Microinjection of foreign DNA has been successfully used to alter growth and development of transgenic pigs, and to produce foreign proteins in the mammary gland or in the bloodstream, indicating that pigs can be used as donors for valuable human pharmaceutical proteins. Another promising area of gene transfer is the increase of disease resistance in transgenic lines of pigs. Approximately 30% of pig spermatozoa bind

  9. Trophectoderm DNA fingerprinting by quantitative real-time PCR successfully distinguishes sibling human embryos.

    Science.gov (United States)

    Scott, Richard T; Su, Jing; Tao, Xin; Forman, Eric J; Hong, Kathleen H; Taylor, Deanne; Treff, Nathan R

    2014-11-01

    To validate a novel and more practical system for trophectoderm DNA fingerprinting which reliably distinguishes sibling embryos from each other. In this prospective and blinded study two-cell and 5-cell samples from commercially available sibling cell lines and excess DNA from trophectoderm biopsies of sibling human blastocysts were evaluated for accurate assignment of relationship using qPCR-based allelic discrimination from 40 single nucleotide polymorphisms (SNPs) with low allele frequency variation and high heterozygosity. Cell samples with self relationships averaged 95.1 ± 5.9 % similarity. Sibling relationships averaged 57.2 ± 5.9 % similarity for all 40 SNPs, and 40.8 ± 8.2 % similarity for the 25 informative SNPs. Assignment of relationships was accomplished with 100 % accuracy for cell lines and embryos. These data demonstrate the first trophectoderm qPCR-based DNA fingerprinting technology capable of unequivocal discrimination of sibling human embryos. This methodology will empower research and development of new markers of, and interventions that influence embryonic reproductive potential.

  10. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    International Nuclear Information System (INIS)

    Miller, Lutfiya; Wells, Peter G.

    2011-01-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.

  11. Predictive value of plasma human chorionic gonadotropin measured 14 days after Day-2 single embryo transfer

    DEFF Research Database (Denmark)

    Løssl, Kristine; Oldenburg, Anna; Toftager, Mette

    2017-01-01

    Introduction: Prediction of pregnancy outcome after in vitro fertilization is important for patients and clinicians. Early plasma human chorionic gonadotropin (p-hCG) levels are the best known predictor of pregnancy outcome, but no studies have been restricted to single embryo transfer (SET) of Day......-2 embryos. The aim of the present study was to investigate the predictive value of p-hCG measured exactly 14 days after the most commonly used Day-2 SET on pregnancy, delivery, and perinatal outcome. Material and methods: A retrospective analysis of prospectively collected data on 466 women who had...... p-hCG measured exactly 14 days after Day-2 SET during a randomized trial including 1050 unselected women (aged 18–40 years) undergoing their first in vitro fertilization/ intracytoplasmic sperm injection treatment. Results: The p-hCG predicted clinical pregnancy [area under the curve (AUC) 0.953; 95...

  12. No-Disjunction and loss of anafasica Hamster-human hybrid embryos of two cells

    International Nuclear Information System (INIS)

    Ponsa, I.; Tusell, L.; Alvarez, R.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    To investigate the possible effect anafasica the ionizing radiations in masculine germinal cells a new test it has been developed combining two techniques, the fecundation interspecific gives ovocitos hamster without area pellucid with human sperms and the fluorescent in situ hybridization in cells in interface using probes gives DNA specific centrometricas. Analyzing the segregation gives the chromosomes marked in the embryos two cells, you can detect the reciprocal products easily an anomalous segregation. Give this way the recount the fluorescent signs in the nuclei siblings and in the micronucleus it provides an esteem the due aneuploidy to errors meiotic or premiotic, with this way the resulting aneuploidy the errors in the first division mitotic the embryos, as much no-disjunction as lost anafasica

  13. Research ethics in Canada: experience of a group operating a human embryo and fetal tissue bank.

    Science.gov (United States)

    Milos, N; Bamforth, S; Bagnall, K

    1999-04-01

    A Canadian research group is establishing a human embryo and fetal tissue bank. Its purpose is to provide researchers with frozen or fixed tissue specimens for use in protein and gene expression studies. Several legal and ethical issues have arisen, including questions about consent, use of these rare tissues, cost recovery, and profit-making. These issues are discussed here in light of the present lack of legislation in Canada. We make recommendations in these areas, and suggest that the bank's operations could legally fall under the jurisdiction of the Human Tissue Gift Act.

  14. Culture media for human pre-implantation embryos in assisted reproductive technology cycles.

    Science.gov (United States)

    Youssef, Mohamed M A; Mantikou, Eleni; van Wely, Madelon; Van der Veen, Fulco; Al-Inany, Hesham G; Repping, Sjoerd; Mastenbroek, Sebastiaan

    2015-11-20

    Many media are commercially available for culturing pre-implantation human embryos in assisted reproductive technology (ART) cycles. It is unknown which culture medium leads to the best success rates after ART. To evaluate the safety and effectiveness of different human pre-implantation embryo culture media in used for in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) cycles. We searched the Cochrane Menstrual Disorders and Subfertility Group's Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the National Research Register, the Medical Research Council's Clinical Trials Register and the NHS Center for Reviews and Dissemination databases from January 1985 to March 2015. We also examined the reference lists of all known primary studies, review articles, citation lists of relevant publications and abstracts of major scientific meetings. We included all randomised controlled trials which randomised women, oocytes or embryos and compared any two commercially available culture media for human pre-implantation embryos in an IVF or ICSI programme. Two review authors independently selected the studies, assessed their risk of bias and extracted data. We sought additional information from the authors if necessary. We assessed the quality of the evidence using Grades of Recommendation, Assessment, Development and Evaluation (GRADE) methods. The primary review outcome was live birth or ongoing pregnancy. We included 32 studies in this review. Seventeen studies randomised women (total 3666), three randomised cycles (total 1018) and twelve randomised oocytes (over 15,230). It was not possible to pool any of the data because each study compared different culture media.Only seven studies reported live birth or ongoing pregnancy. Four of these studies found no evidence of a difference between the media compared, for either day three or day five embryo transfer. The data from the fifth study did not appear reliable

  15. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  16. Early embryo mortality in natural human reproduction: What the data say [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gavin E. Jarvis

    2017-06-01

    Full Text Available How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i a hypothesis published by Roberts & Lowe in The Lancet  is widely cited but has no practical quantitative value; (ii life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii studies that measure human chorionic gonadotrophin (hCG reveal losses in the second week of development and beyond, but not before; and (iv the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig’s data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data.

  17. Characterization of membrane lipid fluidity in human embryo cells malignantly transfer med post 238Pu α irradiation

    International Nuclear Information System (INIS)

    Qi Zirong; Sun Ling; Liu Guolian; Shen Zhiyuan

    1992-01-01

    The membrane lipid fluidity of malignantly transformed human embryo cells following 238 Pu α particlce irradiation in vitro has been studied. The results indicate that the ontogenesis depends on irradiation dose (Gy) and the membrane lipid fluidity in malignantly transformed cells is higher than that in normal embryo cells. With the microviscosity (η) of cells plotted against the cell counts, the correlation coefficient (γ) is calculated to be between 0.9936 and 0.9999. Since the malignant transformation of irradiated embryo cells is manifested early on cell membrane lipid, the fluidity of membrane lipid can be used as an oncologic marker

  18. Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection.

    Science.gov (United States)

    Yamada, Shigehito; Uwabe, Chigako; Nakatsu-Komatsu, Tomoko; Minekura, Yutaka; Iwakura, Masaji; Motoki, Tamaki; Nishimiya, Kazuhiko; Iiyama, Masaaki; Kakusho, Koh; Minoh, Michihiko; Mizuta, Shinobu; Matsuda, Tetsuya; Matsuda, Yoshimasa; Haishi, Tomoyuki; Kose, Katsumi; Fujii, Shingo; Shiota, Kohei

    2006-02-01

    Morphogenesis in the developing embryo takes place in three dimensions, and in addition, the dimension of time is another important factor in development. Therefore, the presentation of sequential morphological changes occurring in the embryo (4D visualization) is essential for understanding the complex morphogenetic events and the underlying mechanisms. Until recently, 3D visualization of embryonic structures was possible only by reconstruction from serial histological sections, which was tedious and time-consuming. During the past two decades, 3D imaging techniques have made significant advances thanks to the progress in imaging and computer technologies, computer graphics, and other related techniques. Such novel tools have enabled precise visualization of the 3D topology of embryonic structures and to demonstrate spatiotemporal 4D sequences of organogenesis. Here, we describe a project in which staged human embryos are imaged by the magnetic resonance (MR) microscope, and 3D images of embryos and their organs at each developmental stage were reconstructed based on the MR data, with the aid of computer graphics techniques. On the basis of the 3D models of staged human embryos, we constructed a data set of 3D images of human embryos and made movies to illustrate the sequential process of human morphogenesis. Furthermore, a computer-based self-learning program of human embryology is being developed for educational purposes, using the photographs, histological sections, MR images, and 3D models of staged human embryos. Copyright 2005 Wiley-Liss, Inc.

  19. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    Science.gov (United States)

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (pcatalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (pcatalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A Functional Assay for Putative Mouse and Human Definitive Endoderm using Chick Whole-Embryo Cultures

    DEFF Research Database (Denmark)

    Johannesson, Martina; Semb, Tor Henrik; Serup, Palle

    2012-01-01

    . Thus, the purpose of this study is to describe a method whereby the in vivo functionality of DE derived from ESCs can be assessed. Methods: By directed differentiation, putative DE was derived from human and mouse ESCs. This putative DE was subsequently transplanted into the endoderm of chick embryos...... to determine any occurrence of integration. Putative DE was analyzed by gene and protein expression prior to transplantation and 48 h post transplantation. Results: Putative DE, derived from mouse and human ESCs, was successfully integrated within the chick endoderm. Endoderm-specific genes were expressed...... result show that putative DE integrates with the chick endoderm and participate in the development of the chicken gut, indicating the generation of functional DE from ESCs. This functional assay can be used to assess the generation of functional DE derived from both human and mouse ESCs and provides...

  1. Are human embryos Kantian persons?: Kantian considerations in favor of embryonic stem cell research.

    Science.gov (United States)

    Manninen, Bertha Alvarez

    2008-01-31

    One argument used by detractors of human embryonic stem cell research (hESCR) invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves. This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception. In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event) as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical operation. Finally, I will end the

  2. Are human embryos Kantian persons?: Kantian considerations in favor of embryonic stem cell research

    Directory of Open Access Journals (Sweden)

    Manninen Bertha

    2008-01-01

    Full Text Available Abstract One argument used by detractors of human embryonic stem cell research (hESCR invokes Kant's formula of humanity, which proscribes treating persons solely as a means to an end, rather than as ends in themselves. According to Fuat S. Oduncu, for example, adhering to this imperative entails that human embryos should not be disaggregated to obtain pluripotent stem cells for hESCR. Given that human embryos are Kantian persons from the time of their conception, killing them to obtain their cells for research fails to treat them as ends in themselves. This argument assumes two points that are rather contentious given a Kantian framework. First, the argument assumes that when Kant maintains that humanity must be treated as an end in itself, he means to argue that all members of the species Homo sapiens must be treated as ends in themselves; that is, that Kant regards personhood as co-extensive with belonging to the species Homo sapiens. Second, the argument assumes that the event of conception is causally responsible for the genesis of a Kantian person and that, therefore, an embryo is a Kantian person from the time of its conception. In this paper, I will present challenges against these two assumptions by engaging in an exegetical study of some of Kant's works. First, I will illustrate that Kant did not use the term "humanity" to denote a biological species, but rather the capacity to set ends according to reason. Second, I will illustrate that it is difficult given a Kantian framework to denote conception (indeed any biological event as causally responsible for the creation of a person. Kant ascribed to a dualistic view of human agency, and personhood, according to him, was derived from the supersensible capacity for reason. To argue that a Kantian person is generated due to the event of conception ignores Kant's insistence in various aspects of his work that it is not possible to understand the generation of a person qua a physical

  3. No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available In human IVF procedures objective and reliable biomarkers of oocyte and embryo quality are needed in order to increase the use of single embryo transfer (SET and thus prevent multiple pregnancies. During folliculogenesis there is an intense bi-directional communication between oocyte and follicular cells. For this reason gene expression profile of follicular cells could be an important indicator and biomarker of oocyte and embryo quality. The objective of this study was to identify gene expression signature(s in human granulosa (GC and cumulus (CC cells predictive of successful embryo implantation and oocyte fertilization. Forty-one patients were included in the study and individual GC and CC samples were collected; oocytes were cultivated separately, allowing a correlation with IVF outcome and elective SET was performed. Gene expression analysis was performed using microarrays, followed by a quantitative real-time PCR validation. After statistical analysis of microarray data, there were no significantly differentially expressed genes (FDR<0,05 between non-fertilized and fertilized oocytes and non-implanted and implanted embryos in either of the cell type. Furthermore, the results of quantitative real-time PCR were in consent with microarray data as there were no significant differences in gene expression of genes selected for validation. In conclusion, we did not find biomarkers for prediction of oocyte fertilization and embryo implantation in IVF procedures in the present study.

  4. Use of "excess" human embryos for stem cell research: protecting women's rights and health.

    Science.gov (United States)

    Cohen, C B

    2000-01-01

    Proposed National Institutes of Health guidelines for stem cell research are too narrowly drawn and do not adequately protect the freedom of choice and health of women who donate embryos. They need to be expanded to cover not only the point of embryo donation, but also that of embryo creation. Guidelines are provided to ensure that donors undergoing hyperstimulation and egg retrieval gave voluntary informed consent to the production of embryos that might later prove in excess. A standard for determining when embryos have been overproduced is presented to address the possibility that additional embryos will be created for stem cell research in violation of the guidelines and at risk to women's health.

  5. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Science.gov (United States)

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  6. Zona pellucida damage to human embryos after cryopreservation and the consequences for their blastomere survival and in-vitro viability.

    Science.gov (United States)

    Van Den Abbeel, E; Van Steirteghem, A

    2000-02-01

    The study objective was to quantify zona pellucida (ZP) damage in cryopreserved human embryos. The influence of two different freezing containers was investigated, and the influence of freezing damage on the survival and viability of the embryos evaluated. ZP damage did not differ according to whether embryos originated from in-vitro fertilization (IVF) cycles or from IVF cycles in association with intracytoplasmic sperm injection (ICSI). The freezing container, however, significantly influenced the occurrence of ZP damage after cryopreservation. More damage was observed when the embryos were frozen-thawed using plastic cryovials than using plastic mini-straws (16.6% versus 2.3%; P plastic mini-straws. The further cleavage of frozen-thawed embryos suitable for transfer was not different whether there was ZP damage or not; however, it was higher when there was 100% blastomere survival as compared with when some blastomeres were damaged (79.0% versus 43.7%; P plastic mini-straws. In conclusion, the aim of a cryopreservation programme should be to have as many fully intact embryos as possible after thawing. Increased ZP damage might indicate a suboptimal cryopreservation procedure.

  7. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    Tiancheng Liu

    2015-01-01

    Full Text Available Evolutionary developmental biology (EVO-DEVO tries to decode evolutionary constraints on the stages of embryonic development. Two models—the “funnel-like” model and the “hourglass” model—have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA. Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies.

  8. Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF.

    Science.gov (United States)

    Zhang, John; Zhuang, Guanglun; Zeng, Yong; Grifo, Jamie; Acosta, Carlo; Shu, Yimin; Liu, Hui

    2016-10-01

    Nuclear transfer of an oocyte into the cytoplasm of another enucleated oocyte has shown that embryogenesis and implantation are influenced by cytoplasmic factors. We report a case of a 30-year-old nulligravida woman who had two failed IVF cycles characterized by all her embryos arresting at the two-cell stage and ultimately had pronuclear transfer using donor oocytes. After her third IVF cycle, eight out of 12 patient oocytes and 12 out of 15 donor oocytes were fertilized. The patient's pronuclei were transferred subzonally into an enucleated donor cytoplasm resulting in seven reconstructed zygotes. Five viable reconstructed embryos were transferred into the patient's uterus resulting in a triplet pregnancy with fetal heartbeats, normal karyotypes and nuclear genetic fingerprinting matching the mother's genetic fingerprinting. Fetal mitochondrial DNA profiles were identical to those from donor cytoplasm with no detection of patient's mitochondrial DNA. This report suggests that a potentially viable pregnancy with normal karyotype can be achieved through pronuclear transfer. Ongoing work to establish the efficacy and safety of pronuclear transfer will result in its use as an aid for human reproduction. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    Science.gov (United States)

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (pcost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    Science.gov (United States)

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  11. Early ontogeny of the central benzodiazepine receptor in human embryos and fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Hebebrand, J.; Hofmann, D.; Reichelt, R.; Schnarr, S.; Knapp, M.; Propping, P.; Foedisch, H.J.

    1988-01-01

    The early ontogeny of the central benzodiazepine receptor (BZR) was investigated in human embryos and fetuses between 7 and 26 weeks of gestation. Brain tissue was gained from terminated pregnancies or spontaneous abortions. Binding studies, which were performed with /sup 3/H-flunitrazepam (FNZ), revealed that specific benzodiazepine binding is already detectable at an embryonal age of 7 weeks post conception. Binding at this early stage can be displaced potently by clonazepam and the inverse agonist ..beta..-CCE. Additionally, /sup 3/H-FNZ binding is enhanced by GABA. Thus, benzodiazepine binding is of the central type. Receptor density increases steeply in whole brain between weeks 8 and 11 of gestation. In frontal cortex receptor density increases gradually between weeks 12 and 26 of gestation. No specific fetal disease entity (including trisomy 21) was consistently associated with exceptionally high or low B/sub max/-values.

  12. DNA repair ability of cultured cells derived from mouse embryos in comparison with human cells

    International Nuclear Information System (INIS)

    Yaki, T.

    1982-01-01

    DNA repair in mouse cells derived from embryos of 3 inbred strains were investigated in comparison with that in human cells. The levels of unscheduled DNA synthesis after UV irradiation appeared to change at different passages, but capacities of host-cell reactivation of UV-irradiated herpes simplex virus were always reduced to the same levels as those in xeroderma pigmentosum cells. This implied that mouse cells are reduced in excision-repair capacities and that the apparently high levels of unscheduled DNA synthesis at certain passages are not quantitatively related to high levels of cell survival. Essentially no differences in DNA repair were noted among 3 strains - BALB/c, C3H/He and C57BL/10. (orig.)

  13. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    International Nuclear Information System (INIS)

    Miller-Pinsler, Lutfiya; Wells, Peter G.

    2015-01-01

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat b /J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental

  14. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Miller-Pinsler, Lutfiya [Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Wells, Peter G., E-mail: pg.wells@utoronto.ca [Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario (Canada); Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada)

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • Et

  15. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    Science.gov (United States)

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  16. Capturing Human Naïve Pluripotency in the Embryo and in the Dish.

    Science.gov (United States)

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T

    2017-08-15

    Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.

  17. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF

    NARCIS (Netherlands)

    Nagy, R. A.; van Montfoort, A. P. A.; Dikkers, A.; van Echten-Arends, J.; Homminga, I.; Land, J. A.; Hoek, A.; Tietge, U. J. F.

    STUDY QUESTION: Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? SUMMARY ANSWER: BAconcentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid

  18. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial

    NARCIS (Netherlands)

    Kieslinger, Dorit C.; Hao, Zhenxia; Vergouw, Carlijn G.; Kostelijk, Elisabeth H.; Lambalk, Cornelis B.; le Gac, Severine

    Objective: To compare the development of human embryos in microfluidic devices with culture in standard microdrop dishes, both under static conditions. Design: Prospective randomized controlled trial. Setting: In vitro fertilization laboratory. Patient(s): One hundred eighteen donated frozen-thawed

  19. Do perfluoroalkyl compounds impair human semen quality?

    DEFF Research Database (Denmark)

    Joensen, Ulla Nordström; Bossi, Rossana; Leffers, Henrik

    2009-01-01

    BACKGROUND: Perfluoroalkyl acids (PFAAs) are found globally in wildlife and humans and are suspected to act as endocrine disruptors. There are no previous reports of PFAA levels in adult men from Denmark or of a possible association between semen quality and PFAA exposure. OBJECTIVES: We investig......BACKGROUND: Perfluoroalkyl acids (PFAAs) are found globally in wildlife and humans and are suspected to act as endocrine disruptors. There are no previous reports of PFAA levels in adult men from Denmark or of a possible association between semen quality and PFAA exposure. OBJECTIVES: We...... investigated possible associations between PFAAs and testicular function. We hypothesized that higher PFAA levels would be associated with lower semen quality and lower testosterone levels. METHODS: We analyzed serum samples for levels of 10 different PFAAs and reproductive hormones and assessed semen quality......-gonadal hormones among men with high PFOS-PFOA levels. CONCLUSION: High PFAA levels were associated with fewer normal sperm. Thus, high levels of PFAAs may contribute to the otherwise unexplained low semen quality often seen in young men. However, our findings need to be corroborated in larger studies....

  20. Transfer of human frozen-thawed embryos with further cleavage during culture increases pregnancy rates

    Directory of Open Access Journals (Sweden)

    Bharat V Joshi

    2010-01-01

    Full Text Available Aim: To compare the pregnancy rate following transfer of frozen-thawed embryos with or without overnight culture after thawing. Settings and Design: This is a retrospective analysis of frozen-thawed embryo transfer (FET cycles performed between January 2006 and December 2008. Materials and Methods: Out of 518 thaw cycles, 504 resulted in embryo transfers (ETs. Of the total FET cycles, 415 were performed after an overnight culture of embryos (group A; and in 89 cycles, ET was performed within 2 hours of embryo thawing (group B. Statistical Analysis: The data were statistically analyzed using chi-square test. Results: We observed that with FET, women ≤30 years of age had a significantly higher (P=0.003 pregnancy rate (PR=28.9% as compared to women >30 years of age (17.5%. A significantly higher (P<0.001FNx08 pregnancy rate was also observed in women receiving 3 frozen-thawed embryos (29% as compared to those who received less than 3 embryos (10.7%. The difference in PR between group A (PR=24.3% and group B (PR=20.3% was not statistically significant. However, within group A, ET with cleaved embryos showed significantly ( P≤0.01 higher pregnancy rate compared to the uncleaved embryos, depending on the number of cleaved embryos transferred. Conclusion: No significant difference was noticed between FETs made with transfer of embryos with overnight culture and those without culture. However, within the cultured group, transfer of embryos cleaved during overnight culture gave significantly higher PR than transfers without any cleavage.

  1. Recycling Energy to Restore Impaired Ankle Function during Human Walking

    NARCIS (Netherlands)

    Collins, S.H.; Kuo, A.D.

    2010-01-01

    Background: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is

  2. Impaired mitochondrial function in chronically ischemic human heart

    DEFF Research Database (Denmark)

    Stride, Nis Ottesen; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    , and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared.......05), and the levels of antioxidant protein expression was lower. Diminished mitochondrial respiration capacity and excessive ROS production demonstrate an impaired mitochondrial function in ischemic human heart muscle. No chronic ischemic preconditioning effect was found....

  3. Topography of the inferior alveolar nerve in human embryos and fetuses. An histomorphological study.

    Directory of Open Access Journals (Sweden)

    Sergey Lvovich Kabak

    2017-11-01

    Full Text Available The aim of this study is to establish the position of the inferior alveolar nerve in relation to the Meckel’s cartilage, the anlage of the mandibular body and primordia of the teeth, and also to trace the change in nerve trunk structure in the human prenatal ontogenesis. Serial sections (20µm from thirty-two 6-12 weeks-old entire human embryos and serial sections (10µm of six mandibles of 13-20 weeks-old human fetuses without developmental abnormalities were studied. Histological sections were impregnated with silver nitrate according to Bilshovsky-Buke and stained with hematoxylin and eosin. During embryonic development, the number of branches of the inferior alveolar nerve increases and its fascicular structure changes. In conclusion, the architecture of intraosseous canals in the body of the mandible, as well as the location of the foramina, is predetermined by the course and pattern of the vessel/nerve branching in the mandibular arch, even before the formation of bony trabeculae. Particularly, the formation of the incisive canal of the mandible can be explained by the presence of the incisive nerve as the extension of the inferior alveolar nerve. It has also been established that Meckel’s cartilage does not participate in mandibular canal morphogenesis.

  4. Is the ultimobranchial body a reality or myth: a study using serial sections of human embryos.

    Science.gov (United States)

    Honkura, Yohei; Yamamoto, Masahito; Yoshimoto, Toshihito; Rodriguez-Vazquez, Jose Francisco; Murakami, Gen; Katori, Yukio; Abe, Shin-Ichi

    2016-01-01

    Reported morphologies of the ultimobranchial body had varied between researchers: a cluster of mitotic cells, a duct-like structure and a rosette-like cell mass. To clarify the true morphology, we studied tilted horizontal sections of 20 human embryos (crown-rump length 5-18 mm; 4-6 weeks). The sections displayed a ladder-like arrangement of the second to fourth endodermal pouches and, in 5 early embryos we found the fifth pouch attached to the fifth ectodermal groove near the fourth pharyngeal arch artery. The bilateral fifth pharyngeal pouches protruded anterolaterally to form a U-shaped lumen surrounding the arytenoid swelling. The third to fifth pouches were each characterized by a pedal-shaped inferior end. We identified several types of cell clusters as candidates for the ultimobranchial body, but morphologically most of them were, to various degrees, likely to correspond to the blind end of the lower pouch when cut tangentially. Because of the topographical relation to the common carotid artery, a cyst-like structure with a cell cluster seemed to be the most likely candidate of the ultimobranchial body (a common anlage of the thymus and parathyroid). However, we were not able to deny a possibility that a certain plane cutting the pouch end incidentally provided such a cyst-like structure in sections. At any stage, the ultimobranchial body might not appear as a definite structure that is discriminated from others with routine staining. A concept of the ultimobranchial body might be biased by comparative anatomy that shows the ultimobranchial gland in adult birds and reptiles.

  5. Noninvasive Metabolomic Profiling of Human Embryo Culture Media Using a Simple Spectroscopy Adjunct to Morphology for Embryo Assessment in in Vitro Fertilization (IVF

    Directory of Open Access Journals (Sweden)

    Jiming Hu

    2013-03-01

    Full Text Available Embryo quality is crucial to the outcome of in vitro fertilization (IVF; however, the ability to precisely distinguish the embryos with higher reproductive potential from others is poor. Morphologic evaluation used to play an important role in assessing embryo quality, but it is somewhat subjective. The culture medium is the immediate environment of the embryos in vitro, and a change of the substances in the culture medium is possibly related to the embryo quality. Thus, the present study aims to determine whether metabolomic profiling of the culture medium using Raman spectroscopy adjunct to morphology correlates with the reproductive potential of embryos in IVF and, thus, to look for a new method of assessing embryo quality. Fifty seven spent media samples were detected by Raman spectroscopy. Combined with embryo morphology scores, we found that embryos in culture media with less than 0.012 of sodium pyruvate and more than −0.00085 phenylalanine have a high reproductive potential, with up to 85.7% accuracy compared with clinical pregnancy. So, sodium pyruvate and phenylalanine in culture medium play an important role in the development of the embryo. Raman spectroscopy is an important tool that provides a new and accurate assessment of higher quality embryos.

  6. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  7. Studies Using an in Vitro Model Show Evidence of Involvement of Epithelial-Mesenchymal Transition of Human Endometrial Epithelial Cells in Human Embryo Implantation*

    Science.gov (United States)

    Uchida, Hiroshi; Maruyama, Tetsuo; Nishikawa-Uchida, Sayaka; Oda, Hideyuki; Miyazaki, Kaoru; Yamasaki, Akiko; Yoshimura, Yasunori

    2012-01-01

    Human embryo implantation is a critical multistep process consisting of embryo apposition/adhesion, followed by penetration and invasion. Through embryo penetration, the endometrial epithelial cell barrier is disrupted and remodeled by an unknown mechanism. We have previously developed an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial adenocarcinoma cell line Ishikawa. Using this model we have shown that stimulation with ovarian steroid hormones (17β-estradiol and progesterone, E2P4) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, enhances the attachment and adhesion of JAR spheroids to Ishikawa. In the present study we showed that the attachment and adhesion of JAR spheroids and treatment with E2P4 or SAHA individually induce the epithelial-mesenchymal transition (EMT) in Ishikawa cells. This was evident by up-regulation of N-cadherin and vimentin, a mesenchymal cell marker, and concomitant down-regulation of E-cadherin in Ishikawa cells. Stimulation with E2P4 or SAHA accelerated Ishikawa cell motility, increased JAR spheroid outgrowth, and enhanced the unique redistribution of N-cadherin, which was most prominent in proximity to the adhered spheroids. Moreover, an N-cadherin functional blocking antibody attenuated all events but not JAR spheroid adhesion. These results collectively provide evidence suggesting that E2P4- and implanting embryo-induced EMT of endometrial epithelial cells may play a pivotal role in the subsequent processes of human embryo implantation with functional control of N-cadherin. PMID:22174415

  8. The influence of zygote pronuclear morphology on in vitro human embryo development

    Directory of Open Access Journals (Sweden)

    Lidija Križančić-Bombek

    2007-09-01

    Full Text Available Background: The selection of embryos with largest implantation potential is an important part in assisted reproduction. Besides the embryo or blastocyst morphology, selection criteria such as position and orientation of pronuclei (PN in relation to polar body positioning and the number, size and distribution of nucleolar precursor bodies (NPB have been proposed. In our study, a correlation between PN and NBP morphology with the development of early embryos (day 2 of cultivation and blastocysts (day 5 was investigated.Methods: 653 zygotes from 113 IVF (in vitro fertilization and ICSI (intracytoplasmic sperm injection patients, younger than 40 years, were assessed 18–20 hours post-insemination. Optimal zygotes (Z1 had thouching centrally located PN with equall numbers of alligned NPB. Other zygote types differred from Z1 in having scattered NPB in both PN (Z2 or alligned NPB in one PN (Z3 or in PN beeing distant from one another (Z4. For each zygote type a percentage of normal early embryos and blastocysts was calculated.Results: Among 653 assessed zygotes 21.8 % were Z1; 29.1 % Z2, 34.6 % Z3 and 14.5 % Z4. The percentage of normal early embryos decreased from Z1 to Z4 zygote type (70.4 % vs. 55.3 % vs. 59.7 % vs.45.3 %; p < 0.05 as well as the percentage of developed blastocysts (63.4 % vs. 55.3 % vs. 58.8 % vs. 43.2 %. However, the percentages of optimal blastocysts in the four groups did not differ (11.3 % vs. 11.1 % vs. 8.4 % vs. 6.3 %.Conclusions: Best grade zygotes result in batter early embryo and blastocyst development suggesting that zygote morphology can be used in combination with embryo and/or blastocyst evaluation as a method for embryo selection prior to embryo transfer.

  9. A human fecal contamination index for ranking impaired ...

    Science.gov (United States)

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk management. The transition from a research subject to a management tool requires the integration of standardized water sampling, laboratory, and data analysis procedures. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and Bayesian data algorithm to establish a human fecal contamination index that can be used to rank impaired recreational water sites polluted with human waste. Stability and bias of index predictions were investigated under various parameters including siteswith different pollution levels, sampling period time range (1-15 weeks), and number of qPCR replicates per sample (2-14 replicates). Sensitivity analyses were conducted with simulated data sets (100 iterations) seeded with HF183/BacR287 qPCR laboratory measurements from water samples collected from three Southern California sites (588 qPCR measurements). Findings suggest that site ranking is feasible and that all parameters tested influence stability and bias in human fecal contamination indexscoring. Trends identified by sensitivity analyses will provide managers with the information needed to design and conduct field studies to rank impaired recreational water sites based

  10. Insulin resistance in human subjects having impaired glucose regulation

    International Nuclear Information System (INIS)

    Khan, S.H.; Khan, F.A.; Ijaz, A.

    2007-01-01

    To determine insulin resistance in human subjects having impaired glucose regulation (IGR) by Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). A total of 100 subjects with impaired glucose regulation were selected for evaluation of metabolic syndrome as per the criteria of National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III), along with 47 healthy age and gender-matched controls. Physical examination to determine blood pressure and waist circumference was carried out and so was sampling for plasma glucose, serum triglycerides, HDL-cholesterol and insulin. Insulin resistance was calculated by the HOMA-IR. Finally, subjects with and without metabolic syndrome were compared with controls (n=47), using one-way ANOVA for studying insulin resistance between groups, with Tukey's post-hoc comparison. The frequency of finding metabolic syndrome in cases of IGR remained 47%. The insulin resistance demonstrated stepwise worsening from control population (mean=1.54, 95 % CI: 1.77 - 2.37) to subjects suffering from only IGR (mean=2.07, 95 % CI: 1.77- 2.37) to metabolic syndrome (mean=2.67, 95 %, CI: 2.34 - 3.00) (p < 0.001). Patients with impaired glucose regulation may have significant insulin resistance. It is, thus, recommended that a vigorous search be made to measure insulin resistance in all cases diagnosed to have impaired glucose regulation. (author)

  11. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and 'OMICS': is looking good still important?

    Science.gov (United States)

    Gardner, David K; Balaban, Basak

    2016-10-01

    With the worldwide move towards single embryo transfer there has been a renewed focus on the requirement for reliable means of assessing embryo viability. In an era of 'OMICS' technologies, and algorithms created through the use of time-lapse microscopy, the actual appearance of the human embryo as it progresses through each successive developmental stage to the blastocyst appears to have been somewhat neglected in recent years. Here we review the key features of the human preimplantation embryo and consider the relationship between morphological characteristics and developmental potential. Further, the impact of the culture environment on morphological traits, how key morphological qualities reflect aspects of embryo physiology, and how computer-assisted analysis of embryo morphology may facilitate a more quantitative approach to selection are discussed. The clinical introduction of time-lapse systems has reopened our eyes and given us a new vantage point from which to view the beauty of the initial stages of human life. Rather than a future in which the morphology of the embryo is deemed irrelevant, we propose that key features, such as multinucleation, cell size and blastocyst differentiation should be included in future iterations of selection/deselection algorithms. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.

  12. [An exploratory study regarding the hypothetical human embryo donation in Chile].

    Science.gov (United States)

    Alvarez Díaz, J A

    2007-12-01

    To explore opinions of patients who undergone to complex ART towards gamete and embryo donation, as well as the reasons to do it or not. The seat was the Hospital Clínico de la Universidad de Chile. There were interviewed ten participants (seven women, three men), who had undergone at least to one ART, without comprising of donation programs. It was a cross-sectional study of descriptive bioethics, done with ethnographic qualitative methodology with a semistructured interview applying speech analysis to the resulting text. Regarding embryo donation, six participants would accept to donate them, five to fertility therapy and one to research. Regarding the cryopreservation, three participants would always accept it, and three with some restrictions, just one on them would rather to discard instead of donating a cryopreserved embryo. It could be suggested: gamete donation is more commented and generally accepted; embryo donation is a more conflicting and less discussed subject, as much to donate as to accept; cryopreservation is a complex subject, commented but also conflicting, whose acceptance or not, as well as the destiny of the probably cryopreserved embryos, depends on the believes that participants have about the origin of the life, personal ethics, and the religion. It could be possible to say that a hypothesis constructed in this study (to be verified in future quantitative researches) is that embryo donation could take place, for therapy of fertility, and exceptionally to research.

  13. Expression of proposed implantation marker genes CDX2 and HOXB7 in the blastocyst does not distinguish viable from non-viable human embryos

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    2012-01-01

    expression differs between viable and non-viable embryos in both human and non-humans, suggesting transcriptome analysis of trophectoderm (TE) as a novel method of improving embryo selection. Potential candidate marker genes have been identified with array studies on animal blastocysts. The aim of this study...... was to investigate the expression of selected genes in human blastocysts in relation to the outcome of implantation. Materials and methods: Embryos from 10 oatients undergoing in vitro fertilization treatment were included in the project. A single blastocyst was chosen for biopsy on the morning of day 5 after oocyte...... of 15 key genes associated with developmental competence in animals were evaluated in high quality human embryos with monogenic or chromosomal disorders from a pre-implantation genetic disorder program. Triplicate cDNA amplifications for quantitative (q) RT-PCR were performed using pre-designed gene...

  14. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    Science.gov (United States)

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  15. Comment on a proposed draft protocol for the European Convention on Biomedicine relating to research on the human embryo and fetus.

    Science.gov (United States)

    Lebech, M M

    1998-01-01

    Judge Christian Byk renders service to the Steering Committee on Bioethics of the Council of Europe (CDBI) by proposing a draft of the protocol destined to fill in a gap in international law on the status of the human embryo. This proposal, printed in a previous issue of the Journal of Medical Ethics deserves nevertheless to be questioned on important points. Is Christian Byk proposing to legalise research on human embryos not only in vitro but also in utero? PMID:9800592

  16. Comment on a proposed draft protocol for the European Convention on Biomedicine relating to research on the human embryo and fetus.

    OpenAIRE

    Lebech, M M

    1998-01-01

    Judge Christian Byk renders service to the Steering Committee on Bioethics of the Council of Europe (CDBI) by proposing a draft of the protocol destined to fill in a gap in international law on the status of the human embryo. This proposal, printed in a previous issue of the Journal of Medical Ethics deserves nevertheless to be questioned on important points. Is Christian Byk proposing to legalise research on human embryos not only in vitro but also in utero?

  17. Comment on a proposed draft protocol for the European Convention on Biomedicine relating to research on the human embryo and foetus

    OpenAIRE

    Lebech, Mette

    1998-01-01

    Judge Christian Byk renders service to the Steering Committee on Bioethics of the Council ofEurope (CDBI) by proposing a draft of the protocol destined to fill in a gap in international law on the status of the human embryo. This proposal, printed in a previous issue of the Journal of Medical Ethics' deserves nevertheless to be questioned on important points. Is Christian Byk proposing to legalise research on human embryos not only in vitro but also in utero?

  18. Comment on a proposed draft protocol for the European Convention on Biomedicine relating to research on the human embryo and fetus

    OpenAIRE

    Lebech, Mette

    1998-01-01

    Judge Christian Byk renders service to the Steering Committee on Bioethics of the Council of Europe (CDBI) by proposing a draft of the protocal destined to fill a gap in international law on the status of the human embryo. This proposal, printed in a previous issue of the Journal of Medical Ethics deserves nevertheless to be questioned on important points. Is Christian Byk proposing to legalise research on human embryos not only in vitro but also in utero?

  19. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF.

    Science.gov (United States)

    Nagy, R A; van Montfoort, A P A; Dikkers, A; van Echten-Arends, J; Homminga, I; Land, J A; Hoek, A; Tietge, U J F

    2015-05-01

    Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the

  20. Cryopreservation of human oocytes, zygotes, embryos and blastocysts: A comparison study between slow freezing and ultra rapid (vitrification methods

    Directory of Open Access Journals (Sweden)

    Tahani Al-Azawi

    2013-12-01

    Full Text Available Preservation of female genetics is currently done primarily by means of oocyte and embryo cryopreservation. The field has seen much progress during its four-decade history, progress driven predominantly by research in humans. It can also be done by preservation of ovarian tissue or entire ovary for transplantation, followed by oocyte harvesting or natural fertilization. Two basic cryopreservation techniques rule the field, slow-rate freezing, the first to be developed and vitrification which in recent years, has gained a foothold. The slow-rate freezing method previously reported had low survival and pregnancy rates, along with the high cost of cryopreservation. Although there are some recent data indicating better survival rates, cryopreservation by the slow freezing method has started to discontinue. Vitrification of human embryos, especially at early stages, became a more popular alternative to the slow rate freezing method due to reported comparable clinical and laboratory outcomes. In addition, vitrification is relatively simple, requires no expensive programmable freezing equipment, and uses a small amount of liquid nitrogen for freezing. Moreover, oocyte cryopreservation using vitrification has been proposed as a solution to maintain women’s fertility by serving and freezing their oocytes at the optimal time. The aim of this research is to compare slow freezing and vitrification in cryopreservation of oocytes, zygotes, embryos and blastocysts during the last twelve years. Therefore, due to a lot of controversies in this regard, we tried to achieve an exact idea about the subject and the best technique used.

  1. The Digestive Tract and Derived Primordia Differentiate by Following a Precise Timeline in Human Embryos Between Carnegie Stages 11 and 13.

    Science.gov (United States)

    Ueno, Saki; Yamada, Shigehito; Uwabe, Chigako; Männer, Jörg; Shiraki, Naoto; Takakuwa, Tetsuya

    2016-04-01

    The precise mechanisms through which the digestive tract develops during the somite stage remain undefined. In this study, we examined the morphology and precise timeline of differentiation of digestive tract-derived primordia in human somite-stage embryos. We selected 37 human embryos at Carnegie Stage (CS) 11-CS13 (28-33 days after fertilization) and three-dimensionally analyzed the morphology and positioning of the digestive tract and derived primordia in all samples, using images reconstructed from histological serial sections. The digestive tract was initially formed by a narrowing of the yolk sac, and then several derived primordia such as the pharynx, lung, stomach, liver, and dorsal pancreas primordia differentiated during CS12 (21-29 somites) and CS13 (≥ 30 somites). The differentiation of four pairs of pharyngeal pouches was complete in all CS13 embryos. The respiratory primordium was recognized in ≥ 26-somite embryos and it flattened and then branched at CS13. The trachea formed and then elongated in ≥ 35-somite embryos. The stomach adopted a spindle shape in all ≥ 34-somite embryos, and the liver bud was recognized in ≥ 27-somite embryos. The dorsal pancreas appeared as definitive buddings in all but three CS13 embryos, and around these buddings, the small intestine bent in ≥ 33-somite embryos. In ≥ 35-somite embryos, the small intestine rotated around the cranial-caudal axis and had begun to form a primitive intestinal loop, which led to umbilical herniation. These data indicate that the digestive tract and derived primordia differentiate by following a precise timeline and exhibit limited individual variations. © 2016 Wiley Periodicals, Inc.

  2. Distruption of retinoid and CYP systems and embryo development in marine organisms: a potential model for humans

    DEFF Research Database (Denmark)

    Tairova, Zhanna; Strand, Jakob; Jørgensen, Eva Cecilie Bonefeld

    Some environmental persistent organic pollutants (POPs) can be highly toxic and pose risk for both natural fauna populations and humans. POPs can disrupt an array of molecular and cellular mechanisms causing endocrine disruptions, cancer and teratogenic effects. Potentially, POPs can interfere...... with embryo development and reproduction. At present, there is only limited knowledge of the potential effects of dioxin-like compounds and polycyclic aromatic hydrocarbons in the Danish environment. The Ph.D. project is expected to link exposure to POPs such as dioxin-like compounds and PAHs to effects...... to a better integrated exposure assessment for aquatic organisms as well as for humans....

  3. Adipose tissue macrophages impair preadipocyte differentiation in humans.

    Directory of Open Access Journals (Sweden)

    Li Fen Liu

    Full Text Available The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation.Abdominal subcutaneous(SAT and visceral(VAT adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified.Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001. With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance.The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.

  4. Recycling energy to restore impaired ankle function during human walking.

    Directory of Open Access Journals (Sweden)

    Steven H Collins

    Full Text Available BACKGROUND: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is necessary for steady gait, in which mechanical energy is constant on average, external dissipation is negligible, and no net work is performed over a stride. However, dissipation and replacement by muscles might not be necessary if energy were instead captured and reused by an assistive device. METHODOLOGY/PRINCIPAL FINDINGS: We developed a microprocessor-controlled artificial foot that captures some of the energy that is normally dissipated by the leg and "recycles" it as positive ankle work. In tests on subjects walking with an artificially-impaired ankle, a conventional prosthesis reduced ankle push-off work and increased net metabolic energy expenditure by 23% compared to normal walking. Energy recycling restored ankle push-off to normal and reduced the net metabolic energy penalty to 14%. CONCLUSIONS/SIGNIFICANCE: These results suggest that reduced ankle push-off contributes to the increased metabolic energy expenditure accompanying ankle impairments, and demonstrate that energy recycling can be used to reduce such cost.

  5. Release of sICAM-1 in oocytes and in vitro fertilized human embryos.

    Directory of Open Access Journals (Sweden)

    Monica Borgatti

    Full Text Available During the last years, several studies have reported the significant relationship between the production of soluble HLA-G molecules (sHLA-G by 48-72 hours early embryos and an increased implantation rate in IVF protocols. As consequence, the detection of HLA-G modulation was suggested as a marker to identify the best embryos to be transferred. On the opposite, no suitable markers are available for the oocyte selection.The major finding of the present paper is that the release of ICAM-1 might be predictive of oocyte maturation. The results obtained are confirmed using three independent methodologies, such as ELISA, Bio-Plex assay and Western blotting. The sICAM-1 release is very high in immature oocytes, decrease in mature oocytes and become even lower in in vitro fertilized embryos. No significant differences were observed in the levels of sICAM-1 release between immature oocytes with different morphological characteristics. On the contrary, when the mature oocytes were subdivided accordingly to morphological criteria, the mean sICAM-I levels in grade 1 oocytes were significantly decreased when compared to grade 2 and 3 oocytes.The reduction of the number of fertilized oocytes and transferred embryos represents the main target of assisted reproductive medicine. We propose sICAM-1 as a biochemical marker for oocyte maturation and grading, with a possible interesting rebound in assisted reproduction techniques.

  6. Human oocyte oolemma characteristic is positively related to embryo developmental competence after ICSI procedure

    Directory of Open Access Journals (Sweden)

    Mohamed A. Danfour

    2010-10-01

    Conclusion: The current study provides evidence that preselection at a very early stage based on oolemma behavior may be helpful to identify a subgroup of preimplantation embryos with good prognostic to form blastocyst and consequently to implant and to give pregnancy.

  7. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  8. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  9. A 3D reconstruction of pancreas development in the human embryos during embryonic period (Carnegie stages 15-23).

    Science.gov (United States)

    Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D

    2010-01-01

    The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.

  10. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Directory of Open Access Journals (Sweden)

    Xiangyi Kong

    Full Text Available Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI treatment cycles, n = 799 were classified as follows: less than 5 cells (10C; n = 42. Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively. In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas 10C. In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  11. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  12. Observation and quantitative analyses of the skeletal and central nervous systems of human embryos and fetuses using microimaging techniques

    International Nuclear Information System (INIS)

    Shiota, Kohei; Yamada, Shigehito; Tsuchiya, Maiko; Nakajima, Takashi; Takakuwa, Tetsuya; Morimoto, Naoki; Ogihara, Naomichi; Katayama, Kazumichi; Kose, Katsumi

    2011-01-01

    High resolution images have been available to trace the organogenesis of the central nervous system (CNS) and crania of human embryo and fetus with microimaging techniques of CT, novel MR microscopy and episcopic fluorescence image capture (EFIC). The helical CT was conducted for Kyoto University's stock specimens of 31 fetuses at gestational stages 8-24 weeks to observe the skeletal development of neuro- and viscero-cranium in 2D and 3D view. Sixty seven landmarks were defined on the images at outer surface and lumen of the skull to analyze the morphological development. Increase of cranial length was found significant relative to width and height in fetus, confirming the faster development of neurocranium than viscero-region. Next, 1.5/2.34 T MR microscopic imaging was conducted for fixed specimens of >1000 embryos at 4-8 weeks after fertilization. For this, a newly developed contrast optimization by mapping the specimen with the relaxation time had been performed to acquire the highest resolution in the world of 80-120 micrometer, which enabled to image primordia of the inner embryonic structures like brain, spinal cord, choroid plexus, skeletons of skull and spinal column. The finding was thought helpful for analysis and diagnosis of their early development. EFIC of embryos was conducted firstly in the world, where spontaneous fluorescence of their cross section was captured by the fluorescent microscope with the resolution as high as <10 micrometer to reconstruct 2D/3D images. EFIC was found to give images of embryonic CNS, ventricular system, layering structures of brain and spinal cord without staining, and to give sequential changes of their volumes quantitated during the development. The reported microimaging techniques were concluded useful for analysis of normal and abnormal early development of CNS and skull in humans. (T.T.)

  13. Model of human recurrent respiratory papilloma on chicken embryo chorioallantoic membrane for tumor angiogenesis research.

    Science.gov (United States)

    Uloza, Virgilijus; Kuzminienė, Alina; Palubinskienė, Jolita; Balnytė, Ingrida; Ulozienė, Ingrida; Valančiūtė, Angelija

    2017-07-01

    We aimed to develop a chick embryo chorioallantoic membrane (CAM) model of recurrent respiratory papilloma (RPP) and to evaluate its morphological and morphometric characteristics, together with angiogenic features. Fresh RRP tissue samples obtained from 13 patients were implanted in 174 chick embryo CAMs. Morphological, morphometric, and angiogenic changes in the CAM and chorionic epithelium were evaluated up until 7 days after the implantation. Immunohistochemical analysis (34βE12, Ki-67, MMP-9, PCNA, and Sambucus nigra staining) was performed to detect cytokeratins and endothelial cells and to evaluate proliferative capacity of the RRP before and after implantation on the CAM. The implanted RRP tissue samples survived on CAM in 73% of cases while retaining their essential morphologic characteristics and proliferative capacity of the original tumor. Implants induced thickening of both the CAM (241-560%, p=0.001) and the chorionic epithelium (107-151%, p=0.001), while the number of blood vessels (37-85%, p=0.001) in the CAM increased. The results of the present study confirmed that chick embryo CAM is a relevant host for serving as a medium for RRP fresh tissue implantation. The CAM assay demonstrated the specific RRP tumor growth pattern after implantation and provided the first morphological and morphometric characterization of the RRP CAM model that opens new horizons in studying this disease.

  14. Expression of the vascular endothelial growth factor receptor neuropilin-1 at the human embryo-maternal interface.

    Science.gov (United States)

    Baston-Buest, Dunja M; Porn, Anne C; Schanz, Andrea; Kruessel, Jan-S; Janni, Wolfgang; Hess, Alexandra P

    2011-02-01

    Angiogenesis is required for successful implantation of the invading blastocyst. Vascular endothelial growth factor (VEGF) is an important key player in angiogenesis and vascular remodeling during the implantation process. Besides its well-characterized receptors VEGFR1 and VEGFR2, neuropilin-1 (NRP-1) has been shown to play an additional role in the signaling process of angiogenesis in human endometrium during the menstrual cycle, as a co-receptor of VEGF. These findings led to the hypothesis that NRP-1 might play a role in the vascular remodeling process during embryo implantation and the establishment of a pregnancy. NRP-1 mRNA transcript and protein expression were investigated in human choriocarcinoma cell lines (JEG-3, Jar and BeWo) aiming to evaluate the expression of NRP-1 in vitro, as well as in human decidua of all three trimesters of pregnancy, by western blot analysis (three samples of each trimester of pregnancy). The localization of NRP-1 in human decidua of all three trimesters of pregnancy was analyzed by immunohistochemistry (five samples of each trimester of pregnancy). NRP-1 transcript and protein were expressed in all cell lines examined. Corresponding to the analysis of human tissue by western blot and the localization by immunohistochemistry, NRP-1 protein higher expressed in samples of early pregnancy in comparison to the end of pregnancy. NRP-1 was expressed in the decidua, villi and invading cytotrophoblast of all samples investigated. This is the first study clearly showing the expression of NRP-1 in human decidua and trophoblast, suggesting an important role for the VEGF co-receptor NRP-1 besides the established receptor VEGFR2 at the embryo-maternal interface during embryonic implantation and placentation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Embryo-maternal communication

    DEFF Research Database (Denmark)

    Østrup, Esben; Hyttel, Poul; Østrup, Olga

    2011-01-01

    Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms dire...... directing the placentation. An increasing knowledge of the embryo-maternal communication might not only help to improve the fertility of our farm animals but also our understanding of human health and reproduction.......Communication during early pregnancy is essential for successful reproduction. In this review we address the beginning of the communication between mother and developing embryo; including morphological and transcriptional changes in the endometrium as well as epigenetic regulation mechanisms...

  16. A numerical analysis of the Born approximation for image formation modeling of differential interference contrast microscopy for human embryos

    Science.gov (United States)

    Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir

    2008-03-01

    The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.

  17. Human cloning and stem cell research: engaging in the political process. (Legislation review: prohibition of Human Cloning Act 2002 and the research involving Human Embryos Act).

    Science.gov (United States)

    Skene, Loane

    2008-03-01

    Committees appointed by governments to inquire into specific policy issues often have no further role when the Committee's report is delivered to government, but that is not always so. This paper describes the activities of members of the Australian Committee on human cloning and embryo research (the Lockhart Committee) to inform Parliament and the community about the Committee's recommendations after its report was tabled in Parliament. It explains their participation in the political process as their recommendations were debated and amending legislation was passed by Parliament. It illustrates a method of communication about scientific and policy issues that explores people's concerns and what they 'need to know' to make a judgment; and then responds to questions they raise, with the aim of facilitating discussion, not arguing for one view. The paper considers whether this type of engagement and communication is appropriate and could be used in other policy discussions.

  18. The Construction of cDNA Libraries from Human Single Preimplantation Embryos and Their Use in the Study of Gene Expression During Development

    OpenAIRE

    Adjaye, James; Daniels, Rob; Monk, Marilyn

    1998-01-01

    Purpose:The construction and application of polymerase chain reaction (PCR)-based cDNA libraries from unfertilized human oocytes and single preimplantation-stage embryos are described. The purpose of these studies is to provide a readily available resource for the study of gene expression during human preimplantation development.

  19. Acute stress impairs the retrieval of extinction memory in humans

    Science.gov (United States)

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less

  20. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Potential teratogenicity of methimazole: exposure of zebrafish embryos to methimazole causes similar developmental anomalies to human methimazole embryopathy.

    Science.gov (United States)

    Komoike, Yuta; Matsuoka, Masato; Kosaki, Kenjiro

    2013-06-01

    While methimazole (MMI) is widely used in the therapy for hyperthyroidism, several groups have reported that maternal exposure to MMI results in a variety of congenital anomalies, including choanal and esophageal atresia, iridic and retinal coloboma, and delayed neurodevelopment. Thus, adverse effects of maternal exposure to MMI on fetal development have long been suggested; however, direct evidence for the teratogenicity of MMI has not been presented. Therefore, we studied the effects of MMI on early development by using zebrafish as a model organism. The fertilized eggs of zebrafish were collected immediately after spawning and grown in egg culture water containing MMI at various concentrations. External observation of the embryos revealed that exposure to high concentrations of MMI resulted in loss of pigmentation, hypoplastic hindbrain, turbid tissue in the forebrain, swelling of the notochord, and curly trunk. Furthermore, these effects occurred in a dose-dependent manner. Precise observation of the serial cross-sections of MMI-exposed embryos elucidated delayed development and hypoplasia of the whole brain and spinal cord, narrowing of the pharynx and esophagus, severe disruption of the retina, and aberrant structure of the notochord. These neuronal, pharyngeal, esophageal, and retinal anomalous morphologies have a direct analogy to the congenital anomalies observed in children exposed to MMI in utero. Here, we show the teratogenic effects of MMI on the development of zebrafish and provide the first experimental evidence for the connection between exposure to MMI and human MMI embryopathy. © 2013 Wiley Periodicals, Inc.

  2. Comparing 36.5°C with 37°C for human embryo culture: a prospective randomized controlled trial.

    Science.gov (United States)

    Fawzy, Mohamed; Emad, Mai; Gad, Mostafa A; Sabry, Mohamed; Kasem, Hesham; Mahmoud, Manar; Bedaiwy, Mohamed A

    2018-03-27

    This prospective, double-blind, randomized controlled trial was designed to evaluate the efficacy of a culture temperature of 36.5°C versus 37°C on human embryo development in vitro. A total of 412 women undergoing IVF were randomized to two groups: the oocytes and embryos of the intervention group were cultured at 36.5°C; those of the control group were cultured at 37°C. Although no significant effect of culture temperature was observed on pregnancy or implantation rates, differences were found in embryo development. Embryo culture at 36.5°C was associated with a significantly higher cleavage rate (OR 1.6, 95% CI 1.03 to 2.51), but a lower fertilization rate, fewer high-quality embryos on day 3, a lower blastocyst formation rate on day 5, and fewer high-quality and cryopreserved blastocysts (OR 0.87, 95% CI 0.78 to 0.98), (OR 0.60, 95% CI 0.53 to 0.69), (OR 0.85, 95% CI 0.75 to 0.97), (OR 0.5, 95% CI 0.44 to 0.56) and (OR 0.77, 95% CI 0.68 to 0.88), respectively, compared with 37°C. On the basis of these results, and in the absence of data on the optimal temperature for each stage of embryo development in vitro, we recommend continuation of the use of 37°C for human embryo culture. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer

    NARCIS (Netherlands)

    Seli, E.; Vergouw, C.G.; Morita, H.; Botros, L.; Roos, P.; Lambalk, C.B.; Yamashita, N.; Kato, O.; Sakkas, D.

    2010-01-01

    Objective: To determine whether metabolomic profiling of spent embryo culture media correlates with reproductive potential of human embryos. Design: Retrospective study. Setting: Academic and a private assisted reproductive technology (ART) programs. Patient(s): Women undergoing single embryo

  4. Improving embryo quality in assisted reproduction

    NARCIS (Netherlands)

    Mantikou, E.

    2013-01-01

    The goal of this thesis was to improve embryo quality in assisted reproductive technologies by gaining more insight into human preimplantation embryo development and by improving in vitro culture conditions. To do so, we investigated an intriguing feature of the human preimplantation embryo, i.e.

  5. Human Sperm Bioassay for Reprotoxicity Testing in Embryo Culture Media: Some Practical Considerations in Reducing the Assay Time

    Directory of Open Access Journals (Sweden)

    Amjad Hossain

    2010-01-01

    Full Text Available Human sperm assay (HSA is a preferred in house quality control and proficiency test (PT practiced in fertility laboratories. HSA is performed over varying durations, apparently without following set criteria. To better understand the assay time required for reprotoxicity testing in embryo culture media, we compared American-Association-of-Bioanalysts-(AAB- administered HSA data to our own assay performed using PT samples obtained from AAB. Participating laboratories were required to culture sperm for 48 hours to determine media acceptability. Conclusions drawn from 48- and 24-hour observations were the same, suggesting that HSA could identify reprotoxic media in less time than required by AAB. Our assay revealed that changes in motility grade in adulterated media are significantly different from those in control media. Furthermore, grade changes can be identified earlier than differences in motility loss between samples. Analyzing motility and motility quality together provides a method for establishing an optimal time for HSA.

  6. Fibronectin-synthesizing activity of free and membrane-bound polyribosomes from human embryonic fibroblasts and chick embryos

    International Nuclear Information System (INIS)

    Belkin, V.M.; Volodarskaya, S.M.

    1986-01-01

    The fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied using immunochemical methods. It was found that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts accounts for 4.9% and those from 10-day-old chick embryos for 1.1% of the total amount of newly synthesized proteins, whereas on free polyribosomes it is 1.0 and 0.3%, respectively. Fibronectin monomers with a molecular weight of 220,000 were found only in the material of the cell-free system containing heavy fractions of membrane-bound polyribosomes newly synthesized in the presence of spermidine. Thus, it was shown that fibronectin is synthesized primarily on membrane-bound polyribosomes

  7. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction.

    Science.gov (United States)

    Wale, Petra L; Gardner, David K

    2016-01-01

    Although laboratory procedures, along with culture media formulations, have improved over the past two decades, the issue remains that human IVF is performed in vitro (literally 'in glass'). Using PubMed, electronic searches were performed using keywords from a list of chemical and physical factors with no limits placed on time. Examples of keywords include oxygen, ammonium, volatile organics, temperature, pH, oil overlays and incubation volume/embryo density. Available clinical and scientific evidence surrounding physical and chemical factors have been assessed and presented here. Development of the embryo outside the body means that it is constantly exposed to stresses that it would not experience in vivo. Sources of stress on the human embryo include identified factors such as pH and temperature shifts, exposure to atmospheric (20%) oxygen and the build-up of toxins in the media due to the static nature of culture. However, there are other sources of stress not typically considered, such as the act of pipetting itself, or the release of organic compounds from the very tissue culture ware upon which the embryo develops. Further, when more than one stress is present in the laboratory, there is evidence that negative synergies can result, culminating in significant trauma to the developing embryo. It is evident that embryos are sensitive to both chemical and physical signals within their microenvironment, and that these factors play a significant role in influencing development and events post transfer. From the viewpoint of assisted human reproduction, a major concern with chemical and physical factors lies in their adverse effects on the viability of embryos, and their long-term effects on the fetus, even as a result of a relatively brief exposure. This review presents data on the adverse effects of chemical and physical factors on mammalian embryos and the importance of identifying, and thereby minimizing, them in the practice of human IVF. Hence, optimizing the

  8. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study

    Directory of Open Access Journals (Sweden)

    Ma Wenhong

    2012-08-01

    Full Text Available Abstract Background Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively. Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. Methods Prospective comparisons were performed between six–eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group or a high-fat diet (obese group for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six–eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. Results In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, Pvs.9.3%, Pvs. 93.1%, P Conclusions This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.

  9. Human chorionic gonadotropin-administered natural cycle versus spontaneous ovulatory cycle in patients undergoing two pronuclear zygote frozen-thawed embryo transfer.

    Science.gov (United States)

    Lee, You-Jung; Kim, Chung-Hoon; Kim, Do-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2018-03-01

    To compare human chorionic gonadotropin (HCG)-administered natural cycle with spontaneous ovulatory cycle in patients undergoing frozen-thawed embryo transfer (FTET) in natural cycles. In this retrospective cohort study, we analyzed the clinical outcome of a total of 166 consecutive FTET cycles that were performed in either natural cycle controlled by HCG for ovulation triggering (HCG group, n=110) or natural cycle with spontaneous ovulation (control group, n=56) in 166 infertile patients between January 2009 and November 2013. There were no differences in patients' characteristics between the 2 groups. The numbers of oocytes retrieved, mature oocytes, fertilized oocytes, grade I or II embryos and frozen embryos in the previous in vitro fertilization (IVF) cycle in which embryos were frozen were comparable between the HCG and control groups. Significant differences were not also observed between the 2 groups in clinical pregnancy rate (CPR), embryo implantation rate, miscarriage rate, live birth rate and multiple CPR. However, the number of hospital visits for follicular monitoring was significantly fewer in the HCG group than in the control group ( P cycle reduces the number of hospital visits for follicular monitoring without any detrimental effect on FTET outcome when compared with spontaneous ovulatory cycles in infertile patients undergoing FTET in natural ovulatory cycles.

  10. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1984-11-01

    The sequence of events in the development of the brain in staged human embryos was investigated in much greater detail than in previous studies by listing 100 features in 165 embryos of the first 5 weeks. Using a computerized bubble-sort algorithm, individual embryos were ranked in ascending order of the features present. This procedure made feasible an appreciation of the slight variation found in the developmental features. The vast majority of features appeared during either one or two stages (about 2 or 3 days). In general, the soundness of the Carnegie system of embryonic staging was amply confirmed. The rhombencephalon was found to show increasing complexity around stage 13, and the postoptic portion of the diencephalon underwent considerable differentiation by stage 15. The need for similar investigations of other systems of the body is emphasized, and the importance of such studies in assessing the timing of congenital malformations and in clarifying syndromic clusters is suggested.

  11. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M.J.; Wong, K.M.; van Montfoort, A.P.A.; de Jong, M.; Breit, T.M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    STUDY QUESTION: What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? SUMMARY ANSWER: Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation

  12. Embryos, genes, and birth defects

    National Research Council Canada - National Science Library

    Ferretti, Patrizia

    2006-01-01

    ... Structural anomalies The genesis of chromosome abnormalities Embryo survival The cause of high levels of chromosome abnormality in human embryos Relative parental risks - age, translocations, inversions, gonadal and germinal mosaics 33 33 34 35 36 44 44 45 4 Identification and Analysis of Genes Involved in Congenital Malformation Syndromes Peter J. Scambler Ge...

  13. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    International Nuclear Information System (INIS)

    Fischer, L.; Deppert, W.R.; Pfeifer, D.; Stanzel, S.; Weimer, M.; Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P.; Schaefer, W.R.

    2012-01-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  14. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  15. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development.

    Science.gov (United States)

    Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C

    2017-10-01

    The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.

  16. Knockdown of Laminin gamma-3 (Lamc3 impairs motoneuron guidance in the zebrafish embryo [version 1; referees: 2 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Alexander M. J. Eve

    2017-11-01

    Full Text Available Background: Previous work in the zebrafish embryo has shown that laminin γ-3 (lamc3 is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.

  17. Two different pathways for the transport of primitive and definitive blood cells from the yolk sac to the embryo in humans.

    Science.gov (United States)

    Pereda, Jaime; Monge, Juan I; Niimi, Gen

    2010-08-01

    During the early human embryonic period nutrients and blood cells are temporarily provided by the extraembryonic yolk sac (YS). The YS before week six is involved not only in primitive but also in definitive erythropoiesis. While the destiny of primitive erythroid cells that fill the blood vessels of the YS is well known, the final destination of erythrocytes present in the endodermal vesicular system is unknown. In the present study we have investigated, step by step, the destiny of the erythrocytes present in the endodermal vesicles during the embryonic period. Twelve human YSs and their corresponding yolk stalks were analyzed between weeks 4 and 7 of embryonic age by light and scanning electron microscopy. It is shown that erythrocytes (according to their size and morphological features) located within the endodermal vesicles of the YS wall are pulled out through endodermal pits into the YS cavity, from where they reach the lumen of the primitive gut of the embryo through the vitelline duct, a temporary pathway communicating both compartments. During the study period no erythrocytes were seen within the embryo's vascular network where only primitive erythroblasts were identified. Our results indicate that the vitelline duct plays an important transient role as a pathway for the transport of nutrients and blood cells between the YS and the embryo before week five of embryonic development that ends just at the time when YS-embryo circulation becomes established. (c) 2010 Wiley-Liss, Inc.

  18. Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor-Associated Angiogenesis

    Science.gov (United States)

    2016-09-01

    analysis of tumor necrosis factor - alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype...AWARD NUMBER: W81XWH-15-1-0296 TITLE: Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor - Associated...Cancer and Impairs Tumor -Associated Angiogenesis 5b. GRANT NUMBER W81XWH-15-1-0296 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  19. Die Behandlung menschliches Embryos und Menschenwurde

    OpenAIRE

    Matsui, Fumio

    2002-01-01

    We are confronted with an old and new problem, which has come up with the progress of modern biotechnologies: what is a life or when does a life begin? The expectation of order-made medicine has build up since the discovery of Embryo Stem cell called "a dream master cell", while there is any condemnation against the destruction of human embryo in order to gain it. It is a question whether a human embryo is a human being in the world. Human dignity(=HD) is a principle that keeps human embryos ...

  20. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  1. Human Impairment from Living near Confined Animal (Hog) Feeding Operations

    International Nuclear Information System (INIS)

    Kilburn, K.H.; Kilburn, K.H.

    2012-01-01

    Problem. To determine whether neighbors around manure lagoons and massive hog confinement buildings who complained of offensive odors and symptoms had impaired brain and lung functions. Method. We compared near hog manure neighbors of lagoons to people living beyond 3 kilometers in Ohio and to unexposed people controls in a nearby state for neuro physiological, cognitive, recall and memory functions, and pulmonary performance. Results. The 25 exposed subjects averaged 4.3 neuro behavioral abnormalities, significantly different from 2.5 for local controls and 2.3 for Tennessee controls. Exposed subjects mean forced vital capacity and expiratory volume in 1 sec were reduced significantly compared to local and regional controls. Conclusions. Near neighbors of hog enclosures and manure lagoon gases had impaired neuro behavioral functions and pulmonary functions and these effects extended to nearby people thought to be controls. Hydrogen sulfide must be abated because people living near lagoons cannot avoid rotten egg gas.

  2. Expression of the bone morphogenetic protein-2 (BMP2 in the human cumulus cells as a biomarker of oocytes and embryo quality

    Directory of Open Access Journals (Sweden)

    Sirin B Demiray

    2017-01-01

    Full Text Available Background: The members of the transforming growth factor-B superfamily, as the bone morphogenetic proteins (BMPs subfamily and anti-Müllerian hormone (AMH, play a role during follicular development, and the bone morphogenetic protein-2 (BMP2, AMH, and THY1 are expressed in ovaries. Aim: This study was designed to define whether or not the expressions of these proteins in human cumulus cells (CCs can be used as predictors of the oocyte and embryo competence. Settings and Design: The study included nine female patients who were diagnosed as idiopathic infertility, aged 25–33 years (median 30 years and underwent Assisted Reproductive Technologies. Materials and Methods: The CCs from 60 oocyte–cumulus complexes obtained from the nine patients were evaluated with immunofluorescence staining in respect of BMPs, AMH and THY1 markers. The CCs surrounding the same oocytes were evaluated separately according to the oocyte and embryo quality. Statistical Analysis: Quantitative data were statistically analyzed for differences using the two-sided Mann–Whitney U test (P < 0.05. Results and Conclusions: Significant differences in immunofluorescence staining were observed in oocyte quality and embryo quality for the BMP2 only (P < 0.05. No significant differences were observed for AMH or CD90/THY1. Conclusion: These results demonstrated that there is a significant difference in the expression of BMP2 in the CCs of good quality oocytes and subsequently a good embryo.

  3. Embryo density and medium volume effects on early murine embryo development.

    Science.gov (United States)

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  4. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Mei Xin [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Key Laboratory of Horticultural Plant Growth Development and Biotechnology of Ministry of Agriculture, Zhejiang University, Hangzhou 310029 (China); Wu Yuanyuan; Mao Xiao [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China); Tu Youying, E-mail: youytu@zju.edu.c [Department of Tea Science, Zhejiang University, Hangzhou 310029 (China)

    2011-01-15

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  5. Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells

    International Nuclear Information System (INIS)

    Roy, K.; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    1999-01-01

    We studied X-ray-induced delayed cell death, delayed giant cell formation and delayed chromosome aberrations in normal human embryo cells to explore the relationship between initial radiation damage and delayed effect appeared at 14 to 55 population doubling numbers (PDNs) after X-irradiation. The delayed effect was induced in the progeny of X-ray survivors in a dose-dependent manner and recovered with increasing PDNs after X-irradiation. Delayed plating for 24 h post-irradiation reduced both acute and delayed lethal damage, suggesting that potentially lethal damage repair (PLDR) can be effective for relieving the delayed cell death. The chromosome analysis revealed that most of the dicentrics (more than 90%) observed in the progeny of X-ray survivors were not accompanied with fragments, in contrast with those observed in the first mitosis after X-irradiation. The present results indicate that the potentiality of genetic instability is determined during the repair process of initial radiation damage and suggest that the mechanism for formation of delayed chromosome aberrations by radiation might be different from that of direct radiation-induced chromosome aberrations. (author)

  6. Antagonism of phenanthrene cytotoxicity for human embryo lung fibroblast cell line HFL-I by green tea polyphenols

    International Nuclear Information System (INIS)

    Mei Xin; Wu Yuanyuan; Mao Xiao; Tu Youying

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been detected in some commercial teas around the world and pose a threat to tea consumers. However, green tea polyphenols (GTP) possess remarkable antioxidant and anticancer effects. In this study, the potential of GTP to block the toxicity of the model PAH phenanthrene was examined in human embryo lung fibroblast cell line HFL-I. Both GTP and phenanthrene treatment individually caused dose-dependent inhibition of cell growth. A full factorial design experiment demonstrated that the interaction of phenanthrene and GTP significantly reduced growth inhibition. Using the median effect method showed that phenanthrene and GTP were antagonistic when the inhibitory levels were less than about 50%. Apoptosis and cell cycle detection suggested that only phenanthrene affected cell cycle significantly and caused cell death; GTP lowered the mortality of HFL-I cells exposed to phenanthrene; However, GTP did not affect modulation of the cell cycle by phenanthrene. - Green tea polyphenols antagonised cytotoxicity of a low-ring PAH phenanthrene.

  7. A proposed draft protocol for the European Convention on Biomedicine relating to research on the human embryo and fetus.

    Science.gov (United States)

    Byk, J C

    1997-02-01

    The objective of this paper is to stimulate academic debate on embryo and fetal research from the perspective of the drafting of a protocol to the European Convention on Biomedicine. The Steering Committee on Bioethics of the Council of Europe was mandated to draw up such a protocol and for this purpose organised an important symposium on reproductive technologies and embryo research, in Strasbourg from the 16th to the 18th of December 1996.

  8. Chromosome segregation analysis in human embryos obtained from couples involving male carriers of reciprocal or Robertsonian translocation.

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    Full Text Available The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB and reciprocal (REC translocations undergoing preimplantation genetic diagnosis (PGD at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1% and clinical pregnancy (62.5% vs. 19.2% rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s or terminal breakpoint(s in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31% and spare (35% embryos obtained from carriers of t(11;22(q23;q11, the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s or terminal breakpoint(s. These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.

  9. Caffeine attenuates scopolamine-induced memory impairment in humans.

    Science.gov (United States)

    Riedel, W; Hogervorst, E; Leboux, R; Verhey, F; van Praag, H; Jolles, J

    1995-11-01

    Caffeine consumption can be beneficial for cognitive functioning. Although caffeine is widely recognized as a mild CNS stimulant drug, the most important consequence of its adenosine antagonism is cholinergic stimulation, which might lead to improvement of higher cognitive functions, particularly memory. In this study, the scopolamine model of amnesia was used to test the cholinergic effects of caffeine, administered as three cups of coffee. Subjects were 16 healthy volunteers who received 250 mg caffeine and 2 mg nicotine separately, in a placebo-controlled double-blind cross-over design. Compared to placebo, nicotine attenuated the scopolamine-induced impairment of storage in short-term memory and attenuated the scopolamine-induced slowing of speed of short-term memory scanning. Nicotine also attenuated the scopolamine-induced slowing of reaction time in a response competition task. Caffeine attenuated the scopolamine-induced impairment of free recall from short- and long-term memory, quality and speed of retrieval from long-term memory in a word learning task, and other cognitive and non-cognitive measures, such as perceptual sensitivity in visual search, reading speed, and rate of finger-tapping. On the basis of these results it was concluded that caffeine possesses cholinergic cognition enhancing properties. Caffeine could be used as a control drug in studies using the scopolamine paradigm and possibly also in other experimental studies of cognitive enhancers, as the effects of a newly developed cognition enhancing drug should at least be superior to the effects of three cups of coffee.

  10. Induction of Morphological Changes in Human Embryo Liver Cells by the Pyrrolizidine Alkaloid Lasiocarpine

    Science.gov (United States)

    Armstrong, Sylvia J.; Zuckerman, A. J.; Bird, R. G.

    1972-01-01

    The pyrrolizidine alkaloids have been implicated in the aetiology of liver disease in man and in animals. Studies of the effects of lasiocarpine indicate that they have several and perhaps independent effects on human liver cells in culture. These may be summarized as follows: 1. Nuclear and nucleolar changes which are probably related to the alkylation of DNA and ensuing inhibition of nucleic acid and protein synthesis. 2. The induction of possible chromosomal damage and mutation. 3. A generalized reduction of the metabolic activities of the cells due to membrane and mitochondrial damage, and to alkylation and inactivation of cell enzymes and proteins. 4. A long-term inhibition of mitosis leading to the formation of giant cells (“megalocytes”). The morphological effects induced by a number of the pyrrolizidine alkaloids were very similar but the pattern of metabolic changes varied somewhat. It is believed that the hepatotoxic effects are not due to the pyrrolizidine alkaloids themselves but to metabolic derivatives formed by the cell. ImagesFigs. 3-5Figs. 1-2 PMID:5032090

  11. Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1987-09-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.

  12. Median Sacral Artery, Sympathetic Nerves, and the Coccygeal Body: A Study Using Serial Sections of Human Embryos and Fetuses.

    Science.gov (United States)

    Jin, Zhe Wu; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco

    2016-07-01

    To examine how the median sacral artery (MSA) is involved with the coccygeal body or glomus coccygeum, we studied serial frontal or sagittal sections of 14 embryos (approximately 5-6 weeks of gestation) and 12 fetuses (10-18 weeks). At five weeks, the caudal end of the dorsal aorta (i.e., MSA) accompanied putative sympathetic ganglion cells in front of the upper coccygeal and lower sacral vertebrae. At six weeks, a candidate for the initial coccygeal body was identified as a longitudinal arterial plexus involving nerve fibers and sympathetic ganglion cells between arteries. At 10-18 weeks, the MSA exhibited a highly tortuous course at the lower sacral and coccygeal levels, and was attached to and surrounded by veins, nerve fibers, and sympathetic ganglion cells near and between the bilateral origins of the levator ani muscle. Immunohistochemistry demonstrated expression of tyrosine hydroxylase and chromogranin A in the nerves. However, throughout the stages examined, we found no evidence suggestive of an arteriovenous anastomosis, such as well-developed smooth muscle. An acute anterior flexure of the vertebrae at the lower sacrum, as well as regression of the secondary neural tube, seemed to induce arterial plexus formation from an initial straight MSA. Nerves and ganglion cells were likely to be secondarily involved with the plexus because of the close topographical relationship. However, these nerves might play a major role in the extreme change into adult morphology. An arteriovenous anastomosis along the MSA might be an overinterpretation, at least in the prenatal human. Anat Rec, 299:819-827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from Carnegie stage 14 to 23).

    Science.gov (United States)

    Lhuaire, Martin; Tonnelet, Romain; Renard, Yohann; Piardi, Tullio; Sommacale, Daniele; Duparc, Fabrice; Braun, Marc; Labrousse, Marc

    2015-07-01

    Some aspects of human embryogenesis and organogenesis remain unclear, especially concerning the development of the liver and its vasculature. The purpose of this study was to investigate, from a descriptive standpoint, the evolutionary morphogenesis of the human liver and its vasculature by computerized three-dimensional reconstructions of human embryos. Serial histological sections of four human embryos at successive stages of development belonging to three prestigious French historical collections were digitized and reconstructed in 3D using software commonly used in medical radiology. Manual segmentation of the hepatic anatomical regions of interest was performed section by section. In this study, human liver organogenesis was examined at Carnegie stages 14, 18, 21 and 23. Using a descriptive and an analytical method, we showed that these stages correspond to the implementation of the large hepatic vascular patterns (the portal system, the hepatic artery and the hepatic venous system) and the biliary system. To our knowledge, our work is the first descriptive morphological study using 3D computerized reconstructions from serial histological sections of the embryonic development of the human liver between Carnegie stages 14 and 23. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  15. Do age and extended culture affect the architecture of the zona pellucida of human oocytes and embryos?

    Science.gov (United States)

    Kilani, Suha S; Cooke, Simon; Kan, Andrew K; Chapman, Michael G

    2006-02-01

    Advanced female age and extended in vitro culture have both been implicated in zona pellucida (ZP) hardening and thickening. This study aimed to determine the influence of (i) the woman's age and (ii) prolonged in vitro culture of embryos on ZP thickness and density using non-invasive polarized light (LC-PolScope) microscopy. ZP thickness and density (measured as retardance) were determined in oocytes, embryos and blastocysts in women undergoing intracytoplasmic sperm injection (ICSI) in two age groups (older, > 38 years; younger, vs 23.1 +/- 3.3 microm; p = 0.01) but ZP density was equal (2.8 +/- 0.7 nm). By day 2 of culture, embryos from the two groups had similar ZP thickness (22.2 +/- 2.2 microm vs 21.7 +/- 1.6 microm; p = 0.28) and density (2.9 +/- 0.7 nm vs 2.8 +/- 0.8 nm; p = 0.57). For the embryos cultured to blastocyst (older: n = 20; younger: n = 18) ZP thickness was similar in the two groups (19.2 +/- 2.7 microm vs 19.1 +/- 5.0 microm; p = 0.8) but thinner than on day 2. The older group had significantly denser ZP than the younger group (4.2 +/- 0.5 nm vs 3.3 +/- 1.0 nm, p vs 2.9 +/- 0.7 nm, p vs 2.8 +/- 0.8 nm, p = 0.013). It is concluded that there is little relationship between ZP thickness and its density as measured by polarized light microscopy. While ZP thickness decreases with extended embryo culturing, the density of the ZP increases. ZP density increases in both age groups with extended culture and, interestingly, more in embryos from older compared with younger women.

  16. Solar cycle predicts folate-sensitive neonatal genotypes at discrete phases of the first trimester of pregnancy: a novel folate-related human embryo loss hypothesis.

    Science.gov (United States)

    Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel

    2012-08-01

    Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Gomes Sobrinho David B

    2011-11-01

    Full Text Available Abstract Background Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI outcomes. Methods All available published and ongoing randomised trials that compared the effects of low (~5%; OC~5 and atmospheric (~20%; OC~20 oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio. Results Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (P = 0.54 between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (P = 0.06 and ongoing pregnancy (P = 0.051 rates were not significantly different between the group receiving transferred sets containing only OC~5 embryos and the group receiving transferred sets with only OC~20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (P = 0.63 and ongoing pregnancy (P = 0.19 rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage, the group with transferred sets of only OC~5 embryos showed a statistically significantly higher implantation rate (P = 0.006 than the group receiving transferred sets with only OC~20 embryos, although the ongoing pregnancy (P = 0.19 rates were not significantly

  18. DNA repair processes and their impairment in some human diseases

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1977-01-01

    Some human diseases show enhanced sensitivity to the action of environmental mutagens, and among these several are known which are defective in the repair of damaged DNA. Xeroderma pigmentosum (XP) is mainly defective in excision repair of a large variety of damaged DNA bases caused by ultraviolet light and chemical mutagens. XP involves at least 6 distinct groups, some of which may lack cofactors required for excising damage from chromatin. As a result of these defects the sensitivity of XP cells to many mutagens is increased 5- to 10-fold. Ataxia telangiectasia and Fanconi's anemia may similarly involve defects in repair of certain DNA base damage or cross-links, respectively. But most of these and other mutagen-sensitive diseases only show increases of about 2-fold in sensitivity to mutagens, and the biochemical defects in the diseases may be more complex and less directly involved in DNA repair than in XP. (Auth.)

  19. Socially Impaired Robots: Human Social Disorders and Robots' Socio-Emotional Intelligence

    OpenAIRE

    Vitale, Jonathan; Williams, Mary-Anne; Johnston, Benjamin

    2016-01-01

    Social robots need intelligence in order to safely coexist and interact with humans. Robots without functional abilities in understanding others and unable to empathise might be a societal risk and they may lead to a society of socially impaired robots. In this work we provide a survey of three relevant human social disorders, namely autism, psychopathy and schizophrenia, as a means to gain a better understanding of social robots' future capability requirements. We provide evidence supporting...

  20. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  1. Co-culture of human embryos with autologous cumulus cell clusters and its beneficial impact of secreted growth factors on preimplantation development as compared to standard embryo culture in assisted reproductive technologies (ART

    Directory of Open Access Journals (Sweden)

    Alexandros Vithoulkas

    2017-12-01

    Conclusion(s: The investigated factors, among other substances, may be causally connected to the beneficial effect observed on embryo development. Our findings suggest that co-culture with autologous cumulus cell clusters improves the outcome of embryo culture in IVF programs.

  2. Safety of cryopreservation straws for human gametes or embryos: a preliminary study with human immunodeficiency virus-1.

    Science.gov (United States)

    Benifla, J L; Letur-Konïrsch, H; Collin, G; Devaux, A; Kuttenn, F; Madelenat, P; Brun-Vezinet, F; Feldmann, G

    2000-10-01

    The aim of this preliminary experimental study was to test the stability of cryopreservation straws to human immunodeficiency virus-1 (HIV-1). Three kinds of straws were tested: four polyvinyl chloride (PVC), four polyethylene terephthalate glycol (PETG) and 20 high-security ionomeric resin (IR). The PVC and PETG straws were sealed ultrasonically, and the IR straw by thermosoldering. Each sealed straw was cut in half to produce two demi-straws and then filled with 100 microl of HIV-1-containing supernatant (reverse transcriptase activity: 15 000 c.p.m./50 microl). The unsealed cotton end of PVC and PETG straws and the two halves of the IR straws (cotton and plastic plug ends) were tested. Each demi-straw was two- thirds submerged in RPMI medium at 37 degrees C, and RPMI samples were withdrawn on days 3, 7 and 11. Viral RNA was extracted from the medium and then amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) followed by nested PCR using primers specific to HIV-1 protease. On day 7, no HIV-1 RNA was detected in any of the different samples of medium that had surrounded the unsealed PVC and PETG straws with cotton ends, but three IR specimens were positive. On day 11, PVC and PETG remained negative but HIV-1 RNA was detected in RPMI samples for two more IR demi-straws (n = 5). In conclusion, under these experimental conditions (at 37 degrees C), the unsealed cotton end PVC, PETG and thermosoldered cotton end IR demi-straws appeared to be safe for HIV-1, while IR straws, sealed or unsealed with a plastic plug and with unsealed cotton ends, leaked.

  3. Embryonic cardiac morphometry in Carnegie stages 15-23, from the Complutense University of Madrid Institute of Embryology Human Embryo Collection.

    Science.gov (United States)

    Arráez-Aybar, L A; Turrero-Nogués, A; Marantos-Gamarra, D G

    2008-01-01

    We performed a morphometric study of cardiac development on human embryos to complement the scarce data on human embryonic cardiac morphometry and to attempt to establish, from these, algorithms describing cardiac growth during the second month of gestation. Thirty human embryos from Carnegie stages 15-23 were included in the study. Shrinkage and compression effects from fixation and inclusion in paraffin were considered in our calculations. Growth of the cardiac (whole heart) volume and volume of ventricular myocardium through the Carnegie stages were analysed by ANOVA. Linear correlation was used to describe the relationship between the ventricular myocardium and cardiac volumes. Comparisons of models were carried out through the R2 statistic. The relationship volume of ventricular myocardium versus cardiac volume is expressed by the equation: cardiac volume = 0.6266 + 2.4778 volume of ventricular myocardium. The relationship cardiac volume versus crown-rump length is expressed by the equation: cardiac volume = 1.3 e(0.126 CR length), where e is the base of natural logarithms. At a clinical level, these results can contribute towards the establishment of a normogram for cardiac development, useful for the design of strategies for early diagnosis of congenital heart disease. They can also help in the study of embryogenesis, for example in the discussion of ventricular trabeculation. Copyright 2007 S. Karger AG, Basel.

  4. Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism.

    Science.gov (United States)

    Harrison, Neil A; Doeller, Christian F; Voon, Valerie; Burgess, Neil; Critchley, Hugo D

    2014-10-01

    Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation, synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by systemic inflammation. However, human data to support this position are limited. Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural memory control task. Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal glucose metabolism directly mediated actions of inflammation on spatial memory. These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders including Alzheimer's disease. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    Science.gov (United States)

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (popen field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  6. Embryos, individuals, and persons: an argument against embryo creation and research.

    Science.gov (United States)

    Tollefsen, C

    2001-01-01

    One strategy for arguing that it should be legally permissible to create human embryos, or to use spare human embryos, for scientific research purposes involves the claim that such embryos cannot be persons because they are not human individuals while twinning may yet take place. Being a human individual is considered to be by most people a necessary condition for being a human person. I argue first that such an argument against the personhood of embryos must be rationally conclusive if their destruction in public places such as laboratories is to be countenanced. I base this argument on a popular understanding of the role that the notion of privacy plays in abortion laws. I then argue that such arguments against personhood are not rationally conclusive. The claim that the early embryos is not a human individual is not nearly as obvious as some assert.

  7. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs) by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C......-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  8. Whole Genome Amplification of Day 3 or Day 5 Human Embryos Biopsies Provides a Suitable DNA Template for PCR-Based Techniques for Genotyping, a Complement of Preimplantation Genetic Testing

    Directory of Open Access Journals (Sweden)

    Elizabeth Schaeffer

    2017-01-01

    Full Text Available Our objective was to determine if whole genome amplification (WGA provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3 or trophoblastic cells (Day 5 were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo’s sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p<0.001. Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL was also used to determine sex. AMELY peak’s height was higher and this peak’s presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p<0.001. Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89 and RPL17 for Trisomy 18 (AUC = 0.94. Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping.

  9. Association Between Progesterone Elevation on the Day of Human Chronic Gonadotropin Trigger and Pregnancy Outcomes After Fresh Embryo Transfer in In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycles.

    Science.gov (United States)

    Esteves, Sandro C; Khastgir, Gautam; Shah, Jatin; Murdia, Kshitiz; Gupta, Shweta Mittal; Rao, Durga G; Dash, Soumyaroop; Ingale, Kundan; Patil, Milind; Moideen, Kunji; Thakor, Priti; Dewda, Pavitra

    2018-01-01

    Progesterone elevation (PE) during the late follicular phase of controlled ovarian stimulation in fresh embryo transfer in vitro fertilization (IVF)/intracytoplasmic sperm injection cycles has been claimed to be associated with decreased pregnancy rates. However, the evidence is not unequivocal, and clinicians still have questions about the clinical validity of measuring P levels during the follicular phase of stimulated cycles. We reviewed the existing literature aimed at answering four relevant clinical questions, namely (i) Is gonadotropin type associated with PE during the follicular phase of stimulated cycles? (ii) Is PE on the day of human chorionic gonadotropin (hCG) associated with negative fresh embryo transfer IVF/intracytoplasmic sperm injection (ICSI) cycles outcomes in all patient subgroups? (iii) Which P thresholds are best to identify patients at risk of implantation failure due to PE in a fresh embryo transfer? and (iv) Should a freeze all policy be adopted in all the cycles with PE on the day of hCG? The existing evidence indicates that late follicular phase progesterone rise in gonadotropin releasing analog cycles is mainly caused by the supraphysiological stimulation of granulosa cells with exogenous follicle-stimulating hormone. Yet, the type of gonadotropin used for stimulation seems to play no significant role on progesterone levels at the end of stimulation. Furthermore, PE is not a universal phenomenon with evidence indicating that its detrimental consequences on pregnancy outcomes do not affect all patient populations equally. Patients with high ovarian response to control ovarian stimulation are more prone to exhibit PE at the late follicular phase. However, in studies showing an overall detrimental effect of PE on pregnancy rates, the adverse effect of PE on endometrial receptivity seems to be offset, at least in part, by the availability of good quality embryo for transfer in women with a high ovarian response. Given the limitations of

  10. Association Between Progesterone Elevation on the Day of Human Chronic Gonadotropin Trigger and Pregnancy Outcomes After Fresh Embryo Transfer in In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycles

    Directory of Open Access Journals (Sweden)

    Sandro C. Esteves

    2018-04-01

    Full Text Available Progesterone elevation (PE during the late follicular phase of controlled ovarian stimulation in fresh embryo transfer in vitro fertilization (IVF/intracytoplasmic sperm injection cycles has been claimed to be associated with decreased pregnancy rates. However, the evidence is not unequivocal, and clinicians still have questions about the clinical validity of measuring P levels during the follicular phase of stimulated cycles. We reviewed the existing literature aimed at answering four relevant clinical questions, namely (i Is gonadotropin type associated with PE during the follicular phase of stimulated cycles? (ii Is PE on the day of human chorionic gonadotropin (hCG associated with negative fresh embryo transfer IVF/intracytoplasmic sperm injection (ICSI cycles outcomes in all patient subgroups? (iii Which P thresholds are best to identify patients at risk of implantation failure due to PE in a fresh embryo transfer? and (iv Should a freeze all policy be adopted in all the cycles with PE on the day of hCG? The existing evidence indicates that late follicular phase progesterone rise in gonadotropin releasing analog cycles is mainly caused by the supraphysiological stimulation of granulosa cells with exogenous follicle-stimulating hormone. Yet, the type of gonadotropin used for stimulation seems to play no significant role on progesterone levels at the end of stimulation. Furthermore, PE is not a universal phenomenon with evidence indicating that its detrimental consequences on pregnancy outcomes do not affect all patient populations equally. Patients with high ovarian response to control ovarian stimulation are more prone to exhibit PE at the late follicular phase. However, in studies showing an overall detrimental effect of PE on pregnancy rates, the adverse effect of PE on endometrial receptivity seems to be offset, at least in part, by the availability of good quality embryo for transfer in women with a high ovarian response. Given the

  11. Association Between Progesterone Elevation on the Day of Human Chronic Gonadotropin Trigger and Pregnancy Outcomes After Fresh Embryo Transfer in In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycles

    Science.gov (United States)

    Esteves, Sandro C.; Khastgir, Gautam; Shah, Jatin; Murdia, Kshitiz; Gupta, Shweta Mittal; Rao, Durga G.; Dash, Soumyaroop; Ingale, Kundan; Patil, Milind; Moideen, Kunji; Thakor, Priti; Dewda, Pavitra

    2018-01-01

    Progesterone elevation (PE) during the late follicular phase of controlled ovarian stimulation in fresh embryo transfer in vitro fertilization (IVF)/intracytoplasmic sperm injection cycles has been claimed to be associated with decreased pregnancy rates. However, the evidence is not unequivocal, and clinicians still have questions about the clinical validity of measuring P levels during the follicular phase of stimulated cycles. We reviewed the existing literature aimed at answering four relevant clinical questions, namely (i) Is gonadotropin type associated with PE during the follicular phase of stimulated cycles? (ii) Is PE on the day of human chorionic gonadotropin (hCG) associated with negative fresh embryo transfer IVF/intracytoplasmic sperm injection (ICSI) cycles outcomes in all patient subgroups? (iii) Which P thresholds are best to identify patients at risk of implantation failure due to PE in a fresh embryo transfer? and (iv) Should a freeze all policy be adopted in all the cycles with PE on the day of hCG? The existing evidence indicates that late follicular phase progesterone rise in gonadotropin releasing analog cycles is mainly caused by the supraphysiological stimulation of granulosa cells with exogenous follicle-stimulating hormone. Yet, the type of gonadotropin used for stimulation seems to play no significant role on progesterone levels at the end of stimulation. Furthermore, PE is not a universal phenomenon with evidence indicating that its detrimental consequences on pregnancy outcomes do not affect all patient populations equally. Patients with high ovarian response to control ovarian stimulation are more prone to exhibit PE at the late follicular phase. However, in studies showing an overall detrimental effect of PE on pregnancy rates, the adverse effect of PE on endometrial receptivity seems to be offset, at least in part, by the availability of good quality embryo for transfer in women with a high ovarian response. Given the limitations of

  12. Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain indicates embryo quality and pregnancy outcomes following in vitro fertilization.

    Science.gov (United States)

    Tavares, R S; Silva, A F; Lourenço, B; Almeida-Santos, T; Sousa, A P; Ramalho-Santos, J

    2013-11-01

    Sperm chromatin/DNA damage can be measured by a variety of assays. However, it has been reported that these tests may lose prognostic value in Assisted Reproductive Technology (ART) cycles when assessed in post-prepared samples, possibly due to the normalizing effect promoted by sperm preparation procedures. We have recently implemented a modified version of the Diff-Quik staining assay that allows for the evaluation of human sperm chromatin status in native samples, together with standard sperm morphology assessment. However, the value of this parameter in terms of predicting in vitro fertilization (IVF) and Intracytoplasmic sperm injection (ICSI) outcomes after sperm selection is unknown. In this study, data from 138 couples undergoing in vitro fertilization (IVF) or Intracytoplasmic sperm injection (ICSI) treatments showed that sperm chromatin integrity was significantly improved after density gradient centrifugation and swim up (p embryo development rates (p > 0.05). However, sperm samples presenting lower percentages of damaged chromatin were associated with better quality (Grade I) embryos in both ART procedures (p selection may occur; but not in ICSI, where sperm selection is operator dependent. This quick and low-cost assay is suggested as an alternative method to detect sperm chromatin status in minimal clinical settings, when no other well-established and robust assays (e.g. Sperm chromatin structure assay, terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling) are available. © 2013 American Society of Andrology and European Academy of Andrology.

  13. Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1988-08-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-17, is here continued for stages 18 and 19. With the aid of a computerized bubble-sort algorithm, 58 individual embryos were ranked in ascending order of the features present. The increasing structural complexity provided 40 new features in these two stages. The chief characteristics of stage 18 (approximately 44 postovulatory days) are rapidly growing basal nuclei; appearance of the extraventricular bulge of the cerebellum (flocculus), of the superior cerebellar peduncle, and of follicles in the epiphysis cerebri; and the presence of vomeronasal organ and ganglion, of the bucconasal membrane, and of isolated semicircular ducts. The main features of stage 19 (approximately 48 days) are the cochlear nuclei, the ganglion of the nervus terminalis, nuclei of the prosencephalic septum, the appearance of the subcommissural organ, the presence of villi in the choroid plexuses of the fourth and lateral ventricles, and the stria medullaris thalami.

  14. Sexing bovine pre-implantation embryos using the polymerase ...

    African Journals Online (AJOL)

    The paper aims to present a bovine model for human embryo sexing. Cows were super-ovulated, artificially inseminated and embryos were recovered 7 days later. Embryo biopsy was performed; DNA was extracted from blastomeres and amplified using bovine-specific and bovine-Y-chromosomespecific primers, followed ...

  15. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation.

    Science.gov (United States)

    Guderian, Sebastian; Dzieciol, Anna M; Gadian, David G; Jentschke, Sebastian; Doeller, Christian F; Burgess, Neil; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-21

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with "moderate" hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on hippocampal integrity in humans is

  16. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    Science.gov (United States)

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.

  17. Comparison of two commercial embryo culture media (SAGE-1 step single medium vs. G1-PLUSTM/G2-PLUSTM sequential media): Influence on in vitro fertilization outcomes and human embryo quality.

    Science.gov (United States)

    López-Pelayo, Iratxe; Gutiérrez-Romero, Javier María; Armada, Ana Isabel Mangano; Calero-Ruiz, María Mercedes; Acevedo-Yagüe, Pablo Javier Moreno de

    2018-04-26

    To compare embryo quality, fertilization, implantation, miscarriage and clinical pregnancy rates for embryos cultured in two different commercial culture media until D-2 or D-3. In this retrospective study, we analyzed 189 cycles performed in 2016. Metaphase II oocytes were microinjected and allocated into single medium (SAGE 1-STEP, Origio) until transferred, frozen or discarded; or, if sequential media were used, the oocytes were cultured in G1-PLUSTM (Vitrolife) up to D-2 or D-3 and in G2-PLUSTM (Vitrolife) to transfer. On the following day, the oocytes were checked for normal fertilization and on D-2 and D-3 for morphological classification. Statistical analysis was performed using the chi-square and Mann-Whitney tests in PASW Statistics 18.0. The fertilization rates were 70.07% for single and 69.11% for sequential media (p=0.736). The mean number of embryos with high morphological quality (class A/B) was higher in the single medium than in the sequential media: D-2 [class A (190 vs. 107, pcultured in single medium were frozen: 197 (21.00%) vs. sequential: 102 (11.00%), pculture in single medium yields greater efficiency per cycle than in sequential media. Higher embryo quality and quantity were achieved, resulting in more frozen embryos. There were no differences in clinical pregnancy rates.

  18. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    Science.gov (United States)

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Consolidation and reconsolidation are impaired by oral propranolol administered before but not after memory (re)activation in humans.

    Science.gov (United States)

    Thomas, Émilie; Saumier, Daniel; Pitman, Roger K; Tremblay, Jacques; Brunet, Alain

    2017-07-01

    Propranolol administered immediately after learning or after recall has been found to impair memory consolidation or reconsolidation (respectively) in animals, but less reliably so in humans. Since reconsolidation impairment has been proposed as a treatment for mental disorders that have at their core an emotional memory, it is desirable to understand how to reliably reduce the strength of pathogenic memories in humans. We postulated that since humans (unlike experimental animals) typically receive propranolol orally, this introduces a delay before this drug can exert its memory impairment effects, which may render it less effective. As a means to test this, in two double-blind placebo-controlled experiments, we examined the capacity of propranolol to impair consolidation and reconsolidation as a function of timing of ingestion in healthy subjects. In Experiment 1, (n=36), propranolol administered immediately after learning or recall failed to impair the consolidation or reconsolidation of the memory of a standardized slideshow with an accompanying emotional story. In Experiment 2 (n=50), propranolol given 60-75min before learning or recall successfully impaired memory consolidation and reconsolidation. These results suggest that it is possible to achieve reliable memory impairment in humans if propranolol is given before learning or before recall, but not after. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... of proinflammatory cytokines compared with young men, but this difference was blurred by ageing. No relation was found between circulating plasma levels of TNF-alpha and levels after in vitro LPS stimulation. In conclusion, decreased production of TNF-alpha and IL-1 beta after exposure to LPS may reflect impaired...

  1. In vitro maturation, fertilization, embryo development & clinical outcome of human metaphase-I oocytes retrieved from stimulated intracytoplasmic sperm injection cycles

    Directory of Open Access Journals (Sweden)

    Cristina Álvarez

    2013-01-01

    Full Text Available Background & objectives: The major cause of fertilisation failure after ICSI is failure of the oocyte to initiate the biochemical processes necessary for activation. This inability could be ascribed to cytoplasmic immaturity of those gametes even if they had reached nuclear maturity. The activation of a mature oocyte is characterised by release from metaphase II (MII arrest and extrusion of the second polar body, followed by pro-nuclear formation. The aim of this study was to evaluate the fate of in vitro matured (IVM metaphase I (MI oocytes subjected to intracytoplasmic sperm injection (ICSI at different time intervals after extrusion of the first polar body (1PB in in vitro fertilization (IVF cycles. Methods: A total of 8030 oocytes were collected from 1400 ICSI cycles, 5504 MII at the time of cumulus retrieval. Four hundred eight metaphase II (MII (27.1% matured to MII after in vitro culture for 2-26 h and 5389 sibling MII in the moment of oocyte denudation were injected. On the other hand, 49 ICSI cycles containing only MI oocytes at retrieval were injected at three different time intervals after reaching the MII. The intervals were as follows: 2-6 h (n=10, 8-11 h (n=4 and 23-26 h (n=10. Fertilization and development potential were evaluated in both studies. Results: Fertilization, embryo cleavage and quality were significantly lower in IVM MI compared to MII at time of denudation. Pregnancy rate was higher in group MII. Pregnancy was achieved in three embryo transfers when ICSI was performed within 2-6 h (group I and 8-11 h (group II after PB extrusion. One pregnancy was obtained in group I and a healthy neonate was born. Interpretation & conclusions: Immature oocytes from women whose ovaries have been stimulated could be matured, fertilized by ICSI, cleaved in vitro and to give rise to a live birth. However, the developmental competence of embryos derived from immature oocytes is reduced, compared with sibling in vivo matured oocytes

  2. Impaired representation of geometric relationships in humans with damage to the hippocampal formation.

    Directory of Open Access Journals (Sweden)

    Carsten Finke

    Full Text Available The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.

  3. Impaired representation of geometric relationships in humans with damage to the hippocampal formation.

    Science.gov (United States)

    Finke, Carsten; Ostendorf, Florian; Braun, Mischa; Ploner, Christoph J

    2011-01-01

    The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.

  4. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  5. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    Science.gov (United States)

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also

  6. Meiotic and mitotic behaviour of a ring/deleted chromosome 22 in human embryos determined by preimplantation genetic diagnosis for a maternal carrier

    Directory of Open Access Journals (Sweden)

    Laver Sarah

    2009-01-01

    Full Text Available Abstract Background Ring chromosomes are normally associated with developmental anomalies and are rarely inherited. An exception to this rule is provided by deletion/ring cases. We were provided with a unique opportunity to investigate the meiotic segregation at oogenesis in a woman who is a carrier of a deleted/ring 22 chromosome. The couple requested preimplantation genetic diagnosis (PGD following the birth of a son with a mosaic karyotype. The couple underwent two cycles of PGD. Studies were performed on lymphocytes, single embryonic cells removed from 3 day-old embryos and un-transferred embryos. Analysis was carried out using fluorescence in situ hybridisation (FISH with specific probe sets in two rounds of hybridization. Results In total, 12 embryos were biopsied, and follow up information was obtained for 10 embryos. No embryos were completely normal or balanced for chromosome 22 by day 5. There was only one embryo diagnosed as balanced of 12 biopsied but that accumulated postzygotic errors by day 5. Three oocytes apparently had a balanced chromosome 22 complement but all had the deleted and the ring 22 and not the intact chromosome 22. After fertilisation all the embryos accumulated postzygotic errors for chromosome 22. Conclusion The study of the preimplantation embryos in this case provided a rare and significant chance to study and understand the phenomena associated with this unusual type of anomaly during meiosis and in the earliest stages of development. It is the first reported PGD attempt for a ring chromosome abnormality.

  7. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles

    DEFF Research Database (Denmark)

    Griesinger, Georg; Kolibianakis, E M; Papanikolaou, E G

    2007-01-01

    OBJECTIVE: To report the outcome of frozen-thawed embryo replacement cycles after GnRH-agonist triggering of final oocyte maturation in the collecting cycle with GnRH-antagonist. DESIGN: Prospective, observational, multicentric clinical study. SETTING: Tertiary university-affiliated IVF centers...... a total of 228 participants. Surplus embryos or oocytes at the pronuclear stage were cryopreserved in 53 patients after hCG administration and 32 patients after GnRH-agonist administration on the basis of patient choice, pronuclear/embryo availability, and local laws. INTERVENTION(S): Transfer of frozen......-thawed embryos. MAIN OUTCOME MEASURE(S): Live birth rate. RESULT(S): Thirty-one and 23 patients after administration of hCG and GnRH-agonist, respectively, started a frozen-embryo replacement cycle by September 2005, with 25 and 16 patients eventually undergoing at least one frozen-thawed ET. Live birth rate per...

  8. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    Science.gov (United States)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  9. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo.

    Science.gov (United States)

    Itani, Nozomi; Skeffington, Katie L; Beck, Christian; Niu, Youguo; Giussani, Dino A

    2016-01-01

    There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy. © 2015 The Authors. Journal of Pineal Research. Published by John Wiley & Sons Ltd.

  10. Decision making under explicit risk is impaired in individuals with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Fujiwara, Esther; Tomlinson, Sara E; Purdon, Scot E; Gill, M John; Power, Christopher

    2015-01-01

    Human immunodeficiency virus (HIV) can affect the frontal-striatal brain regions, which are known to subserve decision-making functions. Previous studies have reported impaired decision making among HIV+ individuals using the Iowa Gambling Task, a task that assesses decision making under ambiguity. Previous study populations often had significant comorbidities such as past or present substance use disorders and/or hepatitis C virus coinfection, complicating conclusions about the unique contributions of HIV-infection to decision making. Decision making under explicit risk has very rarely been examined in HIV+ individuals and was tested here using the Game of Dice Task (GDT). We examined decision making under explicit risk in the GDT in 20 HIV+ individuals without substance use disorder or HCV coinfection, including a demographically matched healthy control group (n = 20). Groups were characterized on a standard neuropsychological test battery. For the HIV+ group, several disease-related parameters (viral load, current and nadir CD4 T-cell count) were included. Analyses focused on the GDT and spanned between-group (t-tests; analysis of covariance, ANCOVA) as well as within-group comparisons (Pearson/Spearman correlations). HIV+ individuals were impaired in the GDT, compared to healthy controls (p = .02). Their decision-making impairments were characterized by less advantageous choices and more random choice strategies, especially towards the end of the task. Deficits in the GDT in the HIV+ group were related to executive dysfunctions, slowed processing/motor speed, and current immune system status (CD4+ T-cell levels, ps Decision making under explicit risk in the GDT can occur in HIV-infected individuals without comorbidities. The correlational patterns may point to underlying fronto-subcortical dysfunctions in HIV+ individuals. The GDT provides a useful measure to assess risky decision making in this population and should be tested in larger studies.

  11. Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

    Directory of Open Access Journals (Sweden)

    Rachel E. Jennings

    2017-11-01

    Full Text Available To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.

  12. Role of melatonin in embryo fetal development

    OpenAIRE

    Voiculescu, SE; Zygouropoulos, N; Zahiu, CD; Zagrean, AM

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal mela...

  13. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans.

    Science.gov (United States)

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-04-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.

  14. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat.

    Science.gov (United States)

    Goldstein-Piekarski, Andrea N; Greer, Stephanie M; Saletin, Jared M; Walker, Matthew P

    2015-07-15

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the "embodied" reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. Copyright © 2015 the authors 0270-6474/15/3510135-11$15.00/0.

  15. Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans

    DEFF Research Database (Denmark)

    Astrup, A; Andersen, T; Christensen, N J

    1990-01-01

    A reduced thermic response and an impaired activation of the sympathetic nervous system (SNS) has been reported after oral glucose in human obesity. It is, however, not known whether the reduced SNS activity returns to normal along with weight reduction. The thermic effect of glucose was lower...... in eight obese patients than in matched control subjects (1.7% vs 9.2%, p less than 0.002). The increase in arterial norepinephrine after glucose was also blunted in the obese patients. After a 30-kg weight loss their glucose and lipid profiles were markedly improved but the thermic effect of glucose...... was still lower than that of the control subjects (4.2%, p less than 0.001). The glucose-induced arterial norepinephrine response remained diminished in the reduced obese patients whereas the changes in plasma epinephrine were similar in all three groups. The results suggest that a defective SNS may...

  16. Human chorionic gonadotropin triggers angiogenesis via the modulation of endometrial stromal cell responsiveness to interleukin 1: a new possible mechanism underlying embryo implantation.

    Science.gov (United States)

    Bourdiec, Amélie; Shao, Rong; Rao, C V; Akoum, Ali

    2012-09-01

    Deep functional changes occurring within the endometrium during implantation are orchestrated by embryonic and maternal signals. Human chorionic gonadotropin (hCG), a major embryonic signal, plays a critical role in the initiation and maintenance of pregnancy. Interleukin (IL) 1, one of the earliest embryonic signals, appears to exert a direct impact on the receptive endometrium and to induce major molecular changes that are essential for embryo implantation. Herein we investigate whether hCG can modulate endometrial stromal cell (ESC) receptivity to IL1 during the implantation window and assess the impact on angiogenesis in vitro. Primary cultures of ESCs from normal fertile women during the implantation window were treated for 24 h with different concentrations of hCG (0-100 ng/ml) and stimulated for 24 h with IL1B (0-0.1 ng/ml). IL1 receptors (IL1Rs), IL1R antagonist (IL1RA), and monocyte chemotactic protein (MCP) 1 were analyzed by real-time PCR, ELISA, and Western blotting. The angiogenic activity in vitro was studied using human microvascular endothelial cell line, scratch wound assay, and cell proliferation via BrdU incorporation into DNA. Human CG induced a dose-dependent imbalance in ESC receptivity to IL1 by significantly upregulating the functional signaling IL1R1 and concomitantly downregulating the decoy inhibitory IL1R2 and IL1RA upon subsequent exposure to IL1B. Prior exposure to hCG amplified MCP1 secretion by ESCs in response to IL1B and triggered the release of angiogenic activity in vitro in which MCP1 appeared to play a significant role. Overexpression of IL1R2 using cell transfection inhibited IL1 and hCG/IL1B-mediated MCP1 secretion. These findings suggest that hCG coordinates embryonic signal interaction with the maternal endometrium, and point to a new possible pathway by which it may promote embryonic growth.

  17. Repression of TSC1/TSC2 mediated by MeCP2 regulates human embryo lung fibroblast cell differentiation and proliferation.

    Science.gov (United States)

    Wang, Yuanyuan; Chen, Chen; Deng, Ziyu; Bian, Erbao; Huang, Cheng; Lei, Ting; Lv, Xiongwen; Liu, Liping; Li, Jun

    2017-03-01

    Pulmonary fibrosis (PF) is a severe inflammatory disease with limited effective treatments. It is known that the transdifferentiation of human embryo lung fibroblast (HELF) cells from pulmonary fibroblasts into myofibroblasts, contributes to the progression of pulmonary fibrogenesis. The tuberous sclerosis proteins TSC1 and TSC2 are two key signaling factors which can suppress cell growth and proliferation. However, the roles of TSC1 and TSC2 in lung fibroblast are unclear. Here, we developed a PF model with bleomycin (BLM) in mice and conducted several simulation experiments in HELF cells. Our study shows that the expression of TSC1 and TSC2 in fibrotic mice lung was reduced and stimulation of HELF cells with TGF-β1 resulted in a down-regulation of TSC1 and TSC2. In addition, overexpression of TSC1 or TSC2 decreased cell proliferation and differentiation. Furthermore, we found that reduced expression of TSC1 and TSC2 caused by TGF-β1 is associated with the promoter methylation status of TSC1 and TSC2. MeCP2, controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. We found that expression of TSC1 and TSC2 can be repressed by MeCP2, which regulates HELF cell differentiation and proliferation as myofibroblasts and lead to PF ultimately. Copyright © 2016. Published by Elsevier B.V.

  18. On developing a thesis for Reproductive Endocrinology and Infertility fellowship: a case study of ultra-low (2%) oxygen tension for extended culture of human embryos.

    Science.gov (United States)

    Kaser, Daniel J

    2017-03-01

    Fellows in Reproductive Endocrinology and Infertility training are expected to complete 18 months of clinical, basic, or epidemiological research. The goal of this research is not only to provide the basis for the thesis section of the oral board exam but also to spark interest in reproductive medicine research and to provide the next generation of physician-scientists with a foundational experience in research design and implementation. Incoming fellows often have varying degrees of training in research methodology and, likewise, different career goals. Ideally, selection of a thesis topic and mentor should be geared toward defining an "answerable" question and building a practical skill set for future investigation. This contribution to the JARG Young Investigator's Forum revisits the steps of the scientific method through the lens of one recently graduated fellow and his project aimed to test the hypothesis that "sequential oxygen exposure (5% from days 1 to 3, then 2% from days 3 to 5) improves blastocyst yield and quality compared to continuous exposure to 5% oxygen among human preimplantation embryos."

  19. Cellular proliferation in the urorectal septation complex of the human embryo at Carnegie stages 13-18: a nuclear area-based morphometric analysis.

    Science.gov (United States)

    Nebot-Cegarra, Josep; Fàbregas, Pere Jordi; Sánchez-Pérez, Inma

    2005-10-01

    In order to analyse the patterns of cellular proliferation both in the mesenchyme of the urorectal septum (URS) and in the adjacent territories (posterior urogenital mesenchyme, anterior intestinal mesenchyme and cloacal folds mesenchyme), as well as their contribution to the process of cloacal division, a computer-assisted method was used to obtain the nuclear area of 3874 mesenchymal cells from camera lucida drawings of nuclear contours of selected sections of human embryos [Carnegie stages (CSs) 13-18]. Based on changes in the size of the nucleus during the cellular cycle, we considered proliferating cells in each territory to be those with a nuclear area over the 75th percentile. The URS showed increasing cell proliferation, with proliferation patterns that coincided closely with cloacal folds mesenchyme, and with less overall proliferation than urogenital and intestinal mesenchymes. Furthermore, at CS 18, we observed the beginning of the rupture in the cloacal membrane; however, no fusion has been demonstrated either between the URS and the cloacal membrane or between the cloacal folds. The results suggest that cloacal division depends on a morphogenetic complex where the URS adjacent territories could determine septal displacement at the time that their mesenchymes could be partially incorporated within the proliferating URS.

  20. [Assisted reproductive technologies and the embryo status].

    Science.gov (United States)

    Englert, Y

    The status of the human embryo has always be a subject of philosophical and theological thoughts with major social consequences, but, until the 19th century, it has been mainly an abstraction. The arrival of the human embryo in vitro, materialized by Louise Brown's birth in 1978 and above all by the supernumerary embryos produced by the Australian team of Trounson and Wood following the introduction of ovarian stimulation, will turn theoretical thoughts into a reality. Nobody may ignore the hidden intentions behind the debate, as to recognise a status to a few days old embryo will immediately have a major impact on the status of a few weeks old foetus and therefore on the abortion rights. We will see that the embryo status, essentially based as well on a vision on the good and evil as on social order, cannot be based on a scientific analysis of the reproduction process but comes from a society's choice, by essence " arbitrary " and always disputable. This does not preclude the collectivity right and legitimacy to give a precise status and it is remarkable to observe the law is careful not to specify which status to give to the human embryo. It is more thru handling procedures and functioning rules that the law designed the embryo position, neither with a status of a person, nor of a thing. It nevertheless remains true that there is a constant risk that the legislation gives the embryo a status that would call into question it's unique characteristic of early reproductive stage, jeopardizing at once the hard-won reproductive freedom (reproductive choice) as well as freedom of research on embryonic stem cells, one of the most promising field of medical research.

  1. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments.

    Science.gov (United States)

    Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D

    2010-10-01

    To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.

  2. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  4. Mobile phone use for 5 minutes can cause significant memory impairment in humans.

    Science.gov (United States)

    Kalafatakis, F; Bekiaridis-Moschou, D; Gkioka, Eirini; Tsolaki, Magda

    2017-01-01

    Concerns about the possible adverse health effects of mobile phones (MP) have increased along with the expansion of their use. A number of research papers have tried to address this issue. Although many investigations concluded that MP use does have negative consequences, in terms of cognitive function of the human brain, the results so far have been divisive. A number of studies reported impairment of cognitive function after exposure to mobile phone electromagnetic field (MP EMF), while others observed no effect or improved performance. The variance in the results may be attributed to methodological issues. The present article focuses on possible effects of MP use on cognitive function and more specifically on working memory processes. An emphasis is placed in the lack of a validated tool, a cognitive task, that can produce MP EMF effects on human cognition in a repeatable fashion. Sixty four (64) healthy participants as well as 20 with Mild Cognitive Impairment (MCI) were the experimental group, while 36 healthy individuals were the control group. A computerized list of 10 words was presented and the participants were asked to reproduce it. The words were presented very briefly in order to increase the difficulty and hence the sensitivity of the task. Three measurements were taken for the experimental group: a) before using the MP, b) immediately after using the MP for a duration of 5 minutes, c) 5 minutes after the second measurement with no usage of the MP in between. Three measurements of the memory task were also taken for the control group in the same time intervals with no usage of a MP. The effect of age and gender in the performance of the task was taken into account. Healthy participants of the experimental group performed worst in the memory task after using the MP. While the third measurement (5 minutes after the 2nd measurement) was better than the second (after using the MP), but worse than the first (before using the MP). In contrast for the

  5. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  6. Effects of antibodies to EG-VEGF on angiogenesis in the chick embryo chorioallantoic membrane.

    Science.gov (United States)

    Feflea, Stefana; Cimpean, Anca Maria; Ceausu, Raluca Amalia; Gaje, Pusa; Raica, Marius

    2012-01-01

    Endocrine gland-related vascular endothelial growth factor (EG-VEGF), is an angiogenic factor specifically targeting endothelial cells derived from endocrine tissues. The inhibition of the EG-VEGF/prokineticin receptor pathway could represent a selective antiangiogenic and anticancer strategy. to evaluate the impact of an antibody to EG-VEGF on the rapidly growing capillary plexus of the chick embryo chorioallantoic membrane (CAM). The in ovo CAM assay was performed for the humanized EG-VEGF antibody. Hemorrhagic damage was induced in the capillaries, which led to early death of the embryos. Upon morphological staining, there was evidence of vascular disruption and extravasation of red blood cells in the chorion. Signs of vacuolization of the covering epithelium were also observed. Blocking endogenous EG-VEGF might represent a valuable approach of impairing or inhibiting angiogenesis in steroidogenic-derived embryonic tissues.

  7. ECTOPIA CORDIS TORÁCICA EN EMBRIÓN HUMANO DE 8 SEMANAS / Thoracic ectopia cordis in a human embryo of eight weeks

    Directory of Open Access Journals (Sweden)

    María A. Vila Bormey

    2013-10-01

    Full Text Available Resumen Los defectos de la pared corporal ventral se producen en el tórax, el abdomen y la pelvis; cuando afectan la región torácica, con desplazamiento total o parcial del corazón fuera de la cavidad, dan origen a la ectopia cordis torácica. Se presenta el caso de un embrión humano de 22 mm de longitud cráneo-raquis, semana 8, estadio 21 del desarrollo embrionario según Carnegie; proveniente de aborto voluntario por misoprostol. En el examen morfológico externo se constató como detalle anormal la presencia de un ápex cardíaco expuesto en la región ventral del tórax, lo que llevó al planteamiento diagnóstico de ectopia cordis torácica. El estudio morfológico de especímenes embrionarios abortados puede poner en evidencia anomalías del desarrollo que usualmente no son diagnosticadas por la pequeñez del producto y la precocidad de la pérdida. / Abstract Defects of the ventral body wall occur in the thorax, abdomen and pelvis, and when they affect the thoracic region, with total or partial displacement of the heart outside the cavity, they give rise to thoracic ectopia cordis. The case of a human embryo of 22 mm skull-spine, week 8, stage 21 of embryonic development according to Carnegie, from voluntary abortion with misoprostol, is presented. As abnormal feature, in the external morphological examination the presence of an exposed cardiac apex in the ventral region of the chest was noted, which led to the diagnosis of thoracic ectopia cordis. The morphological study of aborted embryonic specimens may reveal developmental abnormalities that are not usually diagnosed due to the smallness of the product and the precocity of the loss.

  8. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts.

    Science.gov (United States)

    Kucab, Jill E; Zwart, Edwin P; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H; Phillips, David H; Arlt, Volker M

    2016-03-01

    3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:CT:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:CT:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers' lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  10. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    Science.gov (United States)

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-03-22

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subjects were impaired in a motion but not a form 'pop-out' task when TMS was applied over V5. When motion was present, but irrelevant, or when attention to colour and form were required, TMS applied to V5 enhanced performance. When attention to motion was required in a motion-form conjunction search task, irrespective of whether the target was moving or stationary, TMS disrupted performance. These data suggest that attention to different visual attributes involves mutual inhibition between different extrastriate visual areas.

  11. A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import

    International Nuclear Information System (INIS)

    Rousselet, Estelle; Richaud, Pierre; Douki, Thierry; Chantegrel, Jocelyne Garcia; Favier, Alain; Bouron, Alexandre; Moulis, Jean-Marc

    2008-01-01

    A human epithelial cell line (HZR) growing with high zinc concentrations has been analyzed for its ability to sustain high cadmium concentrations. Exposure to up to 200 μM of cadmium acetate for 24 h hardly impacted viability, whereas most of parental HeLa cells were killed by less than 10 μM of cadmium. Upon challenge by 35 fold higher cadmium concentrations than HeLa cells, HZR cells did not display increased DNA damage, increased protein oxidation, or changed intracellular cadmium localization. Rather, the main cause of resistance against cadmium was by avoiding cadmium entry into cells, which differs from that against zinc as the latter accumulates inside cells. The zinc-resistant phenotype of these cells was shown to also impair extracellular manganese uptake. Manganese and cadmium competed for entry into HeLa cells. Probing formerly identified cadmium or manganese transport systems in different animal cells did not evidence any significant change between HeLa and HZR cells. These results reveal zinc adaptation influences manganese and cadmium cellular traffic and they highlight previously unknown connections among homeostasis of divalent metals

  12. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  13. A multicenter prospective study to assess the effect of early cleavage on embryo quality, implantation, and live-birth rate.

    Science.gov (United States)

    de los Santos, Maria José; Arroyo, Gemma; Busquet, Ana; Calderón, Gloria; Cuadros, Jorge; Hurtado de Mendoza, Maria Victoria; Moragas, Marta; Herrer, Raquel; Ortiz, Agueda; Pons, Carme; Ten, Jorge; Vilches, Miguel Angel; Figueroa, Maria José

    2014-04-01

    To investigate the impact of early cleavage (EC) on embryo quality, implantation, and live-birth rates. Prospective cross-sectional study. Multicenter study. Seven hundred embryo transfers and 1,028 early-stage human embryos. None. Implantation according to the presence of EC and embryo quality. The presence of EC is associated with embryo quality, especially in cycles with autologous oocytes. However, the use of EC as an additional criterion for selecting an embryo for transfer does not appear to significantly improve likelihood of implantation. Furthermore, embryos that presented EC had live-birth rates per implanted embryo similar to those that did not show any sign of cleavage. At least for conventional embryo culture and morphologic evaluations, the additional evaluation of EC in embryos may not be valuable to improve embryo implantation. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    International Nuclear Information System (INIS)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen

    2016-01-01

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  15. Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yan; Liu, Chunying; Lu, Wenwen; Zhang, Quan; Sodmergen, E-mail: sodmergn@pku.edu.cn

    2016-05-27

    The plant seeds formation are crucial parts in reproductive process in seed plants as well as food source for humans. Proper embryo development ensure viable seed formation. Here, we showed an Arabidopsis T-DNA insertion mutant slow embryo development1 (sed1) which exhibited retarded embryogenesis, led to aborted seeds. Embryo without SED1 developed slower compared to normal one and could be recognized at early globular stage by its white appearance. In later development stage, storage accumulated poorly with less protein and lipid body production. In vitro culture did not rescue albino embryo. SED1 encoded a protein targeted to mitochondria. Transmission electron microscopic analysis revealed that mitochondria developed abnormally, and more strikingly plastid failed to construct grana in time in sed1/sed1 embryo. These data indicated that SED1 is indispensable for embryogenesis in Arabidopsis, and the mitochondria may be involved in the regulation of many aspects of seed development. -- Highlights: •Arabidopsis SED1 is essential for embryo development. •The sed1 embryo accumulates less storage and has abnormal ultrastructure. •SED1 localizes to the mitochondrion.

  16. Patients' Preference for Number of Embryos Transferred During IVF ...

    African Journals Online (AJOL)

    Background: The Human Fertilization and Embryology Authority is considering limiting the number of embryos that can be transferred to single embryo per cycle as has been done in several European countries, with the aim of reducing the rate of multiple pregnancies and its attendant complications following in vitro ...

  17. Effects of antiandrogenic progestins, chlormadinone and cyproterone acetate, and the estrogen 17α-ethinylestradiol (EE2), and their mixtures: Transactivation with human and rainbowfish hormone receptors and transcriptional effects in zebrafish (Danio rerio) eleuthero-embryos

    Energy Technology Data Exchange (ETDEWEB)

    Siegenthaler, Patricia Franziska [University of Applied Sciences and Arts Northwestern Switzerland (FHNW), School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Bain, Peter [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water Flagship, PMB2, Glen Osmond, 5064 South Australia (Australia); Riva, Francesco [IRCCS – Istituto di Ricerche Farmacologiche “Mario Negri”, Environmental Biomarkers Unit, Department of Environmental Health Sciences, Via La Masa 19, I-20156 Milan (Italy); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland (FHNW), School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich (Switzerland)

    2017-01-15

    Highlights: • Agonistic and antagonistic activity of CMA and CPA were assessed in vitro. • CMA and CPA showed different interaction with human and fish receptors. • No progestogenic but antiandrogenic and antiglucocorticoid activity occurred in fish. • CMA and CPA showed transcriptional changes in zebrafish embryos. • Binary mixtures of the progestins with EE2 were assessed in vitro and in vivo. - Abstract: Synthetic progestins act as endocrine disrupters in fish but their risk to the environment is not sufficiently known. Here, we focused on an unexplored antiandrogenic progestin, chlormadinone acetate (CMA), and the antiandrogenic progestin cyproterone acetate (CPA). The aim was to evaluate whether their in vitro interaction with human and rainbowfish (Melanotaenia fluviatilis) sex hormone receptors is similar. Furthermore, we investigated their activity in zebrafish (Danio rerio) eleuthero-embryos. First, we studied agonistic and antagonistic activities of CMA, CPA, and 17α-ethinylestradiol (EE2), in recombinant yeast expressing either the human progesterone (PGR), androgen (AR), or estrogen receptor. The same compounds were also investigated in vitro in a stable transfection cell system expressing rainbowfish nuclear steroid receptors. For human receptors, both progestins exhibited progestogenic, androgenic and antiestrogenic activity with no antiandrogenic or estrogenic activity. In contrast, interactions with rainbowfish receptors showed no progestogenic, but antiandrogenic, antiglucocorticoid, and some antiestrogenic activity. Thus, interaction with and transactivation of human and rainbowfish PGR and AR were distinctly different. Second, we analyzed transcriptional alterations in zebrafish eleuthero‐embryos at 96 and 144 h post fertilization after exposure to CPA, CMA, EE2, and binary mixtures of CMA and CPA with EE2, mimicking the use in oral contraceptives. CMA led to slight down-regulation of the ar transcript, while CPA down-regulated ar

  18. 3-Amino-thieno[2,3-b]pyridines as microtubule-destabilising agents: Molecular modelling and biological evaluation in the sea urchin embryo and human cancer cells.

    Science.gov (United States)

    Eurtivong, Chatchakorn; Semenov, Victor; Semenova, Marina; Konyushkin, Leonid; Atamanenko, Olga; Reynisson, Jóhannes; Kiselyov, Alex

    2017-01-15

    A series of 3-amino-thieno[2,3-b]pyridines was prepared and tested in a phenotypic sea urchin embryo assay to identify potent and specific molecules that affect tubulin dynamics. The most active compounds featured a tricyclic core ring system with a fused cycloheptyl or cyclohexyl substituent and unsubstituted or alkyl-substituted phenyl moiety tethered via a carboxamide. Low nano-molar potency was observed in the sea urchin embryos for the most active compounds (1-5) suggestive of a microtubule-destabilising effect. The molecular modelling studies indicated that the tubulin colchicine site is inhibited, which often leads to microtubule-destabilisation in line with the sea urchin embryo results. Finally, the identified hits displayed a robust growth inhibition (GI 50 of 50-250nM) of multidrug-resistant melanoma MDA-MB-435 and breast MDA-MB-468 human cancer cell lines. This work demonstrates that for the thieno[2,3-b]pyridines the most effective mechanism of action is microtubule-destabilisation initiated by binding to the colchicine pocket. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Brachyury expression in tailless Molgulid ascidian embryos.

    Science.gov (United States)

    Takada, Norio; York, Jonathan; Davis, J Muse; Schumpert, Brenda; Yasuo, Hitoyoshi; Satoh, Nori; Swalla, Billie J

    2002-01-01

    The T-box transcription factor gene Brachyury is important for the differentiation of notochord in all chordates, including the ascidians Halocynthia roretzi and Ciona intestinalis. We isolated Brachyury from molgulid ascidians, which have evolved tailless larvae multiple times independently, and found the genes appear functional by cDNA sequence analyses. We then compared the expression of Mocu-Bra in tailed Molgula oculata embryos to two tailless species, Molgula occulta (Mocc-Bra) and Molgula tectiformis (Mt-Bra). Here we show that both tailless species express Brachyury in the notochord lineage during embryogenesis. Initial expression of Mocu-Bra is normal in tailed M. oculata embryos; 10 precursor notochord cells divide twice to result in 40 notochord cells that converge and extend to make a notochord down the center of the tail. In contrast, in tailless Molgula occulta, Mocc-Bra expression disappears prematurely, and there is only one round of division, resulting in 20 cells in the final notochord lineage that never converge or extend. In M. occulta x M. oculata hybrid embryos, expression of Mocu-Bra is prolonged, and the embryos form a tail with 20 notochord cells that converge and extend normally. However, in Molgula tectiformis, a different tailless ascidian, Mt-Bra was expressed only in the 10 notochord precursor cells, which never divide, converge, or extend. In summary, neither Brachyury function nor the early establishment of the notochord lineage appears to be impaired in tailless embryos. In light of these results, we are continuing to investigate how and why notochord development is lost in tailless molgulid ascidian embryos.

  20. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons in humans, mice and pigs

    Science.gov (United States)

    Twenty-six confirmed imprinted genes in the bovine were quantified in in vivo produced oocytes and embryos. Eighteen were detectable and their transcriptional abundance were categorized into five patterns: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); p...

  1. Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles.

    Science.gov (United States)

    Li, Xiong; Xu, Yan; Fu, Jing; Zhang, Wen-Bi; Liu, Su-Ying; Sun, Xiao-Xi

    2015-11-01

    Assessment of embryo viability is a crucial component of in vitro fertilization and currently relies largely on embryo morphology and cleavage rate. Because morphological assessment remains highly subjective, it can be unreliable in predicting embryo viability. This study investigated the metabolomic profiling of embryo culture media using near-infrared (NIR) spectroscopy for predicting the implantation potential of human embryos in frozen-thawed embryo transfer (FET) cycles. Spent embryo culture media was collected on day 4 after thawed embryo transfer (n = 621) and analysed using NIR spectroscopy. Viability scores were calculated using a predictive multivariate algorithm of fresh embryos with known pregnancy outcomes. The mean viability indices of embryos resulting in clinical pregnancy following FET were significantly higher than those of non-implanted embryos and differed between the 0, 50, and 100 % implantation groups. Notably, the 0 % group index was significantly lower than the 100 % implantation group index (-0.787 ± 0.382 vs. 1.064 ± 0.331, P  0.05). NIR metabolomic profiling of thawed embryo culture media is independent of morphology and correlates with embryo implantation potential in FET cycles. The viability score alone or in conjunction with morphologic grading is a more objective marker for implantation outcome in FET cycles than morphology alone.

  2. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2018-05-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  3. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    Science.gov (United States)

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Effects of embryo-derived exosomes on the development of bovine cloned embryos.

    Directory of Open Access Journals (Sweden)

    Pengxiang Qu

    Full Text Available The developmental competence of in vitro cultured (IVC embryos is markedly lower than that of their in vivo counterparts, suggesting the need for optimization of IVC protocols. Embryo culture medium is routinely replaced three days after initial culture in bovine, however, whether this protocol is superior to continuous nonrenewal culture method under current conditions remains unclear. Using bovine somatic cell nuclear transfer (SCNT embryos as the model, our results showed that compared with routine renewal treatment, nonrenewal culture system significantly improved blastocyst formation, blastocyst quality (increased total cell number, decreased stress and apoptosis, enhanced Oct-4 expression and ratio of ICM/TE, as well as following development to term. Existence and function of SCNT embryo-derived exosomes were then investigated to reveal the cause of impaired development induced by culture medium replacement. Exosomes were successfully isolated through differential centrifugation and identified by both electron microscopy and immunostaining against exosomal membrane marker CD9. Supplementation of extracted exosomes into freshly renewed medium significantly rescued not only blastocyst formation and quality (in vitro development, but also following growth to term (in vivo development. Notably, ratio of ICM/TE and calving rate were enhanced to a similar level as that in nonrenewal group. In conclusion, our results for the first time indicate that 1: bovine SCNT embryos can secrete exosomes into chemically defined culture medium during IVC; 2: secreted exosomes are essential for SCNT blastocyst formation, blastocyst quality, and following development to term; 3: removal of exosomes induced by culture medium replacement impairs SCNT embryo development, which can be avoided by nonrenewal culture procedure or markedly recovered by exosome supplementation.

  5. The effect of vitrification on embryo development and subsequently postnatal health using a mouse model

    OpenAIRE

    Raja Khalif, Raja

    2016-01-01

    Animal models have shown that vitrification impairs ultrastructure and developmental potential of the oocyte, embryo survival rate, pregnancy rate and results in low birth weight of offspring but any long term effects on offspring are still unknown. In this study, embryos were vitrified at the 8-cell stage and kept in LN2. The first experiment investigated the effect of vitrification on numbers of surviving cells (comparing vitrified and non-vitrified embryos). The blastocysts developed from ...

  6. Efficiency of assisted hatching of the cryopreserved–melted embryos

    Directory of Open Access Journals (Sweden)

    V. A. Pitko

    2018-04-01

    , parameters of positive results of tests on HCG (human chorionic gonadotropin (42 % against 27 % and quantity of clinical pregnancy (35 % against 24 % were statistically higher in the group with assisted hatching comparatively to the control group (P < 0.004; P < 0.001 accordingly. Conclusions. Implantation of the transfered embryos and number of clinical pregnancies were statistically improved due to selection of the optimum freezing conditions and subsequent cultivation and conducting of procedure of mechanical incision of ZP.

  7. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    Science.gov (United States)

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  8. Selection of Norway spruce somatic embryos by computer vision

    Science.gov (United States)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  9. Mouse Embryo Compaction.

    Science.gov (United States)

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  10. [Chapter 9. The embryo in comparative law].

    Science.gov (United States)

    Mastor, Wanda

    2018-03-07

    On the boundaries of life and, as a result, almost a question of metaphysics, still dividing science and continually fuelling debates, one question does seem to be legally insoluble, ie the question of the status of the human embryo. A comparatist look allows us to put into perspective the various national postures with regard to the embryo in order to confront them, by putting forward the areas where they converge or diverge. Although a very global approach allows us to note certain similarities, a more precise study of the question of abortion in particular reflects the evidence of the contextualisation of the embryo. It is what it is, subject or object, enjoying absolute or very relative protection, a simply legislative or constitutional status, only with regard to legal systems, but also moral and religious systems in which it takes its place.

  11. Association between human herpesvirus infections and dementia or mild cognitive impairment: a systematic review protocol.

    Science.gov (United States)

    Warren-Gash, Charlotte; Forbes, Harriet; Breuer, Judith; Hayward, Andrew C; Mavrodaris, Angelique; Ridha, Basil H; Rossor, Martin; Thomas, Sara L; Smeeth, Liam

    2017-06-23

    Persisting neurotropic viruses are proposed to increase the risk of dementia, but evidence of association from robust, adequately powered population studies is lacking. This is essential to inform clinical trials of targeted preventive interventions. We will carry out a comprehensive systematic review of published and grey literature of the association between infection with, reactivation of, vaccination against or treatment of any of the eight human herpesviruses and dementia or mild cognitive impairment. We will search the Cochrane Library, Embase, Global Health, Medline, PsycINFO, Scopus, Web of Science, clinical trials registers, the New York Academy of Medicine Grey Literature Report, Electronic Theses Online Service through the British Library and the ISI Conference Proceedings Citation Index for randomised controlled trials, cohort, caseâ€"control, case crossover or self-controlled case series studies reported in any language up to January 2017. Titles, abstracts and full-text screening will be conducted by two researchers independently. Data will be extracted systematically from eligible studies using a piloted template. We will assess risk of bias of individual studies in line with the Cochrane Collaboration tool. We will conduct a narrative synthesis, grouping studies by exposure and outcome definitions, and will describe any differences by population subgroups and dementia subtypes. We will consider performing meta-analyses if there are adequate numbers of sufficiently homogeneous studies. The overall quality of cumulative evidence will be assessed using selected Grading of Recommendations, Assessment, Development and Evaluations criteria. As this is a review of existing studies, no ethical approval is required. Results will be disseminated through a peer-reviewed publication and at national and international conferences. We anticipate the review will clarify the current extent and quality of evidence for a link between herpesviruses and dementia

  12. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis

    NARCIS (Netherlands)

    Gori, Andrea; Tincati, Camilla; Rizzardini, Giuliano; Torti, Carlo; Quirino, Tiziana; Haarman, Monique; Ben Amor, Kaouther; van Schaik, Jacqueline; Vriesema, Aldwin; Knol, Jan; Marchetti, Giulia; Welling, Gjalt; Clerici, Mario

    Our results show that impairment of the gastrointestinal tracts in human immunodeficiency virus (HIV)-positive patients is present in the early phases of HIV disease. This impairment is associated with alterations in gut microbiota and intestinal inflammatory parameters. These findings support the

  13. Heme synthesis in the lead-intoxicated mouse embryo

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, G B; Maes, J

    1978-02-01

    Incorporation of /sup 55/Fe and of (/sup 14/C) glycine was studied in control embryos and mothers and in those which had received lead in the diet from day 7 of pregnancy. Incorporation of Fe into heme of embryonic liver which increases markedly for controls on day 17 of pregnancy was depressed greatly and showed no such increase in lead-intoxicated embryos. These embryos were retarded in growth but had normal heme concentrations in body and liver. Incorporation of glycine into embryonic heme and proteins was not affected. Data on incorporation in the mothers are also presented. It is thought that the impaired synthesis of heme in lead-intoxicated embryos limits their body growth during the late phase of pregnancy.

  14. Targeted mutagenesis in sea urchin embryos using TALENs.

    Science.gov (United States)

    Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi

    2014-01-01

    Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  15. Ovarian stimulation and embryo quality

    NARCIS (Netherlands)

    Baart, Esther; Macklon, Nick S.; Fauser, Bart J. C. M.

    To Study the effects of different ovarian stimulation approaches on oocyte and embryo quality, it is imperative to assess embryo quality with a reliable and objective method. Embryos rated as high quality by standardized morphological assessment are associated with higher implantation and pregnancy

  16. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review.

    Science.gov (United States)

    Zilverstand, Anna; Huang, Anna S; Alia-Klein, Nelly; Goldstein, Rita Z

    2018-06-06

    The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Transient impairment of the axolemma following regional anaesthesia by lidocaine in humans

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Lange, Kai Henrik Wiborg; Aachmann-Andersen, Niels Jacob

    2014-01-01

    The local anaesthetic lidocaine is known to block voltage-gated Na(+) channels (VGSCs), although at high concentration it was also reported to block other ion channel currents as well as to alter lipid membranes. The aim of this study was to investigate whether the clinical regional anaesthetic...... reflect, at least in part, a reversible structural impairment of the axolemma....

  18. Training of Speechreading for Severely Hearing-Impaired Persons by Human and Computer

    DEFF Research Database (Denmark)

    Bothe, Hans-Heinrich

    2007-01-01

    This paper describes evaluation results for a software programme that is intended to be used as a training-aid for lipreading in German. Tests were carried out in schools for hearing-impaired children in Germany which indicate that the ability to lipread increases significantly already after use...... of the software during a short period of time....

  19. Progress and Prospects in Human Genetic Research into Age-Related Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Yasue Uchida

    2014-01-01

    Full Text Available Age-related hearing impairment (ARHI is a complex, multifactorial disorder that is attributable to confounding intrinsic and extrinsic factors. The degree of impairment shows substantial variation between individuals, as is also observed in the senescence of other functions. This individual variation would seem to refute the stereotypical view that hearing deterioration with age is inevitable and may indicate that there is ample scope for preventive intervention. Genetic predisposition could account for a sizable proportion of interindividual variation. Over the past decade or so, tremendous progress has been made through research into the genetics of various forms of hearing impairment, including ARHI and our knowledge of the complex mechanisms of auditory function has increased substantially. Here, we give an overview of recent investigations aimed at identifying the genetic risk factors involved in ARHI and of what we currently know about its pathophysiology. This review is divided into the following sections: (i genes causing monogenic hearing impairment with phenotypic similarities to ARHI; (ii genes involved in oxidative stress, biologic stress responses, and mitochondrial dysfunction; and (iii candidate genes for senescence, other geriatric diseases, and neurodegeneration. Progress and prospects in genetic research are discussed.

  20. impact on embryo quality

    Directory of Open Access Journals (Sweden)

    Marijan Tandara

    2013-05-01

    Conclusions: In men with poorer semen quality, evaluated by standard semen parameters, a higher proportion of sperm with damaged DNA can also be expected. Higher sperm DNA damage, established by Halosperm test, also had an impact on embryo quality in this group of patients.

  1. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  2. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality.

    Science.gov (United States)

    Buemo, Carla Paola; Gambini, Andrés; Moro, Lucia Natalia; Hiriart, María Inés; Fernández-Martín, Rafael; Collas, Philippe; Salamone, Daniel Felipe

    2016-01-01

    In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.

  3. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis

    International Nuclear Information System (INIS)

    Li, Jinpeng; Phadnis-Moghe, Ashwini S.; Crawford, Robert B.; Kaminski, Norbert E.

    2017-01-01

    The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.

  4. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    Science.gov (United States)

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  5. Thinking After Drinking: Impaired Hippocampal Dependent Cognition in Human Alcoholics and Animal Models of Alcohol Dependence

    Directory of Open Access Journals (Sweden)

    Miranda Staples

    2016-09-01

    Full Text Available Alcohol use disorder currently affects approximately 18 million Americans, with at least half of these individuals having significant cognitive impairments subsequent to their chronic alcohol use. This is most widely apparent as frontal cortex dependent cognitive dysfunction, where executive function and decision making are severely compromised, as well as hippocampus dependent cognitive dysfunction, where contextual and temporal reasoning are negatively impacted. This review discusses the relevant clinical literature to support the theory that cognitive recovery in tasks dependent on the prefrontal cortex and hippocampus is temporally different across extended periods of abstinence from alcohol. Additional studies from preclinical models are discussed to support clinical findings. Finally, the unique cellular composition of the hippocampus and cognitive impairment dependent on the hippocampus is highlighted in the context of alcohol dependence.

  6. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate

    Energy Technology Data Exchange (ETDEWEB)

    Caly, Leon [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800 (Australia); Kassouf, Vicki T. [Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145 (Australia); Moseley, Gregory W. [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800 (Australia); Diefenbach, Russell J.; Cunningham, Anthony L. [Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145 (Australia); Jans, David A., E-mail: david.jans@monash.edu [Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic. 3800 (Australia)

    2016-02-12

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.

  7. Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate

    International Nuclear Information System (INIS)

    Caly, Leon; Kassouf, Vicki T.; Moseley, Gregory W.; Diefenbach, Russell J.; Cunningham, Anthony L.; Jans, David A.

    2016-01-01

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72L mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.

  8. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses

    NARCIS (Netherlands)

    Schwarzer, Caroline; Esteves, Telma Cristina; Arau´zo-Bravo, Marcos J.; le Gac, Severine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele

    2012-01-01

    Do different human ART culture protocols prepare embryos differently for post-implantation development? ... Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the

  9. Stem cell research on other worlds, or why embryos do not have a right to life.

    Science.gov (United States)

    Blackford, R

    2006-03-01

    Anxieties about the creation and destruction of human embryos for the purpose of scientific research on embryonic stem cells have given a new urgency to the question of whether embryos have moral rights. This article uses a thought experiment involving two possible worlds, somewhat removed from our own in the space of possibilities, to shed light on whether early embryos have such rights as a right not to be destroyed or discarded (a "right to life"). It is argued that early embryos do not have meaningful interests or any moral rights. Accordingly, claims about the moral rights of embryos do not justify restrictions on stem cell research.

  10. Immunoelectron microscopy in embryos.

    Science.gov (United States)

    Sierralta, W D

    2001-05-01

    Immunogold labeling of proteins in sections of embryos embedded in acrylate media provides an important analytical tool when the resolving power of the electron microscope is required to define sites of protein function. The protocol presented here was established to analyze the role and dynamics of the activated protein kinase C/Rack1 regulatory system in the patterning and outgrowth of limb bud mesenchyme. With minor changes, especially in the composition of the fixative solution, the protocol should be easily adaptable for the postembedding immunogold labeling of any other antigen in tissues of embryos of diverse species. Quantification of the labeling can be achieved by using electron microscope systems capable of supporting digital image analysis. Copyright 2001 Academic Press.

  11. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    Science.gov (United States)

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  12. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  13. Characterization of migratory primordial germ cells in the aorta-gonad-mesonephros of a 4.5 week-old human embryo: a toolbox to evaluate in-vitro early gametogenesis.

    Science.gov (United States)

    Gomes Fernandes, Maria; Bialecka, Monika; Salvatori, Daniela C F; Chuva de Sousa Lopes, Susana M

    2018-03-08

    Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in-vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS 12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues

  14. Doação e adoção como políticas para salvar os embriões humanos excedentes e congelados Donation and adoption as ways of saving excess frozen human embryos

    Directory of Open Access Journals (Sweden)

    Gerson Odilon Pereira

    2010-12-01

    Full Text Available Este artigo trata da divergência científica existente com relação à sobra de embriões congelados, particularmente entre a biologia, a religião, o direito e a bioética, e focando especialmente nos meios e nas formas com que cada uma dessas ciências caracteriza o início da vida. É objetivo dos autores, ainda, fornecer alternativas para a proteção do embrião humano, como a adoção por casais ou apenas por mulheres que, por razões médicas, não podem ser fertilizadas, mas que podem gestar. Em se tratando de Brasil, os autores concluem ser legal e legítimo a doação e a adoção de embrião humano para fertilização, desde que sejam considerados o princípio da dignidade da pessoa humana e mantido o sigilo sobre a identidade dos doadores de gametas, cujos dados devem permanecer registrados de forma permanente no centro onde ocorreu a fertilização.This article deals with the existing scientific divergence with regard to the surplus of frozen embryos, especially between biology, religion, the law and bioethics, with a specific focus on the ways in which each of these areas determines the onset of life. The aim of the authors is to suggest alternatives that protect the human embryo, such as adoption by couples or by single women, who, for medical reasons, are infertile, but are capable of bearing a child. In the case of Brazil, the authors conclude that it is legal and legitimate to donate and adopt human embryos for fertilization, so long as the principle of human dignity is upheld and confidentiality maintained regarding the identity of the donors of the gametes, whose data should remain on file permanently at the center where fertilization occurred.

  15. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress

    Science.gov (United States)

    Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B

    2012-01-01

    Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057

  16. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Cybel Mehawej

    2014-05-01

    Full Text Available Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16, is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.

  17. Cognitive impairment and antiretroviral treatment in a Peruvian population of patients with human immunodeficiency virus.

    Science.gov (United States)

    Guevara-Silva, E A

    2014-05-01

    HIV-associated cognitive impairment occurs even in the early stages of infection. Short-term memory, psychomotor speed, attention, and executive functioning are the main capacities affected. Controversy exists regarding whether highly active antiretroviral therapy (HAART) is helpful in combating this process. The objective of the present study is to determine the association between cognitive impairment and HAART in HIV-infected patients from Hospital Regional de Huacho. Prospective study of HIV patients meeting criteria to start HAART. Twenty-one HIV-positive patients were recruited between April and July 2011. Researchers administered a standardised neuropsychological test battery before and 4 weeks after onset of HAART. Psychomotor speed, executive function, short term memory (visual and verbal), attention, and visuospatial performance were evaluated. Nineteen patients completed the study (14 males and 5 females). In the pre-HAART evaluation, most patients scored below average on the executive function and psychomotor speed subtests. Psychomotor speed and immediate visual memory improved significantly after four months of treatment with HAART. Some degree of cognitive decline may present even in the early and asymptomatic stages of HIV infection. The benefits of antiretroviral treatment for cognitive performance can be detected after only a few weeks of follow-up. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  18. Are patients with schizophrenia impaired in processing non-emotional features of human faces?

    Directory of Open Access Journals (Sweden)

    Hayley eDarke

    2013-08-01

    Full Text Available It is known that individuals with schizophrenia exhibit signs of impaired face processing, however, the exact perceptual and cognitive mechanisms underlying these deficits are yet to be elucidated. One possible source of confusion in the current literature is the methodological and conceptual inconsistencies that can arise from the varied treatment of different aspects of face processing relating to emotional and non-emotional aspects of face perception. This review aims to disentangle the literature by focusing on the performance of patients with schizophrenia in a range of tasks that required processing of non-emotional features of face stimuli (e.g. identity or gender. We also consider the performance of patients on non-face stimuli that share common elements such as familiarity (e.g. cars and social relevance (e.g. gait. We conclude by exploring whether observed deficits are best considered as face-specific and note that further investigation is required to properly assess the potential contribution of more generalised attentional or perceptual impairments.

  19. Activation of PPAR{gamma} by Human Cytomegalovirus for de novo Replication Impairs Migration and Invasiveness of Cytotrophoblast from Early Placenta

    DEFF Research Database (Denmark)

    Rauwel, Benjamin; Mariamé, Bernard; Martin, Hélène

    2010-01-01

    , as assessed by using well-established in vitro models of invasive trophoblast i.e. primary cultures of EVCT isolated from first trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation, placentation...... and chromatin immunoprecipitation assays. Due to the key role of PPARgamma in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARgamma human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness...

  20. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Evelise Maria [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil); Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Ammar, Dib [Universidade do Oeste de Santa Catarina, Departamento de Biologia, Campus Universitario, 89600-000 Joacaba, SC (Brazil); Bem, Andreza Fabro de; Latini, Alexandra [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Mueller, Yara Maria Rauh [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Allodi, Silvana, E-mail: sallodi@histo.ufrj.br [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil)

    2010-06-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm{sup -2} UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of

  1. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    International Nuclear Information System (INIS)

    Nazari, Evelise Maria; Ammar, Dib; Bem, Andreza Fabro de; Latini, Alexandra; Mueller, Yara Maria Rauh; Allodi, Silvana

    2010-01-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm -2 UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of the

  2. Developmental toxicity of cartap on zebrafish embryos.

    Science.gov (United States)

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  3. An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans

    NARCIS (Netherlands)

    Kroes, Marijn C. W.; Tendolkar, Indira; van Wingen, Guido A.; van Waarde, Jeroen A.; Strange, Bryan A.; Fernández, Guillén

    2014-01-01

    Despite accumulating evidence for a reconsolidation process in animals, support in humans, especially for episodic memory, is limited. Using a within-subjects manipulation, we found that a single application of electroconvulsive therapy following memory reactivation in patients with unipolar

  4. Connexin 43 expression in human and mouse testes with impaired spermatogenesis

    Directory of Open Access Journals (Sweden)

    M Kotula-Balak

    2009-08-01

    Full Text Available Connexin 43 (Cx43 belongs to a family of proteins that form gap junction channels. The aim of this study was to examine the expression of Cx43 in the testis of a patient with Klinefelter’s syndrome and of mice with the mosaic mutation and a partial deletion in the long arm of the Y chromosome. These genetic disorders are characterized by the presence of numerous degenerated seminiferous tubules and impaired spermatogenesis. In mouse testes, the expression and presence of Cx43 were detected by means of immunohistochemistry and Western blot analysis, respectively. In testes of Klinefelter’s patient only immunoexpression of Cx43 was detected. Regardless of the species Cx43 protein was ubiquitously distributed in testes of reproductively normal males, whereas in those with testicular disorders either a weak intensity of staining or no staining within the seminiferous tubules was observed. Moderate to strong or very strong staining was confined to the interstitial tissue. In an immunoblot analysis of testicular homogenates Cx43 appeared as one major band of approximately 43 kDa. Our study adds three more examples of pathological gonads in which the absence or apparent decrease of Cx43 expression within the seminiferous tubules was found. A positive correlation between severe spermatogenic impairment and loss of Cx43 immunoreactivity observed in this study supports previous data that gap junctions play a crucial role in spermatogenesis. Strong Cx43 expression detected mostly in the interstitial tissue of the Klinefelter’s patient may presumably be of importance in sustaining Leydig cell metabolic activity. However, the role of gap junction communication in the control of Leydig cell function seems to be more complex than originally thought.

  5. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance.

    Science.gov (United States)

    Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A

    2016-11-01

    A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.

  6. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT

    NARCIS (Netherlands)

    Kleijkers, S.H.; Mantikou, E.; Slappendel, E.; Consten, D.; Echten-Arends, J. van; Wetzels, A.M.M.; Wely, M. van; Smits, L.J.; Montfoort, A.P. van; Repping, S.; Dumoulin, J.C.; Mastenbroek, S.

    2016-01-01

    STUDY QUESTION: Does embryo culture medium influence pregnancy and perinatal outcome in IVF? SUMMARY ANSWER: Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. WHAT IS KNOWN ALREADY: A wide variety of culture media for human preimplantation embryos in

  7. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT

    NARCIS (Netherlands)

    Kleijkers, Sander H. M.; Mantikou, Eleni; Slappendel, Els; Consten, Dimitri; van Echten-Arends, Jannie; Wetzels, Alex M.; van Wely, Madelon; Smits, Luc J. M.; van Montfoort, Aafke P. A.; Repping, Sjoerd; Dumoulin, John C. M.; Mastenbroek, Sebastiaan

    2016-01-01

    Does embryo culture medium influence pregnancy and perinatal outcome in IVF? Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. A wide variety of culture media for human preimplantation embryos in IVF/ICSI treatments currently exists. It is unknown which

  8. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF : a multicenter RCT

    NARCIS (Netherlands)

    Kleijkers, Sander H. M.; Mantikou, Eleni; Slappendel, Els; Consten, Dimitri; van Echten - Arends, Jannie; Wetzels, Alex M.; van Wely, Madelon; Smits, Luc J. M.; van Montfoort, Aafke P. A.; Repping, Sjoerd; Dumoulin, John C. M.; Mastenbroek, Sebastiaan

    2016-01-01

    Does embryo culture medium influence pregnancy and perinatal outcome in IVF? Embryo culture media used in IVF affect treatment efficacy and the birthweight of newborns. A wide variety of culture media for human preimplantation embryos in IVF/ICSI treatments currently exists. It is unknown which

  9. Human computer interaction and communication aids for hearing-impaired, deaf and deaf-blind people: Introduction to the special thematic session

    DEFF Research Database (Denmark)

    Bothe, Hans-Heinrich

    2008-01-01

    This paper gives ail overview and extends the Special Thematic Session (STS) oil research and development of technologies for hearing-impaired, deaf, and deaf-blind people. The topics of the session focus oil special equipment or services to improve communication and human computer interaction....... The papers are related to visual communication using captions, sign language, speech-reading, to vibro-tactile stimulation, or to general services for hearing-impaired persons....

  10. Enhancement of NMRI Mouse Embryo Development In vitro

    Directory of Open Access Journals (Sweden)

    Abedini, F.

    2013-12-01

    Full Text Available Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygotes (NMRI after embryo vitrification. One-cell mouse embryos were obtained from NMRI mice after superovulation and mating with adult male NMRI mice. And then randomly divided into 4 groups for culture in four different cultures media including: M16 (A, DMEM/Ham, F-12 (B, DMEM/Ham's F-12 co-culture with Vero cells(C and DMEM/Ham's F-12 co-culture with MEF cells (D. Afterward all of the embryos were vitrified in EFS40 solution and collected. Results of our study revealed, more blastocysts significantly were developed with co-culture with MEF cells in DMEM/Ham's F-12 medium. More research needed to understand the effect of other components of culture medium, and co-culture on NMRI embryo development.

  11. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...

    Science.gov (United States)

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op

  12. Automatic Blastomere Recognition from a Single Embryo Image

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2014-01-01

    Full Text Available The number of blastomeres of human day 3 embryos is one of the most important criteria for evaluating embryo viability. However, due to the transparency and overlap of blastomeres, it is a challenge to recognize blastomeres automatically using a single embryo image. This study proposes an approach based on least square curve fitting (LSCF for automatic blastomere recognition from a single image. First, combining edge detection, deletion of multiple connected points, and dilation and erosion, an effective preprocessing method was designed to obtain part of blastomere edges that were singly connected. Next, an automatic recognition method for blastomeres was proposed using least square circle fitting. This algorithm was tested on 381 embryo microscopic images obtained from the eight-cell period, and the results were compared with those provided by experts. Embryos were recognized with a 0 error rate occupancy of 21.59%, and the ratio of embryos in which the false recognition number was less than or equal to 2 was 83.16%. This experiment demonstrated that our method could efficiently and rapidly recognize the number of blastomeres from a single embryo image without the need to reconstruct the three-dimensional model of the blastomeres first; this method is simple and efficient.

  13. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:26775677

  14. Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo

    Science.gov (United States)

    Demidova-Rice, Tatiana N.; Wolf, Lindsey; Deckenback, Jeffry; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects. PMID:22384158

  15. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-18

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.

  16. Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship.

    Science.gov (United States)

    Yoshimura, Natsue; Horiuchi, Daisuke; Shibata, Masao; Saitoe, Minoru; Qi, Mei-Ling; Okazawa, Hitoshi

    2006-04-17

    Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.

  17. Who abandons embryos after IVF?

    LENUS (Irish Health Repository)

    Walsh, A P H

    2010-04-01

    This investigation describes features of in vitro fertilisation (IVF) patients who never returned to claim their embryos following cryopreservation. Frozen embryo data were reviewed to establish communication patterns between patient and clinic; embryos were considered abandoned when 1) an IVF patient with frozen embryo\\/s stored at our facility failed to make contact with our clinic for > 2 yrs and 2) the patient could not be located after a multi-modal outreach effort was undertaken. For these patients, telephone numbers had been disconnected and no forwarding address was available. Patient, spouse and emergency family contact\\/s all escaped detection efforts despite an exhaustive public database search including death records and Internet directory portals. From 3244 IVF cycles completed from 2000 to 2008, > or = 1 embryo was frozen in 1159 cases (35.7%). Those without correspondence for > 2 yrs accounted for 292 (25.2%) patients with frozen embryos; 281 were contacted by methods including registered (signature involving abandoned embryos did not differ substantially from other patients. The goal of having a baby was achieved by 10\\/11 patients either by spontaneous conception, adoption or IVF. One patient moved away with conception status unconfirmed. The overall rate of embryo abandonment was 11\\/1159 (< 1%) in this IVF population. Pre-IVF counselling minimises, but does not totally eliminate, the problem of abandoned embryos. As the number of abandoned embryos from IVF accumulates, their fate urgently requires clarification. We propose that clinicians develop a policy consistent with relevant Irish Constitutional provisions to address this medical dilemma.

  18. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture

    DEFF Research Database (Denmark)

    Kveiborg, M.; Rattan, Suresh; Eriksen, E.F.

    2001-01-01

    is due to impaired responsiveness to calcitriol known to be important for the regulation of biological activities of the osteoblasts. Thus, we examined changes in vitamin D receptor (VDR) system and the osteoblastic responses to calcitriol treatment during in vitro osteoblast aging. We found no change...... in the amount of VDR at either steady state mRNA level or protein level with increasing in vitro osteoblast age and examination of VDR localization, nuclear translocation and DNA binding activity revealed no in vitro age-related changes. Furthermore, calcitriol (10(-8)M) treatment of early-passage osteoblastic......Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D(3) (calcitriol) are a prerequisite for optimal osteoblast functions. We have previously characterized several human diploid osteoblastic cell lines that exhibit typical in vitro aging characteristics during long...

  19. Humane Education for Students with Visual Impairments: Learning about Working Dogs

    Science.gov (United States)

    Bruce, Susan M.; Feinstein, Jennie Dapice; Kennedy, Meghan C.; Liu, Ming

    2015-01-01

    Introduction: This study examined the effect of an animal-assisted humane education course on the knowledge of students about caring for dogs physically and psychologically and making informed decisions about dog ownership, including working dogs. Method: This collaborative action-research study employed case study design to examine the effect of…

  20. Development of human skin equivalents to unravel the impaired skin barrier in atopic dermatitis skin

    NARCIS (Netherlands)

    Eweje, M.O.

    2016-01-01

    The studies in this thesis describes the barrier defects in Atopic Dermatitis (AD) skin and various techniques to develop AD Human Skin Equivalents (HSEs) which can be used to better understand the role of several factors in the pathogenesis of AD skin. The results described show that Inflammation

  1. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    Science.gov (United States)

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (pabnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  2. Chapter 1 Historical Background on Gamete and Embryo Cryopreservation.

    Science.gov (United States)

    Ali, Jaffar; AlHarbi, Naif H; Ali, Nafisa

    2017-01-01

    This chapter describes the development of the science of cryopreservation of gametes and embryos of various species including human. It attempts to record in brief the main contributions of workers in their attempts to cryopreserve gametes and embryos. The initial difficulties faced and subsequent developments and triumphs leading to present-day state of the art are given in a concise manner. The main players and their contributions are mentioned and the authors' aim is to do justice to them. This work also attempts to ensure that credit is correctly attributed for significant advances in gamete and embryo cryopreservation. In general this chapter has tried to describe the historical development of the science of cryopreservation of gametes and embryos as accurately as possible without bias or partiality.

  3. Role of melatonin in embryo fetal development.

    Science.gov (United States)

    Voiculescu, S E; Zygouropoulos, N; Zahiu, C D; Zagrean, A M

    2014-01-01

    Melatonin is an indoleamine produced by the pineal gland and secreted in a circadian manner. In the past few decades, research over this topic has been enhanced. Melatonin has many important roles in the human physiology: regulator of the circadian rhythms, sleep inducer, antioxidant, anticarcinogenic. This paper reviews the involvement of melatonin in embryo fetal development. The pineal gland develops completely postpartum, so both the embryo and the fetus are dependent on the maternal melatonin provided transplacentally. Melatonin appears to be involved in the normal outcome of pregnancy beginning with the oocyte quality and finishing with the parturition. Its pregnancy night-time concentrations increase after 24 weeks of gestation, with significantly high levels after 32 weeks. Melatonin receptors are widespread in the embryo and fetus since early stages. There is solid evidence that melatonin is neuroprotective and has a positive effect on the outcome of the compromised pregnancies. In addition, chronodisruption leads to a reproductive dysfunction. Thus, the influence of melatonin on the developing human fetus may not be limited to the entertaining of circadian rhythmicity, but further studies are needed.

  4. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    OpenAIRE

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-01-01

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subje...

  5. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles

    OpenAIRE

    Tazearslan, Cagdas; Huang, Jing; Barzilai, Nir; Suh, Yousin

    2011-01-01

    Dampening of insulin/insulin like growth factor-1 (IGF1) signaling results in extension of lifespan in invertebrate as well as murine models. The impact of this evolutionarily conserved pathway on modulation of human lifespan remains unclear. We previously identified two IGF1R mutations (Ala-37-Thr and Arg-407-His) that are enriched in Ashkenazi Jewish centenarians as compared to younger controls and are associated with reduced activity of the IGF1 receptor as measured in immortalized lymphoc...

  6. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain

    Science.gov (United States)

    Benítez-Burraco, Antonio; Lattanzi, Wanda; Murphy, Elliot

    2016-01-01

    Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest. PMID:27621700

  7. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  8. Viability of bovine demi embryo after splitting of fresh and frozen thawed embryo derived from in vitro embryo production

    Directory of Open Access Journals (Sweden)

    M Imron

    2007-06-01

    Full Text Available In vivo embryo production was limited by number of donor, wide variability respond due to superovulation program and also immunoactifity of superovulation hormone (FSH. Splitting technology could be an alternative to increase the number of transferrable embryos into recipien cows. Splitting is done with cutting embryo becoming two equal pieces (called demi embrio base on ICM orientation. The objective of this research was to determine the viability of demi embryo obtained from embryo splitting of fresh and frozen thawed embryo. The results showed that demi embryos which performed blastocoel reexpansion 3 hours after embryo splitting using fresh and frozen thawed embryos were 76.9 and 76.2% respectively. Base on existention of inner cell mass (ICM, the number of demi embryos developed with ICM from fresh and frozen thawed embryos were not significantly different (90.6 and 85.7% respectively. The cell number of demi embryo from fresh embryos splitting was not different compared with those from frozen thawed embryos (36.1 and 35.9 respectively. These finding indicated that embryo splitting can be applied to frozen thawed embryos with certain condition as well as fresh embryos.

  9. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies.

    Directory of Open Access Journals (Sweden)

    Cécile Fourrage

    Full Text Available Poc1 (Protein of Centriole 1 proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.

  10. Blastocyst Morphology Holds Clues Concerning The Chromosomal Status of The Embryo

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Savio Figueira

    2015-07-01

    Full Text Available Background: Embryo morphology has been proposed as an alternative marker of chromosomal status. The objective of this retrospective cohort study was to investigate the association between the chromosomal status on day 3 of embryo development and blastocyst morphology. Materials and Methods: A total of 596 embryos obtained from 106 cycles of intracytoplasmic sperm injection (ICSI followed by preimplantation genetic aneuploidy screening (PGS were included in this retrospective study. We evaluated the relationship between blastocyst morphological features and embryonic chromosomal alteration. Results: Of the 564 embryos with fluorescent in situ hybridization (FISH results, 200 reached the blastocyst stage on day 5 of development. There was a significantly higher proportion of euploid embryos in those that achieved the blastocyst stage (59.0% compared to embryos that did not develop to blastocysts (41.2% on day 5 (P<0.001. Regarding blastocyst morphology, we observed that all embryos that had an abnormal inner cell mass (ICM were aneuploid. Embryos with morphologically normal ICM had a significantly higher euploidy rate (62.1%, P<0.001. As regards to the trophectoderm (TE morphology, an increased rate of euploidy was observed in embryos that had normal TE (65.8% compared to embryos with abnormal TE (37.5%, P<0.001. Finally, we observed a two-fold increase in the euploidy rate in high-quality blastocysts with both high-quality ICM and TE (70.4% compared to that found in low-quality blastocysts (31.0%, P<0.001. Conclusion: Chromosomal abnormalities do not impair embryo development as aneuploidy is frequently observed in embryos that reach the blastocyst stage. A high-quality blastocyst does not represent euploidy of chromosomes 13, 14, 15, 16, 18, 21, 22, X and Y. However, aneuploidy is associated with abnormalities in the ICM morphology. Further studies are necessary to confirm whether or not the transfer of blastocysts with low-quality ICM should be

  11. Human Disturbance during Early Life Impairs Nestling Growth in Birds Inhabiting a Nature Recreation Area.

    Science.gov (United States)

    Remacha, Carolina; Delgado, Juan Antonio; Bulaic, Mateja; Pérez-Tris, Javier

    2016-01-01

    Nature recreation conflicts with conservation, but its impacts on wildlife are not fully understood. Where recreation is not regulated, visitors to natural areas may gather in large numbers on weekends and holidays. This may increase variance in fitness in wild populations, if individuals whose critical life cycle stages coincide with periods of high human disturbance are at a disadvantage. We studied nestling development of blue tits (Cyanistes caeruleus) in a natural area where recreation activities intensify during weekends and other public holidays at picnic and leisure facilities, but not in the surrounding woods. In nests located near recreation facilities, blue tit nestlings that hatched during holidays developed slowly, and fledged with low body mass and poor body condition. However, nestlings that hatched outside of holidays and weekends in these nest boxes developed normally, eventually attaining similar phenotypes as those hatching in the surrounding woods. Within-brood variance in body mass was also higher in broods that began growing during holidays in disturbed areas. Our results show that early disturbance events may have negative consequences for wild birds if they overlap with critical stages of development, unveiling otherwise cryptic impacts of human activities. These new findings may help managers better regulate nature recreation.

  12. Human Disturbance during Early Life Impairs Nestling Growth in Birds Inhabiting a Nature Recreation Area.

    Directory of Open Access Journals (Sweden)

    Carolina Remacha

    Full Text Available Nature recreation conflicts with conservation, but its impacts on wildlife are not fully understood. Where recreation is not regulated, visitors to natural areas may gather in large numbers on weekends and holidays. This may increase variance in fitness in wild populations, if individuals whose critical life cycle stages coincide with periods of high human disturbance are at a disadvantage. We studied nestling development of blue tits (Cyanistes caeruleus in a natural area where recreation activities intensify during weekends and other public holidays at picnic and leisure facilities, but not in the surrounding woods. In nests located near recreation facilities, blue tit nestlings that hatched during holidays developed slowly, and fledged with low body mass and poor body condition. However, nestlings that hatched outside of holidays and weekends in these nest boxes developed normally, eventually attaining similar phenotypes as those hatching in the surrounding woods. Within-brood variance in body mass was also higher in broods that began growing during holidays in disturbed areas. Our results show that early disturbance events may have negative consequences for wild birds if they overlap with critical stages of development, unveiling otherwise cryptic impacts of human activities. These new findings may help managers better regulate nature recreation.

  13. Is Toxoplasma Gondii Infection Related to Brain and Behavior Impairments in Humans? Evidence from a Population-Representative Birth Cohort.

    Directory of Open Access Journals (Sweden)

    Karen Sugden

    Full Text Available Toxoplasma gondii (T. gondii is a protozoan parasite present in around a third of the human population. Infected individuals are commonly asymptomatic, though recent reports have suggested that infection might influence aspects of the host's behavior. In particular, Toxoplasma infection has been linked to schizophrenia, suicide attempt, differences in aspects of personality and poorer neurocognitive performance. However, these studies are often conducted in clinical samples or convenience samples.In a population-representative birth-cohort of individuals tested for presence of antibodies to T. gondii (N = 837 we investigated the association between infection and four facets of human behavior: neuropsychiatric disorder (schizophrenia and major depression, poor impulse control (suicidal behavior and criminality, personality, and neurocognitive performance. Suicide attempt was marginally more frequent among individuals with T. gondii seropositivity (p = .06. Seropositive individuals also performed worse on one out of 14 measures of neuropsychological function.On the whole, there was little evidence that T. gondii was related to increased risk of psychiatric disorder, poor impulse control, personality aberrations or neurocognitive impairment.

  14. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  15. Angiotensin-converting enzyme activity and cognitive impairment during hypoglycaemia in healthy humans

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik; Thomsen, Carsten E; Høgenhaven, Hans

    2008-01-01

    INTRODUCTION: In type 1 diabetes increased risk of severe hypoglycaemia is associated with high angiotensin-converting enzyme (ACE) activity. We tested in healthy humans the hypothesis that this association is explained by the reduced ability of subjects with high ACE activity to maintain normal...... cognitive function during hypoglycaemia. METHODS: Sixteen healthy volunteers selected by either particularly high or low serum ACE activity were subjected to hypoglycaemia (plasma glucose 2.7 mmol/L). Cognitive function was assessed by choice reaction tests. RESULTS: Despite a similar hypoglycaemic stimulus...... in the two groups, only the group with high ACE activity showed significant deterioration in cognitive performance during hypoglycaemia. In the high ACE group mean reaction time (MRT) in the most complex choice reaction task was prolonged and error rate (ER) was increased in contrast to the low ACE group...

  16. Functional Impairment of Mononuclear Phagocyte System by the Human Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Karen Bohmwald

    2017-11-01

    Full Text Available The mononuclear phagocyte system (MPS comprises of monocytes, macrophages (MΦ, and dendritic cells (DCs. MPS is part of the first line of immune defense against a wide range of pathogens, including viruses, such as the human respiratory syncytial virus (hRSV. The hRSV is an enveloped virus that belongs to the Pneumoviridae family, Orthopneumovirus genus. This virus is the main etiological agent causing severe acute lower respiratory tract infection, especially in infants, children and the elderly. Human RSV can cause bronchiolitis and pneumonia and it has also been implicated in the development of recurrent wheezing and asthma. Monocytes, MΦ, and DCs significantly contribute to acute inflammation during hRSV-induced bronchiolitis and asthma exacerbation. Furthermore, these cells seem to be an important component for the association between hRSV and reactive airway disease. After hRSV infection, the first cells encountered by the virus are respiratory epithelial cells, alveolar macrophages (AMs, DCs, and monocytes in the airways. Because AMs constitute the predominant cell population at the alveolar space in healthy subjects, these cells work as major innate sentinels for the recognition of pathogens. Although adaptive immunity is crucial for viral clearance, AMs are required for the early immune response against hRSV, promoting viral clearance and controlling immunopathology. Furthermore, exposure to hRSV may affect the phagocytic and microbicidal capacity of monocytes and MΦs against other infectious agents. Finally, different studies have addressed the roles of different DC subsets during infection by hRSV. In this review article, we discuss the role of the lung MPS during hRSV infection and their involvement in the development of bronchiolitis.

  17. Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory.

    Science.gov (United States)

    Varga, Andrew W; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P; Osorio, Ricardo S; Rapoport, David M; Ayappa, Indu

    2014-10-29

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA. Copyright © 2014 the authors 0270-6474/14/3414571-07$15.00/0.

  18. HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy.

    Science.gov (United States)

    Tan, Suiyi; Duan, Heng; Xun, Tianrong; Ci, Wei; Qiu, Jiayin; Yu, Fei; Zhao, Xuyan; Wu, Linxuan; Li, Lin; Lu, Lu; Jiang, Shibo; Liu, Shuwen

    2014-07-01

    The breakdown of human retinal pigment epithelial (HRPE) barrier is considered as the etiology of retinopathy, which affects the quality of life of HIV/AIDS patients. Here we demonstrate that HIV-1 could directly impair HRPE barrier function, which leads to the translocation of HIV-1 and bacteria. HRPE cells (D407) were grown to form polarized, confluent monolayers and treated with different HIV-1 infectious clones. A significant increase of monolayer permeability, as measured by trans-epithelial electrical resistance (TEER) and apical-basolateral movements of sodium fluorescein, was observed. Disrupted tightness of HRPE barrier was associated with the downregulation of several tight junction proteins in D407 cells, including ZO-1, Occludin, Claudin-1, Claudin-2, Claudin-3, Claudin-4, and Claudin-5, after exposure to HIV-1, without affecting the viability of cells. HIV-1 gp120 was shown to participate in the alteration of barrier properties, as evidenced by decreased TEER and weakened expression of tight junction proteins in D407 monolayers after exposure to pseudotyped HIV-1, UV-inactivated HIV-1, and free gp120, but not to an envelope (Env)-defective mutant of HIV. Furthermore, exposure to HIV-1 particles could induce the release of pro-inflammatory cytokines in D407, including IL-6 and MCP-1, both of which downregulated the expression of ZO-1 in the HRPE barrier. Disrupted HRPE monolayer allowed translocation of HIV-1 and bacteria across the epithelium. Overall, these findings suggest that HIV-1 may exploit its Env glycoprotein to induce an inflammatory state in HRPE cells, which could result in impairment of HRPE monolayer integrity, allowing virus and bacteria existing in ocular fluids to cross the epithelium and penetrate the HRPE barrier. Our study highlights the role of HIV-1 in the pathogenesis of HIV/AIDS-related retinopathy and suggests potential therapeutic targets for this ocular complication.

  19. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    International Nuclear Information System (INIS)

    Bigdeli, Bahareh; Goliaei, Bahram; Masoudi-Khoram, Nastaran; Jooyan, Najmeh; Nikoofar, Alireza; Rouhani, Maryam; Haghparast, Abbas; Mamashli, Fatemeh

    2016-01-01

    human breast cancer. • Enterolactone pretreatment enhances radiation induced apoptosis. • Enterolactone pretreatment impairs repair of radiation-induced DNA damages. • Chromosomal aberrations increases in cells receiving enterolactone and X-ray. • Micronuclei formation is elevated after combined treatment with enterolactone.

  20. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Masoudi-Khoram, Nastaran, E-mail: n.masoudi@alumni.ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Jooyan, Najmeh, E-mail: n.jooyan@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of); Nikoofar, Alireza, E-mail: nikoofar@iums.ac.ir [Department of Radiotherapy, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran (Iran, Islamic Republic of); Rouhani, Maryam, E-mail: rouhani@iasbs.ac.ir [Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Gava Zang, Zanjan (Iran, Islamic Republic of); Haghparast, Abbas, E-mail: Haghparast@sbmu.ac.ir [Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjo St., Evin, Tehran (Iran, Islamic Republic of); Mamashli, Fatemeh, E-mail: mamashli@ut.ac.ir [Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, 16th Azar St., Enghelab Sq., Tehran (Iran, Islamic Republic of)

    2016-12-15

    human breast cancer. • Enterolactone pretreatment enhances radiation induced apoptosis. • Enterolactone pretreatment impairs repair of radiation-induced DNA damages. • Chromosomal aberrations increases in cells receiving enterolactone and X-ray. • Micronuclei formation is elevated after combined treatment with enterolactone.

  1. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  2. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    Directory of Open Access Journals (Sweden)

    Marcella Mauro

    2015-07-01

    Full Text Available Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1 and needle-abraded human skin (experiment 2. Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2, while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2 and those with intact skin (1.08 ± 0.20 ng·cm−2. To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI uptake assays. The results indicate that a long exposure time (i.e., seven days was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay. This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  3. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  4. Neurodevelopmental Impairment among Infants Born to Mothers Infected with Human Immunodeficiency Virus and Uninfected Mothers from Three Peri-Urban Primary Care Clinics in Harare, Zimbabwe

    Science.gov (United States)

    Kandawasvika, Gwendoline Q.; Ogundipe, Enitan; Gumbo, Felicity Z.; Kurewa, Edith N.; Mapingure, Munyaradzi P.; Stray-Pedersen, Babill

    2011-01-01

    Aim: The aim of this article is to document the risk of neurodevelopmental impairment (NDI) among infants enrolled in a programme for the prevention of mother-to-child transmission of HIV (human immunodeficiency virus) in Zimbabwe using the Bayley Infant Neurodevelopmental Screener (BINS). Method: We prospectively followed up infants at three…

  5. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    Energy Technology Data Exchange (ETDEWEB)

    Geldmeyer-Hilt, Kerstin, E-mail: kerstin.hilt@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Heine, Guido, E-mail: guido.heine@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Hartmann, Bjoern, E-mail: bjoern.hartmann@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Baumgrass, Ria, E-mail: baumgrass@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Radbruch, Andreas, E-mail: radbruch@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Worm, Margitta, E-mail: margitta.worm@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany)

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  6. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  7. 1,25-dihydroxyvitamin D3 impairs NF-κB activation in human naive B cells

    International Nuclear Information System (INIS)

    Geldmeyer-Hilt, Kerstin; Heine, Guido; Hartmann, Bjoern; Baumgrass, Ria; Radbruch, Andreas; Worm, Margitta

    2011-01-01

    Highlights: → In naive B cells, VDR activation by calcitriol results in reduced NF-κB p105 and p50 protein expression. → Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-κB p65. → Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. → Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1α,25-dihydroxyvitamin D 3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  8. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Role of the phagocytes on embryos: some morphological aspects.

    Science.gov (United States)

    Da Silva, José Roberto Machado Cunha

    2002-06-15

    Phagocytosis in embryos was studied by Elie Metchnikoff more than a century ago and is a pillar of the Phagocytic Theory. Throughout the last three decades phagocytosis in embryos has been studied from different perspectives, which this review describes and analyzes. The following branches were identified: 1) the search for the origin and first identification of well-known adult phagocytes in embryos, including their role after induced injuries; 2) the search for the occurrence of phagocytosis in embryos and its role during their physiological development; and 3) the search for phagocytosis in embryos, as a tool to study identity and self-recognition. It is possible to verify that different cell types are able to undertake phagocytosis, under a variety of different stimuli, and that the nature of what is phagocytosed also varies widely. Although the overwhelming majority of species described among metazoarians are invertebrates, most published articles in this field relate to mammals (particularly mice and humans) and birds (particularly chicks). In order to enrich this field of knowledge, research using a wider variety of vertebrate and invertebrate species should be undertaken. Furthermore, the present knowledge of phagocytosis in embryos needs a revised paradigm capable of embracing all the above-mentioned research trends under a single, more general, biological theory. In this sense, Metchnikoff's Phagocytic Theory, which is based on a broad biological paradigm and is thus capable of dealing with all research trends mentioned herein, should be revisited in order to contribute to this edification. Copyright 2002 Wiley-Liss, Inc.

  10. Impact of motorboats on fish embryos depends on engine type.

    Science.gov (United States)

    Jain-Schlaepfer, Sofia; Fakan, Eric; Rummer, Jodie L; Simpson, Stephen D; McCormick, Mark I

    2018-01-01

    Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish ( Amblyglyphidodon curacao ) in shallow reef conditions, allowing us to examine the effects of in situ boat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution.

  11. Occult abnormal pregnancies after first post-embryo transfer serum beta-human chorionic gonadotropin levels of 1.0-5.0 mIU/mL.

    Science.gov (United States)

    Maslow, Bat-Sheva L; Bartolucci, Alison; Sueldo, Carolina; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C

    2016-04-01

    To assess the occult pregnancy rate after "negative" first post-embryo transfer (ET) serum β-hCG results. Two-part retrospective cohort study and nested case series. University-based fertility center. A total of 1,571 negative first post-ET serum β-hCG results were included in the study; 1,326 results (primary cohort, June 2009-December 2013) were initially reported as <5 mIU/mL and 245 results (secondary cohort, January 2014-March 2015) were reported as discrete values from 1.0 to 5.0 mIU/mL. None. Rates of occult pregnancy, ectopic pregnancy, and complications after negative first post-ET serum β-hCG results. A total of 88.8% (1,178/1,326) of the negative first post-ET results reported as <5 were actually <1.0 mIU/mL. Occult pregnancy was incidentally identified in 1.2% (12/1,041) of subjects with follow-up. Six had ectopic pregnancies, and seven experienced serious complications; 11 (91.7%) of the 12 occult pregnancies had a first post-ET serum β-hCG level of 1.0-5.0 mIU/mL and 1 (8.3%) <1.0 mIU/mL. All pregnancies with serious complications had initial β-hCG levels of 1.0-5.0 mIU/mL. Of the 245 results reported as discreet values, occult pregnancies were diagnosed in 5.5% (9/163) of subjects with follow-up. One had an ectopic pregnancy, which was treated with methotrexate. There were no serious complications in the secondary cohort. The majority of negative first post-ET serum β-hCG levels are <1.0 mIU/mL. Results from 1.0 to 5.0 mIU/mL may fail to exclude abnormal pregnancy and are associated with poor outcomes compared with β-hCG levels <1.0 mIU/mL. Serial serum β-hCG may be warranted in this population. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Pre-persons, commodities or cyborgs: the legal construction and representation of the embryo.

    Science.gov (United States)

    Fox, M

    2000-01-01

    This paper explores how embryos have been represented in law. It argues that two main models have underpinned legal discourse concerning the embryo. One discourse, which has become increasingly prevalent, views embryos as legal subjects or persons. Such representations are facilitated by technological developments such as ultrasound imaging. In addition to influencing Parliamentary debate prior to the passage of the Human Fertilisation and Embryology Act 1990, images of embryos as persons feature prominently in popular culture, including advertising and films, and this discourse came to the fore in the 'orphaned embryo' debate in 1996. The main opposing discourse dismisses embryos as commodifiable objects, which fits with a trend towards legal recognition that reproductive materials such as sperm may be classified as property which may be donated or sold. In the case of cryopreserved embryos these competing perspectives have resulted in litigation over the status of frozen embryos. In this paper I argue that it might be productive to shift the debate from this polarised dispute over whether embryos matter or not, whether they are pre-persons or commodities. Instead, I suggest that we should attempt to locate them in a biotechnological milieu, where cyborg metaphors may be utilised, and questions of how we should treat embryos would be contextualized alongside our response to other cyborgs.

  13. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    Science.gov (United States)

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  14. Protein Kinase-C Beta Contributes to Impaired Endothelial Insulin Signaling in Humans with Diabetes Mellitus

    Science.gov (United States)

    Tabit, Corey E; Shenouda, Sherene M; Holbrook, Monica; Fetterman, Jessica L; Kiani, Soroosh; Frame, Alissa A; Kluge, Matthew A; Held, Aaron; Dohadwala, Mustali; Gokce, Noyan; Farb, Melissa; Rosenzweig, James; Ruderman, Neil; Vita, Joseph A; Hamburg, Naomi M

    2013-01-01

    Background Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling through the activity of protein kinase C-β (PKCβ) and nuclear factor κB (NFκB) reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. Methods and Results We measured protein expression and insulin response in freshly isolated endothelial cells from patients with Type 2 diabetes mellitus (n=40) and non-diabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in non-diabetic subjects but not in diabetic patients (P=0.003) consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=−0.541, P=0.02) Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes. Endothelial NFκB activation was higher in diabetes and was reduced with PKCβ inhibition. Conclusions We provide evidence for the presence of altered eNOS activation, reduced insulin action and inflammatory activation in the endothelium of patients with diabetes. Our findings implicate PKCβ activity in endothelial insulin resistance. PMID:23204109

  15. Telomere Length Reprogramming in Embryos and Stem Cells

    Directory of Open Access Journals (Sweden)

    Keri Kalmbach

    2014-01-01

    Full Text Available Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism’s lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg’s capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly responsible for restoring telomere DNA, recent studies have elucidated the role of alternative telomeres lengthening mechanisms in the reprogramming of early embryos and stem cells, which we review here.

  16. Surgical manipulation of mammalian embryos in vitro.

    Science.gov (United States)

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  17. Oxygen diffusion in fish embryos

    NARCIS (Netherlands)

    Kranenbarg, S.

    2002-01-01

    All vertebrate embryos pass through a developmental period of remarkably low morphological variability. This period has been called phylotypic period. During the phylotypic period, organogenesis takes place, including blood vessel development. Before the phylotypic

  18. [The destiny of cryopreserved embryos].

    Science.gov (United States)

    Karpel, L; Achour-Frydman, N; Frydman, R; Flis-Trèves, M

    2007-12-01

    To know the psychological motivations of couples who keep their embryos so long (five years and more) and do not make a decision about them. We studied 84 couples refrained from making a decision on their cryopreserved embryos for at least five years. They were invited to fill out a questionnaire focusing on three points: the reasons of the indecision, their own representation of the cryopreserved embryos and their choice for the future: donation to another couple, to research, pregnancy or no solution for the moment. Mean (S.D.) women's and men's age were respectively, 38.8 (2.5)- and 41.3 (2.5)-years old. On average, three (1-9) embryos are preserved since 7.5 (5-12) years. Most of couples are parents. Four major reasons explain their attitudes: feeling of being too aged (25%), fear of a multiple pregnancy (45%), disagreement between members of couple (20%) and fear of failure (42.5%). Multiple choices were given to the future of the embryos: 25% wanted a pregnancy, 8% wanted to give them to infertile couples, 20% to research and 27.5% did not find any solution. Twenty percent were hesitating. The representation of those embryos is more symbolic than material. Most of the time, they see them like a potential child, a hope for the future or a brother or sister of their alive children. Those embryos are symbolized. They are a proof of fertility, a hope for another child. So, whatever the legal statement, couples will be in a dilemma because it is never easy for an infertile person to renounce to embryos, and the hope for children.

  19. Repeated use of surrogate mothers for embryo transfer in the mouse.

    Science.gov (United States)

    Kolbe, Thomas; Palme, Rupert; Touma, Chadi; Rülicke, Thomas

    2012-01-01

    Embryo transfer in mice is a crucial technique for generation of transgenic animals, rederivation of contaminated lines, and revitalization of cryopreserved strains, and it is a key component of assisted reproduction techniques. It is common practice to use females only once as surrogate mothers. However, their reuse for a second embryo transfer could provide hygienic and economic advantages and conform to the concept of the 3Rs (replace, reduce, refine). This investigation evaluated the potential for a second embryo transfer in terms of feasibility, reproductive results, and experimental burden for the animal. Virgin female ICR mice (age 8-16 wk) were used as recipients for the first embryo transfer. Immediately after weaning of the first litter, a second surgical embryo transfer was performed into the same oviduct. Virgin females of comparable age to the reused mothers served as controls and underwent the same procedure. The first surgery did not affect the success of the second embryo transfer. Histological sections showed excellent wound healing without relevant impairment of involved tissues. We observed no differences in pregnancy rates or litter sizes between the transfer groups. Most importantly, we found no change in behavior indicating reduced well-being and no increase of corticosterone metabolites in the feces of surrogate mothers reused for a second embryo transfer. We conclude that a second embryo transfer in mice is feasible with regard to reproductive and animal welfare aspects.

  20. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    Directory of Open Access Journals (Sweden)

    Yann Gibert

    2011-01-01

    Full Text Available Hemojuvelin (Hjv, a member of the repulsive-guidance molecule (RGM family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  1. A Synthetic Thiourea-Based Tripodal Receptor that Impairs the Function of Human First Trimester Cytotrophoblast Cells

    Directory of Open Access Journals (Sweden)

    Darijana Horvat

    2014-07-01

    Full Text Available A synthetic tripodal-based thiourea receptor (PNTTU was used to explore the receptor/ligand binding affinity using CTB cells. The human extravillous CTB cells (Sw.71 used in this study were derived from first trimester chorionic villus tissue. The cell proliferation, migration and angiogenic factors were evaluated in PNTTU-treated CTB cells. The PNTTU inhibited the CTBs proliferation and migration. The soluble fms-like tyrosine kinase-1 (sFlt-1 secretion was increased while vascular endothelial growth factor (VEGF was decreased in the culture media of CTB cells treated with ≥1 nM PNTTU. The angiotensin II receptor type 2 (AT2 expression was significantly upregulated in ≥1 nM PNTTU-treated CTB cells in compared to basal; however, the angiotensin II receptor, type 1 (AT1 and vascular endothelial growth factor receptor 1 (VEGFR-1 expression was downregulated. The anti-proliferative and anti-angiogenic effect of this compound on CTB cells are similar to the effect of CTSs. The receptor/ligand affinity of PNTTU on CTBs provides us the clue to design a potent inhibitor to prevent the CTS-induced impairment of CTB cells.

  2. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  3. Sleep deprivation impairs spatial retrieval but not spatial learning in the non-human primate grey mouse lemur.

    Directory of Open Access Journals (Sweden)

    Anisur Rahman

    Full Text Available A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus, which is an interesting model of aging and Alzheimer's disease (AD. Two sets of experiments were performed. In a first set of experiments, we investigated the effects of SD on spatial learning and memory retrieval after one day of training in a circular platform task. Eleven male mouse lemurs aged between 2 to 3 years were tested in three different conditions: without SD as a baseline reference, 8 h of SD before the training and 8 h of SD before the testing. The SD was confirmed by electroencephalographic recordings. Results showed no effect of SD on learning when SD was applied before the training. When the SD was applied before the testing, it induced an increase of the amount of errors and of the latency prior to reach the target. In a second set of experiments, we tested the effect of 8 h of SD on spatial memory retrieval after 3 days of training. Twenty male mouse lemurs aged between 2 to 3 years were tested in this set of experiments. In this condition, the SD did not affect memory retrieval. This is the first study that documents the disruptive effects of the SD on spatial memory retrieval in this primate which may serve as a new validated challenge to investigate the effects of new compounds along physiological and pathological aging.

  4. [Birth weight and frozen embryo transfer: State of the art].

    Science.gov (United States)

    Anav, M; Ferrières-Hoa, A; Gala, A; Fournier, A; Zaragoza, S; Vintejoux, E; Vincens, C; Hamamah, S

    2018-04-18

    The aim of this study was to update our acknowledgment if there is a link between assisted embryo cryopreservation and epigenetics in human? Animal studies have demonstrated epigenetics consequence and especially imprinting disorders due to in vitro culture. In human, it is important to note that after frozen embryo transfer birth weight is significantly increased by 81 to 250g. But these studies cannot identify the reasons of such difference. This review strongly suggests that embryo cryopreservation is responsible for birth weight variations but mechanisms not yet elucidated. Epigenetics is probably one of these but to date, none study is able to prove it. We have to be attentive on a possible link between assisted reproductive technology (ART) and epigenetics reprogrammation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD for monogenic disorder

    Directory of Open Access Journals (Sweden)

    Abdelkrim Hmadcha

    2016-05-01

    Full Text Available From 106 human blastocyts donate for research after in vitro fertilization (IVF and preimplantation genetic diagnosis (PGD for monogenetic disorder, 3 human embryonic stem cells (hESCs HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15(q34.3;q14 detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were registered in the Spanish Stem Cell Bank.

  6. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD) for monogenic disorder

    OpenAIRE

    Abdelkrim Hmadcha; Yolanda Aguilera; Maria Dolores Lozano-Arana; Nuria Mellado; Javier Sánchez; Cristina Moya; Luis Sánchez-Palazón; Jose Palacios; Guillermo Antiñolo; Bernat Soria

    2016-01-01

    From 106 human blastocyts donate for research after in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for monogenetic disorder, 3 human embryonic stem cells (hESCs) HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15)(q34.3;q14) detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were r...

  7. The legal status of in vitro embryos

    Directory of Open Access Journals (Sweden)

    Samardžić Sandra

    2014-01-01

    Full Text Available Our science has advanced greatly and continues to do so. While being witnesses to this phenomenon, we are not yet ready to fully accept all of its results which can lead to the improvements of our biological structure, or our lives, in other words. There is a wide range of objections aimed at preventing any tests on embryos, deeming such actions as immoral, discriminatory or contrary to nature. However, the question is whether we are actually able to prevent such actions, to prevent obtaining further information that can assist in improving human life, i.e. to prevent future parents from providing the best future possible for their children?.

  8. Effect of semen quality on human sex ratio in in vitro fertilization and intracytoplasmic sperm injection: an analysis of 27,158 singleton infants born after fresh single-embryo transfer.

    Science.gov (United States)

    Arikawa, Mikiko; Jwa, Seung Chik; Kuwahara, Akira; Irahara, Minoru; Saito, Hidekazu

    2016-04-01

    To evaluate the effect of semen quality on human sex ratio in in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Retrospective cohort study. Not applicable. A total of 27,158 singleton infants born between 2007 and 2012 after fresh single-embryo transfer. None. Proportion of male infants among liveborn infants. There were 14,996 infants born after IVF, 12,164 infants born after ICSI with ejaculated sperm, and 646 infants born after ICSI with nonejaculated sperm. The sex ratio of IVF was 53.1% (95% confidence interval [CI], 52.3-53.9); the sex ratio of ICSI with ejaculated and nonejaculated sperm demonstrated as statistically significant reduction (48.2%; 95% CI, 47.3-49.1 and 47.7%; 95% CI, 43.8-51.6, respectively). In IVF, lower sperm motility, including asthenozoospermia (sperm motility ratio compared with normal sperm (51.0%; 95% CI, 48.6-53.3 vs. 53.4%; 95% CI, 52.5-54.3). In ICSI with ejaculated sperm, there was no association between sperm motility and sex ratio. Sperm concentration was not associated with sex ratio in both IVF and ICSI. In IVF, lower sperm motility was associated with a statistically significant reduction in sex ratio; ICSI with either ejaculated or nonejaculated sperm was associated with a statistically significant reduction in sex ratio regardless of semen quality. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Lessons from Embryos: Haeckel's Embryo Drawings, Evolution, and Secondary Biology Textbooks

    Science.gov (United States)

    Wellner, Karen L.

    2014-01-01

    In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work "noncredible". "Science" soon published "Haeckel's Embryos: Fraud Rediscovered," and Richardson's comments further reinvigorated criticism of Haeckel by…

  10. Developmental imaging: the avian embryo hatches to the challenge.

    Science.gov (United States)

    Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca

    2013-06-01

    The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.

  11. The number of oogonia and somatic cells in the human female embryo and fetus in relation to whether or not exposed to maternal cigarette smoking

    DEFF Research Database (Denmark)

    Lutterodt, M C; Sørensen, K P; Larsen, K B

    2009-01-01

    of in utero exposure to cigarette smoking. METHODS: Twenty-nine human first-trimester ovaries from legal abortions [aged 38-64 days post-conception (p.c.)] were collected. Mothers filled out a questionnaire about their smoking habits and delivered a urine sample for cotinine analysis. The ovarian cell numbers...

  12. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    Background Campylobacter jejuni is a major cause of inflammatory diarrhoea in humans and is considered a commensal of the gastroenteric tract of the avian host. However, little is known about the interaction between C. jejuni and the avian host including the cytokine responses and the expression...

  13. Lipodystrophy in human immunodeficiency virus patients impairs insulin action and induces defects in beta-cell function

    DEFF Research Database (Denmark)

    Andersen, Ove; Haugaard, Steen B; Andersen, Ulrik B

    2003-01-01

    similar between study groups. A hyperinsulinemic euglycemic clamp showed an impaired glucose disposal rate (GDR) in HALS patients (5.6 v 8.3 mg glucose/min. kg(FFM), P =.0006). As demonstrated by indirect calorimetry, HALS patients showed an impaired nonoxidative glucose metabolism (NOGM, 2.2 v 4.2, P...

  14. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos.

    Science.gov (United States)

    Haecker, Achim; Qi, Dai; Lilja, Tobias; Moussian, Bernard; Andrioli, Luiz Paulo; Luschnig, Stefan; Mannervik, Mattias

    2007-06-01

    Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs). How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Krüppel (Kr) and knirps (kni) genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA).

  15. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Anna Maria Lustri

    a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.

  16. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice.

    Science.gov (United States)

    Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J

    2014-10-10

    Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and

  17. Embryo density may affect embryo quality during in vitro culture in a microwell group culture dish.

    Science.gov (United States)

    Lehner, Adam; Kaszas, Zita; Murber, Akos; Rigo, Janos; Urbancsek, Janos; Fancsovits, Peter

    2017-08-01

    Culturing embryos in groups is a common practice in mammalian embryology. Since the introduction of different microwell dishes, it is possible to identify oocytes or embryos individually. As embryo density (embryo-to-volume ratio) may affect the development and viability of the embryos, the purpose of this study was to assess the effect of different embryo densities on embryo quality. Data of 1337 embryos from 228 in vitro fertilization treatment cycles were retrospectively analyzed. Embryos were cultured in a 25 μl microdrop in a microwell group culture dish containing 9 microwells. Three density groups were defined: Group 1 with 2-4 (6.3-12.5 μl/embryo), Group 2 with 5-6 (4.2-5.0 μl/embryo), and Group 3 with 7-9 (2.8-3.6 μl/embryo) embryos. Proportion of good quality embryos was higher in Group 2 on both days (D2: 18.9 vs. 31.5 vs. 24.7%; p Culturing 5-6 embryos together in a culture volume of 25 μl may benefit embryo quality. As low egg number, position, and distance of the embryos may influence embryo quality, results should be interpreted with caution.

  18. Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin.

    Science.gov (United States)

    Pilkington, Suzanne M; Ogden, Stephanie; Eaton, Laura H; Dearman, Rebecca J; Kimber, Ian; Griffiths, Christopher E M

    2018-01-01

    Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young ( 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology.

  19. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  20. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice

    Science.gov (United States)

    Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio

    2016-01-01

    Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329

  1. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide Hazard Screening

    Science.gov (United States)

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more reso...

  2. Critical reappraisal of embryo quality as a predictive parameter for pregnancy outcome: a pilot study.

    Science.gov (United States)

    Campo, R; Binda, M M; Van Kerkhoven, G; Frederickx, V; Serneels, A; Roziers, P; Lopes, A S; Gordts, S; Puttemans, P; Gordts, S

    2010-01-01

    Pilot study to analyse the efficacy and embryo morphology using a new human embryo culture medium (GM501) versus the conventional used medium (ISM1). Over a four-month period, all patients at the Leuven Institute of Fertility and Embryology (LIFE) were -randomly allocated to have their embryos cultured in either the standard sequential culture medium ISM1 (control) or in a new universal medium (GM501) (study group). Primary outcome parameters were clinical pregnancy and live birth rate. The secondary outcome parameter was the correlation of embryo fragmentation rate with pregnancy outcome. We did not observe any differences between the ISM1 control group and GM501 study group with regard to fertilization, pregnancy, implantation rates, ongoing pregnancy, and babies born. The number of embryos with a minimal fragmentation rate (less than 30%) was significantly higher in the GM501 study group. Although a significant higher embryo fragmentation rate was seen in In vitro culture of embryos in GM501, pregnancy outcome results were comparable to those of embryos cultured in ISM1. According to our results the value of embryo morphological criteria as a parameter for pregnancy outcome should be examined and discussed again.

  3. Frequency of chromosomal aneuploidy in high quality embryos from young couples using preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2017-09-01

    Full Text Available Background: Selection of the best embryo for transfer is very important in assisted reproductive technology (ART. Using morphological assessment for this selection demonstrated that the correlation between embryo morphology and implantation potential is relatively weak. On the other hand, aneuploidy is a key genetic factor that can influence human reproductive success in ART. Objective: The aim of this lab trial study was to evaluate the incidence of aneuploidies in five chromosomes in the morphologically high-quality embryos from young patients undergoing ART for sex selection. Materials and Methods: A total of 97 high quality embryos from 23 women at the age of 37or younger years that had previously undergone preimplantation genetic screening for sex selection were included in this study. After washing, the slides of blastomeres from embryos of patients were reanalyzed by fluorescence in-situ hybridization for chromosomes 13, 18 and 21. Results: There was a significant rate of aneuploidy determination in the embryos using preimplantation genetic screening for both sex and three evaluated autosomal chromosomes compared to preimplantation genetic screening for only sex chromosomes (62.9% vs. 24.7%, p=0.000. The most frequent detected chromosomal aneuploidy was trisomy or monosomy of chromosome 13. Conclusion: There is considerable numbers of chromosomal abnormalities in embryos generated in vitro which cause in vitro fertilization failure and it seems that morphological characterization of embryos is not a suitable method for choosing the embryos without these abnormalities

  4. Pregnancy and Multiple Births rate after Transferring 2 or 3 Embryos

    Directory of Open Access Journals (Sweden)

    F Mostajeran

    2006-05-01

    Full Text Available Background: In vitro fertilization (IVF is a progressing common reproduction method and if the number of transferred embryo increases, the pregnancy rate and multiple pregnancies will increase which may lead to higher medical costs and human suffering. We compared pregnancy and multiple pregnancies rate after two or three transferred embryo via IVF. Methods: From April 2003 to June 2004, 301 referred infertile women to Isfahan infertility center underwent IVF with transferring two or three good quality embryos. Results: From 298 patients, 2 and 3 embryos were transferred in 155 patients and in 143 patients, respectively. Pregnancy rate was 19.4% versus 24.5% in 2 and 3 embryos transferred patients, respectively. Twin gestations were found in 5(3.2% of 2 embryos transferred patients and in 11(7.7% of 3 embryos transferred patients. Discussion: Transferring two or three embryos with good quality increase the rate of twin gestations in young women, without significant improve in the chance of singleton conception. Key words: In Vitro Fertilization, Multiple gestations, Embryo transfer

  5. Valsartan improves adipose tissue function in humans with impaired glucose metabolism: a randomized placebo-controlled double-blind trial.

    Directory of Open Access Journals (Sweden)

    Gijs H Goossens

    Full Text Available BACKGROUND: Blockade of the renin-angiotensin system (RAS reduces the incidence of type 2 diabetes mellitus. In rodents, it has been demonstrated that RAS blockade improved adipose tissue (AT function and glucose homeostasis. However, the effects of long-term RAS blockade on AT function have not been investigated in humans. Therefore, we examined whether 26-wks treatment with the angiotensin II type 1 receptor blocker valsartan affects AT function in humans with impaired glucose metabolism (IGM. METHODOLOGY/PRINCIPAL FINDINGS: We performed a randomized, double-blind, placebo-controlled parallel-group study, in which 38 subjects with IGM were treated with valsartan (VAL, 320 mg/d or placebo (PLB for 26 weeks. Before and after treatment, an abdominal subcutaneous AT biopsy was collected for measurement of adipocyte size and AT gene/protein expression of angiogenesis/capillarization, adipogenesis, lipolytic and inflammatory cell markers. Furthermore, we evaluated fasting and postprandial AT blood flow (ATBF ((133Xe wash-out, systemic inflammation and insulin sensitivity (hyperinsulinemic-euglycemic clamp. VAL treatment markedly reduced adipocyte size (P<0.001, with a shift toward a higher proportion of small adipocytes. In addition, fasting (P = 0.043 and postprandial ATBF (P = 0.049 were increased, whereas gene expression of angiogenesis/capillarization, adipogenesis and macrophage infiltration markers in AT was significantly decreased after VAL compared with PLB treatment. Interestingly, the change in adipocyte size was associated with alterations in insulin sensitivity and reduced AT gene expression of macrophage infiltration markers. VAL did not alter plasma monocyte-chemoattractant protein (MCP-1, TNF-α, adiponectin and leptin concentrations. CONCLUSIONS/SIGNIFICANCE: 26-wks VAL treatment markedly reduced abdominal subcutaneous adipocyte size and AT macrophage infiltration markers, and increased ATBF in IGM subjects. The VAL

  6. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    Science.gov (United States)

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  7. The Early Stages of Heart Development: Insights from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Johannes G. Wittig

    2016-04-01

    Full Text Available The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.

  8. Long-distance transportation of primate embryos developing in culture: a preliminary study.

    Science.gov (United States)

    Nichols, Stephanie; Harvey, Alexandra; Gierbolini, Lynette; Gonzalez-Martinez, Janis; Brenner, Carol; Bavister, Barry

    2010-03-01

    Non-human primate embryos are invaluable for conducting research relevant to human infertility and stem cells, but their availability is restricted. In this preliminary study, rhesus monkey embryos were produced by IVF at the Caribbean Primate Research Centre and shipped in tubes of gassed culture medium within a battery-powered transport incubator by overnight courier to Wayne State University in Michigan. Upon arrival, the embryos were incubated in fresh culture medium to evaluate further development. In 11 shipments comprising 98 cleavage-stage embryos developing from oocytes that were mature (MII) upon collection, 51 (52%) reached advanced preimplantation stages (morula to hatched blastocyst) during prolonged culture following transportation. However, most embryos produced from oocytes that were immature (MI) at collection arrested and only 5/51 (10%) reached advanced stages of development. This study demonstrates that non-cryopreserved primate embryos can be routinely transported between distant sites without loss of developmental ability. In this way, the processes of production and study of non-cryopreserved primate embryos need not be restricted to the same or nearby laboratories. This will expand the use of these embryos for research and facilitate generation of translationally relevant information. Published by Elsevier Ltd.

  9. Inbreeding effects on in vitro embryo production traits in Guzerá cattle.

    Science.gov (United States)

    Perez, B C; Balieiro, J C C; Ventura, R V; Bruneli, F A T; Peixoto, M G C D

    2017-11-01

    Inbreeding has been associated with the impairment of reproductive performance in many cattle breeds. Although the usage of reproductive biotechnologies has been increasing in bovine populations, not much attention has been given to the impact of inbreeding over cow's performance on artificial reproduction. The objective of this study was to estimate the impact of inbreeding on in vitro embryo production in a Guzerá breed population. The inbreeding coefficient (F), calculated as half of the co-ancestry of the individual's parents, was used as an estimate of inbreeding. The inbreeding coefficients of the donor, sire (used on in vitro fertilization) and of the embryos were included, separately, in the proposed models either as classificatory or continuous variables (linear and quadratic effects). The percentage of non-inbred individuals (or embryos) and mean F of donors, embryos and sires were 29.38%; 35.76%; 42.86% and 1.98±2.68; 1.32±3.13; 2.08±2.79, respectively. Two different models were considered, one for oocyte production traits and other for embryo production traits. The increase of F of the donor significantly (P0.05) effects were observed for the sire (father of the embryos) inbreeding coefficient over the traits analysed. Embryo's F influenced (Ptechnology. High levels of inbreeding should be avoided when selecting Guzerá female donors and planning in vitro fertilization mating.

  10. [INFLUENCE OF NANODIAMONDS AND CARBON NANOWIRES ON SURVIVAL AND CELLS STRUCTURE IN CHICKEN EMBRYO].

    Science.gov (United States)

    Lavrinenko, V; Zinabadinova, S; Chaikovsky, Yu; Sokurenko, L; Shobat, L

    2016-06-01

    Aim - to determine the effect of nanodiamonds and carbon nanowires on the survival and ultrastructure of chicken embryo cells. The experiment was carried out on chicken embryos, incubated from eggs of Hy-Line breed. Control and two experimental groups were formed (total number of embryos - 100). Diamond nanoparticles and carbon nanowires were administered on day 3 of incubation as a suspension of a biocompatible dextran. Ultrastructural analysis and general study of embryos state were carried out. The most expressed pathological effects were observed in the group with the introduction of the CNW, which caused visual impairment of embryogenesis that started from the early incubation periods. As for ND we can claim their prolonged impact on the development of embryos, manifested in the gradual deterioration of the embryos condition with the manifestations of the pathology in the provisory organs and the body of embryos. The results of our study demonstrate that both types of nanostructures can cause sublethal and irreversible morphologic changes. Detection of morphological evidence of the impact of nanomaterials at significant distances from the site of administration of nanoparticles shows highly penetrating ability of nanomaterials. The presence of damages specific for each type of nanoparticles shows affinity to various tissues and cellular structures. It is demonstrated that similar, at first glance, impact of nanomaterials, such as the induction of oxidative stress might be caused by specific structural transformations. So, ND cause vacuolization of mitochondria, and the CNW - deformation of their shape and appearance of dark inclusions in them.

  11. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Single-embryo transfer versus multiple-embryo transfer.

    Science.gov (United States)

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  13. The Well-of-the-Well system: an efficient approach to improve embryo development.

    Science.gov (United States)

    Vajta, Gábor; Korösi, Tamás; Du, Yutao; Nakata, Kumiko; Ieda, Shoko; Kuwayama, Masashige; Nagy, Zsolt Peter

    2008-07-01

    Transfer of human embryos at the blastocyst stage may offer considerable benefits including an increased implantation rate and a decreased risk of multiple pregnancies; however, blastocyst culture requires an efficient and reliable in-vitro embryo culture system. In this study, the effect of the Well-of-the-Well (WOW) system consisting of microwells formed on the bottom of the culture dish was tested in three mammalian species, including humans. The WOW system resulted in significant improvement when comparing the drops for culture of in-vitro-matured and parthenogenetically activated porcine oocytes, and in-vivo-derived mouse zygotes. In human embryos, using a sibling oocyte design, embryos cultured in WOW developed to the blastocyst stage in a significantly higher proportion than did embryos cultured traditionally (55% in WOW and 37% in conventional culture; P WOW system or in microdrops. Transferable quality blastocyst development (48.9% of cultured zygotes) was observed in the WOW system. Ninety-four blastocysts transferred to 45 patients resulted in clinical pregnancy rates of 48.9%, including nine twin pregnancies, seven single pregnancies, five miscarriages and one ectopic pregnancy. The results indicate that the WOW system provides a promising alternative for microdrop culture of mammalian embryos, including human embryos.

  14. Mammalian diversity: gametes, embryos and reproduction.

    Science.gov (United States)

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  15. Creating and selling embryos for "donation": ethical challenges.

    Science.gov (United States)

    Klitzman, Robert; Sauer, Mark V

    2015-02-01

    The commercial creation and sale of embryos has begun, which poses a series of ethical questions that have received little scholarly attention. Some of the concerns that arise are similar to those posed by the sale of gametes, while other issues differ markedly. Questions emerge, first, regarding the rights of the unborn children and their ability to know their biological parents. Companies that create human embryos de novo may wish to keep gamete providers anonymous. Many of these offspring thus will never learn that their parents are not their biologic parents. Yet, such disclosures, regarding not only one but both of these biologic parents, may be important for these individuals; and a lack of this knowledge may impede their physical and psychological health. Second, questions surface regarding the fees that providers should charge for embryos and whether these amounts should vary based on the traits of 1 or both of the gamete donors. Some prospective parents may seek specific traits in a baby (eg, height or eye/hair coloring), which prompts the creation of embryos from 2 gamete donors who possess these characteristics. Third, ownership of embryos created without an advanced directive by patients poses dilemmas (eg, disposition of any remaining embryos). Fourth, guidelines do not yet exist to limit the number of embryos sold from each pair of gamete donors. Hence, unbeknownst to each other, full siblings could potentially meet, get married, and procreate. This discussion has several critical implications for future practice and professional education and policy. Patients with diseases associated with genetic tests may well ask obstetricians, gynecologists, and other physicians about these techniques and practices. Clinicians can refer such patients to assisted reproductive technology specialists; however, familiarity with the basic aspects of the issues and complexities involved could aid these providers and their patients Several of these issues can be

  16. DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis.

    Directory of Open Access Journals (Sweden)

    Oliana Carnevali

    Full Text Available Public concerns on phthalates distributions in the environment have been increasing since they can cause liver cancer, structural abnormalities and reduce sperm counts in male reproductive system. However, few data are actually available on the effects of Di-(2-ethylhexyl-phthalate (DEHP in female reproductive system. The aim of this study was to assess the impacts of DEHP on zebrafish oogenesis and embryo production. Female Danio rerio were exposed to environmentally relevant doses of DEHP and a significant decrease in ovulation and embryo production was observed. The effects of DEHP on several key regulators of oocyte maturation and ovulation including bone morphogenetic protein-15 (BMP15, luteinizing hormone receptor (LHR, membrane progesterone receptors (mPRs and cyclooxygenase (COX-2 (ptgs2 were determined by real time PCR. The expressions of BMP15 and mPR proteins were further determined by Western analyses to strengthen molecular findings. Moreover, plasma vitellogenin (vtg titers were assayed by an ELISA procedure to determine the estrogenic effects of DEHP and its effects on oocyte growth. A significant reduction of fecundity in fish exposed to DEHP was observed. The reduced reproductive capacity was associated with an increase in ovarian BMP15 levels. This rise, in turn, was concomitant with a significant reduction in LHR and mPRbeta levels. Finally, ptgs2 expression, the final trigger of ovulation, was also decreased by DEHP. By an in vitro maturation assay, the inhibitory effect of DEHP on germinal vesicle breakdown was further confirmed. In conclusion, DEHP affecting signals involved in oocyte growth (vtg, maturation (BMP15, LHR, mPRs, and ovulation (ptgs2, deeply impairs ovarian functions with serious consequences on embryo production. Since there is a significant genetic similarity between D.rerio and humans, the harmful effects observed at oocyte level may be relevant for further molecular studies on humans.

  17. Mechanistic dissection of plant embryo initiation

    NARCIS (Netherlands)

    Radoeva, T.M.

    2016-01-01

    Land plants can reproduce sexually by developing an embryo from a fertilized egg cell, the zygote. After fertilization, the zygote undergoes several rounds of controlled cell divisions to generate a mature embryo. However, embryo formation can also be induced in a variety of other cell types in

  18. Untwisting the Caenorhabditis elegans embryo

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  19. Untwisting the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  20. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF.

    Science.gov (United States)

    Vergouw, Carlijn G; Kostelijk, E Hanna; Doejaaren, Els; Hompes, Peter G A; Lambalk, Cornelis B; Schats, Roel

    2012-09-01

    Does the type of medium used to culture fresh and frozen-thawed embryos influence neonatal birthweight after single embryo transfer (SET) in IVF? A comparison of two commercially available culture media showed no significant influence on mean birthweight and mean birthweight adjusted for gestational age, gender and parity (z-scores) of singletons born after a fresh or frozen-thawed SET. Furthermore, we show that embryo freezing and thawing cycles may lead to a significantly higher mean birthweight. Animal studies have shown that culture media constituents are responsible for changes in birthweight of offspring. In human IVF, there is still little knowledge of the effect of medium type on birthweight. Until now, only a small number of commercially available culture media have been investigated (Vitrolife, Cook(®) Medical and IVF online medium). Our study adds new information: it has a larger population of singleton births compared with the previously published studies, it includes outcomes of other media types (HTF and Sage(®)), not previously analysed, and it includes data on frozen-thawed SETs. This study was a retrospective analysis of birthweights of singleton newborns after fresh (Day 3) or frozen-thawed (Day 5) SET cycles, using embryos cultured in either of two different types of commercially available culture media, between 2008 and 2011. Before January 2009, a single-step culture medium was used: human tubal fluid (HTF) with 4 mg/ml human serum albumin. From January 2009 onwards, a commercially available sequential medium was introduced: Sage(®), Quinn's advantage protein plus medium. Singletons born after a fresh SET (99 embryos cultured in HTF and 259 in Sage(®)) and singletons born after a frozen-thawed SET (32 embryos cultured in HTF only, 41 in HTF and Sage(®) and 86 in Sage(®) only) were analysed. Only patients using autologous gametes without the use of a gestational carrier were considered. Also excluded were (vanishing) twins, triplets

  1. The neuroblast of the grasshopper embryo as a new mutagen test system. Pt. 1

    International Nuclear Information System (INIS)

    Liang, J.C.; Gaulden, M.E.

    1982-01-01

    The neuroblasts of the grasshopper embryo (Chortophaga viridifasciata De Geer) are being studied to determine their suitability for detecting environmental clastogens (chromosome-breaking agents). They are very sensitive to the induction of chromosome breakage by radiation in viro. Their sensitvity, 0.011 break/cell/R, is 4-5 times higher than pollen mother cells of Tradescantia (micronuclei), 10 times higher than either human lymphocytes or Chinese hamster cells (metaphase chromosome aberrations), and 15 times higher than mouse erythroblasts (micronuclei). Furthermore, they have no spontaneous chromosome breakage, which facilitates the detection of agents that break chromosomes. The present study shows that Chortophaga embryos maintain normal mitotic activity in vitro for 5 cell cycles at 38 0 C (20 h), and that neuroblasts of embryos grown in vitro have the same radiosensitivity as those of embryos in vivo. Thus in vitro exposure of grasshopper embryos is a promising method for obtaining data on the response of neuroblasts to chemical clastogens. (orig.)

  2. Neuroblast of the grasshopper embryo as a new mutagen test system. Pt. 1. In vitro radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J C; Gaulden, M E [Texas Univ., Dallas (USA). Dept. of Radiology

    1982-04-01

    The neuroblasts of the grasshopper embryo (Chortophaga viridifasciata De Geer) are being studied to determine their suitability for detecting environmental clastogens (chromosome-breaking agents). They are very sensitive to the induction of chromosome breakage by radiation in vitro. Their sensitvity, 0.011 break/cell/R, is 4-5 times higher than pollen mother cells of Tradescantia (micronuclei), 10 times higher than either human lymphocytes or Chinese hamster cells (metaphase chromosome aberrations), and 15 times higher than mouse erythroblasts (micronuclei). Furthermore, they have no spontaneous chromosome breakage, which facilitates the detection of agents that break chromosomes. The present study shows that Chortophaga embryos maintain normal mitotic activity in vitro for 5 cell cycles at 38/sup 0/C (20 h), and that neuroblasts of embryos grown in vitro have the same radiosensitivity as those of embryos in vivo. Thus in vitro exposure of grasshopper embryos is a promising method for obtaining data on the response of neuroblasts to chemical clastogens.

  3. Exposure to excess phenobarbital negatively influences the osteogenesis of chick embryos

    Directory of Open Access Journals (Sweden)

    Yu Yan

    2016-09-01

    Full Text Available Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical setting. However, a long term of phenobarbital administration in pregnant women may produce side effects on embryonic skeletogenesis. In this study, we aim to investigate the mechanism by which phenobarbital treatment induces developmental defects in long bones. We first determined that phenobarbital treatment decreased chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos. Phenobarbital treatment also suppressed mineralization in both in vivo and in vitro long bone models. Next, we established that phenobarbital treatment delayed blood vessel invasion in a cartilage template, and this finding was supported by the down-regulation of vascular endothelial growth factor in the hypertrophic zone following phenobarbital treatment. Phenobarbital treatment inhibited tube formation and the migration of human umbilical vein endothelial cells. In addition, it impaired angiogenesis in chick yolk sac membrane model and chorioallantoic membrane model. In summary, phenobarbital exposure led to shortened lengths of long bones during embryogenesis, which might result from inhibiting mesenchyme differentiation, chondrocyte proliferation, and delaying mineralization by impairing vascular invasion.

  4. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy.

    Science.gov (United States)

    Flores, Luis E; Hildebrandt, Thomas B; Kühl, Anja A; Drews, Barbara

    2014-05-10

    Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart

  5. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    International Nuclear Information System (INIS)

    Xu, Ting; Zhao, Jing; Hu, Ping; Dong, Zhangji; Li, Jingyun; Zhang, Hongchang; Yin, Daqiang; Zhao, Qingshun

    2014-01-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  6. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Zhao, Jing [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Hu, Ping [Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061 (China); State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029 (China); Dong, Zhangji; Li, Jingyun [Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061 (China); Zhang, Hongchang [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Yin, Daqiang, E-mail: yindq@tongji.edu.cn [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092 (China); Zhao, Qingshun, E-mail: qingshun@nju.edu.cn [Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061 (China)

    2014-06-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  7. In vitro production of small ruminant embryos: late improvements and further research.

    Science.gov (United States)

    de Souza-Fabjan, Joanna Maria Gonçalves; Panneau, Barbara; Duffard, Nicolas; Locatelli, Yann; de Figueiredo, José Ricardo; Freitas, Vicente José de Figueirêdo; Mermillod, Pascal

    2014-06-01

    Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo-derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Noninvasive embryo assessment technique based on buoyancy and its association with embryo survival after cryopreservation.

    Science.gov (United States)

    Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel

    2017-11-01

    Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of embryo culture media do not persist after implantation: a histological study in mice.

    Science.gov (United States)

    Hemkemeyer, Sandra A; Schwarzer, Caroline; Boiani, Michele; Ehmcke, Jens; Le Gac, Séverine; Schlatt, Stefan; Nordhoff, Verena

    2014-02-01

    Is post-implantation embryonic development after blastocyst transfer affected by exposure to different assisted reproduction technology (ART) culture media? Fetal development and placental histology of ART embryos cultured in vitro in different ART media was not impaired compared with embryos grown in vivo. The application of different in vitro culture (IVC) media for human ART has an effect on birthweight of newborns. In the mouse model, differences in blastocyst formation were reported after culture in different ART media. Moreover, abnormalities in the liver and heart have been detected as a result of suboptimal IVC conditions. Fertilized oocytes from inbred and outbred breeding schemes were retrieved and either immediately transferred to foster mothers or incubated in control or human ART culture media up to the blastocyst stage prior to transfer. Placental and fetal anatomy and particularly bone development were evaluated. B6C3F1 female mice were used as oocyte donors after ovulation induction. C57Bl/6 and CD1 males were used for mating and CD1 females as foster mothers for embryo transfer. Fertilized oocytes were recovered from mated females and incubated in sequential human ART media (ISM1/ISM2 and HTF/Multiblast), in control media [KSOM(aa) and Whitten's medium] or grown in utero without IVC (zygote control). As in vivo, control B6C3F1 females were superovulated and left untreated. Fetuses and placentae were isolated by Caesarean section and analysed at 18.5 days post-coitum (dpc) for placenta composition and at 15.5 dpc for body weight, crown-rump length (CRL), fetal organ development, morphological development, total bone length and extent of bone ossification. No major differences in the number of implantation sites or in histological appearance of the placentae were detected. CRL of KSOM(aa) fetuses was higher compared with zygote control and Whitten's medium. Histological analysis of tissue sections revealed no gross morphological differences compared

  10. Human Cloning

    National Research Council Canada - National Science Library

    Johnson, Judith A; Williams, Erin D

    2006-01-01

    .... Scientists in other labs, including Harvard University and the University of California at San Francisco, intend to produce cloned human embryos in order to derive stem cells for medical research...

  11. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories.

    Science.gov (United States)

    Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc

    2014-08-01

    Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Rejoining of DNA double-strand breaks in human fibroblasts and its impairment in one ataxia telangiectasia and two Fanconi strains

    International Nuclear Information System (INIS)

    Coquerelle, T.M.; Weibezahn, K.F.

    1981-01-01

    Using the technique of neutral elution through polycarbonate filters as a measure of DNA length, and hence of the number of double-strand breaks incurred as a result of radiation damage, we found that normal human fibroblasts rejoin 50% of all breaks within only 3 min (37 degrees C). This fast rejoining was impaired in fibroblasts from one patient with Ataxia telangiectasia and in fibroblasts from two patients with Fanconi's anemia. Also the number of residual breaks after several hours of repair was higher than in control cells. Other cases with the same diseases were normal in their rejoining of double-strand breaks

  13. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1 Virus Impairs the Human T Cell Response

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    2013-01-01

    Full Text Available PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1pdm09, and its effects on the T cell response have not been widely explored. We found that A(H1N1pdm09 virus induced PD-L1 expression on human dendritic cells (DCs and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1pdm09 virus.

  14. Effects of sphingosine-1-phosphate on gene expression of two cell mouse embryos induced by C2-Ceramide

    Directory of Open Access Journals (Sweden)

    Xujing Geng

    2014-06-01

    Conclusions: This study provides a map of genes in the pre-implantation two cell mouse embryo. Further investigation based on these data will provide a better understanding of the effects of S1P on the pre-implantation embryos in other mammalian species, especially human.

  15. [Chapter 7. The frozen embryo in the light of a jurist : beyond qualification].

    Science.gov (United States)

    Neirinck, Claire

    2018-03-07

    The legal qualification of the embryo does not pose any particular difficulties : this human being is a bodily thing of human nature, devoid of legal personality.However the freezing affects its humanity : it is no more than a thing made in laboratory, out of time. Stored in liquid nitrogen, it does not die, so storage must be ended.As long as they respond to a specific parental project, the one for which they were made and kept, the frozen embryos are identified by this given project.They are unique and not interchangeable. On the other hand, without a parental project, frozen embryos that can be accommodated by any infertile couple or those given to research, become interchangeable gender things.Although human beings, they are treated as the elements and products of the human body, human things.

  16. Cultures of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Streffer, C.; Molls, M.

    1987-01-01

    In the preimplantation mouse embryos the chromosomal damage develops through several postradiation cell cycles and mitoses. New chromosome aberrations are seen during the second and third postradiation mitoses. Also, more micronuclei appear during later postradiation interphases. This is in agreement with the assumption that unrepaired chromosomal radiation damage develops during the cell generation cycle to such a form (i.e. double-strand breaks in DNA) that chromosomal breaks occur. This proposition is strengthened by the observation that radiation-induced damage is more rapidly expressed after neutron exposure (first or second postradiation mitosis) than after exposure to X rays at the one- or two-cell stage. The preimplantation mouse embryo culture is an inviting system for additional studies at the molecular level, especially now that within the last few years more sensitive methods have been developed for study of DNA and protein structure, regulation, and synthesis. The results from these studies of cultures of preimplantation mouse embryos present a favorable case for the study of complex biological systems under very defined conditions in vitro for extrapolation to effects in vivo

  17. Impairments and compensation in mouth and limb use in free feeding after unilateral dopamine depletions in a rat analog of human Parkinson's disease.

    Science.gov (United States)

    Whishaw, I Q; Coles, B L; Pellis, S M; Miklyaeva, E I

    1997-03-01

    Rats depleted unilaterally of dopamine (DA) with the neurotoxin 6-hydroxydopamine (6-OHDA) have contralateral sensorimotor deficits. These include pronounced impairments in using the contralateral limbs (bad limbs) for skilled movements in tests of reaching and bar pressing. There has been no systematic examination of the changes that take place in movements of spontaneous food handling. This was the purpose of the present study. Rats were filmed as they picked up and ate pieces of angel hair pasta (Capelli d'Angelo), a food item that challenges the rats to use delicate and bilaterally coordinated limb and paw movements. Control rats picked up the food with their incisors, transferred it to their paws, and manipulated it using a variety of bilaterally coordinated limb and paw movements. The DA-depleted rats were impaired in both their mouth and paw movements. They seemed unable to use their teeth to grasp the food and so used their tongue. They did not use the bad side of their mouth to chew and relied upon the good side of their mouth. The bad paw was impaired in grasping the food, grasped only with a whole paw grip, did not make manipulatory movements, and did not open to release the food or open to regain support once the food was eaten. Although the rats improved over a 30-day recovery period, much of the improvement was due to compensatory adjustments. That unilateral DA-depletion results in profound contralateral impairments of the mouth and limb with improvements due mainly to compensatory adjustments confirms a role for dopaminergic systems in motor control. Additionally, the behavioral tests described here could provide important adjuncts for assessing therapies in this animal analog of human Parkinson's disease.

  18. Saviour embryos? Preimplantation genetic diagnosis as a therapeutic technology.

    Science.gov (United States)

    Sparrow, Robert; Cram, David

    2010-05-01

    The creation of 'saviour siblings' is one of the most controversial uses of preimplantation genetic diagnosis (PGD). This paper outlines and invites ethical discussion of an extension of this technology, namely, the creation of 'saviour embryos' to serve as a source of stem cells to be used in potentially life-saving therapy for an existing child. A number of analogies between this hypothetical use of PGD and existing uses of IVF are offered and, in addition, between saviour embryos and proposed therapeutic applications of stem cell technology. The ethical significance of a number of disanalogies between these cases are explored and investigated. While the creation of saviour embryos would involve a significant shift in the rationale for IVF and PGD, it is suggested here that the urgent need of an existing individual should be prioritised over any obligations that might exist in relation to the creation or destruction of human embryos. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis.

    Science.gov (United States)

    Majd, Homa; King, Martin S; Smith, Anthony C; Kunji, Edmund R S

    2018-01-01

    Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes. Copyright © 2017. Published by Elsevier B.V.

  20. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  1. Embryotoxic cytokines-Potential roles in embryo loss and fetal programming.

    Science.gov (United States)

    Robertson, Sarah A; Chin, Peck-Yin; Femia, Joseph G; Brown, Hannah M

    2018-02-01

    Cytokines in the reproductive tract environment at conception mediate a dialogue between the embryo and maternal tissues to profoundly influence embryo development and implantation success. Through effects on gene expression and the cell stress response, cytokines elicit an epigenetic impact with consequences for placental development and fetal growth, which in turn affect metabolic phenotype and long-term health of offspring. There is substantial evidence demonstrating that pro-survival cytokines, such as GM-CSF, CSF1, LIF, HB-EGF and IGFII, support embryos to develop optimally. Less attention has been paid to cytokines that adversely impact embryo development, including the pro-inflammatory cytokines TNF, TRAIL and IFNG. These agents elicit cell stress, impair cell survival and retard blastocyst development, and at sufficiently high concentrations, can cause embryo demise. Experiments in mice suggest these so-called 'embryotoxic' cytokines can harm embryos through pro-apoptotic and adverse programming effects, as well as indirectly suppressing uterine receptivity through the maternal immune response. Embryotrophic factors may mitigate against and protect from these adverse effects. Thus, the balance between embryotrophic and embryotoxic cytokines can impart effects on embryo development and implantation, and has the potential to contribute to endometrial 'biosensor' function to mediate embryo selection. Embryotoxic cytokines can be elevated in plasma and reproductive tract tissues in inflammatory conditions including infection, diabetes, obesity, PCOS and endometriosis. Studies are therefore warranted to investigate whether excessive embryotoxic cytokines contribute to infertility and recurrent implantation failure in women, and compromised reproductive performance in livestock animals. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Radionuclide transfer from mother to embryo

    International Nuclear Information System (INIS)

    Toader, M.; Vasilache, R.A.; Scridon, R.; Toader, M.L.

    1998-01-01

    The transfer of radionuclides from mother to embryo is still a matter of high interest. Therefore, the relation was investigated between the amount of radionuclides in the embryo and the dietary intake of the mother, this for two scenarios: a recurrent intake of variable amounts of radionuclides, and a long-term intake of a relatively constant amount of radionuclides, the radionuclide being 137 Cs. In the first case, the amount of radionuclides present in the embryo increases with the age of the embryo and with the intake of the mother. In the second case, no correlation could be found between the age of the embryo and its radioactive content; only the correlation between the intake of the mother and the radionuclide content of the embryo remained. (A.K.)

  3. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ9-tetrahydrocannabinol in human CD4+ T cells

    International Nuclear Information System (INIS)

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-01-01

    We have previously reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4 + T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ 9 -THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ 9 -THC attenuated CD40L expression in human CD4 + T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ 9 -THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ 9 -THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ 9 -THC suppresses human T cell function. - Highlights: • Δ 9 -THC attenuated CD40L expression in activated human CD4+ T cells. • Δ 9 -THC suppressed DNA-binding activity of NFAT and NFκB. • Δ 9 -THC impaired elevation of intracellular Ca2+. • Δ 9 -THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β

  4. Methanol as a cryoprotectant for equine embryos.

    Science.gov (United States)

    Bass, L D; Denniston, D J; Maclellan, L J; McCue, P M; Seidel, G E; Squires, E L

    2004-09-15

    Equine embryos (n=43) were recovered nonsurgically 7-8 days after ovulation and randomly assigned to be cryopreserved in one of two cryoprotectants: 48% (15M) methanol (n=22) or 10% (136 M) glycerol (n=21). Embryos (300-1000 microm) were measured at five intervals after exposure to glycerol (0, 2, 5, 10 and 15 min) or methanol (0, 15, 35, 75 and 10 min) to determine changes (%) in diameter over time (+/-S.D.). Embryos were loaded into 0.25-ml plastic straws, sealed, placed in a programmable cell freezer and cooled from room temperature (22 degrees C) to -6 degrees C. Straws were then seeded, held at -6 degrees C for 10 min and then cooled to -33 degrees C before being plunged into liquid nitrogen. Two or three embryos within a treatment group were thawed and assigned to be either cultured for 12 h prior to transfer or immediately nonsurgically transferred to a single mare. Embryo diameter decreased in all embryos upon initial exposure to cryoprotectant. Embryos in methanol shrank and recovered slightly to 76+/-8 % of their original diameter; however, embryos in glycerol continued to shrink, reaching 57+/-6 % of their original diameter prior to cryopreservation. Survival rates of embryos through Day 16 of pregnancy were 38 and 23%, respectively (P>0.05) for embryos cryopreserved in the presence of glycerol or methanol. There was no difference in pregnancy rates of mares receiving embryos that were cultured prior to transfer or not cultured (P>0.05). Preliminary experiments indicated that 48% methanol was not toxic to fresh equine embryos but methanol provided no advantage over glycerol as a cryoprotectant for equine blastocysts.

  5. Lethality of radioisotopes in early mouse embryos

    International Nuclear Information System (INIS)

    Macqueen, H.A.

    1979-01-01

    The development of pre-implantation mouse embryos was found to be prevented by exposure of the embryos to [ 35 S]methionine, but not to [ 3 H]methionine. Such embryos have also been shown to be highly sensitive to [ 3 H]thymidine. These observations are discussed with reference to the path lengths and energies of electrons emitted from the different radioisotopes. (author)

  6. Visual Impairment

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...

  7. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    Science.gov (United States)

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  8. Theory about the Embryo Cryo-Treatment.

    Science.gov (United States)

    Vladimirov, Iavor K; Tacheva, Desislava; Diez, Antonio

    2017-04-01

    To create hypothesis, which can give a logical explanation related to the benefits of freezing/thawing embryos. Cryopreservation is not only a technology used for storing embryos, but also a method of embryo treatment that can potentially improve the success rate in infertile couples. From the analysis of multiple results in assisted reproductive technology, which have no satisfactory explanation to date, we found evidence to support a 'therapeutic' effect of the freezing/thawing of embryos on the process of recovery of the embryo and its subsequent implantation. Freezing/thawing is a way to activate the endogenous survival and repair responses in preimplantation embryos. Several molecular mechanisms can explain the higher success rate of ET using thawed embryos compared to fresh ET in women of advanced reproductive age, the higher miscarriage rate in cases of thawed blastocyst ET compared to thawed ET at early cleavage embryo, and the higher perinatal parameters of born children after thawed ET. Embryo thawing induces a stress. Controlled stress is not necessarily detrimental, because it generates a phenomenon that is counteracted by several known biological responses aimed to repair mitochondrial damage of membrane and protein misfolding. The term for favorable biological responses to low exposures to stress is called hormesis. This thesis will summarize the role of cryopreservation in the activation of a hormetic response, preserving the mitochondrial function, improving survival, and having an impact on the process of implantation, miscarriage, and the development of pregnancy.

  9. Nano-nutrition of chicken embryos

    DEFF Research Database (Denmark)

    Sawosz, Filip; Pineda, Lane Manalili; Hotowy, Anna

    2013-01-01

    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces...... broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases...

  10. Birth of normal infants after transfer of embryos that were twice vitrified/warmed at cleavage stages: report of two cases.

    Science.gov (United States)

    Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo

    2012-12-01

    The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. [Culture conditions for gametes and embryos: Which culture medium? Which impact on newborn?

    Science.gov (United States)

    Koscinski, I; Merten, M; Kazdar, N; Guéant, J-L

    2018-05-01

    Many studies have examined the impact of cell/embryo culture media on the development of human embryo during IVF process, but few studies have followed up and compared the effects of these culture media on the developmental outcome of children conceived by IVF. As recurrent experimental evidence from animal studies suggests potential long-term effects of embryo culture media on the health outcome of IVF-conceived children, more studies are needed to clarify the role of the culture media and mechanisms underlying such effects. In human, however, the effects of culture media are difficult to pinpoint due to complications stem from both the influence of maternal nutrition during the gestational period and the parental genetic. Based on a simple review of the literature integrating animal experimentations and human clinic studies, we suggest that the composition of culture medium should be considered beyond the character of unique or sequential medium, corresponding to "let embryo choose" or "back to nature" respectively. Instead, we suggest that the main components of embryo culture media should be considered from the point of view of metabolic consequences and potential epigenetic effects. Given that energetic metabolites can regulate epigenetic machinery, we hypothesize that metabolic abnormalities linked to morphological abnormalities could reveal epigenetic defects in embryos. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu; Wyrobek, Andrew J

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cell embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.

  13. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian P; Sacchetti, Massimo

    2003-01-01

    adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake......The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three...... the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P

  14. Antioxidant Activity of Inulin and Its Role in the Prevention of Human Colonic Muscle Cell Impairment Induced by Lipopolysaccharide Mucosal Exposure

    Science.gov (United States)

    Guarino, Michele Pier Luca; Locato, Vittoria; Cocca, Silvia; Cimini, Sara; Palma, Rossella; Alloni, Rossana; De Gara, Laura; Cicala, Michele

    2014-01-01

    Background Fructans, such as inulin, are dietary fibers which stimulate gastro-intestinal (GI) function acting as prebiotics. Lipopolysaccharide (LPS) impairs GI motility, through production of reactive oxygen species. The antioxidant activity of various fructans was tested and the protective effect of inulin on colonic smooth muscle cell (SMC) impairment, induced by exposure of human mucosa to LPS, was assessed in an ex vivo experimental model. Methods The antioxidant capacity of fructans was measured in an in vitro system that simulates cooking and digestion processes. Human colonic mucosa and submucosa, obtained from disease-free margins of resected segments for cancer, were sealed between two chambers, with the mucosal side facing upwards with Krebs solution with or without purified LPS from a pathogenic strain of Escherichia coli (O111:B4) and inulin (Frutafit IQ), and the submucosal side facing downwards into Krebs solution. The solutions on the submucosal side were collected following mucosal exposure to Krebs in the absence (N-undernatant) or presence of LPS (LPS-undernatant) or LPS+inulin (LPS+INU-undernatant). Undernatants were tested for their antioxidant activity and the effects on SMCs contractility. Inulin protective effects on mucosa and submucosa layers were assessed measuring the protein oxidation level in the experimental conditions analyzed. Results Antioxidant activity of inulin, which was significantly higher compared to simple sugars, remained unaltered despite cooking and digestion processes. Inulin protected the mucosal and submucosal layers against protein oxidation. Following exposure to LPS-undernatant, a significant decrease in maximal acetylcholine (Ach)-induced contraction was observed when compared to the contraction induced in cells incubated with the N-undernatant (4±1% vs 25±5% respectively, PInulin (35±5%). Conclusions Inulin protects the human colon mucosa from LPS-induced damage and this effect appears to be related to the

  15. Evaluation of treatments with hCG and carprofen at embryo transfer in a demi-embryo and recipient virgin heifer model.

    Science.gov (United States)

    Torres, A; Chagas E Silva, J; Diniz, P; Lopes-da-Costa, L

    2013-08-01

    An in vivo model, combining a low developmental competence embryo (demi-embryo) and a high-fertility recipient (virgin dairy heifer) was used to evaluate the effects of treatment with human chorionic gonadotropin (hCG) and carprofen at embryo transfer (ET) on plasma progesterone (P₄) concentrations of recipients and on embryonic growth and survival. Embryos were bisected and each demi-embryo was transferred to a recipient on Day 7 of the estrous cycle. At ET, heifers (n = 163) were randomly allocated to treatment with hCG (2500 IU im), carprofen (500 mg iv), hCG plus carprofen or to untreated controls. Plasma P₄ concentrations were measured on Days 0, 7, 14 and 21 of all recipients plus on Days 28, 42 and 63 of pregnant recipients. Pregnancy was presumed to be present in recipients with luteal plasma P4 concentrations until Day 21 and confirmed by using transrectal ultrasonography on Days 28, 42 and 63. Embryonic measurements (crown-rump length and width) were obtained on Day 42. Treatment with hCG induced formation of secondary corpora lutea (CL) in 97% of heifers and increased (P carprofen at ET had no significant effects on plasma P₄ concentrations and rate of embryo mortality. Treatment with hCG plus carprofen at ET induced formation of secondary CL in 90% of heifers but decreased the luteotrophic effect of hCG, resulting in no effect on embryo survival. Low developmental competence embryos showed an intrinsic deficiency in overcoming the maternal recognition of pregnancy challenge and in proceeding to further development until Day 28 of pregnancy, whereas mortality beyond this point was residual. Results on pregnancy rates should be confirmed in further experiments involving a larger sample size.

  16. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

    Science.gov (United States)

    Lafaille, Fabien G; Pessach, Itai M.; Zhang, Shen-Ying; Ciancanelli, Michael J.; Herman, Melina; Abhyankar, Avinash; Ying, Shui-Wang; Keros, Sotirios; Goldstein, Peter A.; Mostoslavsky, Gustavo; Ordovas-Montanes, Jose; Jouanguy, Emmanuelle; Plancoulaine, Sabine; Tu, Edmund; Elkabetz, Yechiel; Al-Muhsen, Saleh; Tardieu, Marc; Schlaeger, Thorsten M.; Daley, George Q.; Abel, Laurent; Casanova, Jean-Laurent; Studer, Lorenz; Notarangelo, Luigi D.

    2012-01-01

    In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of TLR3 immunity are prone to HSV-1 encephalitis (HSE) 1–3. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-γ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-γ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele demonstrated that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-γ1.Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies. PMID:23103873

  17. Impaired control of body cooling during heterothermia represents the major energetic constraint in an aging non-human primate exposed to cold.

    Directory of Open Access Journals (Sweden)

    Jeremy Terrien

    2009-10-01

    Full Text Available Daily heterothermia is used by small mammals for energy and water savings, and seems to be preferentially exhibited during winter rather than during summer. This feature induces a trade-off between the energy saved during daily heterothermia and the energy cost of arousal, which can impact energy balance and survival under harsh environmental conditions. Especially, aging may significantly affect such trade off during cold-induced energy stress, but direct evidences are still lacking. We hypothesized that aging could alter the energetics of daily heterothermia, and that the effects could differ according to season. In the gray mouse lemur (Microcebus murinus, a non-human primate species which exhibits daily heterothermia, we investigated the effects of exposures to 25 and 12 degrees C on body composition, energy balance, patterns of heterothermia and water turnover in adult (N = 8 and aged animals (N = 7 acclimated to winter-like or summer-like photoperiods. Acclimation to summer prevented animals from deep heterothermia, even during aging. During winter, adult animals at 12 degrees C and aged animals at 25 degrees C exhibited low levels of energy expenditure with minor modulations of heterothermia. The major effects of cold were observed during winter, and were particularly pronounced in aged mouse lemurs which exhibited deep heterothermia phases. Body composition was not significantly affected by age and could not explain the age-related differences in heterothermia patterns. However, aging was associated with increased levels of energy expenditure during cold exposure, in concomitance with impaired energy balance. Interestingly, increased energy expenditure and depth of heterothermia phases were strongly correlated. In conclusion, it appeared that the exhibition of shallow heterothermia allowed energy savings during winter in adult animals only. Aged animals exhibited deep heterothermia and increased levels of energy expenditure, impairing

  18. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Bai, Chenglian; Du, Changchun; Liao, Junhua [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-01-25

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl{sub 2}), benzo[a]pyrene (BaP), and

  19. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    International Nuclear Information System (INIS)

    Chen, Yuanhong; Huang, Changjiang; Bai, Chenglian; Du, Changchun; Liao, Junhua; Dong, Qiaoxiang

    2016-01-01

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl_2), benzo[a]pyrene (BaP), and

  20. No effect of embryo culture media on birthweight and length of newborns.

    Science.gov (United States)

    Lin, Shengli; Li, Ming; Lian, Ying; Chen, Lixue; Liu, Ping

    2013-07-01

    Does the type of media used to culture embryos for IVF influence the birthweight and length of neonates? No significant differences were observed in birthweight and length among the three embryo culture media used for in vitro embryo culture. Since the establishment of IVF as an assisted reproductive technology (ART), many different culture systems have been used for the development of human embryos. Some studies have shown that the types of culture media influence the newborn birthweight; however, other studies have shown no effect. To further explore this contradictory issue, we compared the birthweight and length of neonates born after the transfer of embryos cultured in one of three commercially available media. This retrospective analysis of birthweight and length of newborns included 1201 women who delivered singletons and 445 women who delivered twins. The following three commercially available culture media were used: G5™, Global and Quinn's advantage media. Women who underwent IVF-ET cycles between 2008 and 2010 were analyzed. Patients younger than 40 years of age with a body mass index (BMI) culture medium. Inter-twin mean birthweight and length disparities were analyzed, but were not shown to be significantly different. Multiple linear regression analysis showed that maternal weight, maternal height, gestational age and infant gender were significantly related to birthweight, and paternal height, gestational age and newborn complications were significantly associated with birth length. The current study showed that birthweight and length of newborns were not associated with the embryo culture medium. More research needs to be performed to analyze the effects of other culture medium formulations and to evaluate the long-term effects of embryo culture medium on the health of children conceived through ART. WIDER IMPLICATIONS OF THESE FINDINGS: Our retrospective study suggests that embryo culture medium does not influence neonatal birthweight and length

  1. Impaired Driving

    Science.gov (United States)

    ... Get the Facts What Works: Strategies to Increase Car Seat and Booster Seat ... narcotics. 3 That’s one percent of the 111 million self-reported episodes of alcohol-impaired driving among U.S. ...

  2. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system.

    Science.gov (United States)

    Vajta, G; Peura, T T; Holm, P; Páldi, A; Greve, T; Trounson, A O; Callesen, H

    2000-03-01

    Culture of mammalian zygotes individually and in small groups results in lower developmental rates than culture of large groups. Zona-free zygotes also have impaired developmental potential in current culture systems. This paper describes a new approach to resolve the problems, the Well of the Well (WOW) system. Small wells (WOWs) were formed in four-well dishes by melting the bottom with heated steel rods. The WOWs were then rinsed, the wells were filled with medium, and the embryos were placed into the WOWs. To test the value of the WOW system a 3 x 3 factorial experiment was performed. Bovine presumptive zygotes were cultured from day 1 to day 7 (day 0: day of insemination) using three modules (single embryos, embryo groups of five, or single zona-digested embryos) and three different culture systems (400 microl medium, 200 microl drops, or WOWs). An additional control group consisted of 40 to 50 embryos cultured in 400 microl medium. The WOW system resulted in higher blastocyst/oocyte rates for all three modules (single: 59%; group of five: 61%; single zona-digested: 53%) than the culture in drops or in wells (P WOWs per well. The cell number of blastocysts cultured in the WOW system did not differ from that of the controls. Apart from its theoretical value in revealing the role of different factors influencing embryo development in vitro, the WOW system may have immediate practical consequences in certain areas of mammalian embryo production. Copyright 2000 Wiley-Liss, Inc.

  3. Neural network classification of sweet potato embryos

    Science.gov (United States)

    Molto, Enrique; Harrell, Roy C.

    1993-05-01

    Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.

  4. Embryo transfer using cryopreserved Boer goat blastocysts ...

    African Journals Online (AJOL)

    The aim of this trial was to evaluate the effect of embryo cryopreservation techniques on the survivability of embryos and fertility following transfer to Boer goat does. The oestrous cycles of 27 mature recipients Boer goat does were synchronised using controlled internal drug release dispensers (CIDR's) for 16 days. At CIDR ...

  5. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Thompson

    2017-07-01

    Full Text Available Perinatal exposure to maternal obesity and high-fat diet (HFD consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.

  6. Insights from imaging the implanting embryo and the uterine environment in three dimensions

    Science.gov (United States)

    Arora, Ripla; Fries, Adam; Oelerich, Karina; Marchuk, Kyle; Sabeur, Khalida; Giudice, Linda C.

    2016-01-01

    Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo. PMID:27836961

  7. Novel embryo selection techniques to increase embryo implantation in IVF attempts.

    Science.gov (United States)

    Sigalos, George Α; Triantafyllidou, Olga; Vlahos, Nikos F

    2016-11-01

    The final success of an IVF attempt depends on several steps and decisions taken during the ovarian stimulation, the oocyte retrieval, the embryo culture and the embryo transfer. The final selection of the embryos most likely to implant is the final step in this process and the responsibility of the lab. Apart from strict morphologic criteria that historically have been used in embryo selection, additional information on genetic, metabolomic and morphokinetic characteristics of the embryo is recently combined to morphology to select the embryo most likely to produce a pregnancy. In this manuscript, we review the most recent information on the current methods used for embryo selection presenting the predictive capability of each one. A literature search was performed on Pubmed, Medline and Cochrane Database of Systematic Reviews for published studies using appropriate key words and phrases with no limits placed on time. It seems that the combination of morphologic criteria in conjunction to embryo kinetics as documented by time-lapse technology provides the most reliable information on embryo quality. Blastocyst biopsy with subsequent comprehensive chromosome analysis allows the selection of the euploid embryos with the higher implantation potential. Embryo time-lapse imaging and blastocyst biopsy combined to comprehensive chromosome analysis are the most promising technologies to increase pregnancy rates and reduce the possibility of multiple pregnancies. However, further studies will demonstrate the capability of routinely using these technologies to significantly improve IVF outcomes.

  8. Preventing Mitochondrial Diseases: Embryo-Sparing Donor-Independent Options.

    Science.gov (United States)

    Adashi, Eli Y; Cohen, I Glenn

    2018-05-01

    Mutant mitochondrial DNA gives rise to a broad range of incurable inborn maladies. Prevention may now be possible by replacing the mutation-carrying mitochondria of zygotes or oocytes at risk with donated unaffected counterparts. However, mitochondrial replacement therapy is being held back by theological, ethical, and safety concerns over the loss of human zygotes and the involvement of a donor. These concerns make it plain that the identification, validation, and regulatory adjudication of novel embryo-sparing donor-independent technologies remains a pressing imperative. This Opinion highlights three emerging embryo-sparing donor-independent options that stand to markedly allay theological, ethical, and safety concerns raised by mitochondrial replacement therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Rape embryogenesis. III. Embryo development in time

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available It was found that the growth curve of the rape embryo axis is of triple sigmoid type. Embryo growth occurs in 3 phases corresponding to 3 different periods of development. Phase I includes growth of the apical cell up to it's division into two layers of octants. Phase II comprises the increase of the spherical proembryo to the change of its symmetry from radial to bilateral. Phase III includes, growth of the embryo from the heart stage up to the end of embryogenesis. In each phase the relative growth rate increases drastically and then diminishes. The differences in growth intensity during the same phase are several-fold. The growth intensity maximum of the embryo axis occurs in phase II. The phasic growth intensity maxima occur: in phase I during apical cell elongation, :before its division, and in phases II and III in the periods of cell division ;growth in globular and torpedo-shaped -shaped embryos.

  10. Assisted reproductive technologies and the issue of risks to women and embryos: the tip of the iceberg

    Directory of Open Access Journals (Sweden)

    Kalline Carvalho Gonçalves Eler

    2016-10-01

    Full Text Available In assisted reproduction, not everything that is technically possible is ethically acceptable or socially desirable. The impact it has on women and embryos needs to be considered. The risk to women involves the ingestion of hormones, which can cause potentially serious complications. As regards embryos, there are risks of prematurity, low birth weight and other diseases. This article advocates a strong protective guardianship for women and the extracorporeal embryo. Faced with new bioethical dilemmas, the essence of the human being is in question. It is therefore the task of all spheres of knowledge to make a distinction between the personalizing and depersonalizing of human beings.